| /* Compiler arithmetic |
| Copyright (C) 2000-2018 Free Software Foundation, Inc. |
| Contributed by Andy Vaught |
| |
| This file is part of GCC. |
| |
| GCC is free software; you can redistribute it and/or modify it under |
| the terms of the GNU General Public License as published by the Free |
| Software Foundation; either version 3, or (at your option) any later |
| version. |
| |
| GCC is distributed in the hope that it will be useful, but WITHOUT ANY |
| WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with GCC; see the file COPYING3. If not see |
| <http://www.gnu.org/licenses/>. */ |
| |
| /* Since target arithmetic must be done on the host, there has to |
| be some way of evaluating arithmetic expressions as the host |
| would evaluate them. We use the GNU MP library and the MPFR |
| library to do arithmetic, and this file provides the interface. */ |
| |
| #include "config.h" |
| #include "system.h" |
| #include "coretypes.h" |
| #include "options.h" |
| #include "gfortran.h" |
| #include "arith.h" |
| #include "target-memory.h" |
| #include "constructor.h" |
| |
| /* MPFR does not have a direct replacement for mpz_set_f() from GMP. |
| It's easily implemented with a few calls though. */ |
| |
| void |
| gfc_mpfr_to_mpz (mpz_t z, mpfr_t x, locus *where) |
| { |
| mp_exp_t e; |
| |
| if (mpfr_inf_p (x) || mpfr_nan_p (x)) |
| { |
| gfc_error ("Conversion of an Infinity or Not-a-Number at %L " |
| "to INTEGER", where); |
| mpz_set_ui (z, 0); |
| return; |
| } |
| |
| e = mpfr_get_z_exp (z, x); |
| |
| if (e > 0) |
| mpz_mul_2exp (z, z, e); |
| else |
| mpz_tdiv_q_2exp (z, z, -e); |
| } |
| |
| |
| /* Set the model number precision by the requested KIND. */ |
| |
| void |
| gfc_set_model_kind (int kind) |
| { |
| int index = gfc_validate_kind (BT_REAL, kind, false); |
| int base2prec; |
| |
| base2prec = gfc_real_kinds[index].digits; |
| if (gfc_real_kinds[index].radix != 2) |
| base2prec *= gfc_real_kinds[index].radix / 2; |
| mpfr_set_default_prec (base2prec); |
| } |
| |
| |
| /* Set the model number precision from mpfr_t x. */ |
| |
| void |
| gfc_set_model (mpfr_t x) |
| { |
| mpfr_set_default_prec (mpfr_get_prec (x)); |
| } |
| |
| |
| /* Given an arithmetic error code, return a pointer to a string that |
| explains the error. */ |
| |
| static const char * |
| gfc_arith_error (arith code) |
| { |
| const char *p; |
| |
| switch (code) |
| { |
| case ARITH_OK: |
| p = _("Arithmetic OK at %L"); |
| break; |
| case ARITH_OVERFLOW: |
| p = _("Arithmetic overflow at %L"); |
| break; |
| case ARITH_UNDERFLOW: |
| p = _("Arithmetic underflow at %L"); |
| break; |
| case ARITH_NAN: |
| p = _("Arithmetic NaN at %L"); |
| break; |
| case ARITH_DIV0: |
| p = _("Division by zero at %L"); |
| break; |
| case ARITH_INCOMMENSURATE: |
| p = _("Array operands are incommensurate at %L"); |
| break; |
| case ARITH_ASYMMETRIC: |
| p = |
| _("Integer outside symmetric range implied by Standard Fortran at %L"); |
| break; |
| default: |
| gfc_internal_error ("gfc_arith_error(): Bad error code"); |
| } |
| |
| return p; |
| } |
| |
| |
| /* Get things ready to do math. */ |
| |
| void |
| gfc_arith_init_1 (void) |
| { |
| gfc_integer_info *int_info; |
| gfc_real_info *real_info; |
| mpfr_t a, b; |
| int i; |
| |
| mpfr_set_default_prec (128); |
| mpfr_init (a); |
| |
| /* Convert the minimum and maximum values for each kind into their |
| GNU MP representation. */ |
| for (int_info = gfc_integer_kinds; int_info->kind != 0; int_info++) |
| { |
| /* Huge */ |
| mpz_init (int_info->huge); |
| mpz_set_ui (int_info->huge, int_info->radix); |
| mpz_pow_ui (int_info->huge, int_info->huge, int_info->digits); |
| mpz_sub_ui (int_info->huge, int_info->huge, 1); |
| |
| /* These are the numbers that are actually representable by the |
| target. For bases other than two, this needs to be changed. */ |
| if (int_info->radix != 2) |
| gfc_internal_error ("Fix min_int calculation"); |
| |
| /* See PRs 13490 and 17912, related to integer ranges. |
| The pedantic_min_int exists for range checking when a program |
| is compiled with -pedantic, and reflects the belief that |
| Standard Fortran requires integers to be symmetrical, i.e. |
| every negative integer must have a representable positive |
| absolute value, and vice versa. */ |
| |
| mpz_init (int_info->pedantic_min_int); |
| mpz_neg (int_info->pedantic_min_int, int_info->huge); |
| |
| mpz_init (int_info->min_int); |
| mpz_sub_ui (int_info->min_int, int_info->pedantic_min_int, 1); |
| |
| /* Range */ |
| mpfr_set_z (a, int_info->huge, GFC_RND_MODE); |
| mpfr_log10 (a, a, GFC_RND_MODE); |
| mpfr_trunc (a, a); |
| int_info->range = (int) mpfr_get_si (a, GFC_RND_MODE); |
| } |
| |
| mpfr_clear (a); |
| |
| for (real_info = gfc_real_kinds; real_info->kind != 0; real_info++) |
| { |
| gfc_set_model_kind (real_info->kind); |
| |
| mpfr_init (a); |
| mpfr_init (b); |
| |
| /* huge(x) = (1 - b**(-p)) * b**(emax-1) * b */ |
| /* 1 - b**(-p) */ |
| mpfr_init (real_info->huge); |
| mpfr_set_ui (real_info->huge, 1, GFC_RND_MODE); |
| mpfr_set_ui (a, real_info->radix, GFC_RND_MODE); |
| mpfr_pow_si (a, a, -real_info->digits, GFC_RND_MODE); |
| mpfr_sub (real_info->huge, real_info->huge, a, GFC_RND_MODE); |
| |
| /* b**(emax-1) */ |
| mpfr_set_ui (a, real_info->radix, GFC_RND_MODE); |
| mpfr_pow_ui (a, a, real_info->max_exponent - 1, GFC_RND_MODE); |
| |
| /* (1 - b**(-p)) * b**(emax-1) */ |
| mpfr_mul (real_info->huge, real_info->huge, a, GFC_RND_MODE); |
| |
| /* (1 - b**(-p)) * b**(emax-1) * b */ |
| mpfr_mul_ui (real_info->huge, real_info->huge, real_info->radix, |
| GFC_RND_MODE); |
| |
| /* tiny(x) = b**(emin-1) */ |
| mpfr_init (real_info->tiny); |
| mpfr_set_ui (real_info->tiny, real_info->radix, GFC_RND_MODE); |
| mpfr_pow_si (real_info->tiny, real_info->tiny, |
| real_info->min_exponent - 1, GFC_RND_MODE); |
| |
| /* subnormal (x) = b**(emin - digit) */ |
| mpfr_init (real_info->subnormal); |
| mpfr_set_ui (real_info->subnormal, real_info->radix, GFC_RND_MODE); |
| mpfr_pow_si (real_info->subnormal, real_info->subnormal, |
| real_info->min_exponent - real_info->digits, GFC_RND_MODE); |
| |
| /* epsilon(x) = b**(1-p) */ |
| mpfr_init (real_info->epsilon); |
| mpfr_set_ui (real_info->epsilon, real_info->radix, GFC_RND_MODE); |
| mpfr_pow_si (real_info->epsilon, real_info->epsilon, |
| 1 - real_info->digits, GFC_RND_MODE); |
| |
| /* range(x) = int(min(log10(huge(x)), -log10(tiny)) */ |
| mpfr_log10 (a, real_info->huge, GFC_RND_MODE); |
| mpfr_log10 (b, real_info->tiny, GFC_RND_MODE); |
| mpfr_neg (b, b, GFC_RND_MODE); |
| |
| /* a = min(a, b) */ |
| mpfr_min (a, a, b, GFC_RND_MODE); |
| mpfr_trunc (a, a); |
| real_info->range = (int) mpfr_get_si (a, GFC_RND_MODE); |
| |
| /* precision(x) = int((p - 1) * log10(b)) + k */ |
| mpfr_set_ui (a, real_info->radix, GFC_RND_MODE); |
| mpfr_log10 (a, a, GFC_RND_MODE); |
| mpfr_mul_ui (a, a, real_info->digits - 1, GFC_RND_MODE); |
| mpfr_trunc (a, a); |
| real_info->precision = (int) mpfr_get_si (a, GFC_RND_MODE); |
| |
| /* If the radix is an integral power of 10, add one to the precision. */ |
| for (i = 10; i <= real_info->radix; i *= 10) |
| if (i == real_info->radix) |
| real_info->precision++; |
| |
| mpfr_clears (a, b, NULL); |
| } |
| } |
| |
| |
| /* Clean up, get rid of numeric constants. */ |
| |
| void |
| gfc_arith_done_1 (void) |
| { |
| gfc_integer_info *ip; |
| gfc_real_info *rp; |
| |
| for (ip = gfc_integer_kinds; ip->kind; ip++) |
| { |
| mpz_clear (ip->min_int); |
| mpz_clear (ip->pedantic_min_int); |
| mpz_clear (ip->huge); |
| } |
| |
| for (rp = gfc_real_kinds; rp->kind; rp++) |
| mpfr_clears (rp->epsilon, rp->huge, rp->tiny, rp->subnormal, NULL); |
| |
| mpfr_free_cache (); |
| } |
| |
| |
| /* Given a wide character value and a character kind, determine whether |
| the character is representable for that kind. */ |
| bool |
| gfc_check_character_range (gfc_char_t c, int kind) |
| { |
| /* As wide characters are stored as 32-bit values, they're all |
| representable in UCS=4. */ |
| if (kind == 4) |
| return true; |
| |
| if (kind == 1) |
| return c <= 255 ? true : false; |
| |
| gcc_unreachable (); |
| } |
| |
| |
| /* Given an integer and a kind, make sure that the integer lies within |
| the range of the kind. Returns ARITH_OK, ARITH_ASYMMETRIC or |
| ARITH_OVERFLOW. */ |
| |
| arith |
| gfc_check_integer_range (mpz_t p, int kind) |
| { |
| arith result; |
| int i; |
| |
| i = gfc_validate_kind (BT_INTEGER, kind, false); |
| result = ARITH_OK; |
| |
| if (pedantic) |
| { |
| if (mpz_cmp (p, gfc_integer_kinds[i].pedantic_min_int) < 0) |
| result = ARITH_ASYMMETRIC; |
| } |
| |
| |
| if (flag_range_check == 0) |
| return result; |
| |
| if (mpz_cmp (p, gfc_integer_kinds[i].min_int) < 0 |
| || mpz_cmp (p, gfc_integer_kinds[i].huge) > 0) |
| result = ARITH_OVERFLOW; |
| |
| return result; |
| } |
| |
| |
| /* Given a real and a kind, make sure that the real lies within the |
| range of the kind. Returns ARITH_OK, ARITH_OVERFLOW or |
| ARITH_UNDERFLOW. */ |
| |
| static arith |
| gfc_check_real_range (mpfr_t p, int kind) |
| { |
| arith retval; |
| mpfr_t q; |
| int i; |
| |
| i = gfc_validate_kind (BT_REAL, kind, false); |
| |
| gfc_set_model (p); |
| mpfr_init (q); |
| mpfr_abs (q, p, GFC_RND_MODE); |
| |
| retval = ARITH_OK; |
| |
| if (mpfr_inf_p (p)) |
| { |
| if (flag_range_check != 0) |
| retval = ARITH_OVERFLOW; |
| } |
| else if (mpfr_nan_p (p)) |
| { |
| if (flag_range_check != 0) |
| retval = ARITH_NAN; |
| } |
| else if (mpfr_sgn (q) == 0) |
| { |
| mpfr_clear (q); |
| return retval; |
| } |
| else if (mpfr_cmp (q, gfc_real_kinds[i].huge) > 0) |
| { |
| if (flag_range_check == 0) |
| mpfr_set_inf (p, mpfr_sgn (p)); |
| else |
| retval = ARITH_OVERFLOW; |
| } |
| else if (mpfr_cmp (q, gfc_real_kinds[i].subnormal) < 0) |
| { |
| if (flag_range_check == 0) |
| { |
| if (mpfr_sgn (p) < 0) |
| { |
| mpfr_set_ui (p, 0, GFC_RND_MODE); |
| mpfr_set_si (q, -1, GFC_RND_MODE); |
| mpfr_copysign (p, p, q, GFC_RND_MODE); |
| } |
| else |
| mpfr_set_ui (p, 0, GFC_RND_MODE); |
| } |
| else |
| retval = ARITH_UNDERFLOW; |
| } |
| else if (mpfr_cmp (q, gfc_real_kinds[i].tiny) < 0) |
| { |
| mp_exp_t emin, emax; |
| int en; |
| |
| /* Save current values of emin and emax. */ |
| emin = mpfr_get_emin (); |
| emax = mpfr_get_emax (); |
| |
| /* Set emin and emax for the current model number. */ |
| en = gfc_real_kinds[i].min_exponent - gfc_real_kinds[i].digits + 1; |
| mpfr_set_emin ((mp_exp_t) en); |
| mpfr_set_emax ((mp_exp_t) gfc_real_kinds[i].max_exponent); |
| mpfr_check_range (q, 0, GFC_RND_MODE); |
| mpfr_subnormalize (q, 0, GFC_RND_MODE); |
| |
| /* Reset emin and emax. */ |
| mpfr_set_emin (emin); |
| mpfr_set_emax (emax); |
| |
| /* Copy sign if needed. */ |
| if (mpfr_sgn (p) < 0) |
| mpfr_neg (p, q, GMP_RNDN); |
| else |
| mpfr_set (p, q, GMP_RNDN); |
| } |
| |
| mpfr_clear (q); |
| |
| return retval; |
| } |
| |
| |
| /* Low-level arithmetic functions. All of these subroutines assume |
| that all operands are of the same type and return an operand of the |
| same type. The other thing about these subroutines is that they |
| can fail in various ways -- overflow, underflow, division by zero, |
| zero raised to the zero, etc. */ |
| |
| static arith |
| gfc_arith_not (gfc_expr *op1, gfc_expr **resultp) |
| { |
| gfc_expr *result; |
| |
| result = gfc_get_constant_expr (BT_LOGICAL, op1->ts.kind, &op1->where); |
| result->value.logical = !op1->value.logical; |
| *resultp = result; |
| |
| return ARITH_OK; |
| } |
| |
| |
| static arith |
| gfc_arith_and (gfc_expr *op1, gfc_expr *op2, gfc_expr **resultp) |
| { |
| gfc_expr *result; |
| |
| result = gfc_get_constant_expr (BT_LOGICAL, gfc_kind_max (op1, op2), |
| &op1->where); |
| result->value.logical = op1->value.logical && op2->value.logical; |
| *resultp = result; |
| |
| return ARITH_OK; |
| } |
| |
| |
| static arith |
| gfc_arith_or (gfc_expr *op1, gfc_expr *op2, gfc_expr **resultp) |
| { |
| gfc_expr *result; |
| |
| result = gfc_get_constant_expr (BT_LOGICAL, gfc_kind_max (op1, op2), |
| &op1->where); |
| result->value.logical = op1->value.logical || op2->value.logical; |
| *resultp = result; |
| |
| return ARITH_OK; |
| } |
| |
| |
| static arith |
| gfc_arith_eqv (gfc_expr *op1, gfc_expr *op2, gfc_expr **resultp) |
| { |
| gfc_expr *result; |
| |
| result = gfc_get_constant_expr (BT_LOGICAL, gfc_kind_max (op1, op2), |
| &op1->where); |
| result->value.logical = op1->value.logical == op2->value.logical; |
| *resultp = result; |
| |
| return ARITH_OK; |
| } |
| |
| |
| static arith |
| gfc_arith_neqv (gfc_expr *op1, gfc_expr *op2, gfc_expr **resultp) |
| { |
| gfc_expr *result; |
| |
| result = gfc_get_constant_expr (BT_LOGICAL, gfc_kind_max (op1, op2), |
| &op1->where); |
| result->value.logical = op1->value.logical != op2->value.logical; |
| *resultp = result; |
| |
| return ARITH_OK; |
| } |
| |
| |
| /* Make sure a constant numeric expression is within the range for |
| its type and kind. Note that there's also a gfc_check_range(), |
| but that one deals with the intrinsic RANGE function. */ |
| |
| arith |
| gfc_range_check (gfc_expr *e) |
| { |
| arith rc; |
| arith rc2; |
| |
| switch (e->ts.type) |
| { |
| case BT_INTEGER: |
| rc = gfc_check_integer_range (e->value.integer, e->ts.kind); |
| break; |
| |
| case BT_REAL: |
| rc = gfc_check_real_range (e->value.real, e->ts.kind); |
| if (rc == ARITH_UNDERFLOW) |
| mpfr_set_ui (e->value.real, 0, GFC_RND_MODE); |
| if (rc == ARITH_OVERFLOW) |
| mpfr_set_inf (e->value.real, mpfr_sgn (e->value.real)); |
| if (rc == ARITH_NAN) |
| mpfr_set_nan (e->value.real); |
| break; |
| |
| case BT_COMPLEX: |
| rc = gfc_check_real_range (mpc_realref (e->value.complex), e->ts.kind); |
| if (rc == ARITH_UNDERFLOW) |
| mpfr_set_ui (mpc_realref (e->value.complex), 0, GFC_RND_MODE); |
| if (rc == ARITH_OVERFLOW) |
| mpfr_set_inf (mpc_realref (e->value.complex), |
| mpfr_sgn (mpc_realref (e->value.complex))); |
| if (rc == ARITH_NAN) |
| mpfr_set_nan (mpc_realref (e->value.complex)); |
| |
| rc2 = gfc_check_real_range (mpc_imagref (e->value.complex), e->ts.kind); |
| if (rc == ARITH_UNDERFLOW) |
| mpfr_set_ui (mpc_imagref (e->value.complex), 0, GFC_RND_MODE); |
| if (rc == ARITH_OVERFLOW) |
| mpfr_set_inf (mpc_imagref (e->value.complex), |
| mpfr_sgn (mpc_imagref (e->value.complex))); |
| if (rc == ARITH_NAN) |
| mpfr_set_nan (mpc_imagref (e->value.complex)); |
| |
| if (rc == ARITH_OK) |
| rc = rc2; |
| break; |
| |
| default: |
| gfc_internal_error ("gfc_range_check(): Bad type"); |
| } |
| |
| return rc; |
| } |
| |
| |
| /* Several of the following routines use the same set of statements to |
| check the validity of the result. Encapsulate the checking here. */ |
| |
| static arith |
| check_result (arith rc, gfc_expr *x, gfc_expr *r, gfc_expr **rp) |
| { |
| arith val = rc; |
| |
| if (val == ARITH_UNDERFLOW) |
| { |
| if (warn_underflow) |
| gfc_warning (OPT_Wunderflow, gfc_arith_error (val), &x->where); |
| val = ARITH_OK; |
| } |
| |
| if (val == ARITH_ASYMMETRIC) |
| { |
| gfc_warning (0, gfc_arith_error (val), &x->where); |
| val = ARITH_OK; |
| } |
| |
| if (val == ARITH_OK || val == ARITH_OVERFLOW) |
| *rp = r; |
| else |
| gfc_free_expr (r); |
| |
| return val; |
| } |
| |
| |
| /* It may seem silly to have a subroutine that actually computes the |
| unary plus of a constant, but it prevents us from making exceptions |
| in the code elsewhere. Used for unary plus and parenthesized |
| expressions. */ |
| |
| static arith |
| gfc_arith_identity (gfc_expr *op1, gfc_expr **resultp) |
| { |
| *resultp = gfc_copy_expr (op1); |
| return ARITH_OK; |
| } |
| |
| |
| static arith |
| gfc_arith_uminus (gfc_expr *op1, gfc_expr **resultp) |
| { |
| gfc_expr *result; |
| arith rc; |
| |
| result = gfc_get_constant_expr (op1->ts.type, op1->ts.kind, &op1->where); |
| |
| switch (op1->ts.type) |
| { |
| case BT_INTEGER: |
| mpz_neg (result->value.integer, op1->value.integer); |
| break; |
| |
| case BT_REAL: |
| mpfr_neg (result->value.real, op1->value.real, GFC_RND_MODE); |
| break; |
| |
| case BT_COMPLEX: |
| mpc_neg (result->value.complex, op1->value.complex, GFC_MPC_RND_MODE); |
| break; |
| |
| default: |
| gfc_internal_error ("gfc_arith_uminus(): Bad basic type"); |
| } |
| |
| rc = gfc_range_check (result); |
| |
| return check_result (rc, op1, result, resultp); |
| } |
| |
| |
| static arith |
| gfc_arith_plus (gfc_expr *op1, gfc_expr *op2, gfc_expr **resultp) |
| { |
| gfc_expr *result; |
| arith rc; |
| |
| result = gfc_get_constant_expr (op1->ts.type, op1->ts.kind, &op1->where); |
| |
| switch (op1->ts.type) |
| { |
| case BT_INTEGER: |
| mpz_add (result->value.integer, op1->value.integer, op2->value.integer); |
| break; |
| |
| case BT_REAL: |
| mpfr_add (result->value.real, op1->value.real, op2->value.real, |
| GFC_RND_MODE); |
| break; |
| |
| case BT_COMPLEX: |
| mpc_add (result->value.complex, op1->value.complex, op2->value.complex, |
| GFC_MPC_RND_MODE); |
| break; |
| |
| default: |
| gfc_internal_error ("gfc_arith_plus(): Bad basic type"); |
| } |
| |
| rc = gfc_range_check (result); |
| |
| return check_result (rc, op1, result, resultp); |
| } |
| |
| |
| static arith |
| gfc_arith_minus (gfc_expr *op1, gfc_expr *op2, gfc_expr **resultp) |
| { |
| gfc_expr *result; |
| arith rc; |
| |
| result = gfc_get_constant_expr (op1->ts.type, op1->ts.kind, &op1->where); |
| |
| switch (op1->ts.type) |
| { |
| case BT_INTEGER: |
| mpz_sub (result->value.integer, op1->value.integer, op2->value.integer); |
| break; |
| |
| case BT_REAL: |
| mpfr_sub (result->value.real, op1->value.real, op2->value.real, |
| GFC_RND_MODE); |
| break; |
| |
| case BT_COMPLEX: |
| mpc_sub (result->value.complex, op1->value.complex, |
| op2->value.complex, GFC_MPC_RND_MODE); |
| break; |
| |
| default: |
| gfc_internal_error ("gfc_arith_minus(): Bad basic type"); |
| } |
| |
| rc = gfc_range_check (result); |
| |
| return check_result (rc, op1, result, resultp); |
| } |
| |
| |
| static arith |
| gfc_arith_times (gfc_expr *op1, gfc_expr *op2, gfc_expr **resultp) |
| { |
| gfc_expr *result; |
| arith rc; |
| |
| result = gfc_get_constant_expr (op1->ts.type, op1->ts.kind, &op1->where); |
| |
| switch (op1->ts.type) |
| { |
| case BT_INTEGER: |
| mpz_mul (result->value.integer, op1->value.integer, op2->value.integer); |
| break; |
| |
| case BT_REAL: |
| mpfr_mul (result->value.real, op1->value.real, op2->value.real, |
| GFC_RND_MODE); |
| break; |
| |
| case BT_COMPLEX: |
| gfc_set_model (mpc_realref (op1->value.complex)); |
| mpc_mul (result->value.complex, op1->value.complex, op2->value.complex, |
| GFC_MPC_RND_MODE); |
| break; |
| |
| default: |
| gfc_internal_error ("gfc_arith_times(): Bad basic type"); |
| } |
| |
| rc = gfc_range_check (result); |
| |
| return check_result (rc, op1, result, resultp); |
| } |
| |
| |
| static arith |
| gfc_arith_divide (gfc_expr *op1, gfc_expr *op2, gfc_expr **resultp) |
| { |
| gfc_expr *result; |
| arith rc; |
| |
| rc = ARITH_OK; |
| |
| result = gfc_get_constant_expr (op1->ts.type, op1->ts.kind, &op1->where); |
| |
| switch (op1->ts.type) |
| { |
| case BT_INTEGER: |
| if (mpz_sgn (op2->value.integer) == 0) |
| { |
| rc = ARITH_DIV0; |
| break; |
| } |
| |
| if (warn_integer_division) |
| { |
| mpz_t r; |
| mpz_init (r); |
| mpz_tdiv_qr (result->value.integer, r, op1->value.integer, |
| op2->value.integer); |
| |
| if (mpz_cmp_si (r, 0) != 0) |
| { |
| char *p; |
| p = mpz_get_str (NULL, 10, result->value.integer); |
| gfc_warning_now (OPT_Winteger_division, "Integer division " |
| "truncated to constant %qs at %L", p, |
| &op1->where); |
| free (p); |
| } |
| mpz_clear (r); |
| } |
| else |
| mpz_tdiv_q (result->value.integer, op1->value.integer, |
| op2->value.integer); |
| |
| break; |
| |
| case BT_REAL: |
| if (mpfr_sgn (op2->value.real) == 0 && flag_range_check == 1) |
| { |
| rc = ARITH_DIV0; |
| break; |
| } |
| |
| mpfr_div (result->value.real, op1->value.real, op2->value.real, |
| GFC_RND_MODE); |
| break; |
| |
| case BT_COMPLEX: |
| if (mpc_cmp_si_si (op2->value.complex, 0, 0) == 0 |
| && flag_range_check == 1) |
| { |
| rc = ARITH_DIV0; |
| break; |
| } |
| |
| gfc_set_model (mpc_realref (op1->value.complex)); |
| if (mpc_cmp_si_si (op2->value.complex, 0, 0) == 0) |
| { |
| /* In Fortran, return (NaN + NaN I) for any zero divisor. See |
| PR 40318. */ |
| mpfr_set_nan (mpc_realref (result->value.complex)); |
| mpfr_set_nan (mpc_imagref (result->value.complex)); |
| } |
| else |
| mpc_div (result->value.complex, op1->value.complex, op2->value.complex, |
| GFC_MPC_RND_MODE); |
| break; |
| |
| default: |
| gfc_internal_error ("gfc_arith_divide(): Bad basic type"); |
| } |
| |
| if (rc == ARITH_OK) |
| rc = gfc_range_check (result); |
| |
| return check_result (rc, op1, result, resultp); |
| } |
| |
| /* Raise a number to a power. */ |
| |
| static arith |
| arith_power (gfc_expr *op1, gfc_expr *op2, gfc_expr **resultp) |
| { |
| int power_sign; |
| gfc_expr *result; |
| arith rc; |
| |
| rc = ARITH_OK; |
| result = gfc_get_constant_expr (op1->ts.type, op1->ts.kind, &op1->where); |
| |
| switch (op2->ts.type) |
| { |
| case BT_INTEGER: |
| power_sign = mpz_sgn (op2->value.integer); |
| |
| if (power_sign == 0) |
| { |
| /* Handle something to the zeroth power. Since we're dealing |
| with integral exponents, there is no ambiguity in the |
| limiting procedure used to determine the value of 0**0. */ |
| switch (op1->ts.type) |
| { |
| case BT_INTEGER: |
| mpz_set_ui (result->value.integer, 1); |
| break; |
| |
| case BT_REAL: |
| mpfr_set_ui (result->value.real, 1, GFC_RND_MODE); |
| break; |
| |
| case BT_COMPLEX: |
| mpc_set_ui (result->value.complex, 1, GFC_MPC_RND_MODE); |
| break; |
| |
| default: |
| gfc_internal_error ("arith_power(): Bad base"); |
| } |
| } |
| else |
| { |
| switch (op1->ts.type) |
| { |
| case BT_INTEGER: |
| { |
| int power; |
| |
| /* First, we simplify the cases of op1 == 1, 0 or -1. */ |
| if (mpz_cmp_si (op1->value.integer, 1) == 0) |
| { |
| /* 1**op2 == 1 */ |
| mpz_set_si (result->value.integer, 1); |
| } |
| else if (mpz_cmp_si (op1->value.integer, 0) == 0) |
| { |
| /* 0**op2 == 0, if op2 > 0 |
| 0**op2 overflow, if op2 < 0 ; in that case, we |
| set the result to 0 and return ARITH_DIV0. */ |
| mpz_set_si (result->value.integer, 0); |
| if (mpz_cmp_si (op2->value.integer, 0) < 0) |
| rc = ARITH_DIV0; |
| } |
| else if (mpz_cmp_si (op1->value.integer, -1) == 0) |
| { |
| /* (-1)**op2 == (-1)**(mod(op2,2)) */ |
| unsigned int odd = mpz_fdiv_ui (op2->value.integer, 2); |
| if (odd) |
| mpz_set_si (result->value.integer, -1); |
| else |
| mpz_set_si (result->value.integer, 1); |
| } |
| /* Then, we take care of op2 < 0. */ |
| else if (mpz_cmp_si (op2->value.integer, 0) < 0) |
| { |
| /* if op2 < 0, op1**op2 == 0 because abs(op1) > 1. */ |
| mpz_set_si (result->value.integer, 0); |
| if (warn_integer_division) |
| gfc_warning_now (OPT_Winteger_division, "Negative " |
| "exponent of integer has zero " |
| "result at %L", &result->where); |
| } |
| else if (gfc_extract_int (op2, &power)) |
| { |
| /* If op2 doesn't fit in an int, the exponentiation will |
| overflow, because op2 > 0 and abs(op1) > 1. */ |
| mpz_t max; |
| int i; |
| i = gfc_validate_kind (BT_INTEGER, result->ts.kind, false); |
| |
| if (flag_range_check) |
| rc = ARITH_OVERFLOW; |
| |
| /* Still, we want to give the same value as the |
| processor. */ |
| mpz_init (max); |
| mpz_add_ui (max, gfc_integer_kinds[i].huge, 1); |
| mpz_mul_ui (max, max, 2); |
| mpz_powm (result->value.integer, op1->value.integer, |
| op2->value.integer, max); |
| mpz_clear (max); |
| } |
| else |
| mpz_pow_ui (result->value.integer, op1->value.integer, |
| power); |
| } |
| break; |
| |
| case BT_REAL: |
| mpfr_pow_z (result->value.real, op1->value.real, |
| op2->value.integer, GFC_RND_MODE); |
| break; |
| |
| case BT_COMPLEX: |
| mpc_pow_z (result->value.complex, op1->value.complex, |
| op2->value.integer, GFC_MPC_RND_MODE); |
| break; |
| |
| default: |
| break; |
| } |
| } |
| break; |
| |
| case BT_REAL: |
| |
| if (gfc_init_expr_flag) |
| { |
| if (!gfc_notify_std (GFC_STD_F2003, "Noninteger " |
| "exponent in an initialization " |
| "expression at %L", &op2->where)) |
| { |
| gfc_free_expr (result); |
| return ARITH_PROHIBIT; |
| } |
| } |
| |
| if (mpfr_cmp_si (op1->value.real, 0) < 0) |
| { |
| gfc_error ("Raising a negative REAL at %L to " |
| "a REAL power is prohibited", &op1->where); |
| gfc_free_expr (result); |
| return ARITH_PROHIBIT; |
| } |
| |
| mpfr_pow (result->value.real, op1->value.real, op2->value.real, |
| GFC_RND_MODE); |
| break; |
| |
| case BT_COMPLEX: |
| { |
| if (gfc_init_expr_flag) |
| { |
| if (!gfc_notify_std (GFC_STD_F2003, "Noninteger " |
| "exponent in an initialization " |
| "expression at %L", &op2->where)) |
| { |
| gfc_free_expr (result); |
| return ARITH_PROHIBIT; |
| } |
| } |
| |
| mpc_pow (result->value.complex, op1->value.complex, |
| op2->value.complex, GFC_MPC_RND_MODE); |
| } |
| break; |
| default: |
| gfc_internal_error ("arith_power(): unknown type"); |
| } |
| |
| if (rc == ARITH_OK) |
| rc = gfc_range_check (result); |
| |
| return check_result (rc, op1, result, resultp); |
| } |
| |
| |
| /* Concatenate two string constants. */ |
| |
| static arith |
| gfc_arith_concat (gfc_expr *op1, gfc_expr *op2, gfc_expr **resultp) |
| { |
| gfc_expr *result; |
| size_t len; |
| |
| gcc_assert (op1->ts.kind == op2->ts.kind); |
| result = gfc_get_constant_expr (BT_CHARACTER, op1->ts.kind, |
| &op1->where); |
| |
| len = op1->value.character.length + op2->value.character.length; |
| |
| result->value.character.string = gfc_get_wide_string (len + 1); |
| result->value.character.length = len; |
| |
| memcpy (result->value.character.string, op1->value.character.string, |
| op1->value.character.length * sizeof (gfc_char_t)); |
| |
| memcpy (&result->value.character.string[op1->value.character.length], |
| op2->value.character.string, |
| op2->value.character.length * sizeof (gfc_char_t)); |
| |
| result->value.character.string[len] = '\0'; |
| |
| *resultp = result; |
| |
| return ARITH_OK; |
| } |
| |
| /* Comparison between real values; returns 0 if (op1 .op. op2) is true. |
| This function mimics mpfr_cmp but takes NaN into account. */ |
| |
| static int |
| compare_real (gfc_expr *op1, gfc_expr *op2, gfc_intrinsic_op op) |
| { |
| int rc; |
| switch (op) |
| { |
| case INTRINSIC_EQ: |
| rc = mpfr_equal_p (op1->value.real, op2->value.real) ? 0 : 1; |
| break; |
| case INTRINSIC_GT: |
| rc = mpfr_greater_p (op1->value.real, op2->value.real) ? 1 : -1; |
| break; |
| case INTRINSIC_GE: |
| rc = mpfr_greaterequal_p (op1->value.real, op2->value.real) ? 1 : -1; |
| break; |
| case INTRINSIC_LT: |
| rc = mpfr_less_p (op1->value.real, op2->value.real) ? -1 : 1; |
| break; |
| case INTRINSIC_LE: |
| rc = mpfr_lessequal_p (op1->value.real, op2->value.real) ? -1 : 1; |
| break; |
| default: |
| gfc_internal_error ("compare_real(): Bad operator"); |
| } |
| |
| return rc; |
| } |
| |
| /* Comparison operators. Assumes that the two expression nodes |
| contain two constants of the same type. The op argument is |
| needed to handle NaN correctly. */ |
| |
| int |
| gfc_compare_expr (gfc_expr *op1, gfc_expr *op2, gfc_intrinsic_op op) |
| { |
| int rc; |
| |
| switch (op1->ts.type) |
| { |
| case BT_INTEGER: |
| rc = mpz_cmp (op1->value.integer, op2->value.integer); |
| break; |
| |
| case BT_REAL: |
| rc = compare_real (op1, op2, op); |
| break; |
| |
| case BT_CHARACTER: |
| rc = gfc_compare_string (op1, op2); |
| break; |
| |
| case BT_LOGICAL: |
| rc = ((!op1->value.logical && op2->value.logical) |
| || (op1->value.logical && !op2->value.logical)); |
| break; |
| |
| default: |
| gfc_internal_error ("gfc_compare_expr(): Bad basic type"); |
| } |
| |
| return rc; |
| } |
| |
| |
| /* Compare a pair of complex numbers. Naturally, this is only for |
| equality and inequality. */ |
| |
| static int |
| compare_complex (gfc_expr *op1, gfc_expr *op2) |
| { |
| return mpc_cmp (op1->value.complex, op2->value.complex) == 0; |
| } |
| |
| |
| /* Given two constant strings and the inverse collating sequence, compare the |
| strings. We return -1 for a < b, 0 for a == b and 1 for a > b. |
| We use the processor's default collating sequence. */ |
| |
| int |
| gfc_compare_string (gfc_expr *a, gfc_expr *b) |
| { |
| size_t len, alen, blen, i; |
| gfc_char_t ac, bc; |
| |
| alen = a->value.character.length; |
| blen = b->value.character.length; |
| |
| len = MAX(alen, blen); |
| |
| for (i = 0; i < len; i++) |
| { |
| ac = ((i < alen) ? a->value.character.string[i] : ' '); |
| bc = ((i < blen) ? b->value.character.string[i] : ' '); |
| |
| if (ac < bc) |
| return -1; |
| if (ac > bc) |
| return 1; |
| } |
| |
| /* Strings are equal */ |
| return 0; |
| } |
| |
| |
| int |
| gfc_compare_with_Cstring (gfc_expr *a, const char *b, bool case_sensitive) |
| { |
| size_t len, alen, blen, i; |
| gfc_char_t ac, bc; |
| |
| alen = a->value.character.length; |
| blen = strlen (b); |
| |
| len = MAX(alen, blen); |
| |
| for (i = 0; i < len; i++) |
| { |
| ac = ((i < alen) ? a->value.character.string[i] : ' '); |
| bc = ((i < blen) ? b[i] : ' '); |
| |
| if (!case_sensitive) |
| { |
| ac = TOLOWER (ac); |
| bc = TOLOWER (bc); |
| } |
| |
| if (ac < bc) |
| return -1; |
| if (ac > bc) |
| return 1; |
| } |
| |
| /* Strings are equal */ |
| return 0; |
| } |
| |
| |
| /* Specific comparison subroutines. */ |
| |
| static arith |
| gfc_arith_eq (gfc_expr *op1, gfc_expr *op2, gfc_expr **resultp) |
| { |
| gfc_expr *result; |
| |
| result = gfc_get_constant_expr (BT_LOGICAL, gfc_default_logical_kind, |
| &op1->where); |
| result->value.logical = (op1->ts.type == BT_COMPLEX) |
| ? compare_complex (op1, op2) |
| : (gfc_compare_expr (op1, op2, INTRINSIC_EQ) == 0); |
| |
| *resultp = result; |
| return ARITH_OK; |
| } |
| |
| |
| static arith |
| gfc_arith_ne (gfc_expr *op1, gfc_expr *op2, gfc_expr **resultp) |
| { |
| gfc_expr *result; |
| |
| result = gfc_get_constant_expr (BT_LOGICAL, gfc_default_logical_kind, |
| &op1->where); |
| result->value.logical = (op1->ts.type == BT_COMPLEX) |
| ? !compare_complex (op1, op2) |
| : (gfc_compare_expr (op1, op2, INTRINSIC_EQ) != 0); |
| |
| *resultp = result; |
| return ARITH_OK; |
| } |
| |
| |
| static arith |
| gfc_arith_gt (gfc_expr *op1, gfc_expr *op2, gfc_expr **resultp) |
| { |
| gfc_expr *result; |
| |
| result = gfc_get_constant_expr (BT_LOGICAL, gfc_default_logical_kind, |
| &op1->where); |
| result->value.logical = (gfc_compare_expr (op1, op2, INTRINSIC_GT) > 0); |
| *resultp = result; |
| |
| return ARITH_OK; |
| } |
| |
| |
| static arith |
| gfc_arith_ge (gfc_expr *op1, gfc_expr *op2, gfc_expr **resultp) |
| { |
| gfc_expr *result; |
| |
| result = gfc_get_constant_expr (BT_LOGICAL, gfc_default_logical_kind, |
| &op1->where); |
| result->value.logical = (gfc_compare_expr (op1, op2, INTRINSIC_GE) >= 0); |
| *resultp = result; |
| |
| return ARITH_OK; |
| } |
| |
| |
| static arith |
| gfc_arith_lt (gfc_expr *op1, gfc_expr *op2, gfc_expr **resultp) |
| { |
| gfc_expr *result; |
| |
| result = gfc_get_constant_expr (BT_LOGICAL, gfc_default_logical_kind, |
| &op1->where); |
| result->value.logical = (gfc_compare_expr (op1, op2, INTRINSIC_LT) < 0); |
| *resultp = result; |
| |
| return ARITH_OK; |
| } |
| |
| |
| static arith |
| gfc_arith_le (gfc_expr *op1, gfc_expr *op2, gfc_expr **resultp) |
| { |
| gfc_expr *result; |
| |
| result = gfc_get_constant_expr (BT_LOGICAL, gfc_default_logical_kind, |
| &op1->where); |
| result->value.logical = (gfc_compare_expr (op1, op2, INTRINSIC_LE) <= 0); |
| *resultp = result; |
| |
| return ARITH_OK; |
| } |
| |
| |
| static arith |
| reduce_unary (arith (*eval) (gfc_expr *, gfc_expr **), gfc_expr *op, |
| gfc_expr **result) |
| { |
| gfc_constructor_base head; |
| gfc_constructor *c; |
| gfc_expr *r; |
| arith rc; |
| |
| if (op->expr_type == EXPR_CONSTANT) |
| return eval (op, result); |
| |
| rc = ARITH_OK; |
| head = gfc_constructor_copy (op->value.constructor); |
| for (c = gfc_constructor_first (head); c; c = gfc_constructor_next (c)) |
| { |
| rc = reduce_unary (eval, c->expr, &r); |
| |
| if (rc != ARITH_OK) |
| break; |
| |
| gfc_replace_expr (c->expr, r); |
| } |
| |
| if (rc != ARITH_OK) |
| gfc_constructor_free (head); |
| else |
| { |
| gfc_constructor *c = gfc_constructor_first (head); |
| r = gfc_get_array_expr (c->expr->ts.type, c->expr->ts.kind, |
| &op->where); |
| r->shape = gfc_copy_shape (op->shape, op->rank); |
| r->rank = op->rank; |
| r->value.constructor = head; |
| *result = r; |
| } |
| |
| return rc; |
| } |
| |
| |
| static arith |
| reduce_binary_ac (arith (*eval) (gfc_expr *, gfc_expr *, gfc_expr **), |
| gfc_expr *op1, gfc_expr *op2, gfc_expr **result) |
| { |
| gfc_constructor_base head; |
| gfc_constructor *c; |
| gfc_expr *r; |
| arith rc = ARITH_OK; |
| |
| head = gfc_constructor_copy (op1->value.constructor); |
| for (c = gfc_constructor_first (head); c; c = gfc_constructor_next (c)) |
| { |
| if (c->expr->expr_type == EXPR_CONSTANT) |
| rc = eval (c->expr, op2, &r); |
| else |
| rc = reduce_binary_ac (eval, c->expr, op2, &r); |
| |
| if (rc != ARITH_OK) |
| break; |
| |
| gfc_replace_expr (c->expr, r); |
| } |
| |
| if (rc != ARITH_OK) |
| gfc_constructor_free (head); |
| else |
| { |
| gfc_constructor *c = gfc_constructor_first (head); |
| r = gfc_get_array_expr (c->expr->ts.type, c->expr->ts.kind, |
| &op1->where); |
| r->shape = gfc_copy_shape (op1->shape, op1->rank); |
| r->rank = op1->rank; |
| r->value.constructor = head; |
| *result = r; |
| } |
| |
| return rc; |
| } |
| |
| |
| static arith |
| reduce_binary_ca (arith (*eval) (gfc_expr *, gfc_expr *, gfc_expr **), |
| gfc_expr *op1, gfc_expr *op2, gfc_expr **result) |
| { |
| gfc_constructor_base head; |
| gfc_constructor *c; |
| gfc_expr *r; |
| arith rc = ARITH_OK; |
| |
| head = gfc_constructor_copy (op2->value.constructor); |
| for (c = gfc_constructor_first (head); c; c = gfc_constructor_next (c)) |
| { |
| if (c->expr->expr_type == EXPR_CONSTANT) |
| rc = eval (op1, c->expr, &r); |
| else |
| rc = reduce_binary_ca (eval, op1, c->expr, &r); |
| |
| if (rc != ARITH_OK) |
| break; |
| |
| gfc_replace_expr (c->expr, r); |
| } |
| |
| if (rc != ARITH_OK) |
| gfc_constructor_free (head); |
| else |
| { |
| gfc_constructor *c = gfc_constructor_first (head); |
| r = gfc_get_array_expr (c->expr->ts.type, c->expr->ts.kind, |
| &op2->where); |
| r->shape = gfc_copy_shape (op2->shape, op2->rank); |
| r->rank = op2->rank; |
| r->value.constructor = head; |
| *result = r; |
| } |
| |
| return rc; |
| } |
| |
| |
| /* We need a forward declaration of reduce_binary. */ |
| static arith reduce_binary (arith (*eval) (gfc_expr *, gfc_expr *, gfc_expr **), |
| gfc_expr *op1, gfc_expr *op2, gfc_expr **result); |
| |
| |
| static arith |
| reduce_binary_aa (arith (*eval) (gfc_expr *, gfc_expr *, gfc_expr **), |
| gfc_expr *op1, gfc_expr *op2, gfc_expr **result) |
| { |
| gfc_constructor_base head; |
| gfc_constructor *c, *d; |
| gfc_expr *r; |
| arith rc = ARITH_OK; |
| |
| if (!gfc_check_conformance (op1, op2, "elemental binary operation")) |
| return ARITH_INCOMMENSURATE; |
| |
| head = gfc_constructor_copy (op1->value.constructor); |
| for (c = gfc_constructor_first (head), |
| d = gfc_constructor_first (op2->value.constructor); |
| c && d; |
| c = gfc_constructor_next (c), d = gfc_constructor_next (d)) |
| { |
| rc = reduce_binary (eval, c->expr, d->expr, &r); |
| if (rc != ARITH_OK) |
| break; |
| |
| gfc_replace_expr (c->expr, r); |
| } |
| |
| if (c || d) |
| rc = ARITH_INCOMMENSURATE; |
| |
| if (rc != ARITH_OK) |
| gfc_constructor_free (head); |
| else |
| { |
| gfc_constructor *c = gfc_constructor_first (head); |
| r = gfc_get_array_expr (c->expr->ts.type, c->expr->ts.kind, |
| &op1->where); |
| r->shape = gfc_copy_shape (op1->shape, op1->rank); |
| r->rank = op1->rank; |
| r->value.constructor = head; |
| *result = r; |
| } |
| |
| return rc; |
| } |
| |
| |
| static arith |
| reduce_binary (arith (*eval) (gfc_expr *, gfc_expr *, gfc_expr **), |
| gfc_expr *op1, gfc_expr *op2, gfc_expr **result) |
| { |
| if (op1->expr_type == EXPR_CONSTANT && op2->expr_type == EXPR_CONSTANT) |
| return eval (op1, op2, result); |
| |
| if (op1->expr_type == EXPR_CONSTANT && op2->expr_type == EXPR_ARRAY) |
| return reduce_binary_ca (eval, op1, op2, result); |
| |
| if (op1->expr_type == EXPR_ARRAY && op2->expr_type == EXPR_CONSTANT) |
| return reduce_binary_ac (eval, op1, op2, result); |
| |
| return reduce_binary_aa (eval, op1, op2, result); |
| } |
| |
| |
| typedef union |
| { |
| arith (*f2)(gfc_expr *, gfc_expr **); |
| arith (*f3)(gfc_expr *, gfc_expr *, gfc_expr **); |
| } |
| eval_f; |
| |
| /* High level arithmetic subroutines. These subroutines go into |
| eval_intrinsic(), which can do one of several things to its |
| operands. If the operands are incompatible with the intrinsic |
| operation, we return a node pointing to the operands and hope that |
| an operator interface is found during resolution. |
| |
| If the operands are compatible and are constants, then we try doing |
| the arithmetic. We also handle the cases where either or both |
| operands are array constructors. */ |
| |
| static gfc_expr * |
| eval_intrinsic (gfc_intrinsic_op op, |
| eval_f eval, gfc_expr *op1, gfc_expr *op2) |
| { |
| gfc_expr temp, *result; |
| int unary; |
| arith rc; |
| |
| gfc_clear_ts (&temp.ts); |
| |
| switch (op) |
| { |
| /* Logical unary */ |
| case INTRINSIC_NOT: |
| if (op1->ts.type != BT_LOGICAL) |
| goto runtime; |
| |
| temp.ts.type = BT_LOGICAL; |
| temp.ts.kind = gfc_default_logical_kind; |
| unary = 1; |
| break; |
| |
| /* Logical binary operators */ |
| case INTRINSIC_OR: |
| case INTRINSIC_AND: |
| case INTRINSIC_NEQV: |
| case INTRINSIC_EQV: |
| if (op1->ts.type != BT_LOGICAL || op2->ts.type != BT_LOGICAL) |
| goto runtime; |
| |
| temp.ts.type = BT_LOGICAL; |
| temp.ts.kind = gfc_default_logical_kind; |
| unary = 0; |
| break; |
| |
| /* Numeric unary */ |
| case INTRINSIC_UPLUS: |
| case INTRINSIC_UMINUS: |
| if (!gfc_numeric_ts (&op1->ts)) |
| goto runtime; |
| |
| temp.ts = op1->ts; |
| unary = 1; |
| break; |
| |
| case INTRINSIC_PARENTHESES: |
| temp.ts = op1->ts; |
| unary = 1; |
| break; |
| |
| /* Additional restrictions for ordering relations. */ |
| case INTRINSIC_GE: |
| case INTRINSIC_GE_OS: |
| case INTRINSIC_LT: |
| case INTRINSIC_LT_OS: |
| case INTRINSIC_LE: |
| case INTRINSIC_LE_OS: |
| case INTRINSIC_GT: |
| case INTRINSIC_GT_OS: |
| if (op1->ts.type == BT_COMPLEX || op2->ts.type == BT_COMPLEX) |
| { |
| temp.ts.type = BT_LOGICAL; |
| temp.ts.kind = gfc_default_logical_kind; |
| goto runtime; |
| } |
| |
| /* Fall through */ |
| case INTRINSIC_EQ: |
| case INTRINSIC_EQ_OS: |
| case INTRINSIC_NE: |
| case INTRINSIC_NE_OS: |
| if (op1->ts.type == BT_CHARACTER && op2->ts.type == BT_CHARACTER) |
| { |
| unary = 0; |
| temp.ts.type = BT_LOGICAL; |
| temp.ts.kind = gfc_default_logical_kind; |
| |
| /* If kind mismatch, exit and we'll error out later. */ |
| if (op1->ts.kind != op2->ts.kind) |
| goto runtime; |
| |
| break; |
| } |
| |
| gcc_fallthrough (); |
| /* Numeric binary */ |
| case INTRINSIC_PLUS: |
| case INTRINSIC_MINUS: |
| case INTRINSIC_TIMES: |
| case INTRINSIC_DIVIDE: |
| case INTRINSIC_POWER: |
| if (!gfc_numeric_ts (&op1->ts) || !gfc_numeric_ts (&op2->ts)) |
| goto runtime; |
| |
| /* Insert any necessary type conversions to make the operands |
| compatible. */ |
| |
| temp.expr_type = EXPR_OP; |
| gfc_clear_ts (&temp.ts); |
| temp.value.op.op = op; |
| |
| temp.value.op.op1 = op1; |
| temp.value.op.op2 = op2; |
| |
| gfc_type_convert_binary (&temp, warn_conversion || warn_conversion_extra); |
| |
| if (op == INTRINSIC_EQ || op == INTRINSIC_NE |
| || op == INTRINSIC_GE || op == INTRINSIC_GT |
| || op == INTRINSIC_LE || op == INTRINSIC_LT |
| || op == INTRINSIC_EQ_OS || op == INTRINSIC_NE_OS |
| || op == INTRINSIC_GE_OS || op == INTRINSIC_GT_OS |
| || op == INTRINSIC_LE_OS || op == INTRINSIC_LT_OS) |
| { |
| temp.ts.type = BT_LOGICAL; |
| temp.ts.kind = gfc_default_logical_kind; |
| } |
| |
| unary = 0; |
| break; |
| |
| /* Character binary */ |
| case INTRINSIC_CONCAT: |
| if (op1->ts.type != BT_CHARACTER || op2->ts.type != BT_CHARACTER |
| || op1->ts.kind != op2->ts.kind) |
| goto runtime; |
| |
| temp.ts.type = BT_CHARACTER; |
| temp.ts.kind = op1->ts.kind; |
| unary = 0; |
| break; |
| |
| case INTRINSIC_USER: |
| goto runtime; |
| |
| default: |
| gfc_internal_error ("eval_intrinsic(): Bad operator"); |
| } |
| |
| if (op1->expr_type != EXPR_CONSTANT |
| && (op1->expr_type != EXPR_ARRAY |
| || !gfc_is_constant_expr (op1) || !gfc_expanded_ac (op1))) |
| goto runtime; |
| |
| if (op2 != NULL |
| && op2->expr_type != EXPR_CONSTANT |
| && (op2->expr_type != EXPR_ARRAY |
| || !gfc_is_constant_expr (op2) || !gfc_expanded_ac (op2))) |
| goto runtime; |
| |
| if (unary) |
| rc = reduce_unary (eval.f2, op1, &result); |
| else |
| rc = reduce_binary (eval.f3, op1, op2, &result); |
| |
| |
| /* Something went wrong. */ |
| if (op == INTRINSIC_POWER && rc == ARITH_PROHIBIT) |
| return NULL; |
| |
| if (rc != ARITH_OK) |
| { |
| gfc_error (gfc_arith_error (rc), &op1->where); |
| if (rc == ARITH_OVERFLOW) |
| goto done; |
| return NULL; |
| } |
| |
| done: |
| |
| gfc_free_expr (op1); |
| gfc_free_expr (op2); |
| return result; |
| |
| runtime: |
| /* Create a run-time expression. */ |
| result = gfc_get_operator_expr (&op1->where, op, op1, op2); |
| result->ts = temp.ts; |
| |
| return result; |
| } |
| |
| |
| /* Modify type of expression for zero size array. */ |
| |
| static gfc_expr * |
| eval_type_intrinsic0 (gfc_intrinsic_op iop, gfc_expr *op) |
| { |
| if (op == NULL) |
| gfc_internal_error ("eval_type_intrinsic0(): op NULL"); |
| |
| switch (iop) |
| { |
| case INTRINSIC_GE: |
| case INTRINSIC_GE_OS: |
| case INTRINSIC_LT: |
| case INTRINSIC_LT_OS: |
| case INTRINSIC_LE: |
| case INTRINSIC_LE_OS: |
| case INTRINSIC_GT: |
| case INTRINSIC_GT_OS: |
| case INTRINSIC_EQ: |
| case INTRINSIC_EQ_OS: |
| case INTRINSIC_NE: |
| case INTRINSIC_NE_OS: |
| op->ts.type = BT_LOGICAL; |
| op->ts.kind = gfc_default_logical_kind; |
| break; |
| |
| default: |
| break; |
| } |
| |
| return op; |
| } |
| |
| |
| /* Return nonzero if the expression is a zero size array. */ |
| |
| static int |
| gfc_zero_size_array (gfc_expr *e) |
| { |
| if (e->expr_type != EXPR_ARRAY) |
| return 0; |
| |
| return e->value.constructor == NULL; |
| } |
| |
| |
| /* Reduce a binary expression where at least one of the operands |
| involves a zero-length array. Returns NULL if neither of the |
| operands is a zero-length array. */ |
| |
| static gfc_expr * |
| reduce_binary0 (gfc_expr *op1, gfc_expr *op2) |
| { |
| if (gfc_zero_size_array (op1)) |
| { |
| gfc_free_expr (op2); |
| return op1; |
| } |
| |
| if (gfc_zero_size_array (op2)) |
| { |
| gfc_free_expr (op1); |
| return op2; |
| } |
| |
| return NULL; |
| } |
| |
| |
| static gfc_expr * |
| eval_intrinsic_f2 (gfc_intrinsic_op op, |
| arith (*eval) (gfc_expr *, gfc_expr **), |
| gfc_expr *op1, gfc_expr *op2) |
| { |
| gfc_expr *result; |
| eval_f f; |
| |
| if (op2 == NULL) |
| { |
| if (gfc_zero_size_array (op1)) |
| return eval_type_intrinsic0 (op, op1); |
| } |
| else |
| { |
| result = reduce_binary0 (op1, op2); |
| if (result != NULL) |
| return eval_type_intrinsic0 (op, result); |
| } |
| |
| f.f2 = eval; |
| return eval_intrinsic (op, f, op1, op2); |
| } |
| |
| |
| static gfc_expr * |
| eval_intrinsic_f3 (gfc_intrinsic_op op, |
| arith (*eval) (gfc_expr *, gfc_expr *, gfc_expr **), |
| gfc_expr *op1, gfc_expr *op2) |
| { |
| gfc_expr *result; |
| eval_f f; |
| |
| result = reduce_binary0 (op1, op2); |
| if (result != NULL) |
| return eval_type_intrinsic0(op, result); |
| |
| f.f3 = eval; |
| return eval_intrinsic (op, f, op1, op2); |
| } |
| |
| |
| gfc_expr * |
| gfc_parentheses (gfc_expr *op) |
| { |
| if (gfc_is_constant_expr (op)) |
| return op; |
| |
| return eval_intrinsic_f2 (INTRINSIC_PARENTHESES, gfc_arith_identity, |
| op, NULL); |
| } |
| |
| gfc_expr * |
| gfc_uplus (gfc_expr *op) |
| { |
| return eval_intrinsic_f2 (INTRINSIC_UPLUS, gfc_arith_identity, op, NULL); |
| } |
| |
| |
| gfc_expr * |
| gfc_uminus (gfc_expr *op) |
| { |
| return eval_intrinsic_f2 (INTRINSIC_UMINUS, gfc_arith_uminus, op, NULL); |
| } |
| |
| |
| gfc_expr * |
| gfc_add (gfc_expr *op1, gfc_expr *op2) |
| { |
| return eval_intrinsic_f3 (INTRINSIC_PLUS, gfc_arith_plus, op1, op2); |
| } |
| |
| |
| gfc_expr * |
| gfc_subtract (gfc_expr *op1, gfc_expr *op2) |
| { |
| return eval_intrinsic_f3 (INTRINSIC_MINUS, gfc_arith_minus, op1, op2); |
| } |
| |
| |
| gfc_expr * |
| gfc_multiply (gfc_expr *op1, gfc_expr *op2) |
| { |
| return eval_intrinsic_f3 (INTRINSIC_TIMES, gfc_arith_times, op1, op2); |
| } |
| |
| |
| gfc_expr * |
| gfc_divide (gfc_expr *op1, gfc_expr *op2) |
| { |
| return eval_intrinsic_f3 (INTRINSIC_DIVIDE, gfc_arith_divide, op1, op2); |
| } |
| |
| |
| gfc_expr * |
| gfc_power (gfc_expr *op1, gfc_expr *op2) |
| { |
| return eval_intrinsic_f3 (INTRINSIC_POWER, arith_power, op1, op2); |
| } |
| |
| |
| gfc_expr * |
| gfc_concat (gfc_expr *op1, gfc_expr *op2) |
| { |
| return eval_intrinsic_f3 (INTRINSIC_CONCAT, gfc_arith_concat, op1, op2); |
| } |
| |
| |
| gfc_expr * |
| gfc_and (gfc_expr *op1, gfc_expr *op2) |
| { |
| return eval_intrinsic_f3 (INTRINSIC_AND, gfc_arith_and, op1, op2); |
| } |
| |
| |
| gfc_expr * |
| gfc_or (gfc_expr *op1, gfc_expr *op2) |
| { |
| return eval_intrinsic_f3 (INTRINSIC_OR, gfc_arith_or, op1, op2); |
| } |
| |
| |
| gfc_expr * |
| gfc_not (gfc_expr *op1) |
| { |
| return eval_intrinsic_f2 (INTRINSIC_NOT, gfc_arith_not, op1, NULL); |
| } |
| |
| |
| gfc_expr * |
| gfc_eqv (gfc_expr *op1, gfc_expr *op2) |
| { |
| return eval_intrinsic_f3 (INTRINSIC_EQV, gfc_arith_eqv, op1, op2); |
| } |
| |
| |
| gfc_expr * |
| gfc_neqv (gfc_expr *op1, gfc_expr *op2) |
| { |
| return eval_intrinsic_f3 (INTRINSIC_NEQV, gfc_arith_neqv, op1, op2); |
| } |
| |
| |
| gfc_expr * |
| gfc_eq (gfc_expr *op1, gfc_expr *op2, gfc_intrinsic_op op) |
| { |
| return eval_intrinsic_f3 (op, gfc_arith_eq, op1, op2); |
| } |
| |
| |
| gfc_expr * |
| gfc_ne (gfc_expr *op1, gfc_expr *op2, gfc_intrinsic_op op) |
| { |
| return eval_intrinsic_f3 (op, gfc_arith_ne, op1, op2); |
| } |
| |
| |
| gfc_expr * |
| gfc_gt (gfc_expr *op1, gfc_expr *op2, gfc_intrinsic_op op) |
| { |
| return eval_intrinsic_f3 (op, gfc_arith_gt, op1, op2); |
| } |
| |
| |
| gfc_expr * |
| gfc_ge (gfc_expr *op1, gfc_expr *op2, gfc_intrinsic_op op) |
| { |
| return eval_intrinsic_f3 (op, gfc_arith_ge, op1, op2); |
| } |
| |
| |
| gfc_expr * |
| gfc_lt (gfc_expr *op1, gfc_expr *op2, gfc_intrinsic_op op) |
| { |
| return eval_intrinsic_f3 (op, gfc_arith_lt, op1, op2); |
| } |
| |
| |
| gfc_expr * |
| gfc_le (gfc_expr *op1, gfc_expr *op2, gfc_intrinsic_op op) |
| { |
| return eval_intrinsic_f3 (op, gfc_arith_le, op1, op2); |
| } |
| |
| |
| /* Convert an integer string to an expression node. */ |
| |
| gfc_expr * |
| gfc_convert_integer (const char *buffer, int kind, int radix, locus *where) |
| { |
| gfc_expr *e; |
| const char *t; |
| |
| e = gfc_get_constant_expr (BT_INTEGER, kind, where); |
| /* A leading plus is allowed, but not by mpz_set_str. */ |
| if (buffer[0] == '+') |
| t = buffer + 1; |
| else |
| t = buffer; |
| mpz_set_str (e->value.integer, t, radix); |
| |
| return e; |
| } |
| |
| |
| /* Convert a real string to an expression node. */ |
| |
| gfc_expr * |
| gfc_convert_real (const char *buffer, int kind, locus *where) |
| { |
| gfc_expr *e; |
| |
| e = gfc_get_constant_expr (BT_REAL, kind, where); |
| mpfr_set_str (e->value.real, buffer, 10, GFC_RND_MODE); |
| |
| return e; |
| } |
| |
| |
| /* Convert a pair of real, constant expression nodes to a single |
| complex expression node. */ |
| |
| gfc_expr * |
| gfc_convert_complex (gfc_expr *real, gfc_expr *imag, int kind) |
| { |
| gfc_expr *e; |
| |
| e = gfc_get_constant_expr (BT_COMPLEX, kind, &real->where); |
| mpc_set_fr_fr (e->value.complex, real->value.real, imag->value.real, |
| GFC_MPC_RND_MODE); |
| |
| return e; |
| } |
| |
| |
| /******* Simplification of intrinsic functions with constant arguments *****/ |
| |
| |
| /* Deal with an arithmetic error. */ |
| |
| static void |
| arith_error (arith rc, gfc_typespec *from, gfc_typespec *to, locus *where) |
| { |
| switch (rc) |
| { |
| case ARITH_OK: |
| gfc_error ("Arithmetic OK converting %s to %s at %L", |
| gfc_typename (from), gfc_typename (to), where); |
| break; |
| case ARITH_OVERFLOW: |
| gfc_error ("Arithmetic overflow converting %s to %s at %L. This check " |
| "can be disabled with the option %<-fno-range-check%>", |
| gfc_typename (from), gfc_typename (to), where); |
| break; |
| case ARITH_UNDERFLOW: |
| gfc_error ("Arithmetic underflow converting %s to %s at %L. This check " |
| "can be disabled with the option %<-fno-range-check%>", |
| gfc_typename (from), gfc_typename (to), where); |
| break; |
| case ARITH_NAN: |
| gfc_error ("Arithmetic NaN converting %s to %s at %L. This check " |
| "can be disabled with the option %<-fno-range-check%>", |
| gfc_typename (from), gfc_typename (to), where); |
| break; |
| case ARITH_DIV0: |
| gfc_error ("Division by zero converting %s to %s at %L", |
| gfc_typename (from), gfc_typename (to), where); |
| break; |
| case ARITH_INCOMMENSURATE: |
| gfc_error ("Array operands are incommensurate converting %s to %s at %L", |
| gfc_typename (from), gfc_typename (to), where); |
| break; |
| case ARITH_ASYMMETRIC: |
| gfc_error ("Integer outside symmetric range implied by Standard Fortran" |
| " converting %s to %s at %L", |
| gfc_typename (from), gfc_typename (to), where); |
| break; |
| default: |
| gfc_internal_error ("gfc_arith_error(): Bad error code"); |
| } |
| |
| /* TODO: Do something about the error, i.e., throw exception, return |
| NaN, etc. */ |
| } |
| |
| /* Returns true if significant bits were lost when converting real |
| constant r from from_kind to to_kind. */ |
| |
| static bool |
| wprecision_real_real (mpfr_t r, int from_kind, int to_kind) |
| { |
| mpfr_t rv, diff; |
| bool ret; |
| |
| gfc_set_model_kind (to_kind); |
| mpfr_init (rv); |
| gfc_set_model_kind (from_kind); |
| mpfr_init (diff); |
| |
| mpfr_set (rv, r, GFC_RND_MODE); |
| mpfr_sub (diff, rv, r, GFC_RND_MODE); |
| |
| ret = ! mpfr_zero_p (diff); |
| mpfr_clear (rv); |
| mpfr_clear (diff); |
| return ret; |
| } |
| |
| /* Return true if conversion from an integer to a real loses precision. */ |
| |
| static bool |
| wprecision_int_real (mpz_t n, mpfr_t r) |
| { |
| bool ret; |
| mpz_t i; |
| mpz_init (i); |
| mpfr_get_z (i, r, GFC_RND_MODE); |
| mpz_sub (i, i, n); |
| ret = mpz_cmp_si (i, 0) != 0; |
| mpz_clear (i); |
| return ret; |
| } |
| |
| /* Convert integers to integers. */ |
| |
| gfc_expr * |
| gfc_int2int (gfc_expr *src, int kind) |
| { |
| gfc_expr *result; |
| arith rc; |
| |
| result = gfc_get_constant_expr (BT_INTEGER, kind, &src->where); |
| |
| mpz_set (result->value.integer, src->value.integer); |
| |
| if ((rc = gfc_check_integer_range (result->value.integer, kind)) != ARITH_OK) |
| { |
| if (rc == ARITH_ASYMMETRIC) |
| { |
| gfc_warning (0, gfc_arith_error (rc), &src->where); |
| } |
| else |
| { |
| arith_error (rc, &src->ts, &result->ts, &src->where); |
| gfc_free_expr (result); |
| return NULL; |
| } |
| } |
| |
| /* If we do not trap numeric overflow, we need to convert the number to |
| signed, throwing away high-order bits if necessary. */ |
| if (flag_range_check == 0) |
| { |
| int k; |
| |
| k = gfc_validate_kind (BT_INTEGER, kind, false); |
| gfc_convert_mpz_to_signed (result->value.integer, |
| gfc_integer_kinds[k].bit_size); |
| |
| if (warn_conversion && kind < src->ts.kind) |
| gfc_warning_now (OPT_Wconversion, "Conversion from %qs to %qs at %L", |
| gfc_typename (&src->ts), gfc_typename (&result->ts), |
| &src->where); |
| } |
| return result; |
| } |
| |
| |
| /* Convert integers to reals. */ |
| |
| gfc_expr * |
| gfc_int2real (gfc_expr *src, int kind) |
| { |
| gfc_expr *result; |
| arith rc; |
| |
| result = gfc_get_constant_expr (BT_REAL, kind, &src->where); |
| |
| mpfr_set_z (result->value.real, src->value.integer, GFC_RND_MODE); |
| |
| if ((rc = gfc_check_real_range (result->value.real, kind)) != ARITH_OK) |
| { |
| arith_error (rc, &src->ts, &result->ts, &src->where); |
| gfc_free_expr (result); |
| return NULL; |
| } |
| |
| if (warn_conversion |
| && wprecision_int_real (src->value.integer, result->value.real)) |
| gfc_warning (OPT_Wconversion, "Change of value in conversion " |
| "from %qs to %qs at %L", |
| gfc_typename (&src->ts), |
| gfc_typename (&result->ts), |
| &src->where); |
| |
| return result; |
| } |
| |
| |
| /* Convert default integer to default complex. */ |
| |
| gfc_expr * |
| gfc_int2complex (gfc_expr *src, int kind) |
| { |
| gfc_expr *result; |
| arith rc; |
| |
| result = gfc_get_constant_expr (BT_COMPLEX, kind, &src->where); |
| |
| mpc_set_z (result->value.complex, src->value.integer, GFC_MPC_RND_MODE); |
| |
| if ((rc = gfc_check_real_range (mpc_realref (result->value.complex), kind)) |
| != ARITH_OK) |
| { |
| arith_error (rc, &src->ts, &result->ts, &src->where); |
| gfc_free_expr (result); |
| return NULL; |
| } |
| |
| if (warn_conversion |
| && wprecision_int_real (src->value.integer, |
| mpc_realref (result->value.complex))) |
| gfc_warning_now (OPT_Wconversion, "Change of value in conversion " |
| "from %qs to %qs at %L", |
| gfc_typename (&src->ts), |
| gfc_typename (&result->ts), |
| &src->where); |
| |
| return result; |
| } |
| |
| |
| /* Convert default real to default integer. */ |
| |
| gfc_expr * |
| gfc_real2int (gfc_expr *src, int kind) |
| { |
| gfc_expr *result; |
| arith rc; |
| bool did_warn = false; |
| |
| result = gfc_get_constant_expr (BT_INTEGER, kind, &src->where); |
| |
| gfc_mpfr_to_mpz (result->value.integer, src->value.real, &src->where); |
| |
| if ((rc = gfc_check_integer_range (result->value.integer, kind)) != ARITH_OK) |
| { |
| arith_error (rc, &src->ts, &result->ts, &src->where); |
| gfc_free_expr (result); |
| return NULL; |
| } |
| |
| /* If there was a fractional part, warn about this. */ |
| |
| if (warn_conversion) |
| { |
| mpfr_t f; |
| mpfr_init (f); |
| mpfr_frac (f, src->value.real, GFC_RND_MODE); |
| if (mpfr_cmp_si (f, 0) != 0) |
| { |
| gfc_warning_now (OPT_Wconversion, "Change of value in conversion " |
| "from %qs to %qs at %L", gfc_typename (&src->ts), |
| gfc_typename (&result->ts), &src->where); |
| did_warn = true; |
| } |
| } |
| if (!did_warn && warn_conversion_extra) |
| { |
| gfc_warning_now (OPT_Wconversion_extra, "Conversion from %qs to %qs " |
| "at %L", gfc_typename (&src->ts), |
| gfc_typename (&result->ts), &src->where); |
| } |
| |
| return result; |
| } |
| |
| |
| /* Convert real to real. */ |
| |
| gfc_expr * |
| gfc_real2real (gfc_expr *src, int kind) |
| { |
| gfc_expr *result; |
| arith rc; |
| bool did_warn = false; |
| |
| result = gfc_get_constant_expr (BT_REAL, kind, &src->where); |
| |
| mpfr_set (result->value.real, src->value.real, GFC_RND_MODE); |
| |
| rc = gfc_check_real_range (result->value.real, kind); |
| |
| if (rc == ARITH_UNDERFLOW) |
| { |
| if (warn_underflow) |
| gfc_warning (OPT_Woverflow, gfc_arith_error (rc), &src->where); |
| mpfr_set_ui (result->value.real, 0, GFC_RND_MODE); |
| } |
| else if (rc != ARITH_OK) |
| { |
| arith_error (rc, &src->ts, &result->ts, &src->where); |
| gfc_free_expr (result); |
| return NULL; |
| } |
| |
| /* As a special bonus, don't warn about REAL values which are not changed by |
| the conversion if -Wconversion is specified and -Wconversion-extra is |
| not. */ |
| |
| if ((warn_conversion || warn_conversion_extra) && src->ts.kind > kind) |
| { |
| int w = warn_conversion ? OPT_Wconversion : OPT_Wconversion_extra; |
| |
| /* Calculate the difference between the constant and the rounded |
| value and check it against zero. */ |
| |
| if (wprecision_real_real (src->value.real, src->ts.kind, kind)) |
| { |
| gfc_warning_now (w, "Change of value in conversion from " |
| "%qs to %qs at %L", |
| gfc_typename (&src->ts), gfc_typename (&result->ts), |
| &src->where); |
| /* Make sure the conversion warning is not emitted again. */ |
| did_warn = true; |
| } |
| } |
| |
| if (!did_warn && warn_conversion_extra) |
| gfc_warning_now (OPT_Wconversion_extra, "Conversion from %qs to %qs " |
| "at %L", gfc_typename(&src->ts), |
| gfc_typename(&result->ts), &src->where); |
| |
| return result; |
| } |
| |
| |
| /* Convert real to complex. */ |
| |
| gfc_expr * |
| gfc_real2complex (gfc_expr *src, int kind) |
| { |
| gfc_expr *result; |
| arith rc; |
| bool did_warn = false; |
| |
| result = gfc_get_constant_expr (BT_COMPLEX, kind, &src->where); |
| |
| mpc_set_fr (result->value.complex, src->value.real, GFC_MPC_RND_MODE); |
| |
| rc = gfc_check_real_range (mpc_realref (result->value.complex), kind); |
| |
| if (rc == ARITH_UNDERFLOW) |
| { |
| if (warn_underflow) |
| gfc_warning (OPT_Woverflow, gfc_arith_error (rc), &src->where); |
| mpfr_set_ui (mpc_realref (result->value.complex), 0, GFC_RND_MODE); |
| } |
| else if (rc != ARITH_OK) |
| { |
| arith_error (rc, &src->ts, &result->ts, &src->where); |
| gfc_free_expr (result); |
| return NULL; |
| } |
| |
| if ((warn_conversion || warn_conversion_extra) && src->ts.kind > kind) |
| { |
| int w = warn_conversion ? OPT_Wconversion : OPT_Wconversion_extra; |
| |
| if (wprecision_real_real (src->value.real, src->ts.kind, kind)) |
| { |
| gfc_warning_now (w, "Change of value in conversion from " |
| "%qs to %qs at %L", |
| gfc_typename (&src->ts), gfc_typename (&result->ts), |
| &src->where); |
| /* Make sure the conversion warning is not emitted again. */ |
| did_warn = true; |
| } |
| } |
| |
| if (!did_warn && warn_conversion_extra) |
| gfc_warning_now (OPT_Wconversion_extra, "Conversion from %qs to %qs " |
| "at %L", gfc_typename(&src->ts), |
| gfc_typename(&result->ts), &src->where); |
| |
| return result; |
| } |
| |
| |
| /* Convert complex to integer. */ |
| |
| gfc_expr * |
| gfc_complex2int (gfc_expr *src, int kind) |
| { |
| gfc_expr *result; |
| arith rc; |
| bool did_warn = false; |
| |
| result = gfc_get_constant_expr (BT_INTEGER, kind, &src->where); |
| |
| gfc_mpfr_to_mpz (result->value.integer, mpc_realref (src->value.complex), |
| &src->where); |
| |
| if ((rc = gfc_check_integer_range (result->value.integer, kind)) != ARITH_OK) |
| { |
| arith_error (rc, &src->ts, &result->ts, &src->where); |
| gfc_free_expr (result); |
| return NULL; |
| } |
| |
| if (warn_conversion || warn_conversion_extra) |
| { |
| int w = warn_conversion ? OPT_Wconversion : OPT_Wconversion_extra; |
| |
| /* See if we discarded an imaginary part. */ |
| if (mpfr_cmp_si (mpc_imagref (src->value.complex), 0) != 0) |
| { |
| gfc_warning_now (w, "Non-zero imaginary part discarded " |
| "in conversion from %qs to %qs at %L", |
| gfc_typename(&src->ts), gfc_typename (&result->ts), |
| &src->where); |
| did_warn = true; |
| } |
| |
| else { |
| mpfr_t f; |
| |
| mpfr_init (f); |
| mpfr_frac (f, src->value.real, GFC_RND_MODE); |
| if (mpfr_cmp_si (f, 0) != 0) |
| { |
| gfc_warning_now (w, "Change of value in conversion from " |
| "%qs to %qs at %L", gfc_typename (&src->ts), |
| gfc_typename (&result->ts), &src->where); |
| did_warn = true; |
| } |
| mpfr_clear (f); |
| } |
| |
| if (!did_warn && warn_conversion_extra) |
| { |
| gfc_warning_now (OPT_Wconversion_extra, "Conversion from %qs to %qs " |
| "at %L", gfc_typename (&src->ts), |
| gfc_typename (&result->ts), &src->where); |
| } |
| } |
| |
| return result; |
| } |
| |
| |
| /* Convert complex to real. */ |
| |
| gfc_expr * |
| gfc_complex2real (gfc_expr *src, int kind) |
| { |
| gfc_expr *result; |
| arith rc; |
| bool did_warn = false; |
| |
| result = gfc_get_constant_expr (BT_REAL, kind, &src->where); |
| |
| mpc_real (result->value.real, src->value.complex, GFC_RND_MODE); |
| |
| rc = gfc_check_real_range (result->value.real, kind); |
| |
| if (rc == ARITH_UNDERFLOW) |
| { |
| if (warn_underflow) |
| gfc_warning (OPT_Woverflow, gfc_arith_error (rc), &src->where); |
| mpfr_set_ui (result->value.real, 0, GFC_RND_MODE); |
| } |
| if (rc != ARITH_OK) |
| { |
| arith_error (rc, &src->ts, &result->ts, &src->where); |
| gfc_free_expr (result); |
| return NULL; |
| } |
| |
| if (warn_conversion || warn_conversion_extra) |
| { |
| int w = warn_conversion ? OPT_Wconversion : OPT_Wconversion_extra; |
| |
| /* See if we discarded an imaginary part. */ |
| if (mpfr_cmp_si (mpc_imagref (src->value.complex), 0) != 0) |
| { |
| gfc_warning (w, "Non-zero imaginary part discarded " |
| "in conversion from %qs to %qs at %L", |
| gfc_typename(&src->ts), gfc_typename (&result->ts), |
| &src->where); |
| did_warn = true; |
| } |
| |
| /* Calculate the difference between the real constant and the rounded |
| value and check it against zero. */ |
| |
| if (kind > src->ts.kind |
| && wprecision_real_real (mpc_realref (src->value.complex), |
| src->ts.kind, kind)) |
| { |
| gfc_warning_now (w, "Change of value in conversion from " |
| "%qs to %qs at %L", |
| gfc_typename (&src->ts), gfc_typename (&result->ts), |
| &src->where); |
| /* Make sure the conversion warning is not emitted again. */ |
| did_warn = true; |
| } |
| } |
| |
| if (!did_warn && warn_conversion_extra) |
| gfc_warning_now (OPT_Wconversion, "Conversion from %qs to %qs at %L", |
| gfc_typename(&src->ts), gfc_typename (&result->ts), |
| &src->where); |
| |
| return result; |
| } |
| |
| |
| /* Convert complex to complex. */ |
| |
| gfc_expr * |
| gfc_complex2complex (gfc_expr *src, int kind) |
| { |
| gfc_expr *result; |
| arith rc; |
| bool did_warn = false; |
| |
| result = gfc_get_constant_expr (BT_COMPLEX, kind, &src->where); |
| |
| mpc_set (result->value.complex, src->value.complex, GFC_MPC_RND_MODE); |
| |
| rc = gfc_check_real_range (mpc_realref (result->value.complex), kind); |
| |
| if (rc == ARITH_UNDERFLOW) |
| { |
| if (warn_underflow) |
| gfc_warning (OPT_Woverflow, gfc_arith_error (rc), &src->where); |
| mpfr_set_ui (mpc_realref (result->value.complex), 0, GFC_RND_MODE); |
| } |
| else if (rc != ARITH_OK) |
| { |
| arith_error (rc, &src->ts, &result->ts, &src->where); |
| gfc_free_expr (result); |
| return NULL; |
| } |
| |
| rc = gfc_check_real_range (mpc_imagref (result->value.complex), kind); |
| |
| if (rc == ARITH_UNDERFLOW) |
| { |
| if (warn_underflow) |
| gfc_warning (OPT_Woverflow, gfc_arith_error (rc), &src->where); |
| mpfr_set_ui (mpc_imagref (result->value.complex), 0, GFC_RND_MODE); |
| } |
| else if (rc != ARITH_OK) |
| { |
| arith_error (rc, &src->ts, &result->ts, &src->where); |
| gfc_free_expr (result); |
| return NULL; |
| } |
| |
| if ((warn_conversion || warn_conversion_extra) && src->ts.kind > kind |
| && (wprecision_real_real (mpc_realref (src->value.complex), |
| src->ts.kind, kind) |
| || wprecision_real_real (mpc_imagref (src->value.complex), |
| src->ts.kind, kind))) |
| { |
| int w = warn_conversion ? OPT_Wconversion : OPT_Wconversion_extra; |
| |
| gfc_warning_now (w, "Change of value in conversion from " |
| " %qs to %qs at %L", |
| gfc_typename (&src->ts), gfc_typename (&result->ts), |
| &src->where); |
| did_warn = true; |
| } |
| |
| if (!did_warn && warn_conversion_extra && src->ts.kind != kind) |
| gfc_warning_now (OPT_Wconversion_extra, "Conversion from %qs to %qs " |
| "at %L", gfc_typename(&src->ts), |
| gfc_typename (&result->ts), &src->where); |
| |
| return result; |
| } |
| |
| |
| /* Logical kind conversion. */ |
| |
| gfc_expr * |
| gfc_log2log (gfc_expr *src, int kind) |
| { |
| gfc_expr *result; |
| |
| result = gfc_get_constant_expr (BT_LOGICAL, kind, &src->where); |
| result->value.logical = src->value.logical; |
| |
| return result; |
| } |
| |
| |
| /* Convert logical to integer. */ |
| |
| gfc_expr * |
| gfc_log2int (gfc_expr *src, int kind) |
| { |
| gfc_expr *result; |
| |
| result = gfc_get_constant_expr (BT_INTEGER, kind, &src->where); |
| mpz_set_si (result->value.integer, src->value.logical); |
| |
| return result; |
| } |
| |
| |
| /* Convert integer to logical. */ |
| |
| gfc_expr * |
| gfc_int2log (gfc_expr *src, int kind) |
| { |
| gfc_expr *result; |
| |
| result = gfc_get_constant_expr (BT_LOGICAL, kind, &src->where); |
| result->value.logical = (mpz_cmp_si (src->value.integer, 0) != 0); |
| |
| return result; |
| } |
| |
| /* Convert character to character. We only use wide strings internally, |
| so we only set the kind. */ |
| |
| gfc_expr * |
| gfc_character2character (gfc_expr *src, int kind) |
| { |
| gfc_expr *result; |
| result = gfc_copy_expr (src); |
| result->ts.kind = kind; |
| |
| return result; |
| } |
| |
| /* Helper function to set the representation in a Hollerith conversion. |
| This assumes that the ts.type and ts.kind of the result have already |
| been set. */ |
| |
| static void |
| hollerith2representation (gfc_expr *result, gfc_expr *src) |
| { |
| int src_len, result_len; |
| |
| src_len = src->representation.length - src->ts.u.pad; |
| result_len = gfc_target_expr_size (result); |
| |
| if (src_len > result_len) |
| { |
| gfc_warning (0, |
| "The Hollerith constant at %L is too long to convert to %qs", |
| &src->where, gfc_typename(&result->ts)); |
| } |
| |
| result->representation.string = XCNEWVEC (char, result_len + 1); |
| memcpy (result->representation.string, src->representation.string, |
| MIN (result_len, src_len)); |
| |
| if (src_len < result_len) |
| memset (&result->representation.string[src_len], ' ', result_len - src_len); |
| |
| result->representation.string[result_len] = '\0'; /* For debugger */ |
| result->representation.length = result_len; |
| } |
| |
| |
| /* Convert Hollerith to integer. The constant will be padded or truncated. */ |
| |
| gfc_expr * |
| gfc_hollerith2int (gfc_expr *src, int kind) |
| { |
| gfc_expr *result; |
| result = gfc_get_constant_expr (BT_INTEGER, kind, &src->where); |
| |
| hollerith2representation (result, src); |
| gfc_interpret_integer (kind, (unsigned char *) result->representation.string, |
| result->representation.length, result->value.integer); |
| |
| return result; |
| } |
| |
| |
| /* Convert Hollerith to real. The constant will be padded or truncated. */ |
| |
| gfc_expr * |
| gfc_hollerith2real (gfc_expr *src, int kind) |
| { |
| gfc_expr *result; |
| result = gfc_get_constant_expr (BT_REAL, kind, &src->where); |
| |
| hollerith2representation (result, src); |
| gfc_interpret_float (kind, (unsigned char *) result->representation.string, |
| result->representation.length, result->value.real); |
| |
| return result; |
| } |
| |
| |
| /* Convert Hollerith to complex. The constant will be padded or truncated. */ |
| |
| gfc_expr * |
| gfc_hollerith2complex (gfc_expr *src, int kind) |
| { |
| gfc_expr *result; |
| result = gfc_get_constant_expr (BT_COMPLEX, kind, &src->where); |
| |
| hollerith2representation (result, src); |
| gfc_interpret_complex (kind, (unsigned char *) result->representation.string, |
| result->representation.length, result->value.complex); |
| |
| return result; |
| } |
| |
| |
| /* Convert Hollerith to character. */ |
| |
| gfc_expr * |
| gfc_hollerith2character (gfc_expr *src, int kind) |
| { |
| gfc_expr *result; |
| |
| result = gfc_copy_expr (src); |
| result->ts.type = BT_CHARACTER; |
| result->ts.kind = kind; |
| result->ts.u.pad = 0; |
| |
| result->value.character.length = result->representation.length; |
| result->value.character.string |
| = gfc_char_to_widechar (result->representation.string); |
| |
| return result; |
| } |
| |
| |
| /* Convert Hollerith to logical. The constant will be padded or truncated. */ |
| |
| gfc_expr * |
| gfc_hollerith2logical (gfc_expr *src, int kind) |
| { |
| gfc_expr *result; |
| result = gfc_get_constant_expr (BT_LOGICAL, kind, &src->where); |
| |
| hollerith2representation (result, src); |
| gfc_interpret_logical (kind, (unsigned char *) result->representation.string, |
| result->representation.length, &result->value.logical); |
| |
| return result; |
| } |