| #!/usr/bin/env python3 |
| # |
| # Script to analyze results of our branch prediction heuristics |
| # |
| # This file is part of GCC. |
| # |
| # GCC is free software; you can redistribute it and/or modify it under |
| # the terms of the GNU General Public License as published by the Free |
| # Software Foundation; either version 3, or (at your option) any later |
| # version. |
| # |
| # GCC is distributed in the hope that it will be useful, but WITHOUT ANY |
| # WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| # FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| # for more details. |
| # |
| # You should have received a copy of the GNU General Public License |
| # along with GCC; see the file COPYING3. If not see |
| # <http://www.gnu.org/licenses/>. */ |
| # |
| # |
| # |
| # This script is used to calculate two basic properties of the branch prediction |
| # heuristics - coverage and hitrate. Coverage is number of executions |
| # of a given branch matched by the heuristics and hitrate is probability |
| # that once branch is predicted as taken it is really taken. |
| # |
| # These values are useful to determine the quality of given heuristics. |
| # Hitrate may be directly used in predict.def. |
| # |
| # Usage: |
| # Step 1: Compile and profile your program. You need to use -fprofile-generate |
| # flag to get the profiles. |
| # Step 2: Make a reference run of the intrumented application. |
| # Step 3: Compile the program with collected profile and dump IPA profiles |
| # (-fprofile-use -fdump-ipa-profile-details) |
| # Step 4: Collect all generated dump files: |
| # find . -name '*.profile' | xargs cat > dump_file |
| # Step 5: Run the script: |
| # ./analyze_brprob.py dump_file |
| # and read results. Basically the following table is printed: |
| # |
| # HEURISTICS BRANCHES (REL) HITRATE COVERAGE (REL) |
| # early return (on trees) 3 0.2% 35.83% / 93.64% 66360 0.0% |
| # guess loop iv compare 8 0.6% 53.35% / 53.73% 11183344 0.0% |
| # call 18 1.4% 31.95% / 69.95% 51880179 0.2% |
| # loop guard 23 1.8% 84.13% / 84.85% 13749065956 42.2% |
| # opcode values positive (on trees) 42 3.3% 15.71% / 84.81% 6771097902 20.8% |
| # opcode values nonequal (on trees) 226 17.6% 72.48% / 72.84% 844753864 2.6% |
| # loop exit 231 18.0% 86.97% / 86.98% 8952666897 27.5% |
| # loop iterations 239 18.6% 91.10% / 91.10% 3062707264 9.4% |
| # DS theory 281 21.9% 82.08% / 83.39% 7787264075 23.9% |
| # no prediction 293 22.9% 46.92% / 70.70% 2293267840 7.0% |
| # guessed loop iterations 313 24.4% 76.41% / 76.41% 10782750177 33.1% |
| # first match 708 55.2% 82.30% / 82.31% 22489588691 69.0% |
| # combined 1282 100.0% 79.76% / 81.75% 32570120606 100.0% |
| # |
| # |
| # The heuristics called "first match" is a heuristics used by GCC branch |
| # prediction pass and it predicts 55.2% branches correctly. As you can, |
| # the heuristics has very good covertage (69.05%). On the other hand, |
| # "opcode values nonequal (on trees)" heuristics has good hirate, but poor |
| # coverage. |
| |
| import sys |
| import os |
| import re |
| import argparse |
| |
| from math import * |
| |
| counter_aggregates = set(['combined', 'first match', 'DS theory', |
| 'no prediction']) |
| hot_threshold = 10 |
| |
| def percentage(a, b): |
| return 100.0 * a / b |
| |
| def average(values): |
| return 1.0 * sum(values) / len(values) |
| |
| def average_cutoff(values, cut): |
| l = len(values) |
| skip = floor(l * cut / 2) |
| if skip > 0: |
| values.sort() |
| values = values[skip:-skip] |
| return average(values) |
| |
| def median(values): |
| values.sort() |
| return values[int(len(values) / 2)] |
| |
| class PredictDefFile: |
| def __init__(self, path): |
| self.path = path |
| self.predictors = {} |
| |
| def parse_and_modify(self, heuristics, write_def_file): |
| lines = [x.rstrip() for x in open(self.path).readlines()] |
| |
| p = None |
| modified_lines = [] |
| for l in lines: |
| if l.startswith('DEF_PREDICTOR'): |
| m = re.match('.*"(.*)".*', l) |
| p = m.group(1) |
| elif l == '': |
| p = None |
| |
| if p != None: |
| heuristic = [x for x in heuristics if x.name == p] |
| heuristic = heuristic[0] if len(heuristic) == 1 else None |
| |
| m = re.match('.*HITRATE \(([^)]*)\).*', l) |
| if (m != None): |
| self.predictors[p] = int(m.group(1)) |
| |
| # modify the line |
| if heuristic != None: |
| new_line = (l[:m.start(1)] |
| + str(round(heuristic.get_hitrate())) |
| + l[m.end(1):]) |
| l = new_line |
| p = None |
| elif 'PROB_VERY_LIKELY' in l: |
| self.predictors[p] = 100 |
| modified_lines.append(l) |
| |
| # save the file |
| if write_def_file: |
| with open(self.path, 'w+') as f: |
| for l in modified_lines: |
| f.write(l + '\n') |
| class Heuristics: |
| def __init__(self, count, hits, fits): |
| self.count = count |
| self.hits = hits |
| self.fits = fits |
| |
| class Summary: |
| def __init__(self, name): |
| self.name = name |
| self.edges= [] |
| |
| def branches(self): |
| return len(self.edges) |
| |
| def hits(self): |
| return sum([x.hits for x in self.edges]) |
| |
| def fits(self): |
| return sum([x.fits for x in self.edges]) |
| |
| def count(self): |
| return sum([x.count for x in self.edges]) |
| |
| def successfull_branches(self): |
| return len([x for x in self.edges if 2 * x.hits >= x.count]) |
| |
| def get_hitrate(self): |
| return 100.0 * self.hits() / self.count() |
| |
| def get_branch_hitrate(self): |
| return 100.0 * self.successfull_branches() / self.branches() |
| |
| def count_formatted(self): |
| v = self.count() |
| for unit in ['', 'k', 'M', 'G', 'T', 'P', 'E', 'Z', 'Y']: |
| if v < 1000: |
| return "%3.2f%s" % (v, unit) |
| v /= 1000.0 |
| return "%.1f%s" % (v, 'Y') |
| |
| def count(self): |
| return sum([x.count for x in self.edges]) |
| |
| def print(self, branches_max, count_max, predict_def): |
| # filter out most hot edges (if requested) |
| self.edges = sorted(self.edges, reverse = True, key = lambda x: x.count) |
| if args.coverage_threshold != None: |
| threshold = args.coverage_threshold * self.count() / 100 |
| edges = [x for x in self.edges if x.count < threshold] |
| if len(edges) != 0: |
| self.edges = edges |
| |
| predicted_as = None |
| if predict_def != None and self.name in predict_def.predictors: |
| predicted_as = predict_def.predictors[self.name] |
| |
| print('%-40s %8i %5.1f%% %11.2f%% %7.2f%% / %6.2f%% %14i %8s %5.1f%%' % |
| (self.name, self.branches(), |
| percentage(self.branches(), branches_max), |
| self.get_branch_hitrate(), |
| self.get_hitrate(), |
| percentage(self.fits(), self.count()), |
| self.count(), self.count_formatted(), |
| percentage(self.count(), count_max)), end = '') |
| |
| if predicted_as != None: |
| print('%12i%% %5.1f%%' % (predicted_as, |
| self.get_hitrate() - predicted_as), end = '') |
| else: |
| print(' ' * 20, end = '') |
| |
| # print details about the most important edges |
| if args.coverage_threshold == None: |
| edges = [x for x in self.edges[:100] if x.count * hot_threshold > self.count()] |
| if args.verbose: |
| for c in edges: |
| r = 100.0 * c.count / self.count() |
| print(' %.0f%%:%d' % (r, c.count), end = '') |
| elif len(edges) > 0: |
| print(' %0.0f%%:%d' % (100.0 * sum([x.count for x in edges]) / self.count(), len(edges)), end = '') |
| |
| print() |
| |
| class Profile: |
| def __init__(self, filename): |
| self.filename = filename |
| self.heuristics = {} |
| self.niter_vector = [] |
| |
| def add(self, name, prediction, count, hits): |
| if not name in self.heuristics: |
| self.heuristics[name] = Summary(name) |
| |
| s = self.heuristics[name] |
| |
| if prediction < 50: |
| hits = count - hits |
| remaining = count - hits |
| fits = max(hits, remaining) |
| |
| s.edges.append(Heuristics(count, hits, fits)) |
| |
| def add_loop_niter(self, niter): |
| if niter > 0: |
| self.niter_vector.append(niter) |
| |
| def branches_max(self): |
| return max([v.branches() for k, v in self.heuristics.items()]) |
| |
| def count_max(self): |
| return max([v.count() for k, v in self.heuristics.items()]) |
| |
| def print_group(self, sorting, group_name, heuristics, predict_def): |
| count_max = self.count_max() |
| branches_max = self.branches_max() |
| |
| sorter = lambda x: x.branches() |
| if sorting == 'branch-hitrate': |
| sorter = lambda x: x.get_branch_hitrate() |
| elif sorting == 'hitrate': |
| sorter = lambda x: x.get_hitrate() |
| elif sorting == 'coverage': |
| sorter = lambda x: x.count |
| elif sorting == 'name': |
| sorter = lambda x: x.name.lower() |
| |
| print('%-40s %8s %6s %12s %18s %14s %8s %6s %12s %6s %s' % |
| ('HEURISTICS', 'BRANCHES', '(REL)', |
| 'BR. HITRATE', 'HITRATE', 'COVERAGE', 'COVERAGE', '(REL)', |
| 'predict.def', '(REL)', 'HOT branches (>%d%%)' % hot_threshold)) |
| for h in sorted(heuristics, key = sorter): |
| h.print(branches_max, count_max, predict_def) |
| |
| def dump(self, sorting): |
| heuristics = self.heuristics.values() |
| if len(heuristics) == 0: |
| print('No heuristics available') |
| return |
| |
| predict_def = None |
| if args.def_file != None: |
| predict_def = PredictDefFile(args.def_file) |
| predict_def.parse_and_modify(heuristics, args.write_def_file) |
| |
| special = list(filter(lambda x: x.name in counter_aggregates, |
| heuristics)) |
| normal = list(filter(lambda x: x.name not in counter_aggregates, |
| heuristics)) |
| |
| self.print_group(sorting, 'HEURISTICS', normal, predict_def) |
| print() |
| self.print_group(sorting, 'HEURISTIC AGGREGATES', special, predict_def) |
| |
| if len(self.niter_vector) > 0: |
| print ('\nLoop count: %d' % len(self.niter_vector)), |
| print(' avg. # of iter: %.2f' % average(self.niter_vector)) |
| print(' median # of iter: %.2f' % median(self.niter_vector)) |
| for v in [1, 5, 10, 20, 30]: |
| cut = 0.01 * v |
| print(' avg. (%d%% cutoff) # of iter: %.2f' |
| % (v, average_cutoff(self.niter_vector, cut))) |
| |
| parser = argparse.ArgumentParser() |
| parser.add_argument('dump_file', metavar = 'dump_file', |
| help = 'IPA profile dump file') |
| parser.add_argument('-s', '--sorting', dest = 'sorting', |
| choices = ['branches', 'branch-hitrate', 'hitrate', 'coverage', 'name'], |
| default = 'branches') |
| parser.add_argument('-d', '--def-file', help = 'path to predict.def') |
| parser.add_argument('-w', '--write-def-file', action = 'store_true', |
| help = 'Modify predict.def file in order to set new numbers') |
| parser.add_argument('-c', '--coverage-threshold', type = int, |
| help = 'Ignore edges that have percentage coverage >= coverage-threshold') |
| parser.add_argument('-v', '--verbose', action = 'store_true', help = 'Print verbose informations') |
| |
| args = parser.parse_args() |
| |
| profile = Profile(args.dump_file) |
| loop_niter_str = ';; profile-based iteration count: ' |
| |
| for l in open(args.dump_file): |
| if l.startswith(';;heuristics;'): |
| parts = l.strip().split(';') |
| assert len(parts) == 8 |
| name = parts[3] |
| prediction = float(parts[6]) |
| count = int(parts[4]) |
| hits = int(parts[5]) |
| |
| profile.add(name, prediction, count, hits) |
| elif l.startswith(loop_niter_str): |
| v = int(l[len(loop_niter_str):]) |
| profile.add_loop_niter(v) |
| |
| profile.dump(args.sorting) |