blob: 17e5906baf71385cc1404955eeabcc061c0bdf6b [file] [log] [blame]
// Written in the D programming language.
/**
This module implements the formatting functionality for strings and
I/O. It's comparable to C99's $(D vsprintf()) and uses a similar
_format encoding scheme.
For an introductory look at $(B std._format)'s capabilities and how to use
this module see the dedicated
$(LINK2 http://wiki.dlang.org/Defining_custom_print_format_specifiers, DWiki article).
This module centers around two functions:
$(BOOKTABLE ,
$(TR $(TH Function Name) $(TH Description)
)
$(TR $(TD $(LREF formattedRead))
$(TD Reads values according to the _format string from an InputRange.
))
$(TR $(TD $(LREF formattedWrite))
$(TD Formats its arguments according to the _format string and puts them
to an OutputRange.
))
)
Please see the documentation of function $(LREF formattedWrite) for a
description of the _format string.
Two functions have been added for convenience:
$(BOOKTABLE ,
$(TR $(TH Function Name) $(TH Description)
)
$(TR $(TD $(LREF _format))
$(TD Returns a GC-allocated string with the formatting result.
))
$(TR $(TD $(LREF sformat))
$(TD Puts the formatting result into a preallocated array.
))
)
These two functions are publicly imported by $(MREF std, string)
to be easily available.
The functions $(LREF formatValue) and $(LREF unformatValue) are
used for the plumbing.
Copyright: Copyright Digital Mars 2000-2013.
License: $(HTTP boost.org/LICENSE_1_0.txt, Boost License 1.0).
Authors: $(HTTP walterbright.com, Walter Bright), $(HTTP erdani.com,
Andrei Alexandrescu), and Kenji Hara
Source: $(PHOBOSSRC std/_format.d)
*/
module std.format;
//debug=format; // uncomment to turn on debugging printf's
import core.vararg;
import std.exception;
import std.meta;
import std.range.primitives;
import std.traits;
/**********************************************************************
* Signals a mismatch between a format and its corresponding argument.
*/
class FormatException : Exception
{
@safe pure nothrow
this()
{
super("format error");
}
@safe pure nothrow
this(string msg, string fn = __FILE__, size_t ln = __LINE__, Throwable next = null)
{
super(msg, fn, ln, next);
}
}
private alias enforceFmt = enforceEx!FormatException;
/**********************************************************************
Interprets variadic argument list $(D args), formats them according
to $(D fmt), and sends the resulting characters to $(D w). The
encoding of the output is the same as $(D Char). The type $(D Writer)
must satisfy $(D $(REF isOutputRange, std,range,primitives)!(Writer, Char)).
The variadic arguments are normally consumed in order. POSIX-style
$(HTTP opengroup.org/onlinepubs/009695399/functions/printf.html,
positional parameter syntax) is also supported. Each argument is
formatted into a sequence of chars according to the format
specification, and the characters are passed to $(D w). As many
arguments as specified in the format string are consumed and
formatted. If there are fewer arguments than format specifiers, a
$(D FormatException) is thrown. If there are more remaining arguments
than needed by the format specification, they are ignored but only
if at least one argument was formatted.
The format string supports the formatting of array and nested array elements
via the grouping format specifiers $(B %() and $(B %)). Each
matching pair of $(B %() and $(B %)) corresponds with a single array
argument. The enclosed sub-format string is applied to individual array
elements. The trailing portion of the sub-format string following the
conversion specifier for the array element is interpreted as the array
delimiter, and is therefore omitted following the last array element. The
$(B %|) specifier may be used to explicitly indicate the start of the
delimiter, so that the preceding portion of the string will be included
following the last array element. (See below for explicit examples.)
Params:
w = Output is sent to this writer. Typical output writers include
$(REF Appender!string, std,array) and $(REF LockingTextWriter, std,stdio).
fmt = Format string.
args = Variadic argument list.
Returns: Formatted number of arguments.
Throws: Mismatched arguments and formats result in a $(D
FormatException) being thrown.
Format_String: <a name="format-string">$(I Format strings)</a>
consist of characters interspersed with $(I format
specifications). Characters are simply copied to the output (such
as putc) after any necessary conversion to the corresponding UTF-8
sequence.
The format string has the following grammar:
$(PRE
$(I FormatString):
$(I FormatStringItem)*
$(I FormatStringItem):
$(B '%%')
$(B '%') $(I Position) $(I Flags) $(I Width) $(I Separator) $(I Precision) $(I FormatChar)
$(B '%$(LPAREN)') $(I FormatString) $(B '%$(RPAREN)')
$(I OtherCharacterExceptPercent)
$(I Position):
$(I empty)
$(I Integer) $(B '$')
$(I Flags):
$(I empty)
$(B '-') $(I Flags)
$(B '+') $(I Flags)
$(B '#') $(I Flags)
$(B '0') $(I Flags)
$(B ' ') $(I Flags)
$(I Width):
$(I empty)
$(I Integer)
$(B '*')
$(I Separator):
$(I empty)
$(B ',')
$(B ',') $(B '?')
$(B ',') $(B '*') $(B '?')
$(B ',') $(I Integer) $(B '?')
$(B ',') $(B '*')
$(B ',') $(I Integer)
$(I Precision):
$(I empty)
$(B '.')
$(B '.') $(I Integer)
$(B '.*')
$(I Integer):
$(I Digit)
$(I Digit) $(I Integer)
$(I Digit):
$(B '0')|$(B '1')|$(B '2')|$(B '3')|$(B '4')|$(B '5')|$(B '6')|$(B '7')|$(B '8')|$(B '9')
$(I FormatChar):
$(B 's')|$(B 'c')|$(B 'b')|$(B 'd')|$(B 'o')|$(B 'x')|$(B 'X')|$(B 'e')|$(B 'E')|$(B 'f')|$(B 'F')|$(B 'g')|$(B 'G')|$(B 'a')|$(B 'A')|$(B '|')
)
$(BOOKTABLE Flags affect formatting depending on the specifier as
follows., $(TR $(TH Flag) $(TH Types&nbsp;affected) $(TH Semantics))
$(TR $(TD $(B '-')) $(TD numeric) $(TD Left justify the result in
the field. It overrides any $(B 0) flag.))
$(TR $(TD $(B '+')) $(TD numeric) $(TD Prefix positive numbers in
a signed conversion with a $(B +). It overrides any $(I space)
flag.))
$(TR $(TD $(B '#')) $(TD integral ($(B 'o'))) $(TD Add to
precision as necessary so that the first digit of the octal
formatting is a '0', even if both the argument and the $(I
Precision) are zero.))
$(TR $(TD $(B '#')) $(TD integral ($(B 'x'), $(B 'X'))) $(TD If
non-zero, prefix result with $(B 0x) ($(B 0X)).))
$(TR $(TD $(B '#')) $(TD floating) $(TD Always insert the decimal
point and print trailing zeros.))
$(TR $(TD $(B '0')) $(TD numeric) $(TD Use leading
zeros to pad rather than spaces (except for the floating point
values $(D nan) and $(D infinity)). Ignore if there's a $(I
Precision).))
$(TR $(TD $(B ' ')) $(TD numeric) $(TD Prefix positive
numbers in a signed conversion with a space.)))
$(DL
$(DT $(I Width))
$(DD
Specifies the minimum field width.
If the width is a $(B *), an additional argument of type $(B int),
preceding the actual argument, is taken as the width.
If the width is negative, it is as if the $(B -) was given
as a $(I Flags) character.)
$(DT $(I Precision))
$(DD Gives the precision for numeric conversions.
If the precision is a $(B *), an additional argument of type $(B int),
preceding the actual argument, is taken as the precision.
If it is negative, it is as if there was no $(I Precision) specifier.)
$(DT $(I Separator))
$(DD Inserts the separator symbols ',' every $(I X) digits, from right
to left, into numeric values to increase readability.
The fractional part of floating point values inserts the separator
from left to right.
Entering an integer after the ',' allows to specify $(I X).
If a '*' is placed after the ',' then $(I X) is specified by an
additional parameter to the format function.
Adding a '?' after the ',' or $(I X) specifier allows to specify
the separator character as an additional parameter.
)
$(DT $(I FormatChar))
$(DD
$(DL
$(DT $(B 's'))
$(DD The corresponding argument is formatted in a manner consistent
with its type:
$(DL
$(DT $(B bool))
$(DD The result is $(D "true") or $(D "false").)
$(DT integral types)
$(DD The $(B %d) format is used.)
$(DT floating point types)
$(DD The $(B %g) format is used.)
$(DT string types)
$(DD The result is the string converted to UTF-8.
A $(I Precision) specifies the maximum number of characters
to use in the result.)
$(DT structs)
$(DD If the struct defines a $(B toString()) method the result is
the string returned from this function. Otherwise the result is
StructName(field<sub>0</sub>, field<sub>1</sub>, ...) where
field<sub>n</sub> is the nth element formatted with the default
format.)
$(DT classes derived from $(B Object))
$(DD The result is the string returned from the class instance's
$(B .toString()) method.
A $(I Precision) specifies the maximum number of characters
to use in the result.)
$(DT unions)
$(DD If the union defines a $(B toString()) method the result is
the string returned from this function. Otherwise the result is
the name of the union, without its contents.)
$(DT non-string static and dynamic arrays)
$(DD The result is [s<sub>0</sub>, s<sub>1</sub>, ...]
where s<sub>n</sub> is the nth element
formatted with the default format.)
$(DT associative arrays)
$(DD The result is the equivalent of what the initializer
would look like for the contents of the associative array,
e.g.: ["red" : 10, "blue" : 20].)
))
$(DT $(B 'c'))
$(DD The corresponding argument must be a character type.)
$(DT $(B 'b','d','o','x','X'))
$(DD The corresponding argument must be an integral type
and is formatted as an integer. If the argument is a signed type
and the $(I FormatChar) is $(B d) it is converted to
a signed string of characters, otherwise it is treated as
unsigned. An argument of type $(B bool) is formatted as '1'
or '0'. The base used is binary for $(B b), octal for $(B o),
decimal
for $(B d), and hexadecimal for $(B x) or $(B X).
$(B x) formats using lower case letters, $(B X) uppercase.
If there are fewer resulting digits than the $(I Precision),
leading zeros are used as necessary.
If the $(I Precision) is 0 and the number is 0, no digits
result.)
$(DT $(B 'e','E'))
$(DD A floating point number is formatted as one digit before
the decimal point, $(I Precision) digits after, the $(I FormatChar),
&plusmn;, followed by at least a two digit exponent:
$(I d.dddddd)e$(I &plusmn;dd).
If there is no $(I Precision), six
digits are generated after the decimal point.
If the $(I Precision) is 0, no decimal point is generated.)
$(DT $(B 'f','F'))
$(DD A floating point number is formatted in decimal notation.
The $(I Precision) specifies the number of digits generated
after the decimal point. It defaults to six. At least one digit
is generated before the decimal point. If the $(I Precision)
is zero, no decimal point is generated.)
$(DT $(B 'g','G'))
$(DD A floating point number is formatted in either $(B e) or
$(B f) format for $(B g); $(B E) or $(B F) format for
$(B G).
The $(B f) format is used if the exponent for an $(B e) format
is greater than -5 and less than the $(I Precision).
The $(I Precision) specifies the number of significant
digits, and defaults to six.
Trailing zeros are elided after the decimal point, if the fractional
part is zero then no decimal point is generated.)
$(DT $(B 'a','A'))
$(DD A floating point number is formatted in hexadecimal
exponential notation 0x$(I h.hhhhhh)p$(I &plusmn;d).
There is one hexadecimal digit before the decimal point, and as
many after as specified by the $(I Precision).
If the $(I Precision) is zero, no decimal point is generated.
If there is no $(I Precision), as many hexadecimal digits as
necessary to exactly represent the mantissa are generated.
The exponent is written in as few digits as possible,
but at least one, is in decimal, and represents a power of 2 as in
$(I h.hhhhhh)*2<sup>$(I &plusmn;d)</sup>.
The exponent for zero is zero.
The hexadecimal digits, x and p are in upper case if the
$(I FormatChar) is upper case.)
))
)
Floating point NaN's are formatted as $(B nan) if the
$(I FormatChar) is lower case, or $(B NAN) if upper.
Floating point infinities are formatted as $(B inf) or
$(B infinity) if the
$(I FormatChar) is lower case, or $(B INF) or $(B INFINITY) if upper.
The positional and non-positional styles can be mixed in the same
format string. (POSIX leaves this behavior undefined.) The internal
counter for non-positional parameters tracks the next parameter after
the largest positional parameter already used.
Example using array and nested array formatting:
-------------------------
import std.stdio;
void main()
{
writefln("My items are %(%s %).", [1,2,3]);
writefln("My items are %(%s, %).", [1,2,3]);
}
-------------------------
The output is:
$(CONSOLE
My items are 1 2 3.
My items are 1, 2, 3.
)
The trailing end of the sub-format string following the specifier for each
item is interpreted as the array delimiter, and is therefore omitted
following the last array item. The $(B %|) delimiter specifier may be used
to indicate where the delimiter begins, so that the portion of the format
string prior to it will be retained in the last array element:
-------------------------
import std.stdio;
void main()
{
writefln("My items are %(-%s-%|, %).", [1,2,3]);
}
-------------------------
which gives the output:
$(CONSOLE
My items are -1-, -2-, -3-.
)
These compound format specifiers may be nested in the case of a nested
array argument:
-------------------------
import std.stdio;
void main() {
auto mat = [[1, 2, 3],
[4, 5, 6],
[7, 8, 9]];
writefln("%(%(%d %)\n%)", mat);
writeln();
writefln("[%(%(%d %)\n %)]", mat);
writeln();
writefln("[%([%(%d %)]%|\n %)]", mat);
writeln();
}
-------------------------
The output is:
$(CONSOLE
1 2 3
4 5 6
7 8 9
[1 2 3
4 5 6
7 8 9]
[[1 2 3]
[4 5 6]
[7 8 9]]
)
Inside a compound format specifier, strings and characters are escaped
automatically. To avoid this behavior, add $(B '-') flag to
$(D "%$(LPAREN)").
-------------------------
import std.stdio;
void main()
{
writefln("My friends are %s.", ["John", "Nancy"]);
writefln("My friends are %(%s, %).", ["John", "Nancy"]);
writefln("My friends are %-(%s, %).", ["John", "Nancy"]);
}
-------------------------
which gives the output:
$(CONSOLE
My friends are ["John", "Nancy"].
My friends are "John", "Nancy".
My friends are John, Nancy.
)
*/
uint formattedWrite(alias fmt, Writer, A...)(auto ref Writer w, A args)
if (isSomeString!(typeof(fmt)))
{
alias e = checkFormatException!(fmt, A);
static assert(!e, e.msg);
return .formattedWrite(w, fmt, args);
}
/// The format string can be checked at compile-time (see $(LREF format) for details):
@safe pure unittest
{
import std.array : appender;
import std.format : formattedWrite;
auto writer = appender!string();
writer.formattedWrite!"%s is the ultimate %s."(42, "answer");
assert(writer.data == "42 is the ultimate answer.");
// Clear the writer
writer = appender!string();
formattedWrite(writer, "Date: %2$s %1$s", "October", 5);
assert(writer.data == "Date: 5 October");
}
/// ditto
uint formattedWrite(Writer, Char, A...)(auto ref Writer w, in Char[] fmt, A args)
{
import std.conv : text;
auto spec = FormatSpec!Char(fmt);
// Are we already done with formats? Then just dump each parameter in turn
uint currentArg = 0;
while (spec.writeUpToNextSpec(w))
{
if (currentArg == A.length && !spec.indexStart)
{
// leftover spec?
enforceFmt(fmt.length == 0,
text("Orphan format specifier: %", spec.spec));
break;
}
if (spec.width == spec.DYNAMIC)
{
auto width = getNthInt!"integer width"(currentArg, args);
if (width < 0)
{
spec.flDash = true;
width = -width;
}
spec.width = width;
++currentArg;
}
else if (spec.width < 0)
{
// means: get width as a positional parameter
auto index = cast(uint) -spec.width;
assert(index > 0);
auto width = getNthInt!"integer width"(index - 1, args);
if (currentArg < index) currentArg = index;
if (width < 0)
{
spec.flDash = true;
width = -width;
}
spec.width = width;
}
if (spec.precision == spec.DYNAMIC)
{
auto precision = getNthInt!"integer precision"(currentArg, args);
if (precision >= 0) spec.precision = precision;
// else negative precision is same as no precision
else spec.precision = spec.UNSPECIFIED;
++currentArg;
}
else if (spec.precision < 0)
{
// means: get precision as a positional parameter
auto index = cast(uint) -spec.precision;
assert(index > 0);
auto precision = getNthInt!"integer precision"(index- 1, args);
if (currentArg < index) currentArg = index;
if (precision >= 0) spec.precision = precision;
// else negative precision is same as no precision
else spec.precision = spec.UNSPECIFIED;
}
if (spec.separators == spec.DYNAMIC)
{
auto separators = getNthInt!"separator digit width"(currentArg, args);
spec.separators = separators;
++currentArg;
}
if (spec.separatorCharPos == spec.DYNAMIC)
{
auto separatorChar =
getNth!("separator character", isSomeChar, dchar)(currentArg, args);
spec.separatorChar = separatorChar;
++currentArg;
}
if (currentArg == A.length && !spec.indexStart)
{
// leftover spec?
enforceFmt(fmt.length == 0,
text("Orphan format specifier: %", spec.spec));
break;
}
// Format an argument
// This switch uses a static foreach to generate a jump table.
// Currently `spec.indexStart` use the special value '0' to signal
// we should use the current argument. An enhancement would be to
// always store the index.
size_t index = currentArg;
if (spec.indexStart != 0)
index = spec.indexStart - 1;
else
++currentArg;
SWITCH: switch (index)
{
foreach (i, Tunused; A)
{
case i:
formatValue(w, args[i], spec);
if (currentArg < spec.indexEnd)
currentArg = spec.indexEnd;
// A little know feature of format is to format a range
// of arguments, e.g. `%1:3$` will format the first 3
// arguments. Since they have to be consecutive we can
// just use explicit fallthrough to cover that case.
if (i + 1 < spec.indexEnd)
{
// You cannot goto case if the next case is the default
static if (i + 1 < A.length)
goto case;
else
goto default;
}
else
break SWITCH;
}
default:
throw new FormatException(
text("Positional specifier %", spec.indexStart, '$', spec.spec,
" index exceeds ", A.length));
}
}
return currentArg;
}
///
@safe unittest
{
assert(format("%,d", 1000) == "1,000");
assert(format("%,f", 1234567.891011) == "1,234,567.891,011");
assert(format("%,?d", '?', 1000) == "1?000");
assert(format("%,1d", 1000) == "1,0,0,0", format("%,1d", 1000));
assert(format("%,*d", 4, -12345) == "-1,2345");
assert(format("%,*?d", 4, '_', -12345) == "-1_2345");
assert(format("%,6?d", '_', -12345678) == "-12_345678");
assert(format("%12,3.3f", 1234.5678) == " 1,234.568", "'" ~
format("%12,3.3f", 1234.5678) ~ "'");
}
@safe pure unittest
{
import std.array;
auto w = appender!string();
formattedWrite(w, "%s %d", "@safe/pure", 42);
assert(w.data == "@safe/pure 42");
}
/**
Reads characters from input range $(D r), converts them according
to $(D fmt), and writes them to $(D args).
Params:
r = The range to read from.
fmt = The format of the data to read.
args = The drain of the data read.
Returns:
On success, the function returns the number of variables filled. This count
can match the expected number of readings or fewer, even zero, if a
matching failure happens.
Throws:
An `Exception` if `S.length == 0` and `fmt` has format specifiers.
*/
uint formattedRead(alias fmt, R, S...)(ref R r, auto ref S args)
if (isSomeString!(typeof(fmt)))
{
alias e = checkFormatException!(fmt, S);
static assert(!e, e.msg);
return .formattedRead(r, fmt, args);
}
/// ditto
uint formattedRead(R, Char, S...)(ref R r, const(Char)[] fmt, auto ref S args)
{
import std.typecons : isTuple;
auto spec = FormatSpec!Char(fmt);
static if (!S.length)
{
spec.readUpToNextSpec(r);
enforce(spec.trailing.empty, "Trailing characters in formattedRead format string");
return 0;
}
else
{
enum hasPointer = isPointer!(typeof(args[0]));
// The function below accounts for '*' == fields meant to be
// read and skipped
void skipUnstoredFields()
{
for (;;)
{
spec.readUpToNextSpec(r);
if (spec.width != spec.DYNAMIC) break;
// must skip this field
skipData(r, spec);
}
}
skipUnstoredFields();
if (r.empty)
{
// Input is empty, nothing to read
return 0;
}
static if (hasPointer)
alias A = typeof(*args[0]);
else
alias A = typeof(args[0]);
static if (isTuple!A)
{
foreach (i, T; A.Types)
{
static if (hasPointer)
(*args[0])[i] = unformatValue!(T)(r, spec);
else
args[0][i] = unformatValue!(T)(r, spec);
skipUnstoredFields();
}
}
else
{
static if (hasPointer)
*args[0] = unformatValue!(A)(r, spec);
else
args[0] = unformatValue!(A)(r, spec);
}
return 1 + formattedRead(r, spec.trailing, args[1 .. $]);
}
}
/// The format string can be checked at compile-time (see $(LREF format) for details):
@safe pure unittest
{
string s = "hello!124:34.5";
string a;
int b;
double c;
s.formattedRead!"%s!%s:%s"(a, b, c);
assert(a == "hello" && b == 124 && c == 34.5);
}
@safe unittest
{
import std.math;
string s = " 1.2 3.4 ";
double x, y, z;
assert(formattedRead(s, " %s %s %s ", x, y, z) == 2);
assert(s.empty);
assert(approxEqual(x, 1.2));
assert(approxEqual(y, 3.4));
assert(isNaN(z));
}
// for backwards compatibility
@system pure unittest
{
string s = "hello!124:34.5";
string a;
int b;
double c;
formattedRead(s, "%s!%s:%s", &a, &b, &c);
assert(a == "hello" && b == 124 && c == 34.5);
// mix pointers and auto-ref
s = "world!200:42.25";
formattedRead(s, "%s!%s:%s", a, &b, &c);
assert(a == "world" && b == 200 && c == 42.25);
s = "world1!201:42.5";
formattedRead(s, "%s!%s:%s", &a, &b, c);
assert(a == "world1" && b == 201 && c == 42.5);
s = "world2!202:42.75";
formattedRead(s, "%s!%s:%s", a, b, &c);
assert(a == "world2" && b == 202 && c == 42.75);
}
// for backwards compatibility
@system pure unittest
{
import std.math;
string s = " 1.2 3.4 ";
double x, y, z;
assert(formattedRead(s, " %s %s %s ", &x, &y, &z) == 2);
assert(s.empty);
assert(approxEqual(x, 1.2));
assert(approxEqual(y, 3.4));
assert(isNaN(z));
}
@system pure unittest
{
string line;
bool f1;
line = "true";
formattedRead(line, "%s", &f1);
assert(f1);
line = "TrUE";
formattedRead(line, "%s", &f1);
assert(f1);
line = "false";
formattedRead(line, "%s", &f1);
assert(!f1);
line = "fALsE";
formattedRead(line, "%s", &f1);
assert(!f1);
line = "1";
formattedRead(line, "%d", &f1);
assert(f1);
line = "-1";
formattedRead(line, "%d", &f1);
assert(f1);
line = "0";
formattedRead(line, "%d", &f1);
assert(!f1);
line = "-0";
formattedRead(line, "%d", &f1);
assert(!f1);
}
@system pure unittest
{
union B
{
char[int.sizeof] untyped;
int typed;
}
B b;
b.typed = 5;
char[] input = b.untyped[];
int witness;
formattedRead(input, "%r", &witness);
assert(witness == b.typed);
}
@system pure unittest
{
union A
{
char[float.sizeof] untyped;
float typed;
}
A a;
a.typed = 5.5;
char[] input = a.untyped[];
float witness;
formattedRead(input, "%r", &witness);
assert(witness == a.typed);
}
@system pure unittest
{
import std.typecons;
char[] line = "1 2".dup;
int a, b;
formattedRead(line, "%s %s", &a, &b);
assert(a == 1 && b == 2);
line = "10 2 3".dup;
formattedRead(line, "%d ", &a);
assert(a == 10);
assert(line == "2 3");
Tuple!(int, float) t;
line = "1 2.125".dup;
formattedRead(line, "%d %g", &t);
assert(t[0] == 1 && t[1] == 2.125);
line = "1 7643 2.125".dup;
formattedRead(line, "%s %*u %s", &t);
assert(t[0] == 1 && t[1] == 2.125);
}
@system pure unittest
{
string line;
char c1, c2;
line = "abc";
formattedRead(line, "%s%c", &c1, &c2);
assert(c1 == 'a' && c2 == 'b');
assert(line == "c");
}
@system pure unittest
{
string line;
line = "[1,2,3]";
int[] s1;
formattedRead(line, "%s", &s1);
assert(s1 == [1,2,3]);
}
@system pure unittest
{
string line;
line = "[1,2,3]";
int[] s1;
formattedRead(line, "[%(%s,%)]", &s1);
assert(s1 == [1,2,3]);
line = `["hello", "world"]`;
string[] s2;
formattedRead(line, "[%(%s, %)]", &s2);
assert(s2 == ["hello", "world"]);
line = "123 456";
int[] s3;
formattedRead(line, "%(%s %)", &s3);
assert(s3 == [123, 456]);
line = "h,e,l,l,o; w,o,r,l,d";
string[] s4;
formattedRead(line, "%(%(%c,%); %)", &s4);
assert(s4 == ["hello", "world"]);
}
@system pure unittest
{
string line;
int[4] sa1;
line = `[1,2,3,4]`;
formattedRead(line, "%s", &sa1);
assert(sa1 == [1,2,3,4]);
int[4] sa2;
line = `[1,2,3]`;
assertThrown(formattedRead(line, "%s", &sa2));
int[4] sa3;
line = `[1,2,3,4,5]`;
assertThrown(formattedRead(line, "%s", &sa3));
}
@system pure unittest
{
string input;
int[4] sa1;
input = `[1,2,3,4]`;
formattedRead(input, "[%(%s,%)]", &sa1);
assert(sa1 == [1,2,3,4]);
int[4] sa2;
input = `[1,2,3]`;
assertThrown(formattedRead(input, "[%(%s,%)]", &sa2));
}
@system pure unittest
{
string line;
string s1, s2;
line = "hello, world";
formattedRead(line, "%s", &s1);
assert(s1 == "hello, world", s1);
line = "hello, world;yah";
formattedRead(line, "%s;%s", &s1, &s2);
assert(s1 == "hello, world", s1);
assert(s2 == "yah", s2);
line = `['h','e','l','l','o']`;
string s3;
formattedRead(line, "[%(%s,%)]", &s3);
assert(s3 == "hello");
line = `"hello"`;
string s4;
formattedRead(line, "\"%(%c%)\"", &s4);
assert(s4 == "hello");
}
@system pure unittest
{
string line;
string[int] aa1;
line = `[1:"hello", 2:"world"]`;
formattedRead(line, "%s", &aa1);
assert(aa1 == [1:"hello", 2:"world"]);
int[string] aa2;
line = `{"hello"=1; "world"=2}`;
formattedRead(line, "{%(%s=%s; %)}", &aa2);
assert(aa2 == ["hello":1, "world":2]);
int[string] aa3;
line = `{[hello=1]; [world=2]}`;
formattedRead(line, "{%([%(%c%)=%s]%|; %)}", &aa3);
assert(aa3 == ["hello":1, "world":2]);
}
template FormatSpec(Char)
if (!is(Unqual!Char == Char))
{
alias FormatSpec = FormatSpec!(Unqual!Char);
}
/**
* A General handler for $(D printf) style format specifiers. Used for building more
* specific formatting functions.
*/
struct FormatSpec(Char)
if (is(Unqual!Char == Char))
{
import std.algorithm.searching : startsWith;
import std.ascii : isDigit, isPunctuation, isAlpha;
import std.conv : parse, text, to;
/**
Minimum _width, default $(D 0).
*/
int width = 0;
/**
Precision. Its semantics depends on the argument type. For
floating point numbers, _precision dictates the number of
decimals printed.
*/
int precision = UNSPECIFIED;
/**
Number of digits printed between _separators.
*/
int separators = UNSPECIFIED;
/**
Set to `DYNAMIC` when the separator character is supplied at runtime.
*/
int separatorCharPos = UNSPECIFIED;
/**
Character to insert between digits.
*/
dchar separatorChar = ',';
/**
Special value for width and precision. $(D DYNAMIC) width or
precision means that they were specified with $(D '*') in the
format string and are passed at runtime through the varargs.
*/
enum int DYNAMIC = int.max;
/**
Special value for precision, meaning the format specifier
contained no explicit precision.
*/
enum int UNSPECIFIED = DYNAMIC - 1;
/**
The actual format specifier, $(D 's') by default.
*/
char spec = 's';
/**
Index of the argument for positional parameters, from $(D 1) to
$(D ubyte.max). ($(D 0) means not used).
*/
ubyte indexStart;
/**
Index of the last argument for positional parameter range, from
$(D 1) to $(D ubyte.max). ($(D 0) means not used).
*/
ubyte indexEnd;
version (StdDdoc)
{
/**
The format specifier contained a $(D '-') ($(D printf)
compatibility).
*/
bool flDash;
/**
The format specifier contained a $(D '0') ($(D printf)
compatibility).
*/
bool flZero;
/**
The format specifier contained a $(D ' ') ($(D printf)
compatibility).
*/
bool flSpace;
/**
The format specifier contained a $(D '+') ($(D printf)
compatibility).
*/
bool flPlus;
/**
The format specifier contained a $(D '#') ($(D printf)
compatibility).
*/
bool flHash;
/**
The format specifier contained a $(D ',')
*/
bool flSeparator;
// Fake field to allow compilation
ubyte allFlags;
}
else
{
union
{
import std.bitmanip : bitfields;
mixin(bitfields!(
bool, "flDash", 1,
bool, "flZero", 1,
bool, "flSpace", 1,
bool, "flPlus", 1,
bool, "flHash", 1,
bool, "flSeparator", 1,
ubyte, "", 2));
ubyte allFlags;
}
}
/**
In case of a compound format specifier starting with $(D
"%$(LPAREN)") and ending with $(D "%$(RPAREN)"), $(D _nested)
contains the string contained within the two separators.
*/
const(Char)[] nested;
/**
In case of a compound format specifier, $(D _sep) contains the
string positioning after $(D "%|").
`sep is null` means no separator else `sep.empty` means 0 length
separator.
*/
const(Char)[] sep;
/**
$(D _trailing) contains the rest of the format string.
*/
const(Char)[] trailing;
/*
This string is inserted before each sequence (e.g. array)
formatted (by default $(D "[")).
*/
enum immutable(Char)[] seqBefore = "[";
/*
This string is inserted after each sequence formatted (by
default $(D "]")).
*/
enum immutable(Char)[] seqAfter = "]";
/*
This string is inserted after each element keys of a sequence (by
default $(D ":")).
*/
enum immutable(Char)[] keySeparator = ":";
/*
This string is inserted in between elements of a sequence (by
default $(D ", ")).
*/
enum immutable(Char)[] seqSeparator = ", ";
/**
Construct a new $(D FormatSpec) using the format string $(D fmt), no
processing is done until needed.
*/
this(in Char[] fmt) @safe pure
{
trailing = fmt;
}
bool writeUpToNextSpec(OutputRange)(ref OutputRange writer)
{
if (trailing.empty)
return false;
for (size_t i = 0; i < trailing.length; ++i)
{
if (trailing[i] != '%') continue;
put(writer, trailing[0 .. i]);
trailing = trailing[i .. $];
enforceFmt(trailing.length >= 2, `Unterminated format specifier: "%"`);
trailing = trailing[1 .. $];
if (trailing[0] != '%')
{
// Spec found. Fill up the spec, and bailout
fillUp();
return true;
}
// Doubled! Reset and Keep going
i = 0;
}
// no format spec found
put(writer, trailing);
trailing = null;
return false;
}
@safe unittest
{
import std.array;
auto w = appender!(char[])();
auto f = FormatSpec("abc%sdef%sghi");
f.writeUpToNextSpec(w);
assert(w.data == "abc", w.data);
assert(f.trailing == "def%sghi", text(f.trailing));
f.writeUpToNextSpec(w);
assert(w.data == "abcdef", w.data);
assert(f.trailing == "ghi");
// test with embedded %%s
f = FormatSpec("ab%%cd%%ef%sg%%h%sij");
w.clear();
f.writeUpToNextSpec(w);
assert(w.data == "ab%cd%ef" && f.trailing == "g%%h%sij", w.data);
f.writeUpToNextSpec(w);
assert(w.data == "ab%cd%efg%h" && f.trailing == "ij");
// bug4775
f = FormatSpec("%%%s");
w.clear();
f.writeUpToNextSpec(w);
assert(w.data == "%" && f.trailing == "");
f = FormatSpec("%%%%%s%%");
w.clear();
while (f.writeUpToNextSpec(w)) continue;
assert(w.data == "%%%");
f = FormatSpec("a%%b%%c%");
w.clear();
assertThrown!FormatException(f.writeUpToNextSpec(w));
assert(w.data == "a%b%c" && f.trailing == "%");
}
private void fillUp()
{
// Reset content
if (__ctfe)
{
flDash = false;
flZero = false;
flSpace = false;
flPlus = false;
flHash = false;
flSeparator = false;
}
else
{
allFlags = 0;
}
width = 0;
precision = UNSPECIFIED;
nested = null;
// Parse the spec (we assume we're past '%' already)
for (size_t i = 0; i < trailing.length; )
{
switch (trailing[i])
{
case '(':
// Embedded format specifier.
auto j = i + 1;
// Get the matching balanced paren
for (uint innerParens;;)
{
enforceFmt(j + 1 < trailing.length,
text("Incorrect format specifier: %", trailing[i .. $]));
if (trailing[j++] != '%')
{
// skip, we're waiting for %( and %)
continue;
}
if (trailing[j] == '-') // for %-(
{
++j; // skip
enforceFmt(j < trailing.length,
text("Incorrect format specifier: %", trailing[i .. $]));
}
if (trailing[j] == ')')
{
if (innerParens-- == 0) break;
}
else if (trailing[j] == '|')
{
if (innerParens == 0) break;
}
else if (trailing[j] == '(')
{
++innerParens;
}
}
if (trailing[j] == '|')
{
auto k = j;
for (++j;;)
{
if (trailing[j++] != '%')
continue;
if (trailing[j] == '%')
++j;
else if (trailing[j] == ')')
break;
else
throw new Exception(
text("Incorrect format specifier: %",
trailing[j .. $]));
}
nested = trailing[i + 1 .. k - 1];
sep = trailing[k + 1 .. j - 1];
}
else
{
nested = trailing[i + 1 .. j - 1];
sep = null; // no separator
}
//this = FormatSpec(innerTrailingSpec);
spec = '(';
// We practically found the format specifier
trailing = trailing[j + 1 .. $];
return;
case '-': flDash = true; ++i; break;
case '+': flPlus = true; ++i; break;
case '#': flHash = true; ++i; break;
case '0': flZero = true; ++i; break;
case ' ': flSpace = true; ++i; break;
case '*':
if (isDigit(trailing[++i]))
{
// a '*' followed by digits and '$' is a
// positional format
trailing = trailing[1 .. $];
width = -parse!(typeof(width))(trailing);
i = 0;
enforceFmt(trailing[i++] == '$',
"$ expected");
}
else
{
// read result
width = DYNAMIC;
}
break;
case '1': .. case '9':
auto tmp = trailing[i .. $];
const widthOrArgIndex = parse!uint(tmp);
enforceFmt(tmp.length,
text("Incorrect format specifier %", trailing[i .. $]));
i = arrayPtrDiff(tmp, trailing);
if (tmp.startsWith('$'))
{
// index of the form %n$
indexEnd = indexStart = to!ubyte(widthOrArgIndex);
++i;
}
else if (tmp.startsWith(':'))
{
// two indexes of the form %m:n$, or one index of the form %m:$
indexStart = to!ubyte(widthOrArgIndex);
tmp = tmp[1 .. $];
if (tmp.startsWith('$'))
{
indexEnd = indexEnd.max;
}
else
{
indexEnd = parse!(typeof(indexEnd))(tmp);
}
i = arrayPtrDiff(tmp, trailing);
enforceFmt(trailing[i++] == '$',
"$ expected");
}
else
{
// width
width = to!int(widthOrArgIndex);
}
break;
case ',':
// Precision
++i;
flSeparator = true;
if (trailing[i] == '*')
{
++i;
// read result
separators = DYNAMIC;
}
else if (isDigit(trailing[i]))
{
auto tmp = trailing[i .. $];
separators = parse!int(tmp);
i = arrayPtrDiff(tmp, trailing);
}
else
{
// "," was specified, but nothing after it
separators = 3;
}
if (trailing[i] == '?')
{
separatorCharPos = DYNAMIC;
++i;
}
break;
case '.':
// Precision
if (trailing[++i] == '*')
{
if (isDigit(trailing[++i]))
{
// a '.*' followed by digits and '$' is a
// positional precision
trailing = trailing[i .. $];
i = 0;
precision = -parse!int(trailing);
enforceFmt(trailing[i++] == '$',
"$ expected");
}
else
{
// read result
precision = DYNAMIC;
}
}
else if (trailing[i] == '-')
{
// negative precision, as good as 0
precision = 0;
auto tmp = trailing[i .. $];
parse!int(tmp); // skip digits
i = arrayPtrDiff(tmp, trailing);
}
else if (isDigit(trailing[i]))
{
auto tmp = trailing[i .. $];
precision = parse!int(tmp);
i = arrayPtrDiff(tmp, trailing);
}
else
{
// "." was specified, but nothing after it
precision = 0;
}
break;
default:
// this is the format char
spec = cast(char) trailing[i++];
trailing = trailing[i .. $];
return;
} // end switch
} // end for
throw new Exception(text("Incorrect format specifier: ", trailing));
}
//--------------------------------------------------------------------------
private bool readUpToNextSpec(R)(ref R r)
{
import std.ascii : isLower, isWhite;
import std.utf : stride;
// Reset content
if (__ctfe)
{
flDash = false;
flZero = false;
flSpace = false;
flPlus = false;
flHash = false;
flSeparator = false;
}
else
{
allFlags = 0;
}
width = 0;
precision = UNSPECIFIED;
nested = null;
// Parse the spec
while (trailing.length)
{
const c = trailing[0];
if (c == '%' && trailing.length > 1)
{
const c2 = trailing[1];
if (c2 == '%')
{
assert(!r.empty);
// Require a '%'
if (r.front != '%') break;
trailing = trailing[2 .. $];
r.popFront();
}
else
{
enforce(isLower(c2) || c2 == '*' ||
c2 == '(',
text("'%", c2,
"' not supported with formatted read"));
trailing = trailing[1 .. $];
fillUp();
return true;
}
}
else
{
if (c == ' ')
{
while (!r.empty && isWhite(r.front)) r.popFront();
//r = std.algorithm.find!(not!(isWhite))(r);
}
else
{
enforce(!r.empty,
text("parseToFormatSpec: Cannot find character '",
c, "' in the input string."));
if (r.front != trailing.front) break;
r.popFront();
}
trailing = trailing[stride(trailing, 0) .. $];
}
}
return false;
}
private string getCurFmtStr() const
{
import std.array : appender;
auto w = appender!string();
auto f = FormatSpec!Char("%s"); // for stringnize
put(w, '%');
if (indexStart != 0)
{
formatValue(w, indexStart, f);
put(w, '$');
}
if (flDash) put(w, '-');
if (flZero) put(w, '0');
if (flSpace) put(w, ' ');
if (flPlus) put(w, '+');
if (flHash) put(w, '#');
if (flSeparator) put(w, ',');
if (width != 0)
formatValue(w, width, f);
if (precision != FormatSpec!Char.UNSPECIFIED)
{
put(w, '.');
formatValue(w, precision, f);
}
put(w, spec);
return w.data;
}
@safe unittest
{
// issue 5237
import std.array;
auto w = appender!string();
auto f = FormatSpec!char("%.16f");
f.writeUpToNextSpec(w); // dummy eating
assert(f.spec == 'f');
auto fmt = f.getCurFmtStr();
assert(fmt == "%.16f");
}
private const(Char)[] headUpToNextSpec()
{
import std.array : appender;
auto w = appender!(typeof(return))();
auto tr = trailing;
while (tr.length)
{
if (tr[0] == '%')
{
if (tr.length > 1 && tr[1] == '%')
{
tr = tr[2 .. $];
w.put('%');
}
else
break;
}
else
{
w.put(tr.front);
tr.popFront();
}
}
return w.data;
}
string toString()
{
return text("address = ", cast(void*) &this,
"\nwidth = ", width,
"\nprecision = ", precision,
"\nspec = ", spec,
"\nindexStart = ", indexStart,
"\nindexEnd = ", indexEnd,
"\nflDash = ", flDash,
"\nflZero = ", flZero,
"\nflSpace = ", flSpace,
"\nflPlus = ", flPlus,
"\nflHash = ", flHash,
"\nflSeparator = ", flSeparator,
"\nnested = ", nested,
"\ntrailing = ", trailing, "\n");
}
}
///
@safe pure unittest
{
import std.array;
auto a = appender!(string)();
auto fmt = "Number: %2.4e\nString: %s";
auto f = FormatSpec!char(fmt);
f.writeUpToNextSpec(a);
assert(a.data == "Number: ");
assert(f.trailing == "\nString: %s");
assert(f.spec == 'e');
assert(f.width == 2);
assert(f.precision == 4);
f.writeUpToNextSpec(a);
assert(a.data == "Number: \nString: ");
assert(f.trailing == "");
assert(f.spec == 's');
}
// Issue 14059
@safe unittest
{
import std.array : appender;
auto a = appender!(string)();
auto f = FormatSpec!char("%-(%s%"); // %)")
assertThrown(f.writeUpToNextSpec(a));
f = FormatSpec!char("%(%-"); // %)")
assertThrown(f.writeUpToNextSpec(a));
}
@safe unittest
{
import std.array : appender;
auto a = appender!(string)();
auto f = FormatSpec!char("%,d");
f.writeUpToNextSpec(a);
assert(f.spec == 'd', format("%s", f.spec));
assert(f.precision == FormatSpec!char.UNSPECIFIED);
assert(f.separators == 3);
f = FormatSpec!char("%5,10f");
f.writeUpToNextSpec(a);
assert(f.spec == 'f', format("%s", f.spec));
assert(f.separators == 10);
assert(f.width == 5);
f = FormatSpec!char("%5,10.4f");
f.writeUpToNextSpec(a);
assert(f.spec == 'f', format("%s", f.spec));
assert(f.separators == 10);
assert(f.width == 5);
assert(f.precision == 4);
}
/**
Helper function that returns a $(D FormatSpec) for a single specifier given
in $(D fmt).
Params:
fmt = A format specifier.
Returns:
A $(D FormatSpec) with the specifier parsed.
Throws:
An `Exception` when more than one specifier is given or the specifier
is malformed.
*/
FormatSpec!Char singleSpec(Char)(Char[] fmt)
{
import std.conv : text;
enforce(fmt.length >= 2, "fmt must be at least 2 characters long");
enforce(fmt.front == '%', "fmt must start with a '%' character");
static struct DummyOutputRange {
void put(C)(C[] buf) {} // eat elements
}
auto a = DummyOutputRange();
auto spec = FormatSpec!Char(fmt);
//dummy write
spec.writeUpToNextSpec(a);
enforce(spec.trailing.empty,
text("Trailing characters in fmt string: '", spec.trailing));
return spec;
}
///
@safe pure unittest
{
import std.exception : assertThrown;
auto spec = singleSpec("%2.3e");
assert(spec.trailing == "");
assert(spec.spec == 'e');
assert(spec.width == 2);
assert(spec.precision == 3);
assertThrown(singleSpec(""));
assertThrown(singleSpec("2.3e"));
assertThrown(singleSpec("%2.3eTest"));
}
/**
$(D bool)s are formatted as "true" or "false" with %s and as "1" or
"0" with integral-specific format specs.
Params:
w = The $(D OutputRange) to write to.
obj = The value to write.
f = The $(D FormatSpec) defining how to write the value.
*/
void formatValue(Writer, T, Char)(auto ref Writer w, T obj, const ref FormatSpec!Char f)
if (is(BooleanTypeOf!T) && !is(T == enum) && !hasToString!(T, Char))
{
BooleanTypeOf!T val = obj;
if (f.spec == 's')
{
string s = val ? "true" : "false";
if (!f.flDash)
{
// right align
if (f.width > s.length)
foreach (i ; 0 .. f.width - s.length) put(w, ' ');
put(w, s);
}
else
{
// left align
put(w, s);
if (f.width > s.length)
foreach (i ; 0 .. f.width - s.length) put(w, ' ');
}
}
else
formatValue(w, cast(int) val, f);
}
///
@safe pure unittest
{
import std.array : appender;
auto w = appender!string();
auto spec = singleSpec("%s");
formatValue(w, true, spec);
assert(w.data == "true");
}
@safe pure unittest
{
assertCTFEable!(
{
formatTest( false, "false" );
formatTest( true, "true" );
});
}
@system unittest
{
class C1 { bool val; alias val this; this(bool v){ val = v; } }
class C2 { bool val; alias val this; this(bool v){ val = v; }
override string toString() const { return "C"; } }
formatTest( new C1(false), "false" );
formatTest( new C1(true), "true" );
formatTest( new C2(false), "C" );
formatTest( new C2(true), "C" );
struct S1 { bool val; alias val this; }
struct S2 { bool val; alias val this;
string toString() const { return "S"; } }
formatTest( S1(false), "false" );
formatTest( S1(true), "true" );
formatTest( S2(false), "S" );
formatTest( S2(true), "S" );
}
@safe pure unittest
{
string t1 = format("[%6s] [%6s] [%-6s]", true, false, true);
assert(t1 == "[ true] [ false] [true ]");
string t2 = format("[%3s] [%-2s]", true, false);
assert(t2 == "[true] [false]");
}
/**
$(D null) literal is formatted as $(D "null").
Params:
w = The $(D OutputRange) to write to.
obj = The value to write.
f = The $(D FormatSpec) defining how to write the value.
*/
void formatValue(Writer, T, Char)(auto ref Writer w, T obj, const ref FormatSpec!Char f)
if (is(Unqual!T == typeof(null)) && !is(T == enum) && !hasToString!(T, Char))
{
enforceFmt(f.spec == 's',
"null literal cannot match %" ~ f.spec);
put(w, "null");
}
///
@safe pure unittest
{
import std.array : appender;
auto w = appender!string();
auto spec = singleSpec("%s");
formatValue(w, null, spec);
assert(w.data == "null");
}
@safe pure unittest
{
assert(collectExceptionMsg!FormatException(format("%p", null)).back == 'p');
assertCTFEable!(
{
formatTest( null, "null" );
});
}
/**
Integrals are formatted like $(D printf) does.
Params:
w = The $(D OutputRange) to write to.
obj = The value to write.
f = The $(D FormatSpec) defining how to write the value.
*/
void formatValue(Writer, T, Char)(auto ref Writer w, T obj, const ref FormatSpec!Char f)
if (is(IntegralTypeOf!T) && !is(T == enum) && !hasToString!(T, Char))
{
alias U = IntegralTypeOf!T;
U val = obj; // Extracting alias this may be impure/system/may-throw
if (f.spec == 'r')
{
// raw write, skip all else and write the thing
auto raw = (ref val)@trusted{
return (cast(const char*) &val)[0 .. val.sizeof];
}(val);
if (needToSwapEndianess(f))
{
foreach_reverse (c; raw)
put(w, c);
}
else
{
foreach (c; raw)
put(w, c);
}
return;
}
immutable uint base =
f.spec == 'x' || f.spec == 'X' ? 16 :
f.spec == 'o' ? 8 :
f.spec == 'b' ? 2 :
f.spec == 's' || f.spec == 'd' || f.spec == 'u' ? 10 :
0;
enforceFmt(base > 0,
"incompatible format character for integral argument: %" ~ f.spec);
// Forward on to formatIntegral to handle both U and const(U)
// Saves duplication of code for both versions.
static if (is(ucent) && (is(U == cent) || is(U == ucent)))
alias C = U;
else static if (isSigned!U)
alias C = long;
else
alias C = ulong;
formatIntegral(w, cast(C) val, f, base, Unsigned!U.max);
}
///
@safe pure unittest
{
import std.array : appender;
auto w = appender!string();
auto spec = singleSpec("%d");
formatValue(w, 1337, spec);
assert(w.data == "1337");
}
private void formatIntegral(Writer, T, Char)(ref Writer w, const(T) val, const ref FormatSpec!Char fs,
uint base, ulong mask)
{
T arg = val;
immutable negative = (base == 10 && arg < 0);
if (negative)
{
arg = -arg;
}
// All unsigned integral types should fit in ulong.
static if (is(ucent) && is(typeof(arg) == ucent))
formatUnsigned(w, (cast(ucent) arg) & mask, fs, base, negative);
else
formatUnsigned(w, (cast(ulong) arg) & mask, fs, base, negative);
}
private void formatUnsigned(Writer, T, Char)
(ref Writer w, T arg, const ref FormatSpec!Char fs, uint base, bool negative)
{
/* Write string:
* leftpad prefix1 prefix2 zerofill digits rightpad
*/
/* Convert arg to digits[].
* Note that 0 becomes an empty digits[]
*/
char[64] buffer = void; // 64 bits in base 2 at most
char[] digits;
if (arg < base && base <= 10 && arg)
{
// Most numbers are a single digit - avoid expensive divide
buffer[0] = cast(char)(arg + '0');
digits = buffer[0 .. 1];
}
else
{
size_t i = buffer.length;
while (arg)
{
--i;
char c = cast(char) (arg % base);
arg /= base;
if (c < 10)
buffer[i] = cast(char)(c + '0');
else
buffer[i] = cast(char)(c + (fs.spec == 'x' ? 'a' - 10 : 'A' - 10));
}
digits = buffer[i .. $]; // got the digits without the sign
}
immutable precision = (fs.precision == fs.UNSPECIFIED) ? 1 : fs.precision;
char padChar = 0;
if (!fs.flDash)
{
padChar = (fs.flZero && fs.precision == fs.UNSPECIFIED) ? '0' : ' ';
}
// Compute prefix1 and prefix2
char prefix1 = 0;
char prefix2 = 0;
if (base == 10)
{
if (negative)
prefix1 = '-';
else if (fs.flPlus)
prefix1 = '+';
else if (fs.flSpace)
prefix1 = ' ';
}
else if (base == 16 && fs.flHash && digits.length)
{
prefix1 = '0';
prefix2 = fs.spec == 'x' ? 'x' : 'X';
}
// adjust precision to print a '0' for octal if alternate format is on
else if (base == 8 && fs.flHash &&
(precision <= 1 || precision <= digits.length) && // too low precision
digits.length > 0)
prefix1 = '0';
size_t zerofill = precision > digits.length ? precision - digits.length : 0;
size_t leftpad = 0;
size_t rightpad = 0;
immutable ptrdiff_t spacesToPrint =
fs.width - (
(prefix1 != 0)
+ (prefix2 != 0)
+ zerofill
+ digits.length
+ ((fs.flSeparator != 0) * (digits.length / fs.separators))
);
if (spacesToPrint > 0) // need to do some padding
{
if (padChar == '0')
zerofill += spacesToPrint;
else if (padChar)
leftpad = spacesToPrint;
else
rightpad = spacesToPrint;
}
// Print
foreach (i ; 0 .. leftpad)
put(w, ' ');
if (prefix1) put(w, prefix1);
if (prefix2) put(w, prefix2);
foreach (i ; 0 .. zerofill)
put(w, '0');
if (fs.flSeparator)
{
for (size_t j = 0; j < digits.length; ++j)
{
if (j != 0 && (digits.length - j) % fs.separators == 0)
{
put(w, fs.separatorChar);
}
put(w, digits[j]);
}
}
else
{
put(w, digits);
}
foreach (i ; 0 .. rightpad)
put(w, ' ');
}
@safe pure unittest
{
assert(collectExceptionMsg!FormatException(format("%c", 5)).back == 'c');
assertCTFEable!(
{
formatTest(9, "9");
formatTest( 10, "10" );
});
}
@system unittest
{
class C1 { long val; alias val this; this(long v){ val = v; } }
class C2 { long val; alias val this; this(long v){ val = v; }
override string toString() const { return "C"; } }
formatTest( new C1(10), "10" );
formatTest( new C2(10), "C" );
struct S1 { long val; alias val this; }
struct S2 { long val; alias val this;
string toString() const { return "S"; } }
formatTest( S1(10), "10" );
formatTest( S2(10), "S" );
}
// bugzilla 9117
@safe unittest
{
static struct Frop {}
static struct Foo
{
int n = 0;
alias n this;
T opCast(T) () if (is(T == Frop))
{
return Frop();
}
string toString()
{
return "Foo";
}
}
static struct Bar
{
Foo foo;
alias foo this;
string toString()
{
return "Bar";
}
}
const(char)[] result;
void put(const char[] s){ result ~= s; }
Foo foo;
formattedWrite(&put, "%s", foo); // OK
assert(result == "Foo");
result = null;
Bar bar;
formattedWrite(&put, "%s", bar); // NG
assert(result == "Bar");
result = null;
int i = 9;
formattedWrite(&put, "%s", 9);
assert(result == "9");
}
private enum ctfpMessage = "Cannot format floating point types at compile-time";
/**
Floating-point values are formatted like $(D printf) does.
Params:
w = The $(D OutputRange) to write to.
obj = The value to write.
f = The $(D FormatSpec) defining how to write the value.
*/
void formatValue(Writer, T, Char)(auto ref Writer w, T obj, const ref FormatSpec!Char f)
if (is(FloatingPointTypeOf!T) && !is(T == enum) && !hasToString!(T, Char))
{
import std.algorithm.comparison : min;
import std.algorithm.searching : find;
import std.string : indexOf, indexOfAny, indexOfNeither;
FormatSpec!Char fs = f; // fs is copy for change its values.
FloatingPointTypeOf!T val = obj;
if (fs.spec == 'r')
{
// raw write, skip all else and write the thing
auto raw = (ref val)@trusted{
return (cast(const char*) &val)[0 .. val.sizeof];
}(val);
if (needToSwapEndianess(f))
{
foreach_reverse (c; raw)
put(w, c);
}
else
{
foreach (c; raw)
put(w, c);
}
return;
}
enforceFmt(find("fgFGaAeEs", fs.spec).length,
"incompatible format character for floating point argument: %" ~ fs.spec);
enforceFmt(!__ctfe, ctfpMessage);
version (CRuntime_Microsoft)
{
import std.math : isNaN, isInfinity;
immutable double tval = val; // convert early to get "inf" in case of overflow
string s;
if (isNaN(tval))
s = "nan"; // snprintf writes 1.#QNAN
else if (isInfinity(tval))
s = val >= 0 ? "inf" : "-inf"; // snprintf writes 1.#INF
if (s.length > 0)
{
version (none)
{
return formatValue(w, s, f);
}
else // FIXME:workaround
{
s = s[0 .. f.precision < $ ? f.precision : $];
if (!f.flDash)
{
// right align
if (f.width > s.length)
foreach (j ; 0 .. f.width - s.length) put(w, ' ');
put(w, s);
}
else
{
// left align
put(w, s);
if (f.width > s.length)
foreach (j ; 0 .. f.width - s.length) put(w, ' ');
}
return;
}
}
}
else
alias tval = val;
if (fs.spec == 's') fs.spec = 'g';
char[1 /*%*/ + 5 /*flags*/ + 3 /*width.prec*/ + 2 /*format*/
+ 1 /*\0*/] sprintfSpec = void;
sprintfSpec[0] = '%';
uint i = 1;
if (fs.flDash) sprintfSpec[i++] = '-';
if (fs.flPlus) sprintfSpec[i++] = '+';
if (fs.flZero) sprintfSpec[i++] = '0';
if (fs.flSpace) sprintfSpec[i++] = ' ';
if (fs.flHash) sprintfSpec[i++] = '#';
sprintfSpec[i .. i + 3] = "*.*";
i += 3;
if (is(Unqual!(typeof(val)) == real)) sprintfSpec[i++] = 'L';
sprintfSpec[i++] = fs.spec;
sprintfSpec[i] = 0;
//printf("format: '%s'; geeba: %g\n", sprintfSpec.ptr, val);
char[512] buf = void;
immutable n = ()@trusted{
import core.stdc.stdio : snprintf;
return snprintf(buf.ptr, buf.length,
sprintfSpec.ptr,
fs.width,
// negative precision is same as no precision specified
fs.precision == fs.UNSPECIFIED ? -1 : fs.precision,
tval);
}();
enforceFmt(n >= 0,
"floating point formatting failure");
auto len = min(n, buf.length-1);
ptrdiff_t dot = buf[0 .. len].indexOf('.');
if (fs.flSeparator && dot != -1)
{
ptrdiff_t firstDigit = buf[0 .. len].indexOfAny("0123456789");
ptrdiff_t ePos = buf[0 .. len].indexOf('e');
size_t j;
ptrdiff_t firstLen = dot - firstDigit;
size_t separatorScoreCnt = firstLen / fs.separators;
size_t afterDotIdx;
if (ePos != -1)
{
afterDotIdx = ePos;
}
else
{
afterDotIdx = len;
}
if (dot != -1)
{
ptrdiff_t mantissaLen = afterDotIdx - (dot + 1);
separatorScoreCnt += (mantissaLen > 0) ? (mantissaLen - 1) / fs.separators : 0;
}
// plus, minus prefix
ptrdiff_t digitsBegin = buf[0 .. separatorScoreCnt].indexOfNeither(" ");
if (digitsBegin == -1)
{
digitsBegin = separatorScoreCnt;
}
put(w, buf[digitsBegin .. firstDigit]);
// digits until dot with separator
for (j = 0; j < firstLen; ++j)
{
if (j > 0 && (firstLen - j) % fs.separators == 0)
{
put(w, fs.separatorChar);
}
put(w, buf[j + firstDigit]);
}
put(w, '.');
// digits after dot
for (j = dot + 1; j < afterDotIdx; ++j)
{
auto realJ = (j - (dot + 1));
if (realJ != 0 && realJ % fs.separators == 0)
{
put(w, fs.separatorChar);
}
put(w, buf[j]);
}
// rest
if (ePos != -1)
{
put(w, buf[afterDotIdx .. len]);
}
}
else
{
put(w, buf[0 .. len]);
}
}
///
@safe unittest
{
import std.array : appender;
auto w = appender!string();
auto spec = singleSpec("%.1f");
formatValue(w, 1337.7, spec);
assert(w.data == "1337.7");
}
@safe /*pure*/ unittest // formatting floating point values is now impure
{
import std.conv : to;
assert(collectExceptionMsg!FormatException(format("%d", 5.1)).back == 'd');
foreach (T; AliasSeq!(float, double, real))
{
formatTest( to!( T)(5.5), "5.5" );
formatTest( to!( const T)(5.5), "5.5" );
formatTest( to!(immutable T)(5.5), "5.5" );
formatTest( T.nan, "nan" );
}
}
@system unittest
{
formatTest( 2.25, "2.25" );
class C1 { double val; alias val this; this(double v){ val = v; } }
class C2 { double val; alias val this; this(double v){ val = v; }
override string toString() const { return "C"; } }
formatTest( new C1(2.25), "2.25" );
formatTest( new C2(2.25), "C" );
struct S1 { double val; alias val this; }
struct S2 { double val; alias val this;
string toString() const { return "S"; } }
formatTest( S1(2.25), "2.25" );
formatTest( S2(2.25), "S" );
}
/*
Formatting a $(D creal) is deprecated but still kept around for a while.
Params:
w = The $(D OutputRange) to write to.
obj = The value to write.
f = The $(D FormatSpec) defining how to write the value.
*/
void formatValue(Writer, T, Char)(auto ref Writer w, T obj, const ref FormatSpec!Char f)
if (is(Unqual!T : creal) && !is(T == enum) && !hasToString!(T, Char))
{
immutable creal val = obj;
formatValue(w, val.re, f);
if (val.im >= 0)
{
put(w, '+');
}
formatValue(w, val.im, f);
put(w, 'i');
}
@safe /*pure*/ unittest // formatting floating point values is now impure
{
import std.conv : to;
foreach (T; AliasSeq!(cfloat, cdouble, creal))
{
formatTest( to!( T)(1 + 1i), "1+1i" );
formatTest( to!( const T)(1 + 1i), "1+1i" );
formatTest( to!(immutable T)(1 + 1i), "1+1i" );
}
foreach (T; AliasSeq!(cfloat, cdouble, creal))
{
formatTest( to!( T)(0 - 3i), "0-3i" );
formatTest( to!( const T)(0 - 3i), "0-3i" );
formatTest( to!(immutable T)(0 - 3i), "0-3i" );
}
}
@system unittest
{
formatTest( 3+2.25i, "3+2.25i" );
class C1 { cdouble val; alias val this; this(cdouble v){ val = v; } }
class C2 { cdouble val; alias val this; this(cdouble v){ val = v; }
override string toString() const { return "C"; } }
formatTest( new C1(3+2.25i), "3+2.25i" );
formatTest( new C2(3+2.25i), "C" );
struct S1 { cdouble val; alias val this; }
struct S2 { cdouble val; alias val this;
string toString() const { return "S"; } }
formatTest( S1(3+2.25i), "3+2.25i" );
formatTest( S2(3+2.25i), "S" );
}
/*
Formatting an $(D ireal) is deprecated but still kept around for a while.
Params:
w = The $(D OutputRange) to write to.
obj = The value to write.
f = The $(D FormatSpec) defining how to write the value.
*/
void formatValue(Writer, T, Char)(auto ref Writer w, T obj, const ref FormatSpec!Char f)
if (is(Unqual!T : ireal) && !is(T == enum) && !hasToString!(T, Char))
{
immutable ireal val = obj;
formatValue(w, val.im, f);
put(w, 'i');
}
@safe /*pure*/ unittest // formatting floating point values is now impure
{
import std.conv : to;
foreach (T; AliasSeq!(ifloat, idouble, ireal))
{
formatTest( to!( T)(1i), "1i" );
formatTest( to!( const T)(1i), "1i" );
formatTest( to!(immutable T)(1i), "1i" );
}
}
@system unittest
{
formatTest( 2.25i, "2.25i" );
class C1 { idouble val; alias val this; this(idouble v){ val = v; } }
class C2 { idouble val; alias val this; this(idouble v){ val = v; }
override string toString() const { return "C"; } }
formatTest( new C1(2.25i), "2.25i" );
formatTest( new C2(2.25i), "C" );
struct S1 { idouble val; alias val this; }
struct S2 { idouble val; alias val this;
string toString() const { return "S"; } }
formatTest( S1(2.25i), "2.25i" );
formatTest( S2(2.25i), "S" );
}
/**
Individual characters ($(D char), $(D wchar), or $(D dchar)) are formatted as
Unicode characters with %s and as integers with integral-specific format
specs.
Params:
w = The $(D OutputRange) to write to.
obj = The value to write.
f = The $(D FormatSpec) defining how to write the value.
*/
void formatValue(Writer, T, Char)(auto ref Writer w, T obj, const ref FormatSpec!Char f)
if (is(CharTypeOf!T) && !is(T == enum) && !hasToString!(T, Char))
{
CharTypeOf!T val = obj;
if (f.spec == 's' || f.spec == 'c')
{
put(w, val);
}
else
{
alias U = AliasSeq!(ubyte, ushort, uint)[CharTypeOf!T.sizeof/2];
formatValue(w, cast(U) val, f);
}
}
///
@safe pure unittest
{
import std.array : appender;
auto w = appender!string();
auto spec = singleSpec("%c");
formatValue(w, 'a', spec);
assert(w.data == "a");
}
@safe pure unittest
{
assertCTFEable!(
{
formatTest( 'c', "c" );
});
}
@system unittest
{
class C1 { char val; alias val this; this(char v){ val = v; } }
class C2 { char val; alias val this; this(char v){ val = v; }
override string toString() const { return "C"; } }
formatTest( new C1('c'), "c" );
formatTest( new C2('c'), "C" );
struct S1 { char val; alias val this; }
struct S2 { char val; alias val this;
string toString() const { return "S"; } }
formatTest( S1('c'), "c" );
formatTest( S2('c'), "S" );
}
@safe unittest
{
//Little Endian
formatTest( "%-r", cast( char)'c', ['c' ] );
formatTest( "%-r", cast(wchar)'c', ['c', 0 ] );
formatTest( "%-r", cast(dchar)'c', ['c', 0, 0, 0] );
formatTest( "%-r", '本', ['\x2c', '\x67'] );
//Big Endian
formatTest( "%+r", cast( char)'c', [ 'c'] );
formatTest( "%+r", cast(wchar)'c', [0, 'c'] );
formatTest( "%+r", cast(dchar)'c', [0, 0, 0, 'c'] );
formatTest( "%+r", '本', ['\x67', '\x2c'] );
}
/**
Strings are formatted like $(D printf) does.
Params:
w = The $(D OutputRange) to write to.
obj = The value to write.
f = The $(D FormatSpec) defining how to write the value.
*/
void formatValue(Writer, T, Char)(auto ref Writer w, T obj, const ref FormatSpec!Char f)
if (is(StringTypeOf!T) && !is(StaticArrayTypeOf!T) && !is(T == enum) && !hasToString!(T, Char))
{
Unqual!(StringTypeOf!T) val = obj; // for `alias this`, see bug5371
formatRange(w, val, f);
}
///
@safe pure unittest
{
import std.array : appender;
auto w = appender!string();
auto spec = singleSpec("%s");
formatValue(w, "hello", spec);
assert(w.data == "hello");
}
@safe unittest
{
formatTest( "abc", "abc" );
}
@system unittest
{
// Test for bug 5371 for classes
class C1 { const string var; alias var this; this(string s){ var = s; } }
class C2 { string var; alias var this; this(string s){ var = s; } }
formatTest( new C1("c1"), "c1" );
formatTest( new C2("c2"), "c2" );
// Test for bug 5371 for structs
struct S1 { const string var; alias var this; }
struct S2 { string var; alias var this; }
formatTest( S1("s1"), "s1" );
formatTest( S2("s2"), "s2" );
}
@system unittest
{
class C3 { string val; alias val this; this(string s){ val = s; }
override string toString() const { return "C"; } }
formatTest( new C3("c3"), "C" );
struct S3 { string val; alias val this;
string toString() const { return "S"; } }
formatTest( S3("s3"), "S" );
}
@safe pure unittest
{
//Little Endian
formatTest( "%-r", "ab"c, ['a' , 'b' ] );
formatTest( "%-r", "ab"w, ['a', 0 , 'b', 0 ] );
formatTest( "%-r", "ab"d, ['a', 0, 0, 0, 'b', 0, 0, 0] );
formatTest( "%-r", "日本語"c, ['\xe6', '\x97', '\xa5', '\xe6', '\x9c', '\xac', '\xe8', '\xaa', '\x9e'] );
formatTest( "%-r", "日本語"w, ['\xe5', '\x65', '\x2c', '\x67', '\x9e', '\x8a']);
formatTest( "%-r", "日本語"d, ['\xe5', '\x65', '\x00', '\x00', '\x2c', '\x67',
'\x00', '\x00', '\x9e', '\x8a', '\x00', '\x00'] );
//Big Endian
formatTest( "%+r", "ab"c, [ 'a', 'b'] );
formatTest( "%+r", "ab"w, [ 0, 'a', 0, 'b'] );
formatTest( "%+r", "ab"d, [0, 0, 0, 'a', 0, 0, 0, 'b'] );
formatTest( "%+r", "日本語"c, ['\xe6', '\x97', '\xa5', '\xe6', '\x9c', '\xac', '\xe8', '\xaa', '\x9e'] );
formatTest( "%+r", "日本語"w, ['\x65', '\xe5', '\x67', '\x2c', '\x8a', '\x9e'] );
formatTest( "%+r", "日本語"d, ['\x00', '\x00', '\x65', '\xe5', '\x00', '\x00',
'\x67', '\x2c', '\x00', '\x00', '\x8a', '\x9e'] );
}
/**
Static-size arrays are formatted as dynamic arrays.
Params:
w = The $(D OutputRange) to write to.
obj = The value to write.
f = The $(D FormatSpec) defining how to write the value.
*/
void formatValue(Writer, T, Char)(auto ref Writer w, auto ref T obj, const ref FormatSpec!Char f)
if (is(StaticArrayTypeOf!T) && !is(T == enum) && !hasToString!(T, Char))
{
formatValue(w, obj[], f);
}
///
@safe pure unittest
{
import std.array : appender;
auto w = appender!string();
auto spec = singleSpec("%s");
char[2] two = ['a', 'b'];
formatValue(w, two, spec);
assert(w.data == "ab");
}
@safe unittest // Test for issue 8310
{
import std.array : appender;
FormatSpec!char f;
auto w = appender!string();
char[2] two = ['a', 'b'];
formatValue(w, two, f);
char[2] getTwo(){ return two; }
formatValue(w, getTwo(), f);
}
/**
Dynamic arrays are formatted as input ranges.
Specializations:
$(UL $(LI $(D void[]) is formatted like $(D ubyte[]).)
$(LI Const array is converted to input range by removing its qualifier.))
Params:
w = The $(D OutputRange) to write to.
obj = The value to write.
f = The $(D FormatSpec) defining how to write the value.
*/
void formatValue(Writer, T, Char)(auto ref Writer w, T obj, const ref FormatSpec!Char f)
if (is(DynamicArrayTypeOf!T) && !is(StringTypeOf!T) && !is(T == enum) && !hasToString!(T, Char))
{
static if (is(const(ArrayTypeOf!T) == const(void[])))
{
formatValue(w, cast(const ubyte[]) obj, f);
}
else static if (!isInputRange!T)
{
alias U = Unqual!(ArrayTypeOf!T);
static assert(isInputRange!U);
U val = obj;
formatValue(w, val, f);
}
else
{
formatRange(w, obj, f);
}
}
///
@safe pure unittest
{
import std.array : appender;
auto w = appender!string();
auto spec = singleSpec("%s");
auto two = [1, 2];
formatValue(w, two, spec);
assert(w.data == "[1, 2]");
}
// alias this, input range I/F, and toString()
@system unittest
{
struct S(int flags)
{
int[] arr;
static if (flags & 1)
alias arr this;
static if (flags & 2)
{
@property bool empty() const { return arr.length == 0; }
@property int front() const { return arr[0] * 2; }
void popFront() { arr = arr[1..$]; }
}
static if (flags & 4)
string toString() const { return "S"; }
}
formatTest(S!0b000([0, 1, 2]), "S!0([0, 1, 2])");
formatTest(S!0b001([0, 1, 2]), "[0, 1, 2]"); // Test for bug 7628
formatTest(S!0b010([0, 1, 2]), "[0, 2, 4]");
formatTest(S!0b011([0, 1, 2]), "[0, 2, 4]");
formatTest(S!0b100([0, 1, 2]), "S");
formatTest(S!0b101([0, 1, 2]), "S"); // Test for bug 7628
formatTest(S!0b110([0, 1, 2]), "S");
formatTest(S!0b111([0, 1, 2]), "S");
class C(uint flags)
{
int[] arr;
static if (flags & 1)
alias arr this;
this(int[] a) { arr = a; }
static if (flags & 2)
{
@property bool empty() const { return arr.length == 0; }
@property int front() const { return arr[0] * 2; }
void popFront() { arr = arr[1..$]; }
}
static if (flags & 4)
override string toString() const { return "C"; }
}
formatTest(new C!0b000([0, 1, 2]), (new C!0b000([])).toString());
formatTest(new C!0b001([0, 1, 2]), "[0, 1, 2]"); // Test for bug 7628
formatTest(new C!0b010([0, 1, 2]), "[0, 2, 4]");
formatTest(new C!0b011([0, 1, 2]), "[0, 2, 4]");
formatTest(new C!0b100([0, 1, 2]), "C");
formatTest(new C!0b101([0, 1, 2]), "C"); // Test for bug 7628
formatTest(new C!0b110([0, 1, 2]), "C");
formatTest(new C!0b111([0, 1, 2]), "C");
}
@system unittest
{
// void[]
void[] val0;
formatTest( val0, "[]" );
void[] val = cast(void[]) cast(ubyte[])[1, 2, 3];
formatTest( val, "[1, 2, 3]" );
void[0] sval0 = [];
formatTest( sval0, "[]");
void[3] sval = cast(void[3]) cast(ubyte[3])[1, 2, 3];
formatTest( sval, "[1, 2, 3]" );
}
@safe unittest
{
// const(T[]) -> const(T)[]
const short[] a = [1, 2, 3];
formatTest( a, "[1, 2, 3]" );
struct S { const(int[]) arr; alias arr this; }
auto s = S([1,2,3]);
formatTest( s, "[1, 2, 3]" );
}
@safe unittest
{
// 6640
struct Range
{
@safe:
string value;
@property bool empty() const { return !value.length; }
@property dchar front() const { return value.front; }
void popFront() { value.popFront(); }
@property size_t length() const { return value.length; }
}
immutable table =
[
["[%s]", "[string]"],
["[%10s]", "[ string]"],
["[%-10s]", "[string ]"],
["[%(%02x %)]", "[73 74 72 69 6e 67]"],
["[%(%c %)]", "[s t r i n g]"],
];
foreach (e; table)
{
formatTest(e[0], "string", e[1]);
formatTest(e[0], Range("string"), e[1]);
}
}
@system unittest
{
// string literal from valid UTF sequence is encoding free.
foreach (StrType; AliasSeq!(string, wstring, dstring))
{
// Valid and printable (ASCII)
formatTest( [cast(StrType)"hello"],
`["hello"]` );
// 1 character escape sequences (' is not escaped in strings)
formatTest( [cast(StrType)"\"'\0\\\a\b\f\n\r\t\v"],
`["\"'\0\\\a\b\f\n\r\t\v"]` );
// 1 character optional escape sequences
formatTest( [cast(StrType)"\'\?"],
`["'?"]` );
// Valid and non-printable code point (<= U+FF)
formatTest( [cast(StrType)"\x10\x1F\x20test"],
`["\x10\x1F test"]` );
// Valid and non-printable code point (<= U+FFFF)
formatTest( [cast(StrType)"\u200B..\u200F"],
`["\u200B..\u200F"]` );
// Valid and non-printable code point (<= U+10FFFF)
formatTest( [cast(StrType)"\U000E0020..\U000E007F"],
`["\U000E0020..\U000E007F"]` );
}
// invalid UTF sequence needs hex-string literal postfix (c/w/d)
{
// U+FFFF with UTF-8 (Invalid code point for interchange)
formatTest( [cast(string)[0xEF, 0xBF, 0xBF]],
`[x"EF BF BF"c]` );
// U+FFFF with UTF-16 (Invalid code point for interchange)
formatTest( [cast(wstring)[0xFFFF]],
`[x"FFFF"w]` );
// U+FFFF with UTF-32 (Invalid code point for interchange)
formatTest( [cast(dstring)[0xFFFF]],
`[x"FFFF"d]` );
}
}
@safe unittest
{
// nested range formatting with array of string
formatTest( "%({%(%02x %)}%| %)", ["test", "msg"],
`{74 65 73 74} {6d 73 67}` );
}
@safe unittest
{
// stop auto escaping inside range formatting
auto arr = ["hello", "world"];
formatTest( "%(%s, %)", arr, `"hello", "world"` );
formatTest( "%-(%s, %)", arr, `hello, world` );
auto aa1 = [1:"hello", 2:"world"];
formatTest( "%(%s:%s, %)", aa1, [`1:"hello", 2:"world"`, `2:"world", 1:"hello"`] );
formatTest( "%-(%s:%s, %)", aa1, [`1:hello, 2:world`, `2:world, 1:hello`] );
auto aa2 = [1:["ab", "cd"], 2:["ef", "gh"]];
formatTest( "%-(%s:%s, %)", aa2, [`1:["ab", "cd"], 2:["ef", "gh"]`, `2:["ef", "gh"], 1:["ab", "cd"]`] );
formatTest( "%-(%s:%(%s%), %)", aa2, [`1:"ab""cd", 2:"ef""gh"`, `2:"ef""gh", 1:"ab""cd"`] );
formatTest( "%-(%s:%-(%s%)%|, %)", aa2, [`1:abcd, 2:efgh`, `2:efgh, 1:abcd`] );
}
// input range formatting
private void formatRange(Writer, T, Char)(ref Writer w, ref T val, const ref FormatSpec!Char f)
if (isInputRange!T)
{
import std.conv : text;
// Formatting character ranges like string
if (f.spec == 's')
{
alias E = ElementType!T;
static if (!is(E == enum) && is(CharTypeOf!E))
{
static if (is(StringTypeOf!T))
{
auto s = val[0 .. f.precision < $ ? f.precision : $];
if (!f.flDash)
{
// right align
if (f.width > s.length)
foreach (i ; 0 .. f.width - s.length) put(w, ' ');
put(w, s);
}
else
{
// left align
put(w, s);
if (f.width > s.length)
foreach (i ; 0 .. f.width - s.length) put(w, ' ');
}
}
else
{
if (!f.flDash)
{
static if (hasLength!T)
{
// right align
auto len = val.length;
}
else static if (isForwardRange!T && !isInfinite!T)
{
auto len = walkLength(val.save);
}
else
{
enforce(f.width == 0, "Cannot right-align a range without length");
size_t len = 0;
}
if (f.precision != f.UNSPECIFIED && len > f.precision)
len = f.precision;
if (f.width > len)
foreach (i ; 0 .. f.width - len)
put(w, ' ');
if (f.precision == f.UNSPECIFIED)
put(w, val);
else
{
size_t printed = 0;
for (; !val.empty && printed < f.precision; val.popFront(), ++printed)
put(w, val.front);
}
}
else
{
size_t printed = void;
// left align
if (f.precision == f.UNSPECIFIED)
{
static if (hasLength!T)
{
printed = val.length;
put(w, val);
}
else
{
printed = 0;
for (; !val.empty; val.popFront(), ++printed)
put(w, val.front);
}
}
else
{
printed = 0;
for (; !val.empty && printed < f.precision; val.popFront(), ++printed)
put(w, val.front);
}
if (f.width > printed)
foreach (i ; 0 .. f.width - printed)
put(w, ' ');
}
}
}
else
{
put(w, f.seqBefore);
if (!val.empty)
{
formatElement(w, val.front, f);
val.popFront();
for (size_t i; !val.empty; val.popFront(), ++i)
{
put(w, f.seqSeparator);