blob: 5fa02ddde1c42b9914bc41f0e31d0db0ff081670 [file] [log] [blame]
------------------------------------------------------------------------------
-- --
-- GNAT COMPILER COMPONENTS --
-- --
-- S E M _ U T I L --
-- --
-- B o d y --
-- --
-- Copyright (C) 1992-2018, Free Software Foundation, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 3, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
-- for more details. You should have received a copy of the GNU General --
-- Public License distributed with GNAT; see file COPYING3. If not, go to --
-- http://www.gnu.org/licenses for a complete copy of the license. --
-- --
-- GNAT was originally developed by the GNAT team at New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc. --
-- --
------------------------------------------------------------------------------
with Treepr; -- ???For debugging code below
with Aspects; use Aspects;
with Atree; use Atree;
with Casing; use Casing;
with Checks; use Checks;
with Debug; use Debug;
with Elists; use Elists;
with Errout; use Errout;
with Erroutc; use Erroutc;
with Exp_Ch11; use Exp_Ch11;
with Exp_Disp; use Exp_Disp;
with Exp_Util; use Exp_Util;
with Fname; use Fname;
with Freeze; use Freeze;
with Lib; use Lib;
with Lib.Xref; use Lib.Xref;
with Namet.Sp; use Namet.Sp;
with Nlists; use Nlists;
with Nmake; use Nmake;
with Output; use Output;
with Restrict; use Restrict;
with Rident; use Rident;
with Rtsfind; use Rtsfind;
with Sem; use Sem;
with Sem_Aux; use Sem_Aux;
with Sem_Attr; use Sem_Attr;
with Sem_Ch6; use Sem_Ch6;
with Sem_Ch8; use Sem_Ch8;
with Sem_Disp; use Sem_Disp;
with Sem_Elab; use Sem_Elab;
with Sem_Eval; use Sem_Eval;
with Sem_Prag; use Sem_Prag;
with Sem_Res; use Sem_Res;
with Sem_Warn; use Sem_Warn;
with Sem_Type; use Sem_Type;
with Sinfo; use Sinfo;
with Sinput; use Sinput;
with Stand; use Stand;
with Style;
with Stringt; use Stringt;
with Targparm; use Targparm;
with Tbuild; use Tbuild;
with Ttypes; use Ttypes;
with Uname; use Uname;
with GNAT.HTable; use GNAT.HTable;
package body Sem_Util is
-----------------------
-- Local Subprograms --
-----------------------
function Build_Component_Subtype
(C : List_Id;
Loc : Source_Ptr;
T : Entity_Id) return Node_Id;
-- This function builds the subtype for Build_Actual_Subtype_Of_Component
-- and Build_Discriminal_Subtype_Of_Component. C is a list of constraints,
-- Loc is the source location, T is the original subtype.
function Has_Enabled_Property
(Item_Id : Entity_Id;
Property : Name_Id) return Boolean;
-- Subsidiary to routines Async_xxx_Enabled and Effective_xxx_Enabled.
-- Determine whether an abstract state or a variable denoted by entity
-- Item_Id has enabled property Property.
function Has_Null_Extension (T : Entity_Id) return Boolean;
-- T is a derived tagged type. Check whether the type extension is null.
-- If the parent type is fully initialized, T can be treated as such.
function Is_Fully_Initialized_Variant (Typ : Entity_Id) return Boolean;
-- Subsidiary to Is_Fully_Initialized_Type. For an unconstrained type
-- with discriminants whose default values are static, examine only the
-- components in the selected variant to determine whether all of them
-- have a default.
type Null_Status_Kind is
(Is_Null,
-- This value indicates that a subexpression is known to have a null
-- value at compile time.
Is_Non_Null,
-- This value indicates that a subexpression is known to have a non-null
-- value at compile time.
Unknown);
-- This value indicates that it cannot be determined at compile time
-- whether a subexpression yields a null or non-null value.
function Null_Status (N : Node_Id) return Null_Status_Kind;
-- Determine whether subexpression N of an access type yields a null value,
-- a non-null value, or the value cannot be determined at compile time. The
-- routine does not take simple flow diagnostics into account, it relies on
-- static facts such as the presence of null exclusions.
function Old_Requires_Transient_Scope (Id : Entity_Id) return Boolean;
function New_Requires_Transient_Scope (Id : Entity_Id) return Boolean;
-- ???We retain the old and new algorithms for Requires_Transient_Scope for
-- the time being. New_Requires_Transient_Scope is used by default; the
-- debug switch -gnatdQ can be used to do Old_Requires_Transient_Scope
-- instead. The intent is to use this temporarily to measure before/after
-- efficiency. Note: when this temporary code is removed, the documentation
-- of dQ in debug.adb should be removed.
procedure Results_Differ
(Id : Entity_Id;
Old_Val : Boolean;
New_Val : Boolean);
-- ???Debugging code. Called when the Old_Val and New_Val differ. This
-- routine will be removed eventially when New_Requires_Transient_Scope
-- becomes Requires_Transient_Scope and Old_Requires_Transient_Scope is
-- eliminated.
function Subprogram_Name (N : Node_Id) return String;
-- Return the fully qualified name of the enclosing subprogram for the
-- given node N, with file:line:col information appended, e.g.
-- "subp:file:line:col", corresponding to the source location of the
-- body of the subprogram.
------------------------------
-- Abstract_Interface_List --
------------------------------
function Abstract_Interface_List (Typ : Entity_Id) return List_Id is
Nod : Node_Id;
begin
if Is_Concurrent_Type (Typ) then
-- If we are dealing with a synchronized subtype, go to the base
-- type, whose declaration has the interface list.
-- Shouldn't this be Declaration_Node???
Nod := Parent (Base_Type (Typ));
if Nkind (Nod) = N_Full_Type_Declaration then
return Empty_List;
end if;
elsif Ekind (Typ) = E_Record_Type_With_Private then
if Nkind (Parent (Typ)) = N_Full_Type_Declaration then
Nod := Type_Definition (Parent (Typ));
elsif Nkind (Parent (Typ)) = N_Private_Type_Declaration then
if Present (Full_View (Typ))
and then
Nkind (Parent (Full_View (Typ))) = N_Full_Type_Declaration
then
Nod := Type_Definition (Parent (Full_View (Typ)));
-- If the full-view is not available we cannot do anything else
-- here (the source has errors).
else
return Empty_List;
end if;
-- Support for generic formals with interfaces is still missing ???
elsif Nkind (Parent (Typ)) = N_Formal_Type_Declaration then
return Empty_List;
else
pragma Assert
(Nkind (Parent (Typ)) = N_Private_Extension_Declaration);
Nod := Parent (Typ);
end if;
elsif Ekind (Typ) = E_Record_Subtype then
Nod := Type_Definition (Parent (Etype (Typ)));
elsif Ekind (Typ) = E_Record_Subtype_With_Private then
-- Recurse, because parent may still be a private extension. Also
-- note that the full view of the subtype or the full view of its
-- base type may (both) be unavailable.
return Abstract_Interface_List (Etype (Typ));
elsif Ekind (Typ) = E_Record_Type then
if Nkind (Parent (Typ)) = N_Formal_Type_Declaration then
Nod := Formal_Type_Definition (Parent (Typ));
else
Nod := Type_Definition (Parent (Typ));
end if;
-- Otherwise the type is of a kind which does not implement interfaces
else
return Empty_List;
end if;
return Interface_List (Nod);
end Abstract_Interface_List;
--------------------------------
-- Add_Access_Type_To_Process --
--------------------------------
procedure Add_Access_Type_To_Process (E : Entity_Id; A : Entity_Id) is
L : Elist_Id;
begin
Ensure_Freeze_Node (E);
L := Access_Types_To_Process (Freeze_Node (E));
if No (L) then
L := New_Elmt_List;
Set_Access_Types_To_Process (Freeze_Node (E), L);
end if;
Append_Elmt (A, L);
end Add_Access_Type_To_Process;
--------------------------
-- Add_Block_Identifier --
--------------------------
procedure Add_Block_Identifier (N : Node_Id; Id : out Entity_Id) is
Loc : constant Source_Ptr := Sloc (N);
begin
pragma Assert (Nkind (N) = N_Block_Statement);
-- The block already has a label, return its entity
if Present (Identifier (N)) then
Id := Entity (Identifier (N));
-- Create a new block label and set its attributes
else
Id := New_Internal_Entity (E_Block, Current_Scope, Loc, 'B');
Set_Etype (Id, Standard_Void_Type);
Set_Parent (Id, N);
Set_Identifier (N, New_Occurrence_Of (Id, Loc));
Set_Block_Node (Id, Identifier (N));
end if;
end Add_Block_Identifier;
----------------------------
-- Add_Global_Declaration --
----------------------------
procedure Add_Global_Declaration (N : Node_Id) is
Aux_Node : constant Node_Id := Aux_Decls_Node (Cunit (Current_Sem_Unit));
begin
if No (Declarations (Aux_Node)) then
Set_Declarations (Aux_Node, New_List);
end if;
Append_To (Declarations (Aux_Node), N);
Analyze (N);
end Add_Global_Declaration;
--------------------------------
-- Address_Integer_Convert_OK --
--------------------------------
function Address_Integer_Convert_OK (T1, T2 : Entity_Id) return Boolean is
begin
if Allow_Integer_Address
and then ((Is_Descendant_Of_Address (T1)
and then Is_Private_Type (T1)
and then Is_Integer_Type (T2))
or else
(Is_Descendant_Of_Address (T2)
and then Is_Private_Type (T2)
and then Is_Integer_Type (T1)))
then
return True;
else
return False;
end if;
end Address_Integer_Convert_OK;
-------------------
-- Address_Value --
-------------------
function Address_Value (N : Node_Id) return Node_Id is
Expr : Node_Id := N;
begin
loop
-- For constant, get constant expression
if Is_Entity_Name (Expr)
and then Ekind (Entity (Expr)) = E_Constant
then
Expr := Constant_Value (Entity (Expr));
-- For unchecked conversion, get result to convert
elsif Nkind (Expr) = N_Unchecked_Type_Conversion then
Expr := Expression (Expr);
-- For (common case) of To_Address call, get argument
elsif Nkind (Expr) = N_Function_Call
and then Is_Entity_Name (Name (Expr))
and then Is_RTE (Entity (Name (Expr)), RE_To_Address)
then
Expr := First (Parameter_Associations (Expr));
if Nkind (Expr) = N_Parameter_Association then
Expr := Explicit_Actual_Parameter (Expr);
end if;
-- We finally have the real expression
else
exit;
end if;
end loop;
return Expr;
end Address_Value;
-----------------
-- Addressable --
-----------------
-- For now, just 8/16/32/64
function Addressable (V : Uint) return Boolean is
begin
return V = Uint_8 or else
V = Uint_16 or else
V = Uint_32 or else
V = Uint_64;
end Addressable;
function Addressable (V : Int) return Boolean is
begin
return V = 8 or else
V = 16 or else
V = 32 or else
V = 64;
end Addressable;
---------------------------------
-- Aggregate_Constraint_Checks --
---------------------------------
procedure Aggregate_Constraint_Checks
(Exp : Node_Id;
Check_Typ : Entity_Id)
is
Exp_Typ : constant Entity_Id := Etype (Exp);
begin
if Raises_Constraint_Error (Exp) then
return;
end if;
-- Ada 2005 (AI-230): Generate a conversion to an anonymous access
-- component's type to force the appropriate accessibility checks.
-- Ada 2005 (AI-231): Generate conversion to the null-excluding type to
-- force the corresponding run-time check
if Is_Access_Type (Check_Typ)
and then Is_Local_Anonymous_Access (Check_Typ)
then
Rewrite (Exp, Convert_To (Check_Typ, Relocate_Node (Exp)));
Analyze_And_Resolve (Exp, Check_Typ);
Check_Unset_Reference (Exp);
end if;
-- What follows is really expansion activity, so check that expansion
-- is on and is allowed. In GNATprove mode, we also want check flags to
-- be added in the tree, so that the formal verification can rely on
-- those to be present. In GNATprove mode for formal verification, some
-- treatment typically only done during expansion needs to be performed
-- on the tree, but it should not be applied inside generics. Otherwise,
-- this breaks the name resolution mechanism for generic instances.
if not Expander_Active
and (Inside_A_Generic or not Full_Analysis or not GNATprove_Mode)
then
return;
end if;
if Is_Access_Type (Check_Typ)
and then Can_Never_Be_Null (Check_Typ)
and then not Can_Never_Be_Null (Exp_Typ)
then
Install_Null_Excluding_Check (Exp);
end if;
-- First check if we have to insert discriminant checks
if Has_Discriminants (Exp_Typ) then
Apply_Discriminant_Check (Exp, Check_Typ);
-- Next emit length checks for array aggregates
elsif Is_Array_Type (Exp_Typ) then
Apply_Length_Check (Exp, Check_Typ);
-- Finally emit scalar and string checks. If we are dealing with a
-- scalar literal we need to check by hand because the Etype of
-- literals is not necessarily correct.
elsif Is_Scalar_Type (Exp_Typ)
and then Compile_Time_Known_Value (Exp)
then
if Is_Out_Of_Range (Exp, Base_Type (Check_Typ)) then
Apply_Compile_Time_Constraint_Error
(Exp, "value not in range of}??", CE_Range_Check_Failed,
Ent => Base_Type (Check_Typ),
Typ => Base_Type (Check_Typ));
elsif Is_Out_Of_Range (Exp, Check_Typ) then
Apply_Compile_Time_Constraint_Error
(Exp, "value not in range of}??", CE_Range_Check_Failed,
Ent => Check_Typ,
Typ => Check_Typ);
elsif not Range_Checks_Suppressed (Check_Typ) then
Apply_Scalar_Range_Check (Exp, Check_Typ);
end if;
-- Verify that target type is also scalar, to prevent view anomalies
-- in instantiations.
elsif (Is_Scalar_Type (Exp_Typ)
or else Nkind (Exp) = N_String_Literal)
and then Is_Scalar_Type (Check_Typ)
and then Exp_Typ /= Check_Typ
then
if Is_Entity_Name (Exp)
and then Ekind (Entity (Exp)) = E_Constant
then
-- If expression is a constant, it is worthwhile checking whether
-- it is a bound of the type.
if (Is_Entity_Name (Type_Low_Bound (Check_Typ))
and then Entity (Exp) = Entity (Type_Low_Bound (Check_Typ)))
or else
(Is_Entity_Name (Type_High_Bound (Check_Typ))
and then Entity (Exp) = Entity (Type_High_Bound (Check_Typ)))
then
return;
else
Rewrite (Exp, Convert_To (Check_Typ, Relocate_Node (Exp)));
Analyze_And_Resolve (Exp, Check_Typ);
Check_Unset_Reference (Exp);
end if;
-- Could use a comment on this case ???
else
Rewrite (Exp, Convert_To (Check_Typ, Relocate_Node (Exp)));
Analyze_And_Resolve (Exp, Check_Typ);
Check_Unset_Reference (Exp);
end if;
end if;
end Aggregate_Constraint_Checks;
-----------------------
-- Alignment_In_Bits --
-----------------------
function Alignment_In_Bits (E : Entity_Id) return Uint is
begin
return Alignment (E) * System_Storage_Unit;
end Alignment_In_Bits;
--------------------------------------
-- All_Composite_Constraints_Static --
--------------------------------------
function All_Composite_Constraints_Static
(Constr : Node_Id) return Boolean
is
begin
if No (Constr) or else Error_Posted (Constr) then
return True;
end if;
case Nkind (Constr) is
when N_Subexpr =>
if Nkind (Constr) in N_Has_Entity
and then Present (Entity (Constr))
then
if Is_Type (Entity (Constr)) then
return
not Is_Discrete_Type (Entity (Constr))
or else Is_OK_Static_Subtype (Entity (Constr));
end if;
elsif Nkind (Constr) = N_Range then
return
Is_OK_Static_Expression (Low_Bound (Constr))
and then
Is_OK_Static_Expression (High_Bound (Constr));
elsif Nkind (Constr) = N_Attribute_Reference
and then Attribute_Name (Constr) = Name_Range
then
return
Is_OK_Static_Expression
(Type_Low_Bound (Etype (Prefix (Constr))))
and then
Is_OK_Static_Expression
(Type_High_Bound (Etype (Prefix (Constr))));
end if;
return
not Present (Etype (Constr)) -- previous error
or else not Is_Discrete_Type (Etype (Constr))
or else Is_OK_Static_Expression (Constr);
when N_Discriminant_Association =>
return All_Composite_Constraints_Static (Expression (Constr));
when N_Range_Constraint =>
return
All_Composite_Constraints_Static (Range_Expression (Constr));
when N_Index_Or_Discriminant_Constraint =>
declare
One_Cstr : Entity_Id;
begin
One_Cstr := First (Constraints (Constr));
while Present (One_Cstr) loop
if not All_Composite_Constraints_Static (One_Cstr) then
return False;
end if;
Next (One_Cstr);
end loop;
end;
return True;
when N_Subtype_Indication =>
return
All_Composite_Constraints_Static (Subtype_Mark (Constr))
and then
All_Composite_Constraints_Static (Constraint (Constr));
when others =>
raise Program_Error;
end case;
end All_Composite_Constraints_Static;
------------------------
-- Append_Entity_Name --
------------------------
procedure Append_Entity_Name (Buf : in out Bounded_String; E : Entity_Id) is
Temp : Bounded_String;
procedure Inner (E : Entity_Id);
-- Inner recursive routine, keep outer routine nonrecursive to ease
-- debugging when we get strange results from this routine.
-----------
-- Inner --
-----------
procedure Inner (E : Entity_Id) is
Scop : Node_Id;
begin
-- If entity has an internal name, skip by it, and print its scope.
-- Note that we strip a final R from the name before the test; this
-- is needed for some cases of instantiations.
declare
E_Name : Bounded_String;
begin
Append (E_Name, Chars (E));
if E_Name.Chars (E_Name.Length) = 'R' then
E_Name.Length := E_Name.Length - 1;
end if;
if Is_Internal_Name (E_Name) then
Inner (Scope (E));
return;
end if;
end;
Scop := Scope (E);
-- Just print entity name if its scope is at the outer level
if Scop = Standard_Standard then
null;
-- If scope comes from source, write scope and entity
elsif Comes_From_Source (Scop) then
Append_Entity_Name (Temp, Scop);
Append (Temp, '.');
-- If in wrapper package skip past it
elsif Present (Scop) and then Is_Wrapper_Package (Scop) then
Append_Entity_Name (Temp, Scope (Scop));
Append (Temp, '.');
-- Otherwise nothing to output (happens in unnamed block statements)
else
null;
end if;
-- Output the name
declare
E_Name : Bounded_String;
begin
Append_Unqualified_Decoded (E_Name, Chars (E));
-- Remove trailing upper-case letters from the name (useful for
-- dealing with some cases of internal names generated in the case
-- of references from within a generic).
while E_Name.Length > 1
and then E_Name.Chars (E_Name.Length) in 'A' .. 'Z'
loop
E_Name.Length := E_Name.Length - 1;
end loop;
-- Adjust casing appropriately (gets name from source if possible)
Adjust_Name_Case (E_Name, Sloc (E));
Append (Temp, E_Name);
end;
end Inner;
-- Start of processing for Append_Entity_Name
begin
Inner (E);
Append (Buf, Temp);
end Append_Entity_Name;
---------------------------------
-- Append_Inherited_Subprogram --
---------------------------------
procedure Append_Inherited_Subprogram (S : Entity_Id) is
Par : constant Entity_Id := Alias (S);
-- The parent subprogram
Scop : constant Entity_Id := Scope (Par);
-- The scope of definition of the parent subprogram
Typ : constant Entity_Id := Defining_Entity (Parent (S));
-- The derived type of which S is a primitive operation
Decl : Node_Id;
Next_E : Entity_Id;
begin
if Ekind (Current_Scope) = E_Package
and then In_Private_Part (Current_Scope)
and then Has_Private_Declaration (Typ)
and then Is_Tagged_Type (Typ)
and then Scop = Current_Scope
then
-- The inherited operation is available at the earliest place after
-- the derived type declaration ( RM 7.3.1 (6/1)). This is only
-- relevant for type extensions. If the parent operation appears
-- after the type extension, the operation is not visible.
Decl := First
(Visible_Declarations
(Package_Specification (Current_Scope)));
while Present (Decl) loop
if Nkind (Decl) = N_Private_Extension_Declaration
and then Defining_Entity (Decl) = Typ
then
if Sloc (Decl) > Sloc (Par) then
Next_E := Next_Entity (Par);
Set_Next_Entity (Par, S);
Set_Next_Entity (S, Next_E);
return;
else
exit;
end if;
end if;
Next (Decl);
end loop;
end if;
-- If partial view is not a type extension, or it appears before the
-- subprogram declaration, insert normally at end of entity list.
Append_Entity (S, Current_Scope);
end Append_Inherited_Subprogram;
-----------------------------------------
-- Apply_Compile_Time_Constraint_Error --
-----------------------------------------
procedure Apply_Compile_Time_Constraint_Error
(N : Node_Id;
Msg : String;
Reason : RT_Exception_Code;
Ent : Entity_Id := Empty;
Typ : Entity_Id := Empty;
Loc : Source_Ptr := No_Location;
Rep : Boolean := True;
Warn : Boolean := False)
is
Stat : constant Boolean := Is_Static_Expression (N);
R_Stat : constant Node_Id :=
Make_Raise_Constraint_Error (Sloc (N), Reason => Reason);
Rtyp : Entity_Id;
begin
if No (Typ) then
Rtyp := Etype (N);
else
Rtyp := Typ;
end if;
Discard_Node
(Compile_Time_Constraint_Error (N, Msg, Ent, Loc, Warn => Warn));
-- In GNATprove mode, do not replace the node with an exception raised.
-- In such a case, either the call to Compile_Time_Constraint_Error
-- issues an error which stops analysis, or it issues a warning in
-- a few cases where a suitable check flag is set for GNATprove to
-- generate a check message.
if not Rep or GNATprove_Mode then
return;
end if;
-- Now we replace the node by an N_Raise_Constraint_Error node
-- This does not need reanalyzing, so set it as analyzed now.
Rewrite (N, R_Stat);
Set_Analyzed (N, True);
Set_Etype (N, Rtyp);
Set_Raises_Constraint_Error (N);
-- Now deal with possible local raise handling
Possible_Local_Raise (N, Standard_Constraint_Error);
-- If the original expression was marked as static, the result is
-- still marked as static, but the Raises_Constraint_Error flag is
-- always set so that further static evaluation is not attempted.
if Stat then
Set_Is_Static_Expression (N);
end if;
end Apply_Compile_Time_Constraint_Error;
---------------------------
-- Async_Readers_Enabled --
---------------------------
function Async_Readers_Enabled (Id : Entity_Id) return Boolean is
begin
return Has_Enabled_Property (Id, Name_Async_Readers);
end Async_Readers_Enabled;
---------------------------
-- Async_Writers_Enabled --
---------------------------
function Async_Writers_Enabled (Id : Entity_Id) return Boolean is
begin
return Has_Enabled_Property (Id, Name_Async_Writers);
end Async_Writers_Enabled;
--------------------------------------
-- Available_Full_View_Of_Component --
--------------------------------------
function Available_Full_View_Of_Component (T : Entity_Id) return Boolean is
ST : constant Entity_Id := Scope (T);
SCT : constant Entity_Id := Scope (Component_Type (T));
begin
return In_Open_Scopes (ST)
and then In_Open_Scopes (SCT)
and then Scope_Depth (ST) >= Scope_Depth (SCT);
end Available_Full_View_Of_Component;
-------------------
-- Bad_Attribute --
-------------------
procedure Bad_Attribute
(N : Node_Id;
Nam : Name_Id;
Warn : Boolean := False)
is
begin
Error_Msg_Warn := Warn;
Error_Msg_N ("unrecognized attribute&<<", N);
-- Check for possible misspelling
Error_Msg_Name_1 := First_Attribute_Name;
while Error_Msg_Name_1 <= Last_Attribute_Name loop
if Is_Bad_Spelling_Of (Nam, Error_Msg_Name_1) then
Error_Msg_N -- CODEFIX
("\possible misspelling of %<<", N);
exit;
end if;
Error_Msg_Name_1 := Error_Msg_Name_1 + 1;
end loop;
end Bad_Attribute;
--------------------------------
-- Bad_Predicated_Subtype_Use --
--------------------------------
procedure Bad_Predicated_Subtype_Use
(Msg : String;
N : Node_Id;
Typ : Entity_Id;
Suggest_Static : Boolean := False)
is
Gen : Entity_Id;
begin
-- Avoid cascaded errors
if Error_Posted (N) then
return;
end if;
if Inside_A_Generic then
Gen := Current_Scope;
while Present (Gen) and then Ekind (Gen) /= E_Generic_Package loop
Gen := Scope (Gen);
end loop;
if No (Gen) then
return;
end if;
if Is_Generic_Formal (Typ) and then Is_Discrete_Type (Typ) then
Set_No_Predicate_On_Actual (Typ);
end if;
elsif Has_Predicates (Typ) then
if Is_Generic_Actual_Type (Typ) then
-- The restriction on loop parameters is only that the type
-- should have no dynamic predicates.
if Nkind (Parent (N)) = N_Loop_Parameter_Specification
and then not Has_Dynamic_Predicate_Aspect (Typ)
and then Is_OK_Static_Subtype (Typ)
then
return;
end if;
Gen := Current_Scope;
while not Is_Generic_Instance (Gen) loop
Gen := Scope (Gen);
end loop;
pragma Assert (Present (Gen));
if Ekind (Gen) = E_Package and then In_Package_Body (Gen) then
Error_Msg_Warn := SPARK_Mode /= On;
Error_Msg_FE (Msg & "<<", N, Typ);
Error_Msg_F ("\Program_Error [<<", N);
Insert_Action (N,
Make_Raise_Program_Error (Sloc (N),
Reason => PE_Bad_Predicated_Generic_Type));
else
Error_Msg_FE (Msg & "<<", N, Typ);
end if;
else
Error_Msg_FE (Msg, N, Typ);
end if;
-- Emit an optional suggestion on how to remedy the error if the
-- context warrants it.
if Suggest_Static and then Has_Static_Predicate (Typ) then
Error_Msg_FE ("\predicate of & should be marked static", N, Typ);
end if;
end if;
end Bad_Predicated_Subtype_Use;
-----------------------------------------
-- Bad_Unordered_Enumeration_Reference --
-----------------------------------------
function Bad_Unordered_Enumeration_Reference
(N : Node_Id;
T : Entity_Id) return Boolean
is
begin
return Is_Enumeration_Type (T)
and then Warn_On_Unordered_Enumeration_Type
and then not Is_Generic_Type (T)
and then Comes_From_Source (N)
and then not Has_Pragma_Ordered (T)
and then not In_Same_Extended_Unit (N, T);
end Bad_Unordered_Enumeration_Reference;
----------------------------
-- Begin_Keyword_Location --
----------------------------
function Begin_Keyword_Location (N : Node_Id) return Source_Ptr is
HSS : Node_Id;
begin
pragma Assert (Nkind_In (N, N_Block_Statement,
N_Entry_Body,
N_Package_Body,
N_Subprogram_Body,
N_Task_Body));
HSS := Handled_Statement_Sequence (N);
-- When the handled sequence of statements comes from source, the
-- location of the "begin" keyword is that of the sequence itself.
-- Note that an internal construct may inherit a source sequence.
if Comes_From_Source (HSS) then
return Sloc (HSS);
-- The parser generates an internal handled sequence of statements to
-- capture the location of the "begin" keyword if present in the source.
-- Since there are no source statements, the location of the "begin"
-- keyword is effectively that of the "end" keyword.
elsif Comes_From_Source (N) then
return Sloc (HSS);
-- Otherwise the construct is internal and should carry the location of
-- the original construct which prompted its creation.
else
return Sloc (N);
end if;
end Begin_Keyword_Location;
--------------------------
-- Build_Actual_Subtype --
--------------------------
function Build_Actual_Subtype
(T : Entity_Id;
N : Node_Or_Entity_Id) return Node_Id
is
Loc : Source_Ptr;
-- Normally Sloc (N), but may point to corresponding body in some cases
Constraints : List_Id;
Decl : Node_Id;
Discr : Entity_Id;
Hi : Node_Id;
Lo : Node_Id;
Subt : Entity_Id;
Disc_Type : Entity_Id;
Obj : Node_Id;
begin
Loc := Sloc (N);
if Nkind (N) = N_Defining_Identifier then
Obj := New_Occurrence_Of (N, Loc);
-- If this is a formal parameter of a subprogram declaration, and
-- we are compiling the body, we want the declaration for the
-- actual subtype to carry the source position of the body, to
-- prevent anomalies in gdb when stepping through the code.
if Is_Formal (N) then
declare
Decl : constant Node_Id := Unit_Declaration_Node (Scope (N));
begin
if Nkind (Decl) = N_Subprogram_Declaration
and then Present (Corresponding_Body (Decl))
then
Loc := Sloc (Corresponding_Body (Decl));
end if;
end;
end if;
else
Obj := N;
end if;
if Is_Array_Type (T) then
Constraints := New_List;
for J in 1 .. Number_Dimensions (T) loop
-- Build an array subtype declaration with the nominal subtype and
-- the bounds of the actual. Add the declaration in front of the
-- local declarations for the subprogram, for analysis before any
-- reference to the formal in the body.
Lo :=
Make_Attribute_Reference (Loc,
Prefix =>
Duplicate_Subexpr_No_Checks (Obj, Name_Req => True),
Attribute_Name => Name_First,
Expressions => New_List (
Make_Integer_Literal (Loc, J)));
Hi :=
Make_Attribute_Reference (Loc,
Prefix =>
Duplicate_Subexpr_No_Checks (Obj, Name_Req => True),
Attribute_Name => Name_Last,
Expressions => New_List (
Make_Integer_Literal (Loc, J)));
Append (Make_Range (Loc, Lo, Hi), Constraints);
end loop;
-- If the type has unknown discriminants there is no constrained
-- subtype to build. This is never called for a formal or for a
-- lhs, so returning the type is ok ???
elsif Has_Unknown_Discriminants (T) then
return T;
else
Constraints := New_List;
-- Type T is a generic derived type, inherit the discriminants from
-- the parent type.
if Is_Private_Type (T)
and then No (Full_View (T))
-- T was flagged as an error if it was declared as a formal
-- derived type with known discriminants. In this case there
-- is no need to look at the parent type since T already carries
-- its own discriminants.
and then not Error_Posted (T)
then
Disc_Type := Etype (Base_Type (T));
else
Disc_Type := T;
end if;
Discr := First_Discriminant (Disc_Type);
while Present (Discr) loop
Append_To (Constraints,
Make_Selected_Component (Loc,
Prefix =>
Duplicate_Subexpr_No_Checks (Obj),
Selector_Name => New_Occurrence_Of (Discr, Loc)));
Next_Discriminant (Discr);
end loop;
end if;
Subt := Make_Temporary (Loc, 'S', Related_Node => N);
Set_Is_Internal (Subt);
Decl :=
Make_Subtype_Declaration (Loc,
Defining_Identifier => Subt,
Subtype_Indication =>
Make_Subtype_Indication (Loc,
Subtype_Mark => New_Occurrence_Of (T, Loc),
Constraint =>
Make_Index_Or_Discriminant_Constraint (Loc,
Constraints => Constraints)));
Mark_Rewrite_Insertion (Decl);
return Decl;
end Build_Actual_Subtype;
---------------------------------------
-- Build_Actual_Subtype_Of_Component --
---------------------------------------
function Build_Actual_Subtype_Of_Component
(T : Entity_Id;
N : Node_Id) return Node_Id
is
Loc : constant Source_Ptr := Sloc (N);
P : constant Node_Id := Prefix (N);
D : Elmt_Id;
Id : Node_Id;
Index_Typ : Entity_Id;
Desig_Typ : Entity_Id;
-- This is either a copy of T, or if T is an access type, then it is
-- the directly designated type of this access type.
function Build_Actual_Array_Constraint return List_Id;
-- If one or more of the bounds of the component depends on
-- discriminants, build actual constraint using the discriminants
-- of the prefix.
function Build_Actual_Record_Constraint return List_Id;
-- Similar to previous one, for discriminated components constrained
-- by the discriminant of the enclosing object.
-----------------------------------
-- Build_Actual_Array_Constraint --
-----------------------------------
function Build_Actual_Array_Constraint return List_Id is
Constraints : constant List_Id := New_List;
Indx : Node_Id;
Hi : Node_Id;
Lo : Node_Id;
Old_Hi : Node_Id;
Old_Lo : Node_Id;
begin
Indx := First_Index (Desig_Typ);
while Present (Indx) loop
Old_Lo := Type_Low_Bound (Etype (Indx));
Old_Hi := Type_High_Bound (Etype (Indx));
if Denotes_Discriminant (Old_Lo) then
Lo :=
Make_Selected_Component (Loc,
Prefix => New_Copy_Tree (P),
Selector_Name => New_Occurrence_Of (Entity (Old_Lo), Loc));
else
Lo := New_Copy_Tree (Old_Lo);
-- The new bound will be reanalyzed in the enclosing
-- declaration. For literal bounds that come from a type
-- declaration, the type of the context must be imposed, so
-- insure that analysis will take place. For non-universal
-- types this is not strictly necessary.
Set_Analyzed (Lo, False);
end if;
if Denotes_Discriminant (Old_Hi) then
Hi :=
Make_Selected_Component (Loc,
Prefix => New_Copy_Tree (P),
Selector_Name => New_Occurrence_Of (Entity (Old_Hi), Loc));
else
Hi := New_Copy_Tree (Old_Hi);
Set_Analyzed (Hi, False);
end if;
Append (Make_Range (Loc, Lo, Hi), Constraints);
Next_Index (Indx);
end loop;
return Constraints;
end Build_Actual_Array_Constraint;
------------------------------------
-- Build_Actual_Record_Constraint --
------------------------------------
function Build_Actual_Record_Constraint return List_Id is
Constraints : constant List_Id := New_List;
D : Elmt_Id;
D_Val : Node_Id;
begin
D := First_Elmt (Discriminant_Constraint (Desig_Typ));
while Present (D) loop
if Denotes_Discriminant (Node (D)) then
D_Val := Make_Selected_Component (Loc,
Prefix => New_Copy_Tree (P),
Selector_Name => New_Occurrence_Of (Entity (Node (D)), Loc));
else
D_Val := New_Copy_Tree (Node (D));
end if;
Append (D_Val, Constraints);
Next_Elmt (D);
end loop;
return Constraints;
end Build_Actual_Record_Constraint;
-- Start of processing for Build_Actual_Subtype_Of_Component
begin
-- Why the test for Spec_Expression mode here???
if In_Spec_Expression then
return Empty;
-- More comments for the rest of this body would be good ???
elsif Nkind (N) = N_Explicit_Dereference then
if Is_Composite_Type (T)
and then not Is_Constrained (T)
and then not (Is_Class_Wide_Type (T)
and then Is_Constrained (Root_Type (T)))
and then not Has_Unknown_Discriminants (T)
then
-- If the type of the dereference is already constrained, it is an
-- actual subtype.
if Is_Array_Type (Etype (N))
and then Is_Constrained (Etype (N))
then
return Empty;
else
Remove_Side_Effects (P);
return Build_Actual_Subtype (T, N);
end if;
else
return Empty;
end if;
end if;
if Ekind (T) = E_Access_Subtype then
Desig_Typ := Designated_Type (T);
else
Desig_Typ := T;
end if;
if Ekind (Desig_Typ) = E_Array_Subtype then
Id := First_Index (Desig_Typ);
while Present (Id) loop
Index_Typ := Underlying_Type (Etype (Id));
if Denotes_Discriminant (Type_Low_Bound (Index_Typ))
or else
Denotes_Discriminant (Type_High_Bound (Index_Typ))
then
Remove_Side_Effects (P);
return
Build_Component_Subtype
(Build_Actual_Array_Constraint, Loc, Base_Type (T));
end if;
Next_Index (Id);
end loop;
elsif Is_Composite_Type (Desig_Typ)
and then Has_Discriminants (Desig_Typ)
and then not Has_Unknown_Discriminants (Desig_Typ)
then
if Is_Private_Type (Desig_Typ)
and then No (Discriminant_Constraint (Desig_Typ))
then
Desig_Typ := Full_View (Desig_Typ);
end if;
D := First_Elmt (Discriminant_Constraint (Desig_Typ));
while Present (D) loop
if Denotes_Discriminant (Node (D)) then
Remove_Side_Effects (P);
return
Build_Component_Subtype (
Build_Actual_Record_Constraint, Loc, Base_Type (T));
end if;
Next_Elmt (D);
end loop;
end if;
-- If none of the above, the actual and nominal subtypes are the same
return Empty;
end Build_Actual_Subtype_Of_Component;
---------------------------------
-- Build_Class_Wide_Clone_Body --
---------------------------------
procedure Build_Class_Wide_Clone_Body
(Spec_Id : Entity_Id;
Bod : Node_Id)
is
Loc : constant Source_Ptr := Sloc (Bod);
Clone_Id : constant Entity_Id := Class_Wide_Clone (Spec_Id);
Clone_Body : Node_Id;
begin
-- The declaration of the class-wide clone was created when the
-- corresponding class-wide condition was analyzed.
Clone_Body :=
Make_Subprogram_Body (Loc,
Specification =>
Copy_Subprogram_Spec (Parent (Clone_Id)),
Declarations => Declarations (Bod),
Handled_Statement_Sequence => Handled_Statement_Sequence (Bod));
-- The new operation is internal and overriding indicators do not apply
-- (the original primitive may have carried one).
Set_Must_Override (Specification (Clone_Body), False);
Insert_Before (Bod, Clone_Body);
Analyze (Clone_Body);
end Build_Class_Wide_Clone_Body;
---------------------------------
-- Build_Class_Wide_Clone_Call --
---------------------------------
function Build_Class_Wide_Clone_Call
(Loc : Source_Ptr;
Decls : List_Id;
Spec_Id : Entity_Id;
Spec : Node_Id) return Node_Id
is
Clone_Id : constant Entity_Id := Class_Wide_Clone (Spec_Id);
Par_Type : constant Entity_Id := Find_Dispatching_Type (Spec_Id);
Actuals : List_Id;
Call : Node_Id;
Formal : Entity_Id;
New_Body : Node_Id;
New_F_Spec : Entity_Id;
New_Formal : Entity_Id;
begin
Actuals := Empty_List;
Formal := First_Formal (Spec_Id);
New_F_Spec := First (Parameter_Specifications (Spec));
-- Build parameter association for call to class-wide clone.
while Present (Formal) loop
New_Formal := Defining_Identifier (New_F_Spec);
-- If controlling argument and operation is inherited, add conversion
-- to parent type for the call.
if Etype (Formal) = Par_Type
and then not Is_Empty_List (Decls)
then
Append_To (Actuals,
Make_Type_Conversion (Loc,
New_Occurrence_Of (Par_Type, Loc),
New_Occurrence_Of (New_Formal, Loc)));
else
Append_To (Actuals, New_Occurrence_Of (New_Formal, Loc));
end if;
Next_Formal (Formal);
Next (New_F_Spec);
end loop;
if Ekind (Spec_Id) = E_Procedure then
Call :=
Make_Procedure_Call_Statement (Loc,
Name => New_Occurrence_Of (Clone_Id, Loc),
Parameter_Associations => Actuals);
else
Call :=
Make_Simple_Return_Statement (Loc,
Expression =>
Make_Function_Call (Loc,
Name => New_Occurrence_Of (Clone_Id, Loc),
Parameter_Associations => Actuals));
end if;
New_Body :=
Make_Subprogram_Body (Loc,
Specification =>
Copy_Subprogram_Spec (Spec),
Declarations => Decls,
Handled_Statement_Sequence =>
Make_Handled_Sequence_Of_Statements (Loc,
Statements => New_List (Call),
End_Label => Make_Identifier (Loc, Chars (Spec_Id))));
return New_Body;
end Build_Class_Wide_Clone_Call;
---------------------------------
-- Build_Class_Wide_Clone_Decl --
---------------------------------
procedure Build_Class_Wide_Clone_Decl (Spec_Id : Entity_Id) is
Loc : constant Source_Ptr := Sloc (Spec_Id);
Clone_Id : constant Entity_Id :=
Make_Defining_Identifier (Loc,
New_External_Name (Chars (Spec_Id), Suffix => "CL"));
Decl : Node_Id;
Spec : Node_Id;
begin
Spec := Copy_Subprogram_Spec (Parent (Spec_Id));
Set_Must_Override (Spec, False);
Set_Must_Not_Override (Spec, False);
Set_Defining_Unit_Name (Spec, Clone_Id);
Decl := Make_Subprogram_Declaration (Loc, Spec);
Append (Decl, List_Containing (Unit_Declaration_Node (Spec_Id)));
-- Link clone to original subprogram, for use when building body and
-- wrapper call to inherited operation.
Set_Class_Wide_Clone (Spec_Id, Clone_Id);
end Build_Class_Wide_Clone_Decl;
-----------------------------
-- Build_Component_Subtype --
-----------------------------
function Build_Component_Subtype
(C : List_Id;
Loc : Source_Ptr;
T : Entity_Id) return Node_Id
is
Subt : Entity_Id;
Decl : Node_Id;
begin
-- Unchecked_Union components do not require component subtypes
if Is_Unchecked_Union (T) then
return Empty;
end if;
Subt := Make_Temporary (Loc, 'S');
Set_Is_Internal (Subt);
Decl :=
Make_Subtype_Declaration (Loc,
Defining_Identifier => Subt,
Subtype_Indication =>
Make_Subtype_Indication (Loc,
Subtype_Mark => New_Occurrence_Of (Base_Type (T), Loc),
Constraint =>
Make_Index_Or_Discriminant_Constraint (Loc,
Constraints => C)));
Mark_Rewrite_Insertion (Decl);
return Decl;
end Build_Component_Subtype;
---------------------------
-- Build_Default_Subtype --
---------------------------
function Build_Default_Subtype
(T : Entity_Id;
N : Node_Id) return Entity_Id
is
Loc : constant Source_Ptr := Sloc (N);
Disc : Entity_Id;
Bas : Entity_Id;
-- The base type that is to be constrained by the defaults
begin
if not Has_Discriminants (T) or else Is_Constrained (T) then
return T;
end if;
Bas := Base_Type (T);
-- If T is non-private but its base type is private, this is the
-- completion of a subtype declaration whose parent type is private
-- (see Complete_Private_Subtype in Sem_Ch3). The proper discriminants
-- are to be found in the full view of the base. Check that the private
-- status of T and its base differ.
if Is_Private_Type (Bas)
and then not Is_Private_Type (T)
and then Present (Full_View (Bas))
then
Bas := Full_View (Bas);
end if;
Disc := First_Discriminant (T);
if No (Discriminant_Default_Value (Disc)) then
return T;
end if;
declare
Act : constant Entity_Id := Make_Temporary (Loc, 'S');
Constraints : constant List_Id := New_List;
Decl : Node_Id;
begin
while Present (Disc) loop
Append_To (Constraints,
New_Copy_Tree (Discriminant_Default_Value (Disc)));
Next_Discriminant (Disc);
end loop;
Decl :=
Make_Subtype_Declaration (Loc,
Defining_Identifier => Act,
Subtype_Indication =>
Make_Subtype_Indication (Loc,
Subtype_Mark => New_Occurrence_Of (Bas, Loc),
Constraint =>
Make_Index_Or_Discriminant_Constraint (Loc,
Constraints => Constraints)));
Insert_Action (N, Decl);
-- If the context is a component declaration the subtype declaration
-- will be analyzed when the enclosing type is frozen, otherwise do
-- it now.
if Ekind (Current_Scope) /= E_Record_Type then
Analyze (Decl);
end if;
return Act;
end;
end Build_Default_Subtype;
--------------------------------------------
-- Build_Discriminal_Subtype_Of_Component --
--------------------------------------------
function Build_Discriminal_Subtype_Of_Component
(T : Entity_Id) return Node_Id
is
Loc : constant Source_Ptr := Sloc (T);
D : Elmt_Id;
Id : Node_Id;
function Build_Discriminal_Array_Constraint return List_Id;
-- If one or more of the bounds of the component depends on
-- discriminants, build actual constraint using the discriminants
-- of the prefix.
function Build_Discriminal_Record_Constraint return List_Id;
-- Similar to previous one, for discriminated components constrained by
-- the discriminant of the enclosing object.
----------------------------------------
-- Build_Discriminal_Array_Constraint --
----------------------------------------
function Build_Discriminal_Array_Constraint return List_Id is
Constraints : constant List_Id := New_List;
Indx : Node_Id;
Hi : Node_Id;
Lo : Node_Id;
Old_Hi : Node_Id;
Old_Lo : Node_Id;
begin
Indx := First_Index (T);
while Present (Indx) loop
Old_Lo := Type_Low_Bound (Etype (Indx));
Old_Hi := Type_High_Bound (Etype (Indx));
if Denotes_Discriminant (Old_Lo) then
Lo := New_Occurrence_Of (Discriminal (Entity (Old_Lo)), Loc);
else
Lo := New_Copy_Tree (Old_Lo);
end if;
if Denotes_Discriminant (Old_Hi) then
Hi := New_Occurrence_Of (Discriminal (Entity (Old_Hi)), Loc);
else
Hi := New_Copy_Tree (Old_Hi);
end if;
Append (Make_Range (Loc, Lo, Hi), Constraints);
Next_Index (Indx);
end loop;
return Constraints;
end Build_Discriminal_Array_Constraint;
-----------------------------------------
-- Build_Discriminal_Record_Constraint --
-----------------------------------------
function Build_Discriminal_Record_Constraint return List_Id is
Constraints : constant List_Id := New_List;
D : Elmt_Id;
D_Val : Node_Id;
begin
D := First_Elmt (Discriminant_Constraint (T));
while Present (D) loop
if Denotes_Discriminant (Node (D)) then
D_Val :=
New_Occurrence_Of (Discriminal (Entity (Node (D))), Loc);
else
D_Val := New_Copy_Tree (Node (D));
end if;
Append (D_Val, Constraints);
Next_Elmt (D);
end loop;
return Constraints;
end Build_Discriminal_Record_Constraint;
-- Start of processing for Build_Discriminal_Subtype_Of_Component
begin
if Ekind (T) = E_Array_Subtype then
Id := First_Index (T);
while Present (Id) loop
if Denotes_Discriminant (Type_Low_Bound (Etype (Id)))
or else
Denotes_Discriminant (Type_High_Bound (Etype (Id)))
then
return Build_Component_Subtype
(Build_Discriminal_Array_Constraint, Loc, T);
end if;
Next_Index (Id);
end loop;
elsif Ekind (T) = E_Record_Subtype
and then Has_Discriminants (T)
and then not Has_Unknown_Discriminants (T)
then
D := First_Elmt (Discriminant_Constraint (T));
while Present (D) loop
if Denotes_Discriminant (Node (D)) then
return Build_Component_Subtype
(Build_Discriminal_Record_Constraint, Loc, T);
end if;
Next_Elmt (D);
end loop;
end if;
-- If none of the above, the actual and nominal subtypes are the same
return Empty;
end Build_Discriminal_Subtype_Of_Component;
------------------------------
-- Build_Elaboration_Entity --
------------------------------
procedure Build_Elaboration_Entity (N : Node_Id; Spec_Id : Entity_Id) is
Loc : constant Source_Ptr := Sloc (N);
Decl : Node_Id;
Elab_Ent : Entity_Id;
procedure Set_Package_Name (Ent : Entity_Id);
-- Given an entity, sets the fully qualified name of the entity in
-- Name_Buffer, with components separated by double underscores. This
-- is a recursive routine that climbs the scope chain to Standard.
----------------------
-- Set_Package_Name --
----------------------
procedure Set_Package_Name (Ent : Entity_Id) is
begin
if Scope (Ent) /= Standard_Standard then
Set_Package_Name (Scope (Ent));
declare
Nam : constant String := Get_Name_String (Chars (Ent));
begin
Name_Buffer (Name_Len + 1) := '_';
Name_Buffer (Name_Len + 2) := '_';
Name_Buffer (Name_Len + 3 .. Name_Len + Nam'Length + 2) := Nam;
Name_Len := Name_Len + Nam'Length + 2;
end;
else
Get_Name_String (Chars (Ent));
end if;
end Set_Package_Name;
-- Start of processing for Build_Elaboration_Entity
begin
-- Ignore call if already constructed
if Present (Elaboration_Entity (Spec_Id)) then
return;
-- Ignore in ASIS mode, elaboration entity is not in source and plays
-- no role in analysis.
elsif ASIS_Mode then
return;
-- Do not generate an elaboration entity in GNATprove move because the
-- elaboration counter is a form of expansion.
elsif GNATprove_Mode then
return;
-- See if we need elaboration entity
-- We always need an elaboration entity when preserving control flow, as
-- we want to remain explicit about the unit's elaboration order.
elsif Opt.Suppress_Control_Flow_Optimizations then
null;
-- We always need an elaboration entity for the dynamic elaboration
-- model, since it is needed to properly generate the PE exception for
-- access before elaboration.
elsif Dynamic_Elaboration_Checks then
null;
-- For the static model, we don't need the elaboration counter if this
-- unit is sure to have no elaboration code, since that means there
-- is no elaboration unit to be called. Note that we can't just decide
-- after the fact by looking to see whether there was elaboration code,
-- because that's too late to make this decision.
elsif Restriction_Active (No_Elaboration_Code) then
return;
-- Similarly, for the static model, we can skip the elaboration counter
-- if we have the No_Multiple_Elaboration restriction, since for the
-- static model, that's the only purpose of the counter (to avoid
-- multiple elaboration).
elsif Restriction_Active (No_Multiple_Elaboration) then
return;
end if;
-- Here we need the elaboration entity
-- Construct name of elaboration entity as xxx_E, where xxx is the unit
-- name with dots replaced by double underscore. We have to manually
-- construct this name, since it will be elaborated in the outer scope,
-- and thus will not have the unit name automatically prepended.
Set_Package_Name (Spec_Id);
Add_Str_To_Name_Buffer ("_E");
-- Create elaboration counter
Elab_Ent := Make_Defining_Identifier (Loc, Chars => Name_Find);
Set_Elaboration_Entity (Spec_Id, Elab_Ent);
Decl :=
Make_Object_Declaration (Loc,
Defining_Identifier => Elab_Ent,
Object_Definition =>
New_Occurrence_Of (Standard_Short_Integer, Loc),
Expression => Make_Integer_Literal (Loc, Uint_0));
Push_Scope (Standard_Standard);
Add_Global_Declaration (Decl);
Pop_Scope;
-- Reset True_Constant indication, since we will indeed assign a value
-- to the variable in the binder main. We also kill the Current_Value
-- and Last_Assignment fields for the same reason.
Set_Is_True_Constant (Elab_Ent, False);
Set_Current_Value (Elab_Ent, Empty);
Set_Last_Assignment (Elab_Ent, Empty);
-- We do not want any further qualification of the name (if we did not
-- do this, we would pick up the name of the generic package in the case
-- of a library level generic instantiation).
Set_Has_Qualified_Name (Elab_Ent);
Set_Has_Fully_Qualified_Name (Elab_Ent);
end Build_Elaboration_Entity;
--------------------------------
-- Build_Explicit_Dereference --
--------------------------------
procedure Build_Explicit_Dereference
(Expr : Node_Id;
Disc : Entity_Id)
is
Loc : constant Source_Ptr := Sloc (Expr);
I : Interp_Index;
It : Interp;
begin
-- An entity of a type with a reference aspect is overloaded with
-- both interpretations: with and without the dereference. Now that
-- the dereference is made explicit, set the type of the node properly,
-- to prevent anomalies in the backend. Same if the expression is an
-- overloaded function call whose return type has a reference aspect.
if Is_Entity_Name (Expr) then
Set_Etype (Expr, Etype (Entity (Expr)));
-- The designated entity will not be examined again when resolving
-- the dereference, so generate a reference to it now.
Generate_Reference (Entity (Expr), Expr);
elsif Nkind (Expr) = N_Function_Call then
-- If the name of the indexing function is overloaded, locate the one
-- whose return type has an implicit dereference on the desired
-- discriminant, and set entity and type of function call.
if Is_Overloaded (Name (Expr)) then
Get_First_Interp (Name (Expr), I, It);
while Present (It.Nam) loop
if Ekind ((It.Typ)) = E_Record_Type
and then First_Entity ((It.Typ)) = Disc
then
Set_Entity (Name (Expr), It.Nam);
Set_Etype (Name (Expr), Etype (It.Nam));
exit;
end if;
Get_Next_Interp (I, It);
end loop;
end if;
-- Set type of call from resolved function name.
Set_Etype (Expr, Etype (Name (Expr)));
end if;
Set_Is_Overloaded (Expr, False);
-- The expression will often be a generalized indexing that yields a
-- container element that is then dereferenced, in which case the
-- generalized indexing call is also non-overloaded.
if Nkind (Expr) = N_Indexed_Component
and then Present (Generalized_Indexing (Expr))
then
Set_Is_Overloaded (Generalized_Indexing (Expr), False);
end if;
Rewrite (Expr,
Make_Explicit_Dereference (Loc,
Prefix =>
Make_Selected_Component (Loc,
Prefix => Relocate_Node (Expr),
Selector_Name => New_Occurrence_Of (Disc, Loc))));
Set_Etype (Prefix (Expr), Etype (Disc));
Set_Etype (Expr, Designated_Type (Etype (Disc)));
end Build_Explicit_Dereference;
---------------------------
-- Build_Overriding_Spec --
---------------------------
function Build_Overriding_Spec
(Op : Entity_Id;
Typ : Entity_Id) return Node_Id
is
Loc : constant Source_Ptr := Sloc (Typ);
Par_Typ : constant Entity_Id := Find_Dispatching_Type (Op);
Spec : constant Node_Id := Specification (Unit_Declaration_Node (Op));
Formal_Spec : Node_Id;
Formal_Type : Node_Id;
New_Spec : Node_Id;
begin
New_Spec := Copy_Subprogram_Spec (Spec);
Formal_Spec := First (Parameter_Specifications (New_Spec));
while Present (Formal_Spec) loop
Formal_Type := Parameter_Type (Formal_Spec);
if Is_Entity_Name (Formal_Type)
and then Entity (Formal_Type) = Par_Typ
then
Rewrite (Formal_Type, New_Occurrence_Of (Typ, Loc));
end if;
-- Nothing needs to be done for access parameters
Next (Formal_Spec);
end loop;
return New_Spec;
end Build_Overriding_Spec;
-----------------------------------
-- Cannot_Raise_Constraint_Error --
-----------------------------------
function Cannot_Raise_Constraint_Error (Expr : Node_Id) return Boolean is
begin
if Compile_Time_Known_Value (Expr) then
return True;
elsif Do_Range_Check (Expr) then
return False;
elsif Raises_Constraint_Error (Expr) then
return False;
else
case Nkind (Expr) is
when N_Identifier =>
return True;
when N_Expanded_Name =>
return True;
when N_Selected_Component =>
return not Do_Discriminant_Check (Expr);
when N_Attribute_Reference =>
if Do_Overflow_Check (Expr) then
return False;
elsif No (Expressions (Expr)) then
return True;
else
declare
N : Node_Id;
begin
N := First (Expressions (Expr));
while Present (N) loop
if Cannot_Raise_Constraint_Error (N) then
Next (N);
else
return False;
end if;
end loop;
return True;
end;
end if;
when N_Type_Conversion =>
if Do_Overflow_Check (Expr)
or else Do_Length_Check (Expr)
or else Do_Tag_Check (Expr)
then
return False;
else
return Cannot_Raise_Constraint_Error (Expression (Expr));
end if;
when N_Unchecked_Type_Conversion =>
return Cannot_Raise_Constraint_Error (Expression (Expr));
when N_Unary_Op =>
if Do_Overflow_Check (Expr) then
return False;
else
return Cannot_Raise_Constraint_Error (Right_Opnd (Expr));
end if;
when N_Op_Divide
| N_Op_Mod
| N_Op_Rem
=>
if Do_Division_Check (Expr)
or else
Do_Overflow_Check (Expr)
then
return False;
else
return
Cannot_Raise_Constraint_Error (Left_Opnd (Expr))
and then
Cannot_Raise_Constraint_Error (Right_Opnd (Expr));
end if;
when N_Op_Add
| N_Op_And
| N_Op_Concat
| N_Op_Eq
| N_Op_Expon
| N_Op_Ge
| N_Op_Gt
| N_Op_Le
| N_Op_Lt
| N_Op_Multiply
| N_Op_Ne
| N_Op_Or
| N_Op_Rotate_Left
| N_Op_Rotate_Right
| N_Op_Shift_Left
| N_Op_Shift_Right
| N_Op_Shift_Right_Arithmetic
| N_Op_Subtract
| N_Op_Xor
=>
if Do_Overflow_Check (Expr) then
return False;
else
return
Cannot_Raise_Constraint_Error (Left_Opnd (Expr))
and then
Cannot_Raise_Constraint_Error (Right_Opnd (Expr));
end if;
when others =>
return False;
end case;
end if;
end Cannot_Raise_Constraint_Error;
-----------------------------------------
-- Check_Dynamically_Tagged_Expression --
-----------------------------------------
procedure Check_Dynamically_Tagged_Expression
(Expr : Node_Id;
Typ : Entity_Id;
Related_Nod : Node_Id)
is
begin
pragma Assert (Is_Tagged_Type (Typ));
-- In order to avoid spurious errors when analyzing the expanded code,
-- this check is done only for nodes that come from source and for
-- actuals of generic instantiations.
if (Comes_From_Source (Related_Nod)
or else In_Generic_Actual (Expr))
and then (Is_Class_Wide_Type (Etype (Expr))
or else Is_Dynamically_Tagged (Expr))
and then not Is_Class_Wide_Type (Typ)
then
Error_Msg_N ("dynamically tagged expression not allowed!", Expr);
end if;
end Check_Dynamically_Tagged_Expression;
--------------------------
-- Check_Fully_Declared --
--------------------------
procedure Check_Fully_Declared (T : Entity_Id; N : Node_Id) is
begin
if Ekind (T) = E_Incomplete_Type then
-- Ada 2005 (AI-50217): If the type is available through a limited
-- with_clause, verify that its full view has been analyzed.
if From_Limited_With (T)
and then Present (Non_Limited_View (T))
and then Ekind (Non_Limited_View (T)) /= E_Incomplete_Type
then
-- The non-limited view is fully declared
null;
else
Error_Msg_NE
("premature usage of incomplete}", N, First_Subtype (T));
end if;
-- Need comments for these tests ???
elsif Has_Private_Component (T)
and then not Is_Generic_Type (Root_Type (T))
and then not In_Spec_Expression
then
-- Special case: if T is the anonymous type created for a single
-- task or protected object, use the name of the source object.
if Is_Concurrent_Type (T)
and then not Comes_From_Source (T)
and then Nkind (N) = N_Object_Declaration
then
Error_Msg_NE
("type of& has incomplete component",
N, Defining_Identifier (N));
else
Error_Msg_NE
("premature usage of incomplete}",
N, First_Subtype (T));
end if;
end if;
end Check_Fully_Declared;
-------------------------------------------
-- Check_Function_With_Address_Parameter --
-------------------------------------------
procedure Check_Function_With_Address_Parameter (Subp_Id : Entity_Id) is
F : Entity_Id;
T : Entity_Id;
begin
F := First_Formal (Subp_Id);
while Present (F) loop
T := Etype (F);
if Is_Private_Type (T) and then Present (Full_View (T)) then
T := Full_View (T);
end if;
if Is_Descendant_Of_Address (T) or else Is_Limited_Type (T) then
Set_Is_Pure (Subp_Id, False);
exit;
end if;
Next_Formal (F);
end loop;
end Check_Function_With_Address_Parameter;
-------------------------------------
-- Check_Function_Writable_Actuals --
-------------------------------------
procedure Check_Function_Writable_Actuals (N : Node_Id) is
Writable_Actuals_List : Elist_Id := No_Elist;
Identifiers_List : Elist_Id := No_Elist;
Aggr_Error_Node : Node_Id := Empty;
Error_Node : Node_Id := Empty;
procedure Collect_Identifiers (N : Node_Id);
-- In a single traversal of subtree N collect in Writable_Actuals_List
-- all the actuals of functions with writable actuals, and in the list
-- Identifiers_List collect all the identifiers that are not actuals of
-- functions with writable actuals. If a writable actual is referenced
-- twice as writable actual then Error_Node is set to reference its
-- second occurrence, the error is reported, and the tree traversal
-- is abandoned.
procedure Preanalyze_Without_Errors (N : Node_Id);
-- Preanalyze N without reporting errors. Very dubious, you can't just
-- go analyzing things more than once???
-------------------------
-- Collect_Identifiers --
-------------------------
procedure Collect_Identifiers (N : Node_Id) is
function Check_Node (N : Node_Id) return Traverse_Result;
-- Process a single node during the tree traversal to collect the
-- writable actuals of functions and all the identifiers which are
-- not writable actuals of functions.
function Contains (List : Elist_Id; N : Node_Id) return Boolean;
-- Returns True if List has a node whose Entity is Entity (N)
----------------
-- Check_Node --
----------------
function Check_Node (N : Node_Id) return Traverse_Result is
Is_Writable_Actual : Boolean := False;
Id : Entity_Id;
begin
if Nkind (N) = N_Identifier then
-- No analysis possible if the entity is not decorated
if No (Entity (N)) then
return Skip;
-- Don't collect identifiers of packages, called functions, etc
elsif Ekind_In (Entity (N), E_Package,
E_Function,
E_Procedure,
E_Entry)
then
return Skip;
-- For rewritten nodes, continue the traversal in the original
-- subtree. Needed to handle aggregates in original expressions
-- extracted from the tree by Remove_Side_Effects.
elsif Is_Rewrite_Substitution (N) then
Collect_Identifiers (Original_Node (N));
return Skip;
-- For now we skip aggregate discriminants, since they require
-- performing the analysis in two phases to identify conflicts:
-- first one analyzing discriminants and second one analyzing
-- the rest of components (since at run time, discriminants are
-- evaluated prior to components): too much computation cost
-- to identify a corner case???
elsif Nkind (Parent (N)) = N_Component_Association
and then Nkind_In (Parent (Parent (N)),
N_Aggregate,
N_Extension_Aggregate)
then
declare
Choice : constant Node_Id := First (Choices (Parent (N)));
begin
if Ekind (Entity (N)) = E_Discriminant then
return Skip;
elsif Expression (Parent (N)) = N
and then Nkind (Choice) = N_Identifier
and then Ekind (Entity (Choice)) = E_Discriminant
then
return Skip;
end if;
end;
-- Analyze if N is a writable actual of a function
elsif Nkind (Parent (N)) = N_Function_Call then
declare
Call : constant Node_Id := Parent (N);
Actual : Node_Id;
Formal : Node_Id;
begin
Id := Get_Called_Entity (Call);
-- In case of previous error, no check is possible
if No (Id) then
return Abandon;
end if;
if Ekind_In (Id, E_Function, E_Generic_Function)
and then Has_Out_Or_In_Out_Parameter (Id)
then
Formal := First_Formal (Id);
Actual := First_Actual (Call);
while Present (Actual) and then Present (Formal) loop
if Actual = N then
if Ekind_In (Formal, E_Out_Parameter,
E_In_Out_Parameter)
then
Is_Writable_Actual := True;
end if;
exit;
end if;
Next_Formal (Formal);
Next_Actual (Actual);
end loop;
end if;
end;
end if;
if Is_Writable_Actual then
-- Skip checking the error in non-elementary types since
-- RM 6.4.1(6.15/3) is restricted to elementary types, but
-- store this actual in Writable_Actuals_List since it is
-- needed to perform checks on other constructs that have
-- arbitrary order of evaluation (for example, aggregates).
if not Is_Elementary_Type (Etype (N)) then
if not Contains (Writable_Actuals_List, N) then
Append_New_Elmt (N, To => Writable_Actuals_List);
end if;
-- Second occurrence of an elementary type writable actual
elsif Contains (Writable_Actuals_List, N) then
-- Report the error on the second occurrence of the
-- identifier. We cannot assume that N is the second
-- occurrence (according to their location in the
-- sources), since Traverse_Func walks through Field2
-- last (see comment in the body of Traverse_Func).
declare
Elmt : Elmt_Id;
begin
Elmt := First_Elmt (Writable_Actuals_List);
while Present (Elmt)
and then Entity (Node (Elmt)) /= Entity (N)
loop
Next_Elmt (Elmt);
end loop;
if Sloc (N) > Sloc (Node (Elmt)) then
Error_Node := N;
else
Error_Node := Node (Elmt);
end if;
Error_Msg_NE
("value may be affected by call to & "
& "because order of evaluation is arbitrary",
Error_Node, Id);
return Abandon;
end;
-- First occurrence of a elementary type writable actual
else
Append_New_Elmt (N, To => Writable_Actuals_List);
end if;
else
if Identifiers_List = No_Elist then
Identifiers_List := New_Elmt_List;
end if;
Append_Unique_Elmt (N, Identifiers_List);
end if;
end if;
return OK;
end Check_Node;
--------------
-- Contains --
--------------
function Contains
(List : Elist_Id;
N : Node_Id) return Boolean
is
pragma Assert (Nkind (N) in N_Has_Entity);
Elmt : Elmt_Id;
begin
if List = No_Elist then
return False;
end if;
Elmt := First_Elmt (List);
while Present (Elmt) loop
if Entity (Node (Elmt)) = Entity (N) then
return True;
else
Next_Elmt (Elmt);
end if;
end loop;
return False;
end Contains;
------------------
-- Do_Traversal --
------------------
procedure Do_Traversal is new Traverse_Proc (Check_Node);
-- The traversal procedure
-- Start of processing for Collect_Identifiers
begin
if Present (Error_Node) then
return;
end if;
if Nkind (N) in N_Subexpr and then Is_OK_Static_Expression (N) then
return;
end if;
Do_Traversal (N);
end Collect_Identifiers;
-------------------------------
-- Preanalyze_Without_Errors --
-------------------------------
procedure Preanalyze_Without_Errors (N : Node_Id) is
Status : constant Boolean := Get_Ignore_Errors;
begin
Set_Ignore_Errors (True);
Preanalyze (N);
Set_Ignore_Errors (Status);
end Preanalyze_Without_Errors;
-- Start of processing for Check_Function_Writable_Actuals
begin
-- The check only applies to Ada 2012 code on which Check_Actuals has
-- been set, and only to constructs that have multiple constituents
-- whose order of evaluation is not specified by the language.
if Ada_Version < Ada_2012
or else not Check_Actuals (N)
or else (not (Nkind (N) in N_Op)
and then not (Nkind (N) in N_Membership_Test)
and then not Nkind_In (N, N_Range,
N_Aggregate,
N_Extension_Aggregate,
N_Full_Type_Declaration,
N_Function_Call,
N_Procedure_Call_Statement,
N_Entry_Call_Statement))
or else (Nkind (N) = N_Full_Type_Declaration
and then not Is_Record_Type (Defining_Identifier (N)))
-- In addition, this check only applies to source code, not to code
-- generated by constraint checks.
or else not Comes_From_Source (N)
then
return;
end if;
-- If a construct C has two or more direct constituents that are names
-- or expressions whose evaluation may occur in an arbitrary order, at
-- least one of which contains a function call with an in out or out
-- parameter, then the construct is legal only if: for each name N that
-- is passed as a parameter of mode in out or out to some inner function
-- call C2 (not including the construct C itself), there is no other
-- name anywhere within a direct constituent of the construct C other
-- than the one containing C2, that is known to refer to the same
-- object (RM 6.4.1(6.17/3)).
case Nkind (N) is
when N_Range =>
Collect_Identifiers (Low_Bound (N));
Collect_Identifiers (High_Bound (N));
when N_Membership_Test
| N_Op
=>
declare
Expr : Node_Id;
begin
Collect_Identifiers (Left_Opnd (N));
if Present (Right_Opnd (N)) then
Collect_Identifiers (Right_Opnd (N));
end if;
if Nkind_In (N, N_In, N_Not_In)
and then Present (Alternatives (N))
then
Expr := First (Alternatives (N));
while Present (Expr) loop
Collect_Identifiers (Expr);
Next (Expr);
end loop;
end if;
end;
when N_Full_Type_Declaration =>
declare
function Get_Record_Part (N : Node_Id) return Node_Id;
-- Return the record part of this record type definition
function Get_Record_Part (N : Node_Id) return Node_Id is
Type_Def : constant Node_Id := Type_Definition (N);
begin
if Nkind (Type_Def) = N_Derived_Type_Definition then
return Record_Extension_Part (Type_Def);
else
return Type_Def;
end if;
end Get_Record_Part;
Comp : Node_Id;
Def_Id : Entity_Id := Defining_Identifier (N);
Rec : Node_Id := Get_Record_Part (N);
begin
-- No need to perform any analysis if the record has no
-- components
if No (Rec) or else No (Component_List (Rec)) then
return;
end if;
-- Collect the identifiers starting from the deepest
-- derivation. Done to report the error in the deepest
-- derivation.
loop
if Present (Component_List (Rec)) then
Comp := First (Component_Items (Component_List (Rec)));
while Present (Comp) loop
if Nkind (Comp) = N_Component_Declaration
and then Present (Expression (Comp))
then
Collect_Identifiers (Expression (Comp));
end if;
Next (Comp);
end loop;
end if;
exit when No (Underlying_Type (Etype (Def_Id)))
or else Base_Type (Underlying_Type (Etype (Def_Id)))
= Def_Id;
Def_Id := Base_Type (Underlying_Type (Etype (Def_Id)));
Rec := Get_Record_Part (Parent (Def_Id));
end loop;
end;
when N_Entry_Call_Statement
| N_Subprogram_Call
=>
declare
Id : constant Entity_Id := Get_Called_Entity (N);
Formal : Node_Id;
Actual : Node_Id;
begin
Formal := First_Formal (Id);
Actual := First_Actual (N);
while Present (Actual) and then Present (Formal) loop
if Ekind_In (Formal, E_Out_Parameter,
E_In_Out_Parameter)
then
Collect_Identifiers (Actual);
end if;
Next_Formal (Formal);
Next_Actual (Actual);
end loop;
end;
when N_Aggregate
| N_Extension_Aggregate
=>
declare
Assoc : Node_Id;
Choice : Node_Id;
Comp_Expr : Node_Id;
begin
-- Handle the N_Others_Choice of array aggregates with static
-- bounds. There is no need to perform this analysis in
-- aggregates without static bounds since we cannot evaluate
-- if the N_Others_Choice covers several elements. There is
-- no need to handle the N_Others choice of record aggregates
-- since at this stage it has been already expanded by
-- Resolve_Record_Aggregate.
if Is_Array_Type (Etype (N))
and then Nkind (N) = N_Aggregate
and then Present (Aggregate_Bounds (N))
and then Compile_Time_Known_Bounds (Etype (N))
and then Expr_Value (High_Bound (Aggregate_Bounds (N)))
>
Expr_Value (Low_Bound (Aggregate_Bounds (N)))
then
declare
Count_Components : Uint := Uint_0;
Num_Components : Uint;
Others_Assoc : Node_Id;
Others_Choice : Node_Id := Empty;
Others_Box_Present : Boolean := False;
begin
-- Count positional associations
if Present (Expressions (N)) then
Comp_Expr := First (Expressions (N));
while Present (Comp_Expr) loop
Count_Components := Count_Components + 1;
Next (Comp_Expr);
end loop;
end if;
-- Count the rest of elements and locate the N_Others
-- choice (if any)
Assoc := First (Component_Associations (N));
while Present (Assoc) loop
Choice := First (Choices (Assoc));
while Present (Choice) loop
if Nkind (Choice) = N_Others_Choice then
Others_Assoc := Assoc;
Others_Choice := Choice;
Others_Box_Present := Box_Present (Assoc);
-- Count several components
elsif Nkind_In (Choice, N_Range,
N_Subtype_Indication)
or else (Is_Entity_Name (Choice)
and then Is_Type (Entity (Choice)))
then
declare
L, H : Node_Id;
begin
Get_Index_Bounds (Choice, L, H);
pragma Assert
(Compile_Time_Known_Value (L)
and then Compile_Time_Known_Value (H));
Count_Components :=
Count_Components
+ Expr_Value (H) - Expr_Value (L) + 1;
end;
-- Count single component. No other case available
-- since we are handling an aggregate with static
-- bounds.
else
pragma Assert (Is_OK_Static_Expression (Choice)
or else Nkind (Choice) = N_Identifier
or else Nkind (Choice) = N_Integer_Literal);
Count_Components := Count_Components + 1;
end if;
Next (Choice);
end loop;
Next (Assoc);
end loop;
Num_Components :=
Expr_Value (High_Bound (Aggregate_Bounds (N))) -
Expr_Value (Low_Bound (Aggregate_Bounds (N))) + 1;
pragma Assert (Count_Components <= Num_Components);
-- Handle the N_Others choice if it covers several
-- components
if Present (Others_Choice)
and then (Num_Components - Count_Components) > 1
then
if not Others_Box_Present then
-- At this stage, if expansion is active, the
-- expression of the others choice has not been
-- analyzed. Hence we generate a duplicate and
-- we analyze it silently to have available the
-- minimum decoration required to collect the
-- identifiers.
if not Expander_Active then
Comp_Expr := Expression (Others_Assoc);
else
Comp_Expr :=
New_Copy_Tree (Expression (Others_Assoc));
Preanalyze_Without_Errors (Comp_Expr);
end if;
Collect_Identifiers (Comp_Expr);
if Writable_Actuals_List /= No_Elist then
-- As suggested by Robert, at current stage we
-- report occurrences of this case as warnings.
Error_Msg_N
("writable function parameter may affect "
& "value in other component because order "
& "of evaluation is unspecified??",
Node (First_Elmt (Writable_Actuals_List)));
end if;
end if;
end if;
end;
-- For an array aggregate, a discrete_choice_list that has
-- a nonstatic range is considered as two or more separate
-- occurrences of the expression (RM 6.4.1(20/3)).
elsif Is_Array_Type (Etype (N))
and then Nkind (N) = N_Aggregate
and then Present (Aggregate_Bounds (N))
and then not Compile_Time_Known_Bounds (Etype (N))
then
-- Collect identifiers found in the dynamic bounds
declare
Count_Components : Natural := 0;
Low, High : Node_Id;
begin
Assoc := First (Component_Associations (N));
while Present (Assoc) loop
Choice := First (Choices (Assoc));
while Present (Choice) loop
if Nkind_In (Choice, N_Range,
N_Subtype_Indication)
or else (Is_Entity_Name (Choice)
and then Is_Type (Entity (Choice)))
then
Get_Index_Bounds (Choice, Low, High);
if not Compile_Time_Known_Value (Low) then
Collect_Identifiers (Low);
if No (Aggr_Error_Node) then
Aggr_Error_Node := Low;
end if;
end if;
if not Compile_Time_Known_Value (High) then
Collect_Identifiers (High);
if No (Aggr_Error_Node) then
Aggr_Error_Node := High;
end if;
end if;
-- The RM rule is violated if there is more than
-- a single choice in a component association.
else
Count_Components := Count_Components + 1;
if No (Aggr_Error_Node)
and then Count_Components > 1
then
Aggr_Error_Node := Choice;
end if;
if not Compile_Time_Known_Value (Choice) then
Collect_Identifiers (Choice);
end if;
end if;
Next (Choice);
end loop;
Next (Assoc);
end loop;
end;
end if;
-- Handle ancestor part of extension aggregates
if Nkind (N) = N_Extension_Aggregate then
Collect_Identifiers (Ancestor_Part (N));
end if;
-- Handle positional associations
if Present (Expressions (N)) then
Comp_Expr := First (Expressions (N));
while Present (Comp_Expr) loop
if not Is_OK_Static_Expression (Comp_Expr) then
Collect_Identifiers (Comp_Expr);
end if;
Next (Comp_Expr);
end loop;
end if;
-- Handle discrete associations
if Present (Component_Associations (N)) then
Assoc := First (Component_Associations (N));
while Present (Assoc) loop
if not Box_Present (Assoc) then
Choice := First (Choices (Assoc));
while Present (Choice) loop
-- For now we skip discriminants since it requires
-- performing the analysis in two phases: first one
-- analyzing discriminants and second one analyzing
-- the rest of components since discriminants are
-- evaluated prior to components: too much extra
-- work to detect a corner case???
if Nkind (Choice) in N_Has_Entity
and then Present (Entity (Choice))
and then Ekind (Entity (Choice)) = E_Discriminant
then
null;
elsif Box_Present (Assoc) then
null;
else
if not Analyzed (Expression (Assoc)) then
Comp_Expr :=
New_Copy_Tree (Expression (Assoc));
Set_Parent (Comp_Expr, Parent (N));
Preanalyze_Without_Errors (Comp_Expr);
else
Comp_Expr := Expression (Assoc);
end if;
Collect_Identifiers (Comp_Expr);
end if;
Next (Choice);
end loop;
end if;
Next (Assoc);
end loop;
end if;
end;
when others =>
return;
end case;
-- No further action needed if we already reported an error
if Present (Error_Node) then
return;
end if;
-- Check violation of RM 6.20/3 in aggregates
if Present (Aggr_Error_Node)
and then Writable_Actuals_List /= No_Elist
then
Error_Msg_N
("value may be affected by call in other component because they "
& "are evaluated in unspecified order",
Node (First_Elmt (Writable_Actuals_List)));
return;
end if;
-- Check if some writable argument of a function is referenced
if Writable_Actuals_List /= No_Elist
and then Identifiers_List /= No_Elist
then
declare
Elmt_1 : Elmt_Id;
Elmt_2 : Elmt_Id;
begin
Elmt_1 := First_Elmt (Writable_Actuals_List);
while Present (Elmt_1) loop
Elmt_2 := First_Elmt (Identifiers_List);
while Present (Elmt_2) loop
if Entity (Node (Elmt_1)) = Entity (Node (Elmt_2)) then
case Nkind (Parent (Node (Elmt_2))) is
when N_Aggregate
| N_Component_Association
| N_Component_Declaration
=>
Error_Msg_N
("value may be affected by call in other "
& "component because they are evaluated "
& "in unspecified order",
Node (Elmt_2));
when N_In
| N_Not_In
=>
Error_Msg_N
("value may be affected by call in other "
& "alternative because they are evaluated "
& "in unspecified order",
Node (Elmt_2));
when others =>
Error_Msg_N
("value of actual may be affected by call in "
& "other actual because they are evaluated "
& "in unspecified order",
Node (Elmt_2));
end case;
end if;
Next_Elmt (Elmt_2);
end loop;
Next_Elmt (Elmt_1);
end loop;
end;
end if;
end Check_Function_Writable_Actuals;
--------------------------------
-- Check_Implicit_Dereference --
--------------------------------
procedure Check_Implicit_Dereference (N : Node_Id; Typ : Entity_Id) is
Disc : Entity_Id;
Desig : Entity_Id;
Nam : Node_Id;
begin
if Nkind (N) = N_Indexed_Component
and then Present (Generalized_Indexing (N))
then
Nam := Generalized_Indexing (N);
else
Nam := N;
end if;
if Ada_Version < Ada_2012
or else not Has_Implicit_Dereference (Base_Type (Typ))
then
return;
elsif not Comes_From_Source (N)
and then Nkind (N) /= N_Indexed_Component
then
return;
elsif Is_Entity_Name (Nam) and then Is_Type (Entity (Nam)) then
null;
else
Disc := First_Discriminant (Typ);
while Present (Disc) loop
if Has_Implicit_Dereference (Disc) then
Desig := Designated_Type (Etype (Disc));
Add_One_Interp (Nam, Disc, Desig);
-- If the node is a generalized indexing, add interpretation
-- to that node as well, for subsequent resolution.
if Nkind (N) = N_Indexed_Component then
Add_One_Interp (N, Disc, Desig);
end if;
-- If the operation comes from a generic unit and the context
-- is a selected component, the selector name may be global
-- and set in the instance already. Remove the entity to
-- force resolution of the selected component, and the
-- generation of an explicit dereference if needed.
if In_Instance
and then Nkind (Parent (Nam)) = N_Selected_Component
then
Set_Entity (Selector_Name (Parent (Nam)), Empty);
end if;
exit;
end if;
Next_Discriminant (Disc);
end loop;
end if;
end Check_Implicit_Dereference;
----------------------------------
-- Check_Internal_Protected_Use --
----------------------------------
procedure Check_Internal_Protected_Use (N : Node_Id; Nam : Entity_Id) is
S : Entity_Id;
Prot : Entity_Id;
begin
Prot := Empty;
S := Current_Scope;
while Present (S) loop
if S = Standard_Standard then
exit;
elsif Ekind (S) = E_Function
and then Ekind (Scope (S)) = E_Protected_Type
then
Prot := Scope (S);
exit;
end if;
S := Scope (S);
end loop;
if Present (Prot)
and then Scope (Nam) = Prot
and then Ekind (Nam) /= E_Function
then
-- An indirect function call (e.g. a callback within a protected
-- function body) is not statically illegal. If the access type is
-- anonymous and is the type of an access parameter, the scope of Nam
-- will be the protected type, but it is not a protected operation.
if Ekind (Nam) = E_Subprogram_Type
and then Nkind (Associated_Node_For_Itype (Nam)) =
N_Function_Specification
then
null;
elsif Nkind (N) = N_Subprogram_Renaming_Declaration then
Error_Msg_N
("within protected function cannot use protected procedure in "
& "renaming or as generic actual", N);
elsif Nkind (N) = N_Attribute_Reference then
Error_Msg_N
("within protected function cannot take access of protected "
& "procedure", N);
else
Error_Msg_N
("within protected function, protected object is constant", N);
Error_Msg_N
("\cannot call operation that may modify it", N);
end if;
end if;
-- Verify that an internal call does not appear within a precondition
-- of a protected operation. This implements AI12-0166.
-- The precondition aspect has been rewritten as a pragma Precondition
-- and we check whether the scope of the called subprogram is the same
-- as that of the entity to which the aspect applies.
if Convention (Nam) = Convention_Protected then
declare
P : Node_Id;
begin
P := Parent (N);
while Present (P) loop
if Nkind (P) = N_Pragma
and then Chars (Pragma_Identifier (P)) = Name_Precondition
and then From_Aspect_Specification (P)
and then
Scope (Entity (Corresponding_Aspect (P))) = Scope (Nam)
then
Error_Msg_N
("internal call cannot appear in precondition of "
& "protected operation", N);
return;
elsif Nkind (P) = N_Pragma
and then Chars (Pragma_Identifier (P)) = Name_Contract_Cases
then
-- Check whether call is in a case guard. It is legal in a
-- consequence.
P := N;
while Present (P) loop
if Nkind (Parent (P)) = N_Component_Association
and then P /= Expression (Parent (P))
then
Error_Msg_N
("internal call cannot appear in case guard in a "
& "contract case", N);
end if;
P := Parent (P);
end loop;
return;
elsif Nkind (P) = N_Parameter_Specification
and then Scope (Current_Scope) = Scope (Nam)
and then Nkind_In (Parent (P), N_Entry_Declaration,
N_Subprogram_Declaration)
then
Error_Msg_N
("internal call cannot appear in default for formal of "
& "protected operation", N);
return;
end if;
P := Parent (P);
end loop;
end;
end if;
end Check_Internal_Protected_Use;
---------------------------------------
-- Check_Later_Vs_Basic_Declarations --
---------------------------------------
procedure Check_Later_Vs_Basic_Declarations
(Decls : List_Id;
During_Parsing : Boolean)
is
Body_Sloc : Source_Ptr;
Decl : Node_Id;
function Is_Later_Declarative_Item (Decl : Node_Id) return Boolean;
-- Return whether Decl is considered as a declarative item.
-- When During_Parsing is True, the semantics of Ada 83 is followed.
-- When During_Parsing is False, the semantics of SPARK is followed.
-------------------------------
-- Is_Later_Declarative_Item --
-------------------------------
function Is_Later_Declarative_Item (Decl : Node_Id) return Boolean is
begin
if Nkind (Decl) in N_Later_Decl_Item then
return True;
elsif Nkind (Decl) = N_Pragma then
return True;
elsif During_Parsing then
return False;
-- In SPARK, a package declaration is not considered as a later
-- declarative item.
elsif Nkind (Decl) = N_Package_Declaration then
return False;
-- In SPARK, a renaming is considered as a later declarative item
elsif Nkind (Decl) in N_Renaming_Declaration then
return True;
else
return False;
end if;
end Is_Later_Declarative_Item;
-- Start of processing for Check_Later_Vs_Basic_Declarations
begin
Decl := First (Decls);
-- Loop through sequence of basic declarative items
Outer : while Present (Decl) loop
if not Nkind_In (Decl, N_Subprogram_Body, N_Package_Body, N_Task_Body)
and then Nkind (Decl) not in N_Body_Stub
then
Next (Decl);
-- Once a body is encountered, we only allow later declarative
-- items. The inner loop checks the rest of the list.
else
Body_Sloc := Sloc (Decl);
Inner : while Present (Decl) loop
if not Is_Later_Declarative_Item (Decl) then
if During_Parsing then
if Ada_Version = Ada_83 then
Error_Msg_Sloc := Body_Sloc;
Error_Msg_N
("(Ada 83) decl cannot appear after body#", Decl);
end if;
else
Error_Msg_Sloc := Body_Sloc;
Check_SPARK_05_Restriction
("decl cannot appear after body#", Decl);
end if;
end if;
Next (Decl);
end loop Inner;
end if;
end loop Outer;
end Check_Later_Vs_Basic_Declarations;
---------------------------
-- Check_No_Hidden_State --
---------------------------
procedure Check_No_Hidden_State (Id : Entity_Id) is
Context : Entity_Id := Empty;
Not_Visible : Boolean := False;
Scop : Entity_Id;
begin
pragma Assert (Ekind_In (Id, E_Abstract_State, E_Variable));
-- Find the proper context where the object or state appears
Scop := Scope (Id);
while Present (Scop) loop
Context := Scop;
-- Keep track of the context's visibility
Not_Visible := Not_Visible or else In_Private_Part (Context);
-- Prevent the search from going too far
if Context = Standard_Standard then
return;
-- Objects and states that appear immediately within a subprogram or
-- inside a construct nested within a subprogram do not introduce a
-- hidden state. They behave as local variable declarations.
elsif Is_Subprogram (Context) then
return;
-- When examining a package body, use the entity of the spec as it
-- carries the abstract state declarations.
elsif Ekind (Context) = E_Package_Body then
Context := Spec_Entity (Context);
end if;
-- Stop the traversal when a package subject to a null abstract state
-- has been found.
if Ekind_In (Context, E_Generic_Package, E_Package)
and then Has_Null_Abstract_State (Context)
then
exit;
end if;
Scop := Scope (Scop);
end loop;
-- At this point we know that there is at least one package with a null
-- abstract state in visibility. Emit an error message unconditionally
-- if the entity being processed is a state because the placement of the
-- related package is irrelevant. This is not the case for objects as
-- the intermediate context matters.
if Present (Context)
and then (Ekind (Id) = E_Abstract_State or else Not_Visible)
then
Error_Msg_N ("cannot introduce hidden state &", Id);
Error_Msg_NE ("\package & has null abstract state", Id, Context);
end if;
end Check_No_Hidden_State;
----------------------------------------
-- Check_Nonvolatile_Function_Profile --
----------------------------------------
procedure Check_Nonvolatile_Function_Profile (Func_Id : Entity_Id) is
Formal : Entity_Id;
begin
-- Inspect all formal parameters
Formal := First_Formal (Func_Id);
while Present (Formal) loop
if Is_Effectively_Volatile (Etype (Formal)) then
Error_Msg_NE
("nonvolatile function & cannot have a volatile parameter",
Formal, Func_Id);
end if;
Next_Formal (Formal);
end loop;
-- Inspect the return type
if Is_Effectively_Volatile (Etype (Func_Id)) then
Error_Msg_NE
("nonvolatile function & cannot have a volatile return type",
Result_Definition (Parent (Func_Id)), Func_Id);
end if;
end Check_Nonvolatile_Function_Profile;
-----------------------------
-- Check_Part_Of_Reference --
-----------------------------
procedure Check_Part_Of_Reference (Var_Id : Entity_Id; Ref : Node_Id) is
function Is_Enclosing_Package_Body
(Body_Decl : Node_Id;
Obj_Id : Entity_Id) return Boolean;
pragma Inline (Is_Enclosing_Package_Body);
-- Determine whether package body Body_Decl or its corresponding spec
-- immediately encloses the declaration of object Obj_Id.
function Is_Internal_Declaration_Or_Body
(Decl : Node_Id) return Boolean;
pragma Inline (Is_Internal_Declaration_Or_Body);
-- Determine whether declaration or body denoted by Decl is internal
function Is_Single_Declaration_Or_Body
(Decl : Node_Id;
Conc_Typ : Entity_Id) return Boolean;
pragma Inline (Is_Single_Declaration_Or_Body);
-- Determine whether protected/task declaration or body denoted by Decl
-- belongs to single concurrent type Conc_Typ.
function Is_Single_Task_Pragma
(Prag : Node_Id;
Task_Typ : Entity_Id) return Boolean;
pragma Inline (Is_Single_Task_Pragma);
-- Determine whether pragma Prag belongs to single task type Task_Typ
-------------------------------
-- Is_Enclosing_Package_Body --
-------------------------------
function Is_Enclosing_Package_Body
(Body_Decl : Node_Id;
Obj_Id : Entity_Id) return Boolean
is
Obj_Context : Node_Id;
begin
-- Find the context of the object declaration
Obj_Context := Parent (Declaration_Node (Obj_Id));
if Nkind (Obj_Context) = N_Package_Specification then
Obj_Context := Parent (Obj_Context);
end if;
-- The object appears immediately within the package body
if Obj_Context = Body_Decl then
return True;
-- The object appears immediately within the corresponding spec
elsif Nkind (Obj_Context) = N_Package_Declaration
and then Unit_Declaration_Node (Corresponding_Spec (Body_Decl)) =
Obj_Context
then
return True;
end if;
return False;
end Is_Enclosing_Package_Body;
-------------------------------------
-- Is_Internal_Declaration_Or_Body --
-------------------------------------
function Is_Internal_Declaration_Or_Body
(Decl : Node_Id) return Boolean
is
begin
if Comes_From_Source (Decl) then
return False;
-- A body generated for an expression function which has not been
-- inserted into the tree yet (In_Spec_Expression is True) is not
-- considered internal.
elsif Nkind (Decl) = N_Subprogram_Body
and then Was_Expression_Function (Decl)
and then not In_Spec_Expression
then
return False;
end if;
return True;
end Is_Internal_Declaration_Or_Body;
-----------------------------------
-- Is_Single_Declaration_Or_Body --
-----------------------------------
function Is_Single_Declaration_Or_Body
(Decl : Node_Id;
Conc_Typ : Entity_Id) return Boolean
is
Spec_Id : constant Entity_Id := Unique_Defining_Entity (Decl);
begin
return
Present (Anonymous_Object (Spec_Id))
and then Anonymous_Object (Spec_Id) = Conc_Typ;
end Is_Single_Declaration_Or_Body;
---------------------------
-- Is_Single_Task_Pragma --
---------------------------
function Is_Single_Task_Pragma
(Prag : Node_Id;
Task_Typ : Entity_Id) return Boolean
is
Decl : constant Node_Id := Find_Related_Declaration_Or_Body (Prag);
begin
-- To qualify, the pragma must be associated with single task type
-- Task_Typ.
return
Is_Single_Task_Object (Task_Typ)
and then Nkind (Decl) = N_Object_Declaration
and then Defining_Entity (Decl) = Task_Typ;
end Is_Single_Task_Pragma;
-- Local variables
Conc_Obj : constant Entity_Id := Encapsulating_State (Var_Id);
Par : Node_Id;
Prag_Nam : Name_Id;
Prev : Node_Id;
-- Start of processing for Check_Part_Of_Reference
begin
-- Nothing to do when the variable was recorded, but did not become a
-- constituent of a single concurrent type.
if No (Conc_Obj) then
return;
end if;
-- Traverse the parent chain looking for a suitable context for the
-- reference to the concurrent constituent.
Prev := Ref;
Par := Parent (Prev);
while Present (Par) loop
if Nkind (Par) = N_Pragma then
Prag_Nam := Pragma_Name (Par);
-- A concurrent constituent is allowed to appear in pragmas
-- Initial_Condition and Initializes as this is part of the
-- elaboration checks for the constituent (SPARK RM 9(3)).
if Nam_In (Prag_Nam, Name_Initial_Condition, Name_Initializes) then
return;
-- When the reference appears within pragma Depends or Global,
-- check whether the pragma applies to a single task type. Note
-- that the pragma may not encapsulated by the type definition,
-- but this is still a valid context.
elsif Nam_In (Prag_Nam, Name_Depends, Name_Global)
and then Is_Single_Task_Pragma (Par, Conc_Obj)
then
return;
end if;
-- The reference appears somewhere in the definition of a single
-- concurrent type (SPARK RM 9(3)).
elsif Nkind_In (Par, N_Single_Protected_Declaration,
N_Single_Task_Declaration)
and then Defining_Entity (Par) = Conc_Obj
then
return;
-- The reference appears within the declaration or body of a single
-- concurrent type (SPARK RM 9(3)).
elsif Nkind_In (Par, N_Protected_Body,
N_Protected_Type_Declaration,
N_Task_Body,
N_Task_Type_Declaration)
and then Is_Single_Declaration_Or_Body (Par, Conc_Obj)
then
return;
-- The reference appears within the statement list of the object's
-- immediately enclosing package (SPARK RM 9(3)).
elsif Nkind (Par) = N_Package_Body
and then Nkind (Prev) = N_Handled_Sequence_Of_Statements
and then Is_Enclosing_Package_Body (Par, Var_Id)
then
return;
-- The reference has been relocated within an internally generated
-- package or subprogram. Assume that the reference is legal as the
-- real check was already performed in the original context of the
-- reference.
elsif Nkind_In (Par, N_Package_Body,
N_Package_Declaration,
N_Subprogram_Body,
N_Subprogram_Declaration)
and then Is_Internal_Declaration_Or_Body (Par)
then
return;
-- The reference has been relocated to an inlined body for GNATprove.
-- Assume that the reference is legal as the real check was already
-- performed in the original context of the reference.
elsif GNATprove_Mode
and then Nkind (Par) = N_Subprogram_Body
and then Chars (Defining_Entity (Par)) = Name_uParent
then
return;
end if;
Prev := Par;
Par := Parent (Prev);
end loop;
-- At this point it is known that the reference does not appear within a
-- legal context.
Error_Msg_NE
("reference to variable & cannot appear in this context", Ref, Var_Id);
Error_Msg_Name_1 := Chars (Var_Id);
if Is_Single_Protected_Object (Conc_Obj) then
Error_Msg_NE
("\% is constituent of single protected type &", Ref, Conc_Obj);
else
Error_Msg_NE
("\% is constituent of single task type &", Ref, Conc_Obj);
end if;
end Check_Part_Of_Reference;
------------------------------------------
-- Check_Potentially_Blocking_Operation --
------------------------------------------
procedure Check_Potentially_Blocking_Operation (N : Node_Id) is
S : Entity_Id;
begin
-- N is one of the potentially blocking operations listed in 9.5.1(8).
-- When pragma Detect_Blocking is active, the run time will raise
-- Program_Error. Here we only issue a warning, since we generally
-- support the use of potentially blocking operations in the absence
-- of the pragma.
-- Indirect blocking through a subprogram call cannot be diagnosed
-- statically without interprocedural analysis, so we do not attempt
-- to do it here.
S := Scope (Current_Scope);
while Present (S) and then S /= Standard_Standard loop
if Is_Protected_Type (S) then
Error_Msg_N
("potentially blocking operation in protected operation??", N);
return;
end if;
S := Scope (S);
end loop;
end Check_Potentially_Blocking_Operation;
------------------------------------
-- Check_Previous_Null_Procedure --
------------------------------------
procedure Check_Previous_Null_Procedure
(Decl : Node_Id;
Prev : Entity_Id)
is
begin
if Ekind (Prev) = E_Procedure
and then Nkind (Parent (Prev)) = N_Procedure_Specification
and then Null_Present (Parent (Prev))
then
Error_Msg_Sloc := Sloc (Prev);
Error_Msg_N
("declaration cannot complete previous null procedure#", Decl);
end if;
end Check_Previous_Null_Procedure;
---------------------------------
-- Check_Result_And_Post_State --
---------------------------------
procedure Check_Result_And_Post_State (Subp_Id : Entity_Id) is
procedure Check_Result_And_Post_State_In_Pragma
(Prag : Node_Id;
Result_Seen : in out Boolean);
-- Determine whether pragma Prag mentions attribute 'Result and whether
-- the pragma contains an expression that evaluates differently in pre-
-- and post-state. Prag is a [refined] postcondition or a contract-cases
-- pragma. Result_Seen is set when the pragma mentions attribute 'Result
function Has_In_Out_Parameter (Subp_Id : Entity_Id) return Boolean;
-- Determine whether subprogram Subp_Id contains at least one IN OUT
-- formal parameter.
-------------------------------------------
-- Check_Result_And_Post_State_In_Pragma --
-------------------------------------------
procedure Check_Result_And_Post_State_In_Pragma
(Prag : Node_Id;
Result_Seen : in out Boolean)
is
procedure Check_Conjunct (Expr : Node_Id);
-- Check an individual conjunct in a conjunction of Boolean
-- expressions, connected by "and" or "and then" operators.
procedure Check_Conjuncts (Expr : Node_Id);
-- Apply the post-state check to every conjunct in an expression, in
-- case this is a conjunction of Boolean expressions. Otherwise apply
-- it to the expression as a whole.
procedure Check_Expression (Expr : Node_Id);
-- Perform the 'Result and post-state checks on a given expression
function Is_Function_Result (N : Node_Id) return Traverse_Result;
-- Attempt to find attribute 'Result in a subtree denoted by N
function Is_Trivial_Boolean (N : Node_Id) return Boolean;
-- Determine whether source node N denotes "True" or "False"
function Mentions_Post_State (N : Node_Id) return Boolean;
-- Determine whether a subtree denoted by N mentions any construct
-- that denotes a post-state.
procedure Check_Function_Result is
new Traverse_Proc (Is_Function_Result);
--------------------
-- Check_Conjunct --
--------------------
procedure Check_Conjunct (Expr : Node_Id) is
function Adjust_Message (Msg : String) return String;
-- Prepend a prefix to the input message Msg denoting that the
-- message applies to a conjunct in the expression, when this
-- is the case.
function Applied_On_Conjunct return Boolean;
-- Returns True if the message applies to a conjunct in the
-- expression, instead of the whole expression.
function Has_Global_Output (Subp : Entity_Id) return Boolean;
-- Returns True if Subp has an output in its Global contract
function Has_No_Output (Subp : Entity_Id) return Boolean;
-- Returns True if Subp has no declared output: no function
-- result, no output parameter, and no output in its Global
-- contract.
--------------------
-- Adjust_Message --
--------------------
function Adjust_Message (Msg : String) return String is
begin
if Applied_On_Conjunct then
return "conjunct in " & Msg;
else
return Msg;
end if;
end Adjust_Message;
-------------------------
-- Applied_On_Conjunct --
-------------------------
function Applied_On_Conjunct return Boolean is
begin
-- Expr is the conjunct of an enclosing "and" expression
return Nkind (Parent (Expr)) in N_Subexpr
-- or Expr is a conjunct of an enclosing "and then"
-- expression in a postcondition aspect that was split into
-- multiple pragmas. The first conjunct has the "and then"
-- expression as Original_Node, and other conjuncts have
-- Split_PCC set to True.
or else Nkind (Original_Node (Expr)) = N_And_Then
or else Split_PPC (Prag);
end Applied_On_Conjunct;
-----------------------
-- Has_Global_Output --
-----------------------
function Has_Global_Output (Subp : Entity_Id) return Boolean is
Global : constant Node_Id := Get_Pragma (Subp, Pragma_Global);
List : Node_Id;
Assoc : Node_Id;
begin
if No (Global) then
return False;
end if;
List := Expression (Get_Argument (Global, Subp));
-- Empty list (no global items) or single global item
-- declaration (only input items).
if Nkind_In (List, N_Null,
N_Expanded_Name,
N_Identifier,
N_Selected_Component)
then
return False;
-- Simple global list (only input items) or moded global list
-- declaration.
elsif Nkind (List) = N_Aggregate then
if Present (Expressions (List)) then
return False;
else
Assoc := First (Component_Associations (List));
while Present (Assoc) loop
if Chars (First (Choices (Assoc))) /= Name_Input then
return True;
end if;
Next (Assoc);
end loop;
return False;
end if;
-- To accommodate partial decoration of disabled SPARK
-- features, this routine may be called with illegal input.
-- If this is the case, do not raise Program_Error.
else
return False;
end if;
end Has_Global_Output;
-------------------
-- Has_No_Output --
-------------------
function Has_No_Output (Subp : Entity_Id) return Boolean is
Param : Node_Id;
begin
-- A function has its result as output
if Ekind (Subp) = E_Function then
return False;
end if;
-- An OUT or IN OUT parameter is an output
Param := First_Formal (Subp);
while Present (Param) loop
if Ekind_In (Param, E_Out_Parameter, E_In_Out_Parameter) then
return False;
end if;
Next_Formal (Param);
end loop;
-- An item of mode Output or In_Out in the Global contract is
-- an output.
if Has_Global_Output (Subp) then
return False;
end if;
return True;
end Has_No_Output;
-- Local variables
Err_Node : Node_Id;
-- Error node when reporting a warning on a (refined)
-- postcondition.
-- Start of processing for Check_Conjunct
begin
if Applied_On_Conjunct then
Err_Node := Expr;
else
Err_Node := Prag;
end if;
-- Do not report missing reference to outcome in postcondition if
-- either the postcondition is trivially True or False, or if the
-- subprogram is ghost and has no declared output.
if not Is_Trivial_Boolean (Expr)
and then not Mentions_Post_State (Expr)
and then not (Is_Ghost_Entity (Subp_Id)
and then Has_No_Output (Subp_Id))
then
if Pragma_Name (Prag) = Name_Contract_Cases then
Error_Msg_NE (Adjust_Message
("contract case does not check the outcome of calling "
& "&?T?"), Expr, Subp_Id);
elsif Pragma_Name (Prag) = Name_Refined_Post then
Error_Msg_NE (Adjust_Message
("refined postcondition does not check the outcome of "
& "calling &?T?"), Err_Node, Subp_Id);
else
Error_Msg_NE (Adjust_Message
("postcondition does not check the outcome of calling "
& "&?T?"), Err_Node, Subp_Id);
end if;
end if;
end Check_Conjunct;
---------------------
-- Check_Conjuncts --
---------------------
procedure Check_Conjuncts (Expr : Node_Id) is
begin
if Nkind_In (Expr, N_Op_And, N_And_Then) then
Check_Conjuncts (Left_Opnd (Expr));
Check_Conjuncts (Right_Opnd (Expr));
else
Check_Conjunct (Expr);
end if;
end Check_Conjuncts;
----------------------
-- Check_Expression --
----------------------
procedure Check_Expression (Expr : Node_Id) is
begin
if not Is_Trivial_Boolean (Expr) then
Check_Function_Result (Expr);
Check_Conjuncts (Expr);
end if;
end Check_Expression;
------------------------
-- Is_Function_Result --
------------------------
function Is_Function_Result (N : Node_Id) return Traverse_Result is
begin
if Is_Attribute_Result (N) then
Result_Seen := True;
return Abandon;
-- Continue the traversal
else
return OK;
end if;
end Is_Function_Result;
------------------------
-- Is_Trivial_Boolean --
------------------------
function Is_Trivial_Boolean (N : Node_Id) return Boolean is
begin
return
Comes_From_Source (N)
and then Is_Entity_Name (N)
and then (Entity (N) = Standard_True
or else
Entity (N) = Standard_False);
end Is_Trivial_Boolean;
-------------------------
-- Mentions_Post_State --
-------------------------
function Mentions_Post_State (N : Node_Id) return Boolean is
Post_State_Seen : Boolean := False;
function Is_Post_State (N : Node_Id) return Traverse_Result;
-- Attempt to find a construct that denotes a post-state. If this
-- is the case, set flag Post_State_Seen.
-------------------
-- Is_Post_State --
-------------------
function Is_Post_State (N : Node_Id) return Traverse_Result is
Ent : Entity_Id;
begin
if Nkind_In (N, N_Explicit_Dereference, N_Function_Call) then
Post_State_Seen := True;
return Abandon;
elsif Nkind_In (N, N_Expanded_Name, N_Identifier) then
Ent := Entity (N);
-- Treat an undecorated reference as OK
if No (Ent)
-- A reference to an assignable entity is considered a
-- change in the post-state of a subprogram.
or else Ekind_In (Ent, E_Generic_In_Out_Parameter,
E_In_Out_Parameter,
E_Out_Parameter,
E_Variable)
-- The reference may be modified through a dereference
or else (Is_Access_Type (Etype (Ent))
and then Nkind (Parent (N)) =
N_Selected_Component)
then
Post_State_Seen := True;
return Abandon;
end if;
elsif Nkind (N) = N_Attribute_Reference then
if Attribute_Name (N) = Name_Old then
return Skip;
elsif Attribute_Name (N) = Name_Result then
Post_State_Seen := True;
return Abandon;
end if;
end if;
return OK;
end Is_Post_State;
procedure Find_Post_State is new Traverse_Proc (Is_Post_State);
-- Start of processing for Mentions_Post_State
begin
Find_Post_State (N);
return Post_State_Seen;
end Mentions_Post_State;
-- Local variables
Expr : constant Node_Id :=
Get_Pragma_Arg
(First (Pragma_Argument_Associations (Prag)));
Nam : constant Name_Id := Pragma_Name (Prag);
CCase : Node_Id;
-- Start of processing for Check_Result_And_Post_State_In_Pragma
begin
-- Examine all consequences
if Nam = Name_Contract_Cases then
CCase := First (Component_Associations (Expr));
while Present (CCase) loop
Check_Expression (Expression (CCase));
Next (CCase);
end loop;
-- Examine the expression of a postcondition
else pragma Assert (Nam_In (Nam, Name_Postcondition,
Name_Refined_Post));
Check_Expression (Expr);
end if;
end Check_Result_And_Post_State_In_Pragma;
--------------------------
-- Has_In_Out_Parameter --
--------------------------
function Has_In_Out_Parameter (Subp_Id : Entity_Id) return Boolean is
Formal : Entity_Id;
begin
-- Traverse the formals looking for an IN OUT parameter
Formal := First_Formal (Subp_Id);
while Present (Formal) loop
if Ekind (Formal) = E_In_Out_Parameter then
return True;
end if;
Next_Formal (Formal);
end loop;
return False;
end Has_In_Out_Parameter;
-- Local variables
Items : constant Node_Id := Contract (Subp_Id);
Subp_Decl : constant Node_Id := Unit_Declaration_Node (Subp_Id);
Case_Prag : Node_Id := Empty;
Post_Prag : Node_Id := Empty;
Prag : Node_Id;
Seen_In_Case : Boolean := False;
Seen_In_Post : Boolean := False;
Spec_Id : Entity_Id;
-- Start of processing for Check_Result_And_Post_State
begin
-- The lack of attribute 'Result or a post-state is classified as a
-- suspicious contract. Do not perform the check if the corresponding
-- swich is not set.
if not Warn_On_Suspicious_Contract then
return;
-- Nothing to do if there is no contract
elsif No (Items) then
return;
end if;
-- Retrieve the entity of the subprogram spec (if any)
if Nkind (Subp_Decl) = N_Subprogram_Body
and then Present (Corresponding_Spec (Subp_Decl))
then
Spec_Id := Corresponding_Spec (Subp_Decl);
elsif Nkind (Subp_Decl) = N_Subprogram_Body_Stub
and then Present (Corresponding_Spec_Of_Stub (Subp_Decl))
then
Spec_Id := Corresponding_Spec_Of_Stub (Subp_Decl);
else
Spec_Id := Subp_Id;
end if;
-- Examine all postconditions for attribute 'Result and a post-state
Prag := Pre_Post_Conditions (Items);
while Present (Prag) loop
if Nam_In (Pragma_Name_Unmapped (Prag),
Name_Postcondition, Name_Refined_Post)
and then not Error_Posted (Prag)
then
Post_Prag := Prag;
Check_Result_And_Post_State_In_Pragma (Prag, Seen_In_Post);
end if;
Prag := Next_Pragma (Prag);
end loop;
-- Examine the contract cases of the subprogram for attribute 'Result
-- and a post-state.
Prag := Contract_Test_Cases (Items);
while Present (Prag) loop
if Pragma_Name (Prag) = Name_Contract_Cases
and then not Error_Posted (Prag)
then
Case_Prag := Prag;
Check_Result_And_Post_State_In_Pragma (Prag, Seen_In_Case);
end if;
Prag := Next_Pragma (Prag);
end loop;
-- Do not emit any errors if the subprogram is not a function
if not Ekind_In (Spec_Id, E_Function, E_Generic_Function) then
null;
-- Regardless of whether the function has postconditions or contract
-- cases, or whether they mention attribute 'Result, an IN OUT formal
-- parameter is always treated as a result.
elsif Has_In_Out_Parameter (Spec_Id) then
null;
-- The function has both a postcondition and contract cases and they do
-- not mention attribute 'Result.
elsif Present (Case_Prag)
and then not Seen_In_Case
and then Present (Post_Prag)
and then not Seen_In_Post
then
Error_Msg_N
("neither postcondition nor contract cases mention function "
& "result?T?", Post_Prag);
-- The function has contract cases only and they do not mention
-- attribute 'Result.
elsif Present (Case_Prag) and then not Seen_In_Case then
Error_Msg_N ("contract cases do not mention result?T?", Case_Prag);
-- The function has postconditions only and they do not mention
-- attribute 'Result.
elsif Present (Post_Prag) and then not Seen_In_Post then
Error_Msg_N
("postcondition does not mention function result?T?", Post_Prag);
end if;
end Check_Result_And_Post_State;
-----------------------------
-- Check_State_Refinements --
-----------------------------
procedure Check_State_Refinements
(Context : Node_Id;
Is_Main_Unit : Boolean := False)
is
procedure Check_Package (Pack : Node_Id);
-- Verify that all abstract states of a [generic] package denoted by its
-- declarative node Pack have proper refinement. Recursively verify the
-- visible and private declarations of the [generic] package for other
-- nested packages.
procedure Check_Packages_In (Decls : List_Id);
-- Seek out [generic] package declarations within declarative list Decls
-- and verify the status of their abstract state refinement.
function SPARK_Mode_Is_Off (N : Node_Id) return Boolean;
-- Determine whether construct N is subject to pragma SPARK_Mode Off
-------------------
-- Check_Package --
-------------------
procedure Check_Package (Pack : Node_Id) is
Body_Id : constant Entity_Id := Corresponding_Body (Pack);
Spec : constant Node_Id := Specification (Pack);
States : constant Elist_Id :=
Abstract_States (Defining_Entity (Pack));
State_Elmt : Elmt_Id;
State_Id : Entity_Id;
begin
-- Do not verify proper state refinement when the package is subject
-- to pragma SPARK_Mode Off because this disables the requirement for
-- state refinement.
if SPARK_Mode_Is_Off (Pack) then
null;
-- State refinement can only occur in a completing package body. Do
-- not verify proper state refinement when the body is subject to
-- pragma SPARK_Mode Off because this disables the requirement for
-- state refinement.
elsif Present (Body_Id)
and then SPARK_Mode_Is_Off (Unit_Declaration_Node (Body_Id))
then
null;
-- Do not verify proper state refinement when the package is an
-- instance as this check was already performed in the generic.
elsif Present (Generic_Parent (Spec)) then
null;
-- Otherwise examine the contents of the package
else
if Present (States) then
State_Elmt := First_Elmt (States);
while Present (State_Elmt) loop
State_Id := Node (State_Elmt);
-- Emit an error when a non-null state lacks any form of
-- refinement.
if not Is_Null_State (State_Id)
and then not Has_Null_Refinement (State_Id)
and then not Has_Non_Null_Refinement (State_Id)
then
Error_Msg_N ("state & requires refinement", State_Id);
end if;
Next_Elmt (State_Elmt);
end loop;
end if;
Check_Packages_In (Visible_Declarations (Spec));
Check_Packages_In (Private_Declarations (Spec));
end if;
end Check_Package;
-----------------------
-- Check_Packages_In --
-----------------------
procedure Check_Packages_In (Decls : List_Id) is
Decl : Node_Id;
begin
if Present (Decls) then
Decl := First (Decls);
while Present (Decl) loop
if Nkind_In (Decl, N_Generic_Package_Declaration,
N_Package_Declaration)
then
Check_Package (Decl);
end if;
Next (Decl);
end loop;
end if;
end Check_Packages_In;
-----------------------
-- SPARK_Mode_Is_Off --
-----------------------
function SPARK_Mode_Is_Off (N : Node_Id) return Boolean is
Id : constant Entity_Id := Defining_Entity (N);
Prag : constant Node_Id := SPARK_Pragma (Id);
begin
-- Default the mode to "off" when the context is an instance and all
-- SPARK_Mode pragmas found within are to be ignored.
if Ignore_SPARK_Mode_Pragmas (Id) then
return True;
else
return
Present (Prag)
and then Get_SPARK_Mode_From_Annotation (Prag) = Off;
end if;
end SPARK_Mode_Is_Off;
-- Start of processing for Check_State_Refinements
begin
-- A block may declare a nested package
if Nkind (Context) = N_Block_Statement then
Check_Packages_In (Declarations (Context));
-- An entry, protected, subprogram, or task body may declare a nested
-- package.
elsif Nkind_In (Context, N_Entry_Body,
N_Protected_Body,
N_Subprogram_Body,
N_Task_Body)
then
-- Do not verify proper state refinement when the body is subject to
-- pragma SPARK_Mode Off because this disables the requirement for
-- state refinement.
if not SPARK_Mode_Is_Off (Context) then
Check_Packages_In (Declarations (Context));
end if;
-- A package body may declare a nested package
elsif Nkind (Context) = N_Package_Body then
Check_Package (Unit_Declaration_Node (Corresponding_Spec (Context)));
-- Do not verify proper state refinement when the body is subject to
-- pragma SPARK_Mode Off because this disables the requirement for
-- state refinement.
if not SPARK_Mode_Is_Off (Context) then
Check_Packages_In (Declarations (Context));
end if;
-- A library level [generic] package may declare a nested package
elsif Nkind_In (Context, N_Generic_Package_Declaration,
N_Package_Declaration)
and then Is_Main_Unit
then
Check_Package (Context);
end if;
end Check_State_Refinements;
------------------------------
-- Check_Unprotected_Access --
------------------------------
procedure Check_Unprotected_Access
(Context : Node_Id;
Expr : Node_Id)
is
Cont_Encl_Typ : Entity_Id;
Pref_Encl_Typ : Entity_Id;
function Enclosing_Protected_Type (Obj : Node_Id) return Entity_Id;
-- Check whether Obj is a private component of a protected object.
-- Return the protected type where the component resides, Empty
-- otherwise.
function Is_Public_Operation return Boolean;
-- Verify that the enclosing operation is callable from outside the
-- protected object, to minimize false positives.
------------------------------
-- Enclosing_Protected_Type --
------------------------------
function Enclosing_Protected_Type (Obj : Node_Id) return Entity_Id is
begin
if Is_Entity_Name (Obj) then
declare
Ent : Entity_Id := Entity (Obj);
begin
-- The object can be a renaming of a private component, use
-- the original record component.
if Is_Prival (Ent) then
Ent := Prival_Link (Ent);
end if;
if Is_Protected_Type (Scope (Ent)) then
return Scope (Ent);
end if;
end;
end if;
-- For indexed and selected components, recursively check the prefix
if Nkind_In (Obj, N_Indexed_Component, N_Selected_Component) then
return Enclosing_Protected_Type (Prefix (Obj));
-- The object does not denote a protected component
else
return Empty;
end if;
end Enclosing_Protected_Type;
-------------------------
-- Is_Public_Operation --
-------------------------
function Is_Public_Operation return Boolean is
S : Entity_Id;
E : Entity_Id;
begin
S := Current_Scope;
while Present (S) and then S /= Pref_Encl_Typ loop
if Scope (S) = Pref_Encl_Typ then
E := First_Entity (Pref_Encl_Typ);
while Present (E)
and then E /= First_Private_Entity (Pref_Encl_Typ)
loop
if E = S then
return True;
end if;
Next_Entity (E);
end loop;
end if;
S := Scope (S);
end loop;
return False;
end Is_Public_Operation;
-- Start of processing for Check_Unprotected_Access
begin
if Nkind (Expr) = N_Attribute_Reference
and then Attribute_Name (Expr) = Name_Unchecked_Access
then
Cont_Encl_Typ := Enclosing_Protected_Type (Context);
Pref_Encl_Typ := Enclosing_Protected_Type (Prefix (Expr));
-- Check whether we are trying to export a protected component to a
-- context with an equal or lower access level.
if Present (Pref_Encl_Typ)
and then No (Cont_Encl_Typ)
and then Is_Public_Operation
and then Scope_Depth (Pref_Encl_Typ) >=
Object_Access_Level (Context)
then
Error_Msg_N
("??possible unprotected access to protected data", Expr);
end if;
end if;
end Check_Unprotected_Access;
------------------------------
-- Check_Unused_Body_States --
------------------------------
procedure Check_Unused_Body_States (Body_Id : Entity_Id) is
procedure Process_Refinement_Clause
(Clause : Node_Id;
States : Elist_Id);
-- Inspect all constituents of refinement clause Clause and remove any
-- matches from body state list States.
procedure Report_Unused_Body_States (States : Elist_Id);
-- Emit errors for each abstract state or object found in list States
-------------------------------
-- Process_Refinement_Clause --
-------------------------------
procedure Process_Refinement_Clause
(Clause : Node_Id;
States : Elist_Id)
is
procedure Process_Constituent (Constit : Node_Id);
-- Remove constituent Constit from body state list States
-------------------------
-- Process_Constituent --
-------------------------
procedure Process_Constituent (Constit : Node_Id) is
Constit_Id : Entity_Id;
begin
-- Guard against illegal constituents. Only abstract states and
-- objects can appear on the right hand side of a refinement.
if Is_Entity_Name (Constit) then
Constit_Id := Entity_Of (Constit);
if Present (Constit_Id)
and then Ekind_In (Constit_Id, E_Abstract_State,
E_Constant,
E_Variable)
then
Remove (States, Constit_Id);
end if;
end if;
end Process_Constituent;
-- Local variables
Constit : Node_Id;
-- Start of processing for Process_Refinement_Clause
begin
if Nkind (Clause) = N_Component_Association then
Constit := Expression (Clause);
-- Multiple constituents appear as an aggregate
if Nkind (Constit) = N_Aggregate then
Constit := First (Expressions (Constit));
while Present (Constit) loop
Process_Constituent (Constit);
Next (Constit);
end loop;
-- Various forms of a single constituent
else
Process_Constituent (Constit);
end if;
end if;
end Process_Refinement_Clause;
-------------------------------
-- Report_Unused_Body_States --
-------------------------------
procedure Report_Unused_Body_States (States : Elist_Id) is
Posted : Boolean := False;
State_Elmt : Elmt_Id;
State_Id : Entity_Id;
begin
if Present (States) then
State_Elmt := First_Elmt (States);
while Present (State_Elmt) loop
State_Id := Node (State_Elmt);
-- Constants are part of the hidden state of a package, but the
-- compiler cannot determine whether they have variable input
-- (SPARK RM 7.1.1(2)) and cannot classify them properly as a
-- hidden state. Do not emit an error when a constant does not
-- participate in a state refinement, even though it acts as a
-- hidden state.
if Ekind (State_Id) = E_Constant then
null;
-- Generate an error message of the form:
-- body of package ... has unused hidden states
-- abstract state ... defined at ...
-- variable ... defined at ...
else
if not Posted then
Posted := True;
SPARK_Msg_N
("body of package & has unused hidden states", Body_Id);
end if;
Error_Msg_Sloc := Sloc (State_Id);
if Ekind (State_Id) = E_Abstract_State then
SPARK_Msg_NE
("\abstract state & defined #", Body_Id, State_Id);
else
SPARK_Msg_NE ("\variable & defined #", Body_Id, State_Id);
end if;
end if;
Next_Elmt (State_Elmt);
end loop;
end if;
end Report_Unused_Body_States;
-- Local variables
Prag : constant Node_Id := Get_Pragma (Body_Id, Pragma_Refined_State);
Spec_Id : constant Entity_Id := Spec_Entity (Body_Id);
Clause : Node_Id;
States : Elist_Id;
-- Start of processing for Check_Unused_Body_States
begin
-- Inspect the clauses of pragma Refined_State and determine whether all
-- visible states declared within the package body participate in the
-- refinement.
if Present (Prag) then
Clause := Expression (Get_Argument (Prag, Spec_Id));
States := Collect_Body_States (Body_Id);
-- Multiple non-null state refinements appear as an aggregate
if Nkind (Clause) = N_Aggregate then
Clause := First (Component_Associations (Clause));
while Present (Clause) loop
Process_Refinement_Clause (Clause, States);
Next (Clause);
end loop;
-- Various forms of a single state refinement
else
Process_Refinement_Clause (Clause, States);
end if;
-- Ensure that all abstract states and objects declared in the
-- package body state space are utilized as constituents.
Report_Unused_Body_States (States);
end if;
end Check_Unused_Body_States;
-----------------
-- Choice_List --
-----------------
function Choice_List (N : Node_Id) return List_Id is
begin
if Nkind (N) = N_Iterated_Component_Association then
return Discrete_Choices (N);
else
return Choices (N);
end if;
end Choice_List;
-------------------------
-- Collect_Body_States --
-------------------------
function Collect_Body_States (Body_Id : Entity_Id) return Elist_Id is
function Is_Visible_Object (Obj_Id : Entity_Id) return Boolean;
-- Determine whether object Obj_Id is a suitable visible state of a
-- package body.
procedure Collect_Visible_States
(Pack_Id : Entity_Id;
States : in out Elist_Id);
-- Gather the entities of all abstract states and objects declared in
-- the visible state space of package Pack_Id.
----------------------------
-- Collect_Visible_States --
----------------------------
procedure Collect_Visible_States
(Pack_Id : Entity_Id;
States : in out Elist_Id)
is
Item_Id : Entity_Id;
begin
-- Traverse the entity chain of the package and inspect all visible
-- items.
Item_Id := First_Entity (Pack_Id);
while Present (Item_Id) and then not In_Private_Part (Item_Id) loop
-- Do not consider internally generated items as those cannot be
-- named and participate in refinement.
if not Comes_From_Source (Item_Id) then
null;
elsif Ekind (Item_Id) = E_Abstract_State then
Append_New_Elmt (Item_Id, States);
elsif Ekind_In (Item_Id, E_Constant, E_Variable)
and then Is_Visible_Object (Item_Id)
then
Append_New_Elmt (Item_Id, States);
-- Recursively gather the visible states of a nested package
elsif Ekind (Item_Id) = E_Package then
Collect_Visible_States (Item_Id, States);
end if;
Next_Entity (Item_Id);
end loop;
end Collect_Visible_States;
-----------------------
-- Is_Visible_Object --
-----------------------
function Is_Visible_Object (Obj_Id : Entity_Id) return Boolean is
begin
-- Objects that map generic formals to their actuals are not visible
-- from outside the generic instantiation.
if Present (Corresponding_Generic_Association
(Declaration_Node (Obj_Id)))
then
return False;
-- Constituents of a single protected/task type act as components of
-- the type and are not visible from outside the type.
elsif Ekind (Obj_Id) = E_Variable
and then Present (Encapsulating_State (Obj_Id))
and then Is_Single_Concurrent_Object (Encapsulating_State (Obj_Id))
then
return False;
else
return True;
end if;
end Is_Visible_Object;
-- Local variables
Body_Decl : constant Node_Id := Unit_Declaration_Node (Body_Id);
Decl : Node_Id;
Item_Id : Entity_Id;
States : Elist_Id := No_Elist;
-- Start of processing for Collect_Body_States
begin
-- Inspect the declarations of the body looking for source objects,
-- packages and package instantiations. Note that even though this
-- processing is very similar to Collect_Visible_States, a package
-- body does not have a First/Next_Entity list.
Decl := First (Declarations (Body_Decl));
while Present (Decl) loop
-- Capture source objects as internally generated temporaries cannot
-- be named and participate in refinement.
if Nkind (Decl) = N_Object_Declaration then
Item_Id := Defining_Entity (Decl);
if Comes_From_Source (Item_Id)
and then Is_Visible_Object (Item_Id)
then
Append_New_Elmt (Item_Id, States);
end if;
-- Capture the visible abstract states and objects of a source
-- package [instantiation].
elsif Nkind (Decl) = N_Package_Declaration then
Item_Id := Defining_Entity (Decl);
if Comes_From_Source (Item_Id) then
Collect_Visible_States (Item_Id, States);
end if;
end if;
Next (Decl);
end loop;
return States;
end Collect_Body_States;
------------------------
-- Collect_Interfaces --
------------------------
procedure Collect_Interfaces
(T : Entity_Id;
Ifaces_List : out Elist_Id;
Exclude_Parents : Boolean := False;
Use_Full_View : Boolean := True)
is
procedure Collect (Typ : Entity_Id);
-- Subsidiary subprogram used to traverse the whole list
-- of directly and indirectly implemented interfaces
-------------
-- Collect --
-------------
procedure Collect (Typ : Entity_Id) is
Ancestor : Entity_Id;
Full_T : Entity_Id;
Id : Node_Id;
Iface : Entity_Id;
begin
Full_T := Typ;
-- Handle private types and subtypes
if Use_Full_View
and then Is_Private_Type (Typ)
and then Present (Full_View (Typ))
then
Full_T := Full_View (Typ);
if Ekind (Full_T) = E_Record_Subtype then
Full_T := Etype (Typ);
if Present (Full_View (Full_T)) then
Full_T := Full_View (Full_T);
end if;
end if;
end if;
-- Include the ancestor if we are generating the whole list of
-- abstract interfaces.
if Etype (Full_T) /= Typ
-- Protect the frontend against wrong sources. For example:
-- package P is
-- type A is tagged null record;
-- type B is new A with private;
-- type C is new A with private;
-- private
-- type B is new C with null record;
-- type C is new B with null record;
-- end P;
and then Etype (Full_T) /= T
then
Ancestor := Etype (Full_T);
Collect (Ancestor);
if Is_Interface (Ancestor) and then not Exclude_Parents then
Append_Unique_Elmt (Ancestor, Ifaces_List);
end if;
end if;
-- Traverse the graph of ancestor interfaces
if Is_Non_Empty_List (Abstract_Interface_List (Full_T)) then
Id := First (Abstract_Interface_List (Full_T));
while Present (Id) loop
Iface := Etype (Id);
-- Protect against wrong uses. For example:
-- type I is interface;
-- type O is tagged null record;
-- type Wrong is new I and O with null record; -- ERROR
if Is_Interface (Iface) then
if Exclude_Parents
and then Etype (T) /= T
and then Interface_Present_In_Ancestor (Etype (T), Iface)
then
null;
else
Collect (Iface);
Append_Unique_Elmt (Iface, Ifaces_List);
end if;
end if;
Next (Id);
end loop;
end if;
end Collect;
-- Start of processing for Collect_Interfaces
begin
pragma Assert (Is_Tagged_Type (T) or else Is_Concurrent_Type (T));
Ifaces_List := New_Elmt_List;
Collect (T);
end Collect_Interfaces;
----------------------------------
-- Collect_Interface_Components --
----------------------------------
procedure Collect_Interface_Components
(Tagged_Type : Entity_Id;
Components_List : out Elist_Id)
is
procedure Collect (Typ : Entity_Id);
-- Subsidiary subprogram used to climb to the parents
-------------
-- Collect --
-------------
procedure Collect (Typ : Entity_Id) is
Tag_Comp : Entity_Id;
Parent_Typ : Entity_Id;
begin
-- Handle private types
if Present (Full_View (Etype (Typ))) then
Parent_Typ := Full_View (Etype (Typ));
else
Parent_Typ := Etype (Typ);
end if;
if Parent_Typ /= Typ
-- Protect the frontend against wrong sources. For example:
-- package P is
-- type A is tagged null record;
-- type B is new A with private;
-- type C is new A with private;
-- private
-- type B is new C with null record;
-- type C is new B with null record;
-- end P;
and then Parent_Typ /= Tagged_Type
then
Collect (Parent_Typ);
end if;
-- Collect the components containing tags of secondary dispatch
-- tables.
Tag_Comp := Next_Tag_Component (First_Tag_Component (Typ));
while Present (Tag_Comp) loop
pragma Assert (Present (Related_Type (Tag_Comp)));
Append_Elmt (Tag_Comp, Components_List);
Tag_Comp := Next_Tag_Component (Tag_Comp);
end loop;
end Collect;
-- Start of processing for Collect_Interface_Components
begin
pragma Assert (Ekind (Tagged_Type) = E_Record_Type
and then Is_Tagged_Type (Tagged_Type));
Components_List := New_Elmt_List;
Collect (Tagged_Type);
end Collect_Interface_Components;
-----------------------------
-- Collect_Interfaces_Info --
-----------------------------
procedure Collect_Interfaces_Info
(T : Entity_Id;
Ifaces_List : out Elist_Id;
Components_List : out Elist_Id;
Tags_List : out Elist_Id)
is
Comps_List : Elist_Id;
Comp_Elmt : Elmt_Id;
Comp_Iface : Entity_Id;
Iface_Elmt : Elmt_Id;
Iface : Entity_Id;
function Search_Tag (Iface : Entity_Id) return Entity_Id;
-- Search for the secondary tag associated with the interface type
-- Iface that is implemented by T.
----------------
-- Search_Tag --
----------------
function Search_Tag (Iface : Entity_Id) return Entity_Id is
ADT : Elmt_Id;
begin
if not Is_CPP_Class (T) then
ADT := Next_Elmt (Next_Elmt (First_Elmt (Access_Disp_Table (T))));
else
ADT := Next_Elmt (First_Elmt (Access_Disp_Table (T)));
end if;
while Present (ADT)
and then Is_Tag (Node (ADT))
and then Related_Type (Node (ADT)) /= Iface
loop
-- Skip secondary dispatch table referencing thunks to user
-- defined primitives covered by this interface.
pragma Assert (Has_Suffix (Node (ADT), 'P'));
Next_Elmt (ADT);
-- Skip secondary dispatch tables of Ada types
if not Is_CPP_Class (T) then
-- Skip secondary dispatch table referencing thunks to
-- predefined primitives.
pragma Assert (Has_Suffix (Node (ADT), 'Y'));
Next_Elmt (ADT);
-- Skip secondary dispatch table referencing user-defined
-- primitives covered by this interface.
pragma Assert (Has_Suffix (Node (ADT), 'D'));
Next_Elmt (ADT);
-- Skip secondary dispatch table referencing predefined
-- primitives.
pragma Assert (Has_Suffix (Node (ADT), 'Z'));
Next_Elmt (ADT);
end if;
end loop;
pragma Assert (Is_Tag (Node (ADT)));
return Node (ADT);
end Search_Tag;
-- Start of processing for Collect_Interfaces_Info
begin
Collect_Interfaces (T, Ifaces_List);
Collect_Interface_Components (T, Comps_List);
-- Search for the record component and tag associated with each
-- interface type of T.
Components_List := New_Elmt_List;
Tags_List := New_Elmt_List;
Iface_Elmt := First_Elmt (Ifaces_List);
while Present (Iface_Elmt) loop
Iface := Node (Iface_Elmt);
-- Associate the primary tag component and the primary dispatch table
-- with all the interfaces that are parents of T
if Is_Ancestor (Iface, T, Use_Full_View => True) then
Append_Elmt (First_Tag_Component (T), Components_List);
Append_Elmt (Node (First_Elmt (Access_Disp_Table (T))), Tags_List);
-- Otherwise search for the tag component and secondary dispatch
-- table of Iface
else
Comp_Elmt := First_Elmt (Comps_List);
while Present (Comp_Elmt) loop
Comp_Iface := Related_Type (Node (Comp_Elmt));
if Comp_Iface = Iface
or else Is_Ancestor (Iface, Comp_Iface, Use_Full_View => True)
then
Append_Elmt (Node (Comp_Elmt), Components_List);
Append_Elmt (Search_Tag (Comp_Iface), Tags_List);
exit;
end if;
Next_Elmt (Comp_Elmt);
end loop;
pragma Assert (Present (Comp_Elmt));
end if;
Next_Elmt (Iface_Elmt);
end loop;
end Collect_Interfaces_Info;
---------------------
-- Collect_Parents --
---------------------
procedure Collect_Parents
(T : Entity_Id;
List : out Elist_Id;
Use_Full_View : Boolean := True)
is
Current_Typ : Entity_Id := T;
Parent_Typ : Entity_Id;
begin
List := New_Elmt_List;
-- No action if the if the type has no parents
if T = Etype (T) then
return;
end if;
loop
Parent_Typ := Etype (Current_Typ);
if Is_Private_Type (Parent_Typ)
and then Present (Full_View (Parent_Typ))
and then Use_Full_View
then
Parent_Typ := Full_View (Base_Type (Parent_Typ));
end if;
Append_Elmt (Parent_Typ, List);
exit when Parent_Typ = Current_Typ;
Current_Typ := Parent_Typ;
end loop;
end Collect_Parents;
----------------------------------
-- Collect_Primitive_Operations --
----------------------------------
function Collect_Primitive_Operations (T : Entity_Id) return Elist_Id is
B_Type : constant Entity_Id := Base_Type (T);
B_Decl : constant Node_Id := Original_Node (Parent (B_Type));
B_Scope : Entity_Id := Scope (B_Type);
Op_List : Elist_Id;
Formal : Entity_Id;
Is_Prim : Boolean;
Is_Type_In_Pkg : Boolean;
Formal_Derived : Boolean := False;
Id : Entity_Id;
function Match (E : Entity_Id) return Boolean;
-- True if E's base type is B_Type, or E is of an anonymous access type
-- and the base type of its designated type is B_Type.
-----------
-- Match --
-----------
function Match (E : Entity_Id) return Boolean is
Etyp : Entity_Id := Etype (E);
begin
if Ekind (Etyp) = E_Anonymous_Access_Type then
Etyp := Designated_Type (Etyp);
end if;
-- In Ada 2012 a primitive operation may have a formal of an
-- incomplete view of the parent type.
return Base_Type (Etyp) = B_Type
or else
(Ada_Version >= Ada_2012
and then Ekind (Etyp) = E_Incomplete_Type
and then Full_View (Etyp) = B_Type);
end Match;
-- Start of processing for Collect_Primitive_Operations
begin
-- For tagged types, the primitive operations are collected as they
-- are declared, and held in an explicit list which is simply returned.
if Is_Tagged_Type (B_Type) then
return Primitive_Operations (B_Type);
-- An untagged generic type that is a derived type inherits the
-- primitive operations of its parent type. Other formal types only
-- have predefined operators, which are not explicitly represented.
elsif Is_Generic_Type (B_Type) then
if Nkind (B_Decl) = N_Formal_Type_Declaration
and then Nkind (Formal_Type_Definition (B_Decl)) =
N_Formal_Derived_Type_Definition
then
Formal_Derived := True;
else
return New_Elmt_List;
end if;
end if;
Op_List := New_Elmt_List;
if B_Scope = Standard_Standard then
if B_Type = Standard_String then
Append_Elmt (Standard_Op_Concat, Op_List);
elsif B_Type = Standard_Wide_String then
Append_Elmt (Standard_Op_Concatw, Op_List);
else
null;
end if;
-- Locate the primitive subprograms of the type
else
-- The primitive operations appear after the base type, except
-- if the derivation happens within the private part of B_Scope
-- and the type is a private type, in which case both the type
-- and some primitive operations may appear before the base
-- type, and the list of candidates starts after the type.
if In_Open_Scopes (B_Scope)
and then Scope (T) = B_Scope
and then In_Private_Part (B_Scope)
then
Id := Next_Entity (T);
-- In Ada 2012, If the type has an incomplete partial view, there
-- may be primitive operations declared before the full view, so
-- we need to start scanning from the incomplete view, which is
-- earlier on the entity chain.
elsif Nkind (Parent (B_Type)) = N_Full_Type_Declaration
and then Present (Incomplete_View (Parent (B_Type)))
then
Id := Defining_Entity (Incomplete_View (Parent (B_Type)));
-- If T is a derived from a type with an incomplete view declared
-- elsewhere, that incomplete view is irrelevant, we want the
-- operations in the scope of T.
if Scope (Id) /= Scope (B_Type) then
Id := Next_Entity (B_Type);
end if;
else
Id := Next_Entity (B_Type);
end if;
-- Set flag if this is a type in a package spec
Is_Type_In_Pkg :=
Is_Package_Or_Generic_Package (B_Scope)
and then
Nkind (Parent (Declaration_Node (First_Subtype (T)))) /=
N_Package_Body;
while Present (Id) loop
-- Test whether the result type or any of the parameter types of
-- each subprogram following the type match that type when the
-- type is declared in a package spec, is a derived type, or the
-- subprogram is marked as primitive. (The Is_Primitive test is
-- needed to find primitives of nonderived types in declarative
-- parts that happen to override the predefined "=" operator.)
-- Note that generic formal subprograms are not considered to be
-- primitive operations and thus are never inherited.
if Is_Overloadable (Id)
and then (Is_Type_In_Pkg
or else Is_Derived_Type (B_Type)
or else Is_Primitive (Id))
and then Nkind (Parent (Parent (Id)))
not in N_Formal_Subprogram_Declaration
then
Is_Prim := False;
if Match (Id) then
Is_Prim := True;
else
Formal := First_Formal (Id);
while Present (Formal) loop
if Match (Formal) then
Is_Prim := True;
exit;
end if;
Next_Formal (Formal);
end loop;
end if;
-- For a formal derived type, the only primitives are the ones
-- inherited from the parent type. Operations appearing in the
-- package declaration are not primitive for it.
if Is_Prim
and then (not Formal_Derived or else Present (Alias (Id)))
then
-- In the special case of an equality operator aliased to
-- an overriding dispatching equality belonging to the same
-- type, we don't include it in the list of primitives.
-- This avoids inheriting multiple equality operators when
-- deriving from untagged private types whose full type is
-- tagged, which can otherwise cause ambiguities. Note that
-- this should only happen for this kind of untagged parent
-- type, since normally dispatching operations are inherited
-- using the type's Primitive_Operations list.
if Chars (Id) = Name_Op_Eq
and then Is_Dispatching_Operation (Id)
and then Present (Alias (Id))
and then Present (Overridden_Operation (Alias (Id)))
and then Base_Type (Etype (First_Entity (Id))) =
Base_Type (Etype (First_Entity (Alias (Id))))
then
null;
-- Include the subprogram in the list of primitives
else
Append_Elmt (Id, Op_List);
end if;
end if;
end if;
Next_Entity (Id);
-- For a type declared in System, some of its operations may
-- appear in the target-specific extension to System.
if No (Id)
and then B_Scope = RTU_Entity (System)
and then Present_System_Aux
then
B_Scope := System_Aux_Id;
Id := First_Entity (System_Aux_Id);
end if;
end loop;
end if;
return Op_List;
end Collect_Primitive_Operations;
-----------------------------------
-- Compile_Time_Constraint_Error --
-----------------------------------
function Compile_Time_Constraint_Error
(N : Node_Id;
Msg : String;
Ent : Entity_Id := Empty;
Loc : Source_Ptr := No_Location;
Warn : Boolean := False) return Node_Id
is
Msgc : String (1 .. Msg'Length + 3);
-- Copy of message, with room for possible ?? or << and ! at end
Msgl : Natural;
Wmsg : Boolean;
Eloc : Source_Ptr;
-- Start of processing for Compile_Time_Constraint_Error
begin
-- If this is a warning, convert it into an error if we are in code
-- subject to SPARK_Mode being set On, unless Warn is True to force a
-- warning. The rationale is that a compile-time constraint error should
-- lead to an error instead of a warning when SPARK_Mode is On, but in
-- a few cases we prefer to issue a warning and generate both a suitable
-- run-time error in GNAT and a suitable check message in GNATprove.
-- Those cases are those that likely correspond to deactivated SPARK
-- code, so that this kind of code can be compiled and analyzed instead
-- of being rejected.
Error_Msg_Warn := Warn or SPARK_Mode /= On;
-- A static constraint error in an instance body is not a fatal error.
-- we choose to inhibit the message altogether, because there is no
-- obvious node (for now) on which to post it. On the other hand the
-- offending node must be replaced with a constraint_error in any case.
-- No messages are generated if we already posted an error on this node
if not Error_Posted (N) then
if Loc /= No_Location then
Eloc := Loc;
else
Eloc := Sloc (N);
end if;
-- Copy message to Msgc, converting any ? in the message into <
-- instead, so that we have an error in GNATprove mode.
Msgl := Msg'Length;
for J in 1 .. Msgl loop
if Msg (J) = '?' and then (J = 1 or else Msg (J - 1) /= ''') then
Msgc (J) := '<';
else
Msgc (J) := Msg (J);
end if;
end loop;
-- Message is a warning, even in Ada 95 case
if Msg (Msg'Last) = '?' or else Msg (Msg'Last) = '<' then
Wmsg := True;
-- In Ada 83, all messages are warnings. In the private part and the
-- body of an instance, constraint_checks are only warnings. We also
-- make this a warning if the Warn parameter is set.
elsif Warn
or else (Ada_Version = Ada_83 and then Comes_From_Source (N))
or else In_Instance_Not_Visible
then
Msgl := Msgl + 1;
Msgc (Msgl) := '<';
Msgl := Msgl + 1;
Msgc (Msgl) := '<';
Wmsg := True;
-- Otherwise we have a real error message (Ada 95 static case) and we
-- make this an unconditional message. Note that in the warning case
-- we do not make the message unconditional, it seems reasonable to
-- delete messages like this (about exceptions that will be raised)
-- in dead code.
else
Wmsg := False;
Msgl := Msgl + 1;
Msgc (Msgl) := '!';
end if;
-- One more test, skip the warning if the related expression is
-- statically unevaluated, since we don't want to warn about what
-- will happen when something is evaluated if it never will be
-- evaluated.
if not Is_Statically_Unevaluated (N) then
if Present (Ent) then
Error_Msg_NEL (Msgc (1 .. Msgl), N, Ent, Eloc);
else
Error_Msg_NEL (Msgc (1 .. Msgl), N, Etype (N), Eloc);
end if;
if Wmsg then
-- Check whether the context is an Init_Proc
if Inside_Init_Proc then
declare
Conc_Typ : constant Entity_Id :=
Corresponding_Concurrent_Type
(Entity (Parameter_Type (First
(Parameter_Specifications
(Parent (Current_Scope))))));
begin
-- Don't complain if the corresponding concurrent type
-- doesn't come from source (i.e. a single task/protected
-- object).
if Present (Conc_Typ)
and then not Comes_From_Source (Conc_Typ)
then
Error_Msg_NEL
("\& [<<", N, Standard_Constraint_Error, Eloc);
else
if GNATprove_Mode then
Error_Msg_NEL
("\& would have been raised for objects of this "
& "type", N, Standard_Constraint_Error, Eloc);
else
Error_Msg_NEL
("\& will be raised for objects of this type??",
N, Standard_Constraint_Error, Eloc);
end if;
end if;
end;
else
Error_Msg_NEL ("\& [<<", N, Standard_Constraint_Error, Eloc);
end if;
else
Error_Msg ("\static expression fails Constraint_Check", Eloc);
Set_Error_Posted (N);
end if;
end if;
end if;
return N;
end Compile_Time_Constraint_Error;
-----------------------
-- Conditional_Delay --
-----------------------
procedure Conditional_Delay (New_Ent, Old_Ent : Entity_Id) is
begin
if Has_Delayed_Freeze (Old_Ent) and then not Is_Frozen (Old_Ent) then
Set_Has_Delayed_Freeze (New_Ent);
end if;
end Conditional_Delay;
-------------------------
-- Copy_Component_List --
-------------------------
function Copy_Component_List
(R_Typ : Entity_Id;
Loc : Source_Ptr) return List_Id
is
Comp : Node_Id;
Comps : constant List_Id := New_List;
begin
Comp := First_Component (Underlying_Type (R_Typ));
while Present (Comp) loop
if Comes_From_Source (Comp) then
declare
Comp_Decl : constant Node_Id := Declaration_Node (Comp);
begin
Append_To (Comps,
Make_Component_Declaration (Loc,
Defining_Identifier =>
Make_Defining_Identifier (Loc, Chars (Comp)),
Component_Definition =>
New_Copy_Tree
(Component_Definition (Comp_Decl), New_Sloc => Loc)));
end;
end if;
Next_Component (Comp);
end loop;
return Comps;
end Copy_Component_List;
-------------------------
-- Copy_Parameter_List --
-------------------------
function Copy_Parameter_List (Subp_Id : Entity_Id) return List_Id is
Loc : constant Source_Ptr := Sloc (Subp_Id);
Plist : List_Id;
Formal : Entity_Id;
begin
if No (First_Formal (Subp_Id)) then
return No_List;
else
Plist := New_List;
Formal := First_Formal (Subp_Id);
while Present (Formal) loop
Append_To (Plist,
Make_Parameter_Specification (Loc,
Defining_Identifier =>
Make_Defining_Identifier (Sloc (Formal), Chars (Formal)),
In_Present => In_Present (Parent (Formal)),
Out_Present => Out_Present (Parent (Formal)),
Parameter_Type =>
New_Occurrence_Of (Etype (Formal), Loc),
Expression =>
New_Copy_Tree (Expression (Parent (Formal)))));
Next_Formal (Formal);
end loop;
end if;
return Plist;
end Copy_Parameter_List;
----------------------------
-- Copy_SPARK_Mode_Aspect --
----------------------------
procedure Copy_SPARK_Mode_Aspect (From : Node_Id; To : Node_Id) is
pragma Assert (not Has_Aspects (To));
Asp : Node_Id;
begin
if Has_Aspects (From) then
Asp := Find_Aspect (Defining_Entity (From), Aspect_SPARK_Mode);
if Present (Asp) then
Set_Aspect_Specifications (To, New_List (New_Copy_Tree (Asp)));
Set_Has_Aspects (To, True);
end if;
end if;
end Copy_SPARK_Mode_Aspect;
--------------------------
-- Copy_Subprogram_Spec --
--------------------------
function Copy_Subprogram_Spec (Spec : Node_Id) return Node_Id is
Def_Id : Node_Id;
Formal_Spec : Node_Id;
Result : Node_Id;
begin
-- The structure of the original tree must be replicated without any
-- alterations. Use New_Copy_Tree for this purpose.
Result := New_Copy_Tree (Spec);
-- However, the spec of a null procedure carries the corresponding null
-- statement of the body (created by the parser), and this cannot be
-- shared with the new subprogram spec.
if Nkind (Result) = N_Procedure_Specification then
Set_Null_Statement (Result, Empty);
end if;
-- Create a new entity for the defining unit name
Def_Id := Defining_Unit_Name (Result);
Set_Defining_Unit_Name (Result,
Make_Defining_Identifier (Sloc (Def_Id), Chars (Def_Id)));
-- Create new entities for the formal parameters
if Present (Parameter_Specifications (Result)) then
Formal_Spec := First (Parameter_Specifications (Result));
while Present (Formal_Spec) loop
Def_Id := Defining_Identifier (Formal_Spec);
Set_Defining_Identifier (Formal_Spec,
Make_Defining_Identifier (Sloc (Def_Id), Chars (Def_Id)));
Next (Formal_Spec);
end loop;
end if;
return Result;
end Copy_Subprogram_Spec;
--------------------------------
-- Corresponding_Generic_Type --
--------------------------------
function Corresponding_Generic_Type (T : Entity_Id) return Entity_Id is
Inst : Entity_Id;
Gen : Entity_Id;
Typ : Entity_Id;
begin
if not Is_Generic_Actual_Type (T) then
return Any_Type;
-- If the actual is the actual of an enclosing instance, resolution
-- was correct in the generic.
elsif Nkind (Parent (T)) = N_Subtype_Declaration
and then Is_Entity_Name (Subtype_Indication (Parent (T)))
and then
Is_Generic_Actual_Type (Entity (Subtype_Indication (Parent (T))))
then
return Any_Type;
else
Inst := Scope (T);
if Is_Wrapper_Package (Inst) then
Inst := Related_Instance (Inst);
end if;
Gen :=
Generic_Parent
(Specification (Unit_Declaration_Node (Inst)));
-- Generic actual has the same name as the corresponding formal
Typ := First_Entity (Gen);
while Present (Typ) loop
if Chars (Typ) = Chars (T) then
return Typ;
end if;
Next_Entity (Typ);
end loop;
return Any_Type;
end if;
end Corresponding_Generic_Type;
--------------------
-- Current_Entity --
--------------------
-- The currently visible definition for a given identifier is the
-- one most chained at the start of the visibility chain, i.e. the
-- one that is referenced by the Node_Id value of the name of the
-- given identifier.
function Current_Entity (N : Node_Id) return Entity_Id is
begin
return Get_Name_Entity_Id (Chars (N));
end Current_Entity;
-----------------------------
-- Current_Entity_In_Scope --
-----------------------------
function Current_Entity_In_Scope (N : Node_Id) return Entity_Id is
E : Entity_Id;
CS : constant Entity_Id := Current_Scope;
Transient_Case : constant Boolean := Scope_Is_Transient;
begin
E := Get_Name_Entity_Id (Chars (N));
while Present (E)
and then Scope (E) /= CS
and then (not Transient_Case or else Scope (E) /= Scope (CS))
loop
E := Homonym (E);
end loop;
return E;
end Current_Entity_In_Scope;
-------------------
-- Current_Scope --
-------------------
function Current_Scope return Entity_Id is
begin
if Scope_Stack.Last = -1 then
return Standard_Standard;
else
declare
C : constant Entity_Id :=
Scope_Stack.Table (Scope_Stack.Last).Entity;
begin
if Present (C) then
return C;
else
return Standard_Standard;
end if;
end;
end if;
end Current_Scope;
----------------------------
-- Current_Scope_No_Loops --
----------------------------
function Current_Scope_No_Loops return Entity_Id is
S : Entity_Id;
begin
-- Examine the scope stack starting from the current scope and skip any
-- internally generated loops.
S := Current_Scope;
while Present (S) and then S /= Standard_Standard loop
if Ekind (S) = E_Loop and then not Comes_From_Source (S) then
S := Scope (S);
else
exit;
end if;
end loop;
return S;
end Current_Scope_No_Loops;
------------------------
-- Current_Subprogram --
------------------------
function Current_Subprogram return Entity_Id is
Scop : constant Entity_Id := Current_Scope;
begin
if Is_Subprogram_Or_Generic_Subprogram (Scop) then
return Scop;
else
return Enclosing_Subprogram (Scop);
end if;
end Current_Subprogram;
----------------------------------
-- Deepest_Type_Access_Level --
----------------------------------
function Deepest_Type_Access_Level (Typ : Entity_Id) return Uint is
begin
if Ekind (Typ) = E_Anonymous_Access_Type
and then not Is_Local_Anonymous_Access (Typ)
and then Nkind (Associated_Node_For_Itype (Typ)) = N_Object_Declaration
then
-- Typ is the type of an Ada 2012 stand-alone object of an anonymous
-- access type.
return
Scope_Depth (Enclosing_Dynamic_Scope
(Defining_Identifier
(Associated_Node_For_Itype (Typ))));
-- For generic formal type, return Int'Last (infinite).
-- See comment preceding Is_Generic_Type call in Type_Access_Level.
elsif Is_Generic_Type (Root_Type (Typ)) then
return UI_From_Int (Int'Last);
else
return Type_Access_Level (Typ);
end if;
end Deepest_Type_Access_Level;
---------------------
-- Defining_Entity --
---------------------
function Defining_Entity
(N : Node_Id;
Empty_On_Errors : Boolean := False;
Concurrent_Subunit : Boolean := False) return Entity_Id
is
begin
case Nkind (N) is
when N_Abstract_Subprogram_Declaration
| N_Expression_Function
| N_Formal_Subprogram_Declaration
| N_Generic_Package_Declaration
| N_Generic_Subprogram_Declaration
| N_Package_Declaration
| N_Subprogram_Body
| N_Subprogram_Body_Stub
| N_Subprogram_Declaration
| N_Subprogram_Renaming_Declaration
=>
return Defining_Entity (Specification (N));
when N_Component_Declaration
| N_Defining_Program_Unit_Name
| N_Discriminant_Specification
| N_Entry_Body
| N_Entry_Declaration
| N_Entry_Index_Specification
| N_Exception_Declaration
| N_Exception_Renaming_Declaration
| N_Formal_Object_Declaration
| N_Formal_Package_Declaration
| N_Formal_Type_Declaration
| N_Full_Type_Declaration
| N_Implicit_Label_Declaration
| N_Incomplete_Type_Declaration
| N_Iterator_Specification
| N_Loop_Parameter_Specification
| N_Number_Declaration
| N_Object_Declaration
| N_Object_Renaming_Declaration
| N_Package_Body_Stub
| N_Parameter_Specification
| N_Private_Extension_Declaration
| N_Private_Type_Declaration
| N_Protected_Body
| N_Protected_Body_Stub
| N_Protected_Type_Declaration
| N_Single_Protected_Declaration
| N_Single_Task_Declaration
| N_Subtype_Declaration
| N_Task_Body
| N_Task_Body_Stub
| N_Task_Type_Declaration
=>
return Defining_Identifier (N);
when N_Subunit =>
declare
Bod : constant Node_Id := Proper_Body (N);
Orig_Bod : constant Node_Id := Original_Node (Bod);
begin
-- Retrieve the entity of the original protected or task body
-- if requested by the caller.
if Concurrent_Subunit
and then Nkind (Bod) = N_Null_Statement
and then Nkind_In (Orig_Bod, N_Protected_Body, N_Task_Body)
then
return Defining_Entity (Orig_Bod);
else
return Defining_Entity (Bod);
end if;
end;
when N_Function_Instantiation
| N_Function_Specification
| N_Generic_Function_Renaming_Declaration
| N_Generic_Package_Renaming_Declaration
| N_Generic_Procedure_Renaming_Declaration
| N_Package_Body
| N_Package_Instantiation
| N_Package_Renaming_Declaration
| N_Package_Specification
| N_Procedure_Instantiation
| N_Procedure_Specification
=>
declare
Nam : constant Node_Id := Defining_Unit_Name (N);
Err : Entity_Id := Empty;
begin
if Nkind (Nam) in N_Entity then
return Nam;
-- For Error, make up a name and attach to declaration so we
-- can continue semantic analysis.
elsif Nam = Error then
if Empty_On_Errors then
return Empty;
else
Err := Make_Temporary (Sloc (N), 'T');
Set_Defining_Unit_Name (N, Err);
return Err;
end if;
-- If not an entity, get defining identifier
else
return Defining_Identifier (Nam);
end if;
end;
when N_Block_Statement
| N_Loop_Statement
=>
return Entity (Identifier (N));
when others =>
if Empty_On_Errors then
return Empty;
else
raise Program_Error;
end if;
end case;
end Defining_Entity;
--------------------------
-- Denotes_Discriminant --
--------------------------
function Denotes_Discriminant
(N : Node_Id;
Check_Concurrent : Boolean := False) return Boolean
is
E : Entity_Id;
begin
if not Is_Entity_Name (N) or else No (Entity (N)) then
return False;
else
E := Entity (N);
end if;
-- If we are checking for a protected type, the discriminant may have
-- been rewritten as the corresponding discriminal of the original type
-- or of the corresponding concurrent record, depending on whether we
-- are in the spec or body of the protected type.
return Ekind (E) = E_Discriminant
or else
(Check_Concurrent
and then Ekind (E) = E_In_Parameter
and then Present (Discriminal_Link (E))
and then
(Is_Concurrent_Type (Scope (Discriminal_Link (E)))
or else
Is_Concurrent_Record_Type (Scope (Discriminal_Link (E)))));
end Denotes_Discriminant;
-------------------------
-- Denotes_Same_Object --
-------------------------
function Denotes_Same_Object (A1, A2 : Node_Id) return Boolean is
Obj1 : Node_Id := A1;
Obj2 : Node_Id := A2;
function Has_Prefix (N : Node_Id) return Boolean;
-- Return True if N has attribute Prefix
function Is_Renaming (N : Node_Id) return Boolean;
-- Return true if N names a renaming entity
function Is_Valid_Renaming (N : Node_Id) return Boolean;
-- For renamings, return False if the prefix of any dereference within
-- the renamed object_name is a variable, or any expression within the
-- renamed object_name contains references to variables or calls on
-- nonstatic functions; otherwise return True (RM 6.4.1(6.10/3))
----------------
-- Has_Prefix --
----------------
function Has_Prefix (N : Node_Id) return Boolean is
begin
return
Nkind_In (N,
N_Attribute_Reference,
N_Expanded_Name,
N_Explicit_Dereference,
N_Indexed_Component,
N_Reference,
N_Selected_Component,
N_Slice);
end Has_Prefix;
-----------------
-- Is_Renaming --
-----------------
function Is_Renaming (N : Node_Id) return Boolean is
begin
return Is_Entity_Name (N)
and then Present (Renamed_Entity (Entity (N)));
end Is_Renaming;
-----------------------
-- Is_Valid_Renaming --
-----------------------
function Is_Valid_Renaming (N : Node_Id) return Boolean is
function Check_Renaming (N : Node_Id) return Boolean;
-- Recursive function used to traverse all the prefixes of N
function Check_Renaming (N : Node_Id) return Boolean is
begin
if Is_Renaming (N)
and then not Check_Renaming (Renamed_Entity (Entity (N)))
then
return False;
end if;
if Nkind (N) = N_Indexed_Component then
declare
Indx : Node_Id;
begin
Indx := First (Expressions (N));
while Present (Indx) loop
if not Is_OK_Static_Expression (Indx) then
return False;
end if;
Next_Index (Indx);
end loop;
end;
end if;
if Has_Prefix (N) then
declare
P : constant Node_Id := Prefix (N);
begin
if Nkind (N) = N_Explicit_Dereference
and then Is_Variable (P)
then
return False;
elsif Is_Entity_Name (P)
and then Ekind (Entity (P)) = E_Function
then
return False;
elsif Nkind (P) = N_Function_Call then
return False;
end if;
-- Recursion to continue traversing the prefix of the
-- renaming expression
return Check_Renaming (P);
end;
end if;
return True;
end Check_Renaming;
-- Start of processing for Is_Valid_Renaming
begin
return Check_Renaming (N);
end Is_Valid_Renaming;
-- Start of processing for Denotes_Same_Object
begin
-- Both names statically denote the same stand-alone object or parameter
-- (RM 6.4.1(6.5/3))
if Is_Entity_Name (Obj1)
and then Is_Entity_Name (Obj2)
and then Entity (Obj1) = Entity (Obj2)
then
return True;
end if;
-- For renamings, the prefix of any dereference within the renamed
-- object_name is not a variable, and any expression within the
-- renamed object_name contains no references to variables nor
-- calls on nonstatic functions (RM 6.4.1(6.10/3)).
if Is_Renaming (Obj1) then
if Is_Valid_Renaming (Obj1) then
Obj1 := Renamed_Entity (Entity (Obj1));
else
return False;
end if;
end if;
if Is_Renaming (Obj2) then
if Is_Valid_Renaming (Obj2) then
Obj2 := Renamed_Entity (Entity (Obj2));
else
return False;
end if;
end if;
-- No match if not same node kind (such cases are handled by
-- Denotes_Same_Prefix)
if Nkind (Obj1) /= Nkind (Obj2) then
return False;
-- After handling valid renamings, one of the two names statically
-- denoted a renaming declaration whose renamed object_name is known
-- to denote the same object as the other (RM 6.4.1(6.10/3))
elsif Is_Entity_Name (Obj1) then
if Is_Entity_Name (Obj2) then
return Entity (Obj1) = Entity (Obj2);
else
return False;
end if;
-- Both names are selected_components, their prefixes are known to
-- denote the same object, and their selector_names denote the same
-- component (RM 6.4.1(6.6/3)).
elsif Nkind (Obj1) = N_Selected_Component then
return Denotes_Same_Object (Prefix (Obj1), Prefix (Obj2))
and then
Entity (Selector_Name (Obj1)) = Entity (Selector_Name (Obj2));
-- Both names are dereferences and the dereferenced names are known to
-- denote the same object (RM 6.4.1(6.7/3))
elsif Nkind (Obj1) = N_Explicit_Dereference then
return Denotes_Same_Object (Prefix (Obj1), Prefix (Obj2));
-- Both names are indexed_components, their prefixes are known to denote
-- the same object, and each of the pairs of corresponding index values
-- are either both static expressions with the same static value or both
-- names that are known to denote the same object (RM 6.4.1(6.8/3))
elsif Nkind (Obj1) = N_Indexed_Component then
if not Denotes_Same_Object (Prefix (Obj1), Prefix (Obj2)) then
return False;
else
declare
Indx1 : Node_Id;
Indx2 : Node_Id;
begin
Indx1 := First (Expressions (Obj1));
Indx2 := First (Expressions (Obj2));
while Present (Indx1) loop
-- Indexes must denote the same static value or same object
if Is_OK_Static_Expression (Indx1) then
if not Is_OK_Static_Expression (Indx2) then
return False;
elsif Expr_Value (Indx1) /= Expr_Value (Indx2) then
return False;
end if;
elsif not Denotes_Same_Object (Indx1, Indx2) then
return False;
end if;
Next (Indx1);
Next (Indx2);
end loop;
return True;
end;
end if;
-- Both names are slices, their prefixes are known to denote the same
-- object, and the two slices have statically matching index constraints
-- (RM 6.4.1(6.9/3))
elsif Nkind (Obj1) = N_Slice
and then Denotes_Same_Object (Prefix (Obj1), Prefix (Obj2))
then
declare
Lo1, Lo2, Hi1, Hi2 : Node_Id;
begin
Get_Index_Bounds (Etype (Obj1), Lo1, Hi1);
Get_Index_Bounds (Etype (Obj2), Lo2, Hi2);
-- Check whether bounds are statically identical. There is no
-- attempt to detect partial overlap of slices.
return Denotes_Same_Object (Lo1, Lo2)
and then
Denotes_Same_Object (Hi1, Hi2);
end;
-- In the recursion, literals appear as indexes
elsif Nkind (Obj1) = N_Integer_Literal
and then
Nkind (Obj2) = N_Integer_Literal
then
return Intval (Obj1) = Intval (Obj2);
else
return False;
end if;
end Denotes_Same_Object;
-------------------------
-- Denotes_Same_Prefix --
-------------------------
function Denotes_Same_Prefix (A1, A2 : Node_Id) return Boolean is
begin
if Is_Entity_Name (A1) then
if Nkind_In (A2, N_Selected_Component, N_Indexed_Component)
and then not Is_Access_Type (Etype (A1))
then
return Denotes_Same_Object (A1, Prefix (A2))
or else Denotes_Same_Prefix (A1, Prefix (A2));
else
return False;
end if;
elsif Is_Entity_Name (A2) then
return Denotes_Same_Prefix (A1 => A2, A2 => A1);
elsif Nkind_In (A1, N_Selected_Component, N_Indexed_Component, N_Slice)
and then
Nkind_In (A2, N_Selected_Component, N_Indexed_Component, N_Slice)
then
declare
Root1, Root2 : Node_Id;
Depth1, Depth2 : Nat := 0;
begin
Root1 := Prefix (A1);
while not Is_Entity_Name (Root1) loop
if not Nkind_In
(Root1, N_Selected_Component, N_Indexed_Component)
then
return False;
else
Root1 := Prefix (Root1);
end if;
Depth1 := Depth1 + 1;
end loop;
Root2 := Prefix (A2);
while not Is_Entity_Name (Root2) loop
if not Nkind_In (Root2, N_Selected_Component,
N_Indexed_Component)
then
return False;
else
Root2 := Prefix (Root2);
end if;
Depth2 := Depth2 + 1;
end loop;
-- If both have the same depth and they do not denote the same
-- object, they are disjoint and no warning is needed.
if Depth1 = Depth2 then
return False;
elsif Depth1 > Depth2 then
Root1 := Prefix (A1);
for J in 1 .. Depth1 - Depth2 - 1 loop
Root1 := Prefix (Root1);
end loop;
return Denotes_Same_Object (Root1, A2);
else
Root2 := Prefix (A2);
for J in 1 .. Depth2 - Depth1 - 1 loop
Root2 := Prefix (Root2);
end loop;
return Denotes_Same_Object (A1, Root2);
end if;
end;
else
return False;
end if;
end Denotes_Same_Prefix;
----------------------
-- Denotes_Variable --
----------------------
function Denotes_Variable (N : Node_Id) return Boolean is
begin
return Is_Variable (N) and then Paren_Count (N) = 0;
end Denotes_Variable;
-----------------------------
-- Depends_On_Discriminant --
-----------------------------
function Depends_On_Discriminant (N : Node_Id) return Boolean is
L : Node_Id;
H : Node_Id;
begin
Get_Index_Bounds (N, L, H);
return Denotes_Discriminant (L) or else Denotes_Discriminant (H);
end Depends_On_Discriminant;
-------------------------
-- Designate_Same_Unit --
-------------------------
function Designate_Same_Unit
(Name1 : Node_Id;
Name2 : Node_Id) return Boolean
is
K1 : constant Node_Kind := Nkind (Name1);
K2 : constant Node_Kind := Nkind (Name2);
function Prefix_Node (N : Node_Id) return Node_Id;
-- Returns the parent unit name node of a defining program unit name
-- or the prefix if N is a selected component or an expanded name.
function Select_Node (N : Node_Id) return Node_Id;
-- Returns the defining identifier node of a defining program unit
-- name or the selector node if N is a selected component or an
-- expanded name.
-----------------
-- Prefix_Node --
-----------------
function Prefix_Node (N : Node_Id) return Node_Id is
begin
if Nkind (N) = N_Defining_Program_Unit_Name then
return Name (N);
else
return Prefix (N);
end if;
end Prefix_Node;
-----------------
-- Select_Node --
-----------------
function Select_Node (N : Node_Id) return Node_Id is
begin
if Nkind (N) = N_Defining_Program_Unit_Name then
return Defining_Identifier (N);
else
return Selector_Name (N);
end if;
end Select_Node;
-- Start of processing for Designate_Same_Unit
begin
if Nkind_In (K1, N_Identifier, N_Defining_Identifier)
and then
Nkind_In (K2, N_Identifier, N_Defining_Identifier)
then
return Chars (Name1) = Chars (Name2);
elsif Nkind_In (K1, N_Expanded_Name,
N_Selected_Component,
N_Defining_Program_Unit_Name)
and then
Nkind_In (K2, N_Expanded_Name,
N_Selected_Component,
N_Defining_Program_Unit_Name)
then
return
(Chars (Select_Node (Name1)) = Chars (Select_Node (Name2)))
and then
Designate_Same_Unit (Prefix_Node (Name1), Prefix_Node (Name2));
else
return False;
end if;
end Designate_Same_Unit;
---------------------------------------------
-- Diagnose_Iterated_Component_Association --
---------------------------------------------
procedure Diagnose_Iterated_Component_Association (N : Node_Id) is
Def_Id : constant Entity_Id := Defining_Identifier (N);
Aggr : Node_Id;
begin
-- Determine whether the iterated component association appears within
-- an aggregate. If this is the case, raise Program_Error because the
-- iterated component association cannot be left in the tree as is and
-- must always be processed by the related aggregate.
Aggr := N;
while Present (Aggr) loop
if Nkind (Aggr) = N_Aggregate then
raise Program_Error;
-- Prevent the search from going too far
elsif Is_Body_Or_Package_Declaration (Aggr) then
exit;
end if;
Aggr := Parent (Aggr);
end loop;
-- At this point it is known that the iterated component association is
-- not within an aggregate. This is really a quantified expression with
-- a missing "all" or "some" quantifier.
Error_Msg_N ("missing quantifier", Def_Id);
-- Rewrite the iterated component association as True to prevent any
-- cascaded errors.
Rewrite (N, New_Occurrence_Of (Standard_True, Sloc (N)));
Analyze (N);
end Diagnose_Iterated_Component_Association;
---------------------------------
-- Dynamic_Accessibility_Level --
---------------------------------
function Dynamic_Accessibility_Level (Expr : Node_Id) return Node_Id is
Loc : constant Source_Ptr := Sloc (Expr);
function Make_Level_Literal (Level : Uint) return Node_Id;
-- Construct an integer literal representing an accessibility level
-- with its type set to Natural.
------------------------
-- Make_Level_Literal --
------------------------
function Make_Level_Literal (Level : Uint) return Node_Id is
Result : constant Node_Id := Make_Integer_Literal (Loc, Level);
begin
Set_Etype (Result, Standard_Natural);
return Result;
end Make_Level_Literal;
-- Local variables
E : Entity_Id;
-- Start of processing for Dynamic_Accessibility_Level
begin
if Is_Entity_Name (Expr) then
E := Entity (Expr);
if Present (Renamed_Object (E)) then
return Dynamic_Accessibility_Level (Renamed_Object (E));
end if;
if Is_Formal (E) or else Ekind_In (E, E_Variable, E_Constant) then
if Present (Extra_Accessibility (E)) then
return New_Occurrence_Of (Extra_Accessibility (E), Loc);
end if;
end if;
end if;
-- Unimplemented: Ptr.all'Access, where Ptr has Extra_Accessibility ???
case Nkind (Expr) is
-- For access discriminant, the level of the enclosing object
when N_Selected_Component =>
if Ekind (Entity (Selector_Name (Expr))) = E_Discriminant
and then Ekind (Etype (Entity (Selector_Name (Expr)))) =
E_Anonymous_Access_Type
then
return Make_Level_Literal (Object_Access_Level (Expr));
end if;
when N_Attribute_Reference =>
case Get_Attribute_Id (Attribute_Name (Expr)) is
-- For X'Access, the level of the prefix X
when Attribute_Access =>
return Make_Level_Literal
(Object_Access_Level (Prefix (Expr)));
-- Treat the unchecked attributes as library-level
when Attribute_Unchecked_Access
| Attribute_Unrestricted_Access
=>
return Make_Level_Literal (Scope_Depth (Standard_Standard));
-- No other access-valued attributes
when others =>
raise Program_Error;
end case;
when N_Allocator =>
-- Unimplemented: depends on context. As an actual parameter where
-- formal type is anonymous, use
-- Scope_Depth (Current_Scope) + 1.
-- For other cases, see 3.10.2(14/3) and following. ???
null;
when N_Type_Conversion =>
if not Is_Local_Anonymous_Access (Etype (Expr)) then
-- Handle type conversions introduced for a rename of an
-- Ada 2012 stand-alone object of an anonymous access type.
return Dynamic_Accessibility_Level (Expression (Expr));
end if;
when others =>
null;
end case;
return Make_Level_Literal (Type_Access_Level (Etype (Expr)));
end Dynamic_Accessibility_Level;
------------------------
-- Discriminated_Size --
------------------------
function Discriminated_Size (Comp : Entity_Id) return Boolean is
function Non_Static_Bound (Bound : Node_Id) return Boolean;
-- Check whether the bound of an index is non-static and does denote
-- a discriminant, in which case any object of the type (protected or
-- otherwise) will have a non-static size.
----------------------
-- Non_Static_Bound --
----------------------
function Non_Static_Bound (Bound : Node_Id) return Boolean is
begin
if Is_OK_Static_Expression (Bound) then
return False;
-- If the bound is given by a discriminant it is non-static
-- (A static constraint replaces the reference with the value).
-- In an protected object the discriminant has been replaced by
-- the corresponding discriminal within the protected operation.
elsif Is_Entity_Name (Bound)
and then
(Ekind (Entity (Bound)) = E_Discriminant
or else Present (Discriminal_Link (Entity (Bound))))
then
return False;
else
return True;
end if;
end Non_Static_Bound;
-- Local variables
Typ : constant Entity_Id := Etype (Comp);
Index : Node_Id;
-- Start of processing for Discriminated_Size
begin
if not Is_Array_Type (Typ) then
return False;
end if;
if Ekind (Typ) = E_Array_Subtype then
Index := First_Index (Typ);
while Present (Index) loop
if Non_Static_Bound (Low_Bound (Index))
or else Non_Static_Bound (High_Bound (Index))
then
return False;
end if;
Next_Index (Index);
end loop;
return True;
end if;
return False;
end Discriminated_Size;
-----------------------------------
-- Effective_Extra_Accessibility --
-----------------------------------
function Effective_Extra_Accessibility (Id : Entity_Id) return Entity_Id is
begin
if Present (Renamed_Object (Id))
and then Is_Entity_Name (Renamed_Object (Id))
then
return Effective_Extra_Accessibility (Entity (Renamed_Object (Id)));
else
return Extra_Accessibility (Id);
end if;
end Effective_Extra_Accessibility;
-----------------------------
-- Effective_Reads_Enabled --
-----------------------------
function Effective_Reads_Enabled (Id : Entity_Id) return Boolean is
begin
return Has_Enabled_Property (Id, Name_Effective_Reads);
end Effective_Reads_Enabled;
------------------------------
-- Effective_Writes_Enabled --
------------------------------
function Effective_Writes_Enabled (Id : Entity_Id) return Boolean is
begin
return Has_Enabled_Property (Id, Name_Effective_Writes);
end Effective_Writes_Enabled;
------------------------------
-- Enclosing_Comp_Unit_Node --
------------------------------
function Enclosing_Comp_Unit_Node (N : Node_Id) return Node_Id is
Current_Node : Node_Id;
begin
Current_Node := N;
while Present (Current_Node)
and then Nkind (Current_Node) /= N_Compilation_Unit
loop
Current_Node := Parent (Current_Node);
end loop;
if Nkind (Current_Node) /= N_Compilation_Unit then
return Empty;
else
return Current_Node;
end if;
end Enclosing_Comp_Unit_Node;
--------------------------
-- Enclosing_CPP_Parent --
--------------------------
function Enclosing_CPP_Parent (Typ : Entity_Id) return Entity_Id is
Parent_Typ : Entity_Id := Typ;
begin
while not Is_CPP_Class (Parent_Typ)
and then Etype (Parent_Typ) /= Parent_Typ
loop
Parent_Typ := Etype (Parent_Typ);
if Is_Private_Type (Parent_Typ) then
Parent_Typ := Full_View (Base_Type (Parent_Typ));
end if;
end loop;
pragma Assert (Is_CPP_Class (Parent_Typ));
return Parent_Typ;
end Enclosing_CPP_Parent;
---------------------------
-- Enclosing_Declaration --
---------------------------
function Enclosing_Declaration (N : Node_Id) return Node_Id is
Decl : Node_Id := N;
begin
while Present (Decl)
and then not (Nkind (Decl) in N_Declaration
or else
Nkind (Decl) in N_Later_Decl_Item)
loop
Decl := Parent (Decl);
end loop;
return Decl;
end Enclosing_Declaration;
----------------------------
-- Enclosing_Generic_Body --
----------------------------
function Enclosing_Generic_Body
(N : Node_Id) return Node_Id
is
P : Node_Id;
Decl : Node_Id;
Spec : Node_Id;
begin
P := Parent (N);
while Present (P) loop
if Nkind (P) = N_Package_Body
or else Nkind (P) = N_Subprogram_Body
then
Spec := Corresponding_Spec (P);
if Present (Spec) then
Decl := Unit_Declaration_Node (Spec);
if Nkind (Decl) = N_Generic_Package_Declaration
or else Nkind (Decl) = N_Generic_Subprogram_Declaration
then
return P;
end if;
end if;
end if;
P := Parent (P);
end loop;
return Empty;
end Enclosing_Generic_Body;
----------------------------
-- Enclosing_Generic_Unit --
----------------------------
function Enclosing_Generic_Unit
(N : Node_Id) return Node_Id
is
P : Node_Id;
Decl : Node_Id;
Spec : Node_Id;
begin
P := Parent (N);
while Present (P) loop
if Nkind (P) = N_Generic_Package_Declaration
or else Nkind (P) = N_Generic_Subprogram_Declaration
then
return P;
elsif Nkind (P) = N_Package_Body
or else Nkind (P) = N_Subprogram_Body
then
Spec := Corresponding_Spec (P);
if Present (Spec) then
Decl := Unit_Declaration_Node (Spec);
if Nkind (Decl) = N_Generic_Package_Declaration
or else Nkind (Decl) = N_Generic_Subprogram_Declaration
then
return Decl;
end if;
end if;
end if;
P := Parent (P);
end loop;
return Empty;
end Enclosing_Generic_Unit;
-------------------------------
-- Enclosing_Lib_Unit_Entity --
-------------------------------
function Enclosing_Lib_Unit_Entity
(E : Entity_Id := Current_Scope) return Entity_Id
is
Unit_Entity : Entity_Id;
begin
-- Look for enclosing library unit entity by following scope links.
-- Equivalent to, but faster than indexing through the scope stack.
Unit_Entity := E;
while (Present (Scope (Unit_Entity))
and then Scope (Unit_Entity) /= Standard_Standard)
and not Is_Child_Unit (Unit_Entity)
loop
Unit_Entity := Scope (Unit_Entity);
end loop;
return Unit_Entity;
end Enclosing_Lib_Unit_Entity;
-----------------------------
-- Enclosing_Lib_Unit_Node --
-----------------------------
function Enclosing_Lib_Unit_Node (N : Node_Id) return Node_Id is
Encl_Unit : Node_Id;
begin
Encl_Unit := Enclosing_Comp_Unit_Node (N);
while Present (Encl_Unit)
and then Nkind (Unit (Encl_Unit)) = N_Subunit
loop
Encl_Unit := Library_Unit (Encl_Unit);
end loop;
pragma Assert (Nkind (Encl_Unit) = N_Compilation_Unit);
return Encl_Unit;
end Enclosing_Lib_Unit_Node;
-----------------------
-- Enclosing_Package --
-----------------------
function Enclosing_Package (E : Entity_Id) return Entity_Id is
Dynamic_Scope : constant Entity_Id := Enclosing_Dynamic_Scope (E);
begin
if Dynamic_Scope = Standard_Standard then
return Standard_Standard;
elsif Dynamic_Scope = Empty then
return Empty;
elsif Ekind_In (Dynamic_Scope, E_Package, E_Package_Body,
E_Generic_Package)
then
return Dynamic_Scope;
else
return Enclosing_Package (Dynamic_Scope);
end if;
end Enclosing_Package;
-------------------------------------
-- Enclosing_Package_Or_Subprogram --
-------------------------------------
function Enclosing_Package_Or_Subprogram (E : Entity_Id) return Entity_Id is
S : Entity_Id;
begin
S := Scope (E);
while Present (S) loop
if Is_Package_Or_Generic_Package (S)
or else Ekind (S) = E_Package_Body
then
return S;
elsif Is_Subprogram_Or_Generic_Subprogram (S)
or else Ekind (S) = E_Subprogram_Body
then
return S;
else
S := Scope (S);
end if;
end loop;
return Empty;
end Enclosing_Package_Or_Subprogram;
--------------------------
-- Enclosing_Subprogram --
--------------------------
function Enclosing_Subprogram (E : Entity_Id) return Entity_Id is
Dynamic_Scope : constant Entity_Id := Enclosing_Dynamic_Scope (E);
begin
if Dynamic_Scope = Standard_Standard then
return Empty;
elsif Dynamic_Scope = Empty then
return Empty;
elsif Ekind (Dynamic_Scope) = E_Subprogram_Body then
return Corresponding_Spec (Parent (Parent (Dynamic_Scope)));
elsif Ekind (Dynamic_Scope) = E_Block
or else Ekind (Dynamic_Scope) = E_Return_Statement
then
return Enclosing_Subprogram (Dynamic_Scope);
elsif Ekind (Dynamic_Scope) = E_Task_Type then
return Get_Task_Body_Procedure (Dynamic_Scope);
elsif Ekind (Dynamic_Scope) = E_Limited_Private_Type
and then Present (Full_View (Dynamic_Scope))
and then Ekind (Full_View (Dynamic_Scope)) = E_Task_Type
then
return Get_Task_Body_Procedure (Full_View (Dynamic_Scope));
-- No body is generated if the protected operation is eliminated
elsif Convention (Dynamic_Scope) = Convention_Protected
and then not Is_Eliminated (Dynamic_Scope)
and then Present (Protected_Body_Subprogram (Dynamic_Scope))
then
return Protected_Body_Subprogram (Dynamic_Scope);
else
return Dynamic_Scope;
end if;
end Enclosing_Subprogram;
--------------------------
-- End_Keyword_Location --
--------------------------
function End_Keyword_Location (N : Node_Id) return Source_Ptr is
function End_Label_Loc (Nod : Node_Id) return Source_Ptr;
-- Return the source location of Nod's end label according to the
-- following precedence rules:
--
-- 1) If the end label exists, return its location
-- 2) If Nod exists, return its location
-- 3) Return the location of N
-------------------
-- End_Label_Loc --
-------------------
function End_Label_Loc (Nod : Node_Id) return Source_Ptr is
Label : Node_Id;
begin
if Present (Nod) then
Label := End_Label (Nod);
if Present (Label) then
return Sloc (Label);
else
return Sloc (Nod);
end if;
else
return Sloc (N);
end if;
end End_Label_Loc;
-- Local variables
Owner : Node_Id;
-- Start of processing for End_Keyword_Location
begin
if Nkind_In (N, N_Block_Statement,
N_Entry_Body,
N_Package_Body,
N_Subprogram_Body,
N_Task_Body)
then
Owner := Handled_Statement_Sequence (N);
elsif Nkind (N) = N_Package_Declaration then
Owner := Specification (N);
elsif Nkind (N) = N_Protected_Body then
Owner := N;
elsif Nkind_In (N, N_Protected_Type_Declaration,
N_Single_Protected_Declaration)
then
Owner := Protected_Definition (N);
elsif Nkind_In (N, N_Single_Task_Declaration,
N_Task_Type_Declaration)
then
Owner := Task_Definition (N);
-- This routine should not be called with other contexts
else
pragma Assert (False);
null;
end if;
return End_Label_Loc (Owner);
end End_Keyword_Location;
------------------------
-- Ensure_Freeze_Node --
------------------------
procedure Ensure_Freeze_Node (E : Entity_Id) is
FN : Node_Id;
begin
if No (Freeze_Node (E)) then
FN := Make_Freeze_Entity (Sloc (E));
Set_Has_Delayed_Freeze (E);
Set_Freeze_Node (E, FN);
Set_Access_Types_To_Process (FN, No_Elist);
Set_TSS_Elist (FN, No_Elist);
Set_Entity (FN, E);
end if;
end Ensure_Freeze_Node;
----------------
-- Enter_Name --
----------------
procedure Enter_Name (Def_Id : Entity_Id) is
C : constant Entity_Id := Current_Entity (Def_Id);
E : constant Entity_Id := Current_Entity_In_Scope (Def_Id);
S : constant Entity_Id := Current_Scope;
begin
Generate_Definition (Def_Id);
-- Add new name to current scope declarations. Check for duplicate
-- declaration, which may or may not be a genuine error.
if Present (E) then
-- Case of previous entity entered because of a missing declaration
-- or else a bad subtype indication. Best is to use the new entity,
-- and make the previous one invisible.
if Etype (E) = Any_Type then
Set_Is_Immediately_Visible (E, False);
-- Case of renaming declaration constructed for package instances.
-- if there is an explicit declaration with the same identifier,
-- the renaming is not immediately visible any longer, but remains
-- visible through selected component notation.
elsif Nkind (Parent (E)) = N_Package_Renaming_Declaration
and then not Comes_From_Source (E)
then
Set_Is_Immediately_Visible (E, False);
-- The new entity may be the package renaming, which has the same
-- same name as a generic formal which has been seen already.
elsif Nkind (Parent (Def_Id)) = N_Package_Renaming_Declaration
and then not Comes_From_Source (Def_Id)
then
Set_Is_Immediately_Visible (E, False);
-- For a fat pointer corresponding to a remote access to subprogram,
-- we use the same identifier as the RAS type, so that the proper
-- name appears in the stub. This type is only retrieved through
-- the RAS type and never by visibility, and is not added to the
-- visibility list (see below).
elsif Nkind (Parent (Def_Id)) = N_Full_Type_Declaration
and then Ekind (Def_Id) = E_Record_Type
and then Present (Corresponding_Remote_Type (Def_Id))
then
null;
-- Case of an implicit operation or derived literal. The new entity
-- hides the implicit one, which is removed from all visibility,
-- i.e. the entity list of its scope, and homonym chain of its name.
elsif (Is_Overloadable (E) and then Is_Inherited_Operation (E))
or else Is_Internal (E)
then
declare
Decl : constant Node_Id := Parent (E);
Prev : Entity_Id;
Prev_Vis : Entity_Id;
begin
-- If E is an implicit declaration, it cannot be the first
-- entity in the scope.
Prev := First_Entity (Current_Scope);
while Present (Prev) and then Next_Entity (Prev) /= E loop
Next_Entity (Prev);
end loop;
if No (Prev) then
-- If E is not on the entity chain of the current scope,
-- it is an implicit declaration in the generic formal
-- part of a generic subprogram. When analyzing the body,
-- the generic formals are visible but not on the entity
-- chain of the subprogram. The new entity will become
-- the visible one in the body.
pragma Assert
(Nkind (Parent (Decl)) = N_Generic_Subprogram_Declaration);
null;
else
Set_Next_Entity (Prev, Next_Entity (E));
if No (Next_Entity (Prev)) then
Set_Last_Entity (Current_Scope, Prev);
end if;
if E = Current_Entity (E) then
Prev_Vis := Empty;
else
Prev_Vis := Current_Entity (E);
while Homonym (Prev_Vis) /= E loop
Prev_Vis := Homonym (Prev_Vis);
end loop;
end if;
if Present (Prev_Vis) then
-- Skip E in the visibility chain
Set_Homonym (Prev_Vis, Homonym (E));
else
Set_Name_Entity_Id (Chars (E), Homonym (E));
end if;
end if;
end;
-- This section of code could use a comment ???
elsif Present (Etype (E))
and then Is_Concurrent_Type (Etype (E))
and then E = Def_Id
then
return;
-- If the homograph is a protected component renaming, it should not
-- be hiding the current entity. Such renamings are treated as weak
-- declarations.
elsif Is_Prival (E) then
Set_Is_Immediately_Visible (E, False);
-- In this case the current entity is a protected component renaming.
-- Perform minimal decoration by setting the scope and return since
-- the prival should not be hiding other visible entities.
elsif Is_Prival (Def_Id) then
Set_Scope (Def_Id, Current_Scope);
return;
-- Analogous to privals, the discriminal generated for an entry index
-- parameter acts as a weak declaration. Perform minimal decoration
-- to avoid bogus errors.
elsif Is_Discriminal (Def_Id)
and then Ekind (Discriminal_Link (Def_Id)) = E_Entry_Index_Parameter
then
Set_Scope (Def_Id, Current_Scope);
return;
-- In the body or private part of an instance, a type extension may
-- introduce a component with the same name as that of an actual. The
-- legality rule is not enforced, but the semantics of the full type
-- with two components of same name are not clear at this point???
elsif In_Instance_Not_Visible then
null;
-- When compiling a package body, some child units may have become
-- visible. They cannot conflict with local entities that hide them.
elsif Is_Child_Unit (E)
and then In_Open_Scopes (Scope (E))
and then not Is_Immediately_Visible (E)
then
null;
-- Conversely, with front-end inlining we may compile the parent body
-- first, and a child unit subsequently. The context is now the
-- parent spec, and body entities are not visible.
elsif Is_Child_Unit (Def_Id)
and then Is_Package_Body_Entity (E)
and then not In_Package_Body (Current_Scope)
then
null;
-- Case of genuine duplicate declaration
else
Error_Msg_Sloc := Sloc (E);
-- If the previous declaration is an incomplete type declaration
-- this may be an attempt to complete it with a private type. The
-- following avoids confusing cascaded errors.
if Nkind (Parent (E)) = N_Incomplete_Type_Declaration
and then Nkind (Parent (Def_Id)) = N_Private_Type_Declaration
then
Error_Msg_N
("incomplete type cannot be completed with a private " &
"declaration", Parent (Def_Id));
Set_Is_Immediately_Visible (E, False);
Set_Full_View (E, Def_Id);
-- An inherited component of a record conflicts with a new
-- discriminant. The discriminant is inserted first in the scope,
-- but the error should be posted on it, not on the component.
elsif Ekind (E) = E_Discriminant
and then Present (Scope (Def_Id))
and then Scope (Def_Id) /= Current_Scope
then
Error_Msg_Sloc := Sloc (Def_Id);
Error_Msg_N ("& conflicts with declaration#", E);
return;
-- If the name of the unit appears in its own context clause, a
-- dummy package with the name has already been created, and the
-- error emitted. Try to continue quietly.
elsif Error_Posted (E)
and then Sloc (E) = No_Location
and then Nkind (Parent (E)) = N_Package_Specification
and then Current_Scope = Standard_Standard
then
Set_Scope (Def_Id, Current_Scope);
return;
else
Error_Msg_N ("& conflicts with declaration#", Def_Id);
-- Avoid cascaded messages with duplicate components in
-- derived types.
if Ekind_In (E, E_Component, E_Discriminant) then
return;
end if;
end if;
if Nkind (Parent (Parent (Def_Id))) =
N_Generic_Subprogram_Declaration
and then Def_Id =
Defining_Entity (Specification (Parent (Parent (Def_Id))))
then
Error_Msg_N ("\generic units cannot be overloaded", Def_Id);
end if;
-- If entity is in standard, then we are in trouble, because it
-- means that we have a library package with a duplicated name.
-- That's hard to recover from, so abort.
if S = Standard_Standard then
raise Unrecoverable_Error;
-- Otherwise we continue with the declaration. Having two
-- identical declarations should not cause us too much trouble.
else
null;
end if;
end if;
end if;
-- If we fall through, declaration is OK, at least OK enough to continue
-- If Def_Id is a discriminant or a record component we are in the midst
-- of inheriting components in a derived record definition. Preserve
-- their Ekind and Etype.
if Ekind_In (Def_Id, E_Discriminant, E_Component) then
null;
-- If a type is already set, leave it alone (happens when a type
-- declaration is reanalyzed following a call to the optimizer).
elsif Present (Etype (Def_Id)) then
null;
-- Otherwise, the kind E_Void insures that premature uses of the entity
-- will be detected. Any_Type insures that no cascaded errors will occur
else
Set_Ekind (Def_Id, E_Void);
Set_Etype (Def_Id, Any_Type);
end if;
-- Inherited discriminants and components in derived record types are
-- immediately visible. Itypes are not.
-- Unless the Itype is for a record type with a corresponding remote
-- type (what is that about, it was not commented ???)
if Ekind_In (Def_Id, E_Discriminant, E_Component)
or else
((not Is_Record_Type (Def_Id)
or else No (Corresponding_Remote_Type (Def_Id)))
and then not Is_Itype (Def_Id))
then
Set_Is_Immediately_Visible (Def_Id);
Set_Current_Entity (Def_Id);
end if;
Set_Homonym (Def_Id, C);
Append_Entity (Def_Id, S);
Set_Public_Status (Def_Id);
-- Declaring a homonym is not allowed in SPARK ...
if Present (C) and then Restriction_Check_Required (SPARK_05) then
declare
Enclosing_Subp : constant Node_Id := Enclosing_Subprogram (Def_Id);
Enclosing_Pack : constant Node_Id := Enclosing_Package (Def_Id);
Other_Scope : constant Node_Id := Enclosing_Dynamic_Scope (C);
begin
-- ... unless the new declaration is in a subprogram, and the
-- visible declaration is a variable declaration or a parameter
-- specification outside that subprogram.
if Present (Enclosing_Subp)
and then Nkind_In (Parent (C), N_Object_Declaration,
N_Parameter_Specification)
and then not Scope_Within_Or_Same (Other_Scope, Enclosing_Subp)
then
null;
-- ... or the new declaration is in a package, and the visible
-- declaration occurs outside that package.
elsif Present (Enclosing_Pack)
and then not Scope_Within_Or_Same (Other_Scope, Enclosing_Pack)
then
null;
-- ... or the new declaration is a component declaration in a
-- record type definition.
elsif Nkind (Parent (Def_Id)) = N_Component_Declaration then
null;
-- Don't issue error for non-source entities
elsif Comes_From_Source (Def_Id)
and then Comes_From_Source (C)
then
Error_Msg_Sloc := Sloc (C);
Check_SPARK_05_Restriction
("redeclaration of identifier &#", Def_Id);
end if;
end;
end if;
-- Warn if new entity hides an old one
if Warn_On_Hiding and then Present (C)
-- Don't warn for record components since they always have a well
-- defined scope which does not confuse other uses. Note that in
-- some cases, Ekind has not been set yet.
and then Ekind (C) /= E_Component
and then Ekind (C) /= E_Discriminant
and then Nkind (Parent (C)) /= N_Component_Declaration
and then Ekind (Def_Id) /= E_Component
and then Ekind (Def_Id) /= E_Discriminant
and then Nkind (Parent (Def_Id)) /= N_Component_Declaration
-- Don't warn for one character variables. It is too common to use
-- such variables as locals and will just cause too many false hits.
and then Length_Of_Name (Chars (C)) /= 1
-- Don't warn for non-source entities
and then Comes_From_Source (C)
and then Comes_From_Source (Def_Id)
-- Don't warn unless entity in question is in extended main source
and then In_Extended_Main_Source_Unit (Def_Id)
-- Finally, the hidden entity must be either immediately visible or
-- use visible (i.e. from a used package).
and then
(Is_Immediately_Visible (C)
or else
Is_Potentially_Use_Visible (C))
then
Error_Msg_Sloc := Sloc (C);
Error_Msg_N ("declaration hides &#?h?", Def_Id);
end if;
end Enter_Name;
---------------
-- Entity_Of --
---------------
function Entity_Of (N : Node_Id) return Entity_Id is
Id : Entity_Id;
Ren : Node_Id;
begin
-- Assume that the arbitrary node does not have an entity
Id := Empty;
if Is_Entity_Name (N) then
Id := Entity (N);
-- Follow a possible chain of renamings to reach the earliest renamed
-- source object.
while Present (Id)
and then Is_Object (Id)
and then Present (Renamed_Object (Id))
loop
Ren := Renamed_Object (Id);
-- The reference renames an abstract state or a whole object
-- Obj : ...;
-- Ren : ... renames Obj;
if Is_Entity_Name (Ren) then
Id := Entity (Ren);
-- The reference renames a function result. Check the original
-- node in case expansion relocates the function call.
-- Ren : ... renames Func_Call;
elsif Nkind (Original_Node (Ren)) = N_Function_Call then
exit;
-- Otherwise the reference renames something which does not yield
-- an abstract state or a whole object. Treat the reference as not
-- having a proper entity for SPARK legality purposes.
else
Id := Empty;
exit;
end if;
end loop;
end if;
return Id;
end Entity_Of;
--------------------------
-- Explain_Limited_Type --
--------------------------
procedure Explain_Limited_Type (T : Entity_Id; N : Node_Id) is
C : Entity_Id;
begin
-- For array, component type must be limited
if Is_Array_Type (T) then
Error_Msg_Node_2 := T;
Error_Msg_NE
("\component type& of type& is limited", N, Component_Type (T));
Explain_Limited_Type (Component_Type (T), N);
elsif Is_Record_Type (T) then
-- No need for extra messages if explicit limited record
if Is_Limited_Record (Base_Type (T)) then
return;
end if;
-- Otherwise find a limited component. Check only components that
-- come from source, or inherited components that appear in the
-- source of the ancestor.
C := First_Component (T);
while Present (C) loop
if Is_Limited_Type (Etype (C))
and then
(Comes_From_Source (C)
or else
(Present (Original_Record_Component (C))
and then
Comes_From_Source (Original_Record_Component (C))))
then
Error_Msg_Node_2 := T;
Error_Msg_NE ("\component& of type& has limited type", N, C);
Explain_Limited_Type (Etype (C), N);
return;
end if;
Next_Component (C);
end loop;
-- The type may be declared explicitly limited, even if no component
-- of it is limited, in which case we fall out of the loop.
return;
end if;
end Explain_Limited_Type;
---------------------------------------
-- Expression_Of_Expression_Function --
---------------------------------------
function Expression_Of_Expression_Function
(Subp : Entity_Id) return Node_Id
is
Expr_Func : Node_Id;
begin
pragma Assert (Is_Expression_Function_Or_Completion (Subp));
if Nkind (Original_Node (Subprogram_Spec (Subp))) =
N_Expression_Function
then
Expr_Func := Original_Node (Subprogram_Spec (Subp));
elsif Nkind (Original_Node (Subprogram_Body (Subp))) =
N_Expression_Function
then
Expr_Func := Original_Node (Subprogram_Body (Subp));
else
pragma Assert (False);
null;
end if;
return Original_Node (Expression (Expr_Func));
end Expression_Of_Expression_Function;
-------------------------------
-- Extensions_Visible_Status --
-------------------------------
function Extensions_Visible_Status
(Id : Entity_Id) return Extensions_Visible_Mode
is
Arg : Node_Id;
Decl : Node_Id;
Expr : Node_Id;
Prag : Node_Id;
Subp : Entity_Id;
begin
-- When a formal parameter is subject to Extensions_Visible, the pragma
-- is stored in the contract of related subprogram.
if Is_Formal (Id) then
Subp := Scope (Id);
elsif Is_Subprogram_Or_Generic_Subprogram (Id) then
Subp := Id;
-- No other construct carries this pragma
else
return Extensions_Visible_None;
end if;
Prag := Get_Pragma (Subp, Pragma_Extensions_Visible);
-- In certain cases analysis may request the Extensions_Visible status
-- of an expression function before the pragma has been analyzed yet.
-- Inspect the declarative items after the expression function looking
-- for the pragma (if any).
if No (Prag) and then Is_Expression_Function (Subp) then
Decl := Next (Unit_Declaration_Node (Subp));
while Present (Decl) loop
if Nkind (Decl) = N_Pragma
and then Pragma_Name (Decl) = Name_Extensions_Visible
then
Prag := Decl;
exit;
-- A source construct ends the region where Extensions_Visible may
-- appear, stop the traversal. An expanded expression function is
-- no longer a source construct, but it must still be recognized.
elsif Comes_From_Source (Decl)
or else
(Nkind_In (Decl, N_Subprogram_Body,
N_Subprogram_Declaration)
and then Is_Expression_Function (Defining_Entity (Decl)))
then
exit;
end if;
Next (Decl);
end loop;
end if;
-- Extract the value from the Boolean expression (if any)
if Present (Prag) then
Arg := First (Pragma_Argument_Associations (Prag));
if Present (Arg) then
Expr := Get_Pragma_Arg (Arg);
-- When the associated subprogram is an expression function, the
-- argument of the pragma may not have been analyzed.
if not Analyzed (Expr) then
Preanalyze_And_Resolve (Expr, Standard_Boolean);
end if;
-- Guard against cascading errors when the argument of pragma
-- Extensions_Visible is not a valid static Boolean expression.
if Error_Posted (Expr) then
return Extensions_Visible_None;
elsif Is_True (Expr_Value (Expr)) then
return Extensions_Visible_True;
else
return Extensions_Visible_False;
end if;
-- Otherwise the aspect or pragma defaults to True
else
return Extensions_Visible_True;
end if;
-- Otherwise aspect or pragma Extensions_Visible is not inherited or
-- directly specified. In SPARK code, its value defaults to "False".
elsif SPARK_Mode = On then
return Extensions_Visible_False;
-- In non-SPARK code, aspect or pragma Extensions_Visible defaults to
-- "True".
else
return Extensions_Visible_True;
end if;
end Extensions_Visible_Status;
-----------------
-- Find_Actual --
-----------------
procedure Find_Actual
(N : Node_Id;
Formal : out Entity_Id;
Call : out Node_Id)
is
Context : constant Node_Id := Parent (N);
Actual : Node_Id;
Call_Nam : Node_Id;
begin
if Nkind_In (Context, N_Indexed_Component, N_Selected_Component)
and then N = Prefix (Context)
then
Find_Actual (Context, Formal, Call);
return;
elsif Nkind (Context) = N_Parameter_Association
and then N = Explicit_Actual_Parameter (Context)
then
Call := Parent (Context);
elsif Nkind_In (Context, N_Entry_Call_Statement,
N_Function_Call,
N_Procedure_Call_Statement)
then
Call := Context;
else
Formal := Empty;
Call := Empty;
return;
end if;
-- If we have a call to a subprogram look for the parameter. Note that
-- we exclude overloaded calls, since we don't know enough to be sure
-- of giving the right answer in this case.
if Nkind_In (Call, N_Entry_Call_Statement,
N_Function_Call,
N_Procedure_Call_Statement)
then
Call_Nam := Name (Call);
-- A call to a protected or task entry appears as a selected
-- component rather than an expanded name.
if Nkind (Call_Nam) = N_Selected_Component then
Call_Nam := Selector_Name (Call_Nam);
end if;
if Is_Entity_Name (Call_Nam)
and then Present (Entity (Call_Nam))
and then Is_Overloadable (Entity (Call_Nam))
and then not Is_Overloaded (Call_Nam)
then
-- If node is name in call it is not an actual
if N = Call_Nam then
Formal := Empty;
Call := Empty;
return;
end if;
-- Fall here if we are definitely a parameter
Actual := First_Actual (Call);
Formal := First_Formal (Entity (Call_Nam));
while Present (Formal) and then Present (Actual) loop
if Actual = N then
return;
-- An actual that is the prefix in a prefixed call may have
-- been rewritten in the call, after the deferred reference
-- was collected. Check if sloc and kinds and names match.
elsif Sloc (Actual) = Sloc (N)
and then Nkind (Actual) = N_Identifier
and then Nkind (Actual) = Nkind (N)
and then Chars (Actual) = Chars (N)
then
return;
else
Actual := Next_Actual (Actual);
Formal := Next_Formal (Formal);
end if;
end loop;
end if;
end if;
-- Fall through here if we did not find matching actual
Formal := Empty;
Call := Empty;
end Find_Actual;
---------------------------
-- Find_Body_Discriminal --
---------------------------
function Find_Body_Discriminal
(Spec_Discriminant : Entity_Id) return Entity_Id
is
Tsk : Entity_Id;
Disc : Entity_Id;
begin
-- If expansion is suppressed, then the scope can be the concurrent type
-- itself rather than a corresponding concurrent record type.
if Is_Concurrent_Type (Scope (Spec_Discriminant)) then
Tsk := Scope (Spec_Discriminant);
else
pragma Assert (Is_Concurrent_Record_Type (Scope (Spec_Discriminant)));
Tsk := Corresponding_Concurrent_Type (Scope (Spec_Discriminant));
end if;
-- Find discriminant of original concurrent type, and use its current
-- discriminal, which is the renaming within the task/protected body.
Disc := First_Discriminant (Tsk);
while Present (Disc) loop
if Chars (Disc) = Chars (Spec_Discriminant) then
return Discriminal (Disc);
end if;
Next_Discriminant (Disc);
end loop;
-- That loop should always succeed in finding a matching entry and
-- returning. Fatal error if not.
raise Program_Error;
end Find_Body_Discriminal;
-------------------------------------
-- Find_Corresponding_Discriminant --
-------------------------------------
function Find_Corresponding_Discriminant
(Id : Node_Id;
Typ : Entity_Id) return Entity_Id
is
Par_Disc : Entity_Id;
Old_Disc : Entity_Id;
New_Disc : Entity_Id;
begin
Par_Disc := Original_Record_Component (Original_Discriminant (Id));
-- The original type may currently be private, and the discriminant
-- only appear on its full view.
if Is_Private_Type (Scope (Par_Disc))
and then not Has_Discriminants (Scope (Par_Disc))
and then Present (Full_View (Scope (Par_Disc)))
then
Old_Disc := First_Discriminant (Full_View (Scope (Par_Disc)));
else
Old_Disc := First_Discriminant (Scope (Par_Disc));
end if;
if Is_Class_Wide_Type (Typ) then
New_Disc := First_Discriminant (Root_Type (Typ));
else
New_Disc := First_Discriminant (Typ);
end if;
while Present (Old_Disc) and then Present (New_Disc) loop
if Old_Disc = Par_Disc then
return New_Disc;
end if;
Next_Discriminant (Old_Disc);
Next_Discriminant (New_Disc);
end loop;
-- Should always find it
raise Program_Error;
end Find_Corresponding_Discriminant;
-------------------
-- Find_DIC_Type --
-------------------
function Find_DIC_Type (Typ : Entity_Id) return Entity_Id is
Curr_Typ : Entity_Id;
-- The current type being examined in the parent hierarchy traversal
DIC_Typ : Entity_Id;
-- The type which carries the DIC pragma. This variable denotes the
-- partial view when private types are involved.
Par_Typ : Entity_Id;
-- The parent type of the current type. This variable denotes the full
-- view when private types are involved.
begin
-- The input type defines its own DIC pragma, therefore it is the owner
if Has_Own_DIC (Typ) then
DIC_Typ := Typ;
-- Otherwise the DIC pragma is inherited from a parent type
else
pragma Assert (Has_Inherited_DIC (Typ));
-- Climb the parent chain
Curr_Typ := Typ;
loop
-- Inspect the parent type. Do not consider subtypes as they
-- inherit the DIC attributes from their base types.
DIC_Typ := Base_Type (Etype (Curr_Typ));
-- Look at the full view of a private type because the type may
-- have a hidden parent introduced in the full view.
Par_Typ := DIC_Typ;
if Is_Private_Type (Par_Typ)
and then Present (Full_View (Par_Typ))
then
Par_Typ := Full_View (Par_Typ);
end if;
-- Stop the climb once the nearest parent type which defines a DIC
-- pragma of its own is encountered or when the root of the parent
-- chain is reached.
exit when Has_Own_DIC (DIC_Typ) or else Curr_Typ = Par_Typ;
Curr_Typ := Par_Typ;
end loop;
end if;
return DIC_Typ;
end Find_DIC_Type;
----------------------------------
-- Find_Enclosing_Iterator_Loop --
----------------------------------
function Find_Enclosing_Iterator_Loop (Id : Entity_Id) return Entity_Id is
Constr : Node_Id;
S : Entity_Id;
begin
-- Traverse the scope chain looking for an iterator loop. Such loops are
-- usually transformed into blocks, hence the use of Original_Node.
S := Id;
while Present (S) and then S /= Standard_Standard loop
if Ekind (S) = E_Loop
and then Nkind (Parent (S)) = N_Implicit_Label_Declaration
then
Constr := Original_Node (Label_Construct (Parent (S)));
if Nkind (Constr) = N_Loop_Statement
and then Present (Iteration_Scheme (Constr))
and then Nkind (Iterator_Specification
(Iteration_Scheme (Constr))) =
N_Iterator_Specification
then
return S;
end if;
end if;
S := Scope (S);
end loop;
return Empty;
end Find_Enclosing_Iterator_Loop;
--------------------------
-- Find_Enclosing_Scope --
--------------------------
function Find_Enclosing_Scope (N : Node_Id) return Entity_Id is
Par : Node_Id;
begin
-- Examine the parent chain looking for a construct which defines a
-- scope.
Par := Parent (N);
while Present (Par) loop
case Nkind (Par) is
-- The construct denotes a declaration, the proper scope is its
-- entity.
when N_Entry_Declaration
| N_Expression_Function
| N_Full_Type_Declaration
| N_Generic_Package_Declaration
| N_Generic_Subprogram_Declaration
| N_Package_Declaration
| N_Private_Extension_Declaration
| N_Protected_Type_Declaration
| N_Single_Protected_Declaration
| N_Single_Task_Declaration
| N_Subprogram_Declaration
| N_Task_Type_Declaration
=>
return Defining_Entity (Par);
-- The construct denotes a body, the proper scope is the entity of
-- the corresponding spec or that of the body if the body does not
-- complete a previous declaration.
when N_Entry_Body
| N_Package_Body
| N_Protected_Body
| N_Subprogram_Body
| N_Task_Body
=>
return Unique_Defining_Entity (Par);
-- Special cases
-- Blocks carry either a source or an internally-generated scope,
-- unless the block is a byproduct of exception handling.
when N_Block_Statement =>
if not Exception_Junk (Par) then
return Entity (Identifier (Par));
end if;
-- Loops carry an internally-generated scope
when N_Loop_Statement =>
return Entity (Identifier (Par));
-- Extended return statements carry an internally-generated scope
when N_Extended_Return_Statement =>
return Return_Statement_Entity (Par);
-- A traversal from a subunit continues via the corresponding stub
when N_Subunit =>
Par := Corresponding_Stub (Par);
when others =>
null;
end case;
Par := Parent (Par);
end loop;
return Standard_Standard;
end Find_Enclosing_Scope;
------------------------------------
-- Find_Loop_In_Conditional_Block --
------------------------------------
function Find_Loop_In_Conditional_Block (N : Node_Id) return Node_Id is
Stmt : Node_Id;
begin
Stmt := N;
if Nkind (Stmt) = N_If_Statement then
Stmt := First (Then_Statements (Stmt));
end if;
pragma Assert (Nkind (Stmt) = N_Block_Statement);
-- Inspect the statements of the conditional block. In general the loop
-- should be the first statement in the statement sequence of the block,
-- but the finalization machinery may have introduced extra object
-- declarations.
Stmt := First (Statements (Handled_Statement_Sequence (Stmt)));
while Present (Stmt) loop
if Nkind (Stmt) = N_Loop_Statement then
return Stmt;
end if;
Next (Stmt);
end loop;
-- The expansion of attribute 'Loop_Entry produced a malformed block
raise Program_Error;
end Find_Loop_In_Conditional_Block;
--------------------------
-- Find_Overlaid_Entity --
--------------------------
procedure Find_Overlaid_Entity
(N : Node_Id;
Ent : out Entity_Id;
Off : out Boolean)
is
Expr : Node_Id;
begin
-- We are looking for one of the two following forms:
-- for X'Address use Y'Address
-- or
-- Const : constant Address := expr;
-- ...
-- for X'Address use Const;
-- In the second case, the expr is either Y'Address, or recursively a
-- constant that eventually references Y'Address.
Ent := Empty;
Off := False;
if Nkind (N) = N_Attribute_Definition_Clause
and then Chars (N) = Name_Address
then
Expr := Expression (N);
-- This loop checks the form of the expression for Y'Address,
-- using recursion to deal with intermediate constants.
loop
-- Check for Y'Address
if Nkind (Expr) = N_Attribute_Reference
and then Attribute_Name (Expr) = Name_Address
then
Expr := Prefix (Expr);
exit;
-- Check for Const where Const is a constant entity
elsif Is_Entity_Name (Expr)
and then Ekind (Entity (Expr)) = E_Constant
then
Expr := Constant_Value (Entity (Expr));
-- Anything else does not need checking
else
return;
end if;
end loop;
-- This loop checks the form of the prefix for an entity, using
-- recursion to deal with intermediate components.
loop
-- Check for Y where Y is an entity
if Is_Entity_Name (Expr) then
Ent := Entity (Expr);
return;
-- Check for components
elsif
Nkind_In (Expr, N_Selected_Component, N_Indexed_Component)
then
Expr := Prefix (Expr);
Off := True;
-- Anything else does not need checking
else
return;
end if;
end loop;
end if;
end Find_Overlaid_Entity;
-------------------------
-- Find_Parameter_Type --
-------------------------
function Find_Parameter_Type (Param : Node_Id) return Entity_Id is
begin
if Nkind (Param) /= N_Parameter_Specification then
return Empty;
-- For an access parameter, obtain the type from the formal entity
-- itself, because access to subprogram nodes do not carry a type.
-- Shouldn't we always use the formal entity ???
elsif Nkind (Parameter_Type (Param)) = N_Access_Definition then
return Etype (Defining_Identifier (Param));
else
return Etype (Parameter_Type (Param));
end if;
end Find_Parameter_Type;
-----------------------------------
-- Find_Placement_In_State_Space --
-----------------------------------
procedure Find_Placement_In_State_Space
(Item_Id : Entity_Id;
Placement : out State_Space_Kind;
Pack_Id : out Entity_Id)
is
Context : Entity_Id;
begin
-- Assume that the item does not appear in the state space of a package
Placement := Not_In_Package;
Pack_Id := Empty;
-- Climb the scope stack and examine the enclosing context
Context := Scope (Item_Id);
while Present (Context) and then Context /= Standard_Standard loop
if Is_Package_Or_Generic_Package (Context) then
Pack_Id := Context;
-- A package body is a cut off point for the traversal as the item
-- cannot be visible to the outside from this point on. Note that
-- this test must be done first as a body is also classified as a
-- private part.
if In_Package_Body (Context) then
Placement := Body_State_Space;
return;
-- The private part of a package is a cut off point for the
-- traversal as the item cannot be visible to the outside from
-- this point on.
elsif In_Private_Part (Context) then
Placement := Private_State_Space;
return;
-- When the item appears in the visible state space of a package,
-- continue to climb the scope stack as this may not be the final
-- state space.
else
Placement := Visible_State_Space;
-- The visible state space of a child unit acts as the proper
-- placement of an item.
if Is_Child_Unit (Context) then
return;
end if;
end if;
-- The item or its enclosing package appear in a construct that has
-- no state space.
else
Placement := Not_In_Package;
return;
end if;
Context := Scope (Context);
end loop;
end Find_Placement_In_State_Space;
------------------------
-- Find_Specific_Type --
------------------------
function Find_Specific_Type (CW : Entity_Id) return Entity_Id is
Typ : Entity_Id := Root_Type (CW);
begin
if Ekind (Typ) = E_Incomplete_Type then
if From_Limited_With (Typ) then
Typ := Non_Limited_View (Typ);
else
Typ := Full_View (Typ);
end if;
end if;
if Is_Private_Type (Typ)
and then not Is_Tagged_Type (Typ)
and then Present (Full_View (Typ))
then
return Full_View (Typ);
else
return Typ;
end if;
end Find_Specific_Type;
-----------------------------
-- Find_Static_Alternative --
-----------------------------
function Find_Static_Alternative (N : Node_Id) return Node_Id is
Expr : constant Node_Id := Expression (N);
Val : constant Uint := Expr_Value (Expr);
Alt : Node_Id;
Choice : Node_Id;
begin
Alt := First (Alternatives (N));
Search : loop
if Nkind (Alt) /= N_Pragma then
Choice := First (Discrete_Choices (Alt));
while Present (Choice) loop
-- Others choice, always matches
if Nkind (Choice) = N_Others_Choice then
exit Search;
-- Range, check if value is in the range
elsif Nkind (Choice) = N_Range then
exit Search when
Val >= Expr_Value (Low_Bound (Choice))
and then
Val <= Expr_Value (High_Bound (Choice));
-- Choice is a subtype name. Note that we know it must
-- be a static subtype, since otherwise it would have
-- been diagnosed as illegal.
elsif Is_Entity_Name (Choice)
and then Is_Type (Entity (Choice))
then
exit Search when Is_In_Range (Expr, Etype (Choice),
Assume_Valid => False);
-- Choice is a subtype indication
elsif Nkind (Choice) = N_Subtype_Indication then
declare
C : constant Node_Id := Constraint (Choice);
R : constant Node_Id := Range_Expression (C);
begin
exit Search when
Val >= Expr_Value (Low_Bound (R))
and then
Val <= Expr_Value (High_Bound (R));
end;
-- Choice is a simple expression
else
exit Search when Val = Expr_Value (Choice);
end if;
Next (Choice);
end loop;
end if;
Next (Alt);
pragma Assert (Present (Alt));
end loop Search;
-- The above loop *must* terminate by finding a match, since we know the
-- case statement is valid, and the value of the expression is known at
-- compile time. When we fall out of the loop, Alt points to the
-- alternative that we know will be selected at run time.
return Alt;
end Find_Static_Alternative;
------------------
-- First_Actual --
------------------
function First_Actual (Node : Node_Id) return Node_Id is
N : Node_Id;
begin
if No (Parameter_Associations (Node)) then
return Empty;
end if;
N := First (Parameter_Associations (Node));
if Nkind (N) = N_Parameter_Association then
return First_Named_Actual (Node);
else
return N;
end if;
end First_Actual;
------------------
-- First_Global --
------------------
function First_Global
(Subp : Entity_Id;
Global_Mode : Name_Id;
Refined : Boolean := False) return Node_Id
is
function First_From_Global_List
(List : Node_Id;
Global_Mode : Name_Id := Name_Input) return Entity_Id;
-- Get the first item with suitable mode from List
----------------------------
-- First_From_Global_List --
----------------------------
function First_From_Global_List
(List : Node_Id;
Global_Mode : Name_Id := Name_Input) return Entity_Id
is
Assoc : Node_Id;
begin
-- Empty list (no global items)
if Nkind (List) = N_Null then
return Empty;
-- Single global item declaration (only input items)
elsif Nkind_In (List, N_Expanded_Name,
N_Identifier,
N_Selected_Component)
then
if Global_Mode = Name_Input then
return List;
else
return Empty;
end if;
-- Simple global list (only input items) or moded global list
-- declaration.
elsif Nkind (List) = N_Aggregate then
if Present (Expressions (List)) then
if Global_Mode = Name_Input then
return First (Expressions (List));
else
return Empty;
end if;
else
Assoc := First (Component_Associations (List));
while Present (Assoc) loop
-- When we find the desired mode in an association, call
-- recursively First_From_Global_List as if the mode was
-- Name_Input, in order to reuse the existing machinery
-- for the other cases.
if Chars (First (Choices (Assoc))) = Global_Mode then
return First_From_Global_List (Expression (Assoc));
end if;
Next (Assoc);
end loop;
return Empty;
end if;
-- To accommodate partial decoration of disabled SPARK features,
-- this routine may be called with illegal input. If this is the
-- case, do not raise Program_Error.
else
return Empty;
end if;
end First_From_Global_List;
-- Local variables
Global : Node_Id := Empty;
Body_Id : Entity_Id;
begin
pragma Assert (Global_Mode = Name_Input
or else Global_Mode = Name_Output
or else Global_Mode = Name_In_Out
or else Global_Mode = Name_Proof_In);
-- Retrieve the suitable pragma Global or Refined_Global. In the second
-- case, it can only be located on the body entity.
if Refined then
Body_Id := Subprogram_Body_Entity (Subp);
if Present (Body_Id) then
Global := Get_Pragma (Body_Id, Pragma_Refined_Global);
end if;
else
Global := Get_Pragma (Subp, Pragma_Global);
end if;
-- No corresponding global if pragma is not present
if No (Global) then
return Empty;
-- Otherwise retrieve the corresponding list of items depending on the
-- Global_Mode.
else
return First_From_Global_List
(Expression (Get_Argument (Global, Subp)), Global_Mode);
end if;
end First_Global;
-------------
-- Fix_Msg --
-------------
function Fix_Msg (Id : Entity_Id; Msg : String) return String is
Is_Task : constant Boolean :=
Ekind_In (Id, E_Task_Body, E_Task_Type)
or else Is_Single_Task_Object (Id);
Msg_Last : constant Natural := Msg'Last;
Msg_Index : Natural;
Res : String (Msg'Range) := (others => ' ');
Res_Index : Natural;
begin
-- Copy all characters from the input message Msg to result Res with
-- suitable replacements.
Msg_Index := Msg'First;
Res_Index := Res'First;
while Msg_Index <= Msg_Last loop
-- Replace "subprogram" with a different word
if Msg_Index <= Msg_Last - 10
and then Msg (Msg_Index .. Msg_Index + 9) = "subprogram"
then
if Ekind_In (Id, E_Entry, E_Entry_Family) then
Res (Res_Index .. Res_Index + 4) := "entry";
Res_Index := Res_Index + 5;
elsif Is_Task then
Res (Res_Index .. Res_Index + 8) := "task type";
Res_Index := Res_Index + 9;
else
Res (Res_Index .. Res_Index + 9) := "subprogram";
Res_Index := Res_Index + 10;
end if;
Msg_Index := Msg_Index + 10;
-- Replace "protected" with a different word
elsif Msg_Index <= Msg_Last - 9
and then Msg (Msg_Index .. Msg_Index + 8) = "protected"
and then Is_Task
then
Res (Res_Index .. Res_Index + 3) := "task";
Res_Index := Res_Index + 4;
Msg_Index := Msg_Index + 9;
-- Otherwise copy the character
else
Res (Res_Index) := Msg (Msg_Index);
Msg_Index := Msg_Index + 1;
Res_Index := Res_Index + 1;
end if;
end loop;
return Res (Res'First .. Res_Index - 1);
end Fix_Msg;
-------------------------
-- From_Nested_Package --
-------------------------
function From_Nested_Package (T : Entity_Id) return Boolean is
Pack : constant Entity_Id := Scope (T);
begin
return
Ekind (Pack) = E_Package
and then not Is_Frozen (Pack)
and then not Scope_Within_Or_Same (Current_Scope, Pack)
and then In_Open_Scopes (Scope (Pack));
end From_Nested_Package;
-----------------------
-- Gather_Components --
-----------------------
procedure Gather_Components
(Typ : Entity_Id;
Comp_List : Node_Id;
Governed_By : List_Id;
Into : Elist_Id;
Report_Errors : out Boolean)
is
Assoc : Node_Id;
Variant : Node_Id;
Discrete_Choice : Node_Id;
Comp_Item : Node_Id;
Discrim : Entity_Id;
Discrim_Name : Node_Id;
Discrim_Value : Node_Id;
begin
Report_Errors := False;
if No (Comp_List) or else Null_Present (Comp_List) then
return;
elsif Present (Component_Items (Comp_List)) then
Comp_Item := First (Component_Items (Comp_List));
else
Comp_Item := Empty;
end if;
while Present (Comp_Item) loop
-- Skip the tag of a tagged record, the interface tags, as well
-- as all items that are not user components (anonymous types,
-- rep clauses, Parent field, controller field).
if Nkind (Comp_Item) = N_Component_Declaration then
declare
Comp : constant Entity_Id := Defining_Identifier (Comp_Item);
begin
if not Is_Tag (Comp) and then Chars (Comp) /= Name_uParent then
Append_Elmt (Comp, Into);
end if;
end;
end if;
Next (Comp_Item);
end loop;
if No (Variant_Part (Comp_List)) then
return;
else
Discrim_Name := Name (Variant_Part (Comp_List));
Variant := First_Non_Pragma (Variants (Variant_Part (Comp_List)));
end if;
-- Look for the discriminant that governs this variant part.
-- The discriminant *must* be in the Governed_By List
Assoc := First (Governed_By);
Find_Constraint : loop
Discrim := First (Choices (Assoc));
exit Find_Constraint when Chars (Discrim_Name) = Chars (Discrim)
or else (Present (Corresponding_Discriminant (Entity (Discrim)))
and then
Chars (Corresponding_Discriminant (Entity (Discrim))) =
Chars (Discrim_Name))
or else Chars (Original_Record_Component (Entity (Discrim)))
= Chars (Discrim_Name);
if No (Next (Assoc)) then
if not Is_Constrained (Typ)
and then Is_Derived_Type (Typ)
and then Present (Stored_Constraint (Typ))
then
-- If the type is a tagged type with inherited discriminants,
-- use the stored constraint on the parent in order to find
-- the values of discriminants that are otherwise hidden by an
-- explicit constraint. Renamed discriminants are handled in
-- the code above.
-- If several parent discriminants are renamed by a single
-- discriminant of the derived type, the call to obtain the
-- Corresponding_Discriminant field only retrieves the last
-- of them. We recover the constraint on the others from the
-- Stored_Constraint as well.
declare
D : Entity_Id;
C : Elmt_Id;
begin
D := First_Discriminant (Etype (Typ));
C := First_Elmt (Stored_Constraint (Typ));
while Present (D) and then Present (C) loop
if Chars (Discrim_Name) = Chars (D) then
if Is_Entity_Name (Node (C))
and then Entity (Node (C)) = Entity (Discrim)
then
-- D is renamed by Discrim, whose value is given in
-- Assoc.
null;
else
Assoc :=
Make_Component_Association (Sloc (Typ),
New_List
(New_Occurrence_Of (D, Sloc (Typ))),
Duplicate_Subexpr_No_Checks (Node (C)));
end if;
exit Find_Constraint;
end if;
Next_Discriminant (D);
Next_Elmt (C);
end loop;
end;
end if;
end if;
if No (Next (Assoc)) then
Error_Msg_NE (" missing value for discriminant&",
First (Governed_By), Discrim_Name);
Report_Errors := True;
return;
end if;
Next (Assoc);
end loop Find_Constraint;
Discrim_Value := Expression (Assoc);
if not Is_OK_Static_Expression (Discrim_Value) then
-- If the variant part is governed by a discriminant of the type
-- this is an error. If the variant part and the discriminant are
-- inherited from an ancestor this is legal (AI05-120) unless the
-- components are being gathered for an aggregate, in which case
-- the caller must check Report_Errors.
if Scope (Original_Record_Component
((Entity (First (Choices (Assoc)))))) = Typ
then
Error_Msg_FE
("value for discriminant & must be static!",
Discrim_Value, Discrim);
Why_Not_Static (Discrim_Value);
end if;
Report_Errors := True;
return;
end if;
Search_For_Discriminant_Value : declare
Low : Node_Id;
High : Node_Id;
UI_High : Uint;
UI_Low : Uint;
UI_Discrim_Value : constant Uint := Expr_Value (Discrim_Value);
begin
Find_Discrete_Value : while Present (Variant) loop
Discrete_Choice := First (Discrete_Choices (Variant));
while Present (Discrete_Choice) loop
exit Find_Discrete_Value when
Nkind (Discrete_Choice) = N_Others_Choice;
Get_Index_Bounds (Discrete_Choice, Low, High);
UI_Low := Expr_Value (Low);
UI_High := Expr_Value (High);
exit Find_Discrete_Value when
UI_Low <= UI_Discrim_Value
and then
UI_High >= UI_Discrim_Value;
Next (Discrete_Choice);
end loop;
Next_Non_Pragma (Variant);
end loop Find_Discrete_Value;
end Search_For_Discriminant_Value;
-- The case statement must include a variant that corresponds to the
-- value of the discriminant, unless the discriminant type has a
-- static predicate. In that case the absence of an others_choice that
-- would cover this value becomes a run-time error (3.8,1 (21.1/2)).
if No (Variant)
and then not Has_Static_Predicate (Etype (Discrim_Name))
then
Error_Msg_NE
("value of discriminant & is out of range", Discrim_Value, Discrim);
Report_Errors := True;
return;
end if;
-- If we have found the corresponding choice, recursively add its
-- components to the Into list. The nested components are part of
-- the same record type.
if Present (Variant) then
Gather_Components
(Typ, Component_List (Variant), Governed_By, Into, Report_Errors);
end if;
end Gather_Components;
------------------------
-- Get_Actual_Subtype --
------------------------
function Get_Actual_Subtype (N : Node_Id) return Entity_Id is
Typ : constant Entity_Id := Etype (N);
Utyp : Entity_Id := Underlying_Type (Typ);
Decl : Node_Id;
Atyp : Entity_Id;
begin
if No (Utyp) then
Utyp := Typ;
end if;
-- If what we have is an identifier that references a subprogram
-- formal, or a variable or constant object, then we get the actual
-- subtype from the referenced entity if one has been built.
if Nkind (N) = N_Identifier
and then
(Is_Formal (Entity (N))
or else Ekind (Entity (N)) = E_Constant
or else Ekind (Entity (N)) = E_Variable)
and then Present (Actual_Subtype (Entity (N)))
then
return Actual_Subtype (Entity (N));
-- Actual subtype of unchecked union is always itself. We never need
-- the "real" actual subtype. If we did, we couldn't get it anyway
-- because the discriminant is not available. The restrictions on
-- Unchecked_Union are designed to make sure that this is OK.
elsif Is_Unchecked_Union (Base_Type (Utyp)) then
return Typ;
-- Here for the unconstrained case, we must find actual subtype
-- No actual subtype is available, so we must build it on the fly.
-- Checking the type, not the underlying type, for constrainedness
-- seems to be necessary. Maybe all the tests should be on the type???
elsif (not Is_Constrained (Typ))
and then (Is_Array_Type (Utyp)
or else (Is_Record_Type (Utyp)
and then Has_Discriminants (Utyp)))
and then not Has_Unknown_Discriminants (Utyp)
and then not (Ekind (Utyp) = E_String_Literal_Subtype)
then
-- Nothing to do if in spec expression (why not???)
if In_Spec_Expression then
return Typ;
elsif Is_Private_Type (Typ) and then not Has_Discriminants (Typ) then
-- If the type has no discriminants, there is no subtype to
-- build, even if the underlying type is discriminated.
return Typ;
-- Else build the actual subtype
else
Decl := Build_Actual_Subtype (Typ, N);
Atyp := Defining_Identifier (Decl);
-- If Build_Actual_Subtype generated a new declaration then use it
if Atyp /= Typ then
-- The actual subtype is an Itype, so analyze the declaration,
-- but do not attach it to the tree, to get the type defined.
Set_Parent (Decl, N);
Set_Is_Itype (Atyp);
Analyze (Decl, Suppress => All_Checks);
Set_Associated_Node_For_Itype (Atyp, N);
Set_Has_Delayed_Freeze (Atyp, False);
-- We need to freeze the actual subtype immediately. This is
-- needed, because otherwise this Itype will not get frozen
-- at all, and it is always safe to freeze on creation because
-- any associated types must be frozen at this point.
Freeze_Itype (Atyp, N);
return Atyp;
-- Otherwise we did not build a declaration, so return original
else
return Typ;
end if;
end if;
-- For all remaining cases, the actual subtype is the same as
-- the nominal type.
else
return Typ;
end if;
end Get_Actual_Subtype;
-------------------------------------
-- Get_Actual_Subtype_If_Available --
-------------------------------------
function Get_Actual_Subtype_If_Available (N : Node_Id) return Entity_Id is
Typ : constant Entity_Id := Etype (N);
begin
-- If what we have is an identifier that references a subprogram
-- formal, or a variable or constant object, then we get the actual
-- subtype from the referenced entity if one has been built.
if Nkind (N) = N_Identifier
and then
(Is_Formal (Entity (N))
or else Ekind (Entity (N)) = E_Constant
or else Ekind (Entity (N)) = E_Variable)
and then Present (Actual_Subtype (Entity (N)))
then
return Actual_Subtype (Entity (N));
-- Otherwise the Etype of N is returned unchanged
else
return Typ;
end if;
end Get_Actual_Subtype_If_Available;
------------------------
-- Get_Body_From_Stub --
------------------------
function Get_Body_From_Stub (N : Node_Id) return Node_Id is
begin
return Proper_Body (Unit (Library_Unit (N)));
end Get_Body_From_Stub;
---------------------
-- Get_Cursor_Type --
---------------------
function Get_Cursor_Type
(Aspect : Node_Id;
Typ : Entity_Id) return Entity_Id
is
Assoc : Node_Id;
Func : Entity_Id;
First_Op : Entity_Id;
Cursor : Entity_Id;
begin
-- If error already detected, return
if Error_Posted (Aspect) then
return Any_Type;
end if;
-- The cursor type for an Iterable aspect is the return type of a
-- non-overloaded First primitive operation. Locate association for
-- First.
Assoc := First (Component_Associations (Expression (Aspect)));
First_Op := Any_Id;
while Present (Assoc) loop
if Chars (First (Choices (Assoc))) = Name_First then
First_Op := Expression (Assoc);
exit;
end if;
Next (Assoc);
end loop;
if First_Op = Any_Id then
Error_Msg_N ("aspect Iterable must specify First operation", Aspect);
return Any_Type;
end if;
Cursor := Any_Type;
-- Locate function with desired name and profile in scope of type
-- In the rare case where the type is an integer type, a base type
-- is created for it, check that the base type of the first formal
-- of First matches the base type of the domain.
Func := First_Entity (Scope (Typ));
while Present (Func) loop
if Chars (Func) = Chars (First_Op)
and then Ekind (Func) = E_Function
and then Present (First_Formal (Func))
and then Base_Type (Etype (First_Formal (Func))) = Base_Type (Typ)
and then No (Next_Formal (First_Formal (Func)))
then
if Cursor /= Any_Type then
Error_Msg_N
("Operation First for iterable type must be unique", Aspect);
return Any_Type;
else
Cursor := Etype (Func);
end if;
end if;
Next_Entity (Func);
end loop;
-- If not found, no way to resolve remaining primitives.
if Cursor = Any_Type then
Error_Msg_N
("No legal primitive operation First for Iterable type", Aspect);
end if;
return Cursor;
end Get_Cursor_Type;
function Get_Cursor_Type (Typ : Entity_Id) return Entity_Id is
begin
return Etype (Get_Iterable_Type_Primitive (Typ, Name_First));
end Get_Cursor_Type;
-------------------------------
-- Get_Default_External_Name --
-------------------------------
function Get_Default_External_Name (E : Node_Or_Entity_Id) return Node_Id is
begin
Get_Decoded_Name_String (Chars (E));
if Opt.External_Name_Imp_Casing = Uppercase then
Set_Casing (All_Upper_Case);
else
Set_Casing (All_Lower_Case);
end if;
return
Make_String_Literal (Sloc (E),
Strval => String_From_Name_Buffer);
end Get_Default_External_Name;
--------------------------
-- Get_Enclosing_Object --
--------------------------
function Get_Enclosing_Object (N : Node_Id) return Entity_Id is
begin
if Is_Entity_Name (N) then
return Entity (N);
else
case Nkind (N) is
when N_Indexed_Component
| N_Selected_Component
| N_Slice
=>
-- If not generating code, a dereference may be left implicit.
-- In thoses cases, return Empty.
if Is_Access_Type (Etype (Prefix (N))) then
return Empty;
else
return Get_Enclosing_Object (Prefix (N));
end if;
when N_Type_Conversion =>
return Get_Enclosing_Object (Expression (N));
when others =>
return Empty;
end case;
end if;
end Get_Enclosing_Object;
---------------------------
-- Get_Enum_Lit_From_Pos --
---------------------------
function Get_Enum_Lit_From_Pos
(T : Entity_Id;
Pos : Uint;
Loc : Source_Ptr) return Node_Id
is
Btyp : Entity_Id := Base_Type (T);
Lit : Node_Id;
LLoc : Source_Ptr;
begin
-- In the case where the literal is of type Character, Wide_Character
-- or Wide_Wide_Character or of a type derived from them, there needs
-- to be some special handling since there is no explicit chain of
-- literals to search. Instead, an N_Character_Literal node is created
-- with the appropriate Char_Code and Chars fields.
if Is_Standard_Character_Type (T) then
Set_Character_Literal_Name (UI_To_CC (Pos));
return
Make_Character_Literal (Loc,
Chars => Name_Find,
Char_Literal_Value => Pos);
-- For all other cases, we have a complete table of literals, and
-- we simply iterate through the chain of literal until the one
-- with the desired position value is found.
else
if Is_Private_Type (Btyp) and then Present (Full_View (Btyp)) then
Btyp := Full_View (Btyp);
end if;
Lit := First_Literal (Btyp);
-- Position in the enumeration type starts at 0
if UI_To_Int (Pos) < 0 then
raise Constraint_Error;
end if;
for J in 1 .. UI_To_Int (Pos) loop
Next_Literal (Lit);
-- If Lit is Empty, Pos is not in range, so raise Constraint_Error
-- inside the loop to avoid calling Next_Literal on Empty.
if No (Lit) then
raise Constraint_Error;
end if;
end loop;
-- Create a new node from Lit, with source location provided by Loc
-- if not equal to No_Location, or by copying the source location of
-- Lit otherwise.
LLoc := Loc;
if LLoc = No_Location then
LLoc := Sloc (Lit);
end if;
return New_Occurrence_Of (Lit, LLoc);
end if;
end Get_Enum_Lit_From_Pos;
------------------------
-- Get_Generic_Entity --
------------------------
function Get_Generic_Entity (N : Node_Id) return Entity_Id is
Ent : constant Entity_Id := Entity (Name (N));
begin
if Present (Renamed_Object (Ent)) then
return Renamed_Object (Ent);
else
return Ent;
end if;
end Get_Generic_Entity;
-------------------------------------
-- Get_Incomplete_View_Of_Ancestor --
-------------------------------------
function Get_Incomplete_View_Of_Ancestor (E : Entity_Id) return Entity_Id is
Cur_Unit : constant Entity_Id := Cunit_Entity (Current_Sem_Unit);
Par_Scope : Entity_Id;
Par_Type : Entity_Id;
begin
-- The incomplete view of an ancestor is only relevant for private
-- derived types in child units.
if not Is_Derived_Type (E)
or else not Is_Child_Unit (Cur_Unit)
then
return Empty;
else
Par_Scope := Scope (Cur_Unit);
if No (Par_Scope) then
return Empty;
end if;
Par_Type := Etype (Base_Type (E));
-- Traverse list of ancestor types until we find one declared in
-- a parent or grandparent unit (two levels seem sufficient).
while Present (Par_Type) loop
if Scope (Par_Type) = Par_Scope
or else Scope (Par_Type) = Scope (Par_Scope)
then
return Par_Type;
elsif not Is_Derived_Type (Par_Type) then
return Empty;
else
Par_Type := Etype (Base_Type (Par_Type));
end if;
end loop;
-- If none found, there is no relevant ancestor type.
return Empty;
end if;
end Get_Incomplete_View_Of_Ancestor;
----------------------
-- Get_Index_Bounds --
----------------------
procedure Get_Index_Bounds
(N : Node_Id;
L : out Node_Id;
H : out Node_Id;
Use_Full_View : Boolean := False)
is
function Scalar_Range_Of_Type (Typ : Entity_Id) return Node_Id;
-- Obtain the scalar range of type Typ. If flag Use_Full_View is set and
-- Typ qualifies, the scalar range is obtained from the full view of the
-- type.
--------------------------
-- Scalar_Range_Of_Type --
--------------------------
function Scalar_Range_Of_Type (Typ : Entity_Id) return Node_Id is
T : Entity_Id := Typ;
begin
if Use_Full_View and then Present (Full_View (T)) then
T := Full_View (T);
end if;
return Scalar_Range (T);
end Scalar_Range_Of_Type;
-- Local variables
Kind : constant Node_Kind := Nkind (N);
Rng : Node_Id;
-- Start of processing for Get_Index_Bounds
begin
if Kind = N_Range then
L := Low_Bound (N);
H := High_Bound (N);
elsif Kind = N_Subtype_Indication then
Rng := Range_Expression (Constraint (N));
if Rng = Error then
L := Error;
H := Error;
return;
else
L := Low_Bound (Range_Expression (Constraint (N)));
H := High_Bound (Range_Expression (Constraint (N)));
end if;
elsif Is_Entity_Name (N) and then Is_Type (Entity (N)) then
Rng := Scalar_Range_Of_Type (Entity (N));
if Error_Posted (Rng) then
L := Error;
H := Error;
elsif Nkind (Rng) = N_Subtype_Indication then
Get_Index_Bounds (Rng, L, H);
else
L := Low_Bound (Rng);
H := High_Bound (Rng);
end if;
else
-- N is an expression, indicating a range with one value
L := N;
H := N;
end if;
end Get_Index_Bounds;
-----------------------------
-- Get_Interfacing_Aspects --
-----------------------------
procedure Get_Interfacing_Aspects
(Iface_Asp : Node_Id;
Conv_Asp : out Node_Id;
EN_Asp : out Node_Id;
Expo_Asp : out Node_Id;
Imp_Asp : out Node_Id;
LN_Asp : out Node_Id;
Do_Checks : Boolean := False)
is
procedure Save_Or_Duplication_Error
(Asp : Node_Id;
To : in out Node_Id);
-- Save the value of aspect Asp in node To. If To already has a value,
-- then this is considered a duplicate use of aspect. Emit an error if
-- flag Do_Checks is set.
-------------------------------
-- Save_Or_Duplication_Error --
-------------------------------
procedure Save_Or_Duplication_Error
(Asp : Node_Id;
To : in out Node_Id)
is
begin
-- Detect an extra aspect and issue an error
if Present (To) then
if Do_Checks then
Error_Msg_Name_1 := Chars (Identifier (Asp));
Error_Msg_Sloc := Sloc (To);
Error_Msg_N ("aspect % previously given #", Asp);
end if;
-- Otherwise capture the aspect
else
To := Asp;
end if;
end Save_Or_Duplication_Error;
-- Local variables
Asp : Node_Id;
Asp_Id : Aspect_Id;
-- The following variables capture each individual aspect
Conv : Node_Id := Empty;
EN : Node_Id := Empty;
Expo : Node_Id := Empty;
Imp : Node_Id := Empty;
LN : Node_Id := Empty;
-- Start of processing for Get_Interfacing_Aspects
begin
-- The input interfacing aspect should reside in an aspect specification
-- list.
pragma Assert (Is_List_Member (Iface_Asp));
-- Examine the aspect specifications of the related entity. Find and
-- capture all interfacing aspects. Detect duplicates and emit errors
-- if applicable.
Asp := First (List_Containing (Iface_Asp));
while Present (Asp) loop
Asp_Id := Get_Aspect_Id (Asp);
if Asp_Id = Aspect_Convention then
Save_Or_Duplication_Error (Asp, Conv);
elsif Asp_Id = Aspect_External_Name then
Save_Or_Duplication_Error (Asp, EN);
elsif Asp_Id = Aspect_Export then
Save_Or_Duplication_Error (Asp, Expo);
elsif Asp_Id = Aspect_Import then
Save_Or_Duplication_Error (Asp, Imp);
elsif Asp_Id = Aspect_Link_Name then
Save_Or_Duplication_Error (Asp, LN);
end if;
Next (Asp);
end loop;
Conv_Asp := Conv;
EN_Asp := EN;
Expo_Asp := Expo;
Imp_Asp := Imp;
LN_Asp := LN;
end Get_Interfacing_Aspects;
---------------------------------
-- Get_Iterable_Type_Primitive --
---------------------------------
function Get_Iterable_Type_Primitive
(Typ : Entity_Id;
Nam : Name_Id) return Entity_Id
is
Funcs : constant Node_Id := Find_Value_Of_Aspect (Typ, Aspect_Iterable);
Assoc : Node_Id;
begin
if No (Funcs) then
return Empty;
else
Assoc := First (Component_Associations (Funcs));
while Present (Assoc) loop
if Chars (First (Choices (Assoc))) = Nam then
return Entity (Expression (Assoc));
end if;
Assoc := Next (Assoc);
end loop;
return Empty;
end if;
end Get_Iterable_Type_Primitive;
----------------------------------
-- Get_Library_Unit_Name_string --
----------------------------------
procedure Get_Library_Unit_Name_String (Decl_Node : Node_Id) is
Unit_Name_Id : constant Unit_Name_Type := Get_Unit_Name (Decl_Node);
begin
Get_Unit_Name_String (Unit_Name_Id);
-- Remove seven last character (" (spec)" or " (body)")
Name_Len := Name_Len - 7;
pragma Assert (Name_Buffer (Name_Len + 1) = ' ');
end Get_Library_Unit_Name_String;
--------------------------
-- Get_Max_Queue_Length --
--------------------------
function Get_Max_Queue_Length (Id : Entity_Id) return Uint is
pragma Assert (Is_Entry (Id));
Prag : constant Entity_Id := Get_Pragma (Id, Pragma_Max_Queue_Length);
begin
-- A value of 0 represents no maximum specified, and entries and entry
-- families with no Max_Queue_Length aspect or pragma default to it.
if not Present (Prag) then
return Uint_0;
end if;
return Intval (Expression (First (Pragma_Argument_Associations (Prag))));
end Get_Max_Queue_Length;
------------------------
-- Get_Name_Entity_Id --
------------------------
function Get_Name_Entity_Id (Id : Name_Id) return Entity_Id is
begin
return Entity_Id (Get_Name_Table_Int (Id));
end Get_Name_Entity_Id;
------------------------------
-- Get_Name_From_CTC_Pragma --
------------------------------
function Get_Name_From_CTC_Pragma (N : Node_Id) return String_Id is
Arg : constant Node_Id :=
Get_Pragma_Arg (First (Pragma_Argument_Associations (N)));
begin
return Strval (Expr_Value_S (Arg));
end Get_Name_From_CTC_Pragma;
-----------------------
-- Get_Parent_Entity --
-----------------------
function Get_Parent_Entity (Unit : Node_Id) return Entity_Id is
begin
if Nkind (Unit) = N_Package_Body
and then Nkind (Original_Node (Unit)) = N_Package_Instantiation
then
return Defining_Entity
(Specification (Instance_Spec (Original_Node (Unit))));
elsif Nkind (Unit) = N_Package_Instantiation then
return Defining_Entity (Specification (Instance_Spec (Unit)));
else
return Defining_Entity (Unit);
end if;
end Get_Parent_Entity;
-------------------
-- Get_Pragma_Id --
-------------------
function Get_Pragma_Id (N : Node_Id) return Pragma_Id is
begin
return Get_Pragma_Id (Pragma_Name_Unmapped (N));
end Get_Pragma_Id;
------------------------
-- Get_Qualified_Name --
------------------------
function Get_Qualified_Name
(Id : Entity_Id;
Suffix : Entity_Id := Empty) return Name_Id
is
Suffix_Nam : Name_Id := No_Name;
begin
if Present (Suffix) then
Suffix_Nam := Chars (Suffix);
end if;
return Get_Qualified_Name (Chars (Id), Suffix_Nam, Scope (Id));
end Get_Qualified_Name;
function Get_Qualified_Name
(Nam : Name_Id;
Suffix : Name_Id := No_Name;
Scop : Entity_Id := Current_Scope) return Name_Id
is
procedure Add_Scope (S : Entity_Id);
-- Add the fully qualified form of scope S to the name buffer. The
-- format is:
-- s-1__s__
---------------
-- Add_Scope --
---------------
procedure Add_Scope (S : Entity_Id) is
begin
if S = Empty then
null;
elsif S = Standard_Standard then
null;
else
Add_Scope (Scope (S));
Get_Name_String_And_Append (Chars (S));
Add_Str_To_Name_Buffer ("__");
end if;
end Add_Scope;
-- Start of processing for Get_Qualified_Name
begin
Name_Len := 0;
Add_Scope (Scop);
-- Append the base name after all scopes have been chained
Get_Name_String_And_Append (Nam);
-- Append the suffix (if present)
if Suffix /= No_Name then
Add_Str_To_Name_Buffer ("__");
Get_Name_String_And_Append (Suffix);
end if;
return Name_Find;
end Get_Qualified_Name;
-----------------------
-- Get_Reason_String --
-----------------------
procedure Get_Reason_String (N : Node_Id) is
begin
if Nkind (N) = N_String_Literal then
Store_String_Chars (Strval (N));
elsif Nkind (N) = N_Op_Concat then
Get_Reason_String (Left_Opnd (N));
Get_Reason_String (Right_Opnd (N));
-- If not of required form, error
else
Error_Msg_N
("Reason for pragma Warnings has wrong form", N);
Error_Msg_N
("\must be string literal or concatenation of string literals", N);
return;
end if;
end Get_Reason_String;
--------------------------------
-- Get_Reference_Discriminant --
--------------------------------
function Get_Reference_Discriminant (Typ : Entity_Id) return Entity_Id is
D : Entity_Id;
begin
D := First_Discriminant (Typ);
while Present (D) loop
if Has_Implicit_Dereference (D) then
return D;
end if;
Next_Discriminant (D);
end loop;
return Empty;
end Get_Reference_Discriminant;
---------------------------
-- Get_Referenced_Object --
---------------------------
function Get_Referenced_Object (N : Node_Id) return Node_Id is
R : Node_Id;
begin
R := N;
while Is_Entity_Name (R)
and then Present (Renamed_Object (Entity (R)))
loop
R := Renamed_Object (Entity (R));
end loop;
return R;
end Get_Referenced_Object;
------------------------
-- Get_Renamed_Entity --
------------------------
function Get_Renamed_Entity (E : Entity_Id) return Entity_Id is
R : Entity_Id;
begin
R := E;
while Present (Renamed_Entity (R)) loop
R := Renamed_Entity (R);
end loop;
return R;
end Get_Renamed_Entity;
-----------------------
-- Get_Return_Object --
-----------------------
function Get_Return_Object (N : Node_Id) return Entity_Id is
Decl : Node_Id;
begin
Decl := First (Return_Object_Declarations (N));
while Present (Decl) loop
exit when Nkind (Decl) = N_Object_Declaration
and then Is_Return_Object (Defining_Identifier (Decl));
Next (Decl);
end loop;
pragma Assert (Present (Decl));
return Defining_Identifier (Decl);
end Get_Return_Object;
---------------------------
-- Get_Subprogram_Entity --
---------------------------
function Get_Subprogram_Entity (Nod : Node_Id) return Entity_Id is
Subp : Node_Id;
Subp_Id : Entity_Id;
begin
if Nkind (Nod) = N_Accept_Statement then
Subp := Entry_Direct_Name (Nod);
elsif Nkind (Nod) = N_Slice then
Subp := Prefix (Nod);
else
Subp := Name (Nod);
end if;
-- Strip the subprogram call
loop
if Nkind_In (Subp, N_Explicit_Dereference,
N_Indexed_Component,
N_Selected_Component)
then
Subp := Prefix (Subp);
elsif Nkind_In (Subp, N_Type_Conversion,
N_Unchecked_Type_Conversion)
then
Subp := Expression (Subp);
else
exit;
end if;
end loop;
-- Extract the entity of the subprogram call
if Is_Entity_Name (Subp) then
Subp_Id := Entity (Subp);
if Ekind (Subp_Id) = E_Access_Subprogram_Type then
Subp_Id := Directly_Designated_Type (Subp_Id);
end if;
if Is_Subprogram (Subp_Id) then
return Subp_Id;
else
return Empty;
end if;
-- The search did not find a construct that denotes a subprogram
else
return Empty;
end if;
end Get_Subprogram_Entity;
-----------------------------
-- Get_Task_Body_Procedure --
-----------------------------
function Get_Task_Body_Procedure (E : Entity_Id) return Entity_Id is
begin
-- Note: A task type may be the completion of a private type with
-- discriminants. When performing elaboration checks on a task
-- declaration, the current view of the type may be the private one,
-- and the procedure that holds the body of the task is held in its
-- underlying type.
-- This is an odd function, why not have Task_Body_Procedure do
-- the following digging???
return Task_Body_Procedure (Underlying_Type (Root_Type (E)));
end Get_Task_Body_Procedure;
-------------------------
-- Get_User_Defined_Eq --
-------------------------
function Get_User_Defined_Eq (E : Entity_Id) return Entity_Id is
Prim : Elmt_Id;
Op : Entity_Id;
begin
Prim := First_Elmt (Collect_Primitive_Operations (E));
while Present (Prim) loop
Op := Node (Prim);
if Chars (Op) = Name_Op_Eq
and then Etype (Op) = Standard_Boolean
and then Etype (First_Formal (Op)) = E
and then Etype (Next_Formal (First_Formal (Op))) = E
then
return Op;
end if;
Next_Elmt (Prim);
end loop;
return Empty;
end Get_User_Defined_Eq;
---------------
-- Get_Views --
---------------
procedure Get_Views
(Typ : Entity_Id;
Priv_Typ : out Entity_Id;
Full_Typ : out Entity_Id;
Full_Base : out Entity_Id;
CRec_Typ : out Entity_Id)
is
IP_View : Entity_Id;
begin
-- Assume that none of the views can be recovered
Priv_Typ := Empty;
Full_Typ := Empty;
Full_Base := Empty;
CRec_Typ := Empty;
-- The input type is the corresponding record type of a protected or a
-- task type.
if Ekind (Typ) = E_Record_Type
and then Is_Concurrent_Record_Type (Typ)
then
CRec_Typ := Typ;
Full_Typ := Corresponding_Concurrent_Type (CRec_Typ);
Full_Base := Base_Type (Full_Typ);
Priv_Typ := Incomplete_Or_Partial_View (Full_Typ);
-- Otherwise the input type denotes an arbitrary type
else
IP_View := Incomplete_Or_Partial_View (Typ);
-- The input type denotes the full view of a private type
if Present (IP_View) then
Priv_Typ := IP_View;
Full_Typ := Typ;
-- The input type is a private type
elsif Is_Private_Type (Typ) then
Priv_Typ := Typ;
Full_Typ := Full_View (Priv_Typ);
-- Otherwise the input type does not have any views
else
Full_Typ := Typ;
end if;
if Present (Full_Typ) then
Full_Base := Base_Type (Full_Typ);
if Ekind_In (Full_Typ, E_Protected_Type, E_Task_Type) then
CRec_Typ := Corresponding_Record_Type (Full_Typ);
end if;
end if;
end if;
end Get_Views;
-----------------------
-- Has_Access_Values --
-----------------------
function Has_Access_Values (T : Entity_Id) return Boolean is
Typ : constant Entity_Id := Underlying_Type (T);
begin
-- Case of a private type which is not completed yet. This can only
-- happen in the case of a generic format type appearing directly, or
-- as a component of the type to which this function is being applied
-- at the top level. Return False in this case, since we certainly do
-- not know that the type contains access types.
if No (Typ) then
return False;
elsif Is_Access_Type (Typ) then
return True;
elsif Is_Array_Type (Typ) then
return Has_Access_Values (Component_Type (Typ));
elsif Is_Record_Type (Typ) then
declare
Comp : Entity_Id;
begin
-- Loop to Check components
Comp := First_Component_Or_Discriminant (Typ);
while Present (Comp) loop
-- Check for access component, tag field does not count, even
-- though it is implemented internally using an access type.
if Has_Access_Values (Etype (Comp))
and then Chars (Comp) /= Name_uTag
then
return True;
end if;
Next_Component_Or_Discriminant (Comp);
end loop;
end;
return False;
else
return False;
end if;
end Has_Access_Values;
------------------------------
-- Has_Compatible_Alignment --
------------------------------
function Has_Compatible_Alignment
(Obj : Entity_Id;
Expr : Node_Id;
Layout_Done : Boolean) return Alignment_Result
is
function Has_Compatible_Alignment_Internal
(Obj : Entity_Id;
Expr : Node_Id;
Layout_Done : Boolean;
Default : Alignment_Result) return Alignment_Result;
-- This is the internal recursive function that actually does the work.
-- There is one additional parameter, which says what the result should
-- be if no alignment information is found, and there is no definite
-- indication of compatible alignments. At the outer level, this is set
-- to Unknown, but for internal recursive calls in the case where types
-- are known to be correct, it is set to Known_Compatible.
---------------------------------------
-- Has_Compatible_Alignment_Internal --
---------------------------------------
function Has_Compatible_Alignment_Internal
(Obj : Entity_Id;
Expr : Node_Id;
Layout_Done : Boolean;
Default : Alignment_Result) return Alignment_Result
is
Result : Alignment_Result := Known_Compatible;
-- Holds the current status of the result. Note that once a value of
-- Known_Incompatible is set, it is sticky and does not get changed
-- to Unknown (the value in Result only gets worse as we go along,
-- never better).
Offs : Uint := No_Uint;
-- Set to a factor of the offset from the base object when Expr is a
-- selected or indexed component, based on Component_Bit_Offset and
-- Component_Size respectively. A negative value is used to represent
-- a value which is not known at compile time.
procedure Check_Prefix;
-- Checks the prefix recursively in the case where the expression
-- is an indexed or selected component.
procedure Set_Result (R : Alignment_Result);
-- If R represents a worse outcome (unknown instead of known
-- compatible, or known incompatible), then set Result to R.
------------------
-- Check_Prefix --
------------------
procedure Check_Prefix is
begin
-- The subtlety here is that in doing a recursive call to check
-- the prefix, we have to decide what to do in the case where we
-- don't find any specific indication of an alignment problem.
-- At the outer level, we normally set Unknown as the result in
-- this case, since we can only set Known_Compatible if we really
-- know that the alignment value is OK, but for the recursive
-- call, in the case where the types match, and we have not
-- specified a peculiar alignment for the object, we are only
-- concerned about suspicious rep clauses, the default case does
-- not affect us, since the compiler will, in the absence of such
-- rep clauses, ensure that the alignment is correct.
if Default = Known_Compatible
or else
(Etype (Obj) = Etype (Expr)
and then (Unknown_Alignment (Obj)
or else
Alignment (Obj) = Alignment (Etype (Obj))))
then
Set_Result
(Has_Compatible_Alignment_Internal
(Obj, Prefix (Expr), Layout_Done, Known_Compatible));
-- In all other cases, we need a full check on the prefix
else
Set_Result
(Has_Compatible_Alignment_Internal
(Obj, Prefix (Expr), Layout_Done, Unknown));
end if;
end Check_Prefix;
----------------
-- Set_Result --
----------------
procedure Set_Result (R : Alignment_Result) is
begin
if R > Result then
Result := R;
end if;
end Set_Result;
-- Start of processing for Has_Compatible_Alignment_Internal
begin
-- If Expr is a selected component, we must make sure there is no
-- potentially troublesome component clause and that the record is
-- not packed if the layout is not done.
if Nkind (Expr) = N_Selected_Component then
-- Packing generates unknown alignment if layout is not done
if Is_Packed (Etype (Prefix (Expr))) and then not Layout_Done then
Set_Result (Unknown);
end if;
-- Check prefix and component offset
Check_Prefix;
Offs := Component_Bit_Offset (Entity (Selector_Name (Expr)));
-- If Expr is an indexed component, we must make sure there is no
-- potentially troublesome Component_Size clause and that the array
-- is not bit-packed if the layout is not done.
elsif Nkind (Expr) = N_Indexed_Component then
declare
Typ : constant Entity_Id := Etype (Prefix (Expr));
begin
-- Packing generates unknown alignment if layout is not done
if Is_Bit_Packed_Array (Typ) and then not Layout_Done then
Set_Result (Unknown);
end if;
-- Check prefix and component offset (or at least size)
Check_Prefix;
Offs := Indexed_Component_Bit_Offset (Expr);
if Offs = No_Uint then
Offs := Component_Size (Typ);
end if;
end;
end if;
-- If we have a null offset, the result is entirely determined by
-- the base object and has already been computed recursively.
if Offs = Uint_0 then
null;
-- Case where we know the alignment of the object
elsif Known_Alignment (Obj) then
declare
ObjA : constant Uint := Alignment (Obj);
ExpA : Uint := No_Uint;
SizA : Uint := No_Uint;
begin
-- If alignment of Obj is 1, then we are always OK
if ObjA = 1 then
Set_Result (Known_Compatible);
-- Alignment of Obj is greater than 1, so we need to check
else
-- If we have an offset, see if it is compatible
if Offs /= No_Uint and Offs > Uint_0 then
if Offs mod (System_Storage_Unit * ObjA) /= 0 then
Set_Result (Known_Incompatible);
end if;
-- See if Expr is an object with known alignment
elsif Is_Entity_Name (Expr)
and then Known_Alignment (Entity (Expr))
then
ExpA := Alignment (Entity (Expr));
-- Otherwise, we can use the alignment of the type of
-- Expr given that we already checked for
-- discombobulating rep clauses for the cases of indexed
-- and selected components above.
elsif Known_Alignment (Etype (Expr)) then
ExpA := Alignment (Etype (Expr));
-- Otherwise the alignment is unknown
else
Set_Result (Default);
end if;
-- If we got an alignment, see if it is acceptable
if ExpA /= No_Uint and then ExpA < ObjA then
Set_Result (Known_Incompatible);
end if;
-- If Expr is not a piece of a larger object, see if size
-- is given. If so, check that it is not too small for the
-- required alignment.
if Offs /= No_Uint then
null;
-- See if Expr is an object with known size
elsif Is_Entity_Name (Expr)
and then Known_Static_Esize (Entity (Expr))
then
SizA := Esize (Entity (Expr));
-- Otherwise, we check the object size of the Expr type
elsif Known_Static_Esize (Etype (Expr)) then
SizA := Esize (Etype (Expr));
end if;
-- If we got a size, see if it is a multiple of the Obj
-- alignment, if not, then the alignment cannot be
-- acceptable, since the size is always a multiple of the
-- alignment.
if SizA /= No_Uint then
if SizA mod (ObjA * Ttypes.System_Storage_Unit) /= 0 then
Set_Result (Known_Incompatible);
end if;
end if;
end if;
end;
-- If we do not know required alignment, any non-zero offset is a
-- potential problem (but certainly may be OK, so result is unknown).
elsif Offs /= No_Uint then
Set_Result (Unknown);
-- If we can't find the result by direct comparison of alignment
-- values, then there is still one case that we can determine known
-- result, and that is when we can determine that the types are the
-- same, and no alignments are specified. Then we known that the
-- alignments are compatible, even if we don't know the alignment
-- value in the front end.
elsif Etype (Obj) = Etype (Expr) then
-- Types are the same, but we have to check for possible size
-- and alignments on the Expr object that may make the alignment
-- different, even though the types are the same.
if Is_Entity_Name (Expr) then
-- First check alignment of the Expr object. Any alignment less
-- than Maximum_Alignment is worrisome since this is the case
-- where we do not know the alignment of Obj.
if Known_Alignment (Entity (Expr))
and then UI_To_Int (Alignment (Entity (Expr))) <
Ttypes.Maximum_Alignment
then
Set_Result (Unknown);
-- Now check size of Expr object. Any size that is not an
-- even multiple of Maximum_Alignment is also worrisome
-- since it may cause the alignment of the object to be less
-- than the alignment of the type.
elsif Known_Static_Esize (Entity (Expr))
and then
(UI_To_Int (Esize (Entity (Expr))) mod
(Ttypes.Maximum_Alignment * Ttypes.System_Storage_Unit))
/= 0
then
Set_Result (Unknown);
-- Otherwise same type is decisive
else
Set_Result (Known_Compatible);
end if;
end if;
-- Another case to deal with is when there is an explicit size or
-- alignment clause when the types are not the same. If so, then the
-- result is Unknown. We don't need to do this test if the Default is
-- Unknown, since that result will be set in any case.
elsif Default /= Unknown
and then (Has_Size_Clause (Etype (Expr))
or else
Has_Alignment_Clause (Etype (Expr)))
then
Set_Result (Unknown);
-- If no indication found, set default
else
Set_Result (Default);
end if;
-- Return worst result found
return Result;
end Has_Compatible_Alignment_Internal;
-- Start of processing for Has_Compatible_Alignment
begin
-- If Obj has no specified alignment, then set alignment from the type
-- alignment. Perhaps we should always do this, but for sure we should
-- do it when there is an address clause since we can do more if the
-- alignment is known.
if Unknown_Alignment (Obj) then
Set_Alignment (Obj, Alignment (Etype (Obj)));
end if;
-- Now do the internal call that does all the work
return
Has_Compatible_Alignment_Internal (Obj, Expr, Layout_Done, Unknown);
end Has_Compatible_Alignment;
----------------------
-- Has_Declarations --
----------------------
function Has_Declarations (N : Node_Id) return Boolean is
begin
return Nkind_In (Nkind (N), N_Accept_Statement,
N_Block_Statement,
N_Compilation_Unit_Aux,
N_Entry_Body,
N_Package_Body,
N_Protected_Body,
N_Subprogram_Body,
N_Task_Body,
N_Package_Specification);
end Has_Declarations;
---------------------------------
-- Has_Defaulted_Discriminants --
---------------------------------
function Has_Defaulted_Discriminants (Typ : Entity_Id) return Boolean is
begin
return Has_Discriminants (Typ)
and then Present (First_Discriminant (Typ))
and then Present (Discriminant_Default_Value
(First_Discriminant (Typ)));
end Has_Defaulted_Discriminants;
-------------------
-- Has_Denormals --
-------------------
function Has_Denormals (E : Entity_Id) return Boolean is
begin
return Is_Floating_Point_Type (E) and then Denorm_On_Target;
end Has_Denormals;
-------------------------------------------
-- Has_Discriminant_Dependent_Constraint --
-------------------------------------------
function Has_Discriminant_Dependent_Constraint
(Comp : Entity_Id) return Boolean
is
Comp_Decl : constant Node_Id := Parent (Comp);
Subt_Indic : Node_Id;
Constr : Node_Id;
Assn : Node_Id;
begin
-- Discriminants can't depend on discriminants
if Ekind (Comp) = E_Discriminant then
return False;
else
Subt_Indic := Subtype_Indication (Component_Definition (Comp_Decl));
if Nkind (Subt_Indic) = N_Subtype_Indication then
Constr := Constraint (Subt_Indic);
if Nkind (Constr) = N_Index_Or_Discriminant_Constraint then
Assn := First (Constraints (Constr));
while Present (Assn) loop
case Nkind (Assn) is
when N_Identifier
| N_Range
| N_Subtype_Indication
=>
if Depends_On_Discriminant (Assn) then
return True;
end if;
when N_Discriminant_Association =>
if Depends_On_Discriminant (Expression (Assn)) then
return True;
end if;
when others =>
null;
end case;
Next (Assn);
end loop;
end if;
end if;
end if;
return False;
end Has_Discriminant_Dependent_Constraint;
--------------------------------------
-- Has_Effectively_Volatile_Profile --
--------------------------------------
function Has_Effectively_Volatile_Profile
(Subp_Id : Entity_Id) return Boolean
is
Formal : Entity_Id;
begin
-- Inspect the formal parameters looking for an effectively volatile
-- type.
Formal := First_Formal (Subp_Id);
while Present (Formal) loop
if Is_Effectively_Volatile (Etype (Formal)) then
return True;
end if;
Next_Formal (Formal);
end loop;
-- Inspect the return type of functions
if Ekind_In (Subp_Id, E_Function, E_Generic_Function)
and then Is_Effectively_Volatile (Etype (Subp_Id))
then
return True;
end if;
return False;
end Has_Effectively_Volatile_Profile;
--------------------------
-- Has_Enabled_Property --
--------------------------
function Has_Enabled_Property
(Item_Id : Entity_Id;
Property : Name_Id) return Boolean
is
function Protected_Object_Has_Enabled_Property return Boolean;
-- Determine whether a protected object denoted by Item_Id has the
-- property enabled.
function State_Has_Enabled_Property return Boolean;
-- Determine whether a state denoted by Item_Id has the property enabled
function Variable_Has_Enabled_Property return Boolean;
-- Determine whether a variable denoted by Item_Id has the property
-- enabled.
-------------------------------------------
-- Protected_Object_Has_Enabled_Property --
-------------------------------------------
function Protected_Object_Has_Enabled_Property return Boolean is
Constits : constant Elist_Id := Part_Of_Constituents (Item_Id);
Constit_Elmt : Elmt_Id;
Constit_Id : Entity_Id;
begin
-- Protected objects always have the properties Async_Readers and
-- Async_Writers (SPARK RM 7.1.2(16)).
if Property = Name_Async_Readers
or else Property = Name_Async_Writers
then
return True;
-- Protected objects that have Part_Of components also inherit their
-- properties Effective_Reads and Effective_Writes
-- (SPARK RM 7.1.2(16)).
elsif Present (Constits) then
Constit_Elmt := First_Elmt (Constits);
while Present (Constit_Elmt) loop
Constit_Id := Node (Constit_Elmt);
if Has_Enabled_Property (Constit_Id, Property) then
return True;
end if;
Next_Elmt (Constit_Elmt);
end loop;
end if;
return False;
end Protected_Object_Has_Enabled_Property;
--------------------------------
-- State_Has_Enabled_Property --
--------------------------------
function State_Has_Enabled_Property return Boolean is
Decl : constant Node_Id := Parent (Item_Id);
Opt : Node_Id;
Opt_Nam : Node_Id;
Prop : Node_Id;
Prop_Nam : Node_Id;
Props : Node_Id;
begin
-- The declaration of an external abstract state appears as an
-- extension aggregate. If this is not the case, properties can never
-- be set.
if Nkind (Decl) /= N_Extension_Aggregate then
return False;
end if;
-- When External appears as a simple option, it automatically enables
-- all properties.
Opt := First (Expressions (Decl));
while Present (Opt) loop
if Nkind (Opt) = N_Identifier
and then Chars (Opt) = Name_External
then
return True;
end if;
Next (Opt);
end loop;
-- When External specifies particular properties, inspect those and
-- find the desired one (if any).
Opt := First (Component_Associations (Decl));
while Present (Opt) loop
Opt_Nam := First (Choices (Opt));
if Nkind (Opt_Nam) = N_Identifier
and then Chars (Opt_Nam) = Name_External
then
Props := Expression (Opt);
-- Multiple properties appear as an aggregate
if Nkind (Props) = N_Aggregate then
-- Simple property form
Prop := First (Expressions (Props));
while Present (Prop) loop
if Chars (Prop) = Property then
return True;
end if;
Next (Prop);
end loop;
-- Property with expression form
Prop := First (Component_Associations (Props));
while Present (Prop) loop
Prop_Nam := First (Choices (Prop));
-- The property can be represented in two ways:
-- others => <value>
-- <property> => <value>
if Nkind (Prop_Nam) = N_Others_Choice
or else (Nkind (Prop_Nam) = N_Identifier
and then Chars (Prop_Nam) = Property)
then
return Is_True (Expr_Value (Expression (Prop)));
end if;
Next (Prop);
end loop;
-- Single property
else
return Chars (Props) = Property;
end if;
end if;
Next (Opt);
end loop;
return False;
end State_Has_Enabled_Property;
-----------------------------------
-- Variable_Has_Enabled_Property --
-----------------------------------
function Variable_Has_Enabled_Property return Boolean is
function Is_Enabled (Prag : Node_Id) return Boolean;
-- Determine whether property pragma Prag (if present) denotes an
-- enabled property.
----------------
-- Is_Enabled --
----------------
function Is_Enabled (Prag : Node_Id) return Boolean is
Arg1 : Node_Id;
begin
if Present (Prag) then
Arg1 := First (Pragma_Argument_Associations (Prag));
-- The pragma has an optional Boolean expression, the related
-- property is enabled only when the expression evaluates to
-- True.
if Present (Arg1) then
return Is_True (Expr_Value (Get_Pragma_Arg (Arg1)));
-- Otherwise the lack of expression enables the property by
-- default.
else
return True;
end if;
-- The property was never set in the first place
else
return False;
end if;
end Is_Enabled;
-- Local variables
AR : constant Node_Id :=
Get_Pragma (Item_Id, Pragma_Async_Readers);
AW : constant Node_Id :=
Get_Pragma (Item_Id, Pragma_Async_Writers);
ER : constant Node_Id :=
Get_Pragma (Item_Id, Pragma_Effective_Reads);
EW : constant Node_Id :=
Get_Pragma (Item_Id, Pragma_Effective_Writes);
-- Start of processing for Variable_Has_Enabled_Property
begin
-- A non-effectively volatile object can never possess external
-- properties.
if not Is_Effectively_Volatile (Item_Id) then
return False;
-- External properties related to variables come in two flavors -
-- explicit and implicit. The explicit case is characterized by the
-- presence of a property pragma with an optional Boolean flag. The
-- property is enabled when the flag evaluates to True or the flag is
-- missing altogether.
elsif Property = Name_Async_Readers and then Is_Enabled (AR) then
return True;
elsif Property = Name_Async_Writers and then Is_Enabled (AW) then
return True;
elsif Property = Name_Effective_Reads and then Is_Enabled (ER) then
return True;
elsif Property = Name_Effective_Writes and then Is_Enabled (EW) then
return True;
-- The implicit case lacks all property pragmas
elsif No (AR) and then No (AW) and then No (ER) and then No (EW) then
if Is_Protected_Type (Etype (Item_Id)) then
return Protected_Object_Has_Enabled_Property;
else
return True;
end if;
else
return False;
end if;
end Variable_Has_Enabled_Property;
-- Start of processing for Has_Enabled_Property
begin
-- Abstract states and variables have a flexible scheme of specifying
-- external properties.
if Ekind (Item_Id) = E_Abstract_State then
return State_Has_Enabled_Property;
elsif Ekind (Item_Id) = E_Variable then
return Variable_Has_Enabled_Property;
-- By default, protected objects only have the properties Async_Readers
-- and Async_Writers. If they have Part_Of components, they also inherit
-- their properties Effective_Reads and Effective_Writes
-- (SPARK RM 7.1.2(16)).
elsif Ekind (Item_Id) = E_Protected_Object then
return Protected_Object_Has_Enabled_Property;
-- Otherwise a property is enabled when the related item is effectively
-- volatile.
else
return Is_Effectively_Volatile (Item_Id);
end if;
end Has_Enabled_Property;
-------------------------------------
-- Has_Full_Default_Initialization --
-------------------------------------
function Has_Full_Default_Initialization (Typ : Entity_Id) return Boolean is
Comp : Entity_Id;
begin
-- A type subject to pragma Default_Initial_Condition may be fully
-- default initialized depending on inheritance and the argument of
-- the pragma. Since any type may act as the full view of a private
-- type, this check must be performed prior to the specialized tests
-- below.
if Has_Fully_Default_Initializing_DIC_Pragma (Typ) then
return True;
end if;
-- A scalar type is fully default initialized if it is subject to aspect
-- Default_Value.
if Is_Scalar_Type (Typ) then
return Has_Default_Aspect (Typ);
-- An array type is fully default initialized if its element type is
-- scalar and the array type carries aspect Default_Component_Value or
-- the element type is fully default initialized.
elsif Is_Array_Type (Typ) then
return
Has_Default_Aspect (Typ)
or else Has_Full_Default_Initialization (Component_Type (Typ));
-- A protected type, record type, or type extension is fully default
-- initialized if all its components either carry an initialization
-- expression or have a type that is fully default initialized. The
-- parent type of a type extension must be fully default initialized.
elsif Is_Record_Type (Typ) or else Is_Protected_Type (Typ) then
-- Inspect all entities defined in the scope of the type, looking for
-- uninitialized components.
Comp := First_Entity (Typ);
while Present (Comp) loop
if Ekind (Comp) = E_Component
and then Comes_From_Source (Comp)
and then No (Expression (Parent (Comp)))
and then not Has_Full_Default_Initialization (Etype (Comp))
then
return False;
end if;
Next_Entity (Comp);
end loop;
-- Ensure that the parent type of a type extension is fully default
-- initialized.
if Etype (Typ) /= Typ
and then not Has_Full_Default_Initialization (Etype (Typ))
then
return False;
end if;
-- If we get here, then all components and parent portion are fully
-- default initialized.
return True;
-- A task type is fully default initialized by default
elsif Is_Task_Type (Typ) then
return True;
-- Otherwise the type is not fully default initialized
else
return False;
end if;
end Has_Full_Default_Initialization;
-----------------------------------------------
-- Has_Fully_Default_Initializing_DIC_Pragma --
-----------------------------------------------
function Has_Fully_Default_Initializing_DIC_Pragma
(Typ : Entity_Id) return Boolean
is
Args : List_Id;
Prag : Node_Id;
begin
-- A type that inherits pragma Default_Initial_Condition from a parent
-- type is automatically fully default initialized.
if Has_Inherited_DIC (Typ) then
return True;
-- Otherwise the type is fully default initialized only when the pragma
-- appears without an argument, or the argument is non-null.
elsif Has_Own_DIC (Typ) then
Prag := Get_Pragma (Typ, Pragma_Default_Initial_Condition);
pragma Assert (Present (Prag));
Args := Pragma_Argument_Associations (Prag);
-- The pragma appears without an argument in which case it defaults
-- to True.
if No (Args) then
return True;
-- The pragma appears with a non-null expression
elsif Nkind (Get_Pragma_Arg (First (Args))) /= N_Null then
return True;
end if;
end if;
return False;
end Has_Fully_Default_Initializing_DIC_Pragma;
--------------------
-- Has_Infinities --
--------------------
function Has_Infinities (E : Entity_Id) return Boolean is
begin
return
Is_Floating_Point_Type (E)
and then Nkind (Scalar_Range (E)) = N_Range
and then Includes_Infinities (Scalar_Range (E));
end Has_Infinities;
--------------------
-- Has_Interfaces --
--------------------
function Has_Interfaces
(T : Entity_Id;
Use_Full_View : Boolean := True) return Boolean
is
Typ : Entity_Id := Base_Type (T);
begin
-- Handle concurrent types
if Is_Concurrent_Type (Typ) then
Typ := Corresponding_Record_Type (Typ);
end if;
if not Present (Typ)
or else not Is_Record_Type (Typ)
or else not Is_Tagged_Type (Typ)
then
return False;
end if;
-- Handle private types
if Use_Full_View and then Present (Full_View (Typ)) then
Typ := Full_View (Typ);
end if;
-- Handle concurrent record types
if Is_Concurrent_Record_Type (Typ)
and then Is_Non_Empty_List (Abstract_Interface_List (Typ))
then
return True;
end if;
loop
if Is_Interface (Typ)
or else
(Is_Record_Type (Typ)
and then Present (Interfaces (Typ))
and then not Is_Empty_Elmt_List (Interfaces (Typ)))
then
return True;
end if;
exit when Etype (Typ) = Typ
-- Handle private types
or else (Present (Full_View (Etype (Typ)))
and then Full_View (Etype (Typ)) = Typ)
-- Protect frontend against wrong sources with cyclic derivations
or else Etype (Typ) = T;
-- Climb to the ancestor type handling private types
if Present (Full_View (Etype (Typ))) then
Typ := Full_View (Etype (Typ));
else
Typ := Etype (Typ);
end if;
end loop;
return False;
end Has_Interfaces;
--------------------------
-- Has_Max_Queue_Length --
--------------------------
function Has_Max_Queue_Length (Id : Entity_Id) return Boolean is
begin
return
Ekind (Id) = E_Entry
and then Present (Get_Pragma (Id, Pragma_Max_Queue_Length));
end Has_Max_Queue_Length;
---------------------------------
-- Has_No_Obvious_Side_Effects --
---------------------------------
function Has_No_Obvious_Side_Effects (N : Node_Id) return Boolean is
begin
-- For now handle literals, constants, and non-volatile variables and
-- expressions combining these with operators or short circuit forms.
if Nkind (N) in N_Numeric_Or_String_Literal then
return True;
elsif Nkind (N) = N_Character_Literal then
return True;
elsif Nkind (N) in N_Unary_Op then
return Has_No_Obvious_Side_Effects (Right_Opnd (N));
elsif Nkind (N) in N_Binary_Op or else Nkind (N) in N_Short_Circuit then
return Has_No_Obvious_Side_Effects (Left_Opnd (N))
and then
Has_No_Obvious_Side_Effects (Right_Opnd (N));
elsif Nkind (N) = N_Expression_With_Actions
and then Is_Empty_List (Actions (N))
then
return Has_No_Obvious_Side_Effects (Expression (N));
elsif Nkind (N) in N_Has_Entity then
return Present (Entity (N))
and then Ekind_In (Entity (N), E_Variable,
E_Constant,
E_Enumeration_Literal,
E_In_Parameter,
E_Out_Parameter,
E_In_Out_Parameter)
and then not Is_Volatile (Entity (N));
else
return False;
end if;
end Has_No_Obvious_Side_Effects;
-----------------------------
-- Has_Non_Null_Refinement --
-----------------------------
function Has_Non_Null_Refinement (Id : Entity_Id) return Boolean is
Constits : Elist_Id;
begin
pragma Assert (Ekind (Id) = E_Abstract_State);
Constits := Refinement_Constituents (Id);
-- For a refinement to be non-null, the first constituent must be
-- anything other than null.
return
Present (Constits)
and then Nkind (Node (First_Elmt (Constits))) /= N_Null;
end Has_Non_Null_Refinement;
-----------------------------
-- Has_Non_Null_Statements --
-----------------------------
function Has_Non_Null_Statements (L : List_Id) return Boolean is
Node : Node_Id;
begin
if Is_Non_Empty_List (L) then
Node := First (L);
loop
if Nkind (Node) /= N_Null_Statement then
return True;
end if;
Next (Node);
exit when Node = Empty;
end loop;
end if;
return False;
end Has_Non_Null_Statements;
----------------------------------
-- Has_Non_Trivial_Precondition --
----------------------------------
function Has_Non_Trivial_Precondition (Subp : Entity_Id) return Boolean is
Pre : constant Node_Id := Find_Aspect (Subp, Aspect_Pre);
begin
return
Present (Pre)
and then Class_Present (Pre)
and then not Is_Entity_Name (Expression (Pre));
end Has_Non_Trivial_Precondition;
-------------------
-- Has_Null_Body --
-------------------
function Has_Null_Body (Proc_Id : Entity_Id) return Boolean is
Body_Id : Entity_Id;
Decl : Node_Id;
Spec : Node_Id;
Stmt1 : Node_Id;
Stmt2 : Node_Id;
begin
Spec := Parent (Proc_Id);
Decl := Parent (Spec);
-- Retrieve the entity of the procedure body (e.g. invariant proc).
if Nkind (Spec) = N_Procedure_Specification
and then Nkind (Decl) = N_Subprogram_Declaration
then
Body_Id := Corresponding_Body (Decl);
-- The body acts as a spec
else
Body_Id := Proc_Id;
end if;
-- The body will be generated later
if No (Body_Id) then
return False;
end if;
Spec := Parent (Body_Id);
Decl := Parent (Spec);
pragma Assert
(Nkind (Spec) = N_Procedure_Specification
and then Nkind (Decl) = N_Subprogram_Body);
Stmt1 := First (Statements (Handled_Statement_Sequence (Decl)));
-- Look for a null statement followed by an optional return
-- statement.
if Nkind (Stmt1) = N_Null_Statement then
Stmt2 := Next (Stmt1);
if Present (Stmt2) then
return Nkind (Stmt2) = N_Simple_Return_Statement;
else
return True;
end if;
end if;
return False;
end Has_Null_Body;
------------------------
-- Has_Null_Exclusion --
------------------------
function Has_Null_Exclusion (N : Node_Id) return Boolean is
begin
case Nkind (N) is
when N_Access_Definition
| N_Access_Function_Definition
| N_Access_Procedure_Definition
| N_Access_To_Object_Definition
| N_Allocator
| N_Derived_Type_Definition
| N_Function_Specification
| N_Subtype_Declaration
=>
return Null_Exclusion_Present (N);
when N_Component_Definition
| N_Formal_Object_Declaration
| N_Object_Renaming_Declaration
=>
if Present (Subtype_Mark (N)) then
return Null_Exclusion_Present (N);
else pragma Assert (Present (Access_Definition (N)));
return Null_Exclusion_Present (Access_Definition (N));
end if;
when N_Discriminant_Specification =>
if Nkind (Discriminant_Type (N)) = N_Access_Definition then
return Null_Exclusion_Present (Discriminant_Type (N));
else
return Null_Exclusion_Present (N);
end if;
when N_Object_Declaration =>
if Nkind (Object_Definition (N)) = N_Access_Definition then
return Null_Exclusion_Present (Object_Definition (N));
else
return Null_Exclusion_Present (N);
end if;
when N_Parameter_Specification =>
if Nkind (Parameter_Type (N)) = N_Access_Definition then
return Null_Exclusion_Present (Parameter_Type (N));
else
return Null_Exclusion_Present (N);
end if;
when others =>
return False;
end case;
end Has_Null_Exclusion;
------------------------
-- Has_Null_Extension --
------------------------
function Has_Null_Extension (T : Entity_Id) return Boolean is
B : constant Entity_Id := Base_Type (T);
Comps : Node_Id;
Ext : Node_Id;
begin
if Nkind (Parent (B)) = N_Full_Type_Declaration
and then Present (Record_Extension_Part (Type_Definition (Parent (B))))
then
Ext := Record_Extension_Part (Type_Definition (Parent (B)));
if Present (Ext) then
if Null_Present (Ext) then
return True;
else
Comps := Component_List (Ext);
-- The null component list is rewritten during analysis to
-- include the parent component. Any other component indicates
-- that the extension was not originally null.
return Null_Present (Comps)
or else No (Next (First (Component_Items (Comps))));
end if;
else
return False;
end if;
else
return False;
end if;
end Has_Null_Extension;
-------------------------
-- Has_Null_Refinement --
-------------------------
function Has_Null_Refinement (Id : Entity_Id) return Boolean is
Constits : Elist_Id;
begin
pragma Assert (Ekind (Id) = E_Abstract_State);
Constits := Refinement_Constituents (Id);
-- For a refinement to be null, the state's sole constituent must be a
-- null.
return
Present (Constits)
and then Nkind (Node (First_Elmt (Constits))) = N_Null;
end Has_Null_Refinement;
-------------------------------
-- Has_Overriding_Initialize --
-------------------------------
function Has_Overriding_Initialize (T : Entity_Id) return Boolean is
BT : constant Entity_Id := Base_Type (T);
P : Elmt_Id;
begin
if Is_Controlled (BT) then
if Is_RTU (Scope (BT), Ada_Finalization) then
return False;
elsif Present (Primitive_Operations (BT)) then
P := First_Elmt (Primitive_Operations (BT));
while Present (P) loop
declare
Init : constant Entity_Id := Node (P);
Formal : constant Entity_Id := First_Formal (Init);
begin
if Ekind (Init) = E_Procedure
and then Chars (Init) = Name_Initialize
and then Comes_From_Source (Init)
and then Present (Formal)
and then Etype (Formal) = BT
and then No (Next_Formal (Formal))
and then (Ada_Version < Ada_2012
or else not Null_Present (Parent (Init)))
then
return True;
end if;
end;
Next_Elmt (P);
end loop;
end if;
-- Here if type itself does not have a non-null Initialize operation:
-- check immediate ancestor.
if Is_Derived_Type (BT)
and then Has_Overriding_Initialize (Etype (BT))
then
return True;
end if;
end if;
return False;
end Has_Overriding_Initialize;
--------------------------------------
-- Has_Preelaborable_Initialization --
--------------------------------------
function Has_Preelaborable_Initialization (E : Entity_Id) return Boolean is
Has_PE : Boolean;
procedure Check_Components (E : Entity_Id);
-- Check component/discriminant chain, sets Has_PE False if a component
-- or discriminant does not meet the preelaborable initialization rules.
----------------------
-- Check_Components --
----------------------
procedure Check_Components (E : Entity_Id) is
Ent : Entity_Id;
Exp : Node_Id;
begin
-- Loop through entities of record or protected type
Ent := E;
while Present (Ent) loop
-- We are interested only in components and discriminants
Exp := Empty;
case Ekind (Ent) is
when E_Component =>
-- Get default expression if any. If there is no declaration
-- node, it means we have an internal entity. The parent and
-- tag fields are examples of such entities. For such cases,
-- we just test the type of the entity.
if Present (Declaration_Node (Ent)) then
Exp := Expression (Declaration_Node (Ent));
end if;
when E_Discriminant =>
-- Note: for a renamed discriminant, the Declaration_Node
-- may point to the one from the ancestor, and have a
-- different expression, so use the proper attribute to
-- retrieve the expression from the derived constraint.
Exp := Discriminant_Default_Value (Ent);
when others =>
goto Check_Next_Entity;
end case;
-- A component has PI if it has no default expression and the
-- component type has PI.
if No (Exp) then
if not Has_Preelaborable_Initialization (Etype (Ent)) then
Has_PE := False;
exit;
end if;
-- Require the default expression to be preelaborable
elsif not Is_Preelaborable_Construct (Exp) then
Has_PE := False;
exit;
end if;
<<Check_Next_Entity>>
Next_Entity (Ent);
end loop;
end Check_Components;
-- Start of processing for Has_Preelaborable_Initialization
begin
-- Immediate return if already marked as known preelaborable init. This
-- covers types for which this function has already been called once
-- and returned True (in which case the result is cached), and also
-- types to which a pragma Preelaborable_Initialization applies.
if Known_To_Have_Preelab_Init (E) then
return True;
end if;
-- If the type is a subtype representing a generic actual type, then
-- test whether its base type has preelaborable initialization since
-- the subtype representing the actual does not inherit this attribute
-- from the actual or formal. (but maybe it should???)
if Is_Generic_Actual_Type (E) then
return Has_Preelaborable_Initialization (Base_Type (E));
end if;
-- All elementary types have preelaborable initialization
if Is_Elementary_Type (E) then
Has_PE := True;
-- Array types have PI if the component type has PI
elsif Is_Array_Type (E) then
Has_PE := Has_Preelaborable_Initialization (Component_Type (E));
-- A derived type has preelaborable initialization if its parent type
-- has preelaborable initialization and (in the case of a derived record
-- extension) if the non-inherited components all have preelaborable
-- initialization. However, a user-defined controlled type with an
-- overriding Initialize procedure does not have preelaborable
-- initialization.
elsif Is_Derived_Type (E) then
-- If the derived type is a private extension then it doesn't have
-- preelaborable initialization.
if Ekind (Base_Type (E)) = E_Record_Type_With_Private then
return False;
end if;
-- First check whether ancestor type has preelaborable initialization
Has_PE := Has_Preelaborable_Initialization (Etype (Base_Type (E)));
-- If OK, check extension components (if any)
if Has_PE and then Is_Record_Type (E) then
Check_Components (First_Entity (E));
end if;
-- Check specifically for 10.2.1(11.4/2) exception: a controlled type
-- with a user defined Initialize procedure does not have PI. If
-- the type is untagged, the control primitives come from a component
-- that has already been checked.
if Has_PE
and then Is_Controlled (E)
and then Is_Tagged_Type (E)
and then Has_Overriding_Initialize (E)
then
Has_PE := False;
end if;
-- Private types not derived from a type having preelaborable init and
-- that are not marked with pragma Preelaborable_Initialization do not
-- have preelaborable initialization.
elsif Is_Private_Type (E) then
return False;
-- Record type has PI if it is non private and all components have PI
elsif Is_Record_Type (E) then
Has_PE := True;
Check_Components (First_Entity (E));
-- Protected types must not have entries, and components must meet
-- same set of rules as for record components.
elsif Is_Protected_Type (E) then
if Has_Entries (E) then
Has_PE := False;
else
Has_PE := True;
Check_Components (First_Entity (E));
Check_Components (First_Private_Entity (E));
end if;
-- Type System.Address always has preelaborable initialization
elsif Is_RTE (E, RE_Address) then
Has_PE := True;
-- In all other cases, type does not have preelaborable initialization
else
return False;
end if;
-- If type has preelaborable initialization, cache result
if Has_PE then
Set_Known_To_Have_Preelab_Init (E);
end if;
return Has_PE;
end Has_Preelaborable_Initialization;
---------------------------
-- Has_Private_Component --
---------------------------
function Has_Private_Component (Type_Id : Entity_Id) return Boolean is
Btype : Entity_Id := Base_Type (Type_Id);
Component : Entity_Id;
begin
if Error_Posted (Type_Id)
or else Error_Posted (Btype)
then
return False;
end if;
if Is_Class_Wide_Type (Btype) then
Btype := Root_Type (Btype);
end if;
if Is_Private_Type (Btype) then
declare
UT : constant Entity_Id := Underlying_Type (Btype);
begin
if No (UT) then
if No (Full_View (Btype)) then
return not Is_Generic_Type (Btype)
and then
not Is_Generic_Type (Root_Type (Btype));
else
return not Is_Generic_Type (Root_Type (Full_View (Btype)));
end if;
else
return not Is_Frozen (UT) and then Has_Private_Component (UT);
end if;
end;
elsif Is_Array_Type (Btype) then
return Has_Private_Component (Component_Type (Btype));
elsif Is_Record_Type (Btype) then
Component := First_Component (Btype);
while Present (Component) loop
if Has_Private_Component (Etype (Component)) then
return True;
end if;
Next_Component (Component);
end loop;
return False;
elsif Is_Protected_Type (Btype)
and then Present (Corresponding_Record_Type (Btype))
then
return Has_Private_Component (Corresponding_Record_Type (Btype));
else
return False;
end if;
end Has_Private_Component;
----------------------
-- Has_Signed_Zeros --
----------------------
function Has_Signed_Zeros (E : Entity_Id) return Boolean is
begin
return Is_Floating_Point_Type (E) and then Signed_Zeros_On_Target;
end Has_Signed_Zeros;
------------------------------
-- Has_Significant_Contract --
------------------------------
function Has_Significant_Contract (Subp_Id : Entity_Id) return Boolean is
Subp_Nam : constant Name_Id := Chars (Subp_Id);
begin
-- _Finalizer procedure
if Subp_Nam = Name_uFinalizer then
return False;
-- _Postconditions procedure
elsif Subp_Nam = Name_uPostconditions then
return False;
-- Predicate function
elsif Ekind (Subp_Id) = E_Function
and then Is_Predicate_Function (Subp_Id)
then
return False;
-- TSS subprogram
elsif Get_TSS_Name (Subp_Id) /= TSS_Null then
return False;
else
return True;
end if;
end Has_Significant_Contract;
-----------------------------
-- Has_Static_Array_Bounds --
-----------------------------
function Has_Static_Array_Bounds (Typ : Node_Id) return Boolean is
Ndims : constant Nat := Number_Dimensions (Typ);
Index : Node_Id;
Low : Node_Id;
High : Node_Id;
begin
-- Unconstrained types do not have static bounds
if not Is_Constrained (Typ) then
return False;
end if;
-- First treat string literals specially, as the lower bound and length
-- of string literals are not stored like those of arrays.
-- A string literal always has static bounds
if Ekind (Typ) = E_String_Literal_Subtype then
return True;
end if;
-- Treat all dimensions in turn
Index := First_Index (Typ);
for Indx in 1 .. Ndims loop
-- In case of an illegal index which is not a discrete type, return
-- that the type is not static.
if not Is_Discrete_Type (Etype (Index))
or else Etype (Index) = Any_Type
then
return False;
end if;
Get_Index_Bounds (Index, Low, High);
if Error_Posted (Low) or else Error_Posted (High) then
return False;
end if;
if Is_OK_Static_Expression (Low)
and then
Is_OK_Static_Expression (High)
then
null;
else
return False;
end if;
Next (Index);
end loop;
-- If we fall through the loop, all indexes matched
return True;
end Has_Static_Array_Bounds;
----------------
-- Has_Stream --
----------------
function Has_Stream (T : Entity_Id) return Boolean is
E : Entity_Id;
begin
if No (T) then
return False;
elsif Is_RTE (Root_Type (T), RE_Root_Stream_Type) then
return True;
elsif Is_Array_Type (T) then
return Has_Stream (Component_Type (T));
elsif Is_Record_Type (T) then
E := First_Component (T);
while Present (E) loop
if Has_Stream (Etype (E)) then
return True;
else
Next_Component (E);
end if;
end loop;
return False;
elsif Is_Private_Type (T) then
return Has_Stream (Underlying_Type (T));
else
return False;
end if;
end Has_Stream;
----------------
-- Has_Suffix --
----------------
function Has_Suffix (E : Entity_Id; Suffix : Character) return Boolean is
begin
Get_Name_String (Chars (E));
return Name_Buffer (Name_Len) = Suffix;
end Has_Suffix;
----------------
-- Add_Suffix --
----------------
function Add_Suffix (E : Entity_Id; Suffix : Character) return Name_Id is
begin
Get_Name_String (Chars (E));
Add_Char_To_Name_Buffer (Suffix);
return Name_Find;
end Add_Suffix;
-------------------
-- Remove_Suffix --
-------------------
function Remove_Suffix (E : Entity_Id; Suffix : Character) return Name_Id is
begin
pragma Assert (Has_Suffix (E, Suffix));
Get_Name_String (Chars (E));
Name_Len := Name_Len - 1;
return Name_Find;
end Remove_Suffix;
----------------------------------
-- Replace_Null_By_Null_Address --
----------------------------------
procedure Replace_Null_By_Null_Address (N : Node_Id) is
procedure Replace_Null_Operand (Op : Node_Id; Other_Op : Node_Id);
-- Replace operand Op with a reference to Null_Address when the operand
-- denotes a null Address. Other_Op denotes the other operand.
--------------------------
-- Replace_Null_Operand --
--------------------------
procedure Replace_Null_Operand (Op : Node_Id; Other_Op : Node_Id) is
begin
-- Check the type of the complementary operand since the N_Null node
-- has not been decorated yet.
if Nkind (Op) = N_Null
and then Is_Descendant_Of_Address (Etype (Other_Op))
then
Rewrite (Op, New_Occurrence_Of (RTE (RE_Null_Address), Sloc (Op)));
end if;
end Replace_Null_Operand;
-- Start of processing for Replace_Null_By_Null_Address
begin
pragma Assert (Relaxed_RM_Semantics);
pragma Assert (Nkind_In (N, N_Null,
N_Op_Eq,
N_Op_Ge,
N_Op_Gt,
N_Op_Le,
N_Op_Lt,
N_Op_Ne));
if Nkind (N) = N_Null then
Rewrite (N, New_Occurrence_Of (RTE (RE_Null_Address), Sloc (N)));
else
declare
L : constant Node_Id := Left_Opnd (N);
R : constant Node_Id := Right_Opnd (N);
begin
Replace_Null_Operand (L, Other_Op => R);
Replace_Null_Operand (R, Other_Op => L);
end;
end if;
end Replace_Null_By_Null_Address;
--------------------------
-- Has_Tagged_Component --
--------------------------
function Has_Tagged_Component (Typ : Entity_Id) return Boolean is
Comp : Entity_Id;
begin
if Is_Private_Type (Typ) and then Present (Underlying_Type (Typ)) then
return Has_Tagged_Component (Underlying_Type (Typ));
elsif Is_Array_Type (Typ) then
return Has_Tagged_Component (Component_Type (Typ));
elsif Is_Tagged_Type (Typ) then
return True;
elsif Is_Record_Type (Typ) then
Comp := First_Component (Typ);
while Present (Comp) loop
if Has_Tagged_Component (Etype (Comp)) then
return True;
end if;
Next_Component (Comp);
end loop;
return False;
else
return False;
end if;
end Has_Tagged_Component;
-----------------------------
-- Has_Undefined_Reference --
-----------------------------
function Has_Undefined_Reference (Expr : Node_Id) return Boolean is
Has_Undef_Ref : Boolean := False;
-- Flag set when expression Expr contains at least one undefined
-- reference.
function Is_Undefined_Reference (N : Node_Id) return Traverse_Result;
-- Determine whether N denotes a reference and if it does, whether it is
-- undefined.
----------------------------
-- Is_Undefined_Reference --
----------------------------
function Is_Undefined_Reference (N : Node_Id) return Traverse_Result is
begin
if Is_Entity_Name (N)
and then Present (Entity (N))
and then Entity (N) = Any_Id
then
Has_Undef_Ref := True;
return Abandon;
end if;
return OK;
end Is_Undefined_Reference;
procedure Find_Undefined_References is
new Traverse_Proc (Is_Undefined_Reference);
-- Start of processing for Has_Undefined_Reference
begin
Find_Undefined_References (Expr);
return Has_Undef_Ref;
end Has_Undefined_Reference;
----------------------------
-- Has_Volatile_Component --
----------------------------
function Has_Volatile_Component (Typ : Entity_Id) return Boolean is
Comp : Entity_Id;
begin
if Has_Volatile_Components (Typ) then
return True;
elsif Is_Array_Type (Typ) then
return Is_Volatile (Component_Type (Typ));
elsif Is_Record_Type (Typ) then
Comp := First_Component (Typ);
while Present (Comp) loop
if Is_Volatile_Object (Comp) then
return True;
end if;
Comp := Next_Component (Comp);
end loop;
end if;
return False;
end Has_Volatile_Component;
-------------------------
-- Implementation_Kind --
-------------------------
function Implementation_Kind (Subp : Entity_Id) return Name_Id is
Impl_Prag : constant Node_Id := Get_Rep_Pragma (Subp, Name_Implemented);
Arg : Node_Id;
begin
pragma Assert (Present (Impl_Prag));
Arg := Last (Pragma_Argument_Associations (Impl_Prag));
return Chars (Get_Pragma_Arg (Arg));
end Implementation_Kind;
--------------------------
-- Implements_Interface --
--------------------------
function Implements_Interface
(Typ_Ent : Entity_Id;
Iface_Ent : Entity_Id;
Exclude_Parents : Boolean := False) return Boolean
is
Ifaces_List : Elist_Id;
Elmt : Elmt_Id;
Iface : Entity_Id := Base_Type (Iface_Ent);
Typ : Entity_Id := Base_Type (Typ_Ent);
begin
if Is_Class_Wide_Type (Typ) then
Typ := Root_Type (Typ);
end if;
if not Has_Interfaces (Typ) then
return False;
end if;
if Is_Class_Wide_Type (Iface) then
Iface := Root_Type (Iface);
end if;
Collect_Interfaces (Typ, Ifaces_List);
Elmt := First_Elmt (Ifaces_List);
while Present (Elmt) loop
if Is_Ancestor (Node (Elmt), Typ, Use_Full_View => True)
and then Exclude_Parents
then
null;
elsif Node (Elmt) = Iface then
return True;
end if;
Next_Elmt (Elmt);
end loop;
return False;
end Implements_Interface;
------------------------------------
-- In_Assertion_Expression_Pragma --
------------------------------------
function In_Assertion_Expression_Pragma (N : Node_Id) return Boolean is
Par : Node_Id;
Prag : Node_Id := Empty;
begin
-- Climb the parent chain looking for an enclosing pragma
Par := N;
while Present (Par) loop
if Nkind (Par) = N_Pragma then
Prag := Par;
exit;
-- Precondition-like pragmas are expanded into if statements, check
-- the original node instead.
elsif Nkind (Original_Node (Par)) = N_Pragma then
Prag := Original_Node (Par);
exit;
-- The expansion of attribute 'Old generates a constant to capture
-- the result of the prefix. If the parent traversal reaches
-- one of these constants, then the node technically came from a
-- postcondition-like pragma. Note that the Ekind is not tested here
-- because N may be the expression of an object declaration which is
-- currently being analyzed. Such objects carry Ekind of E_Void.
elsif Nkind (Par) = N_Object_Declaration
and then Constant_Present (Par)
and then Stores_Attribute_Old_Prefix (Defining_Entity (Par))
then
return True;
-- Prevent the search from going too far
elsif Is_Body_Or_Package_Declaration (Par) then
return False;
end if;
Par := Parent (Par);
end loop;
return
Present (Prag)
and then Assertion_Expression_Pragma (Get_Pragma_Id (Prag));
end In_Assertion_Expression_Pragma;
----------------------
-- In_Generic_Scope --
----------------------
function In_Generic_Scope (E : Entity_Id) return Boolean is
S : Entity_Id;
begin
S := Scope (E);
while Present (S) and then S /= Standard_Standard loop
if Is_Generic_Unit (S) then
return True;
end if;
S := Scope (S);
end loop;
return False;
end In_Generic_Scope;
-----------------
-- In_Instance --
-----------------
function In_Instance return Boolean is
Curr_Unit : constant Entity_Id := Cunit_Entity (Current_Sem_Unit);
S : Entity_Id;
begin
S := Current_Scope;
while Present (S) and then S /= Standard_Standard loop
if Is_Generic_Instance (S) then
-- A child instance is always compiled in the context of a parent
-- instance. Nevertheless, the actuals are not analyzed in an
-- instance context. We detect this case by examining the current
-- compilation unit, which must be a child instance, and checking
-- that it is not currently on the scope stack.
if Is_Child_Unit (Curr_Unit)
and then Nkind (Unit (Cunit (Current_Sem_Unit))) =
N_Package_Instantiation
and then not In_Open_Scopes (Curr_Unit)
then
return False;
else
return True;
end if;
end if;
S := Scope (S);
end loop;
return False;
end In_Instance;
----------------------
-- In_Instance_Body --
----------------------
function In_Instance_Body return Boolean is
S : Entity_Id;
begin
S := Current_Scope;
while Present (S) and then S /= Standard_Standard loop
if Ekind_In (S, E_Function, E_Procedure)
and then Is_Generic_Instance (S)
then
return True;
elsif Ekind (S) = E_Package
and then In_Package_Body (S)
and then Is_Generic_Instance (S)
then
return True;
end if;
S := Scope (S);
end loop;
return False;
end In_Instance_Body;
-----------------------------
-- In_Instance_Not_Visible --
-----------------------------
function In_Instance_Not_Visible return Boolean is
S : Entity_Id;
begin
S := Current_Scope;
while Present (S) and then S /= Standard_Standard loop
if Ekind_In (S, E_Function, E_Procedure)
and then Is_Generic_Instance (S)
then
return True;
elsif Ekind (S) = E_Package
and then (In_Package_Body (S) or else In_Private_Part (S))
and then Is_Generic_Instance (S)
then
return True;
end if;
S := Scope (S);
end loop;
return False;
end In_Instance_Not_Visible;
------------------------------
-- In_Instance_Visible_Part --
------------------------------
function In_Instance_Visible_Part
(Id : Entity_Id := Current_Scope) return Boolean
is
Inst : Entity_Id;
begin
Inst := Id;
while Present (Inst) and then Inst /= Standard_Standard loop
if Ekind (Inst) = E_Package
and then Is_Generic_Instance (Inst)
and then not In_Package_Body (Inst)
and then not In_Private_Part (Inst)
then
return True;
end if;
Inst := Scope (Inst);
end loop;
return False;
end In_Instance_Visible_Part;
---------------------
-- In_Package_Body --
---------------------
function In_Package_Body return Boolean is
S : Entity_Id;
begin
S := Current_Scope;
while Present (S) and then S /= Standard_Standard loop
if Ekind (S) = E_Package and then In_Package_Body (S) then
return True;
else
S := Scope (S);
end if;
end loop;
return False;
end In_Package_Body;
--------------------------
-- In_Pragma_Expression --
--------------------------
function In_Pragma_Expression (N : Node_Id; Nam : Name_Id) return Boolean is
P : Node_Id;
begin
P := Parent (N);
loop
if No (P) then
return False;
elsif Nkind (P) = N_Pragma and then Pragma_Name (P) = Nam then
return True;
else
P := Parent (P);
end if;
end loop;
end In_Pragma_Expression;
---------------------------
-- In_Pre_Post_Condition --
---------------------------
function In_Pre_Post_Condition (N : Node_Id) return Boolean is
Par : Node_Id;
Prag : Node_Id := Empty;
Prag_Id : Pragma_Id;
begin
-- Climb the parent chain looking for an enclosing pragma
Par := N;
while Present (Par) loop
if Nkind (Par) = N_Pragma then
Prag := Par;
exit;
-- Prevent the search from going too far
elsif Is_Body_Or_Package_Declaration (Par) then
exit;
end if;
Par := Parent (Par);
end loop;
if Present (Prag) then
Prag_Id := Get_Pragma_Id (Prag);
return
Prag_Id = Pragma_Post
or else Prag_Id = Pragma_Post_Class
or else Prag_Id = Pragma_Postcondition
or else Prag_Id = Pragma_Pre
or else Prag_Id = Pragma_Pre_Class
or else Prag_Id = Pragma_Precondition;
-- Otherwise the node is not enclosed by a pre/postcondition pragma
else
return False;
end if;
end In_Pre_Post_Condition;
-------------------------------------
-- In_Reverse_Storage_Order_Object --
-------------------------------------
function In_Reverse_Storage_Order_Object (N : Node_Id) return Boolean is
Pref : Node_Id;
Btyp : Entity_Id := Empty;
begin
-- Climb up indexed components
Pref := N;
loop
case Nkind (Pref) is
when N_Selected_Component =>
Pref := Prefix (Pref);
exit;
when N_Indexed_Component =>
Pref := Prefix (Pref);
when others =>
Pref := Empty;
exit;
end case;
end loop;
if Present (Pref) then
Btyp := Base_Type (Etype (Pref));
end if;
return Present (Btyp)
and then (Is_Record_Type (Btyp) or else Is_Array_Type (Btyp))
and then Reverse_Storage_Order (Btyp);
end In_Reverse_Storage_Order_Object;
--------------------------------------
-- In_Subprogram_Or_Concurrent_Unit --
--------------------------------------
function In_Subprogram_Or_Concurrent_Unit return Boolean is
E : Entity_Id;
K : Entity_Kind;
begin
-- Use scope chain to check successively outer scopes
E := Current_Scope;
loop
K := Ekind (E);
if K in Subprogram_Kind
or else K in Concurrent_Kind
or else K in Generic_Subprogram_Kind
then
return True;
elsif E = Standard_Standard then
return False;
end if;
E := Scope (E);
end loop;
end In_Subprogram_Or_Concurrent_Unit;
----------------
-- In_Subtree --
----------------
function In_Subtree (N : Node_Id; Root : Node_Id) return Boolean is
Curr : Node_Id;
begin
Curr := N;
while Present (Curr) loop
if Curr = Root then
return True;
end if;
Curr := Parent (Curr);
end loop;
return False;
end In_Subtree;
----------------
-- In_Subtree --
----------------
function In_Subtree
(N : Node_Id;
Root1 : Node_Id;
Root2 : Node_Id) return Boolean
is
Curr : Node_Id;
begin
Curr := N;
while Present (Curr) loop
if Curr = Root1 or else Curr = Root2 then
return True;
end if;
Curr := Parent (Curr);
end loop;
return False;
end In_Subtree;
---------------------
-- In_Visible_Part --
---------------------
function In_Visible_Part (Scope_Id : Entity_Id) return Boolean is
begin
return Is_Package_Or_Generic_Package (Scope_Id)
and then In_Open_Scopes (Scope_Id)
and then not In_Package_Body (Scope_Id)
and then not In_Private_Part (Scope_Id);
end In_Visible_Part;
--------------------------------
-- Incomplete_Or_Partial_View --
--------------------------------
function Incomplete_Or_Partial_View (Id : Entity_Id) return Entity_Id is
function Inspect_Decls
(Decls : List_Id;
Taft : Boolean := False) return Entity_Id;
-- Check whether a declarative region contains the incomplete or partial
-- view of Id.
-------------------
-- Inspect_Decls --
-------------------
function Inspect_Decls
(Decls : List_Id;
Taft : Boolean := False) return Entity_Id
is
Decl : Node_Id;
Match : Node_Id;
begin
Decl := First (Decls);
while Present (Decl) loop
Match := Empty;
-- The partial view of a Taft-amendment type is an incomplete
-- type.
if Taft then
if Nkind (Decl) = N_Incomplete_Type_Declaration then
Match := Defining_Identifier (Decl);
end if;
-- Otherwise look for a private type whose full view matches the
-- input type. Note that this checks full_type_declaration nodes
-- to account for derivations from a private type where the type
-- declaration hold the partial view and the full view is an
-- itype.
elsif Nkind_In (Decl, N_Full_Type_Declaration,
N_Private_Extension_Declaration,
N_Private_Type_Declaration)
then
Match := Defining_Identifier (Decl);
end if;
-- Guard against unanalyzed entities
if Present (Match)
and then Is_Type (Match)
and then Present (Full_View (Match))
and then Full_View (Match) = Id
then
return Match;
end if;
Next (Decl);
end loop;
return Empty;
end Inspect_Decls;
-- Local variables
Prev : Entity_Id;
-- Start of processing for Incomplete_Or_Partial_View
begin
-- Deferred constant or incomplete type case
Prev := Current_Entity_In_Scope (Id);
if Present (Prev)
and then (Is_Incomplete_Type (Prev) or else Ekind (Prev) = E_Constant)
and then Present (Full_View (Prev))
and then Full_View (Prev) = Id
then
return Prev;
end if;
-- Private or Taft amendment type case
declare
Pkg : constant Entity_Id := Scope (Id);
Pkg_Decl : Node_Id := Pkg;
begin
if Present (Pkg)
and then Ekind_In (Pkg, E_Generic_Package, E_Package)
then
while Nkind (Pkg_Decl) /= N_Package_Specification loop
Pkg_Decl := Parent (Pkg_Decl);
end loop;
-- It is knows that Typ has a private view, look for it in the
-- visible declarations of the enclosing scope. A special case
-- of this is when the two views have been exchanged - the full
-- appears earlier than the private.
if Has_Private_Declaration (Id) then
Prev := Inspect_Decls (Visible_Declarations (Pkg_Decl));
-- Exchanged view case, look in the private declarations
if No (Prev) then
Prev := Inspect_Decls (Private_Declarations (Pkg_Decl));
end if;
return Prev;
-- Otherwise if this is the package body, then Typ is a potential
-- Taft amendment type. The incomplete view should be located in
-- the private declarations of the enclosing scope.
elsif In_Package_Body (Pkg) then
return Inspect_Decls (Private_Declarations (Pkg_Decl), True);
end if;
end if;
end;
-- The type has no incomplete or private view
return Empty;
end Incomplete_Or_Partial_View;
---------------------------------------
-- Incomplete_View_From_Limited_With --
---------------------------------------
function Incomplete_View_From_Limited_With
(Typ : Entity_Id) return Entity_Id
is
begin
-- It might make sense to make this an attribute in Einfo, and set it
-- in Sem_Ch10 in Build_Shadow_Entity. However, we're running short on
-- slots for new attributes, and it seems a bit simpler to just search
-- the Limited_View (if it exists) for an incomplete type whose
-- Non_Limited_View is Typ.
if Ekind (Scope (Typ)) = E_Package
and then Present (Limited_View (Scope (Typ)))
then
declare
Ent : Entity_Id := First_Entity (Limited_View (Scope (Typ)));
begin
while Present (Ent) loop
if Ekind (Ent) in Incomplete_Kind
and then Non_Limited_View (Ent) = Typ
then
return Ent;
end if;
Ent := Next_Entity (Ent);
end loop;
end;
end if;
return Typ;
end Incomplete_View_From_Limited_With;
----------------------------------
-- Indexed_Component_Bit_Offset --
----------------------------------
function Indexed_Component_Bit_Offset (N : Node_Id) return Uint is
Exp : constant Node_Id := First (Expressions (N));
Typ : constant Entity_Id := Etype (Prefix (N));
Off : constant Uint := Component_Size (Typ);
Ind : Node_Id;
begin
-- Return early if the component size is not known or variable
if Off = No_Uint or else Off < Uint_0 then
return No_Uint;
end if;
-- Deal with the degenerate case of an empty component
if Off = Uint_0 then
return Off;
end if;
-- Check that both the index value and the low bound are known
if not Compile_Time_Known_Value (Exp) then
return No_Uint;
end if;
Ind := First_Index (Typ);
if No (Ind) then
return No_Uint;
end if;
if Nkind (Ind) = N_Subtype_Indication then
Ind := Constraint (Ind);
if Nkind (Ind) = N_Range_Constraint then
Ind := Range_Expression (Ind);
end if;
end if;
if Nkind (Ind) /= N_Range
or else not Compile_Time_Known_Value (Low_Bound (Ind))
then
return No_Uint;
end if;
-- Return the scaled offset
return Off * (Expr_Value (Exp) - Expr_Value (Low_Bound ((Ind))));
end Indexed_Component_Bit_Offset;
----------------------------
-- Inherit_Rep_Item_Chain --
----------------------------
procedure Inherit_Rep_Item_Chain (Typ : Entity_Id; From_Typ : Entity_Id) is
Item : Node_Id;
Next_Item : Node_Id;
begin
-- There are several inheritance scenarios to consider depending on
-- whether both types have rep item chains and whether the destination
-- type already inherits part of the source type's rep item chain.
-- 1) The source type lacks a rep item chain
-- From_Typ ---> Empty
--
-- Typ --------> Item (or Empty)
-- In this case inheritance cannot take place because there are no items
-- to inherit.
-- 2) The destination type lacks a rep item chain
-- From_Typ ---> Item ---> ...
--
-- Typ --------> Empty
-- Inheritance takes place by setting the First_Rep_Item of the
-- destination type to the First_Rep_Item of the source type.
-- From_Typ ---> Item ---> ...
-- ^
-- Typ -----------+
-- 3.1) Both source and destination types have at least one rep item.
-- The destination type does NOT inherit a rep item from the source
-- type.
-- From_Typ ---> Item ---> Item
--
-- Typ --------> Item ---> Item
-- Inheritance takes place by setting the Next_Rep_Item of the last item
-- of the destination type to the First_Rep_Item of the source type.
-- From_Typ -------------------> Item ---> Item
-- ^
-- Typ --------> Item ---> Item --+
-- 3.2) Both source and destination types have at least one rep item.
-- The destination type DOES inherit part of the rep item chain of the
-- source type.
-- From_Typ ---> Item ---> Item ---> Item
-- ^
-- Typ --------> Item ------+
-- This rare case arises when the full view of a private extension must
-- inherit the rep item chain from the full view of its parent type and
-- the full view of the parent type contains extra rep items. Currently
-- only invariants may lead to such form of inheritance.
-- type From_Typ is tagged private
-- with Type_Invariant'Class => Item_2;
-- type Typ is new From_Typ with private
-- with Type_Invariant => Item_4;
-- At this point the rep item chains contain the following items
-- From_Typ -----------> Item_2 ---> Item_3
-- ^
-- Typ --------> Item_4 --+
-- The full views of both types may introduce extra invariants
-- type From_Typ is tagged null record
-- with Type_Invariant => Item_1;
-- type Typ is new From_Typ with null record;
-- The full view of Typ would have to inherit any new rep items added to
-- the full view of From_Typ.
-- From_Typ -----------> Item_1 ---> Item_2 ---> Item_3
-- ^
-- Typ --------> Item_4 --+
-- To achieve this form of inheritance, the destination type must first
-- sever the link between its own rep chain and that of the source type,
-- then inheritance 3.1 takes place.
-- Case 1: The source type lacks a rep item chain
if No (First_Rep_Item (From_Typ)) then
return;
-- Case 2: The destination type lacks a rep item chain
elsif No (First_Rep_Item (Typ)) then
Set_First_Rep_Item (Typ, First_Rep_Item (From_Typ));
-- Case 3: Both the source and destination types have at least one rep
-- item. Traverse the rep item chain of the destination type to find the
-- last rep item.
else
Item := Empty;
Next_Item := First_Rep_Item (Typ);
while Present (Next_Item) loop
-- Detect a link between the destination type's rep chain and that
-- of the source type. There are two possibilities:
-- Variant 1
-- Next_Item
-- V
-- From_Typ ---> Item_1 --->
-- ^
-- Typ -----------+
--
-- Item is Empty
-- Variant 2
-- Next_Item
-- V
-- From_Typ ---> Item_1 ---> Item_2 --->
-- ^
-- Typ --------> Item_3 ------+
-- ^
-- Item
if Has_Rep_Item (From_Typ, Next_Item) then
exit;
end if;
Item := Next_Item;
Next_Item := Next_Rep_Item (Next_Item);
end loop;
-- Inherit the source type's rep item chain
if Present (Item) then
Set_Next_Rep_Item (Item, First_Rep_Item (From_Typ));
else
Set_First_Rep_Item (Typ, First_Rep_Item (From_Typ));
end if;
end if;
end Inherit_Rep_Item_Chain;
---------------------------------
-- Insert_Explicit_Dereference --
---------------------------------
procedure Insert_Explicit_Dereference (N : Node_Id) is
New_Prefix : constant Node_Id := Relocate_Node (N);
Ent : Entity_Id := Empty;
Pref : Node_Id;
I : Interp_Index;
It : Interp;
T : Entity_Id;
begin
Save_Interps (N, New_Prefix);
Rewrite (N,
Make_Explicit_Dereference (Sloc (Parent (N)),
Prefix => New_Prefix));
Set_Etype (N, Designated_Type (Etype (New_Prefix)));
if Is_Overloaded (New_Prefix) then
-- The dereference is also overloaded, and its interpretations are
-- the designated types of the interpretations of the original node.
Set_Etype (N, Any_Type);
Get_First_Interp (New_Prefix, I, It);
while Present (It.Nam) loop
T := It.Typ;
if Is_Access_Type (T) then
Add_One_Interp (N, Designated_Type (T), Designated_Type (T));
end if;
Get_Next_Interp (I, It);
end loop;
End_Interp_List;
else
-- Prefix is unambiguous: mark the original prefix (which might
-- Come_From_Source) as a reference, since the new (relocated) one
-- won't be taken into account.
if Is_Entity_Name (New_Prefix) then
Ent := Entity (New_Prefix);
Pref := New_Prefix;
-- For a retrieval of a subcomponent of some composite object,
-- retrieve the ultimate entity if there is one.
elsif Nkind_In (New_Prefix, N_Selected_Component,
N_Indexed_Component)
then
Pref := Prefix (New_Prefix);
while Present (Pref)
and then Nkind_In (Pref, N_Selected_Component,
N_Indexed_Component)
loop
Pref := Prefix (Pref);
end loop;
if Present (Pref) and then Is_Entity_Name (Pref) then
Ent := Entity (Pref);
end if;
end if;
-- Place the reference on the entity node
if Present (Ent) then
Generate_Reference (Ent, Pref);
end if;
end if;
end Insert_Explicit_Dereference;
------------------------------------------
-- Inspect_Deferred_Constant_Completion --
------------------------------------------
procedure Inspect_Deferred_Constant_Completion (Decls : List_Id) is
Decl : Node_Id;
begin
Decl := First (Decls);
while Present (Decl) loop
-- Deferred constant signature
if Nkind (Decl) = N_Object_Declaration
and then Constant_Present (Decl)
and then No (Expression (Decl))
-- No need to check internally generated constants
and then Comes_From_Source (Decl)
-- The constant is not completed. A full object declaration or a
-- pragma Import complete a deferred constant.
and then not Has_Completion (Defining_Identifier (Decl))
then
Error_Msg_N
("constant declaration requires initialization expression",
Defining_Identifier (Decl));
end if;
Decl := Next (Decl);
end loop;
end Inspect_Deferred_Constant_Completion;
-----------------------------
-- Install_Generic_Formals --
-----------------------------
procedure Install_Generic_Formals (Subp_Id : Entity_Id) is
E : Entity_Id;
begin
pragma Assert (Is_Generic_Subprogram (Subp_Id));
E := First_Entity (Subp_Id);
while Present (E) loop
Install_Entity (E);
Next_Entity (E);
end loop;
end Install_Generic_Formals;
------------------------
-- Install_SPARK_Mode --
------------------------
procedure Install_SPARK_Mode (Mode : SPARK_Mode_Type; Prag : Node_Id) is
begin
SPARK_Mode := Mode;
SPARK_Mode_Pragma := Prag;
end Install_SPARK_Mode;
-----------------------------
-- Is_Actual_Out_Parameter --
-----------------------------
function Is_Actual_Out_Parameter (N : Node_Id) return Boolean is
Formal : Entity_Id;
Call : Node_Id;
begin
Find_Actual (N, Formal, Call);
return Present (Formal) and then Ekind (Formal) = E_Out_Parameter;
end Is_Actual_Out_Parameter;
-------------------------
-- Is_Actual_Parameter --
-------------------------
function Is_Actual_Parameter (N : Node_Id) return Boolean is
PK : constant Node_Kind := Nkind (Parent (N));
begin
case PK is
when N_Parameter_Association =>
return N = Explicit_Actual_Parameter (Parent (N));
when N_Subprogram_Call =>
return Is_List_Member (N)
and then
List_Containing (N) = Parameter_Associations (Parent (N));
when others =>
return False;
end case;
end Is_Actual_Parameter;
--------------------------------
-- Is_Actual_Tagged_Parameter --
--------------------------------
function Is_Actual_Tagged_Parameter (N : Node_Id) return Boolean is
Formal : Entity_Id;
Call : Node_Id;
begin
Find_Actual (N, Formal, Call);
return Present (Formal) and then Is_Tagged_Type (Etype (Formal));
end Is_Actual_Tagged_Parameter;
---------------------
-- Is_Aliased_View --
---------------------
function Is_Aliased_View (Obj : Node_Id) return Boolean is
E : Entity_Id;
begin
if Is_Entity_Name (Obj) then
E := Entity (Obj);
return
(Is_Object (E)
and then
(Is_Aliased (E)
or else (Present (Renamed_Object (E))
and then Is_Aliased_View (Renamed_Object (E)))))
or else ((Is_Formal (E) or else Is_Formal_Object (E))
and then Is_Tagged_Type (Etype (E)))
or else (Is_Concurrent_Type (E) and then In_Open_Scopes (E))
-- Current instance of type, either directly or as rewritten
-- reference to the current object.
or else (Is_Entity_Name (Original_Node (Obj))
and then Present (Entity (Original_Node (Obj)))
and then Is_Type (Entity (Original_Node (Obj))))
or else (Is_Type (E) and then E = Current_Scope)
or else (Is_Incomplete_Or_Private_Type (E)
and then Full_View (E) = Current_Scope)
-- Ada 2012 AI05-0053: the return object of an extended return
-- statement is aliased if its type is immutably limited.
or else (Is_Return_Object (E)
and then Is_Limited_View (Etype (E)));
elsif Nkind (Obj) = N_Selected_Component then
return Is_Aliased (Entity (Selector_Name (Obj)));
elsif Nkind (Obj) = N_Indexed_Component then
return Has_Aliased_Components (Etype (Prefix (Obj)))
or else
(Is_Access_Type (Etype (Prefix (Obj)))
and then Has_Aliased_Components
(Designated_Type (Etype (Prefix (Obj)))));
elsif Nkind_In (Obj, N_Unchecked_Type_Conversion, N_Type_Conversion) then
return Is_Tagged_Type (Etype (Obj))
and then Is_Aliased_View (Expression (Obj));
elsif Nkind (Obj) = N_Explicit_Dereference then
return Nkind (Original_Node (Obj)) /= N_Function_Call;
else
return False;
end if;
end Is_Aliased_View;
-------------------------
-- Is_Ancestor_Package --
-------------------------
function Is_Ancestor_Package
(E1 : Entity_Id;
E2 : Entity_Id) return Boolean
is
Par : Entity_Id;
begin
Par := E2;
while Present (Par) and then Par /= Standard_Standard loop
if Par = E1 then
return True;
end if;
Par := Scope (Par);
end loop;
return False;
end Is_Ancestor_Package;
----------------------
-- Is_Atomic_Object --
----------------------
function Is_Atomic_Object (N : Node_Id) return Boolean is
function Object_Has_Atomic_Components (N : Node_Id) return Boolean;
-- Determines if given object has atomic components
function Is_Atomic_Prefix (N : Node_Id) return Boolean;
-- If prefix is an implicit dereference, examine designated type
----------------------
-- Is_Atomic_Prefix --
----------------------
function Is_Atomic_Prefix (N : Node_Id) return Boolean is
begin
if Is_Access_Type (Etype (N)) then
return
Has_Atomic_Components (Designated_Type (Etype (N)));
else
return Object_Has_Atomic_Components (N);
end if;
end Is_Atomic_Prefix;
----------------------------------
-- Object_Has_Atomic_Components --
----------------------------------
function Object_Has_Atomic_Components (N : Node_Id) return Boolean is
begin
if Has_Atomic_Components (Etype (N))
or else Is_Atomic (Etype (N))
then
return True;
elsif Is_Entity_Name (N)
and then (Has_Atomic_Components (Entity (N))
or else Is_Atomic (Entity (N)))
then
return True;
elsif Nkind (N) = N_Selected_Component
and then Is_Atomic (Entity (Selector_Name (N)))
then
return True;
elsif Nkind (N) = N_Indexed_Component
or else Nkind (N) = N_Selected_Component
then
return Is_Atomic_Prefix (Prefix (N));
else
return False;
end if;
end Object_Has_Atomic_Components;
-- Start of processing for Is_Atomic_Object
begin
-- Predicate is not relevant to subprograms
if Is_Entity_Name (N) and then Is_Overloadable (Entity (N)) then
return False;
elsif Is_Atomic (Etype (N))
or else (Is_Entity_Name (N) and then Is_Atomic (Entity (N)))
then
return True;
elsif Nkind (N) = N_Selected_Component
and then Is_Atomic (Entity (Selector_Name (N)))
then
return True;
elsif Nkind (N) = N_Indexed_Component
or else Nkind (N) = N_Selected_Component
then
return Is_Atomic_Prefix (Prefix (N));
else
return False;
end if;
end Is_Atomic_Object;
-----------------------------
-- Is_Atomic_Or_VFA_Object --
-----------------------------
function Is_Atomic_Or_VFA_Object (N : Node_Id) return Boolean is
begin
return Is_Atomic_Object (N)
or else (Is_Object_Reference (N)
and then Is_Entity_Name (N)
and then (Is_Volatile_Full_Access (Entity (N))
or else
Is_Volatile_Full_Access (Etype (Entity (N)))));
end Is_Atomic_Or_VFA_Object;
-------------------------
-- Is_Attribute_Result --
-------------------------
function Is_Attribute_Result (N : Node_Id) return Boolean is
begin
return Nkind (N) = N_Attribute_Reference
and then Attribute_Name (N) = Name_Result;
end Is_Attribute_Result;
-------------------------
-- Is_Attribute_Update --
-------------------------
function Is_Attribute_Update (N : Node_Id) return Boolean is
begin
return Nkind (N) = N_Attribute_Reference
and then Attribute_Name (N) = Name_Update;
end Is_Attribute_Update;
------------------------------------
-- Is_Body_Or_Package_Declaration --
------------------------------------
function Is_Body_Or_Package_Declaration (N : Node_Id) return Boolean is
begin
return Nkind_In (N, N_Entry_Body,
N_Package_Body,
N_Package_Declaration,
N_Protected_Body,
N_Subprogram_Body,
N_Task_Body);
end Is_Body_Or_Package_Declaration;
-----------------------
-- Is_Bounded_String --
-----------------------
function Is_Bounded_String (T : Entity_Id) return Boolean is
Under : constant Entity_Id := Underlying_Type (Root_Type (T));
begin
-- Check whether T is ultimately derived from Ada.Strings.Superbounded.
-- Super_String, or one of the [Wide_]Wide_ versions. This will
-- be True for all the Bounded_String types in instances of the
-- Generic_Bounded_Length generics, and for types derived from those.
return Present (Under)
and then (Is_RTE (Root_Type (Under), RO_SU_Super_String) or else
Is_RTE (Root_Type (Under), RO_WI_Super_String) or else
Is_RTE (Root_Type (Under), RO_WW_Super_String));
end Is_Bounded_String;
---------------------
-- Is_CCT_Instance --
---------------------
function Is_CCT_Instance
(Ref_Id : Entity_Id;
Context_Id : Entity_Id) return Boolean
is
begin
pragma Assert (Ekind_In (Ref_Id, E_Protected_Type, E_Task_Type));
if Is_Single_Task_Object (Context_Id) then
return Scope_Within_Or_Same (Etype (Context_Id), Ref_Id);
else
pragma Assert (Ekind_In (Context_Id, E_Entry,
E_Entry_Family,
E_Function,
E_Package,
E_Procedure,
E_Protected_Type,
E_Task_Type)
or else
Is_Record_Type (Context_Id));
return Scope_Within_Or_Same (Context_Id, Ref_Id);
end if;
end Is_CCT_Instance;
-------------------------
-- Is_Child_Or_Sibling --
-------------------------
function Is_Child_Or_Sibling
(Pack_1 : Entity_Id;
Pack_2 : Entity_Id) return Boolean
is
function Distance_From_Standard (Pack : Entity_Id) return Nat;
-- Given an arbitrary package, return the number of "climbs" necessary
-- to reach scope Standard_Standard.
procedure Equalize_Depths
(Pack : in out Entity_Id;
Depth : in out Nat;
Depth_To_Reach : Nat);
-- Given an arbitrary package, its depth and a target depth to reach,
-- climb the scope chain until the said depth is reached. The pointer
-- to the package and its depth a modified during the climb.
----------------------------
-- Distance_From_Standard --
----------------------------
function Distance_From_Standard (Pack : Entity_Id) return Nat is
Dist : Nat;
Scop : Entity_Id;
begin
Dist := 0;
Scop := Pack;
while Present (Scop) and then Scop /= Standard_Standard loop
Dist := Dist + 1;
Scop := Scope (Scop);
end loop;
return Dist;
end Distance_From_Standard;
---------------------
-- Equalize_Depths --
---------------------
procedure Equalize_Depths
(Pack : in out Entity_Id;
Depth : in out Nat;
Depth_To_Reach : Nat)
is
begin
-- The package must be at a greater or equal depth
if Depth < Depth_To_Reach then
raise Program_Error;
end if;
-- Climb the scope chain until the desired depth is reached
while Present (Pack) and then Depth /= Depth_To_Reach loop
Pack := Scope (Pack);
Depth := Depth - 1;
end loop;
end Equalize_Depths;
-- Local variables
P_1 : Entity_Id := Pack_1;
P_1_Child : Boolean := False;
P_1_Depth : Nat := Distance_From_Standard (P_1);
P_2 : Entity_Id := Pack_2;
P_2_Child : Boolean := False;
P_2_Depth : Nat := Distance_From_Standard (P_2);
-- Start of processing for Is_Child_Or_Sibling
begin
pragma Assert
(Ekind (Pack_1) = E_Package and then Ekind (Pack_2) = E_Package);
-- Both packages denote the same entity, therefore they cannot be
-- children or siblings.
if P_1 = P_2 then
return False;
-- One of the packages is at a deeper level than the other. Note that
-- both may still come from different hierarchies.
-- (root) P_2
-- / \ :
-- X P_2 or X
-- : :
-- P_1 P_1
elsif P_1_Depth > P_2_Depth then
Equalize_Depths
(Pack => P_1,
Depth => P_1_Depth,
Depth_To_Reach => P_2_Depth);
P_1_Child := True;
-- (root) P_1
-- / \ :
-- P_1 X or X
-- : :
-- P_2 P_2
elsif P_2_Depth > P_1_Depth then
Equalize_Depths
(Pack => P_2,
Depth => P_2_Depth,
Depth_To_Reach => P_1_Depth);
P_2_Child := True;
end if;
-- At this stage the package pointers have been elevated to the same
-- depth. If the related entities are the same, then one package is a
-- potential child of the other:
-- P_1
-- :
-- X became P_1 P_2 or vice versa
-- :
-- P_2
if P_1 = P_2 then
if P_1_Child then
return Is_Child_Unit (Pack_1);
else pragma Assert (P_2_Child);
return Is_Child_Unit (Pack_2);
end if;
-- The packages may come from the same package chain or from entirely
-- different hierarcies. To determine this, climb the scope stack until
-- a common root is found.
-- (root) (root 1) (root 2)
-- / \ | |
-- P_1 P_2 P_1 P_2
else
while Present (P_1) and then Present (P_2) loop
-- The two packages may be siblings
if P_1 = P_2 then
return Is_Child_Unit (Pack_1) and then Is_Child_Unit (Pack_2);
end if;
P_1 := Scope (P_1);
P_2 := Scope (P_2);
end loop;
end if;
return False;
end Is_Child_Or_Sibling;
-----------------------------
-- Is_Concurrent_Interface --
-----------------------------
function Is_Concurrent_Interface (T : Entity_Id) return Boolean is
begin
return Is_Interface (T)
and then
(Is_Protected_Interface (T)
or else Is_Synchronized_Interface (T)
or else Is_Task_Interface (T));
end Is_Concurrent_Interface;
-----------------------
-- Is_Constant_Bound --
-----------------------
function Is_Constant_Bound (Exp : Node_Id) return Boolean is
begin
if Compile_Time_Known_Value (Exp) then
return True;
elsif Is_Entity_Name (Exp) and then Present (Entity (Exp)) then
return Is_Constant_Object (Entity (Exp))
or else Ekind (Entity (Exp)) = E_Enumeration_Literal;
elsif Nkind (Exp) in N_Binary_Op then
return Is_Constant_Bound (Left_Opnd (Exp))
and then Is_Constant_Bound (Right_Opnd (Exp))
and then Scope (Entity (Exp)) = Standard_Standard;
else
return False;
end if;
end Is_Constant_Bound;
---------------------------
-- Is_Container_Element --
---------------------------
function Is_Container_Element (Exp : Node_Id) return Boolean is
Loc : constant Source_Ptr := Sloc (Exp);
Pref : constant Node_Id := Prefix (Exp);
Call : Node_Id;
-- Call to an indexing aspect
Cont_Typ : Entity_Id;
-- The type of the container being accessed
Elem_Typ : Entity_Id;
-- Its element type
Indexing : Entity_Id;
Is_Const : Boolean;
-- Indicates that constant indexing is used, and the element is thus
-- a constant.
Ref_Typ : Entity_Id;
-- The reference type returned by the indexing operation
begin
-- If C is a container, in a context that imposes the element type of
-- that container, the indexing notation C (X) is rewritten as:
-- Indexing (C, X).Discr.all
-- where Indexing is one of the indexing aspects of the container.
-- If the context does not require a reference, the construct can be
-- rewritten as
-- Element (C, X)
-- First, verify that the construct has the proper form
if not Expander_Active then
return False;
elsif Nkind (Pref) /= N_Selected_Component then
return False;
elsif Nkind (Prefix (Pref)) /= N_Function_Call then
return False;
else
Call := Prefix (Pref);
Ref_Typ := Etype (Call);
end if;
if not Has_Implicit_Dereference (Ref_Typ)
or else No (First (Parameter_Associations (Call)))
or else not Is_Entity_Name (Name (Call))
then
return False;
end if;
-- Retrieve type of container object, and its iterator aspects
Cont_Typ := Etype (First (Parameter_Associations (Call)));
Indexing := Find_Value_Of_Aspect (Cont_Typ, Aspect_Constant_Indexing);
Is_Const := False;
if No (Indexing) then
-- Container should have at least one indexing operation
return False;
elsif Entity (Name (Call)) /= Entity (Indexing) then
-- This may be a variable indexing operation
Indexing := Find_Value_Of_Aspect (Cont_Typ, Aspect_Variable_Indexing);
if No (Indexing)
or else Entity (Name (Call)) /= Entity (Indexing)
then
return False;
end if;
else
Is_Const := True;
end if;
Elem_Typ := Find_Value_Of_Aspect (Cont_Typ, Aspect_Iterator_Element);
if No (Elem_Typ) or else Entity (Elem_Typ) /= Etype (Exp) then
return False;
end if;
-- Check that the expression is not the target of an assignment, in
-- which case the rewriting is not possible.
if not Is_Const then
declare
Par : Node_Id;
begin
Par := Exp;
while Present (Par)
loop
if Nkind (Parent (Par)) = N_Assignment_Statement
and then Par = Name (Parent (Par))
then
return False;
-- A renaming produces a reference, and the transformation
-- does not apply.
elsif Nkind (Parent (Par)) = N_Object_Renaming_Declaration then
return False;
elsif Nkind_In
(Nkind (Parent (Par)), N_Function_Call,
N_Procedure_Call_Statement,
N_Entry_Call_Statement)
then
-- Check that the element is not part of an actual for an
-- in-out parameter.
declare
F : Entity_Id;
A : Node_Id;
begin
F := First_Formal (Entity (Name (Parent (Par))));
A := First (Parameter_Associations (Parent (Par)));
while Present (F) loop
if A = Par and then Ekind (F) /= E_In_Parameter then
return False;
end if;
Next_Formal (F);
Next (A);
end loop;
end;
-- E_In_Parameter in a call: element is not modified.
exit;
end if;
Par := Parent (Par);
end loop;
end;
end if;
-- The expression has the proper form and the context requires the
-- element type. Retrieve the Element function of the container and
-- rewrite the construct as a call to it.
declare
Op : Elmt_Id;
begin
Op := First_Elmt (Primitive_Operations (Cont_Typ));
while Present (Op) loop
exit when Chars (Node (Op)) = Name_Element;
Next_Elmt (Op);
end loop;
if No (Op) then
return False;
else
Rewrite (Exp,
Make_Function_Call (Loc,
Name => New_Occurrence_Of (Node (Op), Loc),
Parameter_Associations => Parameter_Associations (Call)));
Analyze_And_Resolve (Exp, Entity (Elem_Typ));
return True;
end if;
end;
end Is_Container_Element;
----------------------------
-- Is_Contract_Annotation --
----------------------------
function Is_Contract_Annotation (Item : Node_Id) return Boolean is
begin
return Is_Package_Contract_Annotation (Item)
or else
Is_Subprogram_Contract_Annotation (Item);
end Is_Contract_Annotation;
--------------------------------------
-- Is_Controlling_Limited_Procedure --
--------------------------------------
function Is_Controlling_Limited_Procedure
(Proc_Nam : Entity_Id) return Boolean
is
Param : Node_Id;
Param_Typ : Entity_Id := Empty;
begin
if Ekind (Proc_Nam) = E_Procedure
and then Present (Parameter_Specifications (Parent (Proc_Nam)))
then
Param :=
Parameter_Type
(First (Parameter_Specifications (Parent (Proc_Nam))));
-- The formal may be an anonymous access type
if Nkind (Param) = N_Access_Definition then
Param_Typ := Entity (Subtype_Mark (Param));
else
Param_Typ := Etype (Param);
end if;
-- In the case where an Itype was created for a dispatchin call, the
-- procedure call has been rewritten. The actual may be an access to
-- interface type in which case it is the designated type that is the
-- controlling type.
elsif Present (Associated_Node_For_Itype (Proc_Nam))
and then Present (Original_Node (Associated_Node_For_Itype (Proc_Nam)))
and then
Present (Parameter_Associations
(Associated_Node_For_Itype (Proc_Nam)))
then
Param_Typ :=
Etype (First (Parameter_Associations
(Associated_Node_For_Itype (Proc_Nam))));
if Ekind (Param_Typ) = E_Anonymous_Access_Type then
Param_Typ := Directly_Designated_Type (Param_Typ);
end if;
end if;
if Present (Param_Typ) then
return
Is_Interface (Param_Typ)
and then Is_Limited_Record (Param_Typ);
end if;
return False;
end Is_Controlling_Limited_Procedure;
-----------------------------
-- Is_CPP_Constructor_Call --
-----------------------------
function Is_CPP_Constructor_Call (N : Node_Id) return Boolean is
begin
return Nkind (N) = N_Function_Call
and then Is_CPP_Class (Etype (Etype (N)))
and then Is_Constructor (Entity (Name (N)))
and then Is_Imported (Entity (Name (N)));
end Is_CPP_Constructor_Call;
-------------------------
-- Is_Current_Instance --
-------------------------
function Is_Current_Instance (N : Node_Id) return Boolean is
Typ : constant Entity_Id := Entity (N);
P : Node_Id;
begin
-- Simplest case: entity is a concurrent type and we are currently
-- inside the body. This will eventually be expanded into a call to
-- Self (for tasks) or _object (for protected objects).
if Is_Concurrent_Type (Typ) and then In_Open_Scopes (Typ) then
return True;
else
-- Check whether the context is a (sub)type declaration for the
-- type entity.
P := Parent (N);
while Present (P) loop
if Nkind_In (P, N_Full_Type_Declaration,
N_Private_Type_Declaration,
N_Subtype_Declaration)
and then Comes_From_Source (P)
and then Defining_Entity (P) = Typ
then
return True;
-- A subtype name may appear in an aspect specification for a
-- Predicate_Failure aspect, for which we do not construct a
-- wrapper procedure. The subtype will be replaced by the
-- expression being tested when the corresponding predicate
-- check is expanded.
elsif Nkind (P) = N_Aspect_Specification
and then Nkind (Parent (P)) = N_Subtype_Declaration
then
return True;
elsif Nkind (P) = N_Pragma
and then Get_Pragma_Id (P) = Pragma_Predicate_Failure
then
return True;
end if;
P := Parent (P);
end loop;
end if;
-- In any other context this is not a current occurrence
return False;
end Is_Current_Instance;
--------------------
-- Is_Declaration --
--------------------
function Is_Declaration
(N : Node_Id;
Body_OK : Boolean := True;
Concurrent_OK : Boolean := True;
Formal_OK : Boolean := True;
Generic_OK : Boolean := True;
Instantiation_OK : Boolean := True;
Renaming_OK : Boolean := True;
Stub_OK : Boolean := True;
Subprogram_OK : Boolean := True;
Type_OK : Boolean := True) return Boolean
is
begin
case Nkind (N) is
-- Body declarations
when N_Proper_Body =>
return Body_OK;
-- Concurrent type declarations
when N_Protected_Type_Declaration
| N_Single_Protected_Declaration
| N_Single_Task_Declaration
| N_Task_Type_Declaration
=>
return Concurrent_OK or Type_OK;
-- Formal declarations
when N_Formal_Abstract_Subprogram_Declaration
| N_Formal_Concrete_Subprogram_Declaration
| N_Formal_Object_Declaration
| N_Formal_Package_Declaration
| N_Formal_Type_Declaration
=>
return Formal_OK;
-- Generic declarations
when N_Generic_Package_Declaration
| N_Generic_Subprogram_Declaration
=>
return Generic_OK;
-- Generic instantiations
when N_Function_Instantiation
| N_Package_Instantiation
| N_Procedure_Instantiation
=>
return Instantiation_OK;
-- Generic renaming declarations
when N_Generic_Renaming_Declaration =>
return Generic_OK or Renaming_OK;
-- Renaming declarations
when N_Exception_Renaming_Declaration
| N_Object_Renaming_Declaration
| N_Package_Renaming_Declaration
| N_Subprogram_Renaming_Declaration
=>
return Renaming_OK;
-- Stub declarations
when N_Body_Stub =>
return Stub_OK;
-- Subprogram declarations
when N_Abstract_Subprogram_Declaration
| N_Entry_Declaration
| N_Expression_Function
| N_Subprogram_Declaration
=>
return Subprogram_OK;
-- Type declarations
when N_Full_Type_Declaration
| N_Incomplete_Type_Declaration
| N_Private_Extension_Declaration
| N_Private_Type_Declaration
| N_Subtype_Declaration
=>
return Type_OK;
-- Miscellaneous
when N_Component_Declaration
| N_Exception_Declaration
| N_Implicit_Label_Declaration
| N_Number_Declaration
| N_Object_Declaration
| N_Package_Declaration
=>
return True;
when others =>
return False;
end case;
end Is_Declaration;
--------------------------------
-- Is_Declared_Within_Variant --
--------------------------------
function Is_Declared_Within_Variant (Comp : Entity_Id) return Boolean is
Comp_Decl : constant Node_Id := Parent (Comp);
Comp_List : constant Node_Id := Parent (Comp_Decl);
begin
return Nkind (Parent (Comp_List)) = N_Variant;
end Is_Declared_Within_Variant;
----------------------------------------------
-- Is_Dependent_Component_Of_Mutable_Object --
----------------------------------------------
function Is_Dependent_Component_Of_Mutable_Object
(Object : Node_Id) return Boolean
is
P : Node_Id;
Prefix_Type : Entity_Id;
P_Aliased : Boolean := False;
Comp : Entity_Id;
Deref : Node_Id := Object;
-- Dereference node, in something like X.all.Y(2)
-- Start of processing for Is_Dependent_Component_Of_Mutable_Object
begin
-- Find the dereference node if any
while Nkind_In (Deref, N_Indexed_Component,
N_Selected_Component,
N_Slice)
loop
Deref := Prefix (Deref);
end loop;
-- Ada 2005: If we have a component or slice of a dereference,
-- something like X.all.Y (2), and the type of X is access-to-constant,
-- Is_Variable will return False, because it is indeed a constant
-- view. But it might be a view of a variable object, so we want the
-- following condition to be True in that case.
if Is_Variable (Object)
or else (Ada_Version >= Ada_2005
and then Nkind (Deref) = N_Explicit_Dereference)
then
if Nkind (Object) = N_Selected_Component then
P := Prefix (Object);
Prefix_Type := Etype (P);
if Is_Entity_Name (P) then
if Ekind (Entity (P)) = E_Generic_In_Out_Parameter then
Prefix_Type := Base_Type (Prefix_Type);
end if;
if Is_Aliased (Entity (P)) then
P_Aliased := True;
end if;
-- A discriminant check on a selected component may be expanded
-- into a dereference when removing side effects. Recover the
-- original node and its type, which may be unconstrained.
elsif Nkind (P) = N_Explicit_Dereference
and then not (Comes_From_Source (P))
then
P := Original_Node (P);
Prefix_Type := Etype (P);
else
-- Check for prefix being an aliased component???
null;
end if;
-- A heap object is constrained by its initial value
-- Ada 2005 (AI-363): Always assume the object could be mutable in
-- the dereferenced case, since the access value might denote an
-- unconstrained aliased object, whereas in Ada 95 the designated
-- object is guaranteed to be constrained. A worst-case assumption
-- has to apply in Ada 2005 because we can't tell at compile
-- time whether the object is "constrained by its initial value",
-- despite the fact that 3.10.2(26/2) and 8.5.1(5/2) are semantic
-- rules (these rules are acknowledged to need fixing). We don't
-- impose this more stringent checking for earlier Ada versions or
-- when Relaxed_RM_Semantics applies (the latter for CodePeer's
-- benefit, though it's unclear on why using -gnat95 would not be
-- sufficient???).
if Ada_Version < Ada_2005 or else Relaxed_RM_Semantics then
if Is_Access_Type (Prefix_Type)
or else Nkind (P) = N_Explicit_Dereference
then
return False;
end if;
else pragma Assert (Ada_Version >= Ada_2005);
if Is_Access_Type (Prefix_Type) then
-- If the access type is pool-specific, and there is no
-- constrained partial view of the designated type, then the
-- designated object is known to be constrained.
if Ekind (Prefix_Type) = E_Access_Type
and then not Object_Type_Has_Constrained_Partial_View
(Typ => Designated_Type (Prefix_Type),
Scop => Current_Scope)
then
return False;
-- Otherwise (general access type, or there is a constrained
-- partial view of the designated type), we need to check
-- based on the designated type.
else
Prefix_Type := Designated_Type (Prefix_Type);
end if;
end if;
end if;
Comp :=
Original_Record_Component (Entity (Selector_Name (Object)));
-- As per AI-0017, the renaming is illegal in a generic body, even
-- if the subtype is indefinite.
-- Ada 2005 (AI-363): In Ada 2005 an aliased object can be mutable
if not Is_Constrained (Prefix_Type)
and then (Is_Definite_Subtype (Prefix_Type)
or else
(Is_Generic_Type (Prefix_Type)
and then Ekind (Current_Scope) = E_Generic_Package
and then In_Package_Body (Current_Scope)))
and then (Is_Declared_Within_Variant (Comp)
or else Has_Discriminant_Dependent_Constraint (Comp))
and then (not P_Aliased or else Ada_Version >= Ada_2005)
then
return True;
-- If the prefix is of an access type at this point, then we want
-- to return False, rather than calling this function recursively
-- on the access object (which itself might be a discriminant-
-- dependent component of some other object, but that isn't
-- relevant to checking the object passed to us). This avoids
-- issuing wrong errors when compiling with -gnatc, where there
-- can be implicit dereferences that have not been expanded.
elsif Is_Access_Type (Etype (Prefix (Object))) then
return False;
else
return
Is_Dependent_Component_Of_Mutable_Object (Prefix (Object));
end if;
elsif Nkind (Object) = N_Indexed_Component
or else Nkind (Object) = N_Slice
then
return Is_Dependent_Component_Of_Mutable_Object (Prefix (Object));
-- A type conversion that Is_Variable is a view conversion:
-- go back to the denoted object.
elsif Nkind (Object) = N_Type_Conversion then
return
Is_Dependent_Component_Of_Mutable_Object (Expression (Object));
end if;
end if;
return False;
end Is_Dependent_Component_Of_Mutable_Object;
---------------------
-- Is_Dereferenced --
---------------------
function Is_Dereferenced (N : Node_Id) return Boolean is
P : constant Node_Id := Parent (N);
begin
return Nkind_In (P, N_Selected_Component,
N_Explicit_Dereference,
N_Indexed_Component,
N_Slice)
and then Prefix (P) = N;
end Is_Dereferenced;
----------------------
-- Is_Descendant_Of --
----------------------
function Is_Descendant_Of (T1 : Entity_Id; T2 : Entity_Id) return Boolean is
T : Entity_Id;
Etyp : Entity_Id;
begin
pragma Assert (Nkind (T1) in N_Entity);
pragma Assert (Nkind (T2) in N_Entity);
T := Base_Type (T1);
-- Immediate return if the types match
if T = T2 then
return True;
-- Comment needed here ???
elsif Ekind (T) = E_Class_Wide_Type then
return Etype (T) = T2;
-- All other cases
else
loop
Etyp := Etype (T);
-- Done if we found the type we are looking for
if Etyp = T2 then
return True;
-- Done if no more derivations to check
elsif T = T1
or else T = Etyp
then
return False;
-- Following test catches error cases resulting from prev errors
elsif No (Etyp) then
return False;
elsif Is_Private_Type (T) and then Etyp = Full_View (T) then
return False;
elsif Is_Private_Type (Etyp) and then Full_View (Etyp) = T then
return False;
end if;
T := Base_Type (Etyp);
end loop;
end if;
end Is_Descendant_Of;
----------------------------------------
-- Is_Descendant_Of_Suspension_Object --
----------------------------------------
function Is_Descendant_Of_Suspension_Object
(Typ : Entity_Id) return Boolean
is
Cur_Typ : Entity_Id;
Par_Typ : Entity_Id;
begin
-- Climb the type derivation chain checking each parent type against
-- Suspension_Object.
Cur_Typ := Base_Type (Typ);
while Present (Cur_Typ) loop
Par_Typ := Etype (Cur_Typ);
-- The current type is a match
if Is_Suspension_Object (Cur_Typ) then
return True;
-- Stop the traversal once the root of the derivation chain has been
-- reached. In that case the current type is its own base type.
elsif Cur_Typ = Par_Typ then
exit;
end if;
Cur_Typ := Base_Type (Par_Typ);
end loop;
return False;
end Is_Descendant_Of_Suspension_Object;
---------------------------------------------
-- Is_Double_Precision_Floating_Point_Type --
---------------------------------------------
function Is_Double_Precision_Floating_Point_Type
(E : Entity_Id) return Boolean is
begin
return Is_Floating_Point_Type (E)
and then Machine_Radix_Value (E) = Uint_2
and then Machine_Mantissa_Value (E) = UI_From_Int (53)
and then Machine_Emax_Value (E) = Uint_2 ** Uint_10
and then Machine_Emin_Value (E) = Uint_3 - (Uint_2 ** Uint_10);
end Is_Double_Precision_Floating_Point_Type;
-----------------------------
-- Is_Effectively_Volatile --
-----------------------------
function Is_Effectively_Volatile (Id : Entity_Id) return Boolean is
begin
if Is_Type (Id) then
-- An arbitrary type is effectively volatile when it is subject to
-- pragma Atomic or Volatile.
if Is_Volatile (Id) then
return True;
-- An array type is effectively volatile when it is subject to pragma
-- Atomic_Components or Volatile_Components or its component type is
-- effectively volatile.
elsif Is_Array_Type (Id) then
declare
Anc : Entity_Id := Base_Type (Id);
begin
if Is_Private_Type (Anc) then
Anc := Full_View (Anc);
end if;
-- Test for presence of ancestor, as the full view of a private
-- type may be missing in case of error.
return
Has_Volatile_Components (Id)
or else
(Present (Anc)
and then Is_Effectively_Volatile (Component_Type (Anc)));
end;
-- A protected type is always volatile
elsif Is_Protected_Type (Id) then
return True;
-- A descendant of Ada.Synchronous_Task_Control.Suspension_Object is
-- automatically volatile.
elsif Is_Descendant_Of_Suspension_Object (Id) then
return True;
-- Otherwise the type is not effectively volatile
else
return False;
end if;
-- Otherwise Id denotes an object
else
return
Is_Volatile (Id)
or else Has_Volatile_Components (Id)
or else Is_Effectively_Volatile (Etype (Id));
end if;
end Is_Effectively_Volatile;
------------------------------------
-- Is_Effectively_Volatile_Object --
------------------------------------
function Is_Effectively_Volatile_Object (N : Node_Id) return Boolean is
begin
if Is_Entity_Name (N) then
return Is_Effectively_Volatile (Entity (N));
elsif Nkind (N) = N_Indexed_Component then
return Is_Effectively_Volatile_Object (Prefix (N));
elsif Nkind (N) = N_Selected_Component then
return
Is_Effectively_Volatile_Object (Prefix (N))
or else
Is_Effectively_Volatile_Object (Selector_Name (N));
else
return False;
end if;
end Is_Effectively_Volatile_Object;
-------------------
-- Is_Entry_Body --
-------------------
function Is_Entry_Body (Id : Entity_Id) return Boolean is
begin
return
Ekind_In (Id, E_Entry, E_Entry_Family)
and then Nkind (Unit_Declaration_Node (Id)) = N_Entry_Body;
end Is_Entry_Body;
--------------------------
-- Is_Entry_Declaration --
--------------------------
function Is_Entry_Declaration (Id : Entity_Id) return Boolean is
begin
return
Ekind_In (Id, E_Entry, E_Entry_Family)
and then Nkind (Unit_Declaration_Node (Id)) = N_Entry_Declaration;
end Is_Entry_Declaration;
------------------------------------
-- Is_Expanded_Priority_Attribute --
------------------------------------
function Is_Expanded_Priority_Attribute (E : Entity_Id) return Boolean is
begin
return
Nkind (E) = N_Function_Call
and then not Configurable_Run_Time_Mode
and then (Entity (Name (E)) = RTE (RE_Get_Ceiling)
or else Entity (Name (E)) = RTE (RO_PE_Get_Ceiling));
end Is_Expanded_Priority_Attribute;
----------------------------
-- Is_Expression_Function --
----------------------------
function Is_Expression_Function (Subp : Entity_Id) return Boolean is
begin
if Ekind_In (Subp, E_Function, E_Subprogram_Body) then
return
Nkind (Original_Node (Unit_Declaration_Node (Subp))) =
N_Expression_Function;
else
return False;
end if;
end Is_Expression_Function;
------------------------------------------
-- Is_Expression_Function_Or_Completion --
------------------------------------------
function Is_Expression_Function_Or_Completion
(Subp : Entity_Id) return Boolean
is
Subp_Decl : Node_Id;
begin
if Ekind (Subp) = E_Function then
Subp_Decl := Unit_Declaration_Node (Subp);
-- The function declaration is either an expression function or is
-- completed by an expression function body.
return
Is_Expression_Function (Subp)
or else (Nkind (Subp_Decl) = N_Subprogram_Declaration
and then Present (Corresponding_Body (Subp_Decl))
and then Is_Expression_Function
(Corresponding_Body (Subp_Decl)));
elsif Ekind (Subp) = E_Subprogram_Body then
return Is_Expression_Function (Subp);
else
return False;
end if;
end Is_Expression_Function_Or_Completion;
-----------------------
-- Is_EVF_Expression --
-----------------------
function Is_EVF_Expression (N : Node_Id) return Boolean is
Orig_N : constant Node_Id := Original_Node (N);
Alt : Node_Id;
Expr : Node_Id;
Id : Entity_Id;
begin
-- Detect a reference to a formal parameter of a specific tagged type
-- whose related subprogram is subject to pragma Expresions_Visible with
-- value "False".
if Is_Entity_Name (N) and then Present (Entity (N)) then
Id := Entity (N);
return
Is_Formal (Id)
and then Is_Specific_Tagged_Type (Etype (Id))
and then Extensions_Visible_Status (Id) =
Extensions_Visible_False;
-- A case expression is an EVF expression when it contains at least one
-- EVF dependent_expression. Note that a case expression may have been
-- expanded, hence the use of Original_Node.
elsif Nkind (Orig_N) = N_Case_Expression then
Alt := First (Alternatives (Orig_N));
while Present (Alt) loop
if Is_EVF_Expression (Expression (Alt)) then
return True;
end if;
Next (Alt);
end loop;
-- An if expression is an EVF expression when it contains at least one
-- EVF dependent_expression. Note that an if expression may have been
-- expanded, hence the use of Original_Node.
elsif Nkind (Orig_N) = N_If_Expression then
Expr := Next (First (Expressions (Orig_N)));
while Present (Expr) loop
if Is_EVF_Expression (Expr) then
return True;
end if;
Next (Expr);
end loop;
-- A qualified expression or a type conversion is an EVF expression when
-- its operand is an EVF expression.
elsif Nkind_In (N, N_Qualified_Expression,
N_Unchecked_Type_Conversion,
N_Type_Conversion)
then
return Is_EVF_Expression (Expression (N));
-- Attributes 'Loop_Entry, 'Old, and 'Update are EVF expressions when
-- their prefix denotes an EVF expression.
elsif Nkind (N) = N_Attribute_Reference
and then Nam_In (Attribute_Name (N), Name_Loop_Entry,
Name_Old,
Name_Update)
then
return Is_EVF_Expression (Prefix (N));
end if;
return False;
end Is_EVF_Expression;
--------------
-- Is_False --
--------------
function Is_False (U : Uint) return Boolean is
begin
return (U = 0);
end Is_False;
---------------------------
-- Is_Fixed_Model_Number --
---------------------------
function Is_Fixed_Model_Number (U : Ureal; T : Entity_Id) return Boolean is
S : constant Ureal := Small_Value (T);
M : Urealp.Save_Mark;
R : Boolean;
begin
M := Urealp.Mark;
R := (U = UR_Trunc (U / S) * S);
Urealp.Release (M);
return R;
end Is_Fixed_Model_Number;
-------------------------------
-- Is_Fully_Initialized_Type --
-------------------------------
function Is_Fully_Initialized_Type (Typ : Entity_Id) return Boolean is
begin
-- Scalar types
if Is_Scalar_Type (Typ) then
-- A scalar type with an aspect Default_Value is fully initialized
-- Note: Iniitalize/Normalize_Scalars also ensure full initialization
-- of a scalar type, but we don't take that into account here, since
-- we don't want these to affect warnings.
return Has_Default_Aspect (Typ);
elsif Is_Access_Type (Typ) then
return True;
elsif Is_Array_Type (Typ) then
if Is_Fully_Initialized_Type (Component_Type (Typ))
or else (Ada_Version >= Ada_2012 and then Has_Default_Aspect (Typ))
then
return True;
end if;
-- An interesting case, if we have a constrained type one of whose
-- bounds is known to be null, then there are no elements to be
-- initialized, so all the elements are initialized.
if Is_Constrained (Typ) then
declare
Indx : Node_Id;
Indx_Typ : Entity_Id;
Lbd, Hbd : Node_Id;
begin
Indx := First_Index (Typ);
while Present (Indx) loop
if Etype (Indx) = Any_Type then
return False;
-- If index is a range, use directly
elsif Nkind (Indx) = N_Range then
Lbd := Low_Bound (Indx);
Hbd := High_Bound (Indx);
else
Indx_Typ := Etype (Indx);
if Is_Private_Type (Indx_Typ) then
Indx_Typ := Full_View (Indx_Typ);
end if;
if No (Indx_Typ) or else Etype (Indx_Typ) = Any_Type then
return False;
else
Lbd := Type_Low_Bound (Indx_Typ);
Hbd := Type_High_Bound (Indx_Typ);
end if;
end if;
if Compile_Time_Known_Value (Lbd)
and then
Compile_Time_Known_Value (Hbd)
then
if Expr_Value (Hbd) < Expr_Value (Lbd) then
return True;
end if;
end if;
Next_Index (Indx);
end loop;
end;
end if;
-- If no null indexes, then type is not fully initialized
return False;
-- Record types
elsif Is_Record_Type (Typ) then
if Has_Discriminants (Typ)
and then
Present (Discriminant_Default_Value (First_Discriminant (Typ)))
and then Is_Fully_Initialized_Variant (Typ)
then
return True;
end if;
-- We consider bounded string types to be fully initialized, because
-- otherwise we get false alarms when the Data component is not
-- default-initialized.
if Is_Bounded_String (Typ) then
return True;
end if;
-- Controlled records are considered to be fully initialized if
-- there is a user defined Initialize routine. This may not be
-- entirely correct, but as the spec notes, we are guessing here
-- what is best from the point of view of issuing warnings.
if Is_Controlled (Typ) then
declare
Utyp : constant Entity_Id := Underlying_Type (Typ);
begin
if Present (Utyp) then
declare
Init : constant Entity_Id :=
(Find_Optional_Prim_Op
(Underlying_Type (Typ), Name_Initialize));
begin
if Present (Init)
and then Comes_From_Source (Init)
and then not In_Predefined_Unit (Init)
then
return True;
elsif Has_Null_Extension (Typ)
and then
Is_Fully_Initialized_Type
(Etype (Base_Type (Typ)))
then
return True;
end if;
end;
end if;
end;
end if;
-- Otherwise see if all record components are initialized
declare
Ent : Entity_Id;
begin
Ent := First_Entity (Typ);
while Present (Ent) loop
if Ekind (Ent) = E_Component
and then (No (Parent (Ent))
or else No (Expression (Parent (Ent))))
and then not Is_Fully_Initialized_Type (Etype (Ent))
-- Special VM case for tag components, which need to be
-- defined in this case, but are never initialized as VMs
-- are using other dispatching mechanisms. Ignore this
-- uninitialized case. Note that this applies both to the
-- uTag entry and the main vtable pointer (CPP_Class case).
and then (Tagged_Type_Expansion or else not Is_Tag (Ent))
then
return False;
end if;
Next_Entity (Ent);
end loop;
end;
-- No uninitialized components, so type is fully initialized.
-- Note that this catches the case of no components as well.
return True;
elsif Is_Concurrent_Type (Typ) then
return True;
elsif Is_Private_Type (Typ) then
declare
U : constant Entity_Id := Underlying_Type (Typ);
begin
if No (U) then
return False;
else
return Is_Fully_Initialized_Type (U);
end if;
end;
else
return False;
end if;
end Is_Fully_Initialized_Type;
----------------------------------
-- Is_Fully_Initialized_Variant --
----------------------------------
function Is_Fully_Initialized_Variant (Typ : Entity_Id) return Boolean is
Loc : constant Source_Ptr := Sloc (Typ);
Constraints : constant List_Id := New_List;
Components : constant Elist_Id := New_Elmt_List;
Comp_Elmt : Elmt_Id;
Comp_Id : Node_Id;
Comp_List : Node_Id;
Discr : Entity_Id;
Discr_Val : Node_Id;
Report_Errors : Boolean;
pragma Warnings (Off, Report_Errors);
begin
if Serious_Errors_Detected > 0 then
return False;
end if;
if Is_Record_Type (Typ)
and then Nkind (Parent (Typ)) = N_Full_Type_Declaration
and then Nkind (Type_Definition (Parent (Typ))) = N_Record_Definition
then
Comp_List := Component_List (Type_Definition (Parent (Typ)));
Discr := First_Discriminant (Typ);
while Present (Discr) loop
if Nkind (Parent (Discr)) = N_Discriminant_Specification then
Discr_Val := Expression (Parent (Discr));
if Present (Discr_Val)
and then Is_OK_Static_Expression (Discr_Val)
then
Append_To (Constraints,
Make_Component_Association (Loc,
Choices => New_List (New_Occurrence_Of (Discr, Loc)),
Expression => New_Copy (Discr_Val)));
else
return False;
end if;
else
return False;
end if;
Next_Discriminant (Discr);
end loop;
Gather_Components
(Typ => Typ,
Comp_List => Comp_List,
Governed_By => Constraints,
Into => Components,
Report_Errors => Report_Errors);
-- Check that each component present is fully initialized
Comp_Elmt := First_Elmt (Components);
while Present (Comp_Elmt) loop
Comp_Id := Node (Comp_Elmt);
if Ekind (Comp_Id) = E_Component
and then (No (Parent (Comp_Id))
or else No (Expression (Parent (Comp_Id))))
and then not Is_Fully_Initialized_Type (Etype (Comp_Id))
then
return False;
end if;
Next_Elmt (Comp_Elmt);
end loop;
return True;
elsif Is_Private_Type (Typ) then
declare
U : constant Entity_Id := Underlying_Type (Typ);
begin
if No (U) then
return False;
else
return Is_Fully_Initialized_Variant (U);
end if;
end;
else
return False;
end if;
end Is_Fully_Initialized_Variant;
------------------------------------
-- Is_Generic_Declaration_Or_Body --
------------------------------------
function Is_Generic_Declaration_Or_Body (Decl : Node_Id) return Boolean is
Spec_Decl : Node_Id;
begin
-- Package/subprogram body
if Nkind_In (Decl, N_Package_Body, N_Subprogram_Body)
and then Present (Corresponding_Spec (Decl))
then
Spec_Decl := Unit_Declaration_Node (Corresponding_Spec (Decl));
-- Package/subprogram body stub
elsif Nkind_In (Decl, N_Package_Body_Stub, N_Subprogram_Body_Stub)
and then Present (Corresponding_Spec_Of_Stub (Decl))
then
Spec_Decl :=
Unit_Declaration_Node (Corresponding_Spec_Of_Stub (Decl));
-- All other cases
else
Spec_Decl := Decl;
end if;
-- Rather than inspecting the defining entity of the spec declaration,
-- look at its Nkind. This takes care of the case where the analysis of
-- a generic body modifies the Ekind of its spec to allow for recursive
-- calls.
return
Nkind_In (Spec_Decl, N_Generic_Package_Declaration,
N_Generic_Subprogram_Declaration);
end Is_Generic_Declaration_Or_Body;
----------------------------
-- Is_Inherited_Operation --
----------------------------
function Is_Inherited_Operation (E : Entity_Id) return Boolean is
pragma Assert (Is_Overloadable (E));
Kind : constant Node_Kind := Nkind (Parent (E));
begin
return Kind = N_Full_Type_Declaration
or else Kind = N_Private_Extension_Declaration
or else Kind = N_Subtype_Declaration
or else (Ekind (E) = E_Enumeration_Literal
and then Is_Derived_Type (Etype (E)));
end Is_Inherited_Operation;
-------------------------------------
-- Is_Inherited_Operation_For_Type --
-------------------------------------
function Is_Inherited_Operation_For_Type
(E : Entity_Id;
Typ : Entity_Id) return Boolean
is
begin
-- Check that the operation has been created by the type declaration
return Is_Inherited_Operation (E)
and then Defining_Identifier (Parent (E)) = Typ;
end Is_Inherited_Operation_For_Type;
--------------------------------------
-- Is_Inlinable_Expression_Function --
--------------------------------------
function Is_Inlinable_Expression_Function
(Subp : Entity_Id) return Boolean
is
Return_Expr : Node_Id;
begin
if Is_Expression_Function_Or_Completion (Subp)
and then Has_Pragma_Inline_Always (Subp)
and then Needs_No_Actuals (Subp)
and then No (Contract (Subp))
and then not Is_Dispatching_Operation (Subp)
and then Needs_Finalization (Etype (Subp))
and then not Is_Class_Wide_Type (Etype (Subp))
and then not (Has_Invariants (Etype (Subp)))
and then Present (Subprogram_Body (Subp))
and then Was_Expression_Function (Subprogram_Body (Subp))
then
Return_Expr := Expression_Of_Expression_Function (Subp);
-- The returned object must not have a qualified expression and its
-- nominal subtype must be statically compatible with the result
-- subtype of the expression function.
return
Nkind (Return_Expr) = N_Identifier
and then Etype (Return_Expr) = Etype (Subp);
end if;
return False;
end Is_Inlinable_Expression_Function;
-----------------
-- Is_Iterator --
-----------------
function Is_Iterator (Typ : Entity_Id) return Boolean is
function Denotes_Iterator (Iter_Typ : Entity_Id) return Boolean;
-- Determine whether type Iter_Typ is a predefined forward or reversible
-- iterator.
----------------------
-- Denotes_Iterator --
----------------------
function Denotes_Iterator (Iter_Typ : Entity_Id) return Boolean is
begin
-- Check that the name matches, and that the ultimate ancestor is in
-- a predefined unit, i.e the one that declares iterator interfaces.
return
Nam_In (Chars (Iter_Typ), Name_Forward_Iterator,
Name_Reversible_Iterator)
and then In_Predefined_Unit (Root_Type (Iter_Typ));
end Denotes_Iterator;
-- Local variables
Iface_Elmt : Elmt_Id;
Ifaces : Elist_Id;
-- Start of processing for Is_Iterator
begin
-- The type may be a subtype of a descendant of the proper instance of
-- the predefined interface type, so we must use the root type of the
-- given type. The same is done for Is_Reversible_Iterator.
if Is_Class_Wide_Type (Typ)
and then Denotes_Iterator (Root_Type (Typ))
then
return True;
elsif not Is_Tagged_Type (Typ) or else not Is_Derived_Type (Typ) then
return False;
elsif Present (Find_Value_Of_Aspect (Typ, Aspect_Iterable)) then
return True;
else
Collect_Interfaces (Typ, Ifaces);
Iface_Elmt := First_Elmt (Ifaces);
while Present (Iface_Elmt) loop
if Denotes_Iterator (Node (Iface_Elmt)) then
return True;
end if;
Next_Elmt (Iface_Elmt);
end loop;
return False;
end if;
end Is_Iterator;
----------------------------
-- Is_Iterator_Over_Array --
----------------------------
function Is_Iterator_Over_Array (N : Node_Id) return Boolean is
Container : constant Node_Id := Name (N);
Container_Typ : constant Entity_Id := Base_Type (Etype (Container));
begin
return Is_Array_Type (Container_Typ);
end Is_Iterator_Over_Array;
------------
-- Is_LHS --
------------
-- We seem to have a lot of overlapping functions that do similar things
-- (testing for left hand sides or lvalues???).
function Is_LHS (N : Node_Id) return Is_LHS_Result is
P : constant Node_Id := Parent (N);
begin
-- Return True if we are the left hand side of an assignment statement
if Nkind (P) = N_Assignment_Statement then
if Name (P) = N then
return Yes;
else
return No;
end if;
-- Case of prefix of indexed or selected component or slice
elsif Nkind_In (P, N_Indexed_Component, N_Selected_Component, N_Slice)
and then N = Prefix (P)
then
-- Here we have the case where the parent P is N.Q or N(Q .. R).
-- If P is an LHS, then N is also effectively an LHS, but there
-- is an important exception. If N is of an access type, then
-- what we really have is N.all.Q (or N.all(Q .. R)). In either
-- case this makes N.all a left hand side but not N itself.
-- If we don't know the type yet, this is the case where we return
-- Unknown, since the answer depends on the type which is unknown.
if No (Etype (N)) then
return Unknown;
-- We have an Etype set, so we can check it
elsif Is_Access_Type (Etype (N)) then
return No;
-- OK, not access type case, so just test whole expression
else
return Is_LHS (P);
end if;
-- All other cases are not left hand sides
else
return No;
end if;
end Is_LHS;
-----------------------------
-- Is_Library_Level_Entity --
-----------------------------
function Is_Library_Level_Entity (E : Entity_Id) return Boolean is
begin
-- The following is a small optimization, and it also properly handles
-- discriminals, which in task bodies might appear in expressions before
-- the corresponding procedure has been created, and which therefore do
-- not have an assigned scope.
if Is_Formal (E) then
return False;
end if;
-- Normal test is simply that the enclosing dynamic scope is Standard
return Enclosing_Dynamic_Scope (E) = Standard_Standard;
end Is_Library_Level_Entity;
--------------------------------
-- Is_Limited_Class_Wide_Type --
--------------------------------
function Is_Limited_Class_Wide_Type (Typ : Entity_Id) return Boolean is
begin
return
Is_Class_Wide_Type (Typ)
and then (Is_Limited_Type (Typ) or else From_Limited_With (Typ));
end Is_Limited_Class_Wide_Type;
---------------------------------
-- Is_Local_Variable_Reference --
---------------------------------
function Is_Local_Variable_Reference (Expr : Node_Id) return Boolean is
begin
if not Is_Entity_Name (Expr) then
return False;
else
declare
Ent : constant Entity_Id := Entity (Expr);
Sub : constant Entity_Id := Enclosing_Subprogram (Ent);
begin
if not Ekind_In (Ent, E_Variable, E_In_Out_Parameter) then
return False;
else
return Present (Sub) and then Sub = Current_Subprogram;
end if;
end;
end if;
end Is_Local_Variable_Reference;
-----------------------
-- Is_Name_Reference --
-----------------------
function Is_Name_Reference (N : Node_Id) return Boolean is
begin
if Is_Entity_Name (N) then
return Present (Entity (N)) and then Is_Object (Entity (N));
end if;
case Nkind (N) is
when N_Indexed_Component
| N_Slice
=>
return
Is_Name_Reference (Prefix (N))
or else Is_Access_Type (Etype (Prefix (N)));
-- Attributes 'Input, 'Old and 'Result produce objects
when N_Attribute_Reference =>
return
Nam_In (Attribute_Name (N), Name_Input, Name_Old, Name_Result);
when N_Selected_Component =>
return
Is_Name_Reference (Selector_Name (N))
and then
(Is_Name_Reference (Prefix (N))
or else Is_Access_Type (Etype (Prefix (N))));
when N_Explicit_Dereference =>
return True;
-- A view conversion of a tagged name is a name reference
when N_Type_Conversion =>
return
Is_Tagged_Type (Etype (Subtype_Mark (N)))
and then Is_Tagged_Type (Etype (Expression (N)))
and then Is_Name_Reference (Expression (N));
-- An unchecked type conversion is considered to be a name if the
-- operand is a name (this construction arises only as a result of
-- expansion activities).
when N_Unchecked_Type_Conversion =>
return Is_Name_Reference (Expression (N));
when others =>
return False;
end case;
end Is_Name_Reference;
------------------------------------
-- Is_Non_Preelaborable_Construct --
------------------------------------
function Is_Non_Preelaborable_Construct (N : Node_Id) return Boolean is
-- NOTE: the routines within Is_Non_Preelaborable_Construct are
-- intentionally unnested to avoid deep indentation of code.
Non_Preelaborable : exception;
-- This exception is raised when the construct violates preelaborability
-- to terminate the recursion.
procedure Visit (Nod : Node_Id);
-- Semantically inspect construct Nod to determine whether it violates
-- preelaborability. This routine raises Non_Preelaborable.
procedure Visit_List (List : List_Id);
pragma Inline (Visit_List);
-- Invoke Visit on each element of list List. This routine raises
-- Non_Preelaborable.
procedure Visit_Pragma (Prag : Node_Id);
pragma Inline (Visit_Pragma);
-- Semantically inspect pragma Prag to determine whether it violates
-- preelaborability. This routine raises Non_Preelaborable.
procedure Visit_Subexpression (Expr : Node_Id);
pragma Inline (Visit_Subexpression);
-- Semantically inspect expression Expr to determine whether it violates
-- preelaborability. This routine raises Non_Preelaborable.
-----------
-- Visit --
-----------
procedure Visit (Nod : Node_Id) is
begin
case Nkind (Nod) is
-- Declarations
when N_Component_Declaration =>
-- Defining_Identifier is left out because it is not relevant
-- for preelaborability.
Visit (Component_Definition (Nod));
Visit (Expression (Nod));
when N_Derived_Type_Definition =>
-- Interface_List is left out because it is not relevant for
-- preelaborability.
Visit (Record_Extension_Part (Nod));
Visit (Subtype_Indication (Nod));
when N_Entry_Declaration =>
-- A protected type with at leat one entry is not preelaborable
-- while task types are never preelaborable. This renders entry
-- declarations non-preelaborable.
raise Non_Preelaborable;
when N_Full_Type_Declaration =>
-- Defining_Identifier and Discriminant_Specifications are left
-- out because they are not relevant for preelaborability.
Visit (Type_Definition (Nod));
when N_Function_Instantiation
| N_Package_Instantiation
| N_Procedure_Instantiation
=>
-- Defining_Unit_Name and Name are left out because they are
-- not relevant for preelaborability.
Visit_List (Generic_Associations (Nod));
when N_Object_Declaration =>
-- Defining_Identifier is left out because it is not relevant
-- for preelaborability.
Visit (Object_Definition (Nod));
if Has_Init_Expression (Nod) then
Visit (Expression (Nod));
elsif not Has_Preelaborable_Initialization
(Etype (Defining_Entity (Nod)))
then
raise Non_Preelaborable;
end if;
when N_Private_Extension_Declaration
| N_Subtype_Declaration
=>
-- Defining_Identifier, Discriminant_Specifications, and
-- Interface_List are left out because they are not relevant
-- for preelaborability.
Visit (Subtype_Indication (Nod));
when N_Protected_Type_Declaration
| N_Single_Protected_Declaration
=>
-- Defining_Identifier, Discriminant_Specifications, and
-- Interface_List are left out because they are not relevant
-- for preelaborability.
Visit (Protected_Definition (Nod));
-- A [single] task type is never preelaborable
when N_Single_Task_Declaration
| N_Task_Type_Declaration
=>
raise Non_Preelaborable;
-- Pragmas
when N_Pragma =>
Visit_Pragma (Nod);
-- Statements
when N_Statement_Other_Than_Procedure_Call =>
if Nkind (Nod) /= N_Null_Statement then
raise Non_Preelaborable;
end if;
-- Subexpressions
when N_Subexpr =>
Visit_Subexpression (Nod);
-- Special
when N_Access_To_Object_Definition =>
Visit (Subtype_Indication (Nod));
when N_Case_Expression_Alternative =>
Visit (Expression (Nod));
Visit_List (Discrete_Choices (Nod));
when N_Component_Definition =>
Visit (Access_Definition (Nod));
Visit (Subtype_Indication (Nod));
when N_Component_List =>
Visit_List (Component_Items (Nod));
Visit (Variant_Part (Nod));
when N_Constrained_Array_Definition =>
Visit_List (Discrete_Subtype_Definitions (Nod));
Visit (Component_Definition (Nod));
when N_Delta_Constraint
| N_Digits_Constraint
=>
-- Delta_Expression and Digits_Expression are left out because
-- they are not relevant for preelaborability.
Visit (Range_Constraint (Nod));
when N_Discriminant_Specification =>
-- Defining_Identifier and Expression are left out because they
-- are not relevant for preelaborability.
Visit (Discriminant_Type (Nod));
when N_Generic_Association =>
-- Selector_Name is left out because it is not relevant for
-- preelaborability.
Visit (Explicit_Generic_Actual_Parameter (Nod));
when N_Index_Or_Discriminant_Constraint =>
Visit_List (Constraints (Nod));
when N_Iterator_Specification =>
-- Defining_Identifier is left out because it is not relevant
-- for preelaborability.
Visit (Name (Nod));
Visit (Subtype_Indication (Nod));
when N_Loop_Parameter_Specification =>
-- Defining_Identifier is left out because it is not relevant
-- for preelaborability.
Visit (Discrete_Subtype_Definition (Nod));
when N_Protected_Definition =>
-- End_Label is left out because it is not relevant for
-- preelaborability.
Visit_List (Private_Declarations (Nod));
Visit_List (Visible_Declarations (Nod));
when N_Range_Constraint =>
Visit (Range_Expression (Nod));
when N_Record_Definition
| N_Variant
=>
-- End_Label, Discrete_Choices, and Interface_List are left out
-- because they are not relevant for preelaborability.
Visit (Component_List (Nod));
when N_Subtype_Indication =>
-- Subtype_Mark is left out because it is not relevant for
-- preelaborability.
Visit (Constraint (Nod));
when N_Unconstrained_Array_Definition =>
-- Subtype_Marks is left out because it is not relevant for
-- preelaborability.
Visit (Component_Definition (Nod));
when N_Variant_Part =>
-- Name is left out because it is not relevant for
-- preelaborability.
Visit_List (Variants (Nod));
-- Default
when others =>
null;
end case;
end Visit;
----------------
-- Visit_List --
----------------
procedure Visit_List (List : List_Id) is
Nod : Node_Id;
begin
if Present (List) then
Nod := First (List);
while Present (Nod) loop
Visit (Nod);
Next (Nod);
end loop;
end if;
end Visit_List;
------------------
-- Visit_Pragma --
------------------
procedure Visit_Pragma (Prag : Node_Id) is
begin
case Get_Pragma_Id (Prag) is
when Pragma_Assert
| Pragma_Assert_And_Cut
| Pragma_Assume
| Pragma_Async_Readers
| Pragma_Async_Writers
| Pragma_Attribute_Definition
| Pragma_Check
| Pragma_Constant_After_Elaboration
| Pragma_CPU
| Pragma_Deadline_Floor
| Pragma_Dispatching_Domain
| Pragma_Effective_Reads
| Pragma_Effective_Writes
| Pragma_Extensions_Visible
| Pragma_Ghost
| Pragma_Secondary_Stack_Size
| Pragma_Task_Name
| Pragma_Volatile_Function
=>
Visit_List (Pragma_Argument_Associations (Prag));
-- Default
when others =>
null;
end case;
end Visit_Pragma;
-------------------------
-- Visit_Subexpression --
-------------------------
procedure Visit_Subexpression (Expr : Node_Id) is
procedure Visit_Aggregate (Aggr : Node_Id);
pragma Inline (Visit_Aggregate);
-- Semantically inspect aggregate Aggr to determine whether it
-- violates preelaborability.
---------------------
-- Visit_Aggregate --
---------------------
procedure Visit_Aggregate (Aggr : Node_Id) is
begin
if not Is_Preelaborable_Aggregate (Aggr) then
raise Non_Preelaborable;
end if;
end Visit_Aggregate;
-- Start of processing for Visit_Subexpression
begin
case Nkind (Expr) is
when N_Allocator
| N_Qualified_Expression
| N_Type_Conversion
| N_Unchecked_Expression
| N_Unchecked_Type_Conversion
=>
-- Subpool_Handle_Name and Subtype_Mark are left out because
-- they are not relevant for preelaborability.
Visit (Expression (Expr));
when N_Aggregate
| N_Extension_Aggregate
=>
Visit_Aggregate (Expr);
when N_Attribute_Reference
| N_Explicit_Dereference
| N_Reference
=>
-- Attribute_Name and Expressions are left out because they are
-- not relevant for preelaborability.
Visit (Prefix (Expr));
when N_Case_Expression =>
-- End_Span is left out because it is not relevant for
-- preelaborability.
Visit_List (Alternatives (Expr));
Visit (Expression (Expr));
when N_Delta_Aggregate =>
Visit_Aggregate (Expr);
Visit (Expression (Expr));
when N_Expression_With_Actions =>
Visit_List (Actions (Expr));
Visit (Expression (Expr));
when N_If_Expression =>
Visit_List (Expressions (Expr));
when N_Quantified_Expression =>
Visit (Condition (Expr));
Visit (Iterator_Specification (Expr));
Visit (Loop_Parameter_Specification (Expr));
when N_Range =>
Visit (High_Bound (Expr));
Visit (Low_Bound (Expr));
when N_Slice =>
Visit (Discrete_Range (Expr));
Visit (Prefix (Expr));
-- Default
when others =>
-- The evaluation of an object name is not preelaborable,
-- unless the name is a static expression (checked further
-- below), or statically denotes a discriminant.
if Is_Entity_Name (Expr) then
Object_Name : declare
Id : constant Entity_Id := Entity (Expr);
begin
if Is_Object (Id) then
if Ekind (Id) = E_Discriminant then
null;
elsif Ekind_In (Id, E_Constant, E_In_Parameter)
and then Present (Discriminal_Link (Id))
then
null;
else
raise Non_Preelaborable;
end if;
end if;
end Object_Name;
-- A non-static expression is not preelaborable
elsif not Is_OK_Static_Expression (Expr) then
raise Non_Preelaborable;
end if;
end case;
end Visit_Subexpression;
-- Start of processing for Is_Non_Preelaborable_Construct
begin
Visit (N);
-- At this point it is known that the construct is preelaborable
return False;
exception
-- The elaboration of the construct performs an action which violates
-- preelaborability.
when Non_Preelaborable =>
return True;
end Is_Non_Preelaborable_Construct;
---------------------------------
-- Is_Nontrivial_DIC_Procedure --
---------------------------------
function Is_Nontrivial_DIC_Procedure (Id : Entity_Id) return Boolean is
Body_Decl : Node_Id;
Stmt : Node_Id;
begin
if Ekind (Id) = E_Procedure and then Is_DIC_Procedure (Id) then
Body_Decl :=
Unit_Declaration_Node
(Corresponding_Body (Unit_Declaration_Node (Id)));
-- The body of the Default_Initial_Condition procedure must contain
-- at least one statement, otherwise the generation of the subprogram
-- body failed.
pragma Assert (Present (Handled_Statement_Sequence (Body_Decl)));
-- To qualify as nontrivial, the first statement of the procedure
-- must be a check in the form of an if statement. If the original
-- Default_Initial_Condition expression was folded, then the first
-- statement is not a check.
Stmt := First (Statements (Handled_Statement_Sequence (Body_Decl)));
return
Nkind (Stmt) = N_If_Statement
and then Nkind (Original_Node (Stmt)) = N_Pragma;
end if;
return False;
end Is_Nontrivial_DIC_Procedure;
-------------------------
-- Is_Null_Record_Type --
-------------------------
function Is_Null_Record_Type (T : Entity_Id) return Boolean is
Decl : constant Node_Id := Parent (T);
begin
return Nkind (Decl) = N_Full_Type_Declaration
and then Nkind (Type_Definition (Decl)) = N_Record_Definition
and then
(No (Component_List (Type_Definition (Decl)))
or else Null_Present (Component_List (Type_Definition (Decl))));
end Is_Null_Record_Type;
---------------------
-- Is_Object_Image --
---------------------
function Is_Object_Image (Prefix : Node_Id) return Boolean is
begin
-- When the type of the prefix is not scalar, then the prefix is not
-- valid in any scenario.
if not Is_Scalar_Type (Etype (Prefix)) then
return False;
end if;
-- Here we test for the case that the prefix is not a type and assume
-- if it is not then it must be a named value or an object reference.
-- This is because the parser always checks that prefixes of attributes
-- are named.
return not (Is_Entity_Name (Prefix) and then Is_Type (Entity (Prefix)));
end Is_Object_Image;
-------------------------
-- Is_Object_Reference --
-------------------------
function Is_Object_Reference (N : Node_Id) return Boolean is
function Is_Internally_Generated_Renaming (N : Node_Id) return Boolean;
-- Determine whether N is the name of an internally-generated renaming
--------------------------------------
-- Is_Internally_Generated_Renaming --
--------------------------------------
function Is_Internally_Generated_Renaming (N : Node_Id) return Boolean is
P : Node_Id;
begin
P := N;
while Present (P) loop
if Nkind (P) = N_Object_Renaming_Declaration then
return not Comes_From_Source (P);
elsif Is_List_Member (P) then
return False;
end if;
P := Parent (P);
end loop;
return False;
end Is_Internally_Generated_Renaming;
-- Start of processing for Is_Object_Reference
begin
if Is_Entity_Name (N) then
return Present (Entity (N)) and then Is_Object (Entity (N));
else
case Nkind (N) is
when N_Indexed_Component
| N_Slice
=>
return
Is_Object_Reference (Prefix (N))
or else Is_Access_Type (Etype (Prefix (N)));
-- In Ada 95, a function call is a constant object; a procedure
-- call is not.
-- Note that predefined operators are functions as well, and so
-- are attributes that are (can be renamed as) functions.
when N_Binary_Op
| N_Function_Call
| N_Unary_Op
=>
return Etype (N) /= Standard_Void_Type;
-- Attributes references 'Loop_Entry, 'Old, and 'Result yield
-- objects, even though they are not functions.
when N_Attribute_Reference =>
return
Nam_In (Attribute_Name (N), Name_Loop_Entry,
Name_Old,
Name_Result)
or else Is_Function_Attribute_Name (Attribute_Name (N));
when N_Selected_Component =>
return
Is_Object_Reference (Selector_Name (N))
and then
(Is_Object_Reference (Prefix (N))
or else Is_Access_Type (Etype (Prefix (N))));
-- An explicit dereference denotes an object, except that a
-- conditional expression gets turned into an explicit dereference
-- in some cases, and conditional expressions are not object
-- names.
when N_Explicit_Dereference =>
return not Nkind_In (Original_Node (N), N_Case_Expression,
N_If_Expression);
-- A view conversion of a tagged object is an object reference
when N_Type_Conversion =>
return Is_Tagged_Type (Etype (Subtype_Mark (N)))
and then Is_Tagged_Type (Etype (Expression (N)))
and then Is_Object_Reference (Expression (N));
-- An unchecked type conversion is considered to be an object if
-- the operand is an object (this construction arises only as a
-- result of expansion activities).
when N_Unchecked_Type_Conversion =>
return True;
-- Allow string literals to act as objects as long as they appear
-- in internally-generated renamings. The expansion of iterators
-- may generate such renamings when the range involves a string
-- literal.
when N_String_Literal =>
return Is_Internally_Generated_Renaming (Parent (N));
-- AI05-0003: In Ada 2012 a qualified expression is a name.
-- This allows disambiguation of function calls and the use
-- of aggregates in more contexts.
when N_Qualified_Expression =>
if Ada_Version < Ada_2012 then
return False;
else
return Is_Object_Reference (Expression (N))
or else Nkind (Expression (N)) = N_Aggregate;
end if;
when others =>
return False;
end case;
end if;
end Is_Object_Reference;
-----------------------------------
-- Is_OK_Variable_For_Out_Formal --
-----------------------------------
function Is_OK_Variable_For_Out_Formal (AV : Node_Id) return Boolean is
begin
Note_Possible_Modification (AV, Sure => True);
-- We must reject parenthesized variable names. Comes_From_Source is
-- checked because there are currently cases where the compiler violates
-- this rule (e.g. passing a task object to its controlled Initialize
-- routine). This should be properly documented in sinfo???
if Paren_Count (AV) > 0 and then Comes_From_Source (AV) then
return False;
-- A variable is always allowed
elsif Is_Variable (AV) then
return True;
-- Generalized indexing operations are rewritten as explicit
-- dereferences, and it is only during resolution that we can
-- check whether the context requires an access_to_variable type.
elsif Nkind (AV) = N_Explicit_Dereference
and then Ada_Version >= Ada_2012
and then Nkind (Original_Node (AV)) = N_Indexed_Component
and then Present (Etype (Original_Node (AV)))
and then Has_Implicit_Dereference (Etype (Original_Node (AV)))
then
return not Is_Access_Constant (Etype (Prefix (AV)));
-- Unchecked conversions are allowed only if they come from the
-- generated code, which sometimes uses unchecked conversions for out
-- parameters in cases where code generation is unaffected. We tell
-- source unchecked conversions by seeing if they are rewrites of
-- an original Unchecked_Conversion function call, or of an explicit
-- conversion of a function call or an aggregate (as may happen in the
-- expansion of a packed array aggregate).
elsif Nkind (AV) = N_Unchecked_Type_Conversion then
if Nkind_In (Original_Node (AV), N_Function_Call, N_Aggregate) then
return False;
elsif Comes_From_Source (AV)
and then Nkind (Original_Node (Expression (AV))) = N_Function_Call
then
return False;
elsif Nkind (Original_Node (AV)) = N_Type_Conversion then
return Is_OK_Variable_For_Out_Formal (Expression (AV));
else
return True;
end if;
-- Normal type conversions are allowed if argument is a variable
elsif Nkind (AV) = N_Type_Conversion then
if Is_Variable (Expression (AV))
and then Paren_Count (Expression (AV)) = 0
then
Note_Possible_Modification (Expression (AV), Sure => True);
return True;
-- We also allow a non-parenthesized expression that raises
-- constraint error if it rewrites what used to be a variable
elsif Raises_Constraint_Error (Expression (AV))
and then Paren_Count (Expression (AV)) = 0
and then Is_Variable (Original_Node (Expression (AV)))
then
return True;
-- Type conversion of something other than a variable
else
return False;
end if;
-- If this node is rewritten, then test the original form, if that is
-- OK, then we consider the rewritten node OK (for example, if the
-- original node is a conversion, then Is_Variable will not be true
-- but we still want to allow the conversion if it converts a variable).
elsif Original_Node (AV) /= AV then
-- In Ada 2012, the explicit dereference may be a rewritten call to a
-- Reference function.
if Ada_Version >= Ada_2012
and then Nkind (Original_Node (AV)) = N_Function_Call
and then
Has_Implicit_Dereference (Etype (Name (Original_Node (AV))))
then
-- Check that this is not a constant reference.
return not Is_Access_Constant (Etype (Prefix (AV)));
elsif Has_Implicit_Dereference (Etype (Original_Node (AV))) then
return
not Is_Access_Constant (Etype
(Get_Reference_Discriminant (Etype (Original_Node (AV)))));
else
return Is_OK_Variable_For_Out_Formal (Original_Node (AV));
end if;
-- All other non-variables are rejected
else
return False;
end if;
end Is_OK_Variable_For_Out_Formal;
----------------------------
-- Is_OK_Volatile_Context --
----------------------------
function Is_OK_Volatile_Context
(Context : Node_Id;
Obj_Ref : Node_Id) return Boolean
is
function Is_Protected_Operation_Call (Nod : Node_Id) return Boolean;
-- Determine whether an arbitrary node denotes a call to a protected
-- entry, function, or procedure in prefixed form where the prefix is
-- Obj_Ref.
function Within_Check (Nod : Node_Id) return Boolean;
-- Determine whether an arbitrary node appears in a check node
function Within_Volatile_Function (Id : Entity_Id) return Boolean;
-- Determine whether an arbitrary entity appears in a volatile function
---------------------------------
-- Is_Protected_Operation_Call --
---------------------------------
function Is_Protected_Operation_Call (Nod : Node_Id) return Boolean is
Pref : Node_Id;
Subp : Node_Id;
begin
-- A call to a protected operations retains its selected component
-- form as opposed to other prefixed calls that are transformed in
-- expanded names.
if Nkind (Nod) = N_Selected_Component then
Pref := Prefix (Nod);
Subp := Selector_Name (Nod);
return
Pref = Obj_Ref
and then Present (Etype (Pref))
and then Is_Protected_Type (Etype (Pref))
and then Is_Entity_Name (Subp)
and then Present (Entity (Subp))
and then Ekind_In (Entity (Subp), E_Entry,
E_Entry_Family,
E_Function,
E_Procedure);
else
return False;
end if;
end Is_Protected_Operation_Call;
------------------
-- Within_Check --
------------------
function Within_Check (Nod : Node_Id) return Boolean is
Par : Node_Id;
begin
-- Climb the parent chain looking for a check node
Par := Nod;
while Present (Par) loop
if Nkind (Par) in N_Raise_xxx_Error then
return True;
-- Prevent the search from going too far
elsif Is_Body_Or_Package_Declaration (Par) then
exit;
end if;
Par := Parent (Par);
end loop;
return False;
end Within_Check;
------------------------------
-- Within_Volatile_Function --
------------------------------
function Within_Volatile_Function (Id : Entity_Id) return Boolean is
Func_Id : Entity_Id;
begin
-- Traverse the scope stack looking for a [generic] function
Func_Id := Id;
while Present (Func_Id) and then Func_Id /= Standard_Standard loop
if Ekind_In (Func_Id, E_Function, E_Generic_Function) then
return Is_Volatile_Function (Func_Id);
end if;
Func_Id := Scope (Func_Id);
end loop;
return False;
end Within_Volatile_Function;
-- Local variables
Obj_Id : Entity_Id;
-- Start of processing for Is_OK_Volatile_Context
begin
-- The volatile object appears on either side of an assignment
if Nkind (Context) = N_Assignment_Statement then
return True;
-- The volatile object is part of the initialization expression of
-- another object.
elsif Nkind (Context) = N_Object_Declaration
and then Present (Expression (Context))
and then Expression (Context) = Obj_Ref
then
Obj_Id := Defining_Entity (Context);
-- The volatile object acts as the initialization expression of an
-- extended return statement. This is valid context as long as the
-- function is volatile.
if Is_Return_Object (Obj_Id) then
return Within_Volatile_Function (Obj_Id);
-- Otherwise this is a normal object initialization
else
return True;
end if;
-- The volatile object acts as the name of a renaming declaration
elsif Nkind (Context) = N_Object_Renaming_Declaration
and then Name (Context) = Obj_Ref
then
return True;
-- The volatile object appears as an actual parameter in a call to an
-- instance of Unchecked_Conversion whose result is renamed.
elsif Nkind (Context) = N_Function_Call
and then Is_Entity_Name (Name (Context))
and then Is_Unchecked_Conversion_Instance (Entity (Name (Context)))
and then Nkind (Parent (Context)) = N_Object_Renaming_Declaration
then
return True;
-- The volatile object is actually the prefix in a protected entry,
-- function, or procedure call.
elsif Is_Protected_Operation_Call (Context) then
return True;
-- The volatile object appears as the expression of a simple return
-- statement that applies to a volatile function.
elsif Nkind (Context) = N_Simple_Return_Statement
and then Expression (Context) = Obj_Ref
then
return
Within_Volatile_Function (Return_Statement_Entity (Context));
-- The volatile object appears as the prefix of a name occurring in a
-- non-interfering context.
elsif Nkind_In (Context, N_Attribute_Reference,
N_Explicit_Dereference,
N_Indexed_Component,
N_Selected_Component,
N_Slice)
and then Prefix (Context) = Obj_Ref
and then Is_OK_Volatile_Context
(Context => Parent (Context),
Obj_Ref => Context)
then
return True;
-- The volatile object appears as the prefix of attributes Address,
-- Alignment, Component_Size, First_Bit, Last_Bit, Position, Size,
-- Storage_Size.
elsif Nkind (Context) = N_Attribute_Reference
and then Prefix (Context) = Obj_Ref
and then Nam_In (Attribute_Name (Context), Name_Address,
Name_Alignment,
Name_Component_Size,
Name_First_Bit,
Name_Last_Bit,
Name_Position,
Name_Size,
Name_Storage_Size)
then
return True;
-- The volatile object appears as the expression of a type conversion
-- occurring in a non-interfering context.
elsif Nkind_In (Context, N_Type_Conversion,
N_Unchecked_Type_Conversion)
and then Expression (Context) = Obj_Ref
and then Is_OK_Volatile_Context
(Context => Parent (Context),
Obj_Ref => Context)
then
return True;
-- The volatile object appears as the expression in a delay statement
elsif Nkind (Context) in N_Delay_Statement then
return True;
-- Allow references to volatile objects in various checks. This is not a
-- direct SPARK 2014 requirement.
elsif Within_Check (Context) then
return True;
-- Assume that references to effectively volatile objects that appear
-- as actual parameters in a subprogram call are always legal. A full
-- legality check is done when the actuals are resolved (see routine
-- Resolve_Actuals).
elsif Within_Subprogram_Call (Context) then
return True;
-- Otherwise the context is not suitable for an effectively volatile
-- object.
else
return False;
end if;
end Is_OK_Volatile_Context;
------------------------------------
-- Is_Package_Contract_Annotation --
------------------------------------
function Is_Package_Contract_Annotation (Item : Node_Id) return Boolean is
Nam : Name_Id;
begin
if Nkind (Item) = N_Aspect_Specification then
Nam := Chars (Identifier (Item));
else pragma Assert (Nkind (Item) = N_Pragma);
Nam := Pragma_Name (Item);
end if;
return Nam = Name_Abstract_State
or else Nam = Name_Initial_Condition
or else Nam = Name_Initializes
or else Nam = Name_Refined_State;
end Is_Package_Contract_Annotation;
-----------------------------------
-- Is_Partially_Initialized_Type --
-----------------------------------
function Is_Partially_Initialized_Type
(Typ : Entity_Id;
Include_Implicit : Boolean := True) return Boolean
is
begin
if Is_Scalar_Type (Typ) then
return False;
elsif Is_Access_Type (Typ) then
return Include_Implicit;
elsif Is_Array_Type (Typ) then
-- If component type is partially initialized, so is array type
if Is_Partially_Initialized_Type
(Component_Type (Typ), Include_Implicit)
then
return True;
-- Otherwise we are only partially initialized if we are fully
-- initialized (this is the empty array case, no point in us
-- duplicating that code here).
else
return Is_Fully_Initialized_Type (Typ);
end if;
elsif Is_Record_Type (Typ) then
-- A discriminated type is always partially initialized if in
-- all mode
if Has_Discriminants (Typ) and then Include_Implicit then
return True;
-- A tagged type is always partially initialized
elsif Is_Tagged_Type (Typ) then
return True;
-- Case of non-discriminated record
else
declare
Ent : Entity_Id;
Component_Present : Boolean := False;
-- Set True if at least one component is present. If no
-- components are present, then record type is fully
-- initialized (another odd case, like the null array).
begin
-- Loop through components
Ent := First_Entity (Typ);
while Present (Ent) loop
if Ekind (Ent) = E_Component then
Component_Present := True;
-- If a component has an initialization expression then
-- the enclosing record type is partially initialized
if Present (Parent (Ent))
and then Present (Expression (Parent (Ent)))
then
return True;
-- If a component is of a type which is itself partially
-- initialized, then the enclosing record type is also.
elsif Is_Partially_Initialized_Type
(Etype (Ent), Include_Implicit)
then
return True;
end if;
end if;
Next_Entity (Ent);
end loop;
-- No initialized components found. If we found any components
-- they were all uninitialized so the result is false.
if Component_Present then
return False;
-- But if we found no components, then all the components are
-- initialized so we consider the type to be initialized.
else
return True;
end if;
end;
end if;
-- Concurrent types are always fully initialized
elsif Is_Concurrent_Type (Typ) then
return True;
-- For a private type, go to underlying type. If there is no underlying
-- type then just assume this partially initialized. Not clear if this
-- can happen in a non-error case, but no harm in testing for this.
elsif Is_Private_Type (Typ) then
declare
U : constant Entity_Id := Underlying_Type (Typ);
begin
if No (U) then
return True;
else
return Is_Partially_Initialized_Type (U, Include_Implicit);
end if;
end;
-- For any other type (are there any?) assume partially initialized
else
return True;
end if;
end Is_Partially_Initialized_Type;
------------------------------------
-- Is_Potentially_Persistent_Type --
------------------------------------
function Is_Potentially_Persistent_Type (T : Entity_Id) return Boolean is
Comp : Entity_Id;
Indx : Node_Id;
begin
-- For private type, test corresponding full type
if Is_Private_Type (T) then
return Is_Potentially_Persistent_Type (Full_View (T));
-- Scalar types are potentially persistent
elsif Is_Scalar_Type (T) then
return True;
-- Record type is potentially persistent if not tagged and the types of
-- all it components are potentially persistent, and no component has
-- an initialization expression.
elsif Is_Record_Type (T)
and then not Is_Tagged_Type (T)
and then not Is_Partially_Initialized_Type (T)
then
Comp := First_Component (T);
while Present (Comp) loop
if not Is_Potentially_Persistent_Type (Etype (Comp)) then
return False;
else
Next_Entity (Comp);
end if;
end loop;
return True;
-- Array type is potentially persistent if its component type is
-- potentially persistent and if all its constraints are static.
elsif Is_Array_Type (T) then
if not Is_Potentially_Persistent_Type (Component_Type (T)) then
return False;
end if;
Indx := First_Index (T);
while Present (Indx) loop
if not Is_OK_Static_Subtype (Etype (Indx)) then
return False;
else
Next_Index (Indx);
end if;
end loop;
return True;
-- All other types are not potentially persistent
else
return False;
end if;
end Is_Potentially_Persistent_Type;
--------------------------------
-- Is_Potentially_Unevaluated --
--------------------------------
function Is_Potentially_Unevaluated (N : Node_Id) return Boolean is
Par : Node_Id;
Expr : Node_Id;
begin
Expr := N;
Par := N;
-- A postcondition whose expression is a short-circuit is broken down
-- into individual aspects for better exception reporting. The original
-- short-circuit expression is rewritten as the second operand, and an
-- occurrence of 'Old in that operand is potentially unevaluated.
-- See sem_ch13.adb for details of this transformation. The reference
-- to 'Old may appear within an expression, so we must look for the
-- enclosing pragma argument in the tree that contains the reference.
while Present (Par)
and then Nkind (Par) /= N_Pragma_Argument_Association
loop
if Nkind (Original_Node (Par)) = N_And_Then then
return True;
end if;
Par := Parent (Par);
end loop;
-- Other cases; 'Old appears within other expression (not the top-level
-- conjunct in a postcondition) with a potentially unevaluated operand.
Par := Parent (Expr);
while not Nkind_In (Par, N_And_Then,
N_Case_Expression,
N_If_Expression,
N_In,
N_Not_In,
N_Or_Else,
N_Quantified_Expression)
loop
Expr := Par;
Par := Parent (Par);
-- If the context is not an expression, or if is the result of
-- expansion of an enclosing construct (such as another attribute)
-- the predicate does not apply.
if Nkind (Par) = N_Case_Expression_Alternative then
null;
elsif Nkind (Par) not in N_Subexpr
or else not Comes_From_Source (Par)
then
return False;
end if;
end loop;
if Nkind (Par) = N_If_Expression then
return Is_Elsif (Par) or else Expr /= First (Expressions (Par));
elsif Nkind (Par) = N_Case_Expression then
return Expr /= Expression (Par);
elsif Nkind_In (Par, N_And_Then, N_Or_Else) then
return Expr = Right_Opnd (Par);
elsif Nkind_In (Par, N_In, N_Not_In) then
-- If the membership includes several alternatives, only the first is
-- definitely evaluated.
if Present (Alternatives (Par)) then
return Expr /= First (Alternatives (Par));
-- If this is a range membership both bounds are evaluated
else
return False;
end if;
elsif Nkind (Par) = N_Quantified_Expression then
return Expr = Condition (Par);
else
return False;
end if;
end Is_Potentially_Unevaluated;
--------------------------------
-- Is_Preelaborable_Aggregate --
--------------------------------
function Is_Preelaborable_Aggregate (Aggr : Node_Id) return Boolean is
Aggr_Typ : constant Entity_Id := Etype (Aggr);
Array_Aggr : constant Boolean := Is_Array_Type (Aggr_Typ);
Anc_Part : Node_Id;
Assoc : Node_Id;
Choice : Node_Id;
Comp_Typ : Entity_Id := Empty; -- init to avoid warning
Expr : Node_Id;
begin
if Array_Aggr then
Comp_Typ := Component_Type (Aggr_Typ);
end if;
-- Inspect the ancestor part
if Nkind (Aggr) = N_Extension_Aggregate then
Anc_Part := Ancestor_Part (Aggr);
-- The ancestor denotes a subtype mark
if Is_Entity_Name (Anc_Part)
and then Is_Type (Entity (Anc_Part))
then
if not Has_Preelaborable_Initialization (Entity (Anc_Part)) then
return False;
end if;
-- Otherwise the ancestor denotes an expression
elsif not Is_Preelaborable_Construct (Anc_Part) then
return False;
end if;
end if;
-- Inspect the positional associations
Expr := First (Expressions (Aggr));
while Present (Expr) loop
if not Is_Preelaborable_Construct (Expr) then
return False;
end if;
Next (Expr);
end loop;
-- Inspect the named associations
Assoc := First (Component_Associations (Aggr));
while Present (Assoc) loop
-- Inspect the choices of the current named association
Choice := First (Choices (Assoc));
while Present (Choice) loop
if Array_Aggr then
-- For a choice to be preelaborable, it must denote either a
-- static range or a static expression.
if Nkind (Choice) = N_Others_Choice then
null;
elsif Nkind (Choice) = N_Range then
if not Is_OK_Static_Range (Choice) then
return False;
end if;
elsif not Is_OK_Static_Expression (Choice) then
return False;
end if;
else
Comp_Typ := Etype (Choice);
end if;
Next (Choice);
end loop;
-- The type of the choice must have preelaborable initialization if
-- the association carries a <>.
pragma Assert (Present (Comp_Typ));
if Box_Present (Assoc) then
if not Has_Preelaborable_Initialization (Comp_Typ) then
return False;
end if;
-- The type of the expression must have preelaborable initialization
elsif not Is_Preelaborable_Construct (Expression (Assoc)) then
return False;
end if;
Next (Assoc);
end loop;
-- At this point the aggregate is preelaborable
return True;
end Is_Preelaborable_Aggregate;
--------------------------------
-- Is_Preelaborable_Construct --
--------------------------------
function Is_Preelaborable_Construct (N : Node_Id) return Boolean is
begin
-- Aggregates
if Nkind_In (N, N_Aggregate, N_Extension_Aggregate) then
return Is_Preelaborable_Aggregate (N);
-- Attributes are allowed in general, even if their prefix is a formal
-- type. It seems that certain attributes known not to be static might
-- not be allowed, but there are no rules to prevent them.
elsif Nkind (N) = N_Attribute_Reference then
return True;
-- Expressions
elsif Nkind (N) in N_Subexpr and then Is_OK_Static_Expression (N) then
return True;
elsif Nkind (N) = N_Qualified_Expression then
return Is_Preelaborable_Construct (Expression (N));
-- Names are preelaborable when they denote a discriminant of an
-- enclosing type. Discriminals are also considered for this check.
elsif Is_Entity_Name (N)
and then Present (Entity (N))
and then
(Ekind (Entity (N)) = E_Discriminant
or else (Ekind_In (Entity (N), E_Constant, E_In_Parameter)
and then Present (Discriminal_Link (Entity (N)))))
then
return True;
-- Statements
elsif Nkind (N) = N_Null then
return True;
-- Otherwise the construct is not preelaborable
else
return False;
end if;
end Is_Preelaborable_Construct;
---------------------------------
-- Is_Protected_Self_Reference --
---------------------------------
function Is_Protected_Self_Reference (N : Node_Id) return Boolean is
function In_Access_Definition (N : Node_Id) return Boolean;
-- Returns true if N belongs to an access definition
--------------------------
-- In_Access_Definition --
--------------------------
function In_Access_Definition (N : Node_Id) return Boolean is
P : Node_Id;
begin
P := Parent (N);
while Present (P) loop
if Nkind (P) = N_Access_Definition then
return True;
end if;
P := Parent (P);
end loop;
return False;
end In_Access_Definition;
-- Start of processing for Is_Protected_Self_Reference
begin
-- Verify that prefix is analyzed and has the proper form. Note that
-- the attributes Elab_Spec, Elab_Body, and Elab_Subp_Body, which also
-- produce the address of an entity, do not analyze their prefix
-- because they denote entities that are not necessarily visible.
-- Neither of them can apply to a protected type.
return Ada_Version >= Ada_2005
and then Is_Entity_Name (N)
and then Present (Entity (N))
and then Is_Protected_Type (Entity (N))
and then In_Open_Scopes (Entity (N))
and then not In_Access_Definition (N);
end Is_Protected_Self_Reference;
-----------------------------
-- Is_RCI_Pkg_Spec_Or_Body --
-----------------------------
function Is_RCI_Pkg_Spec_Or_Body (Cunit : Node_Id) return Boolean is
function Is_RCI_Pkg_Decl_Cunit (Cunit : Node_Id) return Boolean;
-- Return True if the unit of Cunit is an RCI package declaration
---------------------------
-- Is_RCI_Pkg_Decl_Cunit --
---------------------------
function Is_RCI_Pkg_Decl_Cunit (Cunit : Node_Id) return Boolean is
The_Unit : constant Node_Id := Unit (Cunit);
begin
if Nkind (The_Unit) /= N_Package_Declaration then
return False;
end if;
return Is_Remote_Call_Interface (Defining_Entity (The_Unit));
end Is_RCI_Pkg_Decl_Cunit;
-- Start of processing for Is_RCI_Pkg_Spec_Or_Body
begin
return Is_RCI_Pkg_Decl_Cunit (Cunit)
or else
(Nkind (Unit (Cunit)) = N_Package_Body
and then Is_RCI_Pkg_Decl_Cunit (Library_Unit (Cunit)));
end Is_RCI_Pkg_Spec_Or_Body;
-----------------------------------------
-- Is_Remote_Access_To_Class_Wide_Type --
-----------------------------------------
function Is_Remote_Access_To_Class_Wide_Type
(E : Entity_Id) return Boolean
is
begin
-- A remote access to class-wide type is a general access to object type
-- declared in the visible part of a Remote_Types or Remote_Call_
-- Interface unit.
return Ekind (E) = E_General_Access_Type
and then (Is_Remote_Call_Interface (E) or else Is_Remote_Types (E));
end Is_Remote_Access_To_Class_Wide_Type;
-----------------------------------------
-- Is_Remote_Access_To_Subprogram_Type --
-----------------------------------------
function Is_Remote_Access_To_Subprogram_Type
(E : Entity_Id) return Boolean
is
begin
return (Ekind (E) = E_Access_Subprogram_Type
or else (Ekind (E) = E_Record_Type
and then Present (Corresponding_Remote_Type (E))))
and then (Is_Remote_Call_Interface (E) or else Is_Remote_Types (E));
end Is_Remote_Access_To_Subprogram_Type;
--------------------
-- Is_Remote_Call --
--------------------
function Is_Remote_Call (N : Node_Id) return Boolean is
begin
if Nkind (N) not in N_Subprogram_Call then
-- An entry call cannot be remote
return False;
elsif Nkind (Name (N)) in N_Has_Entity
and then Is_Remote_Call_Interface (Entity (Name (N)))
then
-- A subprogram declared in the spec of a RCI package is remote
return True;
elsif Nkind (Name (N)) = N_Explicit_Dereference
and then Is_Remote_Access_To_Subprogram_Type
(Etype (Prefix (Name (N))))
then
-- The dereference of a RAS is a remote call
return True;
elsif Present (Controlling_Argument (N))
and then Is_Remote_Access_To_Class_Wide_Type
(Etype (Controlling_Argument (N)))
then
-- Any primitive operation call with a controlling argument of
-- a RACW type is a remote call.
return True;
end if;
-- All other calls are local calls
return False;
end Is_Remote_Call;
----------------------
-- Is_Renamed_Entry --
----------------------
function Is_Renamed_Entry (Proc_Nam : Entity_Id) return Boolean is
Orig_Node : Node_Id := Empty;
Subp_Decl : Node_Id := Parent (Parent (Proc_Nam));
function Is_Entry (Nam : Node_Id) return Boolean;
-- Determine whether Nam is an entry. Traverse selectors if there are
-- nested selected components.
--------------
-- Is_Entry --
--------------
function Is_Entry (Nam : Node_Id) return Boolean is
begin
if Nkind (Nam) = N_Selected_Component then
return Is_Entry (Selector_Name (Nam));
end if;
return Ekind (Entity (Nam)) = E_Entry;
end Is_Entry;
-- Start of processing for Is_Renamed_Entry
begin
if Present (Alias (Proc_Nam)) then
Subp_Decl := Parent (Parent (Alias (Proc_Nam)));
end if;
-- Look for a rewritten subprogram renaming declaration
if Nkind (Subp_Decl) = N_Subprogram_Declaration
and then Present (Original_Node (Subp_Decl))
then
Orig_Node := Original_Node (Subp_Decl);
end if;
-- The rewritten subprogram is actually an entry
if Present (Orig_Node)
and then Nkind (Orig_Node) = N_Subprogram_Renaming_Declaration
and then Is_Entry (Name (Orig_Node))
then
return True;
end if;
return False;
end Is_Renamed_Entry;
-----------------------------
-- Is_Renaming_Declaration --
-----------------------------
function Is_Renaming_Declaration (N : Node_Id) return Boolean is
begin
case Nkind (N) is
when N_Exception_Renaming_Declaration
| N_Generic_Function_Renaming_Declaration
| N_Generic_Package_Renaming_Declaration
| N_Generic_Procedure_Renaming_Declaration
| N_Object_Renaming_Declaration
| N_Package_Renaming_Declaration
| N_Subprogram_Renaming_Declaration
=>
return True;
when others =>
return False;
end case;
end Is_Renaming_Declaration;
----------------------------
-- Is_Reversible_Iterator --
----------------------------
function Is_Reversible_Iterator (Typ : Entity_Id) return Boolean is
Ifaces_List : Elist_Id;
Iface_Elmt : Elmt_Id;
Iface : Entity_Id;
begin
if Is_Class_Wide_Type (Typ)
and then Chars (Root_Type (Typ)) = Name_Reversible_Iterator
and then In_Predefined_Unit (Root_Type (Typ))
then
return True;
elsif not Is_Tagged_Type (Typ) or else not Is_Derived_Type (Typ) then
return False;
else
Collect_Interfaces (Typ, Ifaces_List);
Iface_Elmt := First_Elmt (Ifaces_List);
while Present (Iface_Elmt) loop
Iface := Node (Iface_Elmt);
if Chars (Iface) = Name_Reversible_Iterator
and then In_Predefined_Unit (Iface)
then
return True;
end if;
Next_Elmt (Iface_Elmt);
end loop;
end if;
return False;
end Is_Reversible_Iterator;
----------------------
-- Is_Selector_Name --
----------------------
function Is_Selector_Name (N : Node_Id) return Boolean is
begin
if not Is_List_Member (N) then
declare
P : constant Node_Id := Parent (N);
begin
return Nkind_In (P, N_Expanded_Name,
N_Generic_Association,
N_Parameter_Association,
N_Selected_Component)
and then Selector_Name (P) = N;
end;
else
declare
L : constant List_Id := List_Containing (N);
P : constant Node_Id := Parent (L);
begin
return (Nkind (P) = N_Discriminant_Association
and then Selector_Names (P) = L)
or else
(Nkind (P) = N_Component_Association
and then Choices (P) = L);
end;
end if;
end Is_Selector_Name;
---------------------------------
-- Is_Single_Concurrent_Object --
---------------------------------
function Is_Single_Concurrent_Object (Id : Entity_Id) return Boolean is
begin
return
Is_Single_Protected_Object (Id) or else Is_Single_Task_Object (Id);
end Is_Single_Concurrent_Object;
-------------------------------
-- Is_Single_Concurrent_Type --
-------------------------------
function Is_Single_Concurrent_Type (Id : Entity_Id) return Boolean is
begin
return
Ekind_In (Id, E_Protected_Type, E_Task_Type)
and then Is_Single_Concurrent_Type_Declaration
(Declaration_Node (Id));
end Is_Single_Concurrent_Type;
-------------------------------------------
-- Is_Single_Concurrent_Type_Declaration --
-------------------------------------------
function Is_Single_Concurrent_Type_Declaration
(N : Node_Id) return Boolean
is
begin
return Nkind_In (Original_Node (N), N_Single_Protected_Declaration,
N_Single_Task_Declaration);
end Is_Single_Concurrent_Type_Declaration;
---------------------------------------------
-- Is_Single_Precision_Floating_Point_Type --
---------------------------------------------
function Is_Single_Precision_Floating_Point_Type
(E : Entity_Id) return Boolean is
begin
return Is_Floating_Point_Type (E)
and then Machine_Radix_Value (E) = Uint_2
and then Machine_Mantissa_Value (E) = Uint_24
and then Machine_Emax_Value (E) = Uint_2 ** Uint_7
and then Machine_Emin_Value (E) = Uint_3 - (Uint_2 ** Uint_7);
end Is_Single_Precision_Floating_Point_Type;
--------------------------------
-- Is_Single_Protected_Object --
--------------------------------
function Is_Single_Protected_Object (Id : Entity_Id) return Boolean is
begin
return
Ekind (Id) = E_Variable
and then Ekind (Etype (Id)) = E_Protected_Type
and then Is_Single_Concurrent_Type (Etype (Id));
end Is_Single_Protected_Object;
---------------------------
-- Is_Single_Task_Object --
---------------------------
function Is_Single_Task_Object (Id : Entity_Id) return Boolean is
begin
return
Ekind (Id) = E_Variable
and then Ekind (Etype (Id)) = E_Task_Type
and then Is_Single_Concurrent_Type (Etype (Id));
end Is_Single_Task_Object;
-------------------------------------
-- Is_SPARK_05_Initialization_Expr --
-------------------------------------
function Is_SPARK_05_Initialization_Expr (N : Node_Id) return Boolean is
Is_Ok : Boolean;
Expr : Node_Id;
Comp_Assn : Node_Id;
Orig_N : constant Node_Id := Original_Node (N);
begin
Is_Ok := True;
if not Comes_From_Source (Orig_N) then
goto Done;
end if;
pragma Assert (Nkind (Orig_N) in N_Subexpr);
case Nkind (Orig_N) is
when N_Character_Literal
| N_Integer_Literal
| N_Real_Literal
| N_String_Literal
=>
null;
when N_Expanded_Name
| N_Identifier
=>
if Is_Entity_Name (Orig_N)
and then Present (Entity (Orig_N)) -- needed in some cases
then
case Ekind (Entity (Orig_N)) is
when E_Constant
| E_Enumeration_Literal
| E_Named_Integer
| E_Named_Real
=>
null;
when others =>
if Is_Type (Entity (Orig_N)) then
null;
else
Is_Ok := False;
end if;
end case;
end if;
when N_Qualified_Expression
| N_Type_Conversion
=>
Is_Ok := Is_SPARK_05_Initialization_Expr (Expression (Orig_N));
when N_Unary_Op =>
Is_Ok := Is_SPARK_05_Initialization_Expr (Right_Opnd (Orig_N));
when N_Binary_Op
| N_Membership_Test
| N_Short_Circuit
=>
Is_Ok := Is_SPARK_05_Initialization_Expr (Left_Opnd (Orig_N))
and then
Is_SPARK_05_Initialization_Expr (Right_Opnd (Orig_N));
when N_Aggregate
| N_Extension_Aggregate
=>
if Nkind (Orig_N) = N_Extension_Aggregate then
Is_Ok :=
Is_SPARK_05_Initialization_Expr (Ancestor_Part (Orig_N));
end if;
Expr := First (Expressions (Orig_N));
while Present (Expr) loop
if not Is_SPARK_05_Initialization_Expr (Expr) then
Is_Ok := False;
goto Done;
end if;
Next (Expr);
end loop;
Comp_Assn := First (Component_Associations (Orig_N));
while Present (Comp_Assn) loop
Expr := Expression (Comp_Assn);
-- Note: test for Present here needed for box assocation
if Present (Expr)
and then not Is_SPARK_05_Initialization_Expr (Expr)
then
Is_Ok := False;
goto Done;
end if;
Next (Comp_Assn);
end loop;
when N_Attribute_Reference =>
if Nkind (Prefix (Orig_N)) in N_Subexpr then
Is_Ok := Is_SPARK_05_Initialization_Expr (Prefix (Orig_N));
end if;
Expr := First (Expressions (Orig_N));
while Present (Expr) loop
if not Is_SPARK_05_Initialization_Expr (Expr) then
Is_Ok := False;
goto Done;
end if;
Next (Expr);
end loop;
-- Selected components might be expanded named not yet resolved, so
-- default on the safe side. (Eg on sparklex.ads)
when N_Selected_Component =>
null;
when others =>
Is_Ok := False;
end case;
<<Done>>
return Is_Ok;
end Is_SPARK_05_Initialization_Expr;
----------------------------------
-- Is_SPARK_05_Object_Reference --
----------------------------------
function Is_SPARK_05_Object_Reference (N : Node_Id) return Boolean is
begin
if Is_Entity_Name (N) then
return Present (Entity (N))
and then
(Ekind_In (Entity (N), E_Constant, E_Variable)
or else Ekind (Entity (N)) in Formal_Kind);
else
case Nkind (N) is
when N_Selected_Component =>
return Is_SPARK_05_Object_Reference (Prefix (N));
when others =>
return False;
end case;
end if;
end Is_SPARK_05_Object_Reference;
-----------------------------
-- Is_Specific_Tagged_Type --
-----------------------------
function Is_Specific_Tagged_Type (Typ : Entity_Id) return Boolean is
Full_Typ : Entity_Id;
begin
-- Handle private types
if Is_Private_Type (Typ) and then Present (Full_View (Typ)) then
Full_Typ := Full_View (Typ);
else
Full_Typ := Typ;
end if;
-- A specific tagged type is a non-class-wide tagged type
return Is_Tagged_Type (Full_Typ) and not Is_Class_Wide_Type (Full_Typ);
end Is_Specific_Tagged_Type;
------------------
-- Is_Statement --
------------------
function Is_Statement (N : Node_Id) return Boolean is
begin
return
Nkind (N) in N_Statement_Other_Than_Procedure_Call
or else Nkind (N) = N_Procedure_Call_Statement;
end Is_Statement;
---------------------------------------
-- Is_Subprogram_Contract_Annotation --
---------------------------------------
function Is_Subprogram_Contract_Annotation
(Item : Node_Id) return Boolean
is
Nam : Name_Id;
begin
if Nkind (Item) = N_Aspect_Specification then
Nam := Chars (Identifier (Item));
else pragma Assert (Nkind (Item) = N_Pragma);
Nam := Pragma_Name (Item);
end if;
return Nam = Name_Contract_Cases
or else Nam = Name_Depends
or else Nam = Name_Extensions_Visible
or else Nam = Name_Global
or else Nam = Name_Post
or else Nam = Name_Post_Class
or else Nam = Name_Postcondition
or else Nam = Name_Pre
or else Nam = Name_Pre_Class
or else Nam = Name_Precondition
or else Nam = Name_Refined_Depends
or else Nam = Name_Refined_Global
or else Nam = Name_Refined_Post
or else Nam = Name_Test_Case;
end Is_Subprogram_Contract_Annotation;
--------------------------------------------------
-- Is_Subprogram_Stub_Without_Prior_Declaration --
--------------------------------------------------
function Is_Subprogram_Stub_Without_Prior_Declaration
(N : Node_Id) return Boolean
is
begin
-- A subprogram stub without prior declaration serves as declaration for
-- the actual subprogram body. As such, it has an attached defining
-- entity of E_[Generic_]Function or E_[Generic_]Procedure.
return Nkind (N) = N_Subprogram_Body_Stub
and then Ekind (Defining_Entity (N)) /= E_Subprogram_Body;
end Is_Subprogram_Stub_Without_Prior_Declaration;
--------------------------
-- Is_Suspension_Object --
--------------------------
function Is_Suspension_Object (Id : Entity_Id) return Boolean is
begin
-- This approach does an exact name match rather than to rely on
-- RTSfind. Routine Is_Effectively_Volatile is used by clients of the
-- front end at point where all auxiliary tables are locked and any
-- modifications to them are treated as violations. Do not tamper with
-- the tables, instead examine the Chars fields of all the scopes of Id.
return
Chars (Id) = Name_Suspension_Object
and then Present (Scope (Id))
and then Chars (Scope (Id)) = Name_Synchronous_Task_Control
and then Present (Scope (Scope (Id)))
and then Chars (Scope (Scope (Id))) = Name_Ada
and then Present (Scope (Scope (Scope (Id))))
and then Scope (Scope (Scope (Id))) = Standard_Standard;
end Is_Suspension_Object;
----------------------------
-- Is_Synchronized_Object --
----------------------------
function Is_Synchronized_Object (Id : Entity_Id) return Boolean is
Prag : Node_Id;
begin
if Is_Object (Id) then
-- The object is synchronized if it is of a type that yields a
-- synchronized object.
if Yields_Synchronized_Object (Etype (Id)) then
return True;
-- The object is synchronized if it is atomic and Async_Writers is
-- enabled.
elsif Is_Atomic (Id) and then Async_Writers_Enabled (Id) then
return True;
-- A constant is a synchronized object by default
elsif Ekind (Id) = E_Constant then
return True;
-- A variable is a synchronized object if it is subject to pragma
-- Constant_After_Elaboration.
elsif Ekind (Id) = E_Variable then
Prag := Get_Pragma (Id, Pragma_Constant_After_Elaboration);
return Present (Prag) and then Is_Enabled_Pragma (Prag);
end if;
end if;
-- Otherwise the input is not an object or it does not qualify as a
-- synchronized object.
return False;
end Is_Synchronized_Object;
---------------------------------
-- Is_Synchronized_Tagged_Type --
---------------------------------
function Is_Synchronized_Tagged_Type (E : Entity_Id) return Boolean is
Kind : constant Entity_Kind := Ekind (Base_Type (E));
begin
-- A task or protected type derived from an interface is a tagged type.
-- Such a tagged type is called a synchronized tagged type, as are
-- synchronized interfaces and private extensions whose declaration
-- includes the reserved word synchronized.
return (Is_Tagged_Type (E)
and then (Kind = E_Task_Type
or else
Kind = E_Protected_Type))
or else
(Is_Interface (E)
and then Is_Synchronized_Interface (E))
or else
(Ekind (E) = E_Record_Type_With_Private
and then Nkind (Parent (E)) = N_Private_Extension_Declaration
and then (Synchronized_Present (Parent (E))
or else Is_Synchronized_Interface (Etype (E))));
end Is_Synchronized_Tagged_Type;
-----------------
-- Is_Transfer --
-----------------
function Is_Transfer (N : Node_Id) return Boolean is
Kind : constant Node_Kind := Nkind (N);
begin
if Kind = N_Simple_Return_Statement
or else
Kind = N_Extended_Return_Statement
or else
Kind = N_Goto_Statement
or else
Kind = N_Raise_Statement
or else
Kind = N_Requeue_Statement
then
return True;
elsif (Kind = N_Exit_Statement or else Kind in N_Raise_xxx_Error)
and then No (Condition (N))
then
return True;
elsif Kind = N_Procedure_Call_Statement
and then Is_Entity_Name (Name (N))
and then Present (Entity (Name (N)))
and then No_Return (Entity (Name (N)))
then
return True;
elsif Nkind (Original_Node (N)) = N_Raise_Statement then
return True;
else
return False;
end if;
end Is_Transfer;
-------------
-- Is_True --
-------------
function Is_True (U : Uint) return Boolean is
begin
return (U /= 0);
end Is_True;
--------------------------------------
-- Is_Unchecked_Conversion_Instance --
--------------------------------------
function Is_Unchecked_Conversion_Instance (Id : Entity_Id) return Boolean is
Par : Node_Id;
begin
-- Look for a function whose generic parent is the predefined intrinsic
-- function Unchecked_Conversion, or for one that renames such an
-- instance.
if Ekind (Id) = E_Function then
Par := Parent (Id);
if Nkind (Par) = N_Function_Specification then
Par := Generic_Parent (Par);
if Present (Par) then
return
Chars (Par) = Name_Unchecked_Conversion
and then Is_Intrinsic_Subprogram (Par)
and then In_Predefined_Unit (Par);
else
return
Present (Alias (Id))
and then Is_Unchecked_Conversion_Instance (Alias (Id));
end if;
end if;
end if;
return False;
end Is_Unchecked_Conversion_Instance;
-------------------------------
-- Is_Universal_Numeric_Type --
-------------------------------
function Is_Universal_Numeric_Type (T : Entity_Id) return Boolean is
begin
return T = Universal_Integer or else T = Universal_Real;
end Is_Universal_Numeric_Type;
------------------------------
-- Is_User_Defined_Equality --
------------------------------
function Is_User_Defined_Equality (Id : Entity_Id) return Boolean is
begin
return Ekind (Id) = E_Function
and then Chars (Id) = Name_Op_Eq
and then Comes_From_Source (Id)
-- Internally generated equalities have a full type declaration
-- as their parent.
and then Nkind (Parent (Id)) = N_Function_Specification;
end Is_User_Defined_Equality;
--------------------------------------
-- Is_Validation_Variable_Reference --
--------------------------------------
function Is_Validation_Variable_Reference (N : Node_Id) return Boolean is
Var : constant Node_Id := Unqual_Conv (N);
Var_Id : Entity_Id;
begin
Var_Id := Empty;
if Is_Entity_Name (Var) then
Var_Id := Entity (Var);
end if;
return
Present (Var_Id)
and then Ekind (Var_Id) = E_Variable
and then Present (Validated_Object (Var_Id));
end Is_Validation_Variable_Reference;
----------------------------
-- Is_Variable_Size_Array --
----------------------------
function Is_Variable_Size_Array (E : Entity_Id) return Boolean is
Idx : Node_Id;
begin
pragma Assert (Is_Array_Type (E));
-- Check if some index is initialized with a non-constant value
Idx := First_Index (E);
while Present (Idx) loop
if Nkind (Idx) = N_Range then
if not Is_Constant_Bound (Low_Bound (Idx))
or else not Is_Constant_Bound (High_Bound (Idx))
then
return True;
end if;
end if;
Idx := Next_Index (Idx);
end loop;
return False;
end Is_Variable_Size_Array;
-----------------------------
-- Is_Variable_Size_Record --
-----------------------------
function Is_Variable_Size_Record (E : Entity_Id) return Boolean is
Comp : Entity_Id;
Comp_Typ : Entity_Id;
begin
pragma Assert (Is_Record_Type (E));
Comp := First_Entity (E);
while Present (Comp) loop
Comp_Typ := Etype (Comp);
-- Recursive call if the record type has discriminants
if Is_Record_Type (Comp_Typ)
and then Has_Discriminants (Comp_Typ)
and then Is_Variable_Size_Record (Comp_Typ)
then
return True;
elsif Is_Array_Type (Comp_Typ)
and then Is_Variable_Size_Array (Comp_Typ)
then
return True;
end if;
Next_Entity (Comp);
end loop;
return False;
end Is_Variable_Size_Record;
-----------------
-- Is_Variable --
-----------------
function Is_Variable
(N : Node_Id;
Use_Original_Node : Boolean := True) return Boolean
is
Orig_Node : Node_Id;
function In_Protected_Function (E : Entity_Id) return Boolean;
-- Within a protected function, the private components of the enclosing
-- protected type are constants. A function nested within a (protected)
-- procedure is not itself protected. Within the body of a protected
-- function the current instance of the protected type is a constant.
function Is_Variable_Prefix (P : Node_Id) return Boolean;
-- Prefixes can involve implicit dereferences, in which case we must
-- test for the case of a reference of a constant access type, which can
-- can never be a variable.
---------------------------
-- In_Protected_Function --
---------------------------
function In_Protected_Function (E : Entity_Id) return Boolean is
Prot : Entity_Id;
S : Entity_Id;
begin
-- E is the current instance of a type
if Is_Type (E) then
Prot := E;
-- E is an object
else
Prot := Scope (E);
end if;
if not Is_Protected_Type (Prot) then
return False;
else
S := Current_Scope;
while Present (S) and then S /= Prot loop
if Ekind (S) = E_Function and then Scope (S) = Prot then
return True;
end if;
S := Scope (S);
end loop;
return False;
end if;
end In_Protected_Function;
------------------------
-- Is_Variable_Prefix --
------------------------
function Is_Variable_Prefix (P : Node_Id) return Boolean is
begin
if Is_Access_Type (Etype (P)) then
return not Is_Access_Constant (Root_Type (Etype (P)));
-- For the case of an indexed component whose prefix has a packed
-- array type, the prefix has been rewritten into a type conversion.
-- Determine variable-ness from the converted expression.
elsif Nkind (P) = N_Type_Conversion
and then not Comes_From_Source (P)
and then Is_Array_Type (Etype (P))
and then Is_Packed (Etype (P))
then
return Is_Variable (Expression (P));
else
return Is_Variable (P);
end if;
end Is_Variable_Prefix;
-- Start of processing for Is_Variable
begin
-- Special check, allow x'Deref(expr) as a variable
if Nkind (N) = N_Attribute_Reference
and then Attribute_Name (N) = Name_Deref
then
return True;
end if;
-- Check if we perform the test on the original node since this may be a
-- test of syntactic categories which must not be disturbed by whatever
-- rewriting might have occurred. For example, an aggregate, which is
-- certainly NOT a variable, could be turned into a variable by
-- expansion.
if Use_Original_Node then
Orig_Node := Original_Node (N);
else
Orig_Node := N;
end if;
-- Definitely OK if Assignment_OK is set. Since this is something that
-- only gets set for expanded nodes, the test is on N, not Orig_Node.
if Nkind (N) in N_Subexpr and then Assignment_OK (N) then
return True;
-- Normally we go to the original node, but there is one exception where
-- we use the rewritten node, namely when it is an explicit dereference.
-- The generated code may rewrite a prefix which is an access type with
-- an explicit dereference. The dereference is a variable, even though
-- the original node may not be (since it could be a constant of the
-- access type).
-- In Ada 2005 we have a further case to consider: the prefix may be a
-- function call given in prefix notation. The original node appears to
-- be a selected component, but we need to examine the call.
elsif Nkind (N) = N_Explicit_Dereference
and then Nkind (Orig_Node) /= N_Explicit_Dereference
and then Present (Etype (Orig_Node))
and then Is_Access_Type (Etype (Orig_Node))
then
-- Note that if the prefix is an explicit dereference that does not
-- come from source, we must check for a rewritten function call in
-- prefixed notation before other forms of rewriting, to prevent a
-- compiler crash.
return
(Nkind (Orig_Node) = N_Function_Call
and then not Is_Access_Constant (Etype (Prefix (N))))
or else
Is_Variable_Prefix (Original_Node (Prefix (N)));
-- in Ada 2012, the dereference may have been added for a type with
-- a declared implicit dereference aspect. Check that it is not an
-- access to constant.
elsif Nkind (N) = N_Explicit_Dereference
and then Present (Etype (Orig_Node))
and then Ada_Version >= Ada_2012
and then Has_Implicit_Dereference (Etype (Orig_Node))
then
return not Is_Access_Constant (Etype (Prefix (N)));
-- A function call is never a variable
elsif Nkind (N) = N_Function_Call then
return False;
-- All remaining checks use the original node
elsif Is_Entity_Name (Orig_Node)
and then Present (Entity (Orig_Node))
then
declare
E : constant Entity_Id := Entity (Orig_Node);
K : constant Entity_Kind := Ekind (E);
begin
return (K = E_Variable
and then Nkind (Parent (E)) /= N_Exception_Handler)
or else (K = E_Component
and then not In_Protected_Function (E))
or else K = E_Out_Parameter
or else K = E_In_Out_Parameter
or else K = E_Generic_In_Out_Parameter
-- Current instance of type. If this is a protected type, check
-- we are not within the body of one of its protected functions.
or else (Is_Type (E)
and then In_Open_Scopes (E)
and then not In_Protected_Function (E))
or else (Is_Incomplete_Or_Private_Type (E)
and then In_Open_Scopes (Full_View (E)));
end;
else
case Nkind (Orig_Node) is
when N_Indexed_Component
| N_Slice
=>
return Is_Variable_Prefix (Prefix (Orig_Node));
when N_Selected_Component =>
return (Is_Variable (Selector_Name (Orig_Node))
and then Is_Variable_Prefix (Prefix (Orig_Node)))
or else
(Nkind (N) = N_Expanded_Name
and then Scope (Entity (N)) = Entity (Prefix (N)));
-- For an explicit dereference, the type of the prefix cannot
-- be an access to constant or an access to subprogram.
when N_Explicit_Dereference =>
declare
Typ : constant Entity_Id := Etype (Prefix (Orig_Node));
begin
return Is_Access_Type (Typ)
and then not Is_Access_Constant (Root_Type (Typ))
and then Ekind (Typ) /= E_Access_Subprogram_Type;
end;
-- The type conversion is the case where we do not deal with the
-- context dependent special case of an actual parameter. Thus
-- the type conversion is only considered a variable for the
-- purposes of this routine if the target type is tagged. However,
-- a type conversion is considered to be a variable if it does not
-- come from source (this deals for example with the conversions
-- of expressions to their actual subtypes).
when N_Type_Conversion =>
return Is_Variable (Expression (Orig_Node))
and then
(not Comes_From_Source (Orig_Node)
or else
(Is_Tagged_Type (Etype (Subtype_Mark (Orig_Node)))
and then
Is_Tagged_Type (Etype (Expression (Orig_Node)))));
-- GNAT allows an unchecked type conversion as a variable. This
-- only affects the generation of internal expanded code, since
-- calls to instantiations of Unchecked_Conversion are never
-- considered variables (since they are function calls).
when N_Unchecked_Type_Conversion =>
return Is_Variable (Expression (Orig_Node));
when others =>
return False;
end case;
end if;
end Is_Variable;
---------------------------
-- Is_Visibly_Controlled --
---------------------------
function Is_Visibly_Controlled (T : Entity_Id) return Boolean is
Root : constant Entity_Id := Root_Type (T);
begin
return Chars (Scope (Root)) = Name_Finalization
and then Chars (Scope (Scope (Root))) = Name_Ada
and then Scope (Scope (Scope (Root))) = Standard_Standard;
end Is_Visibly_Controlled;
--------------------------
-- Is_Volatile_Function --
--------------------------
function Is_Volatile_Function (Func_Id : Entity_Id) return Boolean is
begin
pragma Assert (Ekind_In (Func_Id, E_Function, E_Generic_Function));
-- A function declared within a protected type is volatile
if Is_Protected_Type (Scope (Func_Id)) then
return True;
-- An instance of Ada.Unchecked_Conversion is a volatile function if
-- either the source or the target are effectively volatile.
elsif Is_Unchecked_Conversion_Instance (Func_Id)
and then Has_Effectively_Volatile_Profile (Func_Id)
then
return True;
-- Otherwise the function is treated as volatile if it is subject to
-- enabled pragma Volatile_Function.
else
return
Is_Enabled_Pragma (Get_Pragma (Func_Id, Pragma_Volatile_Function));
end if;
end Is_Volatile_Function;
------------------------
-- Is_Volatile_Object --
------------------------
function Is_Volatile_Object (N : Node_Id) return Boolean is
function Is_Volatile_Prefix (N : Node_Id) return Boolean;
-- If prefix is an implicit dereference, examine designated type
function Object_Has_Volatile_Components (N : Node_Id) return Boolean;
-- Determines if given object has volatile components
------------------------
-- Is_Volatile_Prefix --
------------------------
function Is_Volatile_Prefix (N : Node_Id) return Boolean is
Typ : constant Entity_Id := Etype (N);
begin
if Is_Access_Type (Typ) then
declare
Dtyp : constant Entity_Id := Designated_Type (Typ);
begin
return Is_Volatile (Dtyp)
or else Has_Volatile_Components (Dtyp);
end;
else
return Object_Has_Volatile_Components (N);
end if;
end Is_Volatile_Prefix;
------------------------------------
-- Object_Has_Volatile_Components --
------------------------------------
function Object_Has_Volatile_Components (N : Node_Id) return Boolean is
Typ : constant Entity_Id := Etype (N);
begin
if Is_Volatile (Typ)
or else Has_Volatile_Components (Typ)
then
return True;
elsif Is_Entity_Name (N)
and then (Has_Volatile_Components (Entity (N))
or else Is_Volatile (Entity (N)))
then
return True;
elsif Nkind (N) = N_Indexed_Component
or else Nkind (N) = N_Selected_Component
then
return Is_Volatile_Prefix (Prefix (N));
else
return False;
end if;
end Object_Has_Volatile_Components;
-- Start of processing for Is_Volatile_Object
begin
if Nkind (N) = N_Defining_Identifier then
return Is_Volatile (N) or else Is_Volatile (Etype (N));
elsif Nkind (N) = N_Expanded_Name then
return Is_Volatile_Object (Entity (N));
elsif Is_Volatile (Etype (N))
or else (Is_Entity_Name (N) and then Is_Volatile (Entity (N)))
then
return True;
elsif Nkind_In (N, N_Indexed_Component, N_Selected_Component)
and then Is_Volatile_Prefix (Prefix (N))
then
return True;
elsif Nkind (N) = N_Selected_Component
and then Is_Volatile (Entity (Selector_Name (N)))
then
return True;
else
return False;
end if;
end Is_Volatile_Object;
-----------------------------
-- Iterate_Call_Parameters --
-----------------------------
procedure Iterate_Call_Parameters (Call : Node_Id) is
Formal : Entity_Id := First_Formal (Get_Called_Entity (Call));
Actual : Node_Id := First_Actual (Call);
begin
while Present (Formal) and then Present (Actual) loop
Handle_Parameter (Formal, Actual);
Formal := Next_Formal (Formal);
Actual := Next_Actual (Actual);
end loop;
end Iterate_Call_Parameters;
---------------------------
-- Itype_Has_Declaration --
---------------------------
function Itype_Has_Declaration (Id : Entity_Id) return Boolean is
begin
pragma Assert (Is_Itype (Id));
return Present (Parent (Id))
and then Nkind_In (Parent (Id), N_Full_Type_Declaration,
N_Subtype_Declaration)
and then Defining_Entity (Parent (Id)) = Id;
end Itype_Has_Declaration;
-------------------------
-- Kill_Current_Values --
-------------------------
procedure Kill_Current_Values
(Ent : Entity_Id;
Last_Assignment_Only : Boolean := False)
is
begin
if Is_Assignable (Ent) then
Set_Last_Assignment (Ent, Empty);
end if;
if Is_Object (Ent) then
if not Last_Assignment_Only then
Kill_Checks (Ent);
Set_Current_Value (Ent, Empty);
-- Do not reset the Is_Known_[Non_]Null and Is_Known_Valid flags
-- for a constant. Once the constant is elaborated, its value is
-- not changed, therefore the associated flags that describe the
-- value should not be modified either.
if Ekind (Ent) = E_Constant then
null;
-- Non-constant entities
else
if not Can_Never_Be_Null (Ent) then
Set_Is_Known_Non_Null (Ent, False);
end if;
Set_Is_Known_Null (Ent, False);
-- Reset the Is_Known_Valid flag unless the type is always
-- valid. This does not apply to a loop parameter because its
-- bounds are defined by the loop header and therefore always
-- valid.
if not Is_Known_Valid (Etype (Ent))
and then Ekind (Ent) /= E_Loop_Parameter
then
Set_Is_Known_Valid (Ent, False);
end if;
end if;
end if;
end if;
end Kill_Current_Values;
procedure Kill_Current_Values (Last_Assignment_Only : Boolean := False) is
S : Entity_Id;
procedure Kill_Current_Values_For_Entity_Chain (E : Entity_Id);
-- Clear current value for entity E and all entities chained to E
------------------------------------------
-- Kill_Current_Values_For_Entity_Chain --
------------------------------------------
procedure Kill_Current_Values_For_Entity_Chain (E : Entity_Id) is
Ent : Entity_Id;
begin
Ent := E;
while Present (Ent) loop
Kill_Current_Values (Ent, Last_Assignment_Only);
Next_Entity (Ent);
end loop;
end Kill_Current_Values_For_Entity_Chain;
-- Start of processing for Kill_Current_Values
begin
-- Kill all saved checks, a special case of killing saved values
if not Last_Assignment_Only then
Kill_All_Checks;
end if;
-- Loop through relevant scopes, which includes the current scope and
-- any parent scopes if the current scope is a block or a package.
S := Current_Scope;
Scope_Loop : loop
-- Clear current values of all entities in current scope
Kill_Current_Values_For_Entity_Chain (First_Entity (S));
-- If scope is a package, also clear current values of all private
-- entities in the scope.
if Is_Package_Or_Generic_Package (S)
or else Is_Concurrent_Type (S)
then
Kill_Current_Values_For_Entity_Chain (First_Private_Entity (S));
end if;
-- If this is a not a subprogram, deal with parents
if not Is_Subprogram (S) then
S := Scope (S);
exit Scope_Loop when S = Standard_Standard;
else
exit Scope_Loop;
end if;
end loop Scope_Loop;
end Kill_Current_Values;
--------------------------
-- Kill_Size_Check_Code --
--------------------------
procedure Kill_Size_Check_Code (E : Entity_Id) is
begin
if (Ekind (E) = E_Constant or else Ekind (E) = E_Variable)
and then Present (Size_Check_Code (E))
then
Remove (Size_Check_Code (E));
Set_Size_Check_Code (E, Empty);
end if;
end Kill_Size_Check_Code;
--------------------
-- Known_Non_Null --
--------------------
function Known_Non_Null (N : Node_Id) return Boolean is
Status : constant Null_Status_Kind := Null_Status (N);
Id : Entity_Id;
Op : Node_Kind;
Val : Node_Id;
begin
-- The expression yields a non-null value ignoring simple flow analysis
if Status = Is_Non_Null then
return True;
-- Otherwise check whether N is a reference to an entity that appears
-- within a conditional construct.
elsif Is_Entity_Name (N) and then Present (Entity (N)) then
-- First check if we are in decisive conditional
Get_Current_Value_Condition (N, Op, Val);
if Known_Null (Val) then
if Op = N_Op_Eq then
return False;
elsif Op = N_Op_Ne then
return True;
end if;
end if;
-- If OK to do replacement, test Is_Known_Non_Null flag
Id := Entity (N);
if OK_To_Do_Constant_Replacement (Id) then
return Is_Known_Non_Null (Id);
end if;
end if;
-- Otherwise it is not possible to determine whether N yields a non-null
-- value.
return False;
end Known_Non_Null;
----------------
-- Known_Null --
----------------
function Known_Null (N : Node_Id) return Boolean is
Status : constant Null_Status_Kind := Null_Status (N);
Id : Entity_Id;
Op : Node_Kind;
Val : Node_Id;
begin
-- The expression yields a null value ignoring simple flow analysis
if Status = Is_Null then
return True;
-- Otherwise check whether N is a reference to an entity that appears
-- within a conditional construct.
elsif Is_Entity_Name (N) and then Present (Entity (N)) then
-- First check if we are in decisive conditional
Get_Current_Value_Condition (N, Op, Val);
if Known_Null (Val) then
if Op = N_Op_Eq then
return True;
elsif Op = N_Op_Ne then
return False;
end if;
end if;
-- If OK to do replacement, test Is_Known_Null flag
Id := Entity (N);
if OK_To_Do_Constant_Replacement (Id) then
return Is_Known_Null (Id);
end if;
end if;
-- Otherwise it is not possible to determine whether N yields a null
-- value.
return False;
end Known_Null;
--------------------------
-- Known_To_Be_Assigned --
--------------------------
function Known_To_Be_Assigned (N : Node_Id) return Boolean is
P : constant Node_Id := Parent (N);
begin
case Nkind (P) is
-- Test left side of assignment
when N_Assignment_Statement =>
return N = Name (P);
-- Function call arguments are never lvalues
when N_Function_Call =>
return False;
-- Positional parameter for procedure or accept call
when N_Accept_Statement
| N_Procedure_Call_Statement
=>
declare
Proc : Entity_Id;
Form : Entity_Id;
Act : Node_Id;
begin
Proc := Get_Subprogram_Entity (P);
if No (Proc) then
return False;
end if;
-- If we are not a list member, something is strange, so
-- be conservative and return False.
if not Is_List_Member (N) then
return False;
end if;
-- We are going to find the right formal by stepping forward
-- through the formals, as we step backwards in the actuals.
Form := First_Formal (Proc);
Act := N;
loop
-- If no formal, something is weird, so be conservative
-- and return False.
if No (Form) then
return False;
end if;
Prev (Act);
exit when No (Act);
Next_Formal (Form);
end loop;
return Ekind (Form) /= E_In_Parameter;
end;
-- Named parameter for procedure or accept call
when N_Parameter_Association =>
declare
Proc : Entity_Id;
Form : Entity_Id;
begin
Proc := Get_Subprogram_Entity (Parent (P));
if No (Proc) then
return False;
end if;
-- Loop through formals to find the one that matches
Form := First_Formal (Proc);
loop
-- If no matching formal, that's peculiar, some kind of
-- previous error, so return False to be conservative.
-- Actually this also happens in legal code in the case
-- where P is a parameter association for an Extra_Formal???
if No (Form) then
return False;
end if;
-- Else test for match
if Chars (Form) = Chars (Selector_Name (P)) then
return Ekind (Form) /= E_In_Parameter;
end if;
Next_Formal (Form);
end loop;
end;
-- Test for appearing in a conversion that itself appears
-- in an lvalue context, since this should be an lvalue.
when N_Type_Conversion =>
return Known_To_Be_Assigned (P);
-- All other references are definitely not known to be modifications
when others =>
return False;
end case;
end Known_To_Be_Assigned;
---------------------------
-- Last_Source_Statement --
---------------------------
function Last_Source_Statement (HSS : Node_Id) return Node_Id is
N : Node_Id;
begin
N := Last (Statements (HSS));
while Present (N) loop
exit when Comes_From_Source (N);
Prev (N);
end loop;
return N;
end Last_Source_Statement;
-----------------------
-- Mark_Coextensions --
-----------------------
procedure Mark_Coextensions (Context_Nod : Node_Id; Root_Nod : Node_Id) is
Is_Dynamic : Boolean;
-- Indicates whether the context causes nested coextensions to be
-- dynamic or static
function Mark_Allocator (N : Node_Id) return Traverse_Result;
-- Recognize an allocator node and label it as a dynamic coextension
--------------------
-- Mark_Allocator --
--------------------
function Mark_Allocator (N : Node_Id) return Traverse_Result is
begin
if Nkind (N) = N_Allocator then
if Is_Dynamic then
Set_Is_Dynamic_Coextension (N);
-- If the allocator expression is potentially dynamic, it may
-- be expanded out of order and require dynamic allocation
-- anyway, so we treat the coextension itself as dynamic.
-- Potential optimization ???
elsif Nkind (Expression (N)) = N_Qualified_Expression
and then Nkind (Expression (Expression (N))) = N_Op_Concat
then
Set_Is_Dynamic_Coextension (N);
else
Set_Is_Static_Coextension (N);
end if;
end if;
return OK;
end Mark_Allocator;
procedure Mark_Allocators is new Traverse_Proc (Mark_Allocator);
-- Start of processing for Mark_Coextensions
begin
-- An allocator that appears on the right-hand side of an assignment is
-- treated as a potentially dynamic coextension when the right-hand side
-- is an allocator or a qualified expression.
-- Obj := new ...'(new Coextension ...);
if Nkind (Context_Nod) = N_Assignment_Statement then
Is_Dynamic :=
Nkind_In (Expression (Context_Nod), N_Allocator,
N_Qualified_Expression);
-- An allocator that appears within the expression of a simple return
-- statement is treated as a potentially dynamic coextension when the
-- expression is either aggregate, allocator, or qualified expression.
-- return (new Coextension ...);
-- return new ...'(new Coextension ...);
elsif Nkind (Context_Nod) = N_Simple_Return_Statement then
Is_Dynamic :=
Nkind_In (Expression (Context_Nod), N_Aggregate,
N_Allocator,
N_Qualified_Expression);
-- An alloctor that appears within the initialization expression of an
-- object declaration is considered a potentially dynamic coextension
-- when the initialization expression is an allocator or a qualified
-- expression.
-- Obj : ... := new ...'(new Coextension ...);
-- A similar case arises when the object declaration is part of an
-- extended return statement.
-- return Obj : ... := new ...'(new Coextension ...);
-- return Obj : ... := (new Coextension ...);
elsif Nkind (Context_Nod) = N_Object_Declaration then
Is_Dynamic :=
Nkind_In (Root_Nod, N_Allocator, N_Qualified_Expression)
or else
Nkind (Parent (Context_Nod)) = N_Extended_Return_Statement;
-- This routine should not be called with constructs that cannot contain
-- coextensions.
else
raise Program_Error;
end if;
Mark_Allocators (Root_Nod);
end Mark_Coextensions;
---------------------------------
-- Mark_Elaboration_Attributes --
---------------------------------
procedure Mark_Elaboration_Attributes
(N_Id : Node_Or_Entity_Id;
Checks : Boolean := False;
Level : Boolean := False;
Modes : Boolean := False;
Warnings : Boolean := False)
is
function Elaboration_Checks_OK
(Target_Id : Entity_Id;
Context_Id : Entity_Id) return Boolean;
-- Determine whether elaboration checks are enabled for target Target_Id
-- which resides within context Context_Id.
procedure Mark_Elaboration_Attributes_Id (Id : Entity_Id);
-- Preserve relevant attributes of the context in arbitrary entity Id
procedure Mark_Elaboration_Attributes_Node (N : Node_Id);
-- Preserve relevant attributes of the context in arbitrary node N
---------------------------
-- Elaboration_Checks_OK --
---------------------------
function Elaboration_Checks_OK
(Target_Id : Entity_Id;
Context_Id : Entity_Id) return Boolean
is
Encl_Scop : Entity_Id;
begin
-- Elaboration checks are suppressed for the target
if Elaboration_Checks_Suppressed (Target_Id) then
return False;
end if;
-- Otherwise elaboration checks are OK for the target, but may be
-- suppressed for the context where the target is declared.
Encl_Scop := Context_Id;
while Present (Encl_Scop) and then Encl_Scop /= Standard_Standard loop
if Elaboration_Checks_Suppressed (Encl_Scop) then
return False;
end if;
Encl_Scop := Scope (Encl_Scop);
end loop;
-- Neither the target nor its declarative context have elaboration
-- checks suppressed.
return True;
end Elaboration_Checks_OK;
------------------------------------
-- Mark_Elaboration_Attributes_Id --
------------------------------------
procedure Mark_Elaboration_Attributes_Id (Id : Entity_Id) is
begin
-- Mark the status of elaboration checks in effect. Do not reset the
-- status in case the entity is reanalyzed with checks suppressed.
if Checks and then not Is_Elaboration_Checks_OK_Id (Id) then
Set_Is_Elaboration_Checks_OK_Id (Id,
Elaboration_Checks_OK
(Target_Id => Id,
Context_Id => Scope (Id)));
-- Entities do not need to capture their enclosing level. The Ghost
-- and SPARK modes in effect are already marked during analysis.
else
null;
end if;
end Mark_Elaboration_Attributes_Id;
--------------------------------------
-- Mark_Elaboration_Attributes_Node --
--------------------------------------
procedure Mark_Elaboration_Attributes_Node (N : Node_Id) is
function Extract_Name (N : Node_Id) return Node_Id;
-- Obtain the Name attribute of call or instantiation N
------------------
-- Extract_Name --
------------------
function Extract_Name (N : Node_Id) return Node_Id is
Nam : Node_Id;
begin
Nam := Name (N);
-- A call to an entry family appears in indexed form
if Nkind (Nam) = N_Indexed_Component then
Nam := Prefix (Nam);
end if;
-- The name may also appear in qualified form
if Nkind (Nam) = N_Selected_Component then
Nam := Selector_Name (Nam);
end if;
return Nam;
end Extract_Name;
-- Local variables
Context_Id : Entity_Id;
Nam : Node_Id;
-- Start of processing for Mark_Elaboration_Attributes_Node
begin
-- Mark the status of elaboration checks in effect. Do not reset the
-- status in case the node is reanalyzed with checks suppressed.
if Checks and then not Is_Elaboration_Checks_OK_Node (N) then
-- Assignments, attribute references, and variable references do
-- not have a "declarative" context.
Context_Id := Empty;
-- The status of elaboration checks for calls and instantiations
-- depends on the most recent pragma Suppress/Unsuppress, as well
-- as the suppression status of the context where the target is
-- defined.
-- package Pack is
-- function Func ...;
-- end Pack;
-- with Pack;
-- procedure Main is
-- pragma Suppress (Elaboration_Checks, Pack);
-- X : ... := Pack.Func;
-- ...
-- In the example above, the call to Func has elaboration checks
-- enabled because there is no active general purpose suppression
-- pragma, however the elaboration checks of Pack are explicitly
-- suppressed. As a result the elaboration checks of the call must
-- be disabled in order to preserve this dependency.
if Nkind_In (N, N_Entry_Call_Statement,
N_Function_Call,
N_Function_Instantiation,
N_Package_Instantiation,
N_Procedure_Call_Statement,
N_Procedure_Instantiation)
then
Nam := Extract_Name (N);
if Is_Entity_Name (Nam) and then Present (Entity (Nam)) then
Context_Id := Scope (Entity (Nam));
end if;
end if;
Set_Is_Elaboration_Checks_OK_Node (N,
Elaboration_Checks_OK
(Target_Id => Empty,
Context_Id => Context_Id));
end if;
-- Mark the enclosing level of the node. Do not reset the status in
-- case the node is relocated and reanalyzed.
if Level and then not Is_Declaration_Level_Node (N) then
Set_Is_Declaration_Level_Node (N,
Find_Enclosing_Level (N) = Declaration_Level);
end if;
-- Mark the Ghost and SPARK mode in effect
if Modes then
if Ghost_Mode = Ignore then
Set_Is_Ignored_Ghost_Node (N);
end if;
if SPARK_Mode = On then
Set_Is_SPARK_Mode_On_Node (N);
end if;
end if;
-- Mark the status of elaboration warnings in effect. Do not reset
-- the status in case the node is reanalyzed with warnings off.
if Warnings and then not Is_Elaboration_Warnings_OK_Node (N) then
Set_Is_Elaboration_Warnings_OK_Node (N, Elab_Warnings);
end if;
end Mark_Elaboration_Attributes_Node;
-- Start of processing for Mark_Elaboration_Attributes
begin
-- Do not capture any elaboration-related attributes when switch -gnatH
-- (legacy elaboration checking mode enabled) is in effect because the
-- attributes are useless to the legacy model.
if Legacy_Elaboration_Checks then
return;
end if;
if Nkind (N_Id) in N_Entity then
Mark_Elaboration_Attributes_Id (N_Id);
else
Mark_Elaboration_Attributes_Node (N_Id);
end if;
end Mark_Elaboration_Attributes;
----------------------------------
-- Matching_Static_Array_Bounds --
----------------------------------
function Matching_Static_Array_Bounds
(L_Typ : Node_Id;
R_Typ : Node_Id) return Boolean
is
L_Ndims : constant Nat := Number_Dimensions (L_Typ);
R_Ndims : constant Nat := Number_Dimensions (R_Typ);
L_Index : Node_Id := Empty; -- init to ...
R_Index : Node_Id := Empty; -- ...avoid warnings
L_Low : Node_Id;
L_High : Node_Id;
L_Len : Uint;
R_Low : Node_Id;
R_High : Node_Id;
R_Len : Uint;
begin
if L_Ndims /= R_Ndims then
return False;
end if;
-- Unconstrained types do not have static bounds
if not Is_Constrained (L_Typ) or else not Is_Constrained (R_Typ) then
return False;
end if;
-- First treat specially the first dimension, as the lower bound and
-- length of string literals are not stored like those of arrays.
if Ekind (L_Typ) = E_String_Literal_Subtype then
L_Low := String_Literal_Low_Bound (L_Typ);
L_Len := String_Literal_Length (L_Typ);
else
L_Index := First_Index (L_Typ);
Get_Index_Bounds (L_Index, L_Low, L_High);
if Is_OK_Static_Expression (L_Low)
and then
Is_OK_Static_Expression (L_High)
then
if Expr_Value (L_High) < Expr_Value (L_Low) then
L_Len := Uint_0;
else
L_Len := (Expr_Value (L_High) - Expr_Value (L_Low)) + 1;
end if;
else
return False;
end if;
end if;
if Ekind (R_Typ) = E_String_Literal_Subtype then
R_Low := String_Literal_Low_Bound (R_Typ);
R_Len := String_Literal_Length (R_Typ);
else
R_Index := First_Index (R_Typ);
Get_Index_Bounds (R_Index, R_Low, R_High);
if Is_OK_Static_Expression (R_Low)
and then
Is_OK_Static_Expression (R_High)
then
if Expr_Value (R_High) < Expr_Value (R_Low) then
R_Len := Uint_0;
else
R_Len := (Expr_Value (R_High) - Expr_Value (R_Low)) + 1;
end if;
else
return False;
end if;
end if;
if (Is_OK_Static_Expression (L_Low)
and then
Is_OK_Static_Expression (R_Low))
and then Expr_Value (L_Low) = Expr_Value (R_Low)
and then L_Len = R_Len
then
null;
else
return False;
end if;
-- Then treat all other dimensions
for Indx in 2 .. L_Ndims loop
Next (L_Index);
Next (R_Index);
Get_Index_Bounds (L_Index, L_Low, L_High);
Get_Index_Bounds (R_Index, R_Low, R_High);
if (Is_OK_Static_Expression (L_Low) and then
Is_OK_Static_Expression (L_High) and then
Is_OK_Static_Expression (R_Low) and then
Is_OK_Static_Expression (R_High))
and then (Expr_Value (L_Low) = Expr_Value (R_Low)
and then
Expr_Value (L_High) = Expr_Value (R_High))
then
null;
else
return False;
end if;
end loop;
-- If we fall through the loop, all indexes matched
return True;
end Matching_Static_Array_Bounds;
-------------------
-- May_Be_Lvalue --
-------------------
function May_Be_Lvalue (N : Node_Id) return Boolean is
P : constant Node_Id := Parent (N);
begin
case Nkind (P) is
-- Test left side of assignment
when N_Assignment_Statement =>
return N = Name (P);
-- Test prefix of component or attribute. Note that the prefix of an
-- explicit or implicit dereference cannot be an l-value. In the case
-- of a 'Read attribute, the reference can be an actual in the
-- argument list of the attribute.
when N_Attribute_Reference =>
return (N = Prefix (P)
and then Name_Implies_Lvalue_Prefix (Attribute_Name (P)))
or else
Attribute_Name (P) = Name_Read;
-- For an expanded name, the name is an lvalue if the expanded name
-- is an lvalue, but the prefix is never an lvalue, since it is just
-- the scope where the name is found.
when N_Expanded_Name =>
if N = Prefix (P) then
return May_Be_Lvalue (P);
else
return False;
end if;
-- For a selected component A.B, A is certainly an lvalue if A.B is.
-- B is a little interesting, if we have A.B := 3, there is some
-- discussion as to whether B is an lvalue or not, we choose to say
-- it is. Note however that A is not an lvalue if it is of an access
-- type since this is an implicit dereference.
when N_Selected_Component =>
if N = Prefix (P)
and then Present (Etype (N))
and then Is_Access_Type (Etype (N))
then
return False;
else
return May_Be_Lvalue (P);
end if;
-- For an indexed component or slice, the index or slice bounds is
-- never an lvalue. The prefix is an lvalue if the indexed component
-- or slice is an lvalue, except if it is an access type, where we
-- have an implicit dereference.
when N_Indexed_Component
| N_Slice
=>
if N /= Prefix (P)
or else (Present (Etype (N)) and then Is_Access_Type (Etype (N)))
then
return False;
else
return May_Be_Lvalue (P);
end if;
-- Prefix of a reference is an lvalue if the reference is an lvalue
when N_Reference =>
return May_Be_Lvalue (P);
-- Prefix of explicit dereference is never an lvalue
when N_Explicit_Dereference =>
return False;
-- Positional parameter for subprogram, entry, or accept call.
-- In older versions of Ada function call arguments are never
-- lvalues. In Ada 2012 functions can have in-out parameters.
when N_Accept_Statement
| N_Entry_Call_Statement
| N_Subprogram_Call
=>
if Nkind (P) = N_Function_Call and then Ada_Version < Ada_2012 then
return False;
end if;
-- The following mechanism is clumsy and fragile. A single flag
-- set in Resolve_Actuals would be preferable ???
declare
Proc : Entity_Id;
Form : Entity_Id;
Act : Node_Id;
begin
Proc := Get_Subprogram_Entity (P);
if No (Proc) then
return True;
end if;
-- If we are not a list member, something is strange, so be
-- conservative and return True.
if not Is_List_Member (N) then
return True;
end if;
-- We are going to find the right formal by stepping forward
-- through the formals, as we step backwards in the actuals.
Form := First_Formal (Proc);
Act := N;
loop
-- If no formal, something is weird, so be conservative and
-- return True.
if No (Form) then
return True;
end if;
Prev (Act);
exit when No (Act);
Next_Formal (Form);
end loop;
return Ekind (Form) /= E_In_Parameter;
end;
-- Named parameter for procedure or accept call
when N_Parameter_Association =>
declare
Proc : Entity_Id;
Form : Entity_Id;
begin
Proc := Get_Subprogram_Entity (Parent (P));
if No (Proc) then
return True;
end if;
-- Loop through formals to find the one that matches
Form := First_Formal (Proc);
loop
-- If no matching formal, that's peculiar, some kind of
-- previous error, so return True to be conservative.
-- Actually happens with legal code for an unresolved call
-- where we may get the wrong homonym???
if No (Form) then
return True;
end if;
-- Else test for match
if Chars (Form) = Chars (Selector_Name (P)) then
return Ekind (Form) /= E_In_Parameter;
end if;
Next_Formal (Form);
end loop;
end;
-- Test for appearing in a conversion that itself appears in an
-- lvalue context, since this should be an lvalue.
when N_Type_Conversion =>
return May_Be_Lvalue (P);
-- Test for appearance in object renaming declaration
when N_Object_Renaming_Declaration =>
return True;
-- All other references are definitely not lvalues
when others =>
return False;
end case;
end May_Be_Lvalue;
-----------------
-- Might_Raise --
-----------------
function Might_Raise (N : Node_Id) return Boolean is
Result : Boolean := False;
function Process (N : Node_Id) return Traverse_Result;
-- Set Result to True if we find something that could raise an exception
-------------
-- Process --
-------------
function Process (N : Node_Id) return Traverse_Result is
begin
if Nkind_In (N, N_Procedure_Call_Statement,
N_Function_Call,
N_Raise_Statement,
N_Raise_Constraint_Error,
N_Raise_Program_Error,
N_Raise_Storage_Error)
then
Result := True;
return Abandon;
else
return OK;
end if;
end Process;
procedure Set_Result is new Traverse_Proc (Process);
-- Start of processing for Might_Raise
begin
-- False if exceptions can't be propagated
if No_Exception_Handlers_Set then
return False;
end if;
-- If the checks handled by the back end are not disabled, we cannot
-- ensure that no exception will be raised.
if not Access_Checks_Suppressed (Empty)
or else not Discriminant_Checks_Suppressed (Empty)
or else not Range_Checks_Suppressed (Empty)
or else not Index_Checks_Suppressed (Empty)
or else Opt.Stack_Checking_Enabled
then
return True;
end if;
Set_Result (N);
return Result;
end Might_Raise;
--------------------------------
-- Nearest_Enclosing_Instance --
--------------------------------
function Nearest_Enclosing_Instance (E : Entity_Id) return Entity_Id is
Inst : Entity_Id;
begin
Inst := Scope (E);
while Present (Inst) and then Inst /= Standard_Standard loop
if Is_Generic_Instance (Inst) then
return Inst;
end if;
Inst := Scope (Inst);
end loop;
return Empty;
end Nearest_Enclosing_Instance;
----------------------
-- Needs_One_Actual --
----------------------
function Needs_One_Actual (E : Entity_Id) return Boolean is
Formal : Entity_Id;
begin
-- Ada 2005 or later, and formals present. The first formal must be
-- of a type that supports prefix notation: a controlling argument,
-- a class-wide type, or an access to such.
if Ada_Version >= Ada_2005
and then Present (First_Formal (E))
and then No (Default_Value (First_Formal (E)))
and then
(Is_Controlling_Formal (First_Formal (E))
or else Is_Class_Wide_Type (Etype (First_Formal (E)))
or else Is_Anonymous_Access_Type (Etype (First_Formal (E))))
then
Formal := Next_Formal (First_Formal (E));
while Present (Formal) loop
if No (Default_Value (Formal)) then
return False;
end if;
Next_Formal (Formal);
end loop;
return True;
-- Ada 83/95 or no formals
else
return False;
end if;
end Needs_One_Actual;
------------------------
-- New_Copy_List_Tree --
------------------------
function New_Copy_List_Tree (List : List_Id) return List_Id is
NL : List_Id;
E : Node_Id;
begin
if List = No_List then
return No_List;
else
NL := New_List;
E := First (List);
while Present (E) loop
Append (New_Copy_Tree (E), NL);
E := Next (E);
end loop;
return NL;
end if;
end New_Copy_List_Tree;
-------------------
-- New_Copy_Tree --
-------------------
-- The following tables play a key role in replicating entities and Itypes.
-- They are intentionally declared at the library level rather than within
-- New_Copy_Tree to avoid elaborating them on each call. This performance
-- optimization saves up to 2% of the entire compilation time spent in the
-- front end. Care should be taken to reset the tables on each new call to
-- New_Copy_Tree.
NCT_Table_Max : constant := 511;
subtype NCT_Table_Index is Nat range 0 .. NCT_Table_Max - 1;
function NCT_Table_Hash (Key : Node_Or_Entity_Id) return NCT_Table_Index;
-- Obtain the hash value of node or entity Key
--------------------
-- NCT_Table_Hash --
--------------------
function NCT_Table_Hash (Key : Node_Or_Entity_Id) return NCT_Table_Index is
begin
return NCT_Table_Index (Key mod NCT_Table_Max);
end NCT_Table_Hash;
----------------------
-- NCT_New_Entities --
----------------------
-- The following table maps old entities and Itypes to their corresponding
-- new entities and Itypes.
-- Aaa -> Xxx
package NCT_New_Entities is new Simple_HTable (
Header_Num => NCT_Table_Index,
Element => Entity_Id,
No_Element => Empty,
Key => Entity_Id,
Hash => NCT_Table_Hash,
Equal => "=");
------------------------
-- NCT_Pending_Itypes --
------------------------
-- The following table maps old Associated_Node_For_Itype nodes to a set of
-- new itypes. Given a set of old Itypes Aaa, Bbb, and Ccc, where all three
-- have the same Associated_Node_For_Itype Ppp, and their corresponding new
-- Itypes Xxx, Yyy, Zzz, the table contains the following mapping:
-- Ppp -> (Xxx, Yyy, Zzz)
-- The set is expressed as an Elist
package NCT_Pending_Itypes is new Simple_HTable (
Header_Num => NCT_Table_Index,
Element => Elist_Id,
No_Element => No_Elist,
Key => Node_Id,
Hash => NCT_Table_Hash,
Equal => "=");
NCT_Tables_In_Use : Boolean := False;
-- This flag keeps track of whether the two tables NCT_New_Entities and
-- NCT_Pending_Itypes are in use. The flag is part of an optimization
-- where certain operations are not performed if the tables are not in
-- use. This saves up to 8% of the entire compilation time spent in the
-- front end.
-------------------
-- New_Copy_Tree --
-------------------
function New_Copy_Tree
(Source : Node_Id;
Map : Elist_Id := No_Elist;
New_Sloc : Source_Ptr := No_Location;
New_Scope : Entity_Id := Empty) return Node_Id
is
-- This routine performs low-level tree manipulations and needs access
-- to the internals of the tree.
use Atree.Unchecked_Access;
use Atree_Private_Part;
EWA_Level : Nat := 0;
-- This counter keeps track of how many N_Expression_With_Actions nodes
-- are encountered during a depth-first traversal of the subtree. These
-- nodes may define new entities in their Actions lists and thus require
-- special processing.
EWA_Inner_Scope_Level : Nat := 0;
-- This counter keeps track of how many scoping constructs appear within
-- an N_Expression_With_Actions node.
procedure Add_New_Entity (Old_Id : Entity_Id; New_Id : Entity_Id);
pragma Inline (Add_New_Entity);
-- Add an entry in the NCT_New_Entities table which maps key Old_Id to
-- value New_Id. Old_Id is an entity which appears within the Actions
-- list of an N_Expression_With_Actions node, or within an entity map.
-- New_Id is the corresponding new entity generated during Phase 1.
procedure Add_Pending_Itype (Assoc_Nod : Node_Id; Itype : Entity_Id);
pragma Inline (Add_New_Entity);
-- Add an entry in the NCT_Pending_Itypes which maps key Assoc_Nod to
-- value Itype. Assoc_Nod is the associated node of an itype. Itype is
-- an itype.
procedure Build_NCT_Tables (Entity_Map : Elist_Id);
pragma Inline (Build_NCT_Tables);
-- Populate tables NCT_New_Entities and NCT_Pending_Itypes with the
-- information supplied in entity map Entity_Map. The format of the
-- entity map must be as follows:
--
-- Old_Id1, New_Id1, Old_Id2, New_Id2, .., Old_IdN, New_IdN
function Copy_Any_Node_With_Replacement
(N : Node_Or_Entity_Id) return Node_Or_Entity_Id;
pragma Inline (Copy_Any_Node_With_Replacement);
-- Replicate entity or node N by invoking one of the following routines:
--
-- Copy_Node_With_Replacement
-- Corresponding_Entity
function Copy_Elist_With_Replacement (List : Elist_Id) return Elist_Id;
-- Replicate the elements of entity list List
function Copy_Field_With_Replacement
(Field : Union_Id;
Old_Par : Node_Id := Empty;
New_Par : Node_Id := Empty;
Semantic : Boolean := False) return Union_Id;
-- Replicate field Field by invoking one of the following routines:
--
-- Copy_Elist_With_Replacement
-- Copy_List_With_Replacement
-- Copy_Node_With_Replacement
-- Corresponding_Entity
--
-- If the field is not an entity list, entity, itype, syntactic list,
-- or node, then the field is returned unchanged. The routine always
-- replicates entities, itypes, and valid syntactic fields. Old_Par is
-- the expected parent of a syntactic field. New_Par is the new parent
-- associated with a replicated syntactic field. Flag Semantic should
-- be set when the input is a semantic field.
function Copy_List_With_Replacement (List : List_Id) return List_Id;
-- Replicate the elements of syntactic list List
function Copy_Node_With_Replacement (N : Node_Id) return Node_Id;
-- Replicate node N
function Corresponding_Entity (Id : Entity_Id) return Entity_Id;
pragma Inline (Corresponding_Entity);
-- Return the corresponding new entity of Id generated during Phase 1.
-- If there is no such entity, return Id.
function In_Entity_Map
(Id : Entity_Id;
Entity_Map : Elist_Id) return Boolean;
pragma Inline (In_Entity_Map);
-- Determine whether entity Id is one of the old ids specified in entity
-- map Entity_Map. The format of the entity map must be as follows:
--
-- Old_Id1, New_Id1, Old_Id2, New_Id2, .., Old_IdN, New_IdN
procedure Update_CFS_Sloc (N : Node_Or_Entity_Id);
pragma Inline (Update_CFS_Sloc);
-- Update the Comes_From_Source and Sloc attributes of node or entity N
procedure Update_First_Real_Statement
(Old_HSS : Node_Id;
New_HSS : Node_Id);
pragma Inline (Update_First_Real_Statement);
-- Update semantic attribute First_Real_Statement of handled sequence of
-- statements New_HSS based on handled sequence of statements Old_HSS.
procedure Update_Named_Associations
(Old_Call : Node_Id;
New_Call : Node_Id);
pragma Inline (Update_Named_Associations);
-- Update semantic chain First/Next_Named_Association of call New_call
-- based on call Old_Call.
procedure Update_New_Entities (Entity_Map : Elist_Id);
pragma Inline (Update_New_Entities);
-- Update the semantic attributes of all new entities generated during
-- Phase 1 that do not appear in entity map Entity_Map. The format of
-- the entity map must be as follows:
--
-- Old_Id1, New_Id1, Old_Id2, New_Id2, .., Old_IdN, New_IdN
procedure Update_Pending_Itypes
(Old_Assoc : Node_Id;
New_Assoc : Node_Id);
pragma Inline (Update_Pending_Itypes);
-- Update semantic attribute Associated_Node_For_Itype to refer to node
-- New_Assoc for all itypes whose associated node is Old_Assoc.
procedure Update_Semantic_Fields (Id : Entity_Id);
pragma Inline (Update_Semantic_Fields);
-- Subsidiary to Update_New_Entities. Update semantic fields of entity
-- or itype Id.
procedure Visit_Any_Node (N : Node_Or_Entity_Id);
pragma Inline (Visit_Any_Node);
-- Visit entity of node N by invoking one of the following routines:
--
-- Visit_Entity
-- Visit_Itype
-- Visit_Node
procedure Visit_Elist (List : Elist_Id);
-- Visit the elements of entity list List
procedure Visit_Entity (Id : Entity_Id);
-- Visit entity Id. This action may create a new entity of Id and save
-- it in table NCT_New_Entities.
procedure Visit_Field
(Field : Union_Id;
Par_Nod : Node_Id := Empty;
Semantic : Boolean := False);
-- Visit field Field by invoking one of the following routines:
--
-- Visit_Elist
-- Visit_Entity
-- Visit_Itype
-- Visit_List
-- Visit_Node
--
-- If the field is not an entity list, entity, itype, syntactic list,
-- or node, then the field is not visited. The routine always visits
-- valid syntactic fields. Par_Nod is the expected parent of the
-- syntactic field. Flag Semantic should be set when the input is a
-- semantic field.
procedure Visit_Itype (Itype : Entity_Id);
-- Visit itype Itype. This action may create a new entity for Itype and
-- save it in table NCT_New_Entities. In addition, the routine may map
-- the associated node of Itype to the new itype in NCT_Pending_Itypes.
procedure Visit_List (List : List_Id);
-- Visit the elements of syntactic list List
procedure Visit_Node (N : Node_Id);
-- Visit node N
procedure Visit_Semantic_Fields (Id : Entity_Id);
pragma Inline (Visit_Semantic_Fields);
-- Subsidiary to Visit_Entity and Visit_Itype. Visit common semantic
-- fields of entity or itype Id.
--------------------
-- Add_New_Entity --
--------------------
procedure Add_New_Entity (Old_Id : Entity_Id; New_Id : Entity_Id) is
begin
pragma Assert (Present (Old_Id));
pragma Assert (Present (New_Id));
pragma Assert (Nkind (Old_Id) in N_Entity);
pragma Assert (Nkind (New_Id) in N_Entity);
NCT_Tables_In_Use := True;
-- Sanity check the NCT_New_Entities table. No previous mapping with
-- key Old_Id should exist.
pragma Assert (No (NCT_New_Entities.Get (Old_Id)));
-- Establish the mapping
-- Old_Id -> New_Id
NCT_New_Entities.Set (Old_Id, New_Id);
end Add_New_Entity;
-----------------------
-- Add_Pending_Itype --
-----------------------
procedure Add_Pending_Itype (Assoc_Nod : Node_Id; Itype : Entity_Id) is
Itypes : Elist_Id;
begin
pragma Assert (Present (Assoc_Nod));
pragma Assert (Present (Itype));
pragma Assert (Nkind (Itype) in N_Entity);
pragma Assert (Is_Itype (Itype));
NCT_Tables_In_Use := True;
-- It is not possible to sanity check the NCT_Pendint_Itypes table
-- directly because a single node may act as the associated node for
-- multiple itypes.
Itypes := NCT_Pending_Itypes.Get (Assoc_Nod);
if No (Itypes) then
Itypes := New_Elmt_List;
NCT_Pending_Itypes.Set (Assoc_Nod, Itypes);
end if;
-- Establish the mapping
-- Assoc_Nod -> (Itype, ...)
-- Avoid inserting the same itype multiple times. This involves a
-- linear search, however the set of itypes with the same associated
-- node is very small.
Append_Unique_Elmt (Itype, Itypes);
end Add_Pending_Itype;
----------------------
-- Build_NCT_Tables --
----------------------
procedure Build_NCT_Tables (Entity_Map : Elist_Id) is
Elmt : Elmt_Id;
Old_Id : Entity_Id;
New_Id : Entity_Id;
begin
-- Nothing to do when there is no entity map
if No (Entity_Map) then
return;
end if;
Elmt := First_Elmt (Entity_Map);
while Present (Elmt) loop
-- Extract the (Old_Id, New_Id) pair from the entity map
Old_Id := Node (Elmt);
Next_Elmt (Elmt);
New_Id := Node (Elmt);
Next_Elmt (Elmt);
-- Establish the following mapping within table NCT_New_Entities
-- Old_Id -> New_Id
Add_New_Entity (Old_Id, New_Id);
-- Establish the following mapping within table NCT_Pending_Itypes
-- when the new entity is an itype.
-- Assoc_Nod -> (New_Id, ...)
-- IMPORTANT: the associated node is that of the old itype because
-- the node will be replicated in Phase 2.
if Is_Itype (Old_Id) then
Add_Pending_Itype
(Assoc_Nod => Associated_Node_For_Itype (Old_Id),
Itype => New_Id);
end if;
end loop;
end Build_NCT_Tables;
------------------------------------
-- Copy_Any_Node_With_Replacement --
------------------------------------
function Copy_Any_Node_With_Replacement
(N : Node_Or_Entity_Id) return Node_Or_Entity_Id
is
begin
if Nkind (N) in N_Entity then
return Corresponding_Entity (N);
else
return Copy_Node_With_Replacement (N);
end if;
end Copy_Any_Node_With_Replacement;
---------------------------------
-- Copy_Elist_With_Replacement --
---------------------------------
function Copy_Elist_With_Replacement (List : Elist_Id) return Elist_Id is
Elmt : Elmt_Id;
Result : Elist_Id;
begin
-- Copy the contents of the old list. Note that the list itself may
-- be empty, in which case the routine returns a new empty list. This
-- avoids sharing lists between subtrees. The element of an entity
-- list could be an entity or a node, hence the invocation of routine
-- Copy_Any_Node_With_Replacement.
if Present (List) then
Result := New_Elmt_List;
Elmt := First_Elmt (List);
while Present (Elmt) loop
Append_Elmt
(Copy_Any_Node_With_Replacement (Node (Elmt)), Result);
Next_Elmt (Elmt);
end loop;
-- Otherwise the list does not exist
else
Result := No_Elist;
end if;
return Result;
end Copy_Elist_With_Replacement;
---------------------------------
-- Copy_Field_With_Replacement --
---------------------------------
function Copy_Field_With_Replacement
(Field : Union_Id;
Old_Par : Node_Id := Empty;
New_Par : Node_Id := Empty;
Semantic : Boolean := False) return Union_Id
is
begin
-- The field is empty
if Field = Union_Id (Empty) then
return Field;
-- The field is an entity/itype/node
elsif Field in Node_Range then
declare
Old_N : constant Node_Id := Node_Id (Field);
Syntactic : constant Boolean := Parent (Old_N) = Old_Par;
New_N : Node_Id;
begin
-- The field is an entity/itype
if Nkind (Old_N) in N_Entity then
-- An entity/itype is always replicated
New_N := Corresponding_Entity (Old_N);
-- Update the parent pointer when the entity is a syntactic
-- field. Note that itypes do not have parent pointers.
if Syntactic and then New_N /= Old_N then
Set_Parent (New_N, New_Par);
end if;
-- The field is a node
else
-- A node is replicated when it is either a syntactic field
-- or when the caller treats it as a semantic attribute.
if Syntactic or else Semantic then
New_N := Copy_Node_With_Replacement (Old_N);
-- Update the parent pointer when the node is a syntactic
-- field.
if Syntactic and then New_N /= Old_N then
Set_Parent (New_N, New_Par);
end if;
-- Otherwise the node is returned unchanged
else
New_N := Old_N;
end if;
end if;
return Union_Id (New_N);
end;
-- The field is an entity list
elsif Field in Elist_Range then
return Union_Id (Copy_Elist_With_Replacement (Elist_Id (Field)));
-- The field is a syntactic list
elsif Field in List_Range then
declare
Old_List : constant List_Id := List_Id (Field);
Syntactic : constant Boolean := Parent (Old_List) = Old_Par;
New_List : List_Id;
begin
-- A list is replicated when it is either a syntactic field or
-- when the caller treats it as a semantic attribute.
if Syntactic or else Semantic then
New_List := Copy_List_With_Replacement (Old_List);
-- Update the parent pointer when the list is a syntactic
-- field.
if Syntactic and then New_List /= Old_List then
Set_Parent (New_List, New_Par);
end if;
-- Otherwise the list is returned unchanged
else
New_List := Old_List;
end if;
return Union_Id (New_List);
end;
-- Otherwise the field denotes an attribute that does not need to be
-- replicated (Chars, literals, etc).
else
return Field;
end if;
end Copy_Field_With_Replacement;
--------------------------------
-- Copy_List_With_Replacement --
--------------------------------
function Copy_List_With_Replacement (List : List_Id) return List_Id is
Elmt : Node_Id;
Result : List_Id;
begin
-- Copy the contents of the old list. Note that the list itself may
-- be empty, in which case the routine returns a new empty list. This
-- avoids sharing lists between subtrees. The element of a syntactic
-- list is always a node, never an entity or itype, hence the call to
-- routine Copy_Node_With_Replacement.
if Present (List) then
Result := New_List;
Elmt := First (List);
while Present (Elmt) loop
Append (Copy_Node_With_Replacement (Elmt), Result);
Next (Elmt);
end loop;
-- Otherwise the list does not exist
else
Result := No_List;
end if;
return Result;
end Copy_List_With_Replacement;
--------------------------------
-- Copy_Node_With_Replacement --
--------------------------------
function Copy_Node_With_Replacement (N : Node_Id) return Node_Id is
Result : Node_Id;
begin
-- Assume that the node must be returned unchanged
Result := N;
if N > Empty_Or_Error then
pragma Assert (Nkind (N) not in N_Entity);
Result := New_Copy (N);
Set_Field1 (Result,
Copy_Field_With_Replacement
(Field => Field1 (Result),
Old_Par => N,
New_Par => Result));
Set_Field2 (Result,
Copy_Field_With_Replacement
(Field => Field2 (Result),
Old_Par => N,
New_Par => Result));
Set_Field3 (Result,
Copy_Field_With_Replacement
(Field => Field3 (Result),
Old_Par => N,
New_Par => Result));
Set_Field4 (Result,
Copy_Field_With_Replacement
(Field => Field4 (Result),
Old_Par => N,
New_Par => Result));
Set_Field5 (Result,
Copy_Field_With_Replacement
(Field => Field5 (Result),
Old_Par => N,
New_Par => Result));
-- Update the Comes_From_Source and Sloc attributes of the node
-- in case the caller has supplied new values.
Update_CFS_Sloc (Result);
-- Update the Associated_Node_For_Itype attribute of all itypes
-- created during Phase 1 whose associated node is N. As a result
-- the Associated_Node_For_Itype refers to the replicated node.
-- No action needs to be taken when the Associated_Node_For_Itype
-- refers to an entity because this was already handled during
-- Phase 1, in Visit_Itype.
Update_Pending_Itypes
(Old_Assoc => N,
New_Assoc => Result);
-- Update the First/Next_Named_Association chain for a replicated
-- call.
if Nkind_In (N, N_Entry_Call_Statement,
N_Function_Call,
N_Procedure_Call_Statement)
then
Update_Named_Associations
(Old_Call => N,
New_Call => Result);
-- Update the Renamed_Object attribute of a replicated object
-- declaration.
elsif Nkind (N) = N_Object_Renaming_Declaration then
Set_Renamed_Object (Defining_Entity (Result), Name (Result));
-- Update the First_Real_Statement attribute of a replicated
-- handled sequence of statements.
elsif Nkind (N) = N_Handled_Sequence_Of_Statements then
Update_First_Real_Statement
(Old_HSS => N,
New_HSS => Result);
end if;
end if;
return Result;
end Copy_Node_With_Replacement;
--------------------------
-- Corresponding_Entity --
--------------------------
function Corresponding_Entity (Id : Entity_Id) return Entity_Id is
New_Id : Entity_Id;
Result : Entity_Id;
begin
-- Assume that the entity must be returned unchanged
Result := Id;
if Id > Empty_Or_Error then
pragma Assert (Nkind (Id) in N_Entity);
-- Determine whether the entity has a corresponding new entity
-- generated during Phase 1 and if it does, use it.
if NCT_Tables_In_Use then
New_Id := NCT_New_Entities.Get (Id);
if Present (New_Id) then
Result := New_Id;
end if;
end if;
end if;
return Result;
end Corresponding_Entity;
-------------------
-- In_Entity_Map --
-------------------
function In_Entity_Map
(Id : Entity_Id;
Entity_Map : Elist_Id) return Boolean
is
Elmt : Elmt_Id;
Old_Id : Entity_Id;
begin
-- The entity map contains pairs (Old_Id, New_Id). The advancement
-- step always skips the New_Id portion of the pair.
if Present (Entity_Map) then
Elmt := First_Elmt (Entity_Map);
while Present (Elmt) loop
Old_Id := Node (Elmt);
if Old_Id = Id then
return True;
end if;
Next_Elmt (Elmt);
Next_Elmt (Elmt);
end loop;
end if;
return False;
end In_Entity_Map;
---------------------
-- Update_CFS_Sloc --
---------------------
procedure Update_CFS_Sloc (N : Node_Or_Entity_Id) is
begin
-- A new source location defaults the Comes_From_Source attribute
if New_Sloc /= No_Location then
Set_Comes_From_Source (N, Default_Node.Comes_From_Source);
Set_Sloc (N, New_Sloc);
end if;
end Update_CFS_Sloc;
---------------------------------
-- Update_First_Real_Statement --
---------------------------------
procedure Update_First_Real_Statement
(Old_HSS : Node_Id;
New_HSS : Node_Id)
is
Old_First_Stmt : constant Node_Id := First_Real_Statement (Old_HSS);
New_Stmt : Node_Id;
Old_Stmt : Node_Id;
begin
-- Recreate the First_Real_Statement attribute of a handled sequence
-- of statements by traversing the statement lists of both sequences
-- in parallel.
if Present (Old_First_Stmt) then
New_Stmt := First (Statements (New_HSS));
Old_Stmt := First (Statements (Old_HSS));
while Present (Old_Stmt) and then Old_Stmt /= Old_First_Stmt loop
Next (New_Stmt);
Next (Old_Stmt);
end loop;
pragma Assert (Present (New_Stmt));
pragma Assert (Present (Old_Stmt));
Set_First_Real_Statement (New_HSS, New_Stmt);
end if;
end Update_First_Real_Statement;
-------------------------------
-- Update_Named_Associations --
-------------------------------
procedure Update_Named_Associations
(Old_Call : Node_Id;
New_Call : Node_Id)
is
New_Act : Node_Id;
New_Next : Node_Id;
Old_Act : Node_Id;
Old_Next : Node_Id;
begin
-- Recreate the First/Next_Named_Actual chain of a call by traversing
-- the chains of both the old and new calls in parallel.
New_Act := First (Parameter_Associations (New_Call));
Old_Act := First (Parameter_Associations (Old_Call));
while Present (Old_Act) loop
if Nkind (Old_Act) = N_Parameter_Association
and then Present (Next_Named_Actual (Old_Act))
then
if First_Named_Actual (Old_Call) =
Explicit_Actual_Parameter (Old_Act)
then
Set_First_Named_Actual (New_Call,
Explicit_Actual_Parameter (New_Act));
end if;
-- Scan the actual parameter list to find the next suitable
-- named actual. Note that the list may be out of order.
New_Next := First (Parameter_Associations (New_Call));
Old_Next := First (Parameter_Associations (Old_Call));
while Nkind (Old_Next) /= N_Parameter_Association
or else Explicit_Actual_Parameter (Old_Next) /=
Next_Named_Actual (Old_Act)
loop
Next (New_Next);
Next (Old_Next);
end loop;
Set_Next_Named_Actual (New_Act,
Explicit_Actual_Parameter (New_Next));
end if;
Next (New_Act);
Next (Old_Act);
end loop;
end Update_Named_Associations;
-------------------------
-- Update_New_Entities --
-------------------------
procedure Update_New_Entities (Entity_Map : Elist_Id) is
New_Id : Entity_Id := Empty;
Old_Id : Entity_Id := Empty;
begin
if NCT_Tables_In_Use then
NCT_New_Entities.Get_First (Old_Id, New_Id);
-- Update the semantic fields of all new entities created during
-- Phase 1 which were not supplied via an entity map.
-- ??? Is there a better way of distinguishing those?
while Present (Old_Id) and then Present (New_Id) loop
if not (Present (Entity_Map)
and then In_Entity_Map (Old_Id, Entity_Map))
then
Update_Semantic_Fields (New_Id);
end if;
NCT_New_Entities.Get_Next (Old_Id, New_Id);
end loop;
end if;
end Update_New_Entities;
---------------------------
-- Update_Pending_Itypes --
---------------------------
procedure Update_Pending_Itypes
(Old_Assoc : Node_Id;
New_Assoc : Node_Id)
is
Item : Elmt_Id;
Itypes : Elist_Id;
begin
if NCT_Tables_In_Use then
Itypes := NCT_Pending_Itypes.Get (Old_Assoc);
-- Update the Associated_Node_For_Itype attribute for all itypes
-- which originally refer to Old_Assoc to designate New_Assoc.
if Present (Itypes) then
Item := First_Elmt (Itypes);
while Present (Item) loop
Set_Associated_Node_For_Itype (Node (Item), New_Assoc);
Next_Elmt (Item);
end loop;
end if;
end if;
end Update_Pending_Itypes;
----------------------------
-- Update_Semantic_Fields --
----------------------------
procedure Update_Semantic_Fields (Id : Entity_Id) is
begin
-- Discriminant_Constraint
if Has_Discriminants (Base_Type (Id)) then
Set_Discriminant_Constraint (Id, Elist_Id (
Copy_Field_With_Replacement
(Field => Union_Id (Discriminant_Constraint (Id)),
Semantic => True)));
end if;
-- Etype
Set_Etype (Id, Node_Id (
Copy_Field_With_Replacement
(Field => Union_Id (Etype (Id)),
Semantic => True)));
-- First_Index
-- Packed_Array_Impl_Type
if Is_Array_Type (Id) then
if Present (First_Index (Id)) then
Set_First_Index (Id, First (List_Id (
Copy_Field_With_Replacement
(Field => Union_Id (List_Containing (First_Index (Id))),
Semantic => True))));
end if;
if Is_Packed (Id) then
Set_Packed_Array_Impl_Type (Id, Node_Id (
Copy_Field_With_Replacement
(Field => Union_Id (Packed_Array_Impl_Type (Id)),
Semantic => True)));
end if;
end if;
-- Next_Entity
Set_Next_Entity (Id, Node_Id (
Copy_Field_With_Replacement
(Field => Union_Id (Next_Entity (Id)),
Semantic => True)));
-- Scalar_Range
if Is_Discrete_Type (Id) then
Set_Scalar_Range (Id, Node_Id (
Copy_Field_With_Replacement
(Field => Union_Id (Scalar_Range (Id)),
Semantic => True)));
end if;
-- Scope
-- Update the scope when the caller specified an explicit one
if Present (New_Scope) then
Set_Scope (Id, New_Scope);
else
Set_Scope (Id, Node_Id (
Copy_Field_With_Replacement
(Field => Union_Id (Scope (Id)),
Semantic => True)));
end if;
end Update_Semantic_Fields;
--------------------
-- Visit_Any_Node --
--------------------
procedure Visit_Any_Node (N : Node_Or_Entity_Id) is
begin
if Nkind (N) in N_Entity then
if Is_Itype (N) then
Visit_Itype (N);
else
Visit_Entity (N);
end if;
else
Visit_Node (N);
end if;
end Visit_Any_Node;
-----------------
-- Visit_Elist --
-----------------
procedure Visit_Elist (List : Elist_Id) is
Elmt : Elmt_Id;
begin
-- The element of an entity list could be an entity, itype, or a
-- node, hence the call to Visit_Any_Node.
if Present (List) then
Elmt := First_Elmt (List);
while Present (Elmt) loop
Visit_Any_Node (Node (Elmt));
Next_Elmt (Elmt);
end loop;
end if;
end Visit_Elist;
------------------
-- Visit_Entity --
------------------
procedure Visit_Entity (Id : Entity_Id) is
New_Id : Entity_Id;
begin
pragma Assert (Nkind (Id) in N_Entity);
pragma Assert (not Is_Itype (Id));
-- Nothing to do if the entity is not defined in the Actions list of
-- an N_Expression_With_Actions node.
if EWA_Level = 0 then
return;
-- Nothing to do if the entity is defined within a scoping construct
-- of an N_Expression_With_Actions node.
elsif EWA_Inner_Scope_Level > 0 then
return;
-- Nothing to do if the entity is not an object or a type. Relaxing
-- this restriction leads to a performance penalty.
elsif not Ekind_In (Id, E_Constant, E_Variable)
and then not Is_Type (Id)
then
return;
-- Nothing to do if the entity was already visited
elsif NCT_Tables_In_Use
and then Present (NCT_New_Entities.Get (Id))
then
return;
-- Nothing to do if the declaration node of the entity is not within
-- the subtree being replicated.
elsif not In_Subtree
(N => Declaration_Node (Id),
Root => Source)
then
return;
end if;
-- Create a new entity by directly copying the old entity. This
-- action causes all attributes of the old entity to be inherited.
New_Id := New_Copy (Id);
-- Create a new name for the new entity because the back end needs
-- distinct names for debugging purposes.
Set_Chars (New_Id, New_Internal_Name ('T'));
-- Update the Comes_From_Source and Sloc attributes of the entity in
-- case the caller has supplied new values.
Update_CFS_Sloc (New_Id);
-- Establish the following mapping within table NCT_New_Entities:
-- Id -> New_Id
Add_New_Entity (Id, New_Id);
-- Deal with the semantic fields of entities. The fields are visited
-- because they may mention entities which reside within the subtree
-- being copied.
Visit_Semantic_Fields (Id);
end Visit_Entity;
-----------------
-- Visit_Field --
-----------------
procedure Visit_Field
(Field : Union_Id;
Par_Nod : Node_Id := Empty;
Semantic : Boolean := False)
is
begin
-- The field is empty
if Field = Union_Id (Empty) then
return;
-- The field is an entity/itype/node
elsif Field in Node_Range then
declare
N : constant Node_Id := Node_Id (Field);
begin
-- The field is an entity/itype
if Nkind (N) in N_Entity then
-- Itypes are always visited
if Is_Itype (N) then
Visit_Itype (N);
-- An entity is visited when it is either a syntactic field
-- or when the caller treats it as a semantic attribute.
elsif Parent (N) = Par_Nod or else Semantic then
Visit_Entity (N);
end if;
-- The field is a node
else
-- A node is visited when it is either a syntactic field or
-- when the caller treats it as a semantic attribute.
if Parent (N) = Par_Nod or else Semantic then
Visit_Node (N);
end if;
end if;
end;
-- The field is an entity list
elsif Field in Elist_Range then
Visit_Elist (Elist_Id (Field));
-- The field is a syntax list
elsif Field in List_Range then
declare
List : constant List_Id := List_Id (Field);
begin
-- A syntax list is visited when it is either a syntactic field
-- or when the caller treats it as a semantic attribute.
if Parent (List) = Par_Nod or else Semantic then
Visit_List (List);
end if;
end;
-- Otherwise the field denotes information which does not need to be
-- visited (chars, literals, etc.).
else
null;
end if;
end Visit_Field;
-----------------
-- Visit_Itype --
-----------------
procedure Visit_Itype (Itype : Entity_Id) is
New_Assoc : Node_Id;
New_Itype : Entity_Id;
Old_Assoc : Node_Id;
begin
pragma Assert (Nkind (Itype) in N_Entity);
pragma Assert (Is_Itype (Itype));
-- Itypes that describe the designated type of access to subprograms
-- have the structure of subprogram declarations, with signatures,
-- etc. Either we duplicate the signatures completely, or choose to
-- share such itypes, which is fine because their elaboration will
-- have no side effects.
if Ekind (Itype) = E_Subprogram_Type then
return;
-- Nothing to do if the itype was already visited
elsif NCT_Tables_In_Use
and then Present (NCT_New_Entities.Get (Itype))
then
return;
-- Nothing to do if the associated node of the itype is not within
-- the subtree being replicated.
elsif not In_Subtree
(N => Associated_Node_For_Itype (Itype),
Root => Source)
then
return;
end if;
-- Create a new itype by directly copying the old itype. This action
-- causes all attributes of the old itype to be inherited.
New_Itype := New_Copy (Itype);
-- Create a new name for the new itype because the back end requires
-- distinct names for debugging purposes.
Set_Chars (New_Itype, New_Internal_Name ('T'));
-- Update the Comes_From_Source and Sloc attributes of the itype in
-- case the caller has supplied new values.
Update_CFS_Sloc (New_Itype);
-- Establish the following mapping within table NCT_New_Entities:
-- Itype -> New_Itype
Add_New_Entity (Itype, New_Itype);
-- The new itype must be unfrozen because the resulting subtree may
-- be inserted anywhere and cause an earlier or later freezing.
if Present (Freeze_Node (New_Itype)) then
Set_Freeze_Node (New_Itype, Empty);
Set_Is_Frozen (New_Itype, False);
end if;
-- If a record subtype is simply copied, the entity list will be
-- shared. Thus cloned_Subtype must be set to indicate the sharing.
-- ??? What does this do?
if Ekind_In (Itype, E_Class_Wide_Subtype, E_Record_Subtype) then
Set_Cloned_Subtype (New_Itype, Itype);
end if;
-- The associated node may denote an entity, in which case it may
-- already have a new corresponding entity created during a prior
-- call to Visit_Entity or Visit_Itype for the same subtree.
-- Given
-- Old_Assoc ---------> New_Assoc
-- Created by Visit_Itype
-- Itype -------------> New_Itype
-- ANFI = Old_Assoc ANFI = Old_Assoc < must be updated
-- In the example above, Old_Assoc is an arbitrary entity that was
-- already visited for the same subtree and has a corresponding new
-- entity New_Assoc. Old_Assoc was inherited by New_Itype by virtue
-- of copying entities, however it must be updated to New_Assoc.
Old_Assoc := Associated_Node_For_Itype (Itype);
if Nkind (Old_Assoc) in N_Entity then
if NCT_Tables_In_Use then
New_Assoc := NCT_New_Entities.Get (Old_Assoc);
if Present (New_Assoc) then
Set_Associated_Node_For_Itype (New_Itype, New_Assoc);
end if;
end if;
-- Otherwise the associated node denotes a node. Postpone the update
-- until Phase 2 when the node is replicated. Establish the following
-- mapping within table NCT_Pending_Itypes:
-- Old_Assoc -> (New_Type, ...)
else
Add_Pending_Itype (Old_Assoc, New_Itype);
end if;
-- Deal with the semantic fields of itypes. The fields are visited
-- because they may mention entities that reside within the subtree
-- being copied.
Visit_Semantic_Fields (Itype);
end Visit_Itype;
----------------
-- Visit_List --
----------------
procedure Visit_List (List : List_Id) is
Elmt : Node_Id;
begin
-- Note that the element of a syntactic list is always a node, never
-- an entity or itype, hence the call to Visit_Node.
if Present (List) then
Elmt := First (List);
while Present (Elmt) loop
Visit_Node (Elmt);
Next (Elmt);
end loop;
end if;
end Visit_List;
----------------
-- Visit_Node --
----------------
procedure Visit_Node (N : Node_Or_Entity_Id) is
begin
pragma Assert (Nkind (N) not in N_Entity);
if Nkind (N) = N_Expression_With_Actions then
EWA_Level := EWA_Level + 1;
elsif EWA_Level > 0
and then Nkind_In (N, N_Block_Statement,
N_Subprogram_Body,
N_Subprogram_Declaration)
then
EWA_Inner_Scope_Level := EWA_Inner_Scope_Level + 1;
end if;
Visit_Field
(Field => Field1 (N),
Par_Nod => N);
Visit_Field
(Field => Field2 (N),
Par_Nod => N);
Visit_Field
(Field => Field3 (N),
Par_Nod => N);
Visit_Field
(Field => Field4 (N),
Par_Nod => N);
Visit_Field
(Field => Field5 (N),
Par_Nod => N);
if EWA_Level > 0
and then Nkind_In (N, N_Block_Statement,
N_Subprogram_Body,
N_Subprogram_Declaration)
then
EWA_Inner_Scope_Level := EWA_Inner_Scope_Level - 1;
elsif Nkind (N) = N_Expression_With_Actions then
EWA_Level := EWA_Level - 1;
end if;
end Visit_Node;
---------------------------
-- Visit_Semantic_Fields --
---------------------------
procedure Visit_Semantic_Fields (Id : Entity_Id) is
begin
pragma Assert (Nkind (Id) in N_Entity);
-- Discriminant_Constraint
if Has_Discriminants (Base_Type (Id)) then
Visit_Field
(Field => Union_Id (Discriminant_Constraint (Id)),
Semantic => True);
end if;
-- Etype
Visit_Field
(Field => Union_Id (Etype (Id)),
Semantic => True);
-- First_Index
-- Packed_Array_Impl_Type
if Is_Array_Type (Id) then
if Present (First_Index (Id)) then
Visit_Field
(Field => Union_Id (List_Containing (First_Index (Id))),
Semantic => True);
end if;
if Is_Packed (Id) then
Visit_Field
(Field => Union_Id (Packed_Array_Impl_Type (Id)),
Semantic => True);
end if;
end if;
-- Scalar_Range
if Is_Discrete_Type (Id) then
Visit_Field
(Field => Union_Id (Scalar_Range (Id)),
Semantic => True);
end if;
end Visit_Semantic_Fields;
-- Start of processing for New_Copy_Tree
begin
-- Routine New_Copy_Tree performs a deep copy of a subtree by creating
-- shallow copies for each node within, and then updating the child and
-- parent pointers accordingly. This process is straightforward, however
-- the routine must deal with the following complications:
-- * Entities defined within N_Expression_With_Actions nodes must be
-- replicated rather than shared to avoid introducing two identical
-- symbols within the same scope. Note that no other expression can
-- currently define entities.
-- do
-- Source_Low : ...;
-- Source_High : ...;
-- <reference to Source_Low>
-- <reference to Source_High>
-- in ... end;
-- New_Copy_Tree handles this case by first creating new entities
-- and then updating all existing references to point to these new
-- entities.
-- do
-- New_Low : ...;
-- New_High : ...;
-- <reference to New_Low>
-- <reference to New_High>
-- in ... end;
-- * Itypes defined within the subtree must be replicated to avoid any
-- dependencies on invalid or inaccessible data.
-- subtype Source_Itype is ... range Source_Low .. Source_High;
-- New_Copy_Tree handles this case by first creating a new itype in
-- the same fashion as entities, and then updating various relevant
-- constraints.
-- subtype New_Itype is ... range New_Low .. New_High;
-- * The Associated_Node_For_Itype field of itypes must be updated to
-- reference the proper replicated entity or node.
-- * Semantic fields of entities such as Etype and Scope must be
-- updated to reference the proper replicated entities.
-- * Semantic fields of nodes such as First_Real_Statement must be
-- updated to reference the proper replicated nodes.
-- To meet all these demands, routine New_Copy_Tree is split into two
-- phases.
-- Phase 1 traverses the tree in order to locate entities and itypes
-- defined within the subtree. New entities are generated and saved in
-- table NCT_New_Entities. The semantic fields of all new entities and
-- itypes are then updated accordingly.
-- Phase 2 traverses the tree in order to replicate each node. Various
-- semantic fields of nodes and entities are updated accordingly.
-- Preparatory phase. Clear the contents of tables NCT_New_Entities and
-- NCT_Pending_Itypes in case a previous call to New_Copy_Tree left some
-- data inside.
if NCT_Tables_In_Use then
NCT_Tables_In_Use := False;
NCT_New_Entities.Reset;
NCT_Pending_Itypes.Reset;
end if;
-- Populate tables NCT_New_Entities and NCT_Pending_Itypes with data
-- supplied by a linear entity map. The tables offer faster access to
-- the same data.
Build_NCT_Tables (Map);
-- Execute Phase 1. Traverse the subtree and generate new entities for
-- the following cases:
-- * An entity defined within an N_Expression_With_Actions node
-- * An itype referenced within the subtree where the associated node
-- is also in the subtree.
-- All new entities are accessible via table NCT_New_Entities, which
-- contains mappings of the form:
-- Old_Entity -> New_Entity
-- Old_Itype -> New_Itype
-- In addition, the associated nodes of all new itypes are mapped in
-- table NCT_Pending_Itypes:
-- Assoc_Nod -> (New_Itype1, New_Itype2, .., New_ItypeN)
Visit_Any_Node (Source);
-- Update the semantic attributes of all new entities generated during
-- Phase 1 before starting Phase 2. The updates could be performed in
-- routine Corresponding_Entity, however this may cause the same entity
-- to be updated multiple times, effectively generating useless nodes.
-- Keeping the updates separates from Phase 2 ensures that only one set
-- of attributes is generated for an entity at any one time.
Update_New_Entities (Map);
-- Execute Phase 2. Replicate the source subtree one node at a time.
-- The following transformations take place:
-- * References to entities and itypes are updated to refer to the
-- new entities and itypes generated during Phase 1.
-- * All Associated_Node_For_Itype attributes of itypes are updated
-- to refer to the new replicated Associated_Node_For_Itype.
return Copy_Node_With_Replacement (Source);
end New_Copy_Tree;
-------------------------
-- New_External_Entity --
-------------------------
function New_External_Entity
(Kind : Entity_Kind;
Scope_Id : Entity_Id;
Sloc_Value : Source_Ptr;
Related_Id : Entity_Id;
Suffix : Character;
Suffix_Index : Nat := 0;
Prefix : Character := ' ') return Entity_Id
is
N : constant Entity_Id :=
Make_Defining_Identifier (Sloc_Value,
New_External_Name
(Chars (Related_Id), Suffix, Suffix_Index, Prefix));
begin
Set_Ekind (N, Kind);
Set_Is_Internal (N, True);
Append_Entity (N, Scope_Id);
Set_Public_Status (N);
if Kind in Type_Kind then
Init_Size_Align (N);
end if;
return N;
end New_External_Entity;
-------------------------
-- New_Internal_Entity --
-------------------------
function New_Internal_Entity
(Kind : Entity_Kind;
Scope_Id : Entity_Id;
Sloc_Value : Source_Ptr;
Id_Char : Character) return Entity_Id
is
N : constant Entity_Id := Make_Temporary (Sloc_Value, Id_Char);
begin
Set_Ekind (N, Kind);
Set_Is_Internal (N, True);
Append_Entity (N, Scope_Id);
if Kind in Type_Kind then
Init_Size_Align (N);
end if;
return N;
end New_Internal_Entity;
-----------------
-- Next_Actual --
-----------------
function Next_Actual (Actual_Id : Node_Id) return Node_Id is
N : Node_Id;
begin
-- If we are pointing at a positional parameter, it is a member of a
-- node list (the list of parameters), and the next parameter is the
-- next node on the list, unless we hit a parameter association, then
-- we shift to using the chain whose head is the First_Named_Actual in
-- the parent, and then is threaded using the Next_Named_Actual of the
-- Parameter_Association. All this fiddling is because the original node
-- list is in the textual call order, and what we need is the
-- declaration order.
if Is_List_Member (Actual_Id) then
N := Next (Actual_Id);
if Nkind (N) = N_Parameter_Association then
-- In case of a build-in-place call, the call will no longer be a
-- call; it will have been rewritten.
if Nkind_In (Parent (Actual_Id), N_Entry_Call_Statement,
N_Function_Call,
N_Procedure_Call_Statement)
then
return First_Named_Actual (Parent (Actual_Id));
else
return Empty;
end if;
else
return N;
end if;
else
return Next_Named_Actual (Parent (Actual_Id));
end if;
end Next_Actual;
procedure Next_Actual (Actual_Id : in out Node_Id) is
begin
Actual_Id := Next_Actual (Actual_Id);
end Next_Actual;
-----------------
-- Next_Global --
-----------------
function Next_Global (Node : Node_Id) return Node_Id is
begin
-- The global item may either be in a list, or by itself, in which case
-- there is no next global item with the same mode.
if Is_List_Member (Node) then
return Next (Node);
else
return Empty;
end if;
end Next_Global;
procedure Next_Global (Node : in out Node_Id) is
begin
Node := Next_Global (Node);
end Next_Global;
----------------------------------
-- New_Requires_Transient_Scope --
----------------------------------
function New_Requires_Transient_Scope (Id : Entity_Id) return Boolean is
function Caller_Known_Size_Record (Typ : Entity_Id) return Boolean;
-- This is called for untagged records and protected types, with
-- nondefaulted discriminants. Returns True if the size of function
-- results is known at the call site, False otherwise. Returns False
-- if there is a variant part that depends on the discriminants of
-- this type, or if there is an array constrained by the discriminants
-- of this type. ???Currently, this is overly conservative (the array
-- could be nested inside some other record that is constrained by
-- nondiscriminants). That is, the recursive calls are too conservative.
function Large_Max_Size_Mutable (Typ : Entity_Id) return Boolean;
-- Returns True if Typ is a nonlimited record with defaulted
-- discriminants whose max size makes it unsuitable for allocating on
-- the primary stack.
------------------------------
-- Caller_Known_Size_Record --
------------------------------
function Caller_Known_Size_Record (Typ : Entity_Id) return Boolean is
pragma Assert (Typ = Underlying_Type (Typ));
begin
if Has_Variant_Part (Typ) and then not Is_Definite_Subtype (Typ) then
return False;
end if;
declare
Comp : Entity_Id;
begin
Comp := First_Entity (Typ);
while Present (Comp) loop
-- Only look at E_Component entities. No need to look at
-- E_Discriminant entities, and we must ignore internal
-- subtypes generated for constrained components.
if Ekind (Comp) = E_Component then
declare
Comp_Type : constant Entity_Id :=
Underlying_Type (Etype (Comp));
begin
if Is_Record_Type (Comp_Type)
or else
Is_Protected_Type (Comp_Type)
then
if not Caller_Known_Size_Record (Comp_Type) then
return False;
end if;
elsif Is_Array_Type (Comp_Type) then
if Size_Depends_On_Discriminant (Comp_Type) then
return False;
end if;
end if;
end;
end if;
Next_Entity (Comp);
end loop;
end;
return True;
end Caller_Known_Size_Record;
------------------------------
-- Large_Max_Size_Mutable --
------------------------------
function Large_Max_Size_Mutable (Typ : Entity_Id) return Boolean is
pragma Assert (Typ = Underlying_Type (Typ));
function Is_Large_Discrete_Type (T : Entity_Id) return Boolean;
-- Returns true if the discrete type T has a large range
----------------------------
-- Is_Large_Discrete_Type --
----------------------------
function Is_Large_Discrete_Type (T : Entity_Id) return Boolean is
Threshold : constant Int := 16;
-- Arbitrary threshold above which we consider it "large". We want
-- a fairly large threshold, because these large types really
-- shouldn't have default discriminants in the first place, in
-- most cases.
begin
return UI_To_Int (RM_Size (T)) > Threshold;
end Is_Large_Discrete_Type;
-- Start of processing for Large_Max_Size_Mutable
begin
if Is_Record_Type (Typ)
and then not Is_Limited_View (Typ)
and then Has_Defaulted_Discriminants (Typ)
then
-- Loop through the components, looking for an array whose upper
-- bound(s) depends on discriminants, where both the subtype of
-- the discriminant and the index subtype are too large.
declare
Comp : Entity_Id;
begin
Comp := First_Entity (Typ);
while Present (Comp) loop
if Ekind (Comp) = E_Component then
declare
Comp_Type : constant Entity_Id :=
Underlying_Type (Etype (Comp));
Hi : Node_Id;
Indx : Node_Id;
Ityp : Entity_Id;
begin
if Is_Array_Type (Comp_Type) then
Indx := First_Index (Comp_Type);
while Present (Indx) loop
Ityp := Etype (Indx);
Hi := Type_High_Bound (Ityp);
if Nkind (Hi) = N_Identifier
and then Ekind (Entity (Hi)) = E_Discriminant
and then Is_Large_Discrete_Type (Ityp)
and then Is_Large_Discrete_Type
(Etype (Entity (Hi)))
then
return True;
end if;
Next_Index (Indx);
end loop;
end if;
end;
end if;
Next_Entity (Comp);
end loop;
end;
end if;
return False;
end Large_Max_Size_Mutable;
-- Local declarations
Typ : constant Entity_Id := Underlying_Type (Id);
-- Start of processing for New_Requires_Transient_Scope
begin
-- This is a private type which is not completed yet. This can only
-- happen in a default expression (of a formal parameter or of a
-- record component). Do not expand transient scope in this case.
if No (Typ) then
return False;
-- Do not expand transient scope for non-existent procedure return or
-- string literal types.
elsif Typ = Standard_Void_Type
or else Ekind (Typ) = E_String_Literal_Subtype
then
return False;
-- If Typ is a generic formal incomplete type, then we want to look at
-- the actual type.
elsif Ekind (Typ) = E_Record_Subtype
and then Present (Cloned_Subtype (Typ))
then
return New_Requires_Transient_Scope (Cloned_Subtype (Typ));
-- Functions returning specific tagged types may dispatch on result, so
-- their returned value is allocated on the secondary stack, even in the
-- definite case. We must treat nondispatching functions the same way,
-- because access-to-function types can point at both, so the calling
-- conventions must be compatible. Is_Tagged_Type includes controlled
-- types and class-wide types. Controlled type temporaries need
-- finalization.
-- ???It's not clear why we need to return noncontrolled types with
-- controlled components on the secondary stack.
elsif Is_Tagged_Type (Typ) or else Has_Controlled_Component (Typ) then
return True;
-- Untagged definite subtypes are known size. This includes all
-- elementary [sub]types. Tasks are known size even if they have
-- discriminants. So we return False here, with one exception:
-- For a type like:
-- type T (Last : Natural := 0) is
-- X : String (1 .. Last);
-- end record;
-- we return True. That's because for "P(F(...));", where F returns T,
-- we don't know the size of the result at the call site, so if we
-- allocated it on the primary stack, we would have to allocate the
-- maximum size, which is way too big.
elsif Is_Definite_Subtype (Typ) or else Is_Task_Type (Typ) then
return Large_Max_Size_Mutable (Typ);
-- Indefinite (discriminated) untagged record or protected type
elsif Is_Record_Type (Typ) or else Is_Protected_Type (Typ) then
return not Caller_Known_Size_Record (Typ);
-- Unconstrained array
else
pragma Assert (Is_Array_Type (Typ) and not Is_Definite_Subtype (Typ));
return True;
end if;
end New_Requires_Transient_Scope;
--------------------------
-- No_Heap_Finalization --
--------------------------
function No_Heap_Finalization (Typ : Entity_Id) return Boolean is
begin
if Ekind_In (Typ, E_Access_Type, E_General_Access_Type)
and then Is_Library_Level_Entity (Typ)
then
-- A global No_Heap_Finalization pragma applies to all library-level
-- named access-to-object types.
if Present (No_Heap_Finalization_Pragma) then
return True;
-- The library-level named access-to-object type itself is subject to
-- pragma No_Heap_Finalization.
elsif Present (Get_Pragma (Typ, Pragma_No_Heap_Finalization)) then
return True;
end if;
end if;
return False;
end No_Heap_Finalization;
-----------------------
-- Normalize_Actuals --
-----------------------
-- Chain actuals according to formals of subprogram. If there are no named
-- associations, the chain is simply the list of Parameter Associations,
-- since the order is the same as the declaration order. If there are named
-- associations, then the First_Named_Actual field in the N_Function_Call
-- or N_Procedure_Call_Statement node points to the Parameter_Association
-- node for the parameter that comes first in declaration order. The
-- remaining named parameters are then chained in declaration order using
-- Next_Named_Actual.
-- This routine also verifies that the number of actuals is compatible with
-- the number and default values of formals, but performs no type checking
-- (type checking is done by the caller).
-- If the matching succeeds, Success is set to True and the caller proceeds
-- with type-checking. If the match is unsuccessful, then Success is set to
-- False, and the caller attempts a different interpretation, if there is
-- one.
-- If the flag Report is on, the call is not overloaded, and a failure to
-- match can be reported here, rather than in the caller.
procedure Normalize_Actuals
(N : Node_Id;
S : Entity_Id;
Report : Boolean;
Success : out Boolean)
is
Actuals : constant List_Id := Parameter_Associations (N);
Actual : Node_Id := Empty;
Formal : Entity_Id;
Last : Node_Id := Empty;
First_Named : Node_Id := Empty;
Found : Boolean;
Formals_To_Match : Integer := 0;
Actuals_To_Match : Integer := 0;
procedure Chain (A : Node_Id);
-- Add named actual at the proper place in the list, using the
-- Next_Named_Actual link.
function Reporting return Boolean;
-- Determines if an error is to be reported. To report an error, we
-- need Report to be True, and also we do not report errors caused
-- by calls to init procs that occur within other init procs. Such
-- errors must always be cascaded errors, since if all the types are
-- declared correctly, the compiler will certainly build decent calls.
-----------
-- Chain --
-----------
procedure Chain (A : Node_Id) is
begin
if No (Last) then
-- Call node points to first actual in list
Set_First_Named_Actual (N, Explicit_Actual_Parameter (A));
else
Set_Next_Named_Actual (Last, Explicit_Actual_Parameter (A));
end if;
Last := A;
Set_Next_Named_Actual (Last, Empty);
end Chain;
---------------
-- Reporting --
---------------
function Reporting return Boolean is
begin
if not Report then
return False;
elsif not Within_Init_Proc then
return True;
elsif Is_Init_Proc (Entity (Name (N))) then
return False;
else
return True;
end if;
end Reporting;
-- Start of processing for Normalize_Actuals
begin
if Is_Access_Type (S) then
-- The name in the call is a function call that returns an access
-- to subprogram. The designated type has the list of formals.
Formal := First_Formal (Designated_Type (S));
else
Formal := First_Formal (S);
end if;
while Present (Formal) loop
Formals_To_Match := Formals_To_Match + 1;
Next_Formal (Formal);
end loop;
-- Find if there is a named association, and verify that no positional
-- associations appear after named ones.
if Present (Actuals) then
Actual := First (Actuals);
end if;
while Present (Actual)
and then Nkind (Actual) /= N_Parameter_Association
loop
Actuals_To_Match := Actuals_To_Match + 1;
Next (Actual);
end loop;
if No (Actual) and Actuals_To_Match = Formals_To_Match then
-- Most common case: positional notation, no defaults
Success := True;
return;
elsif Actuals_To_Match > Formals_To_Match then
-- Too many actuals: will not work
if Reporting then
if Is_Entity_Name (Name (N)) then
Error_Msg_N ("too many arguments in call to&", Name (N));
else
Error_Msg_N ("too many arguments in call", N);
end if;
end if;
Success := False;
return;
end if;
First_Named := Actual;
while Present (Actual) loop
if Nkind (Actual) /= N_Parameter_Association then
Error_Msg_N
("positional parameters not allowed after named ones", Actual);
Success := False;
return;
else
Actuals_To_Match := Actuals_To_Match + 1;
end if;
Next (Actual);
end loop;
if Present (Actuals) then
Actual := First (Actuals);
end if;
Formal := First_Formal (S);
while Present (Formal) loop
-- Match the formals in order. If the corresponding actual is
-- positional, nothing to do. Else scan the list of named actuals
-- to find the one with the right name.
if Present (Actual)
and then Nkind (Actual) /= N_Parameter_Association
then
Next (Actual);
Actuals_To_Match := Actuals_To_Match - 1;
Formals_To_Match := Formals_To_Match - 1;
else
-- For named parameters, search the list of actuals to find
-- one that matches the next formal name.
Actual := First_Named;
Found := False;
while Present (Actual) loop
if Chars (Selector_Name (Actual)) = Chars (Formal) then
Found := True;
Chain (Actual);
Actuals_To_Match := Actuals_To_Match - 1;
Formals_To_Match := Formals_To_Match - 1;
exit;
end if;
Next (Actual);
end loop;
if not Found then
if Ekind (Formal) /= E_In_Parameter
or else No (Default_Value (Formal))
then
if Reporting then
if (Comes_From_Source (S)
or else Sloc (S) = Standard_Location)
and then Is_Overloadable (S)
then
if No (Actuals)
and then
Nkind_In (Parent (N), N_Procedure_Call_Statement,
N_Function_Call,
N_Parameter_Association)
and then Ekind (S) /= E_Function
then
Set_Etype (N, Etype (S));
else
Error_Msg_Name_1 := Chars (S);
Error_Msg_Sloc := Sloc (S);
Error_Msg_NE
("missing argument for parameter & "
& "in call to % declared #", N, Formal);
end if;
elsif Is_Overloadable (S) then
Error_Msg_Name_1 := Chars (S);
-- Point to type derivation that generated the
-- operation.
Error_Msg_Sloc := Sloc (Parent (S));
Error_Msg_NE
("missing argument for parameter & "
& "in call to % (inherited) #", N, Formal);
else
Error_Msg_NE
("missing argument for parameter &", N, Formal);
end if;
end if;
Success := False;
return;
else
Formals_To_Match := Formals_To_Match - 1;
end if;
end if;
end if;
Next_Formal (Formal);
end loop;
if Formals_To_Match = 0 and then Actuals_To_Match = 0 then
Success := True;
return;
else
if Reporting then
-- Find some superfluous named actual that did not get
-- attached to the list of associations.
Actual := First (Actuals);
while Present (Actual) loop
if Nkind (Actual) = N_Parameter_Association
and then Actual /= Last
and then No (Next_Named_Actual (Actual))
then
-- A validity check may introduce a copy of a call that
-- includes an extra actual (for example for an unrelated
-- accessibility check). Check that the extra actual matches
-- some extra formal, which must exist already because
-- subprogram must be frozen at this point.
if Present (Extra_Formals (S))
and then not Comes_From_Source (Actual)
and then Nkind (Actual) = N_Parameter_Association
and then Chars (Extra_Formals (S)) =
Chars (Selector_Name (Actual))
then
null;
else
Error_Msg_N
("unmatched actual & in call", Selector_Name (Actual));
exit;
end if;
end if;
Next (Actual);
end loop;
end if;
Success := False;
return;
end if;
end Normalize_Actuals;
--------------------------------
-- Note_Possible_Modification --
--------------------------------
procedure Note_Possible_Modification (N : Node_Id; Sure : Boolean) is
Modification_Comes_From_Source : constant Boolean :=
Comes_From_Source (Parent (N));
Ent : Entity_Id;
Exp : Node_Id;
begin
-- Loop to find referenced entity, if there is one
Exp := N;
loop
Ent := Empty;
if Is_Entity_Name (Exp) then
Ent := Entity (Exp);
-- If the entity is missing, it is an undeclared identifier,
-- and there is nothing to annotate.
if No (Ent) then
return;
end if;
elsif Nkind (Exp) = N_Explicit_Dereference then
declare
P : constant Node_Id := Prefix (Exp);
begin
-- In formal verification mode, keep track of all reads and
-- writes through explicit dereferences.
if GNATprove_Mode then
SPARK_Specific.Generate_Dereference (N, 'm');
end if;
if Nkind (P) = N_Selected_Component
and then Present (Entry_Formal (Entity (Selector_Name (P))))
then
-- Case of a reference to an entry formal
Ent := Entry_Formal (Entity (Selector_Name (P)));
elsif Nkind (P) = N_Identifier
and then Nkind (Parent (Entity (P))) = N_Object_Declaration
and then Present (Expression (Parent (Entity (P))))
and then Nkind (Expression (Parent (Entity (P)))) =
N_Reference
then
-- Case of a reference to a value on which side effects have
-- been removed.
Exp := Prefix (Expression (Parent (Entity (P))));
goto Continue;
else
return;
end if;
end;
elsif Nkind_In (Exp, N_Type_Conversion,
N_Unchecked_Type_Conversion)
then
Exp := Expression (Exp);
goto Continue;
elsif Nkind_In (Exp, N_Slice,
N_Indexed_Component,
N_Selected_Component)
then
-- Special check, if the prefix is an access type, then return
-- since we are modifying the thing pointed to, not the prefix.
-- When we are expanding, most usually the prefix is replaced
-- by an explicit dereference, and this test is not needed, but
-- in some cases (notably -gnatc mode and generics) when we do
-- not do full expansion, we need this special test.
if Is_Access_Type (Etype (Prefix (Exp))) then
return;
-- Otherwise go to prefix and keep going
else
Exp := Prefix (Exp);
goto Continue;
end if;
-- All other cases, not a modification
else
return;
end if;
-- Now look for entity being referenced
if Present (Ent) then
if Is_Object (Ent) then
if Comes_From_Source (Exp)
or else Modification_Comes_From_Source
then
-- Give warning if pragma unmodified is given and we are
-- sure this is a modification.
if Has_Pragma_Unmodified (Ent) and then Sure then
-- Note that the entity may be present only as a result
-- of pragma Unused.
if Has_Pragma_Unused (Ent) then
Error_Msg_NE ("??pragma Unused given for &!", N, Ent);
else
Error_Msg_NE
("??pragma Unmodified given for &!", N, Ent);
end if;
end if;
Set_Never_Set_In_Source (Ent, False);
end if;
Set_Is_True_Constant (Ent, False);
Set_Current_Value (Ent, Empty);
Set_Is_Known_Null (Ent, False);
if not Can_Never_Be_Null (Ent) then
Set_Is_Known_Non_Null (Ent, False);
end if;
-- Follow renaming chain
if (Ekind (Ent) = E_Variable or else Ekind (Ent) = E_Constant)
and then Present (Renamed_Object (Ent))
then
Exp := Renamed_Object (Ent);
-- If the entity is the loop variable in an iteration over
-- a container, retrieve container expression to indicate
-- possible modification.
if Present (Related_Expression (Ent))
and then Nkind (Parent (Related_Expression (Ent))) =
N_Iterator_Specification
then
Exp := Original_Node (Related_Expression (Ent));
end if;
goto Continue;
-- The expression may be the renaming of a subcomponent of an
-- array or container. The assignment to the subcomponent is
-- a modification of the container.
elsif Comes_From_Source (Original_Node (Exp))
and then Nkind_In (Original_Node (Exp), N_Selected_Component,
N_Indexed_Component)
then
Exp := Prefix (Original_Node (Exp));
goto Continue;
end if;
-- Generate a reference only if the assignment comes from
-- source. This excludes, for example, calls to a dispatching
-- assignment operation when the left-hand side is tagged. In
-- GNATprove mode, we need those references also on generated
-- code, as these are used to compute the local effects of
-- subprograms.
if Modification_Comes_From_Source or GNATprove_Mode then
Generate_Reference (Ent, Exp, 'm');
-- If the target of the assignment is the bound variable
-- in an iterator, indicate that the corresponding array
-- or container is also modified.
if Ada_Version >= Ada_2012
and then Nkind (Parent (Ent)) = N_Iterator_Specification
then
declare
Domain : constant Node_Id := Name (Parent (Ent));
begin
-- TBD : in the full version of the construct, the
-- domain of iteration can be given by an expression.
if Is_Entity_Name (Domain) then
Generate_Reference (Entity (Domain), Exp, 'm');
Set_Is_True_Constant (Entity (Domain), False);
Set_Never_Set_In_Source (Entity (Domain), False);
end if;
end;
end if;
end if;
end if;
Kill_Checks (Ent);
-- If we are sure this is a modification from source, and we know
-- this modifies a constant, then give an appropriate warning.
if Sure
and then Modification_Comes_From_Source
and then Overlays_Constant (Ent)
and then Address_Clause_Overlay_Warnings
then
declare
Addr : constant Node_Id := Address_Clause (Ent);
O_Ent : Entity_Id;
Off : Boolean;
begin
Find_Overlaid_Entity (Addr, O_Ent, Off);
Error_Msg_Sloc := Sloc (Addr);
Error_Msg_NE
("??constant& may be modified via address clause#",
N, O_Ent);
end;
end if;
return;
end if;
<<Continue>>
null;
end loop;
end Note_Possible_Modification;
-----------------
-- Null_Status --
-----------------
function Null_Status (N : Node_Id) return Null_Status_Kind is
function Is_Null_Excluding_Def (Def : Node_Id) return Boolean;
-- Determine whether definition Def carries a null exclusion
function Null_Status_Of_Entity (Id : Entity_Id) return Null_Status_Kind;
-- Determine the null status of arbitrary entity Id
function Null_Status_Of_Type (Typ : Entity_Id) return Null_Status_Kind;
-- Determine the null status of type Typ
---------------------------
-- Is_Null_Excluding_Def --
---------------------------
function Is_Null_Excluding_Def (Def : Node_Id) return Boolean is
begin
return
Nkind_In (Def, N_Access_Definition,
N_Access_Function_Definition,
N_Access_Procedure_Definition,
N_Access_To_Object_Definition,
N_Component_Definition,
N_Derived_Type_Definition)
and then Null_Exclusion_Present (Def);
end Is_Null_Excluding_Def;
---------------------------
-- Null_Status_Of_Entity --
---------------------------
function Null_Status_Of_Entity
(Id : Entity_Id) return Null_Status_Kind
is
Decl : constant Node_Id := Declaration_Node (Id);
Def : Node_Id;
begin
-- The value of an imported or exported entity may be set externally
-- regardless of a null exclusion. As a result, the value cannot be
-- determined statically.
if Is_Imported (Id) or else Is_Exported (Id) then
return Unknown;
elsif Nkind_In (Decl, N_Component_Declaration,
N_Discriminant_Specification,
N_Formal_Object_Declaration,
N_Object_Declaration,
N_Object_Renaming_Declaration,
N_Parameter_Specification)
then
-- A component declaration yields a non-null value when either
-- its component definition or access definition carries a null
-- exclusion.
if Nkind (Decl) = N_Component_Declaration then
Def := Component_Definition (Decl);
if Is_Null_Excluding_Def (Def) then
return Is_Non_Null;
end if;
Def := Access_Definition (Def);
if Present (Def) and then Is_Null_Excluding_Def (Def) then
return Is_Non_Null;
end if;
-- A formal object declaration yields a non-null value if its
-- access definition carries a null exclusion. If the object is
-- default initialized, then the value depends on the expression.
elsif Nkind (Decl) = N_Formal_Object_Declaration then
Def := Access_Definition (Decl);
if Present (Def) and then Is_Null_Excluding_Def (Def) then
return Is_Non_Null;
end if;
-- A constant may yield a null or non-null value depending on its
-- initialization expression.
elsif Ekind (Id) = E_Constant then
return Null_Status (Constant_Value (Id));
-- The construct yields a non-null value when it has a null
-- exclusion.
elsif Null_Exclusion_Present (Decl) then
return Is_Non_Null;
-- An object renaming declaration yields a non-null value if its
-- access definition carries a null exclusion. Otherwise the value
-- depends on the renamed name.
elsif Nkind (Decl) = N_Object_Renaming_Declaration then
Def := Access_Definition (Decl);
if Present (Def) and then Is_Null_Excluding_Def (Def) then
return Is_Non_Null;
else
return Null_Status (Name (Decl));
end if;
end if;
end if;
-- At this point the declaration of the entity does not carry a null
-- exclusion and lacks an initialization expression. Check the status
-- of its type.
return Null_Status_Of_Type (Etype (Id));
end Null_Status_Of_Entity;
-------------------------
-- Null_Status_Of_Type --
-------------------------
function Null_Status_Of_Type (Typ : Entity_Id) return Null_Status_Kind is
Curr : Entity_Id;
Decl : Node_Id;
begin
-- Traverse the type chain looking for types with null exclusion
Curr := Typ;
while Present (Curr) and then Etype (Curr) /= Curr loop
Decl := Parent (Curr);
-- Guard against itypes which do not always have declarations. A
-- type yields a non-null value if it carries a null exclusion.
if Present (Decl) then
if Nkind (Decl) = N_Full_Type_Declaration
and then Is_Null_Excluding_Def (Type_Definition (Decl))
then
return Is_Non_Null;
elsif Nkind (Decl) = N_Subtype_Declaration
and then Null_Exclusion_Present (Decl)
then
return Is_Non_Null;
end if;
end if;
Curr := Etype (Curr);
end loop;
-- The type chain does not contain any null excluding types
return Unknown;
end Null_Status_Of_Type;
-- Start of processing for Null_Status
begin
-- An allocator always creates a non-null value
if Nkind (N) = N_Allocator then
return Is_Non_Null;
-- Taking the 'Access of something yields a non-null value
elsif Nkind (N) = N_Attribute_Reference
and then Nam_In (Attribute_Name (N), Name_Access,
Name_Unchecked_Access,
Name_Unrestricted_Access)
then
return Is_Non_Null;
-- "null" yields null
elsif Nkind (N) = N_Null then
return Is_Null;
-- Check the status of the operand of a type conversion
elsif Nkind (N) = N_Type_Conversion then
return Null_Status (Expression (N));
-- The input denotes a reference to an entity. Determine whether the
-- entity or its type yields a null or non-null value.
elsif Is_Entity_Name (N) and then Present (Entity (N)) then
return Null_Status_Of_Entity (Entity (N));
end if;
-- Otherwise it is not possible to determine the null status of the
-- subexpression at compile time without resorting to simple flow
-- analysis.
return Unknown;
end Null_Status;
--------------------------------------
-- Null_To_Null_Address_Convert_OK --
--------------------------------------
function Null_To_Null_Address_Convert_OK
(N : Node_Id;
Typ : Entity_Id := Empty) return Boolean
is
begin
if not Relaxed_RM_Semantics then
return False;
end if;
if Nkind (N) = N_Null then
return Present (Typ) and then Is_Descendant_Of_Address (Typ);
elsif Nkind_In (N, N_Op_Eq, N_Op_Ge, N_Op_Gt, N_Op_Le, N_Op_Lt, N_Op_Ne)
then
declare
L : constant Node_Id := Left_Opnd (N);
R : constant Node_Id := Right_Opnd (N);
begin
-- We check the Etype of the complementary operand since the
-- N_Null node is not decorated at this stage.
return
((Nkind (L) = N_Null
and then Is_Descendant_Of_Address (Etype (R)))
or else
(Nkind (R) = N_Null
and then Is_Descendant_Of_Address (Etype (L))));
end;
end if;
return False;
end Null_To_Null_Address_Convert_OK;
---------------------------------
-- Number_Of_Elements_In_Array --
---------------------------------
function Number_Of_Elements_In_Array (T : Entity_Id) return Int is
Indx : Node_Id;
Typ : Entity_Id;
Low : Node_Id;
High : Node_Id;
Num : Int := 1;
begin
pragma Assert (Is_Array_Type (T));
Indx := First_Index (T);
while Present (Indx) loop
Typ := Underlying_Type (Etype (Indx));
-- Never look at junk bounds of a generic type
if Is_Generic_Type (Typ) then
return 0;
end if;
-- Check the array bounds are known at compile time and return zero
-- if they are not.
Low := Type_Low_Bound (Typ);
High := Type_High_Bound (Typ);
if not Compile_Time_Known_Value (Low) then
return 0;
elsif not Compile_Time_Known_Value (High) then
return 0;
else
Num :=
Num * UI_To_Int ((Expr_Value (High) - Expr_Value (Low) + 1));
end if;
Next_Index (Indx);
end loop;
return Num;
end Number_Of_Elements_In_Array;
-------------------------
-- Object_Access_Level --
-------------------------
-- Returns the static accessibility level of the view denoted by Obj. Note
-- that the value returned is the result of a call to Scope_Depth. Only
-- scope depths associated with dynamic scopes can actually be returned.
-- Since only relative levels matter for accessibility checking, the fact
-- that the distance between successive levels of accessibility is not
-- always one is immaterial (invariant: if level(E2) is deeper than
-- level(E1), then Scope_Depth(E1) < Scope_Depth(E2)).
function Object_Access_Level (Obj : Node_Id) return Uint is
function Is_Interface_Conversion (N : Node_Id) return Boolean;
-- Determine whether N is a construct of the form
-- Some_Type (Operand._tag'Address)
-- This construct appears in the context of dispatching calls.
function Reference_To (Obj : Node_Id) return Node_Id;
-- An explicit dereference is created when removing side effects from
-- expressions for constraint checking purposes. In this case a local
-- access type is created for it. The correct access level is that of
-- the original source node. We detect this case by noting that the
-- prefix of the dereference is created by an object declaration whose
-- initial expression is a reference.
-----------------------------
-- Is_Interface_Conversion --
-----------------------------
function Is_Interface_Conversion (N : Node_Id) return Boolean is
begin
return Nkind (N) = N_Unchecked_Type_Conversion
and then Nkind (Expression (N)) = N_Attribute_Reference
and then Attribute_Name (Expression (N)) = Name_Address;
end Is_Interface_Conversion;
------------------
-- Reference_To --
------------------
function Reference_To (Obj : Node_Id) return Node_Id is
Pref : constant Node_Id := Prefix (Obj);
begin
if Is_Entity_Name (Pref)
and then Nkind (Parent (Entity (Pref))) = N_Object_Declaration
and then Present (Expression (Parent (Entity (Pref))))
and then Nkind (Expression (Parent (Entity (Pref)))) = N_Reference
then
return (Prefix (Expression (Parent (Entity (Pref)))));
else
return Empty;
end if;
end Reference_To;
-- Local variables
E : Entity_Id;
-- Start of processing for Object_Access_Level
begin
if Nkind (Obj) = N_Defining_Identifier
or else Is_Entity_Name (Obj)
then
if Nkind (Obj) = N_Defining_Identifier then
E := Obj;
else
E := Entity (Obj);
end if;
if Is_Prival (E) then
E := Prival_Link (E);
end if;
-- If E is a type then it denotes a current instance. For this case
-- we add one to the normal accessibility level of the type to ensure
-- that current instances are treated as always being deeper than
-- than the level of any visible named access type (see 3.10.2(21)).
if Is_Type (E) then
return Type_Access_Level (E) + 1;
elsif Present (Renamed_Object (E)) then
return Object_Access_Level (Renamed_Object (E));
-- Similarly, if E is a component of the current instance of a
-- protected type, any instance of it is assumed to be at a deeper
-- level than the type. For a protected object (whose type is an
-- anonymous protected type) its components are at the same level
-- as the type itself.
elsif not Is_Overloadable (E)
and then Ekind (Scope (E)) = E_Protected_Type
and then Comes_From_Source (Scope (E))
then
return Type_Access_Level (Scope (E)) + 1;
else
-- Aliased formals of functions take their access level from the
-- point of call, i.e. require a dynamic check. For static check
-- purposes, this is smaller than the level of the subprogram
-- itself. For procedures the aliased makes no difference.
if Is_Formal (E)
and then Is_Aliased (E)
and then Ekind (Scope (E)) = E_Function
then
return Type_Access_Level (Etype (E));
else
return Scope_Depth (Enclosing_Dynamic_Scope (E));
end if;
end if;
elsif Nkind_In (Obj, N_Indexed_Component, N_Selected_Component) then
if Is_Access_Type (Etype (Prefix (Obj))) then
return Type_Access_Level (Etype (Prefix (Obj)));
else
return Object_Access_Level (Prefix (Obj));
end if;
elsif Nkind (Obj) = N_Explicit_Dereference then
-- If the prefix is a selected access discriminant then we make a
-- recursive call on the prefix, which will in turn check the level
-- of the prefix object of the selected discriminant.
-- In Ada 2012, if the discriminant has implicit dereference and
-- the context is a selected component, treat this as an object of
-- unknown scope (see below). This is necessary in compile-only mode;
-- otherwise expansion will already have transformed the prefix into
-- a temporary.
if Nkind (Prefix (Obj)) = N_Selected_Component
and then Ekind (Etype (Prefix (Obj))) = E_Anonymous_Access_Type
and then
Ekind (Entity (Selector_Name (Prefix (Obj)))) = E_Discriminant
and then
(not Has_Implicit_Dereference
(Entity (Selector_Name (Prefix (Obj))))
or else Nkind (Parent (Obj)) /= N_Selected_Component)
then
return Object_Access_Level (Prefix (Obj));
-- Detect an interface conversion in the context of a dispatching
-- call. Use the original form of the conversion to find the access
-- level of the operand.
elsif Is_Interface (Etype (Obj))
and then Is_Interface_Conversion (Prefix (Obj))
and then Nkind (Original_Node (Obj)) = N_Type_Conversion
then
return Object_Access_Level (Original_Node (Obj));
elsif not Comes_From_Source (Obj) then
declare
Ref : constant Node_Id := Reference_To (Obj);
begin
if Present (Ref) then
return Object_Access_Level (Ref);
else
return Type_Access_Level (Etype (Prefix (Obj)));
end if;
end;
else
return Type_Access_Level (Etype (Prefix (Obj)));
end if;
elsif Nkind_In (Obj, N_Type_Conversion, N_Unchecked_Type_Conversion) then
return Object_Access_Level (Expression (Obj));
elsif Nkind (Obj) = N_Function_Call then
-- Function results are objects, so we get either the access level of
-- the function or, in the case of an indirect call, the level of the
-- access-to-subprogram type. (This code is used for Ada 95, but it
-- looks wrong, because it seems that we should be checking the level
-- of the call itself, even for Ada 95. However, using the Ada 2005
-- version of the code causes regressions in several tests that are
-- compiled with -gnat95. ???)
if Ada_Version < Ada_2005 then
if Is_Entity_Name (Name (Obj)) then
return Subprogram_Access_Level (Entity (Name (Obj)));
else
return Type_Access_Level (Etype (Prefix (Name (Obj))));
end if;
-- For Ada 2005, the level of the result object of a function call is
-- defined to be the level of the call's innermost enclosing master.
-- We determine that by querying the depth of the innermost enclosing
-- dynamic scope.
else
Return_Master_Scope_Depth_Of_Call : declare
function Innermost_Master_Scope_Depth
(N : Node_Id) return Uint;
-- Returns the scope depth of the given node's innermost
-- enclosing dynamic scope (effectively the accessibility
-- level of the innermost enclosing master).
----------------------------------
-- Innermost_Master_Scope_Depth --
----------------------------------
function Innermost_Master_Scope_Depth
(N : Node_Id) return Uint
is
Node_Par : Node_Id := Parent (N);
begin
-- Locate the nearest enclosing node (by traversing Parents)
-- that Defining_Entity can be applied to, and return the
-- depth of that entity's nearest enclosing dynamic scope.
while Present (Node_Par) loop
case Nkind (Node_Par) is
when N_Abstract_Subprogram_Declaration
| N_Block_Statement
| N_Body_Stub
| N_Component_Declaration
| N_Entry_Body
| N_Entry_Declaration
| N_Exception_Declaration
| N_Formal_Object_Declaration
| N_Formal_Package_Declaration
| N_Formal_Subprogram_Declaration
| N_Formal_Type_Declaration
| N_Full_Type_Declaration
| N_Function_Specification
| N_Generic_Declaration
| N_Generic_Instantiation
| N_Implicit_Label_Declaration
| N_Incomplete_Type_Declaration
| N_Loop_Parameter_Specification
| N_Number_Declaration
| N_Object_Declaration
| N_Package_Declaration
| N_Package_Specification
| N_Parameter_Specification
| N_Private_Extension_Declaration
| N_Private_Type_Declaration
| N_Procedure_Specification
| N_Proper_Body
| N_Protected_Type_Declaration
| N_Renaming_Declaration
| N_Single_Protected_Declaration
| N_Single_Task_Declaration
| N_Subprogram_Declaration
| N_Subtype_Declaration
| N_Subunit
| N_Task_Type_Declaration
=>
return Scope_Depth
(Nearest_Dynamic_Scope
(Defining_Entity (Node_Par)));
-- For a return statement within a function, return
-- the depth of the function itself. This is not just
-- a small optimization, but matters when analyzing
-- the expression in an expression function before
-- the body is created.
when N_Simple_Return_Statement =>
if Ekind (Current_Scope) = E_Function then
return Scope_Depth (Current_Scope);
end if;
when others =>
null;
end case;
Node_Par := Parent (Node_Par);
end loop;
pragma Assert (False);
-- Should never reach the following return
return Scope_Depth (Current_Scope) + 1;
end Innermost_Master_Scope_Depth;
-- Start of processing for Return_Master_Scope_Depth_Of_Call
begin
return Innermost_Master_Scope_Depth (Obj);
end Return_Master_Scope_Depth_Of_Call;
end if;
-- For convenience we handle qualified expressions, even though they
-- aren't technically object names.
elsif Nkind (Obj) = N_Qualified_Expression then
return Object_Access_Level (Expression (Obj));
-- Ditto for aggregates. They have the level of the temporary that
-- will hold their value.
elsif Nkind (Obj) = N_Aggregate then
return Object_Access_Level (Current_Scope);
-- Otherwise return the scope level of Standard. (If there are cases
-- that fall through to this point they will be treated as having
-- global accessibility for now. ???)
else
return Scope_Depth (Standard_Standard);
end if;
end Object_Access_Level;
----------------------------------
-- Old_Requires_Transient_Scope --
----------------------------------
function Old_Requires_Transient_Scope (Id : Entity_Id) return Boolean is
Typ : constant Entity_Id := Underlying_Type (Id);
begin
-- This is a private type which is not completed yet. This can only
-- happen in a default expression (of a formal parameter or of a
-- record component). Do not expand transient scope in this case.
if No (Typ) then
return False;
-- Do not expand transient scope for non-existent procedure return
elsif Typ = Standard_Void_Type then
return False;
-- Elementary types do not require a transient scope
elsif Is_Elementary_Type (Typ) then
return False;
-- Generally, indefinite subtypes require a transient scope, since the
-- back end cannot generate temporaries, since this is not a valid type
-- for declaring an object. It might be possible to relax this in the
-- future, e.g. by declaring the maximum possible space for the type.
elsif not Is_Definite_Subtype (Typ) then
return True;
-- Functions returning tagged types may dispatch on result so their
-- returned value is allocated on the secondary stack. Controlled
-- type temporaries need finalization.
elsif Is_Tagged_Type (Typ) or else Has_Controlled_Component (Typ) then
return True;
-- Record type
elsif Is_Record_Type (Typ) then
declare
Comp : Entity_Id;
begin
Comp := First_Entity (Typ);
while Present (Comp) loop
if Ekind (Comp) = E_Component then
-- ???It's not clear we need a full recursive call to
-- Old_Requires_Transient_Scope here. Note that the
-- following can't happen.
pragma Assert (Is_Definite_Subtype (Etype (Comp)));
pragma Assert (not Has_Controlled_Component (Etype (Comp)));
if Old_Requires_Transient_Scope (Etype (Comp)) then
return True;
end if;
end if;
Next_Entity (Comp);
end loop;
end;
return False;
-- String literal types never require transient scope
elsif Ekind (Typ) = E_String_Literal_Subtype then
return False;
-- Array type. Note that we already know that this is a constrained
-- array, since unconstrained arrays will fail the indefinite test.
elsif Is_Array_Type (Typ) then
-- If component type requires a transient scope, the array does too
if Old_Requires_Transient_Scope (Component_Type (Typ)) then
return True;
-- Otherwise, we only need a transient scope if the size depends on
-- the value of one or more discriminants.
else
return Size_Depends_On_Discriminant (Typ);
end if;
-- All other cases do not require a transient scope
else
pragma Assert (Is_Protected_Type (Typ) or else Is_Task_Type (Typ));
return False;
end if;
end Old_Requires_Transient_Scope;
---------------------------------
-- Original_Aspect_Pragma_Name --
---------------------------------
function Original_Aspect_Pragma_Name (N : Node_Id) return Name_Id is
Item : Node_Id;
Item_Nam : Name_Id;
begin
pragma Assert (Nkind_In (N, N_Aspect_Specification, N_Pragma));
Item := N;
-- The pragma was generated to emulate an aspect, use the original
-- aspect specification.
if Nkind (Item) = N_Pragma and then From_Aspect_Specification (Item) then
Item := Corresponding_Aspect (Item);
end if;
-- Retrieve the name of the aspect/pragma. Note that Pre, Pre_Class,
-- Post and Post_Class rewrite their pragma identifier to preserve the
-- original name.
-- ??? this is kludgey
if Nkind (Item) = N_Pragma then
Item_Nam := Chars (Original_Node (Pragma_Identifier (Item)));
else
pragma Assert (Nkind (Item) = N_Aspect_Specification);
Item_Nam := Chars (Identifier (Item));
end if;
-- Deal with 'Class by converting the name to its _XXX form
if Class_Present (Item) then
if Item_Nam = Name_Invariant then
Item_Nam := Name_uInvariant;
elsif Item_Nam = Name_Post then
Item_Nam := Name_uPost;
elsif Item_Nam = Name_Pre then
Item_Nam := Name_uPre;
elsif Nam_In (Item_Nam, Name_Type_Invariant,
Name_Type_Invariant_Class)
then
Item_Nam := Name_uType_Invariant;
-- Nothing to do for other cases (e.g. a Check that derived from
-- Pre_Class and has the flag set). Also we do nothing if the name
-- is already in special _xxx form.
end if;
end if;
return Item_Nam;
end Original_Aspect_Pragma_Name;
--------------------------------------
-- Original_Corresponding_Operation --
--------------------------------------
function Original_Corresponding_Operation (S : Entity_Id) return Entity_Id
is
Typ : constant Entity_Id := Find_Dispatching_Type (S);
begin
-- If S is an inherited primitive S2 the original corresponding
-- operation of S is the original corresponding operation of S2
if Present (Alias (S))
and then Find_Dispatching_Type (Alias (S)) /= Typ
then
return Original_Corresponding_Operation (Alias (S));
-- If S overrides an inherited subprogram S2 the original corresponding
-- operation of S is the original corresponding operation of S2
elsif Present (Overridden_Operation (S)) then
return Original_Corresponding_Operation (Overridden_Operation (S));
-- otherwise it is S itself
else
return S;
end if;
end Original_Corresponding_Operation;
-------------------
-- Output_Entity --
-------------------
procedure Output_Entity (Id : Entity_Id) is
Scop : Entity_Id;
begin
Scop := Scope (Id);
-- The entity may lack a scope when it is in the process of being
-- analyzed. Use the current scope as an approximation.
if No (Scop) then
Scop := Current_Scope;
end if;
Output_Name (Chars (Id), Scop);
end Output_Entity;
-----------------
-- Output_Name --
-----------------
procedure Output_Name (Nam : Name_Id; Scop : Entity_Id := Current_Scope) is
begin
Write_Str
(Get_Name_String
(Get_Qualified_Name
(Nam => Nam,
Suffix => No_Name,
Scop => Scop)));
Write_Eol;
end Output_Name;
----------------------
-- Policy_In_Effect --
----------------------
function Policy_In_Effect (Policy : Name_Id) return Name_Id is
function Policy_In_List (List : Node_Id) return Name_Id;
-- Determine the mode of a policy in a N_Pragma list
--------------------
-- Policy_In_List --
--------------------
function Policy_In_List (List : Node_Id) return Name_Id is
Arg1 : Node_Id;
Arg2 : Node_Id;
Prag : Node_Id;
begin
Prag := List;
while Present (Prag) loop
Arg1 := First (Pragma_Argument_Associations (Prag));
Arg2 := Next (Arg1);
Arg1 := Get_Pragma_Arg (Arg1);
Arg2 := Get_Pragma_Arg (Arg2);
-- The current Check_Policy pragma matches the requested policy or
-- appears in the single argument form (Assertion, policy_id).
if Nam_In (Chars (Arg1), Name_Assertion, Policy) then
return Chars (Arg2);
end if;
Prag := Next_Pragma (Prag);
end loop;
return No_Name;
end Policy_In_List;
-- Local variables
Kind : Name_Id;
-- Start of processing for Policy_In_Effect
begin
if not Is_Valid_Assertion_Kind (Policy) then
raise Program_Error;
end if;
-- Inspect all policy pragmas that appear within scopes (if any)
Kind := Policy_In_List (Check_Policy_List);
-- Inspect all configuration policy pragmas (if any)
if Kind = No_Name then
Kind := Policy_In_List (Check_Policy_List_Config);
end if;
-- The context lacks policy pragmas, determine the mode based on whether
-- assertions are enabled at the configuration level. This ensures that
-- the policy is preserved when analyzing generics.
if Kind = No_Name then
if Assertions_Enabled_Config then
Kind := Name_Check;
else
Kind := Name_Ignore;
end if;
end if;
return Kind;
end Policy_In_Effect;
----------------------------------
-- Predicate_Tests_On_Arguments --
----------------------------------
function Predicate_Tests_On_Arguments (Subp : Entity_Id) return Boolean is
begin
-- Always test predicates on indirect call
if Ekind (Subp) = E_Subprogram_Type then
return True;
-- Do not test predicates on call to generated default Finalize, since
-- we are not interested in whether something we are finalizing (and
-- typically destroying) satisfies its predicates.
elsif Chars (Subp) = Name_Finalize
and then not Comes_From_Source (Subp)
then
return False;
-- Do not test predicates on any internally generated routines
elsif Is_Internal_Name (Chars (Subp)) then
return False;
-- Do not test predicates on call to Init_Proc, since if needed the
-- predicate test will occur at some other point.
elsif Is_Init_Proc (Subp) then
return False;
-- Do not test predicates on call to predicate function, since this
-- would cause infinite recursion.
elsif Ekind (Subp) = E_Function
and then (Is_Predicate_Function (Subp)
or else
Is_Predicate_Function_M (Subp))
then
return False;
-- For now, no other exceptions
else
return True;
end if;
end Predicate_Tests_On_Arguments;
-----------------------
-- Private_Component --
-----------------------
function Private_Component (Type_Id : Entity_Id) return Entity_Id is
Ancestor : constant Entity_Id := Base_Type (Type_Id);
function Trace_Components
(T : Entity_Id;
Check : Boolean) return Entity_Id;
-- Recursive function that does the work, and checks against circular
-- definition for each subcomponent type.
----------------------
-- Trace_Components --
----------------------
function Trace_Components
(T : Entity_Id;
Check : Boolean) return Entity_Id
is
Btype : constant Entity_Id := Base_Type (T);
Component : Entity_Id;
P : Entity_Id;
Candidate : Entity_Id := Empty;
begin
if Check and then Btype = Ancestor then
Error_Msg_N ("circular type definition", Type_Id);
return Any_Type;
end if;
if Is_Private_Type (Btype) and then not Is_Generic_Type (Btype) then
if Present (Full_View (Btype))
and then Is_Record_Type (Full_View (Btype))
and then not Is_Frozen (Btype)
then
-- To indicate that the ancestor depends on a private type, the
-- current Btype is sufficient. However, to check for circular
-- definition we must recurse on the full view.
Candidate := Trace_Components (Full_View (Btype), True);
if Candidate = Any_Type then
return Any_Type;
else
return Btype;
end if;
else
return Btype;
end if;
elsif Is_Array_Type (Btype) then
return Trace_Components (Component_Type (Btype), True);
elsif Is_Record_Type (Btype) then
Component := First_Entity (Btype);
while Present (Component)
and then Comes_From_Source (Component)
loop
-- Skip anonymous types generated by constrained components
if not Is_Type (Component) then
P := Trace_Components (Etype (Component), True);
if Present (P) then
if P = Any_Type then
return P;
else
Candidate := P;
end if;
end if;
end if;
Next_Entity (Component);
end loop;
return Candidate;
else
return Empty;
end if;
end Trace_Components;
-- Start of processing for Private_Component
begin
return Trace_Components (Type_Id, False);
end Private_Component;
---------------------------
-- Primitive_Names_Match --
---------------------------
function Primitive_Names_Match (E1, E2 : Entity_Id) return Boolean is
function Non_Internal_Name (E : Entity_Id) return Name_Id;
-- Given an internal name, returns the corresponding non-internal name
------------------------
-- Non_Internal_Name --
------------------------
function Non_Internal_Name (E : Entity_Id) return Name_Id is
begin
Get_Name_String (Chars (E));
Name_Len := Name_Len - 1;
return Name_Find;
end Non_Internal_Name;
-- Start of processing for Primitive_Names_Match
begin
pragma Assert (Present (E1) and then Present (E2));
return Chars (E1) = Chars (E2)
or else
(not Is_Internal_Name (Chars (E1))
and then Is_Internal_Name (Chars (E2))
and then Non_Internal_Name (E2) = Chars (E1))
or else
(not Is_Internal_Name (Chars (E2))
and then Is_Internal_Name (Chars (E1))
and then Non_Internal_Name (E1) = Chars (E2))
or else
(Is_Predefined_Dispatching_Operation (E1)
and then Is_Predefined_Dispatching_Operation (E2)
and then Same_TSS (E1, E2))
or else
(Is_Init_Proc (E1) and then Is_Init_Proc (E2));
end Primitive_Names_Match;
-----------------------
-- Process_End_Label --
-----------------------
procedure Process_End_Label
(N : Node_Id;
Typ : Character;
Ent : Entity_Id)
is
Loc : Source_Ptr;
Nam : Node_Id;
Scop : Entity_Id;
Label_Ref : Boolean;
-- Set True if reference to end label itself is required
Endl : Node_Id;
-- Gets set to the operator symbol or identifier that references the
-- entity Ent. For the child unit case, this is the identifier from the
-- designator. For other cases, this is simply Endl.
procedure Generate_Parent_Ref (N : Node_Id; E : Entity_Id);
-- N is an identifier node that appears as a parent unit reference in
-- the case where Ent is a child unit. This procedure generates an
-- appropriate cross-reference entry. E is the corresponding entity.
-------------------------
-- Generate_Parent_Ref --
-------------------------
procedure Generate_Parent_Ref (N : Node_Id; E : Entity_Id) is
begin
-- If names do not match, something weird, skip reference
if Chars (E) = Chars (N) then
-- Generate the reference. We do NOT consider this as a reference
-- for unreferenced symbol purposes.
Generate_Reference (E, N, 'r', Set_Ref => False, Force => True);
if Style_Check then
Style.Check_Identifier (N, E);
end if;
end if;
end Generate_Parent_Ref;
-- Start of processing for Process_End_Label
begin
-- If no node, ignore. This happens in some error situations, and
-- also for some internally generated structures where no end label
-- references are required in any case.
if No (N) then
return;
end if;
-- Nothing to do if no End_Label, happens for internally generated
-- constructs where we don't want an end label reference anyway. Also
-- nothing to do if Endl is a string literal, which means there was
-- some prior error (bad operator symbol)
Endl := End_Label (N);
if No (Endl) or else Nkind (Endl) = N_String_Literal then
return;
end if;
-- Reference node is not in extended main source unit
if not In_Extended_Main_Source_Unit (N) then
-- Generally we do not collect references except for the extended
-- main source unit. The one exception is the 'e' entry for a
-- package spec, where it is useful for a client to have the
-- ending information to define scopes.
if Typ /= 'e' then
return;
else
Label_Ref := False;
-- For this case, we can ignore any parent references, but we
-- need the package name itself for the 'e' entry.
if Nkind (Endl) = N_Designator then
Endl := Identifier (Endl);
end if;
end if;
-- Reference is in extended main source unit
else
Label_Ref := True;
-- For designator, generate references for the parent entries
if Nkind (Endl) = N_Designator then
-- Generate references for the prefix if the END line comes from
-- source (otherwise we do not need these references) We climb the
-- scope stack to find the expected entities.
if Comes_From_Source (Endl) then
Nam := Name (Endl);
Scop := Current_Scope;
while Nkind (Nam) = N_Selected_Component loop
Scop := Scope (Scop);
exit when No (Scop);
Generate_Parent_Ref (Selector_Name (Nam), Scop);
Nam := Prefix (Nam);
end loop;
if Present (Scop) then
Generate_Parent_Ref (Nam, Scope (Scop));
end if;
end if;
Endl := Identifier (Endl);
end if;
end if;
-- If the end label is not for the given entity, then either we have
-- some previous error, or this is a generic instantiation for which
-- we do not need to make a cross-reference in this case anyway. In
-- either case we simply ignore the call.
if Chars (Ent) /= Chars (Endl) then
return;
end if;
-- If label was really there, then generate a normal reference and then
-- adjust the location in the end label to point past the name (which
-- should almost always be the semicolon).
Loc := Sloc (Endl);
if Comes_From_Source (Endl) then
-- If a label reference is required, then do the style check and
-- generate an l-type cross-reference entry for the label
if Label_Ref then
if Style_Check then
Style.Check_Identifier (Endl, Ent);
end if;
Generate_Reference (Ent, Endl, 'l', Set_Ref => False);
end if;
-- Set the location to point past the label (normally this will
-- mean the semicolon immediately following the label). This is
-- done for the sake of the 'e' or 't' entry generated below.
Get_Decoded_Name_String (Chars (Endl));
Set_Sloc (Endl, Sloc (Endl) + Source_Ptr (Name_Len));
else
-- In SPARK mode, no missing label is allowed for packages and
-- subprogram bodies. Detect those cases by testing whether
-- Process_End_Label was called for a body (Typ = 't') or a package.
if Restriction_Check_Required (SPARK_05)
and then (Typ = 't' or else Ekind (Ent) = E_Package)
then
Error_Msg_Node_1 := Endl;
Check_SPARK_05_Restriction
("`END &` required", Endl, Force => True);
end if;
end if;
-- Now generate the e/t reference
Generate_Reference (Ent, Endl, Typ, Set_Ref => False, Force => True);
-- Restore Sloc, in case modified above, since we have an identifier
-- and the normal Sloc should be left set in the tree.
Set_Sloc (Endl, Loc);
end Process_End_Label;
--------------------------------
-- Propagate_Concurrent_Flags --
--------------------------------
procedure Propagate_Concurrent_Flags
(Typ : Entity_Id;
Comp_Typ : Entity_Id)
is
begin
if Has_Task (Comp_Typ) then
Set_Has_Task (Typ);
end if;
if Has_Protected (Comp_Typ) then
Set_Has_Protected (Typ);
end if;
if Has_Timing_Event (Comp_Typ) then
Set_Has_Timing_Event (Typ);
end if;
end Propagate_Concurrent_Flags;
------------------------------
-- Propagate_DIC_Attributes --
------------------------------
procedure Propagate_DIC_Attributes
(Typ : Entity_Id;
From_Typ : Entity_Id)
is
DIC_Proc : Entity_Id;
begin
if Present (Typ) and then Present (From_Typ) then
pragma Assert (Is_Type (Typ) and then Is_Type (From_Typ));
-- Nothing to do if both the source and the destination denote the
-- same type.
if From_Typ = Typ then
return;
end if;
DIC_Proc := DIC_Procedure (From_Typ);
-- The setting of the attributes is intentionally conservative. This
-- prevents accidental clobbering of enabled attributes.
if Has_Inherited_DIC (From_Typ)
and then not Has_Inherited_DIC (Typ)
then
Set_Has_Inherited_DIC (Typ);
end if;
if Has_Own_DIC (From_Typ) and then not Has_Own_DIC (Typ) then
Set_Has_Own_DIC (Typ);
end if;
if Present (DIC_Proc) and then No (DIC_Procedure (Typ)) then
Set_DIC_Procedure (Typ, DIC_Proc);
end if;
end if;
end Propagate_DIC_Attributes;
------------------------------------
-- Propagate_Invariant_Attributes --
------------------------------------
procedure Propagate_Invariant_Attributes
(Typ : Entity_Id;
From_Typ : Entity_Id)
is
Full_IP : Entity_Id;
Part_IP : Entity_Id;
begin
if Present (Typ) and then Present (From_Typ) then
pragma Assert (Is_Type (Typ) and then Is_Type (From_Typ));
-- Nothing to do if both the source and the destination denote the
-- same type.
if From_Typ = Typ then
return;
end if;
Full_IP := Invariant_Procedure (From_Typ);
Part_IP := Partial_Invariant_Procedure (From_Typ);
-- The setting of the attributes is intentionally conservative. This
-- prevents accidental clobbering of enabled attributes.
if Has_Inheritable_Invariants (From_Typ)
and then not Has_Inheritable_Invariants (Typ)
then
Set_Has_Inheritable_Invariants (Typ, True);
end if;
if Has_Inherited_Invariants (From_Typ)
and then not Has_Inherited_Invariants (Typ)
then
Set_Has_Inherited_Invariants (Typ, True);
end if;
if Has_Own_Invariants (From_Typ)
and then not Has_Own_Invariants (Typ)
then
Set_Has_Own_Invariants (Typ, True);
end if;
if Present (Full_IP) and then No (Invariant_Procedure (Typ)) then
Set_Invariant_Procedure (Typ, Full_IP);
end if;
if Present (Part_IP) and then No (Partial_Invariant_Procedure (Typ))
then
Set_Partial_Invariant_Procedure (Typ, Part_IP);
end if;
end if;
end Propagate_Invariant_Attributes;
---------------------------------------
-- Record_Possible_Part_Of_Reference --
---------------------------------------
procedure Record_Possible_Part_Of_Reference
(Var_Id : Entity_Id;
Ref : Node_Id)
is
Encap : constant Entity_Id := Encapsulating_State (Var_Id);
Refs : Elist_Id;
begin
-- The variable is a constituent of a single protected/task type. Such
-- a variable acts as a component of the type and must appear within a
-- specific region (SPARK RM 9(3)). Instead of recording the reference,
-- verify its legality now.
if Present (Encap) and then Is_Single_Concurrent_Object (Encap) then
Check_Part_Of_Reference (Var_Id, Ref);
-- The variable is subject to pragma Part_Of and may eventually become a
-- constituent of a single protected/task type. Record the reference to
-- verify its placement when the contract of the variable is analyzed.
elsif Present (Get_Pragma (Var_Id, Pragma_Part_Of)) then
Refs := Part_Of_References (Var_Id);
if No (Refs) then
Refs := New_Elmt_List;
Set_Part_Of_References (Var_Id, Refs);
end if;
Append_Elmt (Ref, Refs);
end if;
end Record_Possible_Part_Of_Reference;
----------------
-- Referenced --
----------------
function Referenced (Id : Entity_Id; Expr : Node_Id) return Boolean is
Seen : Boolean := False;
function Is_Reference (N : Node_Id) return Traverse_Result;
-- Determine whether node N denotes a reference to Id. If this is the
-- case, set global flag Seen to True and stop the traversal.
------------------
-- Is_Reference --
------------------
function Is_Reference (N : Node_Id) return Traverse_Result is
begin
if Is_Entity_Name (N)
and then Present (Entity (N))
and then Entity (N) = Id
then
Seen := True;
return Abandon;
else
return OK;
end if;
end Is_Reference;
procedure Inspect_Expression is new Traverse_Proc (Is_Reference);
-- Start of processing for Referenced
begin
Inspect_Expression (Expr);
return Seen;
end Referenced;
------------------------------------
-- References_Generic_Formal_Type --
------------------------------------
function References_Generic_Formal_Type (N : Node_Id) return Boolean is
function Process (N : Node_Id) return Traverse_Result;
-- Process one node in search for generic formal type
-------------
-- Process --
-------------
function Process (N : Node_Id) return Traverse_Result is
begin
if Nkind (N) in N_Has_Entity then
declare
E : constant Entity_Id := Entity (N);
begin
if Present (E) then
if Is_Generic_Type (E) then
return Abandon;
elsif Present (Etype (E))
and then Is_Generic_Type (Etype (E))
then
return Abandon;
end if;
end if;
end;
end if;
return Atree.OK;
end Process;
function Traverse is new Traverse_Func (Process);
-- Traverse tree to look for generic type
begin
if Inside_A_Generic then
return Traverse (N) = Abandon;
else
return False;
end if;
end References_Generic_Formal_Type;
-------------------
-- Remove_Entity --
-------------------
procedure Remove_Entity (Id : Entity_Id) is
Scop : constant Entity_Id := Scope (Id);
Prev_Id : Entity_Id;
begin
-- Remove the entity from the homonym chain. When the entity is the
-- head of the chain, associate the entry in the name table with its
-- homonym effectively making it the new head of the chain.
if Current_Entity (Id) = Id then
Set_Name_Entity_Id (Chars (Id), Homonym (Id));
-- Otherwise link the previous and next homonyms
else
Prev_Id := Current_Entity (Id);
if Present (Prev_Id) then
while Present (Prev_Id) and then Homonym (Prev_Id) /= Id loop
Prev_Id := Homonym (Prev_Id);
end loop;
Set_Homonym (Prev_Id, Homonym (Id));
end if;
end if;
-- Remove the entity from the scope entity chain. When the entity is
-- the head of the chain, set the next entity as the new head of the
-- chain.
if First_Entity (Scop) = Id then
Prev_Id := Empty;
Set_First_Entity (Scop, Next_Entity (Id));
-- Otherwise the entity is either in the middle of the chain or it acts
-- as its tail. Traverse and link the previous and next entities.
else
Prev_Id := First_Entity (Scop);
while Present (Prev_Id) and then Next_Entity (Prev_Id) /= Id loop
Next_Entity (Prev_Id);
end loop;
if Present (Prev_Id) then
Set_Next_Entity (Prev_Id, Next_Entity (Id));
end if;
end if;
-- Handle the case where the entity acts as the tail of the scope entity
-- chain.
if Last_Entity (Scop) = Id then
Set_Last_Entity (Scop, Prev_Id);
end if;
end Remove_Entity;
--------------------
-- Remove_Homonym --
--------------------
procedure Remove_Homonym (E : Entity_Id) is
Prev : Entity_Id := Empty;
H : Entity_Id;
begin
if E = Current_Entity (E) then
if Present (Homonym (E)) then
Set_Current_Entity (Homonym (E));
else
Set_Name_Entity_Id (Chars (E), Empty);
end if;
else
H := Current_Entity (E);
while Present (H) and then H /= E loop
Prev := H;
H := Homonym (H);
end loop;
-- If E is not on the homonym chain, nothing to do
if Present (H) then
Set_Homonym (Prev, Homonym (E));
end if;
end if;
end Remove_Homonym;
------------------------------
-- Remove_Overloaded_Entity --
------------------------------
procedure Remove_Overloaded_Entity (Id : Entity_Id) is
procedure Remove_Primitive_Of (Typ : Entity_Id);
-- Remove primitive subprogram Id from the list of primitives that
-- belong to type Typ.
-------------------------
-- Remove_Primitive_Of --
-------------------------
procedure Remove_Primitive_Of (Typ : Entity_Id) is
Prims : Elist_Id;
begin
if Is_Tagged_Type (Typ) then
Prims := Direct_Primitive_Operations (Typ);
if Present (Prims) then
Remove (Prims, Id);
end if;
end if;
end Remove_Primitive_Of;
-- Local variables
Formal : Entity_Id;
-- Start of processing for Remove_Overloaded_Entity
begin
-- Remove the entity from both the homonym and scope chains
Remove_Entity (Id);
-- The entity denotes a primitive subprogram. Remove it from the list of
-- primitives of the associated controlling type.
if Ekind_In (Id, E_Function, E_Procedure) and then Is_Primitive (Id) then
Formal := First_Formal (Id);
while Present (Formal) loop
if Is_Controlling_Formal (Formal) then
Remove_Primitive_Of (Etype (Formal));
exit;
end if;
Next_Formal (Formal);
end loop;
if Ekind (Id) = E_Function and then Has_Controlling_Result (Id) then
Remove_Primitive_Of (Etype (Id));
end if;
end if;
end Remove_Overloaded_Entity;
---------------------
-- Rep_To_Pos_Flag --
---------------------
function Rep_To_Pos_Flag (E : Entity_Id; Loc : Source_Ptr) return Node_Id is
begin
return New_Occurrence_Of
(Boolean_Literals (not Range_Checks_Suppressed (E)), Loc);
end Rep_To_Pos_Flag;
--------------------
-- Require_Entity --
--------------------
procedure Require_Entity (N : Node_Id) is
begin
if Is_Entity_Name (N) and then No (Entity (N)) then
if Total_Errors_Detected /= 0 then
Set_Entity (N, Any_Id);
else
raise Program_Error;
end if;
end if;
end Require_Entity;
------------------------------
-- Requires_Transient_Scope --
------------------------------
-- A transient scope is required when variable-sized temporaries are
-- allocated on the secondary stack, or when finalization actions must be
-- generated before the next instruction.
function Requires_Transient_Scope (Id : Entity_Id) return Boolean is
Old_Result : constant Boolean := Old_Requires_Transient_Scope (Id);
begin
if Debug_Flag_QQ then
return Old_Result;
end if;
declare
New_Result : constant Boolean := New_Requires_Transient_Scope (Id);
begin
-- Assert that we're not putting things on the secondary stack if we
-- didn't before; we are trying to AVOID secondary stack when
-- possible.
if not Old_Result then
pragma Assert (not New_Result);
null;
end if;
if New_Result /= Old_Result then
Results_Differ (Id, Old_Result, New_Result);
end if;
return New_Result;
end;
end Requires_Transient_Scope;
--------------------
-- Results_Differ --
--------------------
procedure Results_Differ
(Id : Entity_Id;
Old_Val : Boolean;
New_Val : Boolean)
is
begin
if False then -- False to disable; True for debugging
Treepr.Print_Tree_Node (Id);
if Old_Val = New_Val then
raise Program_Error;
end if;
end if;
end Results_Differ;
--------------------------
-- Reset_Analyzed_Flags --
--------------------------
procedure Reset_Analyzed_Flags (N : Node_Id) is
function Clear_Analyzed (N : Node_Id) return Traverse_Result;
-- Function used to reset Analyzed flags in tree. Note that we do
-- not reset Analyzed flags in entities, since there is no need to
-- reanalyze entities, and indeed, it is wrong to do so, since it
-- can result in generating auxiliary stuff more than once.
--------------------
-- Clear_Analyzed --
--------------------
function Clear_Analyzed (N : Node_Id) return Traverse_Result is
begin
if Nkind (N) not in N_Entity then
Set_Analyzed (N, False);
end if;
return OK;
end Clear_Analyzed;
procedure Reset_Analyzed is new Traverse_Proc (Clear_Analyzed);
-- Start of processing for Reset_Analyzed_Flags
begin
Reset_Analyzed (N);
end Reset_Analyzed_Flags;
------------------------
-- Restore_SPARK_Mode --
------------------------
procedure Restore_SPARK_Mode
(Mode : SPARK_Mode_Type;
Prag : Node_Id)
is
begin
SPARK_Mode := Mode;
SPARK_Mode_Pragma := Prag;
end Restore_SPARK_Mode;
--------------------------------
-- Returns_Unconstrained_Type --
--------------------------------
function Returns_Unconstrained_Type (Subp : Entity_Id) return Boolean is
begin
return Ekind (Subp) = E_Function
and then not Is_Scalar_Type (Etype (Subp))
and then not Is_Access_Type (Etype (Subp))
and then not Is_Constrained (Etype (Subp));
end Returns_Unconstrained_Type;
----------------------------
-- Root_Type_Of_Full_View --
----------------------------
function Root_Type_Of_Full_View (T : Entity_Id) return Entity_Id is
Rtyp : constant Entity_Id := Root_Type (T);
begin
-- The root type of the full view may itself be a private type. Keep
-- looking for the ultimate derivation parent.
if Is_Private_Type (Rtyp) and then Present (Full_View (Rtyp)) then
return Root_Type_Of_Full_View (Full_View (Rtyp));
else
return Rtyp;
end if;
end Root_Type_Of_Full_View;
---------------------------
-- Safe_To_Capture_Value --
---------------------------
function Safe_To_Capture_Value
(N : Node_Id;
Ent : Entity_Id;
Cond : Boolean := False) return Boolean
is
begin
-- The only entities for which we track constant values are variables
-- which are not renamings, constants, out parameters, and in out
-- parameters, so check if we have this case.
-- Note: it may seem odd to track constant values for constants, but in
-- fact this routine is used for other purposes than simply capturing
-- the value. In particular, the setting of Known[_Non]_Null.
if (Ekind (Ent) = E_Variable and then No (Renamed_Object (Ent)))
or else
Ekind_In (Ent, E_Constant, E_Out_Parameter, E_In_Out_Parameter)
then
null;
-- For conditionals, we also allow loop parameters and all formals,
-- including in parameters.
elsif Cond and then Ekind_In (Ent, E_Loop_Parameter, E_In_Parameter) then
null;
-- For all other cases, not just unsafe, but impossible to capture
-- Current_Value, since the above are the only entities which have
-- Current_Value fields.
else
return False;
end if;
-- Skip if volatile or aliased, since funny things might be going on in
-- these cases which we cannot necessarily track. Also skip any variable
-- for which an address clause is given, or whose address is taken. Also
-- never capture value of library level variables (an attempt to do so
-- can occur in the case of package elaboration code).
if Treat_As_Volatile (Ent)
or else Is_Aliased (Ent)
or else Present (Address_Clause (Ent))
or else Address_Taken (Ent)
or else (Is_Library_Level_Entity (Ent)
and then Ekind (Ent) = E_Variable)
then
return False;
end if;
-- OK, all above conditions are met. We also require that the scope of
-- the reference be the same as the scope of the entity, not counting
-- packages and blocks and loops.
declare
E_Scope : constant Entity_Id := Scope (Ent);
R_Scope : Entity_Id;
begin
R_Scope := Current_Scope;
while R_Scope /= Standard_Standard loop
exit when R_Scope = E_Scope;
if not Ekind_In (R_Scope, E_Package, E_Block, E_Loop) then
return False;
else
R_Scope := Scope (R_Scope);
end if;
end loop;
end;
-- We also require that the reference does not appear in a context
-- where it is not sure to be executed (i.e. a conditional context
-- or an exception handler). We skip this if Cond is True, since the
-- capturing of values from conditional tests handles this ok.
if Cond then
return True;
end if;
declare
Desc : Node_Id;
P : Node_Id;
begin
Desc := N;
-- Seems dubious that case expressions are not handled here ???
P := Parent (N);
while Present (P) loop
if Nkind (P) = N_If_Statement
or else Nkind (P) = N_Case_Statement
or else (Nkind (P) in N_Short_Circuit
and then Desc = Right_Opnd (P))
or else (Nkind (P) = N_If_Expression
and then Desc /= First (Expressions (P)))
or else Nkind (P) = N_Exception_Handler
or else Nkind (P) = N_Selective_Accept
or else Nkind (P) = N_Conditional_Entry_Call
or else Nkind (P) = N_Timed_Entry_Call
or else Nkind (P) = N_Asynchronous_Select
then
return False;
else
Desc := P;
P := Parent (P);
-- A special Ada 2012 case: the original node may be part
-- of the else_actions of a conditional expression, in which
-- case it might not have been expanded yet, and appears in
-- a non-syntactic list of actions. In that case it is clearly
-- not safe to save a value.
if No (P)
and then Is_List_Member (Desc)
and then No (Parent (List_Containing (Desc)))
then
return False;
end if;
end if;
end loop;
end;
-- OK, looks safe to set value
return True;
end Safe_To_Capture_Value;
---------------
-- Same_Name --
---------------
function Same_Name (N1, N2 : Node_Id) return Boolean is
K1 : constant Node_Kind := Nkind (N1);
K2 : constant Node_Kind := Nkind (N2);
begin
if (K1 = N_Identifier or else K1 = N_Defining_Identifier)
and then (K2 = N_Identifier or else K2 = N_Defining_Identifier)
then
return Chars (N1) = Chars (N2);
elsif (K1 = N_Selected_Component or else K1 = N_Expanded_Name)
and then (K2 = N_Selected_Component or else K2 = N_Expanded_Name)
then
return Same_Name (Selector_Name (N1), Selector_Name (N2))
and then Same_Name (Prefix (N1), Prefix (N2));
else
return False;
end if;
end Same_Name;
-----------------
-- Same_Object --
-----------------
function Same_Object (Node1, Node2 : Node_Id) return Boolean is
N1 : constant Node_Id := Original_Node (Node1);
N2 : constant Node_Id := Original_Node (Node2);
-- We do the tests on original nodes, since we are most interested
-- in the original source, not any expansion that got in the way.
K1 : constant Node_Kind := Nkind (N1);
K2 : constant Node_Kind := Nkind (N2);
begin
-- First case, both are entities with same entity
if K1 in N_Has_Entity and then K2 in N_Has_Entity then
declare
EN1 : constant Entity_Id := Entity (N1);
EN2 : constant Entity_Id := Entity (N2);
begin
if Present (EN1) and then Present (EN2)
and then (Ekind_In (EN1, E_Variable, E_Constant)
or else Is_Formal (EN1))
and then EN1 = EN2
then
return True;
end if;
end;
end if;
-- Second case, selected component with same selector, same record
if K1 = N_Selected_Component
and then K2 = N_Selected_Component
and then Chars (Selector_Name (N1)) = Chars (Selector_Name (N2))
then
return Same_Object (Prefix (N1), Prefix (N2));
-- Third case, indexed component with same subscripts, same array
elsif K1 = N_Indexed_Component
and then K2 = N_Indexed_Component
and then Same_Object (Prefix (N1), Prefix (N2))
then
declare
E1, E2 : Node_Id;
begin
E1 := First (Expressions (N1));
E2 := First (Expressions (N2));
while Present (E1) loop
if not Same_Value (E1, E2) then
return False;
else
Next (E1);
Next (E2);
end if;
end loop;
return True;
end;
-- Fourth case, slice of same array with same bounds
elsif K1 = N_Slice
and then K2 = N_Slice
and then Nkind (Discrete_Range (N1)) = N_Range
and then Nkind (Discrete_Range (N2)) = N_Range
and then Same_Value (Low_Bound (Discrete_Range (N1)),
Low_Bound (Discrete_Range (N2)))
and then Same_Value (High_Bound (Discrete_Range (N1)),
High_Bound (Discrete_Range (N2)))
then
return Same_Name (Prefix (N1), Prefix (N2));
-- All other cases, not clearly the same object
else
return False;
end if;
end Same_Object;
---------------
-- Same_Type --
---------------
function Same_Type (T1, T2 : Entity_Id) return Boolean is
begin
if T1 = T2 then
return True;
elsif not Is_Constrained (T1)
and then not Is_Constrained (T2)
and then Base_Type (T1) = Base_Type (T2)
then
return True;
-- For now don't bother with case of identical constraints, to be
-- fiddled with later on perhaps (this is only used for optimization
-- purposes, so it is not critical to do a best possible job)
else
return False;
end if;
end Same_Type;
----------------
-- Same_Value --
----------------
function Same_Value (Node1, Node2 : Node_Id) return Boolean is
begin
if Compile_Time_Known_Value (Node1)
and then Compile_Time_Known_Value (Node2)
then
-- Handle properly compile-time expressions that are not
-- scalar.
if Is_String_Type (Etype (Node1)) then
return Expr_Value_S (Node1) = Expr_Value_S (Node2);
else
return Expr_Value (Node1) = Expr_Value (Node2);
end if;
elsif Same_Object (Node1, Node2) then
return True;
else
return False;
end if;
end Same_Value;
--------------------
-- Set_SPARK_Mode --
--------------------
procedure Set_SPARK_Mode (Context : Entity_Id) is
begin
-- Do not consider illegal or partially decorated constructs
if Ekind (Context) = E_Void or else Error_Posted (Context) then
null;
elsif Present (SPARK_Pragma (Context)) then
Install_SPARK_Mode
(Mode => Get_SPARK_Mode_From_Annotation (SPARK_Pragma (Context)),
Prag => SPARK_Pragma (Context));
end if;
end Set_SPARK_Mode;
-------------------------
-- Scalar_Part_Present --
-------------------------
function Scalar_Part_Present (T : Entity_Id) return Boolean is
C : Entity_Id;
begin
if Is_Scalar_Type (T) then
return True;
elsif Is_Array_Type (T) then
return Scalar_Part_Present (Component_Type (T));
elsif Is_Record_Type (T) or else Has_Discriminants (T) then
C := First_Component_Or_Discriminant (T);
while Present (C) loop
if Scalar_Part_Present (Etype (C)) then
return True;
else
Next_Component_Or_Discriminant (C);
end if;
end loop;
end if;
return False;
end Scalar_Part_Present;
------------------------
-- Scope_Is_Transient --
------------------------
function Scope_Is_Transient return Boolean is
begin
return Scope_Stack.Table (Scope_Stack.Last).Is_Transient;
end Scope_Is_Transient;
------------------
-- Scope_Within --
------------------
function Scope_Within
(Inner : Entity_Id;
Outer : Entity_Id) return Boolean
is
Curr : Entity_Id;
begin
Curr := Inner;
while Present (Curr) and then Curr /= Standard_Standard loop
Curr := Scope (Curr);
if Curr = Outer then
return True;
end if;
end loop;
return False;
end Scope_Within;
--------------------------
-- Scope_Within_Or_Same --
--------------------------
function Scope_Within_Or_Same
(Inner : Entity_Id;
Outer : Entity_Id) return Boolean
is
Curr : Entity_Id;
begin
Curr := Inner;
while Present (Curr) and then Curr /= Standard_Standard loop
if Curr = Outer then
return True;
end if;
Curr := Scope (Curr);
end loop;
return False;
end Scope_Within_Or_Same;
--------------------
-- Set_Convention --
--------------------
procedure Set_Convention (E : Entity_Id; Val : Snames.Convention_Id) is
begin
Basic_Set_Convention (E, Val);
if Is_Type (E)
and then Is_Access_Subprogram_Type (Base_Type (E))
and then Has_Foreign_Convention (E)
then
Set_Can_Use_Internal_Rep (E, False);
end if;
-- If E is an object, including a component, and the type of E is an
-- anonymous access type with no convention set, then also set the
-- convention of the anonymous access type. We do not do this for
-- anonymous protected types, since protected types always have the
-- default convention.
if Present (Etype (E))
and then (Is_Object (E)
-- Allow E_Void (happens for pragma Convention appearing
-- in the middle of a record applying to a component)
or else Ekind (E) = E_Void)
then
declare
Typ : constant Entity_Id := Etype (E);
begin
if Ekind_In (Typ, E_Anonymous_Access_Type,
E_Anonymous_Access_Subprogram_Type)
and then not Has_Convention_Pragma (Typ)
then
Basic_Set_Convention (Typ, Val);
Set_Has_Convention_Pragma (Typ);
-- And for the access subprogram type, deal similarly with the
-- designated E_Subprogram_Type, which is always internal.
if Ekind (Typ) = E_Anonymous_Access_Subprogram_Type then
declare
Dtype : constant Entity_Id := Designated_Type (Typ);
begin
if Ekind (Dtype) = E_Subprogram_Type
and then not Has_Convention_Pragma (Dtype)
then
Basic_Set_Convention (Dtype, Val);
Set_Has_Convention_Pragma (Dtype);
end if;
end;
end if;
end if;
end;
end if;
end Set_Convention;
------------------------
-- Set_Current_Entity --
------------------------
-- The given entity is to be set as the currently visible definition of its
-- associated name (i.e. the Node_Id associated with its name). All we have
-- to do is to get the name from the identifier, and then set the
-- associated Node_Id to point to the given entity.
procedure Set_Current_Entity (E : Entity_Id) is
begin
Set_Name_Entity_Id (Chars (E), E);
end Set_Current_Entity;
---------------------------
-- Set_Debug_Info_Needed --
---------------------------
procedure Set_Debug_Info_Needed (T : Entity_Id) is
procedure Set_Debug_Info_Needed_If_Not_Set (E : Entity_Id);
pragma Inline (Set_Debug_Info_Needed_If_Not_Set);
-- Used to set debug info in a related node if not set already
--------------------------------------
-- Set_Debug_Info_Needed_If_Not_Set --
--------------------------------------
procedure Set_Debug_Info_Needed_If_Not_Set (E : Entity_Id) is
begin
if Present (E) and then not Needs_Debug_Info (E) then
Set_Debug_Info_Needed (E);
-- For a private type, indicate that the full view also needs
-- debug information.
if Is_Type (E)
and then Is_Private_Type (E)
and then Present (Full_View (E))
then
Set_Debug_Info_Needed (Full_View (E));
end if;
end if;
end Set_Debug_Info_Needed_If_Not_Set;
-- Start of processing for Set_Debug_Info_Needed
begin
-- Nothing to do if argument is Empty or has Debug_Info_Off set, which
-- indicates that Debug_Info_Needed is never required for the entity.
-- Nothing to do if entity comes from a predefined file. Library files
-- are compiled without debug information, but inlined bodies of these
-- routines may appear in user code, and debug information on them ends
-- up complicating debugging the user code.
if No (T)
or else Debug_Info_Off (T)
then
return;
elsif In_Inlined_Body and then In_Predefined_Unit (T) then
Set_Needs_Debug_Info (T, False);
end if;
-- Set flag in entity itself. Note that we will go through the following
-- circuitry even if the flag is already set on T. That's intentional,
-- it makes sure that the flag will be set in subsidiary entities.
Set_Needs_Debug_Info (T);
-- Set flag on subsidiary entities if not set already
if Is_Object (T) then
Set_Debug_Info_Needed_If_Not_Set (Etype (T));
elsif Is_Type (T) then
Set_Debug_Info_Needed_If_Not_Set (Etype (T));
if Is_Record_Type (T) then
declare
Ent : Entity_Id := First_Entity (T);
begin
while Present (Ent) loop
Set_Debug_Info_Needed_If_Not_Set (Ent);
Next_Entity (Ent);
end loop;
end;
-- For a class wide subtype, we also need debug information
-- for the equivalent type.
if Ekind (T) = E_Class_Wide_Subtype then
Set_Debug_Info_Needed_If_Not_Set (Equivalent_Type (T));
end if;
elsif Is_Array_Type (T) then
Set_Debug_Info_Needed_If_Not_Set (Component_Type (T));
declare
Indx : Node_Id := First_Index (T);
begin
while Present (Indx) loop
Set_Debug_Info_Needed_If_Not_Set (Etype (Indx));
Indx := Next_Index (Indx);
end loop;
end;
-- For a packed array type, we also need debug information for
-- the type used to represent the packed array. Conversely, we
-- also need it for the former if we need it for the latter.
if Is_Packed (T) then
Set_Debug_Info_Needed_If_Not_Set (Packed_Array_Impl_Type (T));
end if;
if Is_Packed_Array_Impl_Type (T) then
Set_Debug_Info_Needed_If_Not_Set (Original_Array_Type (T));
end if;
elsif Is_Access_Type (T) then
Set_Debug_Info_Needed_If_Not_Set (Directly_Designated_Type (T));
elsif Is_Private_Type (T) then
declare
FV : constant Entity_Id := Full_View (T);
begin
Set_Debug_Info_Needed_If_Not_Set (FV);
-- If the full view is itself a derived private type, we need
-- debug information on its underlying type.
if Present (FV)
and then Is_Private_Type (FV)
and then Present (Underlying_Full_View (FV))
then
Set_Needs_Debug_Info (Underlying_Full_View (FV));
end if;
end;
elsif Is_Protected_Type (T) then
Set_Debug_Info_Needed_If_Not_Set (Corresponding_Record_Type (T));
elsif Is_Scalar_Type (T) then
-- If the subrange bounds are materialized by dedicated constant
-- objects, also include them in the debug info to make sure the
-- debugger can properly use them.
if Present (Scalar_Range (T))
and then Nkind (Scalar_Range (T)) = N_Range
then
declare
Low_Bnd : constant Node_Id := Type_Low_Bound (T);
High_Bnd : constant Node_Id := Type_High_Bound (T);
begin
if Is_Entity_Name (Low_Bnd) then
Set_Debug_Info_Needed_If_Not_Set (Entity (Low_Bnd));
end if;
if Is_Entity_Name (High_Bnd) then
Set_Debug_Info_Needed_If_Not_Set (Entity (High_Bnd));
end if;
end;
end if;
end if;
end if;
end Set_Debug_Info_Needed;
----------------------------
-- Set_Entity_With_Checks --
----------------------------
procedure Set_Entity_With_Checks (N : Node_Id; Val : Entity_Id) is
Val_Actual : Entity_Id;
Nod : Node_Id;
Post_Node : Node_Id;
begin
-- Unconditionally set the entity
Set_Entity (N, Val);
-- The node to post on is the selector in the case of an expanded name,
-- and otherwise the node itself.
if Nkind (N) = N_Expanded_Name then
Post_Node := Selector_Name (N);
else
Post_Node := N;
end if;
-- Check for violation of No_Fixed_IO
if Restriction_Check_Required (No_Fixed_IO)
and then
((RTU_Loaded (Ada_Text_IO)
and then (Is_RTE (Val, RE_Decimal_IO)
or else
Is_RTE (Val, RE_Fixed_IO)))
or else
(RTU_Loaded (Ada_Wide_Text_IO)
and then (Is_RTE (Val, RO_WT_Decimal_IO)
or else
Is_RTE (Val, RO_WT_Fixed_IO)))
or else
(RTU_Loaded (Ada_Wide_Wide_Text_IO)
and then (Is_RTE (Val, RO_WW_Decimal_IO)
or else
Is_RTE (Val, RO_WW_Fixed_IO))))
-- A special extra check, don't complain about a reference from within
-- the Ada.Interrupts package itself!
and then not In_Same_Extended_Unit (N, Val)
then
Check_Restriction (No_Fixed_IO, Post_Node);
end if;
-- Remaining checks are only done on source nodes. Note that we test
-- for violation of No_Fixed_IO even on non-source nodes, because the
-- cases for checking violations of this restriction are instantiations
-- where the reference in the instance has Comes_From_Source False.
if not Comes_From_Source (N) then
return;
end if;
-- Check for violation of No_Abort_Statements, which is triggered by
-- call to Ada.Task_Identification.Abort_Task.
if Restriction_Check_Required (No_Abort_Statements)
and then (Is_RTE (Val, RE_Abort_Task))
-- A special extra check, don't complain about a reference from within
-- the Ada.Task_Identification package itself!
and then not In_Same_Extended_Unit (N, Val)
then
Check_Restriction (No_Abort_Statements, Post_Node);
end if;
if Val = Standard_Long_Long_Integer then
Check_Restriction (No_Long_Long_Integers, Post_Node);
end if;
-- Check for violation of No_Dynamic_Attachment
if Restriction_Check_Required (No_Dynamic_Attachment)
and then RTU_Loaded (Ada_Interrupts)
and then (Is_RTE (Val, RE_Is_Reserved) or else
Is_RTE (Val, RE_Is_Attached) or else
Is_RTE (Val, RE_Current_Handler) or else
Is_RTE (Val, RE_Attach_Handler) or else
Is_RTE (Val, RE_Exchange_Handler) or else
Is_RTE (Val, RE_Detach_Handler) or else
Is_RTE (Val, RE_Reference))
-- A special extra check, don't complain about a reference from within
-- the Ada.Interrupts package itself!
and then not In_Same_Extended_Unit (N, Val)
then
Check_Restriction (No_Dynamic_Attachment, Post_Node);
end if;
-- Check for No_Implementation_Identifiers
if Restriction_Check_Required (No_Implementation_Identifiers) then
-- We have an implementation defined entity if it is marked as
-- implementation defined, or is defined in a package marked as
-- implementation defined. However, library packages themselves
-- are excluded (we don't want to flag Interfaces itself, just
-- the entities within it).
if (Is_Implementation_Defined (Val)
or else
(Present (Scope (Val))
and then Is_Implementation_Defined (Scope (Val))))
and then not (Ekind_In (Val, E_Package, E_Generic_Package)
and then Is_Library_Level_Entity (Val))
then
Check_Restriction (No_Implementation_Identifiers, Post_Node);
end if;
end if;
-- Do the style check
if Style_Check
and then not Suppress_Style_Checks (Val)
and then not In_Instance
then
if Nkind (N) = N_Identifier then
Nod := N;
elsif Nkind (N) = N_Expanded_Name then
Nod := Selector_Name (N);
else
return;
end if;
-- A special situation arises for derived operations, where we want
-- to do the check against the parent (since the Sloc of the derived
-- operation points to the derived type declaration itself).
Val_Actual := Val;
while not Comes_From_Source (Val_Actual)
and then Nkind (Val_Actual) in N_Entity
and then (Ekind (Val_Actual) = E_Enumeration_Literal
or else Is_Subprogram_Or_Generic_Subprogram (Val_Actual))
and then Present (Alias (Val_Actual))
loop
Val_Actual := Alias (Val_Actual);
end loop;
-- Renaming declarations for generic actuals do not come from source,
-- and have a different name from that of the entity they rename, so
-- there is no style check to perform here.
if Chars (Nod) = Chars (Val_Actual) then
Style.Check_Identifier (Nod, Val_Actual);
end if;
end if;
Set_Entity (N, Val);
end Set_Entity_With_Checks;
------------------------
-- Set_Name_Entity_Id --
------------------------
procedure Set_Name_Entity_Id (Id : Name_Id; Val : Entity_Id) is
begin
Set_Name_Table_Int (Id, Int (Val));
end Set_Name_Entity_Id;
---------------------
-- Set_Next_Actual --
---------------------
procedure Set_Next_Actual (Ass1_Id : Node_Id; Ass2_Id : Node_Id) is
begin
if Nkind (Parent (Ass1_Id)) = N_Parameter_Association then
Set_First_Named_Actual (Parent (Ass1_Id), Ass2_Id);
end if;
end Set_Next_Actual;
----------------------------------
-- Set_Optimize_Alignment_Flags --
----------------------------------
procedure Set_Optimize_Alignment_Flags (E : Entity_Id) is
begin
if Optimize_Alignment = 'S' then
Set_Optimize_Alignment_Space (E);
elsif Optimize_Alignment = 'T' then
Set_Optimize_Alignment_Time (E);
end if;
end Set_Optimize_Alignment_Flags;
-----------------------
-- Set_Public_Status --
-----------------------
procedure Set_Public_Status (Id : Entity_Id) is
S : constant Entity_Id := Current_Scope;
function Within_HSS_Or_If (E : Entity_Id) return Boolean;
-- Determines if E is defined within handled statement sequence or
-- an if statement, returns True if so, False otherwise.
----------------------
-- Within_HSS_Or_If --
----------------------
function Within_HSS_Or_If (E : Entity_Id) return Boolean is
N : Node_Id;
begin
N := Declaration_Node (E);
loop
N := Parent (N);
if No (N) then
return False;
elsif Nkind_In (N, N_Handled_Sequence_Of_Statements,
N_If_Statement)
then
return True;
end if;
end loop;
end Within_HSS_Or_If;
-- Start of processing for Set_Public_Status
begin
-- Everything in the scope of Standard is public
if S = Standard_Standard then
Set_Is_Public (Id);
-- Entity is definitely not public if enclosing scope is not public
elsif not Is_Public (S) then
return;
-- An object or function declaration that occurs in a handled sequence
-- of statements or within an if statement is the declaration for a
-- temporary object or local subprogram generated by the expander. It
-- never needs to be made public and furthermore, making it public can
-- cause back end problems.
elsif Nkind_In (Parent (Id), N_Object_Declaration,
N_Function_Specification)
and then Within_HSS_Or_If (Id)
then
return;
-- Entities in public packages or records are public
elsif Ekind (S) = E_Package or Is_Record_Type (S) then
Set_Is_Public (Id);
-- The bounds of an entry family declaration can generate object
-- declarations that are visible to the back-end, e.g. in the
-- the declaration of a composite type that contains tasks.
elsif Is_Concurrent_Type (S)
and then not Has_Completion (S)
and then Nkind (Parent (Id)) = N_Object_Declaration
then
Set_Is_Public (Id);
end if;
end Set_Public_Status;
-----------------------------
-- Set_Referenced_Modified --
-----------------------------
procedure Set_Referenced_Modified (N : Node_Id; Out_Param : Boolean) is
Pref : Node_Id;
begin
-- Deal with indexed or selected component where prefix is modified
if Nkind_In (N, N_Indexed_Component, N_Selected_Component) then
Pref := Prefix (N);
-- If prefix is access type, then it is the designated object that is
-- being modified, which means we have no entity to set the flag on.
if No (Etype (Pref)) or else Is_Access_Type (Etype (Pref)) then
return;
-- Otherwise chase the prefix
else
Set_Referenced_Modified (Pref, Out_Param);
end if;
-- Otherwise see if we have an entity name (only other case to process)
elsif Is_Entity_Name (N) and then Present (Entity (N)) then
Set_Referenced_As_LHS (Entity (N), not Out_Param);
Set_Referenced_As_Out_Parameter (Entity (N), Out_Param);
end if;
end Set_Referenced_Modified;
------------------
-- Set_Rep_Info --
------------------
procedure Set_Rep_Info (T1 : Entity_Id; T2 : Entity_Id) is
begin
Set_Is_Atomic (T1, Is_Atomic (T2));
Set_Is_Independent (T1, Is_Independent (T2));
Set_Is_Volatile_Full_Access (T1, Is_Volatile_Full_Access (T2));
if Is_Base_Type (T1) then
Set_Is_Volatile (T1, Is_Volatile (T2));
end if;
end Set_Rep_Info;
----------------------------
-- Set_Scope_Is_Transient --
----------------------------
procedure Set_Scope_Is_Transient (V : Boolean := True) is
begin
Scope_Stack.Table (Scope_Stack.Last).Is_Transient := V;
end Set_Scope_Is_Transient;
-------------------
-- Set_Size_Info --
-------------------
procedure Set_Size_Info (T1, T2 : Entity_Id) is
begin
-- We copy Esize, but not RM_Size, since in general RM_Size is
-- subtype specific and does not get inherited by all subtypes.
Set_Esize (T1, Esize (T2));
Set_Has_Biased_Representation (T1, Has_Biased_Representation (T2));
if Is_Discrete_Or_Fixed_Point_Type (T1)
and then
Is_Discrete_Or_Fixed_Point_Type (T2)
then
Set_Is_Unsigned_Type (T1, Is_Unsigned_Type (T2));
end if;
Set_Alignment (T1, Alignment (T2));
end Set_Size_Info;
------------------------------
-- Should_Ignore_Pragma_Par --
------------------------------
function Should_Ignore_Pragma_Par (Prag_Name : Name_Id) return Boolean is
pragma Assert (Compiler_State = Parsing);
-- This one can't work during semantic analysis, because we don't have a
-- correct Current_Source_File.
Result : constant Boolean :=
Get_Name_Table_Boolean3 (Prag_Name)
and then not Is_Internal_File_Name
(File_Name (Current_Source_File));
begin
return Result;
end Should_Ignore_Pragma_Par;
------------------------------
-- Should_Ignore_Pragma_Sem --
------------------------------
function Should_Ignore_Pragma_Sem (N : Node_Id) return Boolean is
pragma Assert (Compiler_State = Analyzing);
Prag_Name : constant Name_Id := Pragma_Name (N);
Result : constant Boolean :=
Get_Name_Table_Boolean3 (Prag_Name)
and then not In_Internal_Unit (N);
begin
return Result;
end Should_Ignore_Pragma_Sem;
--------------------
-- Static_Boolean --
--------------------
function Static_Boolean (N : Node_Id) return Uint is
begin
Analyze_And_Resolve (N, Standard_Boolean);
if N = Error
or else Error_Posted (N)
or else Etype (N) = Any_Type
then
return No_Uint;
end if;
if Is_OK_Static_Expression (N) then
if not Raises_Constraint_Error (N) then
return Expr_Value (N);
else
return No_Uint;
end if;
elsif Etype (N) = Any_Type then
return No_Uint;
else
Flag_Non_Static_Expr
("static boolean expression required here", N);
return No_Uint;
end if;
end Static_Boolean;
--------------------
-- Static_Integer --
--------------------
function Static_Integer (N : Node_Id) return Uint is
begin
Analyze_And_Resolve (N, Any_Integer);
if N = Error
or else Error_Posted (N)
or else Etype (N) = Any_Type
then
return No_Uint;
end if;
if Is_OK_Static_Expression (N) then
if not Raises_Constraint_Error (N) then
return Expr_Value (N);
else
return No_Uint;
end if;
elsif Etype (N) = Any_Type then
return No_Uint;
else
Flag_Non_Static_Expr
("static integer expression required here", N);
return No_Uint;
end if;
end Static_Integer;
--------------------------
-- Statically_Different --
--------------------------
function Statically_Different (E1, E2 : Node_Id) return Boolean is
R1 : constant Node_Id := Get_Referenced_Object (E1);
R2 : constant Node_Id := Get_Referenced_Object (E2);
begin
return Is_Entity_Name (R1)
and then Is_Entity_Name (R2)
and then Entity (R1) /= Entity (R2)
and then not Is_Formal (Entity (R1))
and then not Is_Formal (Entity (R2));
end Statically_Different;
--------------------------------------
-- Subject_To_Loop_Entry_Attributes --
--------------------------------------
function Subject_To_Loop_Entry_Attributes (N : Node_Id) return Boolean is
Stmt : Node_Id;
begin
Stmt := N;
-- The expansion mechanism transform a loop subject to at least one
-- 'Loop_Entry attribute into a conditional block. Infinite loops lack
-- the conditional part.
if Nkind_In (Stmt, N_Block_Statement, N_If_Statement)
and then Nkind (Original_Node (N)) = N_Loop_Statement
then
Stmt := Original_Node (N);
end if;
return
Nkind (Stmt) = N_Loop_Statement
and then Present (Identifier (Stmt))
and then Present (Entity (Identifier (Stmt)))
and then Has_Loop_Entry_Attributes (Entity (Identifier (Stmt)));
end Subject_To_Loop_Entry_Attributes;
-----------------------------
-- Subprogram_Access_Level --
-----------------------------
function Subprogram_Access_Level (Subp : Entity_Id) return Uint is
begin
if Present (Alias (Subp)) then
return Subprogram_Access_Level (Alias (Subp));
else
return Scope_Depth (Enclosing_Dynamic_Scope (Subp));
end if;
end Subprogram_Access_Level;
---------------------
-- Subprogram_Name --
---------------------
function Subprogram_Name (N : Node_Id) return String is
Buf : Bounded_String;
Ent : Node_Id := N;
Nod : Node_Id;
begin
while Present (Ent) loop
case Nkind (Ent) is
when N_Subprogram_Body =>
Ent := Defining_Unit_Name (Specification (Ent));
exit;
when N_Subprogram_Declaration =>
Nod := Corresponding_Body (Ent);
if Present (Nod) then
Ent := Nod;
else
Ent := Defining_Unit_Name (Specification (Ent));
end if;
exit;
when N_Subprogram_Instantiation
| N_Package_Body
| N_Package_Specification
=>
Ent := Defining_Unit_Name (Ent);
exit;
when N_Protected_Type_Declaration =>
Ent := Corresponding_Body (Ent);
exit;
when N_Protected_Body
| N_Task_Body
=>
Ent := Defining_Identifier (Ent);
exit;
when others =>
null;
end case;
Ent := Parent (Ent);
end loop;
if No (Ent) then
return "unknown subprogram:unknown file:0:0";
end if;
-- If the subprogram is a child unit, use its simple name to start the
-- construction of the fully qualified name.
if Nkind (Ent) = N_Defining_Program_Unit_Name then
Ent := Defining_Identifier (Ent);
end if;
Append_Entity_Name (Buf, Ent);
-- Append homonym number if needed
if Nkind (N) in N_Entity and then Has_Homonym (N) then
declare
H : Entity_Id := Homonym (N);
Nr : Nat := 1;
begin
while Present (H) loop
if Scope (H) = Scope (N) then
Nr := Nr + 1;
end if;
H := Homonym (H);
end loop;
if Nr > 1 then
Append (Buf, '#');
Append (Buf, Nr);
end if;
end;
end if;
-- Append source location of Ent to Buf so that the string will
-- look like "subp:file:line:col".
declare
Loc : constant Source_Ptr := Sloc (Ent);
begin
Append (Buf, ':');
Append (Buf, Reference_Name (Get_Source_File_Index (Loc)));
Append (Buf, ':');
Append (Buf, Nat (Get_Logical_Line_Number (Loc)));
Append (Buf, ':');
Append (Buf, Nat (Get_Column_Number (Loc)));
end;
return +Buf;
end Subprogram_Name;
-------------------------------
-- Support_Atomic_Primitives --
-------------------------------
function Support_Atomic_Primitives (Typ : Entity_Id) return Boolean is
Size : Int;
begin
-- Verify the alignment of Typ is known
if not Known_Alignment (Typ) then
return False;
end if;
if Known_Static_Esize (Typ) then
Size := UI_To_Int (Esize (Typ));
-- If the Esize (Object_Size) is unknown at compile time, look at the
-- RM_Size (Value_Size) which may have been set by an explicit rep item.
elsif Known_Static_RM_Size (Typ) then
Size := UI_To_Int (RM_Size (Typ));
-- Otherwise, the size is considered to be unknown.
else
return False;
end if;
-- Check that the size of the component is 8, 16, 32, or 64 bits and
-- that Typ is properly aligned.
case Size is
when 8 | 16 | 32 | 64 =>
return Size = UI_To_Int (Alignment (Typ)) * 8;
when others =>
return False;
end case;
end Support_Atomic_Primitives;
-----------------
-- Trace_Scope --
-----------------
procedure Trace_Scope (N : Node_Id; E : Entity_Id; Msg : String) is
begin
if Debug_Flag_W then
for J in 0 .. Scope_Stack.Last loop
Write_Str (" ");
end loop;
Write_Str (Msg);
Write_Name (Chars (E));
Write_Str (" from ");
Write_Location (Sloc (N));
Write_Eol;
end if;
end Trace_Scope;
-----------------------
-- Transfer_Entities --
-----------------------
procedure Transfer_Entities (From : Entity_Id; To : Entity_Id) is
procedure Set_Public_Status_Of (Id : Entity_Id);
-- Set the Is_Public attribute of arbitrary entity Id by calling routine
-- Set_Public_Status. If successful and Id denotes a record type, set
-- the Is_Public attribute of its fields.
--------------------------
-- Set_Public_Status_Of --
--------------------------
procedure Set_Public_Status_Of (Id : Entity_Id) is
Field : Entity_Id;
begin
if not Is_Public (Id) then
Set_Public_Status (Id);
-- When the input entity is a public record type, ensure that all
-- its internal fields are also exposed to the linker. The fields
-- of a class-wide type are never made public.
if Is_Public (Id)
and then Is_Record_Type (Id)
and then not Is_Class_Wide_Type (Id)
then
Field := First_Entity (Id);
while Present (Field) loop
Set_Is_Public (Field);
Next_Entity (Field);
end loop;
end if;
end if;
end Set_Public_Status_Of;
-- Local variables
Full_Id : Entity_Id;
Id : Entity_Id;
-- Start of processing for Transfer_Entities
begin
Id := First_Entity (From);
if Present (Id) then
-- Merge the entity chain of the source scope with that of the
-- destination scope.
if Present (Last_Entity (To)) then
Set_Next_Entity (Last_Entity (To), Id);
else
Set_First_Entity (To, Id);
end if;
Set_Last_Entity (To, Last_Entity (From));
-- Inspect the entities of the source scope and update their Scope
-- attribute.
while Present (Id) loop
Set_Scope (Id, To);
Set_Public_Status_Of (Id);
-- Handle an internally generated full view for a private type
if Is_Private_Type (Id)
and then Present (Full_View (Id))
and then Is_Itype (Full_View (Id))
then
Full_Id := Full_View (Id);
Set_Scope (Full_Id, To);
Set_Public_Status_Of (Full_Id);
end if;
Next_Entity (Id);
end loop;
Set_First_Entity (From, Empty);
Set_Last_Entity (From, Empty);
end if;
end Transfer_Entities;
-----------------------
-- Type_Access_Level --
-----------------------
function Type_Access_Level (Typ : Entity_Id) return Uint is
Btyp : Entity_Id;
begin
Btyp := Base_Type (Typ);
-- Ada 2005 (AI-230): For most cases of anonymous access types, we
-- simply use the level where the type is declared. This is true for
-- stand-alone object declarations, and for anonymous access types
-- associated with components the level is the same as that of the
-- enclosing composite type. However, special treatment is needed for
-- the cases of access parameters, return objects of an anonymous access
-- type, and, in Ada 95, access discriminants of limited types.
if Is_Access_Type (Btyp) then
if Ekind (Btyp) = E_Anonymous_Access_Type then
-- If the type is a nonlocal anonymous access type (such as for
-- an access parameter) we treat it as being declared at the
-- library level to ensure that names such as X.all'access don't
-- fail static accessibility checks.
if not Is_Local_Anonymous_Access (Typ) then
return Scope_Depth (Standard_Standard);
-- If this is a return object, the accessibility level is that of
-- the result subtype of the enclosing function. The test here is
-- little complicated, because we have to account for extended
-- return statements that have been rewritten as blocks, in which
-- case we have to find and the Is_Return_Object attribute of the
-- itype's associated object. It would be nice to find a way to
-- simplify this test, but it doesn't seem worthwhile to add a new
-- flag just for purposes of this test. ???
elsif Ekind (Scope (Btyp)) = E_Return_Statement
or else
(Is_Itype (Btyp)
and then Nkind (Associated_Node_For_Itype (Btyp)) =
N_Object_Declaration
and then Is_Return_Object
(Defining_Identifier
(Associated_Node_For_Itype (Btyp))))
then
declare
Scop : Entity_Id;
begin
Scop := Scope (Scope (Btyp));
while Present (Scop) loop
exit when Ekind (Scop) = E_Function;
Scop := Scope (Scop);
end loop;
-- Treat the return object's type as having the level of the
-- function's result subtype (as per RM05-6.5(5.3/2)).
return Type_Access_Level (Etype (Scop));
end;
end if;
end if;
Btyp := Root_Type (Btyp);
-- The accessibility level of anonymous access types associated with
-- discriminants is that of the current instance of the type, and
-- that's deeper than the type itself (AARM 3.10.2 (12.3.21)).
-- AI-402: access discriminants have accessibility based on the
-- object rather than the type in Ada 2005, so the above paragraph
-- doesn't apply.
-- ??? Needs completion with rules from AI-416
if Ada_Version <= Ada_95
and then Ekind (Typ) = E_Anonymous_Access_Type
and then Present (Associated_Node_For_Itype (Typ))
and then Nkind (Associated_Node_For_Itype (Typ)) =
N_Discriminant_Specification
then
return Scope_Depth (Enclosing_Dynamic_Scope (Btyp)) + 1;
end if;
end if;
-- Return library level for a generic formal type. This is done because
-- RM(10.3.2) says that "The statically deeper relationship does not
-- apply to ... a descendant of a generic formal type". Rather than
-- checking at each point where a static accessibility check is
-- performed to see if we are dealing with a formal type, this rule is
-- implemented by having Type_Access_Level and Deepest_Type_Access_Level
-- return extreme values for a formal type; Deepest_Type_Access_Level
-- returns Int'Last. By calling the appropriate function from among the
-- two, we ensure that the static accessibility check will pass if we
-- happen to run into a formal type. More specifically, we should call
-- Deepest_Type_Access_Level instead of Type_Access_Level whenever the
-- call occurs as part of a static accessibility check and the error
-- case is the case where the type's level is too shallow (as opposed
-- to too deep).
if Is_Generic_Type (Root_Type (Btyp)) then
return Scope_Depth (Standard_Standard);
end if;
return Scope_Depth (Enclosing_Dynamic_Scope (Btyp));
end Type_Access_Level;
------------------------------------
-- Type_Without_Stream_Operation --
------------------------------------
function Type_Without_Stream_Operation
(T : Entity_Id;
Op : TSS_Name_Type := TSS_Null) return Entity_Id
is
BT : constant Entity_Id := Base_Type (T);
Op_Missing : Boolean;
begin
if not Restriction_Active (No_Default_Stream_Attributes) then
return Empty;
end if;
if Is_Elementary_Type (T) then
if Op = TSS_Null then
Op_Missing :=
No (TSS (BT, TSS_Stream_Read))
or else No (TSS (BT, TSS_Stream_Write));
else
Op_Missing := No (TSS (BT, Op));
end if;
if Op_Missing then
return T;
else
return Empty;
end if;
elsif Is_Array_Type (T) then
return Type_Without_Stream_Operation (Component_Type (T), Op);
elsif Is_Record_Type (T) then
declare
Comp : Entity_Id;
C_Typ : Entity_Id;
begin
Comp := First_Component (T);
while Present (Comp) loop
C_Typ := Type_Without_Stream_Operation (Etype (Comp), Op);
if Present (C_Typ) then
return C_Typ;
end if;
Next_Component (Comp);
end loop;
return Empty;
end;
elsif Is_Private_Type (T) and then Present (Full_View (T)) then
return Type_Without_Stream_Operation (Full_View (T), Op);
else
return Empty;
end if;
end Type_Without_Stream_Operation;
----------------------------
-- Unique_Defining_Entity --
----------------------------
function Unique_Defining_Entity (N : Node_Id) return Entity_Id is
begin
return Unique_Entity (Defining_Entity (N));
end Unique_Defining_Entity;
-------------------
-- Unique_Entity --
-------------------
function Unique_Entity (E : Entity_Id) return Entity_Id is
U : Entity_Id := E;
P : Node_Id;
begin
case Ekind (E) is
when E_Constant =>
if Present (Full_View (E)) then
U := Full_View (E);
end if;
when Entry_Kind =>
if Nkind (Parent (E)) = N_Entry_Body then
declare
Prot_Item : Entity_Id;
Prot_Type : Entity_Id;
begin
if Ekind (E) = E_Entry then
Prot_Type := Scope (E);
-- Bodies of entry families are nested within an extra scope
-- that contains an entry index declaration.
else
Prot_Type := Scope (Scope (E));
end if;
-- A protected type may be declared as a private type, in
-- which case we need to get its full view.
if Is_Private_Type (Prot_Type) then
Prot_Type := Full_View (Prot_Type);
end if;
-- Full view may not be present on error, in which case
-- return E by default.
if Present (Prot_Type) then
pragma Assert (Ekind (Prot_Type) = E_Protected_Type);
-- Traverse the entity list of the protected type and
-- locate an entry declaration which matches the entry
-- body.
Prot_Item := First_Entity (Prot_Type);
while Present (Prot_Item) loop
if Ekind (Prot_Item) in Entry_Kind
and then Corresponding_Body (Parent (Prot_Item)) = E
then
U := Prot_Item;
exit;
end if;
Next_Entity (Prot_Item);
end loop;
end if;
end;
end if;
when Formal_Kind =>
if Present (Spec_Entity (E)) then
U := Spec_Entity (E);
end if;
when E_Package_Body =>
P := Parent (E);
if Nkind (P) = N_Defining_Program_Unit_Name then
P := Parent (P);
end if;
if Nkind (P) = N_Package_Body
and then Present (Corresponding_Spec (P))
then
U := Corresponding_Spec (P);
elsif Nkind (P) = N_Package_Body_Stub
and then Present (Corresponding_Spec_Of_Stub (P))
then
U := Corresponding_Spec_Of_Stub (P);
end if;
when E_Protected_Body =>
P := Parent (E);
if Nkind (P) = N_Protected_Body
and then Present (Corresponding_Spec (P))
then
U := Corresponding_Spec (P);
elsif Nkind (P) = N_Protected_Body_Stub
and then Present (Corresponding_Spec_Of_Stub (P))
then
U := Corresponding_Spec_Of_Stub (P);
if Is_Single_Protected_Object (U) then
U := Etype (U);
end if;
end if;
if Is_Private_Type (U) then
U := Full_View (U);
end if;
when E_Subprogram_Body =>
P := Parent (E);
if Nkind (P) = N_Defining_Program_Unit_Name then
P := Parent (P);
end if;
P := Parent (P);
if Nkind (P) = N_Subprogram_Body
and then Present (Corresponding_Spec (P))
then
U := Corresponding_Spec (P);
elsif Nkind (P) = N_Subprogram_Body_Stub
and then Present (Corresponding_Spec_Of_Stub (P))
then
U := Corresponding_Spec_Of_Stub (P);
elsif Nkind (P) = N_Subprogram_Renaming_Declaration then
U := Corresponding_Spec (P);
end if;
when E_Task_Body =>
P := Parent (E);
if Nkind (P) = N_Task_Body
and then Present (Corresponding_Spec (P))
then
U := Corresponding_Spec (P);
elsif Nkind (P) = N_Task_Body_Stub
and then Present (Corresponding_Spec_Of_Stub (P))
then
U := Corresponding_Spec_Of_Stub (P);
if Is_Single_Task_Object (U) then
U := Etype (U);
end if;
end if;
if Is_Private_Type (U) then
U := Full_View (U);
end if;
when Type_Kind =>
if Present (Full_View (E)) then
U := Full_View (E);
end if;
when others =>
null;
end case;
return U;
end Unique_Entity;
-----------------
-- Unique_Name --
-----------------
function Unique_Name (E : Entity_Id) return String is
-- Names in E_Subprogram_Body or E_Package_Body entities are not
-- reliable, as they may not include the overloading suffix. Instead,
-- when looking for the name of E or one of its enclosing scope, we get
-- the name of the corresponding Unique_Entity.
U : constant Entity_Id := Unique_Entity (E);
function This_Name return String;
---------------
-- This_Name --
---------------
function This_Name return String is
begin
return Get_Name_String (Chars (U));
end This_Name;
-- Start of processing for Unique_Name
begin
if E = Standard_Standard
or else Has_Fully_Qualified_Name (E)
then
return This_Name;
elsif Ekind (E) = E_Enumeration_Literal then
return Unique_Name (Etype (E)) & "__" & This_Name;
else
declare
S : constant Entity_Id := Scope (U);
pragma Assert (Present (S));
begin
-- Prefix names of predefined types with standard__, but leave
-- names of user-defined packages and subprograms without prefix
-- (even if technically they are nested in the Standard package).
if S = Standard_Standard then
if Ekind (U) = E_Package or else Is_Subprogram (U) then
return This_Name;
else
return Unique_Name (S) & "__" & This_Name;
end if;
-- For intances of generic subprograms use the name of the related
-- instace and skip the scope of its wrapper package.
elsif Is_Wrapper_Package (S) then
pragma Assert (Scope (S) = Scope (Related_Instance (S)));
-- Wrapper package and the instantiation are in the same scope
declare
Enclosing_Name : constant String :=
Unique_Name (Scope (S)) & "__" &
Get_Name_String (Chars (Related_Instance (S)));
begin
if Is_Subprogram (U)
and then not Is_Generic_Actual_Subprogram (U)
then
return Enclosing_Name;
else
return Enclosing_Name & "__" & This_Name;
end if;
end;
else
return Unique_Name (S) & "__" & This_Name;
end if;
end;
end if;
end Unique_Name;
---------------------
-- Unit_Is_Visible --
---------------------
function Unit_Is_Visible (U : Entity_Id) return Boolean is
Curr : constant Node_Id := Cunit (Current_Sem_Unit);
Curr_Entity : constant Entity_Id := Cunit_Entity (Current_Sem_Unit);
function Unit_In_Parent_Context (Par_Unit : Node_Id) return Boolean;
-- For a child unit, check whether unit appears in a with_clause
-- of a parent.
function Unit_In_Context (Comp_Unit : Node_Id) return Boolean;
-- Scan the context clause of one compilation unit looking for a
-- with_clause for the unit in question.
----------------------------
-- Unit_In_Parent_Context --
----------------------------
function Unit_In_Parent_Context (Par_Unit : Node_Id) return Boolean is
begin
if Unit_In_Context (Par_Unit) then
return True;
elsif Is_Child_Unit (Defining_Entity (Unit (Par_Unit))) then
return Unit_In_Parent_Context (Parent_Spec (Unit (Par_Unit)));
else
return False;
end if;
end Unit_In_Parent_Context;
---------------------
-- Unit_In_Context --
---------------------
function Unit_In_Context (Comp_Unit : Node_Id) return Boolean is
Clause : Node_Id;
begin
Clause := First (Context_Items (Comp_Unit));
while Present (Clause) loop
if Nkind (Clause) = N_With_Clause then
if Library_Unit (Clause) = U then
return True;
-- The with_clause may denote a renaming of the unit we are
-- looking for, eg. Text_IO which renames Ada.Text_IO.
elsif
Renamed_Entity (Entity (Name (Clause))) =
Defining_Entity (Unit (U))
then
return True;
end if;
end if;
Next (Clause);
end loop;
return False;
end Unit_In_Context;
-- Start of processing for Unit_Is_Visible
begin
-- The currrent unit is directly visible
if Curr = U then
return True;
elsif Unit_In_Context (Curr) then
return True;
-- If the current unit is a body, check the context of the spec
elsif Nkind (Unit (Curr)) = N_Package_Body
or else
(Nkind (Unit (Curr)) = N_Subprogram_Body
and then not Acts_As_Spec (Unit (Curr)))
then
if Unit_In_Context (Library_Unit (Curr)) then
return True;
end if;
end if;
-- If the spec is a child unit, examine the parents
if Is_Child_Unit (Curr_Entity) then
if Nkind (Unit (Curr)) in N_Unit_Body then
return
Unit_In_Parent_Context
(Parent_Spec (Unit (Library_Unit (Curr))));
else
return Unit_In_Parent_Context (Parent_Spec (Unit (Curr)));
end if;
else
return False;
end if;
end Unit_Is_Visible;
------------------------------
-- Universal_Interpretation --
------------------------------
function Universal_Interpretation (Opnd : Node_Id) return Entity_Id is
Index : Interp_Index;
It : Interp;
begin
-- The argument may be a formal parameter of an operator or subprogram
-- with multiple interpretations, or else an expression for an actual.
if Nkind (Opnd) = N_Defining_Identifier
or else not Is_Overloaded (Opnd)
then
if Etype (Opnd) = Universal_Integer
or else Etype (Opnd) = Universal_Real
then
return Etype (Opnd);
else
return Empty;
end if;
else
Get_First_Interp (Opnd, Index, It);
while Present (It.Typ) loop
if It.Typ = Universal_Integer
or else It.Typ = Universal_Real
then
return It.Typ;
end if;
Get_Next_Interp (Index, It);
end loop;
return Empty;
end if;
end Universal_Interpretation;
---------------
-- Unqualify --
---------------
function Unqualify (Expr : Node_Id) return Node_Id is
begin
-- Recurse to handle unlikely case of multiple levels of qualification
if Nkind (Expr) = N_Qualified_Expression then
return Unqualify (Expression (Expr));
-- Normal case, not a qualified expression
else
return Expr;
end if;
end Unqualify;
-----------------
-- Unqual_Conv --
-----------------
function Unqual_Conv (Expr : Node_Id) return Node_Id is
begin
-- Recurse to handle unlikely case of multiple levels of qualification
-- and/or conversion.
if Nkind_In (Expr, N_Qualified_Expression,
N_Type_Conversion,
N_Unchecked_Type_Conversion)
then
return Unqual_Conv (Expression (Expr));
-- Normal case, not a qualified expression
else
return Expr;
end if;
end Unqual_Conv;
-----------------------
-- Visible_Ancestors --
-----------------------
function Visible_Ancestors (Typ : Entity_Id) return Elist_Id is
List_1 : Elist_Id;
List_2 : Elist_Id;
Elmt : Elmt_Id;
begin
pragma Assert (Is_Record_Type (Typ) and then Is_Tagged_Type (Typ));
-- Collect all the parents and progenitors of Typ. If the full-view of
-- private parents and progenitors is available then it is used to
-- generate the list of visible ancestors; otherwise their partial
-- view is added to the resulting list.
Collect_Parents
(T => Typ,
List => List_1,
Use_Full_View => True);
Collect_Interfaces
(T => Typ,
Ifaces_List => List_2,
Exclude_Parents => True,
Use_Full_View => True);
-- Join the two lists. Avoid duplications because an interface may
-- simultaneously be parent and progenitor of a type.
Elmt := First_Elmt (List_2);
while Present (Elmt) loop
Append_Unique_Elmt (Node (Elmt), List_1);
Next_Elmt (Elmt);
end loop;
return List_1;
end Visible_Ancestors;
----------------------
-- Within_Init_Proc --
----------------------
function Within_Init_Proc return Boolean is
S : Entity_Id;
begin
S := Current_Scope;
while not Is_Overloadable (S) loop
if S = Standard_Standard then
return False;
else
S := Scope (S);
end if;
end loop;
return Is_Init_Proc (S);
end Within_Init_Proc;
---------------------------
-- Within_Protected_Type --
---------------------------
function Within_Protected_Type (E : Entity_Id) return Boolean is
Scop : Entity_Id := Scope (E);
begin
while Present (Scop) loop
if Ekind (Scop) = E_Protected_Type then
return True;
end if;
Scop := Scope (Scop);
end loop;
return False;
end Within_Protected_Type;
------------------
-- Within_Scope --
------------------
function Within_Scope (E : Entity_Id; S : Entity_Id) return Boolean is
begin
return Scope_Within_Or_Same (Scope (E), S);
end Within_Scope;
----------------------------
-- Within_Subprogram_Call --
----------------------------
function Within_Subprogram_Call (N : Node_Id) return Boolean is
Par : Node_Id;
begin
-- Climb the parent chain looking for a function or procedure call
Par := N;
while Present (Par) loop
if Nkind_In (Par, N_Entry_Call_Statement,
N_Function_Call,
N_Procedure_Call_Statement)
then
return True;
-- Prevent the search from going too far
elsif Is_Body_Or_Package_Declaration (Par) then
exit;
end if;
Par := Parent (Par);
end loop;
return False;
end Within_Subprogram_Call;
----------------
-- Wrong_Type --
----------------
procedure Wrong_Type (Expr : Node_Id; Expected_Type : Entity_Id) is
Found_Type : constant Entity_Id := First_Subtype (Etype (Expr));
Expec_Type : constant Entity_Id := First_Subtype (Expected_Type);
Matching_Field : Entity_Id;
-- Entity to give a more precise suggestion on how to write a one-
-- element positional aggregate.
function Has_One_Matching_Field return Boolean;
-- Determines if Expec_Type is a record type with a single component or
-- discriminant whose type matches the found type or is one dimensional
-- array whose component type matches the found type. In the case of
-- one discriminant, we ignore the variant parts. That's not accurate,
-- but good enough for the warning.
----------------------------
-- Has_One_Matching_Field --
----------------------------
function Has_One_Matching_Field return Boolean is
E : Entity_Id;
begin
Matching_Field := Empty;
if Is_Array_Type (Expec_Type)
and then Number_Dimensions (Expec_Type) = 1
and then Covers (Etype (Component_Type (Expec_Type)), Found_Type)
then
-- Use type name if available. This excludes multidimensional
-- arrays and anonymous arrays.
if Comes_From_Source (Expec_Type) then
Matching_Field := Expec_Type;
-- For an assignment, use name of target
elsif Nkind (Parent (Expr)) = N_Assignment_Statement
and then Is_Entity_Name (Name (Parent (Expr)))
then
Matching_Field := Entity (Name (Parent (Expr)));
end if;
return True;
elsif not Is_Record_Type (Expec_Type) then
return False;
else
E := First_Entity (Expec_Type);
loop
if No (E) then
return False;
elsif not Ekind_In (E, E_Discriminant, E_Component)
or else Nam_In (Chars (E), Name_uTag, Name_uParent)
then
Next_Entity (E);
else
exit;
end if;
end loop;
if not Covers (Etype (E), Found_Type) then
return False;
elsif Present (Next_Entity (E))
and then (Ekind (E) = E_Component
or else Ekind (Next_Entity (E)) = E_Discriminant)
then
return False;
else
Matching_Field := E;
return True;
end if;
end if;
end Has_One_Matching_Field;
-- Start of processing for Wrong_Type
begin
-- Don't output message if either type is Any_Type, or if a message
-- has already been posted for this node. We need to do the latter
-- check explicitly (it is ordinarily done in Errout), because we
-- are using ! to force the output of the error messages.
if Expec_Type = Any_Type
or else Found_Type = Any_Type
or else Error_Posted (Expr)
then
return;
-- If one of the types is a Taft-Amendment type and the other it its
-- completion, it must be an illegal use of a TAT in the spec, for
-- which an error was already emitted. Avoid cascaded errors.
elsif Is_Incomplete_Type (Expec_Type)
and then Has_Completion_In_Body (Expec_Type)
and then Full_View (Expec_Type) = Etype (Expr)
then
return;
elsif Is_Incomplete_Type (Etype (Expr))
and then Has_Completion_In_Body (Etype (Expr))
and then Full_View (Etype (Expr)) = Expec_Type
then
return;
-- In an instance, there is an ongoing problem with completion of
-- type derived from private types. Their structure is what Gigi
-- expects, but the Etype is the parent type rather than the
-- derived private type itself. Do not flag error in this case. The
-- private completion is an entity without a parent, like an Itype.
-- Similarly, full and partial views may be incorrect in the instance.
-- There is no simple way to insure that it is consistent ???
-- A similar view discrepancy can happen in an inlined body, for the
-- same reason: inserted body may be outside of the original package
-- and only partial views are visible at the point of insertion.
elsif In_Instance or else In_Inlined_Body then
if Etype (Etype (Expr)) = Etype (Expected_Type)
and then
(Has_Private_Declaration (Expected_Type)
or else Has_Private_Declaration (Etype (Expr)))
and then No (Parent (Expected_Type))
then
return;
elsif Nkind (Parent (Expr)) = N_Qualified_Expression
and then Entity (Subtype_Mark (Parent (Expr))) = Expected_Type
then
return;
elsif Is_Private_Type (Expected_Type)
and then Present (Full_View (Expected_Type))
and then Covers (Full_View (Expected_Type), Etype (Expr))
then
return;
-- Conversely, type of expression may be the private one
elsif Is_Private_Type (Base_Type (Etype (Expr)))
and then Full_View (Base_Type (Etype (Expr))) = Expected_Type
then
return;
end if;
end if;
-- An interesting special check. If the expression is parenthesized
-- and its type corresponds to the type of the sole component of the
-- expected record type, or to the component type of the expected one
-- dimensional array type, then assume we have a bad aggregate attempt.
if Nkind (Expr) in N_Subexpr
and then Paren_Count (Expr) /= 0
and then Has_One_Matching_Field
then
Error_Msg_N ("positional aggregate cannot have one component", Expr);
if Present (Matching_Field) then
if Is_Array_Type (Expec_Type) then
Error_Msg_NE
("\write instead `&''First ='> ...`", Expr, Matching_Field);
else
Error_Msg_NE
("\write instead `& ='> ...`", Expr, Matching_Field);
end if;
end if;
-- Another special check, if we are looking for a pool-specific access
-- type and we found an E_Access_Attribute_Type, then we have the case
-- of an Access attribute being used in a context which needs a pool-
-- specific type, which is never allowed. The one extra check we make
-- is that the expected designated type covers the Found_Type.
elsif Is_Access_Type (Expec_Type)
and then Ekind (Found_Type) = E_Access_Attribute_Type
and then Ekind (Base_Type (Expec_Type)) /= E_General_Access_Type
and then Ekind (Base_Type (Expec_Type)) /= E_Anonymous_Access_Type
and then Covers
(Designated_Type (Expec_Type), Designated_Type (Found_Type))
then
Error_Msg_N -- CODEFIX
("result must be general access type!", Expr);
Error_Msg_NE -- CODEFIX
("add ALL to }!", Expr, Expec_Type);
-- Another special check, if the expected type is an integer type,
-- but the expression is of type System.Address, and the parent is
-- an addition or subtraction operation whose left operand is the
-- expression in question and whose right operand is of an integral
-- type, then this is an attempt at address arithmetic, so give
-- appropriate message.
elsif Is_Integer_Type (Expec_Type)
and then Is_RTE (Found_Type, RE_Address)
and then Nkind_In (Parent (Expr), N_Op_Add, N_Op_Subtract)
and then Expr = Left_Opnd (Parent (Expr))
and then Is_Integer_Type (Etype (Right_Opnd (Parent (Expr))))
then
Error_Msg_N
("address arithmetic not predefined in package System",
Parent (Expr));
Error_Msg_N
("\possible missing with/use of System.Storage_Elements",
Parent (Expr));
return;
-- If the expected type is an anonymous access type, as for access
-- parameters and discriminants, the error is on the designated types.
elsif Ekind (Expec_Type) = E_Anonymous_Access_Type then
if Comes_From_Source (Expec_Type) then
Error_Msg_NE ("expected}!", Expr, Expec_Type);
else
Error_Msg_NE
("expected an access type with designated}",
Expr, Designated_Type (Expec_Type));
end if;
if Is_Access_Type (Found_Type)
and then not Comes_From_Source (Found_Type)
then
Error_Msg_NE
("\\found an access type with designated}!",
Expr, Designated_Type (Found_Type));
else
if From_Limited_With (Found_Type) then
Error_Msg_NE ("\\found incomplete}!", Expr, Found_Type);
Error_Msg_Qual_Level := 99;
Error_Msg_NE -- CODEFIX
("\\missing `WITH &;", Expr, Scope (Found_Type));
Error_Msg_Qual_Level := 0;
else
Error_Msg_NE ("found}!", Expr, Found_Type);
end if;
end if;
-- Normal case of one type found, some other type expected
else
-- If the names of the two types are the same, see if some number
-- of levels of qualification will help. Don't try more than three
-- levels, and if we get to standard, it's no use (and probably
-- represents an error in the compiler) Also do not bother with
-- internal scope names.
declare
Expec_Scope : Entity_Id;
Found_Scope : Entity_Id;
begin
Expec_Scope := Expec_Type;
Found_Scope := Found_Type;
for Levels in Nat range 0 .. 3 loop
if Chars (Expec_Scope) /= Chars (Found_Scope) then
Error_Msg_Qual_Level := Levels;
exit;
end if;
Expec_Scope := Scope (Expec_Scope);
Found_Scope := Scope (Found_Scope);
exit when Expec_Scope = Standard_Standard
or else Found_Scope = Standard_Standard
or else not Comes_From_Source (Expec_Scope)
or else not Comes_From_Source (Found_Scope);
end loop;
end;
if Is_Record_Type (Expec_Type)
and then Present (Corresponding_Remote_Type (Expec_Type))
then
Error_Msg_NE ("expected}!", Expr,
Corresponding_Remote_Type (Expec_Type));
else
Error_Msg_NE ("expected}!", Expr, Expec_Type);
end if;
if Is_Entity_Name (Expr)
and then Is_Package_Or_Generic_Package (Entity (Expr))
then
Error_Msg_N ("\\found package name!", Expr);
elsif Is_Entity_Name (Expr)
and then Ekind_In (Entity (Expr), E_Procedure, E_Generic_Procedure)
then
if Ekind (Expec_Type) = E_Access_Subprogram_Type then
Error_Msg_N
("found procedure name, possibly missing Access attribute!",
Expr);
else
Error_Msg_N
("\\found procedure name instead of function!", Expr);
end if;
elsif Nkind (Expr) = N_Function_Call
and then Ekind (Expec_Type) = E_Access_Subprogram_Type
and then Etype (Designated_Type (Expec_Type)) = Etype (Expr)
and then No (Parameter_Associations (Expr))
then
Error_Msg_N
("found function name, possibly missing Access attribute!",
Expr);
-- Catch common error: a prefix or infix operator which is not
-- directly visible because the type isn't.
elsif Nkind (Expr) in N_Op
and then Is_Overloaded (Expr)
and then not Is_Immediately_Visible (Expec_Type)
and then not Is_Potentially_Use_Visible (Expec_Type)
and then not In_Use (Expec_Type)
and then Has_Compatible_Type (Right_Opnd (Expr), Expec_Type)
then
Error_Msg_N
("operator of the type is not directly visible!", Expr);
elsif Ekind (Found_Type) = E_Void
and then Present (Parent (Found_Type))
and then Nkind (Parent (Found_Type)) = N_Full_Type_Declaration
then
Error_Msg_NE ("\\found premature usage of}!", Expr, Found_Type);
else
Error_Msg_NE ("\\found}!", Expr, Found_Type);
end if;
-- A special check for cases like M1 and M2 = 0 where M1 and M2 are
-- of the same modular type, and (M1 and M2) = 0 was intended.
if Expec_Type = Standard_Boolean
and then Is_Modular_Integer_Type (Found_Type)
and then Nkind_In (Parent (Expr), N_Op_And, N_Op_Or, N_Op_Xor)
and then Nkind (Right_Opnd (Parent (Expr))) in N_Op_Compare
then
declare
Op : constant Node_Id := Right_Opnd (Parent (Expr));
L : constant Node_Id := Left_Opnd (Op);
R : constant Node_Id := Right_Opnd (Op);
begin
-- The case for the message is when the left operand of the
-- comparison is the same modular type, or when it is an
-- integer literal (or other universal integer expression),
-- which would have been typed as the modular type if the
-- parens had been there.
if (Etype (L) = Found_Type
or else
Etype (L) = Universal_Integer)
and then Is_Integer_Type (Etype (R))
then
Error_Msg_N
("\\possible missing parens for modular operation", Expr);
end if;
end;
end if;
-- Reset error message qualification indication
Error_Msg_Qual_Level := 0;
end if;
end Wrong_Type;
--------------------------------
-- Yields_Synchronized_Object --
--------------------------------
function Yields_Synchronized_Object (Typ : Entity_Id) return Boolean is
Has_Sync_Comp : Boolean := False;
Id : Entity_Id;
begin
-- An array type yields a synchronized object if its component type
-- yields a synchronized object.
if Is_Array_Type (Typ) then
return Yields_Synchronized_Object (Component_Type (Typ));
-- A descendant of type Ada.Synchronous_Task_Control.Suspension_Object
-- yields a synchronized object by default.
elsif Is_Descendant_Of_Suspension_Object (Typ) then
return True;
-- A protected type yields a synchronized object by default
elsif Is_Protected_Type (Typ) then
return True;
-- A record type or type extension yields a synchronized object when its
-- discriminants (if any) lack default values and all components are of
-- a type that yelds a synchronized object.
elsif Is_Record_Type (Typ) then
-- Inspect all entities defined in the scope of the type, looking for
-- components of a type that does not yeld a synchronized object or
-- for discriminants with default values.
Id := First_Entity (Typ);
while Present (Id) loop
if Comes_From_Source (Id) then
if Ekind (Id) = E_Component then
if Yields_Synchronized_Object (Etype (Id)) then
Has_Sync_Comp := True;
-- The component does not yield a synchronized object
else
return False;
end if;
elsif Ekind (Id) = E_Discriminant
and then Present (Expression (Parent (Id)))
then
return False;
end if;
end if;
Next_Entity (Id);
end loop;
-- Ensure that the parent type of a type extension yields a
-- synchronized object.
if Etype (Typ) /= Typ
and then not Yields_Synchronized_Object (Etype (Typ))
then
return False;
end if;
-- If we get here, then all discriminants lack default values and all
-- components are of a type that yields a synchronized object.
return Has_Sync_Comp;
-- A synchronized interface type yields a synchronized object by default
elsif Is_Synchronized_Interface (Typ) then
return True;
-- A task type yelds a synchronized object by default
elsif Is_Task_Type (Typ) then
return True;
-- Otherwise the type does not yield a synchronized object
else
return False;
end if;
end Yields_Synchronized_Object;
---------------------------
-- Yields_Universal_Type --
---------------------------
function Yields_Universal_Type (N : Node_Id) return Boolean is
begin
-- Integer and real literals are of a universal type
if Nkind_In (N, N_Integer_Literal, N_Real_Literal) then
return True;
-- The values of certain attributes are of a universal type
elsif Nkind (N) = N_Attribute_Reference then
return
Universal_Type_Attribute (Get_Attribute_Id (Attribute_Name (N)));
-- ??? There are possibly other cases to consider
else
return False;
end if;
end Yields_Universal_Type;
begin
Erroutc.Subprogram_Name_Ptr := Subprogram_Name'Access;
end Sem_Util;