| // Written in the D programming language. |
| |
| /** |
| * Mathematical Special Functions |
| * |
| * The technical term 'Special Functions' includes several families of |
| * transcendental functions, which have important applications in particular |
| * branches of mathematics and physics. |
| * |
| * The gamma and related functions, and the error function are crucial for |
| * mathematical statistics. |
| * The Bessel and related functions arise in problems involving wave propagation |
| * (especially in optics). |
| * Other major categories of special functions include the elliptic integrals |
| * (related to the arc length of an ellipse), and the hypergeometric functions. |
| * |
| * Status: |
| * Many more functions will be added to this module. |
| * The naming convention for the distribution functions (gammaIncomplete, etc) |
| * is not yet finalized and will probably change. |
| * |
| * Macros: |
| * TABLE_SV = <table border="1" cellpadding="4" cellspacing="0"> |
| * <caption>Special Values</caption> |
| * $0</table> |
| * SVH = $(TR $(TH $1) $(TH $2)) |
| * SV = $(TR $(TD $1) $(TD $2)) |
| * |
| * NAN = $(RED NAN) |
| * SUP = <span style="vertical-align:super;font-size:smaller">$0</span> |
| * GAMMA = Γ |
| * THETA = θ |
| * INTEGRAL = ∫ |
| * INTEGRATE = $(BIG ∫<sub>$(SMALL $1)</sub><sup>$2</sup>) |
| * POWER = $1<sup>$2</sup> |
| * SUB = $1<sub>$2</sub> |
| * BIGSUM = $(BIG Σ <sup>$2</sup><sub>$(SMALL $1)</sub>) |
| * CHOOSE = $(BIG () <sup>$(SMALL $1)</sup><sub>$(SMALL $2)</sub> $(BIG )) |
| * PLUSMN = ± |
| * INFIN = ∞ |
| * PLUSMNINF = ±∞ |
| * PI = π |
| * LT = < |
| * GT = > |
| * SQRT = √ |
| * HALF = ½ |
| * |
| * |
| * Copyright: Based on the CEPHES math library, which is |
| * Copyright (C) 1994 Stephen L. Moshier (moshier@world.std.com). |
| * License: $(HTTP www.boost.org/LICENSE_1_0.txt, Boost License 1.0). |
| * Authors: Stephen L. Moshier (original C code). Conversion to D by Don Clugston |
| * Source: $(PHOBOSSRC std/_mathspecial.d) |
| */ |
| module std.mathspecial; |
| import std.internal.math.errorfunction; |
| import std.internal.math.gammafunction; |
| public import std.math; |
| |
| /* *********************************************** |
| * GAMMA AND RELATED FUNCTIONS * |
| * ***********************************************/ |
| |
| pure: |
| nothrow: |
| @safe: |
| @nogc: |
| |
| /** The Gamma function, $(GAMMA)(x) |
| * |
| * $(GAMMA)(x) is a generalisation of the factorial function |
| * to real and complex numbers. |
| * Like x!, $(GAMMA)(x+1) = x * $(GAMMA)(x). |
| * |
| * Mathematically, if z.re > 0 then |
| * $(GAMMA)(z) = $(INTEGRATE 0, $(INFIN)) $(POWER t, z-1)$(POWER e, -t) dt |
| * |
| * $(TABLE_SV |
| * $(SVH x, $(GAMMA)(x) ) |
| * $(SV $(NAN), $(NAN) ) |
| * $(SV $(PLUSMN)0.0, $(PLUSMNINF)) |
| * $(SV integer > 0, (x-1)! ) |
| * $(SV integer < 0, $(NAN) ) |
| * $(SV +$(INFIN), +$(INFIN) ) |
| * $(SV -$(INFIN), $(NAN) ) |
| * ) |
| */ |
| real gamma(real x) |
| { |
| return std.internal.math.gammafunction.gamma(x); |
| } |
| |
| /** Natural logarithm of the gamma function, $(GAMMA)(x) |
| * |
| * Returns the base e (2.718...) logarithm of the absolute |
| * value of the gamma function of the argument. |
| * |
| * For reals, logGamma is equivalent to log(fabs(gamma(x))). |
| * |
| * $(TABLE_SV |
| * $(SVH x, logGamma(x) ) |
| * $(SV $(NAN), $(NAN) ) |
| * $(SV integer <= 0, +$(INFIN) ) |
| * $(SV $(PLUSMNINF), +$(INFIN) ) |
| * ) |
| */ |
| real logGamma(real x) |
| { |
| return std.internal.math.gammafunction.logGamma(x); |
| } |
| |
| /** The sign of $(GAMMA)(x). |
| * |
| * Returns -1 if $(GAMMA)(x) < 0, +1 if $(GAMMA)(x) > 0, |
| * $(NAN) if sign is indeterminate. |
| * |
| * Note that this function can be used in conjunction with logGamma(x) to |
| * evaluate gamma for very large values of x. |
| */ |
| real sgnGamma(real x) |
| { |
| /* Author: Don Clugston. */ |
| if (isNaN(x)) return x; |
| if (x > 0) return 1.0; |
| if (x < -1/real.epsilon) |
| { |
| // Large negatives lose all precision |
| return real.nan; |
| } |
| long n = rndtol(x); |
| if (x == n) |
| { |
| return x == 0 ? copysign(1, x) : real.nan; |
| } |
| return n & 1 ? 1.0 : -1.0; |
| } |
| |
| @safe unittest |
| { |
| assert(sgnGamma(5.0) == 1.0); |
| assert(isNaN(sgnGamma(-3.0))); |
| assert(sgnGamma(-0.1) == -1.0); |
| assert(sgnGamma(-55.1) == 1.0); |
| assert(isNaN(sgnGamma(-real.infinity))); |
| assert(isIdentical(sgnGamma(NaN(0xABC)), NaN(0xABC))); |
| } |
| |
| /** Beta function |
| * |
| * The beta function is defined as |
| * |
| * beta(x, y) = ($(GAMMA)(x) * $(GAMMA)(y)) / $(GAMMA)(x + y) |
| */ |
| real beta(real x, real y) |
| { |
| if ((x+y)> MAXGAMMA) |
| { |
| return exp(logGamma(x) + logGamma(y) - logGamma(x+y)); |
| } else return gamma(x) * gamma(y) / gamma(x+y); |
| } |
| |
| @safe unittest |
| { |
| assert(isIdentical(beta(NaN(0xABC), 4), NaN(0xABC))); |
| assert(isIdentical(beta(2, NaN(0xABC)), NaN(0xABC))); |
| } |
| |
| /** Digamma function |
| * |
| * The digamma function is the logarithmic derivative of the gamma function. |
| * |
| * digamma(x) = d/dx logGamma(x) |
| * |
| * See_Also: $(LREF logmdigamma), $(LREF logmdigammaInverse). |
| */ |
| real digamma(real x) |
| { |
| return std.internal.math.gammafunction.digamma(x); |
| } |
| |
| /** Log Minus Digamma function |
| * |
| * logmdigamma(x) = log(x) - digamma(x) |
| * |
| * See_Also: $(LREF digamma), $(LREF logmdigammaInverse). |
| */ |
| real logmdigamma(real x) |
| { |
| return std.internal.math.gammafunction.logmdigamma(x); |
| } |
| |
| /** Inverse of the Log Minus Digamma function |
| * |
| * Given y, the function finds x such log(x) - digamma(x) = y. |
| * |
| * See_Also: $(LREF logmdigamma), $(LREF digamma). |
| */ |
| real logmdigammaInverse(real x) |
| { |
| return std.internal.math.gammafunction.logmdigammaInverse(x); |
| } |
| |
| /** Incomplete beta integral |
| * |
| * Returns incomplete beta integral of the arguments, evaluated |
| * from zero to x. The regularized incomplete beta function is defined as |
| * |
| * betaIncomplete(a, b, x) = $(GAMMA)(a + b) / ( $(GAMMA)(a) $(GAMMA)(b) ) * |
| * $(INTEGRATE 0, x) $(POWER t, a-1)$(POWER (1-t), b-1) dt |
| * |
| * and is the same as the the cumulative distribution function. |
| * |
| * The domain of definition is 0 <= x <= 1. In this |
| * implementation a and b are restricted to positive values. |
| * The integral from x to 1 may be obtained by the symmetry |
| * relation |
| * |
| * betaIncompleteCompl(a, b, x ) = betaIncomplete( b, a, 1-x ) |
| * |
| * The integral is evaluated by a continued fraction expansion |
| * or, when b * x is small, by a power series. |
| */ |
| real betaIncomplete(real a, real b, real x ) |
| { |
| return std.internal.math.gammafunction.betaIncomplete(a, b, x); |
| } |
| |
| /** Inverse of incomplete beta integral |
| * |
| * Given y, the function finds x such that |
| * |
| * betaIncomplete(a, b, x) == y |
| * |
| * Newton iterations or interval halving is used. |
| */ |
| real betaIncompleteInverse(real a, real b, real y ) |
| { |
| return std.internal.math.gammafunction.betaIncompleteInv(a, b, y); |
| } |
| |
| /** Incomplete gamma integral and its complement |
| * |
| * These functions are defined by |
| * |
| * gammaIncomplete = ( $(INTEGRATE 0, x) $(POWER e, -t) $(POWER t, a-1) dt )/ $(GAMMA)(a) |
| * |
| * gammaIncompleteCompl(a,x) = 1 - gammaIncomplete(a,x) |
| * = ($(INTEGRATE x, $(INFIN)) $(POWER e, -t) $(POWER t, a-1) dt )/ $(GAMMA)(a) |
| * |
| * In this implementation both arguments must be positive. |
| * The integral is evaluated by either a power series or |
| * continued fraction expansion, depending on the relative |
| * values of a and x. |
| */ |
| real gammaIncomplete(real a, real x ) |
| in { |
| assert(x >= 0); |
| assert(a > 0); |
| } |
| body { |
| return std.internal.math.gammafunction.gammaIncomplete(a, x); |
| } |
| |
| /** ditto */ |
| real gammaIncompleteCompl(real a, real x ) |
| in { |
| assert(x >= 0); |
| assert(a > 0); |
| } |
| body { |
| return std.internal.math.gammafunction.gammaIncompleteCompl(a, x); |
| } |
| |
| /** Inverse of complemented incomplete gamma integral |
| * |
| * Given a and p, the function finds x such that |
| * |
| * gammaIncompleteCompl( a, x ) = p. |
| */ |
| real gammaIncompleteComplInverse(real a, real p) |
| in { |
| assert(p >= 0 && p <= 1); |
| assert(a > 0); |
| } |
| body { |
| return std.internal.math.gammafunction.gammaIncompleteComplInv(a, p); |
| } |
| |
| |
| /* *********************************************** |
| * ERROR FUNCTIONS & NORMAL DISTRIBUTION * |
| * ***********************************************/ |
| |
| /** Error function |
| * |
| * The integral is |
| * |
| * erf(x) = 2/ $(SQRT)($(PI)) |
| * $(INTEGRATE 0, x) exp( - $(POWER t, 2)) dt |
| * |
| * The magnitude of x is limited to about 106.56 for IEEE 80-bit |
| * arithmetic; 1 or -1 is returned outside this range. |
| */ |
| real erf(real x) |
| { |
| return std.internal.math.errorfunction.erf(x); |
| } |
| |
| /** Complementary error function |
| * |
| * erfc(x) = 1 - erf(x) |
| * = 2/ $(SQRT)($(PI)) |
| * $(INTEGRATE x, $(INFIN)) exp( - $(POWER t, 2)) dt |
| * |
| * This function has high relative accuracy for |
| * values of x far from zero. (For values near zero, use erf(x)). |
| */ |
| real erfc(real x) |
| { |
| return std.internal.math.errorfunction.erfc(x); |
| } |
| |
| |
| /** Normal distribution function. |
| * |
| * The normal (or Gaussian, or bell-shaped) distribution is |
| * defined as: |
| * |
| * normalDist(x) = 1/$(SQRT)(2$(PI)) $(INTEGRATE -$(INFIN), x) exp( - $(POWER t, 2)/2) dt |
| * = 0.5 + 0.5 * erf(x/sqrt(2)) |
| * = 0.5 * erfc(- x/sqrt(2)) |
| * |
| * To maintain accuracy at values of x near 1.0, use |
| * normalDistribution(x) = 1.0 - normalDistribution(-x). |
| * |
| * References: |
| * $(LINK http://www.netlib.org/cephes/ldoubdoc.html), |
| * G. Marsaglia, "Evaluating the Normal Distribution", |
| * Journal of Statistical Software <b>11</b>, (July 2004). |
| */ |
| real normalDistribution(real x) |
| { |
| return std.internal.math.errorfunction.normalDistributionImpl(x); |
| } |
| |
| /** Inverse of Normal distribution function |
| * |
| * Returns the argument, x, for which the area under the |
| * Normal probability density function (integrated from |
| * minus infinity to x) is equal to p. |
| * |
| * Note: This function is only implemented to 80 bit precision. |
| */ |
| real normalDistributionInverse(real p) |
| in { |
| assert(p >= 0.0L && p <= 1.0L, "Domain error"); |
| } |
| body |
| { |
| return std.internal.math.errorfunction.normalDistributionInvImpl(p); |
| } |