blob: 1fbe0377a66d30430607f0124db305d67f3f2c01 [file] [log] [blame]
------------------------------------------------------------------------------
-- --
-- GNAT COMPILER COMPONENTS --
-- --
-- S E M _ E L A B --
-- --
-- B o d y --
-- --
-- Copyright (C) 1997-2021, Free Software Foundation, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 3, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
-- for more details. You should have received a copy of the GNU General --
-- Public License distributed with GNAT; see file COPYING3. If not, go to --
-- http://www.gnu.org/licenses for a complete copy of the license. --
-- --
-- GNAT was originally developed by the GNAT team at New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc. --
-- --
------------------------------------------------------------------------------
with ALI; use ALI;
with Atree; use Atree;
with Checks; use Checks;
with Debug; use Debug;
with Einfo; use Einfo;
with Einfo.Entities; use Einfo.Entities;
with Einfo.Utils; use Einfo.Utils;
with Elists; use Elists;
with Errout; use Errout;
with Exp_Ch11; use Exp_Ch11;
with Exp_Tss; use Exp_Tss;
with Exp_Util; use Exp_Util;
with Expander; use Expander;
with Lib; use Lib;
with Lib.Load; use Lib.Load;
with Namet; use Namet;
with Nlists; use Nlists;
with Nmake; use Nmake;
with Opt; use Opt;
with Output; use Output;
with Restrict; use Restrict;
with Rident; use Rident;
with Rtsfind; use Rtsfind;
with Sem; use Sem;
with Sem_Aux; use Sem_Aux;
with Sem_Cat; use Sem_Cat;
with Sem_Ch7; use Sem_Ch7;
with Sem_Ch8; use Sem_Ch8;
with Sem_Disp; use Sem_Disp;
with Sem_Prag; use Sem_Prag;
with Sem_Util; use Sem_Util;
with Sinfo; use Sinfo;
with Sinfo.Nodes; use Sinfo.Nodes;
with Sinfo.Utils; use Sinfo.Utils;
with Sinput; use Sinput;
with Snames; use Snames;
with Stand; use Stand;
with Table;
with Tbuild; use Tbuild;
with Uintp; use Uintp;
with Uname; use Uname;
with GNAT; use GNAT;
with GNAT.Dynamic_HTables; use GNAT.Dynamic_HTables;
with GNAT.Lists; use GNAT.Lists;
with GNAT.Sets; use GNAT.Sets;
package body Sem_Elab is
-----------------------------------------
-- Access-before-elaboration mechanism --
-----------------------------------------
-- The access-before-elaboration (ABE) mechanism implemented in this unit
-- has the following objectives:
--
-- * Diagnose at compile time or install run-time checks to prevent ABE
-- access to data and behavior.
--
-- The high-level idea is to accurately diagnose ABE issues within a
-- single unit because the ABE mechanism can inspect the whole unit.
-- As soon as the elaboration graph extends to an external unit, the
-- diagnostics stop because the body of the unit may not be available.
-- Due to control and data flow, the ABE mechanism cannot accurately
-- determine whether a particular scenario will be elaborated or not.
-- Conditional ABE checks are therefore used to verify the elaboration
-- status of local and external targets at run time.
--
-- * Supply implicit elaboration dependencies for a unit to binde
--
-- The ABE mechanism creates implicit dependencies in the form of with
-- clauses subject to pragma Elaborate[_All] when the elaboration graph
-- reaches into an external unit. The implicit dependencies are encoded
-- in the ALI file of the main unit. GNATbind and binde then use these
-- dependencies to augment the library item graph and determine the
-- elaboration order of all units in the compilation.
--
-- * Supply pieces of the invocation graph for a unit to bindo
--
-- The ABE mechanism captures paths starting from elaboration code or
-- top level constructs that reach into an external unit. The paths are
-- encoded in the ALI file of the main unit in the form of declarations
-- which represent nodes, and relations which represent edges. GNATbind
-- and bindo then build the full invocation graph in order to augment
-- the library item graph and determine the elaboration order of all
-- units in the compilation.
--
-- The ABE mechanism supports three models of elaboration:
--
-- * Dynamic model - This is the most permissive of the three models.
-- When the dynamic model is in effect, the mechanism diagnoses and
-- installs run-time checks to detect ABE issues in the main unit.
-- The behavior of this model is identical to that specified by the
-- Ada RM. This model is enabled with switch -gnatE.
--
-- Static model - This is the middle ground of the three models. When
-- the static model is in effect, the mechanism diagnoses and installs
-- run-time checks to detect ABE issues in the main unit. In addition,
-- the mechanism generates implicit dependencies between units in the
-- form of with clauses subject to pragma Elaborate[_All] to ensure
-- the prior elaboration of withed units. This is the default model.
--
-- * SPARK model - This is the most conservative of the three models and
-- implements the semantics defined in SPARK RM 7.7. The SPARK model
-- is in effect only when a context resides in a SPARK_Mode On region,
-- otherwise the mechanism falls back to one of the previous models.
--
-- The ABE mechanism consists of a "recording" phase and a "processing"
-- phase.
-----------------
-- Terminology --
-----------------
-- * ABE - An attempt to invoke a scenario which has not been elaborated
-- yet.
--
-- * Bridge target - A type of target. A bridge target is a link between
-- scenarios. It is usually a byproduct of expansion and does not have
-- any direct ABE ramifications.
--
-- * Call marker - A special node used to indicate the presence of a call
-- in the tree in case expansion transforms or eliminates the original
-- call. N_Call_Marker nodes do not have static and run-time semantics.
--
-- * Conditional ABE - A type of ABE. A conditional ABE occurs when the
-- invocation of a target by a scenario within the main unit causes an
-- ABE, but does not cause an ABE for another scenarios within the main
-- unit.
--
-- * Declaration level - A type of enclosing level. A scenario or target is
-- at the declaration level when it appears within the declarations of a
-- block statement, entry body, subprogram body, or task body, ignoring
-- enclosing packages.
--
-- * Early call region - A section of code which ends at a subprogram body
-- and starts from the nearest non-preelaborable construct which precedes
-- the subprogram body. The early call region extends from a package body
-- to a package spec when the spec carries pragma Elaborate_Body.
--
-- * Generic library level - A type of enclosing level. A scenario or
-- target is at the generic library level if it appears in a generic
-- package library unit, ignoring enclosing packages.
--
-- * Guaranteed ABE - A type of ABE. A guaranteed ABE occurs when the
-- invocation of a target by all scenarios within the main unit causes
-- an ABE.
--
-- * Instantiation library level - A type of enclosing level. A scenario
-- or target is at the instantiation library level if it appears in an
-- instantiation library unit, ignoring enclosing packages.
--
-- * Invocation - The act of activating a task, calling a subprogram, or
-- instantiating a generic.
--
-- * Invocation construct - An entry declaration, [single] protected type,
-- subprogram declaration, subprogram instantiation, or a [single] task
-- type declared in the visible, private, or body declarations of the
-- main unit.
--
-- * Invocation relation - A flow link between two invocation constructs
--
-- * Invocation signature - A set of attributes that uniquely identify an
-- invocation construct within the namespace of all ALI files.
--
-- * Library level - A type of enclosing level. A scenario or target is at
-- the library level if it appears in a package library unit, ignoring
-- enclosing packages.
--
-- * Non-library-level encapsulator - A construct that cannot be elaborated
-- on its own and requires elaboration by a top-level scenario.
--
-- * Scenario - A construct or context which is invoked by elaboration code
-- or invocation construct. The scenarios recognized by the ABE mechanism
-- are as follows:
--
-- - '[Unrestricted_]Access of entries, operators, and subprograms
--
-- - Assignments to variables
--
-- - Calls to entries, operators, and subprograms
--
-- - Derived type declarations
--
-- - Instantiations
--
-- - Pragma Refined_State
--
-- - Reads of variables
--
-- - Task activation
--
-- * Target - A construct invoked by a scenario. The targets recognized by
-- the ABE mechanism are as follows:
--
-- - For '[Unrestricted_]Access of entries, operators, and subprograms,
-- the target is the entry, operator, or subprogram.
--
-- - For assignments to variables, the target is the variable
--
-- - For calls, the target is the entry, operator, or subprogram
--
-- - For derived type declarations, the target is the derived type
--
-- - For instantiations, the target is the generic template
--
-- - For pragma Refined_State, the targets are the constituents
--
-- - For reads of variables, the target is the variable
--
-- - For task activation, the target is the task body
------------------
-- Architecture --
------------------
-- Analysis/Resolution
-- |
-- +- Build_Call_Marker
-- |
-- +- Build_Variable_Reference_Marker
-- |
-- +- | -------------------- Recording phase ---------------------------+
-- | v |
-- | Record_Elaboration_Scenario |
-- | | |
-- | +--> Check_Preelaborated_Call |
-- | | |
-- | +--> Process_Guaranteed_ABE |
-- | | | |
-- | | +--> Process_Guaranteed_ABE_Activation |
-- | | +--> Process_Guaranteed_ABE_Call |
-- | | +--> Process_Guaranteed_ABE_Instantiation |
-- | | |
-- +- | ----------------------------------------------------------------+
-- |
-- |
-- +--> Internal_Representation
-- |
-- +--> Scenario_Storage
-- |
-- End of Compilation
-- |
-- +- | --------------------- Processing phase -------------------------+
-- | v |
-- | Check_Elaboration_Scenarios |
-- | | |
-- | +--> Check_Conditional_ABE_Scenarios |
-- | | | |
-- | | +--> Process_Conditional_ABE <----------------------+ |
-- | | | | |
-- | | +--> Process_Conditional_ABE_Activation | |
-- | | | | | |
-- | | | +-----------------------------+ | |
-- | | | | | |
-- | | +--> Process_Conditional_ABE_Call +---> Traverse_Body |
-- | | | | | |
-- | | | +-----------------------------+ |
-- | | | |
-- | | +--> Process_Conditional_ABE_Access_Taken |
-- | | +--> Process_Conditional_ABE_Instantiation |
-- | | +--> Process_Conditional_ABE_Variable_Assignment |
-- | | +--> Process_Conditional_ABE_Variable_Reference |
-- | | |
-- | +--> Check_SPARK_Scenario |
-- | | | |
-- | | +--> Process_SPARK_Scenario |
-- | | | |
-- | | +--> Process_SPARK_Derived_Type |
-- | | +--> Process_SPARK_Instantiation |
-- | | +--> Process_SPARK_Refined_State_Pragma |
-- | | |
-- | +--> Record_Invocation_Graph |
-- | | |
-- | +--> Process_Invocation_Body_Scenarios |
-- | +--> Process_Invocation_Spec_Scenarios |
-- | +--> Process_Main_Unit |
-- | | |
-- | +--> Process_Invocation_Scenario <-------------+ |
-- | | | |
-- | +--> Process_Invocation_Activation | |
-- | | | | |
-- | | +------------------------+ | |
-- | | | | |
-- | +--> Process_Invocation_Call +---> Traverse_Body |
-- | | | |
-- | +------------------------+ |
-- | |
-- +--------------------------------------------------------------------+
---------------------
-- Recording phase --
---------------------
-- The Recording phase coincides with the analysis/resolution phase of the
-- compiler. It has the following objectives:
--
-- * Record all suitable scenarios for examination by the Processing
-- phase.
--
-- Saving only a certain number of nodes improves the performance of
-- the ABE mechanism. This eliminates the need to examine the whole
-- tree in a separate pass.
--
-- * Record certain SPARK scenarios which are not necessarily invoked
-- during elaboration, but still require elaboration-related checks.
--
-- Saving only a certain number of nodes improves the performance of
-- the ABE mechanism. This eliminates the need to examine the whole
-- tree in a separate pass.
--
-- * Detect and diagnose calls in preelaborable or pure units, including
-- generic bodies.
--
-- This diagnostic is carried out during the Recording phase because it
-- does not need the heavy recursive traversal done by the Processing
-- phase.
--
-- * Detect and diagnose guaranteed ABEs caused by instantiations, calls,
-- and task activation.
--
-- The issues detected by the ABE mechanism are reported as warnings
-- because they do not violate Ada semantics. Forward instantiations
-- may thus reach gigi, however gigi cannot handle certain kinds of
-- premature instantiations and may crash. To avoid this limitation,
-- the ABE mechanism must identify forward instantiations as early as
-- possible and suppress their bodies. Calls and task activations are
-- included in this category for completeness.
----------------------
-- Processing phase --
----------------------
-- The Processing phase is a separate pass which starts after instantiating
-- and/or inlining of bodies, but before the removal of Ghost code. It has
-- the following objectives:
--
-- * Examine all scenarios saved during the Recording phase, and perform
-- the following actions:
--
-- - Dynamic model
--
-- Diagnose conditional ABEs, and install run-time conditional ABE
-- checks for all scenarios.
--
-- - SPARK model
--
-- Enforce the SPARK elaboration rules
--
-- - Static model
--
-- Diagnose conditional ABEs, install run-time conditional ABE
-- checks only for scenarios are reachable from elaboration code,
-- and guarantee the elaboration of external units by creating
-- implicit with clauses subject to pragma Elaborate[_All].
--
-- * Examine library-level scenarios and invocation constructs, and
-- perform the following actions:
--
-- - Determine whether the flow of execution reaches into an external
-- unit. If this is the case, encode the path in the ALI file of
-- the main unit.
--
-- - Create declarations for invocation constructs in the ALI file of
-- the main unit.
----------------------
-- Important points --
----------------------
-- The Processing phase starts after the analysis, resolution, expansion
-- phase has completed. As a result, no current semantic information is
-- available. The scope stack is empty, global flags such as In_Instance
-- or Inside_A_Generic become useless. To remedy this, the ABE mechanism
-- must either save or recompute semantic information.
--
-- Expansion heavily transforms calls and to some extent instantiations. To
-- remedy this, the ABE mechanism generates N_Call_Marker nodes in order to
-- capture the target and relevant attributes of the original call.
--
-- The diagnostics of the ABE mechanism depend on accurate source locations
-- to determine the spatial relation of nodes.
-----------------------------------------
-- Suppression of elaboration warnings --
-----------------------------------------
-- Elaboration warnings along multiple traversal paths rooted at a scenario
-- are suppressed when the scenario has elaboration warnings suppressed.
--
-- Root scenario
-- |
-- +-- Child scenario 1
-- | |
-- | +-- Grandchild scenario 1
-- | |
-- | +-- Grandchild scenario N
-- |
-- +-- Child scenario N
--
-- If the root scenario has elaboration warnings suppressed, then all its
-- child, grandchild, etc. scenarios will have their elaboration warnings
-- suppressed.
--
-- In addition to switch -gnatwL, pragma Warnings may be used to suppress
-- elaboration-related warnings when used in the following manner:
--
-- pragma Warnings ("L");
-- <scenario-or-target>
--
-- <target>
-- pragma Warnings (Off, target);
--
-- pragma Warnings (Off);
-- <scenario-or-target>
--
-- * To suppress elaboration warnings for '[Unrestricted_]Access of
-- entries, operators, and subprograms, either:
--
-- - Suppress the entry, operator, or subprogram, or
-- - Suppress the attribute, or
-- - Use switch -gnatw.f
--
-- * To suppress elaboration warnings for calls to entries, operators,
-- and subprograms, either:
--
-- - Suppress the entry, operator, or subprogram, or
-- - Suppress the call
--
-- * To suppress elaboration warnings for instantiations, suppress the
-- instantiation.
--
-- * To suppress elaboration warnings for task activations, either:
--
-- - Suppress the task object, or
-- - Suppress the task type, or
-- - Suppress the activation call
--------------
-- Switches --
--------------
-- The following switches may be used to control the behavior of the ABE
-- mechanism.
--
-- -gnatd_a stop elaboration checks on accept or select statement
--
-- The ABE mechanism stops the traversal of a task body when it
-- encounters an accept or a select statement. This behavior is
-- equivalent to restriction No_Entry_Calls_In_Elaboration_Code,
-- but without penalizing actual entry calls during elaboration.
--
-- -gnatd_e ignore entry calls and requeue statements for elaboration
--
-- The ABE mechanism does not generate N_Call_Marker nodes for
-- protected or task entry calls as well as requeue statements.
-- As a result, the calls and requeues are not recorded or
-- processed.
--
-- -gnatdE elaboration checks on predefined units
--
-- The ABE mechanism considers scenarios which appear in internal
-- units (Ada, GNAT, Interfaces, System).
--
-- -gnatd_F encode full invocation paths in ALI files
--
-- The ABE mechanism encodes the full path from an elaboration
-- procedure or invocable construct to an external target. The
-- path contains all intermediate activations, instantiations,
-- and calls.
--
-- -gnatd.G ignore calls through generic formal parameters for elaboration
--
-- The ABE mechanism does not generate N_Call_Marker nodes for
-- calls which occur in expanded instances, and invoke generic
-- actual subprograms through generic formal subprograms. As a
-- result, the calls are not recorded or processed.
--
-- -gnatd_i ignore activations and calls to instances for elaboration
--
-- The ABE mechanism ignores calls and task activations when they
-- target a subprogram or task type defined an external instance.
-- As a result, the calls and task activations are not processed.
--
-- -gnatdL ignore external calls from instances for elaboration
--
-- The ABE mechanism does not generate N_Call_Marker nodes for
-- calls which occur in expanded instances, do not invoke generic
-- actual subprograms through formal subprograms, and the target
-- is external to the instance. As a result, the calls are not
-- recorded or processed.
--
-- -gnatd.o conservative elaboration order for indirect calls
--
-- The ABE mechanism treats '[Unrestricted_]Access of an entry,
-- operator, or subprogram as an immediate invocation of the
-- target. As a result, it performs ABE checks and diagnostics on
-- the immediate call.
--
-- -gnatd_p ignore assertion pragmas for elaboration
--
-- The ABE mechanism does not generate N_Call_Marker nodes for
-- calls to subprograms which verify the run-time semantics of
-- the following assertion pragmas:
--
-- Default_Initial_Condition
-- Initial_Condition
-- Invariant
-- Invariant'Class
-- Post
-- Post'Class
-- Postcondition
-- Type_Invariant
-- Type_Invariant_Class
--
-- As a result, the assertion expressions of the pragmas are not
-- processed.
--
-- -gnatd_s stop elaboration checks on synchronous suspension
--
-- The ABE mechanism stops the traversal of a task body when it
-- encounters a call to one of the following routines:
--
-- Ada.Synchronous_Barriers.Wait_For_Release
-- Ada.Synchronous_Task_Control.Suspend_Until_True
--
-- -gnatd_T output trace information on invocation relation construction
--
-- The ABE mechanism outputs text information concerning relation
-- construction to standard output.
--
-- -gnatd.U ignore indirect calls for static elaboration
--
-- The ABE mechanism does not consider '[Unrestricted_]Access of
-- entries, operators, and subprograms. As a result, the scenarios
-- are not recorder or processed.
--
-- -gnatd.v enforce SPARK elaboration rules in SPARK code
--
-- The ABE mechanism applies some of the SPARK elaboration rules
-- defined in the SPARK reference manual, chapter 7.7. Note that
-- certain rules are always enforced, regardless of whether the
-- switch is active.
--
-- -gnatd.y disable implicit pragma Elaborate_All on task bodies
--
-- The ABE mechanism does not generate implicit Elaborate_All when
-- the need for the pragma came from a task body.
--
-- -gnatE dynamic elaboration checking mode enabled
--
-- The ABE mechanism assumes that any scenario is elaborated or
-- invoked by elaboration code. The ABE mechanism performs very
-- little diagnostics and generates condintional ABE checks to
-- detect ABE issues at run-time.
--
-- -gnatel turn on info messages on generated Elaborate[_All] pragmas
--
-- The ABE mechanism produces information messages on generated
-- implicit Elabote[_All] pragmas along with traceback showing
-- why the pragma was generated. In addition, the ABE mechanism
-- produces information messages for each scenario elaborated or
-- invoked by elaboration code.
--
-- -gnateL turn off info messages on generated Elaborate[_All] pragmas
--
-- The complementary switch for -gnatel.
--
-- -gnatH legacy elaboration checking mode enabled
--
-- When this switch is in effect, the pre-18.x ABE model becomes
-- the de facto ABE model. This amounts to cutting off all entry
-- points into the new ABE mechanism, and giving full control to
-- the old ABE mechanism.
--
-- -gnatJ permissive elaboration checking mode enabled
--
-- This switch activates the following switches:
--
-- -gnatd_a
-- -gnatd_e
-- -gnatd.G
-- -gnatd_i
-- -gnatdL
-- -gnatd_p
-- -gnatd_s
-- -gnatd.U
-- -gnatd.y
--
-- IMPORTANT: The behavior of the ABE mechanism becomes more
-- permissive at the cost of accurate diagnostics and runtime
-- ABE checks.
--
-- -gnatw.f turn on warnings for suspicious Subp'Access
--
-- The ABE mechanism treats '[Unrestricted_]Access of an entry,
-- operator, or subprogram as a pseudo invocation of the target.
-- As a result, it performs ABE diagnostics on the pseudo call.
--
-- -gnatw.F turn off warnings for suspicious Subp'Access
--
-- The complementary switch for -gnatw.f.
--
-- -gnatwl turn on warnings for elaboration problems
--
-- The ABE mechanism produces warnings on detected ABEs along with
-- a traceback showing the graph of the ABE.
--
-- -gnatwL turn off warnings for elaboration problems
--
-- The complementary switch for -gnatwl.
--------------------------
-- Debugging ABE issues --
--------------------------
-- * If the issue involves a call, ensure that the call is eligible for ABE
-- processing and receives a corresponding call marker. The routines of
-- interest are
--
-- Build_Call_Marker
-- Record_Elaboration_Scenario
--
-- * If the issue involves an arbitrary scenario, ensure that the scenario
-- is either recorded, or is successfully recognized while traversing a
-- body. The routines of interest are
--
-- Record_Elaboration_Scenario
-- Process_Conditional_ABE
-- Process_Guaranteed_ABE
-- Traverse_Body
--
-- * If the issue involves a circularity in the elaboration order, examine
-- the ALI files and look for the following encodings next to units:
--
-- E indicates a source Elaborate
--
-- EA indicates a source Elaborate_All
--
-- AD indicates an implicit Elaborate_All
--
-- ED indicates an implicit Elaborate
--
-- If possible, compare these encodings with those generated by the old
-- ABE mechanism. The routines of interest are
--
-- Ensure_Prior_Elaboration
-----------
-- Kinds --
-----------
-- The following type enumerates all possible elaboration phase statutes
type Elaboration_Phase_Status is
(Inactive,
-- The elaboration phase of the compiler has not started yet
Active,
-- The elaboration phase of the compiler is currently in progress
Completed);
-- The elaboration phase of the compiler has finished
Elaboration_Phase : Elaboration_Phase_Status := Inactive;
-- The status of the elaboration phase. Use routine Set_Elaboration_Phase
-- to alter its value.
-- The following type enumerates all subprogram body traversal modes
type Body_Traversal_Kind is
(Deep_Traversal,
-- The traversal examines the internals of a subprogram
No_Traversal);
-- The following type enumerates all operation modes
type Processing_Kind is
(Conditional_ABE_Processing,
-- The ABE mechanism detects and diagnoses conditional ABEs for library
-- and declaration-level scenarios.
Dynamic_Model_Processing,
-- The ABE mechanism installs conditional ABE checks for all eligible
-- scenarios when the dynamic model is in effect.
Guaranteed_ABE_Processing,
-- The ABE mechanism detects and diagnoses guaranteed ABEs caused by
-- calls, instantiations, and task activations.
Invocation_Construct_Processing,
-- The ABE mechanism locates all invocation constructs within the main
-- unit and utilizes them as roots of miltiple DFS traversals aimed at
-- detecting transitions from the main unit to an external unit.
Invocation_Body_Processing,
-- The ABE mechanism utilizes all library-level body scenarios as roots
-- of miltiple DFS traversals aimed at detecting transitions from the
-- main unit to an external unit.
Invocation_Spec_Processing,
-- The ABE mechanism utilizes all library-level spec scenarios as roots
-- of miltiple DFS traversals aimed at detecting transitions from the
-- main unit to an external unit.
SPARK_Processing,
-- The ABE mechanism detects and diagnoses violations of the SPARK
-- elaboration rules for SPARK-specific scenarios.
No_Processing);
-- The following type enumerates all possible scenario kinds
type Scenario_Kind is
(Access_Taken_Scenario,
-- An attribute reference which takes 'Access or 'Unrestricted_Access of
-- an entry, operator, or subprogram.
Call_Scenario,
-- A call which invokes an entry, operator, or subprogram
Derived_Type_Scenario,
-- A declaration of a derived type. This is a SPARK-specific scenario.
Instantiation_Scenario,
-- An instantiation which instantiates a generic package or subprogram.
-- This scenario is also subject to SPARK-specific rules.
Refined_State_Pragma_Scenario,
-- A Refined_State pragma. This is a SPARK-specific scenario.
Task_Activation_Scenario,
-- A call which activates objects of various task types
Variable_Assignment_Scenario,
-- An assignment statement which modifies the value of some variable
Variable_Reference_Scenario,
-- A reference to a variable. This is a SPARK-specific scenario.
No_Scenario);
-- The following type enumerates all possible consistency models of target
-- and scenario representations.
type Representation_Kind is
(Inconsistent_Representation,
-- A representation is said to be "inconsistent" when it is created from
-- a partially analyzed tree. In such an environment, certain attributes
-- such as a completing body may not be available yet.
Consistent_Representation,
-- A representation is said to be "consistent" when it is created from a
-- fully analyzed tree, where all attributes are available.
No_Representation);
-- The following type enumerates all possible target kinds
type Target_Kind is
(Generic_Target,
-- A generic unit being instantiated
Package_Target,
-- The package form of an instantiation
Subprogram_Target,
-- An entry, operator, or subprogram being invoked, or aliased through
-- 'Access or 'Unrestricted_Access.
Task_Target,
-- A task being activated by an activation call
Variable_Target,
-- A variable being updated through an assignment statement, or read
-- through a variable reference.
No_Target);
-----------
-- Types --
-----------
procedure Destroy (NE : in out Node_Or_Entity_Id);
pragma Inline (Destroy);
-- Destroy node or entity NE
function Hash (NE : Node_Or_Entity_Id) return Bucket_Range_Type;
pragma Inline (Hash);
-- Obtain the hash value of key NE
-- The following is a general purpose list for nodes and entities
package NE_List is new Doubly_Linked_Lists
(Element_Type => Node_Or_Entity_Id,
"=" => "=",
Destroy_Element => Destroy);
-- The following is a general purpose map which relates nodes and entities
-- to lists of nodes and entities.
package NE_List_Map is new Dynamic_Hash_Tables
(Key_Type => Node_Or_Entity_Id,
Value_Type => NE_List.Doubly_Linked_List,
No_Value => NE_List.Nil,
Expansion_Threshold => 1.5,
Expansion_Factor => 2,
Compression_Threshold => 0.3,
Compression_Factor => 2,
"=" => "=",
Destroy_Value => NE_List.Destroy,
Hash => Hash);
-- The following is a general purpose membership set for nodes and entities
package NE_Set is new Membership_Sets
(Element_Type => Node_Or_Entity_Id,
"=" => "=",
Hash => Hash);
-- The following type captures relevant attributes which pertain to the
-- in state of the Processing phase.
type Processing_In_State is record
Processing : Processing_Kind := No_Processing;
-- Operation mode of the Processing phase. Once set, this value should
-- not be changed.
Representation : Representation_Kind := No_Representation;
-- Required level of scenario and target representation. Once set, this
-- value should not be changed.
Suppress_Checks : Boolean := False;
-- This flag is set when the Processing phase must not generate any ABE
-- checks.
Suppress_Implicit_Pragmas : Boolean := False;
-- This flag is set when the Processing phase must not generate any
-- implicit Elaborate[_All] pragmas.
Suppress_Info_Messages : Boolean := False;
-- This flag is set when the Processing phase must not emit any info
-- messages.
Suppress_Up_Level_Targets : Boolean := False;
-- This flag is set when the Processing phase must ignore up-level
-- targets.
Suppress_Warnings : Boolean := False;
-- This flag is set when the Processing phase must not emit any warnings
-- on elaboration problems.
Traversal : Body_Traversal_Kind := No_Traversal;
-- The subprogram body traversal mode. Once set, this value should not
-- be changed.
Within_Generic : Boolean := False;
-- This flag is set when the Processing phase is currently within a
-- generic unit.
Within_Initial_Condition : Boolean := False;
-- This flag is set when the Processing phase is currently examining a
-- scenario which was reached from an initial condition procedure.
Within_Partial_Finalization : Boolean := False;
-- This flag is set when the Processing phase is currently examining a
-- scenario which was reached from a partial finalization procedure.
Within_Task_Body : Boolean := False;
-- This flag is set when the Processing phase is currently examining a
-- scenario which was reached from a task body.
end record;
-- The following constants define the various operational states of the
-- Processing phase.
-- The conditional ABE state is used when processing scenarios that appear
-- at the declaration, instantiation, and library levels to detect errors
-- and install conditional ABE checks.
Conditional_ABE_State : constant Processing_In_State :=
(Processing => Conditional_ABE_Processing,
Representation => Consistent_Representation,
Traversal => Deep_Traversal,
others => False);
-- The dynamic model state is used to install conditional ABE checks when
-- switch -gnatE (dynamic elaboration checking mode enabled) is in effect.
Dynamic_Model_State : constant Processing_In_State :=
(Processing => Dynamic_Model_Processing,
Representation => Consistent_Representation,
Suppress_Implicit_Pragmas => True,
Suppress_Info_Messages => True,
Suppress_Up_Level_Targets => True,
Suppress_Warnings => True,
Traversal => No_Traversal,
others => False);
-- The guaranteed ABE state is used when processing scenarios that appear
-- at the declaration, instantiation, and library levels to detect errors
-- and install guarateed ABE failures.
Guaranteed_ABE_State : constant Processing_In_State :=
(Processing => Guaranteed_ABE_Processing,
Representation => Inconsistent_Representation,
Suppress_Implicit_Pragmas => True,
Traversal => No_Traversal,
others => False);
-- The invocation body state is used when processing scenarios that appear
-- at the body library level to encode paths that start from elaboration
-- code and ultimately reach into external units.
Invocation_Body_State : constant Processing_In_State :=
(Processing => Invocation_Body_Processing,
Representation => Consistent_Representation,
Suppress_Checks => True,
Suppress_Implicit_Pragmas => True,
Suppress_Info_Messages => True,
Suppress_Up_Level_Targets => True,
Suppress_Warnings => True,
Traversal => Deep_Traversal,
others => False);
-- The invocation construct state is used when processing constructs that
-- appear within the spec and body of the main unit and eventually reach
-- into external units.
Invocation_Construct_State : constant Processing_In_State :=
(Processing => Invocation_Construct_Processing,
Representation => Consistent_Representation,
Suppress_Checks => True,
Suppress_Implicit_Pragmas => True,
Suppress_Info_Messages => True,
Suppress_Up_Level_Targets => True,
Suppress_Warnings => True,
Traversal => Deep_Traversal,
others => False);
-- The invocation spec state is used when processing scenarios that appear
-- at the spec library level to encode paths that start from elaboration
-- code and ultimately reach into external units.
Invocation_Spec_State : constant Processing_In_State :=
(Processing => Invocation_Spec_Processing,
Representation => Consistent_Representation,
Suppress_Checks => True,
Suppress_Implicit_Pragmas => True,
Suppress_Info_Messages => True,
Suppress_Up_Level_Targets => True,
Suppress_Warnings => True,
Traversal => Deep_Traversal,
others => False);
-- The SPARK state is used when verying SPARK-specific semantics of certain
-- scenarios.
SPARK_State : constant Processing_In_State :=
(Processing => SPARK_Processing,
Representation => Consistent_Representation,
Traversal => No_Traversal,
others => False);
-- The following type identifies a scenario representation
type Scenario_Rep_Id is new Natural;
No_Scenario_Rep : constant Scenario_Rep_Id := Scenario_Rep_Id'First;
First_Scenario_Rep : constant Scenario_Rep_Id := No_Scenario_Rep + 1;
-- The following type identifies a target representation
type Target_Rep_Id is new Natural;
No_Target_Rep : constant Target_Rep_Id := Target_Rep_Id'First;
First_Target_Rep : constant Target_Rep_Id := No_Target_Rep + 1;
--------------
-- Services --
--------------
-- The following package keeps track of all active scenarios during a DFS
-- traversal.
package Active_Scenarios is
-----------
-- Types --
-----------
-- The following type defines the position within the active scenario
-- stack.
type Active_Scenario_Pos is new Natural;
---------------------
-- Data structures --
---------------------
-- The following table stores all active scenarios in a DFS traversal.
-- This table must be maintained in a FIFO fashion.
package Active_Scenario_Stack is new Table.Table
(Table_Index_Type => Active_Scenario_Pos,
Table_Component_Type => Node_Id,
Table_Low_Bound => 1,
Table_Initial => 50,
Table_Increment => 200,
Table_Name => "Active_Scenario_Stack");
---------
-- API --
---------
procedure Output_Active_Scenarios
(Error_Nod : Node_Id;
In_State : Processing_In_State);
pragma Inline (Output_Active_Scenarios);
-- Output the contents of the active scenario stack from earliest to
-- latest to supplement an earlier error emitted for node Error_Nod.
-- In_State denotes the current state of the Processing phase.
procedure Pop_Active_Scenario (N : Node_Id);
pragma Inline (Pop_Active_Scenario);
-- Pop the top of the scenario stack. A check is made to ensure that the
-- scenario being removed is the same as N.
procedure Push_Active_Scenario (N : Node_Id);
pragma Inline (Push_Active_Scenario);
-- Push scenario N on top of the scenario stack
function Root_Scenario return Node_Id;
pragma Inline (Root_Scenario);
-- Return the scenario which started a DFS traversal
end Active_Scenarios;
use Active_Scenarios;
-- The following package provides the main entry point for task activation
-- processing.
package Activation_Processor is
-----------
-- Types --
-----------
type Activation_Processor_Ptr is access procedure
(Call : Node_Id;
Call_Rep : Scenario_Rep_Id;
Obj_Id : Entity_Id;
Obj_Rep : Target_Rep_Id;
Task_Typ : Entity_Id;
Task_Rep : Target_Rep_Id;
In_State : Processing_In_State);
-- Reference to a procedure that takes all attributes of an activation
-- and performs a desired action. Call is the activation call. Call_Rep
-- is the representation of the call. Obj_Id is the task object being
-- activated. Obj_Rep is the representation of the object. Task_Typ is
-- the task type whose body is being activated. Task_Rep denotes the
-- representation of the task type. In_State is the current state of
-- the Processing phase.
---------
-- API --
---------
procedure Process_Activation
(Call : Node_Id;
Call_Rep : Scenario_Rep_Id;
Processor : Activation_Processor_Ptr;
In_State : Processing_In_State);
-- Find all task objects activated by activation call Call and invoke
-- Processor on them. Call_Rep denotes the representation of the call.
-- In_State is the current state of the Processing phase.
end Activation_Processor;
use Activation_Processor;
-- The following package profides functionality for traversing subprogram
-- bodies in DFS manner and processing of eligible scenarios within.
package Body_Processor is
-----------
-- Types --
-----------
type Scenario_Predicate_Ptr is access function
(N : Node_Id) return Boolean;
-- Reference to a function which determines whether arbitrary node N
-- denotes a suitable scenario for processing.
type Scenario_Processor_Ptr is access procedure
(N : Node_Id; In_State : Processing_In_State);
-- Reference to a procedure which processes scenario N. In_State is the
-- current state of the Processing phase.
---------
-- API --
---------
procedure Traverse_Body
(N : Node_Id;
Requires_Processing : Scenario_Predicate_Ptr;
Processor : Scenario_Processor_Ptr;
In_State : Processing_In_State);
pragma Inline (Traverse_Body);
-- Traverse the declarations and handled statements of subprogram body
-- N, looking for scenarios that satisfy predicate Requires_Processing.
-- Routine Processor is invoked for each such scenario.
procedure Reset_Traversed_Bodies;
pragma Inline (Reset_Traversed_Bodies);
-- Reset the visited status of all subprogram bodies that have already
-- been processed by routine Traverse_Body.
-----------------
-- Maintenance --
-----------------
procedure Finalize_Body_Processor;
pragma Inline (Finalize_Body_Processor);
-- Finalize all internal data structures
procedure Initialize_Body_Processor;
pragma Inline (Initialize_Body_Processor);
-- Initialize all internal data structures
end Body_Processor;
use Body_Processor;
-- The following package provides functionality for installing ABE-related
-- checks and failures.
package Check_Installer is
---------
-- API --
---------
function Check_Or_Failure_Generation_OK return Boolean;
pragma Inline (Check_Or_Failure_Generation_OK);
-- Determine whether a conditional ABE check or guaranteed ABE failure
-- can be generated.
procedure Install_Dynamic_ABE_Checks;
pragma Inline (Install_Dynamic_ABE_Checks);
-- Install conditional ABE checks for all saved scenarios when the
-- dynamic model is in effect.
procedure Install_Scenario_ABE_Check
(N : Node_Id;
Targ_Id : Entity_Id;
Targ_Rep : Target_Rep_Id;
Disable : Scenario_Rep_Id);
pragma Inline (Install_Scenario_ABE_Check);
-- Install a conditional ABE check for scenario N to ensure that target
-- Targ_Id is properly elaborated. Targ_Rep is the representation of the
-- target. If the check is installed, disable the elaboration checks of
-- scenario Disable.
procedure Install_Scenario_ABE_Check
(N : Node_Id;
Targ_Id : Entity_Id;
Targ_Rep : Target_Rep_Id;
Disable : Target_Rep_Id);
pragma Inline (Install_Scenario_ABE_Check);
-- Install a conditional ABE check for scenario N to ensure that target
-- Targ_Id is properly elaborated. Targ_Rep is the representation of the
-- target. If the check is installed, disable the elaboration checks of
-- target Disable.
procedure Install_Scenario_ABE_Failure
(N : Node_Id;
Targ_Id : Entity_Id;
Targ_Rep : Target_Rep_Id;
Disable : Scenario_Rep_Id);
pragma Inline (Install_Scenario_ABE_Failure);
-- Install a guaranteed ABE failure for scenario N with target Targ_Id.
-- Targ_Rep denotes the representation of the target. If the failure is
-- installed, disable the elaboration checks of scenario Disable.
procedure Install_Scenario_ABE_Failure
(N : Node_Id;
Targ_Id : Entity_Id;
Targ_Rep : Target_Rep_Id;
Disable : Target_Rep_Id);
pragma Inline (Install_Scenario_ABE_Failure);
-- Install a guaranteed ABE failure for scenario N with target Targ_Id.
-- Targ_Rep denotes the representation of the target. If the failure is
-- installed, disable the elaboration checks of target Disable.
procedure Install_Unit_ABE_Check
(N : Node_Id;
Unit_Id : Entity_Id;
Disable : Scenario_Rep_Id);
pragma Inline (Install_Unit_ABE_Check);
-- Install a conditional ABE check for scenario N to ensure that unit
-- Unit_Id is properly elaborated. If the check is installed, disable
-- the elaboration checks of scenario Disable.
procedure Install_Unit_ABE_Check
(N : Node_Id;
Unit_Id : Entity_Id;
Disable : Target_Rep_Id);
pragma Inline (Install_Unit_ABE_Check);
-- Install a conditional ABE check for scenario N to ensure that unit
-- Unit_Id is properly elaborated. If the check is installed, disable
-- the elaboration checks of target Disable.
end Check_Installer;
use Check_Installer;
-- The following package provides the main entry point for conditional ABE
-- checks and diagnostics.
package Conditional_ABE_Processor is
---------
-- API --
---------
procedure Check_Conditional_ABE_Scenarios
(Iter : in out NE_Set.Iterator);
pragma Inline (Check_Conditional_ABE_Scenarios);
-- Perform conditional ABE checks and diagnostics for all scenarios
-- available through iterator Iter.
procedure Process_Conditional_ABE
(N : Node_Id;
In_State : Processing_In_State);
pragma Inline (Process_Conditional_ABE);
-- Perform conditional ABE checks and diagnostics for scenario N.
-- In_State denotes the current state of the Processing phase.
end Conditional_ABE_Processor;
use Conditional_ABE_Processor;
-- The following package provides functionality to emit errors, information
-- messages, and warnings.
package Diagnostics is
---------
-- API --
---------
procedure Elab_Msg_NE
(Msg : String;
N : Node_Id;
Id : Entity_Id;
Info_Msg : Boolean;
In_SPARK : Boolean);
pragma Inline (Elab_Msg_NE);
-- Wrapper around Error_Msg_NE. Emit message Msg concerning arbitrary
-- node N and entity. If flag Info_Msg is set, the routine emits an
-- information message, otherwise it emits an error. If flag In_SPARK
-- is set, then string " in SPARK" is added to the end of the message.
procedure Info_Call
(Call : Node_Id;
Subp_Id : Entity_Id;
Info_Msg : Boolean;
In_SPARK : Boolean);
pragma Inline (Info_Call);
-- Output information concerning call Call that invokes subprogram
-- Subp_Id. When flag Info_Msg is set, the routine emits an information
-- message, otherwise it emits an error. When flag In_SPARK is set, " in
-- SPARK" is added to the end of the message.
procedure Info_Instantiation
(Inst : Node_Id;
Gen_Id : Entity_Id;
Info_Msg : Boolean;
In_SPARK : Boolean);
pragma Inline (Info_Instantiation);
-- Output information concerning instantiation Inst which instantiates
-- generic unit Gen_Id. If flag Info_Msg is set, the routine emits an
-- information message, otherwise it emits an error. If flag In_SPARK
-- is set, then string " in SPARK" is added to the end of the message.
procedure Info_Variable_Reference
(Ref : Node_Id;
Var_Id : Entity_Id);
pragma Inline (Info_Variable_Reference);
-- Output information concerning reference Ref which mentions variable
-- Var_Id. The routine emits an error suffixed with " in SPARK".
end Diagnostics;
use Diagnostics;
-- The following package provides functionality to locate the early call
-- region of a subprogram body.
package Early_Call_Region_Processor is
---------
-- API --
---------
function Find_Early_Call_Region
(Body_Decl : Node_Id;
Assume_Elab_Body : Boolean := False;
Skip_Memoization : Boolean := False) return Node_Id;
pragma Inline (Find_Early_Call_Region);
-- Find the start of the early call region that belongs to subprogram
-- body Body_Decl as defined in SPARK RM 7.7. This routine finds the
-- early call region, memoizes it, and returns it, but this behavior
-- can be altered. Flag Assume_Elab_Body should be set when a package
-- spec may lack pragma Elaborate_Body, but the routine must still
-- examine that spec. Flag Skip_Memoization should be set when the
-- routine must avoid memoizing the region.
-----------------
-- Maintenance --
-----------------
procedure Finalize_Early_Call_Region_Processor;
pragma Inline (Finalize_Early_Call_Region_Processor);
-- Finalize all internal data structures
procedure Initialize_Early_Call_Region_Processor;
pragma Inline (Initialize_Early_Call_Region_Processor);
-- Initialize all internal data structures
end Early_Call_Region_Processor;
use Early_Call_Region_Processor;
-- The following package provides access to the elaboration statuses of all
-- units withed by the main unit.
package Elaborated_Units is
---------
-- API --
---------
procedure Collect_Elaborated_Units;
pragma Inline (Collect_Elaborated_Units);
-- Save the elaboration statuses of all units withed by the main unit
procedure Ensure_Prior_Elaboration
(N : Node_Id;
Unit_Id : Entity_Id;
Prag_Nam : Name_Id;
In_State : Processing_In_State);
pragma Inline (Ensure_Prior_Elaboration);
-- Guarantee the elaboration of unit Unit_Id with respect to the main
-- unit by either suggesting or installing an Elaborate[_All] pragma
-- denoted by Prag_Nam. N denotes the related scenario. In_State is the
-- current state of the Processing phase.
function Has_Prior_Elaboration
(Unit_Id : Entity_Id;
Context_OK : Boolean := False;
Elab_Body_OK : Boolean := False;
Same_Unit_OK : Boolean := False) return Boolean;
pragma Inline (Has_Prior_Elaboration);
-- Determine whether unit Unit_Id is elaborated prior to the main unit.
-- If flag Context_OK is set, the routine considers the following case
-- as valid prior elaboration:
--
-- * Unit_Id is in the elaboration context of the main unit
--
-- If flag Elab_Body_OK is set, the routine considers the following case
-- as valid prior elaboration:
--
-- * Unit_Id has pragma Elaborate_Body and is not the main unit
--
-- If flag Same_Unit_OK is set, the routine considers the following
-- cases as valid prior elaboration:
--
-- * Unit_Id is the main unit
--
-- * Unit_Id denotes the spec of the main unit body
procedure Meet_Elaboration_Requirement
(N : Node_Id;
Targ_Id : Entity_Id;
Req_Nam : Name_Id;
In_State : Processing_In_State);
pragma Inline (Meet_Elaboration_Requirement);
-- Determine whether elaboration requirement Req_Nam for scenario N with
-- target Targ_Id is met by the context of the main unit using the SPARK
-- rules. Req_Nam must denote either Elaborate or Elaborate_All. Emit an
-- error if this is not the case. In_State denotes the current state of
-- the Processing phase.
-----------------
-- Maintenance --
-----------------
procedure Finalize_Elaborated_Units;
pragma Inline (Finalize_Elaborated_Units);
-- Finalize all internal data structures
procedure Initialize_Elaborated_Units;
pragma Inline (Initialize_Elaborated_Units);
-- Initialize all internal data structures
end Elaborated_Units;
use Elaborated_Units;
-- The following package provides the main entry point for guaranteed ABE
-- checks and diagnostics.
package Guaranteed_ABE_Processor is
---------
-- API --
---------
procedure Process_Guaranteed_ABE
(N : Node_Id;
In_State : Processing_In_State);
pragma Inline (Process_Guaranteed_ABE);
-- Perform guaranteed ABE checks and diagnostics for scenario N.
-- In_State is the current state of the Processing phase.
end Guaranteed_ABE_Processor;
use Guaranteed_ABE_Processor;
-- The following package provides access to the internal representation of
-- scenarios and targets.
package Internal_Representation is
-----------
-- Types --
-----------
-- The following type enumerates all possible Ghost mode kinds
type Extended_Ghost_Mode is
(Is_Ignored,
Is_Checked_Or_Not_Specified);
-- The following type enumerates all possible SPARK mode kinds
type Extended_SPARK_Mode is
(Is_On,
Is_Off_Or_Not_Specified);
--------------
-- Builders --
--------------
function Scenario_Representation_Of
(N : Node_Id;
In_State : Processing_In_State) return Scenario_Rep_Id;
pragma Inline (Scenario_Representation_Of);
-- Obtain the id of elaboration scenario N's representation. The routine
-- constructs the representation if it is not available. In_State is the
-- current state of the Processing phase.
function Target_Representation_Of
(Id : Entity_Id;
In_State : Processing_In_State) return Target_Rep_Id;
pragma Inline (Target_Representation_Of);
-- Obtain the id of elaboration target Id's representation. The routine
-- constructs the representation if it is not available. In_State is the
-- current state of the Processing phase.
-------------------------
-- Scenario attributes --
-------------------------
function Activated_Task_Objects
(S_Id : Scenario_Rep_Id) return NE_List.Doubly_Linked_List;
pragma Inline (Activated_Task_Objects);
-- For Task_Activation_Scenario S_Id, obtain the list of task objects
-- the scenario is activating.
function Activated_Task_Type (S_Id : Scenario_Rep_Id) return Entity_Id;
pragma Inline (Activated_Task_Type);
-- For Task_Activation_Scenario S_Id, obtain the currently activated
-- task type.
procedure Disable_Elaboration_Checks (S_Id : Scenario_Rep_Id);
pragma Inline (Disable_Elaboration_Checks);
-- Disable elaboration checks of scenario S_Id
function Elaboration_Checks_OK (S_Id : Scenario_Rep_Id) return Boolean;
pragma Inline (Elaboration_Checks_OK);
-- Determine whether scenario S_Id may be subjected to elaboration
-- checks.
function Elaboration_Warnings_OK (S_Id : Scenario_Rep_Id) return Boolean;
pragma Inline (Elaboration_Warnings_OK);
-- Determine whether scenario S_Id may be subjected to elaboration
-- warnings.
function Ghost_Mode_Of
(S_Id : Scenario_Rep_Id) return Extended_Ghost_Mode;
pragma Inline (Ghost_Mode_Of);
-- Obtain the Ghost mode of scenario S_Id
function Is_Dispatching_Call (S_Id : Scenario_Rep_Id) return Boolean;
pragma Inline (Is_Dispatching_Call);
-- For Call_Scenario S_Id, determine whether the call is dispatching
function Is_Read_Reference (S_Id : Scenario_Rep_Id) return Boolean;
pragma Inline (Is_Read_Reference);
-- For Variable_Reference_Scenario S_Id, determine whether the reference
-- is a read.
function Kind (S_Id : Scenario_Rep_Id) return Scenario_Kind;
pragma Inline (Kind);
-- Obtain the nature of scenario S_Id
function Level (S_Id : Scenario_Rep_Id) return Enclosing_Level_Kind;
pragma Inline (Level);
-- Obtain the enclosing level of scenario S_Id
procedure Set_Activated_Task_Objects
(S_Id : Scenario_Rep_Id;
Task_Objs : NE_List.Doubly_Linked_List);
pragma Inline (Set_Activated_Task_Objects);
-- For Task_Activation_Scenario S_Id, set the list of task objects
-- activated by the scenario to Task_Objs.
procedure Set_Activated_Task_Type
(S_Id : Scenario_Rep_Id;
Task_Typ : Entity_Id);
pragma Inline (Set_Activated_Task_Type);
-- For Task_Activation_Scenario S_Id, set the currently activated task
-- type to Task_Typ.
function SPARK_Mode_Of
(S_Id : Scenario_Rep_Id) return Extended_SPARK_Mode;
pragma Inline (SPARK_Mode_Of);
-- Obtain the SPARK mode of scenario S_Id
function Target (S_Id : Scenario_Rep_Id) return Entity_Id;
pragma Inline (Target);
-- Obtain the target of scenario S_Id
-----------------------
-- Target attributes --
-----------------------
function Barrier_Body_Declaration (T_Id : Target_Rep_Id) return Node_Id;
pragma Inline (Barrier_Body_Declaration);
-- For Subprogram_Target T_Id, obtain the declaration of the barrier
-- function's body.
function Body_Declaration (T_Id : Target_Rep_Id) return Node_Id;
pragma Inline (Body_Declaration);
-- Obtain the declaration of the body which belongs to target T_Id
procedure Disable_Elaboration_Checks (T_Id : Target_Rep_Id);
pragma Inline (Disable_Elaboration_Checks);
-- Disable elaboration checks of target T_Id
function Elaboration_Checks_OK (T_Id : Target_Rep_Id) return Boolean;
pragma Inline (Elaboration_Checks_OK);
-- Determine whether target T_Id may be subjected to elaboration checks
function Elaboration_Warnings_OK (T_Id : Target_Rep_Id) return Boolean;
pragma Inline (Elaboration_Warnings_OK);
-- Determine whether target T_Id may be subjected to elaboration
-- warnings.
function Ghost_Mode_Of (T_Id : Target_Rep_Id) return Extended_Ghost_Mode;
pragma Inline (Ghost_Mode_Of);
-- Obtain the Ghost mode of target T_Id
function Kind (T_Id : Target_Rep_Id) return Target_Kind;
pragma Inline (Kind);
-- Obtain the nature of target T_Id
function SPARK_Mode_Of (T_Id : Target_Rep_Id) return Extended_SPARK_Mode;
pragma Inline (SPARK_Mode_Of);
-- Obtain the SPARK mode of target T_Id
function Spec_Declaration (T_Id : Target_Rep_Id) return Node_Id;
pragma Inline (Spec_Declaration);
-- Obtain the declaration of the spec which belongs to target T_Id
function Unit (T_Id : Target_Rep_Id) return Entity_Id;
pragma Inline (Unit);
-- Obtain the unit where the target is defined
function Variable_Declaration (T_Id : Target_Rep_Id) return Node_Id;
pragma Inline (Variable_Declaration);
-- For Variable_Target T_Id, obtain the declaration of the variable
-----------------
-- Maintenance --
-----------------
procedure Finalize_Internal_Representation;
pragma Inline (Finalize_Internal_Representation);
-- Finalize all internal data structures
procedure Initialize_Internal_Representation;
pragma Inline (Initialize_Internal_Representation);
-- Initialize all internal data structures
end Internal_Representation;
use Internal_Representation;
-- The following package provides functionality for recording pieces of the
-- invocation graph in the ALI file of the main unit.
package Invocation_Graph is
---------
-- API --
---------
procedure Record_Invocation_Graph;
pragma Inline (Record_Invocation_Graph);
-- Process all declaration, instantiation, and library level scenarios,
-- along with invocation construct within the spec and body of the main
-- unit to determine whether any of these reach into an external unit.
-- If such a path exists, encode in the ALI file of the main unit.
-----------------
-- Maintenance --
-----------------
procedure Finalize_Invocation_Graph;
pragma Inline (Finalize_Invocation_Graph);
-- Finalize all internal data structures
procedure Initialize_Invocation_Graph;
pragma Inline (Initialize_Invocation_Graph);
-- Initialize all internal data structures
end Invocation_Graph;
use Invocation_Graph;
-- The following package stores scenarios
package Scenario_Storage is
---------
-- API --
---------
procedure Add_Declaration_Scenario (N : Node_Id);
pragma Inline (Add_Declaration_Scenario);
-- Save declaration level scenario N
procedure Add_Dynamic_ABE_Check_Scenario (N : Node_Id);
pragma Inline (Add_Dynamic_ABE_Check_Scenario);
-- Save scenario N for conditional ABE check installation purposes when
-- the dynamic model is in effect.
procedure Add_Library_Body_Scenario (N : Node_Id);
pragma Inline (Add_Library_Body_Scenario);
-- Save library-level body scenario N
procedure Add_Library_Spec_Scenario (N : Node_Id);
pragma Inline (Add_Library_Spec_Scenario);
-- Save library-level spec scenario N
procedure Add_SPARK_Scenario (N : Node_Id);
pragma Inline (Add_SPARK_Scenario);
-- Save SPARK scenario N
procedure Delete_Scenario (N : Node_Id);
pragma Inline (Delete_Scenario);
-- Delete arbitrary scenario N
function Iterate_Declaration_Scenarios return NE_Set.Iterator;
pragma Inline (Iterate_Declaration_Scenarios);
-- Obtain an iterator over all declaration level scenarios
function Iterate_Dynamic_ABE_Check_Scenarios return NE_Set.Iterator;
pragma Inline (Iterate_Dynamic_ABE_Check_Scenarios);
-- Obtain an iterator over all scenarios that require a conditional ABE
-- check when the dynamic model is in effect.
function Iterate_Library_Body_Scenarios return NE_Set.Iterator;
pragma Inline (Iterate_Library_Body_Scenarios);
-- Obtain an iterator over all library level body scenarios
function Iterate_Library_Spec_Scenarios return NE_Set.Iterator;
pragma Inline (Iterate_Library_Spec_Scenarios);
-- Obtain an iterator over all library level spec scenarios
function Iterate_SPARK_Scenarios return NE_Set.Iterator;
pragma Inline (Iterate_SPARK_Scenarios);
-- Obtain an iterator over all SPARK scenarios
procedure Replace_Scenario (Old_N : Node_Id; New_N : Node_Id);
pragma Inline (Replace_Scenario);
-- Replace scenario Old_N with scenario New_N
-----------------
-- Maintenance --
-----------------
procedure Finalize_Scenario_Storage;
pragma Inline (Finalize_Scenario_Storage);
-- Finalize all internal data structures
procedure Initialize_Scenario_Storage;
pragma Inline (Initialize_Scenario_Storage);
-- Initialize all internal data structures
end Scenario_Storage;
use Scenario_Storage;
-- The following package provides various semantic predicates
package Semantics is
---------
-- API --
---------
function Is_Accept_Alternative_Proc (Id : Entity_Id) return Boolean;
pragma Inline (Is_Accept_Alternative_Proc);
-- Determine whether arbitrary entity Id denotes an internally generated
-- procedure which encapsulates the statements of an accept alternative.
function Is_Activation_Proc (Id : Entity_Id) return Boolean;
pragma Inline (Is_Activation_Proc);
-- Determine whether arbitrary entity Id denotes a runtime procedure in
-- charge with activating tasks.
function Is_Ada_Semantic_Target (Id : Entity_Id) return Boolean;
pragma Inline (Is_Ada_Semantic_Target);
-- Determine whether arbitrary entity Id denodes a source or internally
-- generated subprogram which emulates Ada semantics.
function Is_Assertion_Pragma_Target (Id : Entity_Id) return Boolean;
pragma Inline (Is_Assertion_Pragma_Target);
-- Determine whether arbitrary entity Id denotes a procedure which
-- varifies the run-time semantics of an assertion pragma.
function Is_Bodiless_Subprogram (Subp_Id : Entity_Id) return Boolean;
pragma Inline (Is_Bodiless_Subprogram);
-- Determine whether subprogram Subp_Id will never have a body
function Is_Bridge_Target (Id : Entity_Id) return Boolean;
pragma Inline (Is_Bridge_Target);
-- Determine whether arbitrary entity Id denotes a bridge target
function Is_Controlled_Proc
(Subp_Id : Entity_Id;
Subp_Nam : Name_Id) return Boolean;
pragma Inline (Is_Controlled_Proc);
-- Determine whether subprogram Subp_Id denotes controlled type
-- primitives Adjust, Finalize, or Initialize as denoted by name
-- Subp_Nam.
function Is_Default_Initial_Condition_Proc
(Id : Entity_Id) return Boolean;
pragma Inline (Is_Default_Initial_Condition_Proc);
-- Determine whether arbitrary entity Id denotes internally generated
-- routine Default_Initial_Condition.
function Is_Finalizer_Proc (Id : Entity_Id) return Boolean;
pragma Inline (Is_Finalizer_Proc);
-- Determine whether arbitrary entity Id denotes internally generated
-- routine _Finalizer.
function Is_Initial_Condition_Proc (Id : Entity_Id) return Boolean;
pragma Inline (Is_Initial_Condition_Proc);
-- Determine whether arbitrary entity Id denotes internally generated
-- routine Initial_Condition.
function Is_Initialized (Obj_Decl : Node_Id) return Boolean;
pragma Inline (Is_Initialized);
-- Determine whether object declaration Obj_Decl is initialized
function Is_Invariant_Proc (Id : Entity_Id) return Boolean;
pragma Inline (Is_Invariant_Proc);
-- Determine whether arbitrary entity Id denotes an invariant procedure
function Is_Non_Library_Level_Encapsulator (N : Node_Id) return Boolean;
pragma Inline (Is_Non_Library_Level_Encapsulator);
-- Determine whether arbitrary node N is a non-library encapsulator
function Is_Partial_Invariant_Proc (Id : Entity_Id) return Boolean;
pragma Inline (Is_Partial_Invariant_Proc);
-- Determine whether arbitrary entity Id denotes a partial invariant
-- procedure.
function Is_Postconditions_Proc (Id : Entity_Id) return Boolean;
pragma Inline (Is_Postconditions_Proc);
-- Determine whether arbitrary entity Id denotes internally generated
-- routine _Postconditions.
function Is_Preelaborated_Unit (Id : Entity_Id) return Boolean;
pragma Inline (Is_Preelaborated_Unit);
-- Determine whether arbitrary entity Id denotes a unit which is subject
-- to one of the following pragmas:
--
-- * Preelaborable
-- * Pure
-- * Remote_Call_Interface
-- * Remote_Types
-- * Shared_Passive
function Is_Protected_Entry (Id : Entity_Id) return Boolean;
pragma Inline (Is_Protected_Entry);
-- Determine whether arbitrary entity Id denotes a protected entry
function Is_Protected_Subp (Id : Entity_Id) return Boolean;
pragma Inline (Is_Protected_Subp);
-- Determine whether entity Id denotes a protected subprogram
function Is_Protected_Body_Subp (Id : Entity_Id) return Boolean;
pragma Inline (Is_Protected_Body_Subp);
-- Determine whether entity Id denotes the protected or unprotected
-- version of a protected subprogram.
function Is_Scenario (N : Node_Id) return Boolean;
pragma Inline (Is_Scenario);
-- Determine whether attribute node N denotes a scenario. The scenario
-- may not necessarily be eligible for ABE processing.
function Is_SPARK_Semantic_Target (Id : Entity_Id) return Boolean;
pragma Inline (Is_SPARK_Semantic_Target);
-- Determine whether arbitrary entity Id nodes a source or internally
-- generated subprogram which emulates SPARK semantics.
function Is_Subprogram_Inst (Id : Entity_Id) return Boolean;
pragma Inline (Is_Subprogram_Inst);
-- Determine whether arbitrary entity Id denotes a subprogram instance
function Is_Suitable_Access_Taken (N : Node_Id) return Boolean;
pragma Inline (Is_Suitable_Access_Taken);
-- Determine whether arbitrary node N denotes a suitable attribute for
-- ABE processing.
function Is_Suitable_Call (N : Node_Id) return Boolean;
pragma Inline (Is_Suitable_Call);
-- Determine whether arbitrary node N denotes a suitable call for ABE
-- processing.
function Is_Suitable_Instantiation (N : Node_Id) return Boolean;
pragma Inline (Is_Suitable_Instantiation);
-- Determine whether arbitrary node N is a suitable instantiation for
-- ABE processing.
function Is_Suitable_SPARK_Derived_Type (N : Node_Id) return Boolean;
pragma Inline (Is_Suitable_SPARK_Derived_Type);
-- Determine whether arbitrary node N denotes a suitable derived type
-- declaration for ABE processing using the SPARK rules.
function Is_Suitable_SPARK_Instantiation (N : Node_Id) return Boolean;
pragma Inline (Is_Suitable_SPARK_Instantiation);
-- Determine whether arbitrary node N denotes a suitable instantiation
-- for ABE processing using the SPARK rules.
function Is_Suitable_SPARK_Refined_State_Pragma
(N : Node_Id) return Boolean;
pragma Inline (Is_Suitable_SPARK_Refined_State_Pragma);
-- Determine whether arbitrary node N denotes a suitable Refined_State
-- pragma for ABE processing using the SPARK rules.
function Is_Suitable_Variable_Assignment (N : Node_Id) return Boolean;
pragma Inline (Is_Suitable_Variable_Assignment);
-- Determine whether arbitrary node N denotes a suitable assignment for
-- ABE processing.
function Is_Suitable_Variable_Reference (N : Node_Id) return Boolean;
pragma Inline (Is_Suitable_Variable_Reference);
-- Determine whether arbitrary node N is a suitable variable reference
-- for ABE processing.
function Is_Task_Entry (Id : Entity_Id) return Boolean;
pragma Inline (Is_Task_Entry);
-- Determine whether arbitrary entity Id denotes a task entry
function Is_Up_Level_Target
(Targ_Decl : Node_Id;
In_State : Processing_In_State) return Boolean;
pragma Inline (Is_Up_Level_Target);
-- Determine whether the current root resides at the declaration level.
-- If this is the case, determine whether a target with by declaration
-- Target_Decl is within a context which encloses the current root or is
-- in a different unit. In_State is the current state of the Processing
-- phase.
end Semantics;
use Semantics;
-- The following package provides the main entry point for SPARK-related
-- checks and diagnostics.
package SPARK_Processor is
---------
-- API --
---------
procedure Check_SPARK_Model_In_Effect;
pragma Inline (Check_SPARK_Model_In_Effect);
-- Determine whether a suitable elaboration model is currently in effect
-- for verifying SPARK rules. Emit a warning if this is not the case.
procedure Check_SPARK_Scenarios;
pragma Inline (Check_SPARK_Scenarios);
-- Examine SPARK scenarios which are not necessarily executable during
-- elaboration, but still requires elaboration-related checks.
end SPARK_Processor;
use SPARK_Processor;
-----------------------
-- Local subprograms --
-----------------------
function Assignment_Target (Asmt : Node_Id) return Node_Id;
pragma Inline (Assignment_Target);
-- Obtain the target of assignment statement Asmt
function Call_Name (Call : Node_Id) return Node_Id;
pragma Inline (Call_Name);
-- Obtain the name of an entry, operator, or subprogram call Call
function Canonical_Subprogram (Subp_Id : Entity_Id) return Entity_Id;
pragma Inline (Canonical_Subprogram);
-- Obtain the uniform canonical entity of subprogram Subp_Id
function Compilation_Unit (Unit_Id : Entity_Id) return Node_Id;
pragma Inline (Compilation_Unit);
-- Return the N_Compilation_Unit node of unit Unit_Id
function Elaboration_Phase_Active return Boolean;
pragma Inline (Elaboration_Phase_Active);
-- Determine whether the elaboration phase of the compilation has started
procedure Error_Preelaborated_Call (N : Node_Id);
-- Give an error or warning for a non-static/non-preelaborable call in a
-- preelaborated unit.
procedure Finalize_All_Data_Structures;
pragma Inline (Finalize_All_Data_Structures);
-- Destroy all internal data structures
function Find_Enclosing_Instance (N : Node_Id) return Node_Id;
pragma Inline (Find_Enclosing_Instance);
-- Find the declaration or body of the nearest expanded instance which
-- encloses arbitrary node N. Return Empty if no such instance exists.
function Find_Top_Unit (N : Node_Or_Entity_Id) return Entity_Id;
pragma Inline (Find_Top_Unit);
-- Return the top unit which contains arbitrary node or entity N. The unit
-- is obtained by logically unwinding instantiations and subunits when N
-- resides within one.
function Find_Unit_Entity (N : Node_Id) return Entity_Id;
pragma Inline (Find_Unit_Entity);
-- Return the entity of unit N
function First_Formal_Type (Subp_Id : Entity_Id) return Entity_Id;
pragma Inline (First_Formal_Type);
-- Return the type of subprogram Subp_Id's first formal parameter. If the
-- subprogram lacks formal parameters, return Empty.
function Has_Body (Pack_Decl : Node_Id) return Boolean;
pragma Inline (Has_Body);
-- Determine whether package declaration Pack_Decl has a corresponding body
-- or would eventually have one.
function In_External_Instance
(N : Node_Id;
Target_Decl : Node_Id) return Boolean;
pragma Inline (In_External_Instance);
-- Determine whether a target desctibed by its declaration Target_Decl
-- resides in a package instance which is external to scenario N.
function In_Main_Context (N : Node_Id) return Boolean;
pragma Inline (In_Main_Context);
-- Determine whether arbitrary node N appears within the main compilation
-- unit.
function In_Same_Context
(N1 : Node_Id;
N2 : Node_Id;
Nested_OK : Boolean := False) return Boolean;
pragma Inline (In_Same_Context);
-- Determine whether two arbitrary nodes N1 and N2 appear within the same
-- context ignoring enclosing library levels. Nested_OK should be set when
-- the context of N1 can enclose that of N2.
procedure Initialize_All_Data_Structures;
pragma Inline (Initialize_All_Data_Structures);
-- Create all internal data structures
function Instantiated_Generic (Inst : Node_Id) return Entity_Id;
pragma Inline (Instantiated_Generic);
-- Obtain the generic instantiated by instance Inst
function Is_Safe_Activation
(Call : Node_Id;
Task_Rep : Target_Rep_Id) return Boolean;
pragma Inline (Is_Safe_Activation);
-- Determine whether activation call Call which activates an object of a
-- task type described by representation Task_Rep is always ABE-safe.
function Is_Safe_Call
(Call : Node_Id;
Subp_Id : Entity_Id;
Subp_Rep : Target_Rep_Id) return Boolean;
pragma Inline (Is_Safe_Call);
-- Determine whether call Call which invokes entry, operator, or subprogram
-- Subp_Id is always ABE-safe. Subp_Rep is the representation of the entry,
-- operator, or subprogram.
function Is_Safe_Instantiation
(Inst : Node_Id;
Gen_Id : Entity_Id;
Gen_Rep : Target_Rep_Id) return Boolean;
pragma Inline (Is_Safe_Instantiation);
-- Determine whether instantiation Inst which instantiates generic Gen_Id
-- is always ABE-safe. Gen_Rep is the representation of the generic.
function Is_Same_Unit
(Unit_1 : Entity_Id;
Unit_2 : Entity_Id) return Boolean;
pragma Inline (Is_Same_Unit);
-- Determine whether entities Unit_1 and Unit_2 denote the same unit
function Main_Unit_Entity return Entity_Id;
pragma Inline (Main_Unit_Entity);
-- Return the entity of the main unit
function Non_Private_View (Typ : Entity_Id) return Entity_Id;
pragma Inline (Non_Private_View);
-- Return the full view of private type Typ if available, otherwise return
-- type Typ.
function Scenario (N : Node_Id) return Node_Id;
pragma Inline (Scenario);
-- Return the appropriate scenario node for scenario N
procedure Set_Elaboration_Phase (Status : Elaboration_Phase_Status);
pragma Inline (Set_Elaboration_Phase);
-- Change the status of the elaboration phase of the compiler to Status
procedure Spec_And_Body_From_Entity
(Id : Entity_Id;
Spec_Decl : out Node_Id;
Body_Decl : out Node_Id);
pragma Inline (Spec_And_Body_From_Entity);
-- Given arbitrary entity Id representing a construct with a spec and body,
-- retrieve declaration of the spec in Spec_Decl and the declaration of the
-- body in Body_Decl.
procedure Spec_And_Body_From_Node
(N : Node_Id;
Spec_Decl : out Node_Id;
Body_Decl : out Node_Id);
pragma Inline (Spec_And_Body_From_Node);
-- Given arbitrary node N representing a construct with a spec and body,
-- retrieve declaration of the spec in Spec_Decl and the declaration of
-- the body in Body_Decl.
function Static_Elaboration_Checks return Boolean;
pragma Inline (Static_Elaboration_Checks);
-- Determine whether the static model is in effect
function Unit_Entity (Unit_Id : Entity_Id) return Entity_Id;
pragma Inline (Unit_Entity);
-- Return the entity of the initial declaration for unit Unit_Id
procedure Update_Elaboration_Scenario (New_N : Node_Id; Old_N : Node_Id);
pragma Inline (Update_Elaboration_Scenario);
-- Update all relevant internal data structures when scenario Old_N is
-- transformed into scenario New_N by Atree.Rewrite.
----------------------
-- Active_Scenarios --
----------------------
package body Active_Scenarios is
-----------------------
-- Local subprograms --
-----------------------
procedure Output_Access_Taken
(Attr : Node_Id;
Attr_Rep : Scenario_Rep_Id;
Error_Nod : Node_Id);
pragma Inline (Output_Access_Taken);
-- Emit a specific diagnostic message for 'Access attribute reference
-- Attr with representation Attr_Rep. The message is associated with
-- node Error_Nod.
procedure Output_Active_Scenario
(N : Node_Id;
Error_Nod : Node_Id;
In_State : Processing_In_State);
pragma Inline (Output_Active_Scenario);
-- Top level dispatcher for outputting a scenario. Emit a specific
-- diagnostic message for scenario N. The message is associated with
-- node Error_Nod. In_State is the current state of the Processing
-- phase.
procedure Output_Call
(Call : Node_Id;
Call_Rep : Scenario_Rep_Id;
Error_Nod : Node_Id);
pragma Inline (Output_Call);
-- Emit a diagnostic message for call Call with representation Call_Rep.
-- The message is associated with node Error_Nod.
procedure Output_Header (Error_Nod : Node_Id);
pragma Inline (Output_Header);
-- Emit a specific diagnostic message for the unit of the root scenario.
-- The message is associated with node Error_Nod.
procedure Output_Instantiation
(Inst : Node_Id;
Inst_Rep : Scenario_Rep_Id;
Error_Nod : Node_Id);
pragma Inline (Output_Instantiation);
-- Emit a specific diagnostic message for instantiation Inst with
-- representation Inst_Rep. The message is associated with node
-- Error_Nod.
procedure Output_Refined_State_Pragma
(Prag : Node_Id;
Prag_Rep : Scenario_Rep_Id;
Error_Nod : Node_Id);
pragma Inline (Output_Refined_State_Pragma);
-- Emit a specific diagnostic message for Refined_State pragma Prag
-- with representation Prag_Rep. The message is associated with node
-- Error_Nod.
procedure Output_Task_Activation
(Call : Node_Id;
Call_Rep : Scenario_Rep_Id;
Error_Nod : Node_Id);
pragma Inline (Output_Task_Activation);
-- Emit a specific diagnostic message for activation call Call
-- with representation Call_Rep. The message is associated with
-- node Error_Nod.
procedure Output_Variable_Assignment
(Asmt : Node_Id;
Asmt_Rep : Scenario_Rep_Id;
Error_Nod : Node_Id);
pragma Inline (Output_Variable_Assignment);
-- Emit a specific diagnostic message for assignment statement Asmt
-- with representation Asmt_Rep. The message is associated with node
-- Error_Nod.
procedure Output_Variable_Reference
(Ref : Node_Id;
Ref_Rep : Scenario_Rep_Id;
Error_Nod : Node_Id);
pragma Inline (Output_Variable_Reference);
-- Emit a specific diagnostic message for read reference Ref with
-- representation Ref_Rep. The message is associated with node
-- Error_Nod.
-------------------
-- Output_Access --
-------------------
procedure Output_Access_Taken
(Attr : Node_Id;
Attr_Rep : Scenario_Rep_Id;
Error_Nod : Node_Id)
is
Subp_Id : constant Entity_Id := Target (Attr_Rep);
begin
Error_Msg_Name_1 := Attribute_Name (Attr);
Error_Msg_Sloc := Sloc (Attr);
Error_Msg_NE ("\\ % of & taken #", Error_Nod, Subp_Id);
end Output_Access_Taken;
----------------------------
-- Output_Active_Scenario --
----------------------------
procedure Output_Active_Scenario
(N : Node_Id;
Error_Nod : Node_Id;
In_State : Processing_In_State)
is
Scen : constant Node_Id := Scenario (N);
Scen_Rep : Scenario_Rep_Id;
begin
-- 'Access
if Is_Suitable_Access_Taken (Scen) then
Output_Access_Taken
(Attr => Scen,
Attr_Rep => Scenario_Representation_Of (Scen, In_State),
Error_Nod => Error_Nod);
-- Call or task activation
elsif Is_Suitable_Call (Scen) then
Scen_Rep := Scenario_Representation_Of (Scen, In_State);
if Kind (Scen_Rep) = Call_Scenario then
Output_Call
(Call => Scen,
Call_Rep => Scen_Rep,
Error_Nod => Error_Nod);
else
pragma Assert (Kind (Scen_Rep) = Task_Activation_Scenario);
Output_Task_Activation
(Call => Scen,
Call_Rep => Scen_Rep,
Error_Nod => Error_Nod);
end if;
-- Instantiation
elsif Is_Suitable_Instantiation (Scen) then
Output_Instantiation
(Inst => Scen,
Inst_Rep => Scenario_Representation_Of (Scen, In_State),
Error_Nod => Error_Nod);
-- Pragma Refined_State
elsif Is_Suitable_SPARK_Refined_State_Pragma (Scen) then
Output_Refined_State_Pragma
(Prag => Scen,
Prag_Rep => Scenario_Representation_Of (Scen, In_State),
Error_Nod => Error_Nod);
-- Variable assignment
elsif Is_Suitable_Variable_Assignment (Scen) then
Output_Variable_Assignment
(Asmt => Scen,
Asmt_Rep => Scenario_Representation_Of (Scen, In_State),
Error_Nod => Error_Nod);
-- Variable reference
elsif Is_Suitable_Variable_Reference (Scen) then
Output_Variable_Reference
(Ref => Scen,
Ref_Rep => Scenario_Representation_Of (Scen, In_State),
Error_Nod => Error_Nod);
end if;
end Output_Active_Scenario;
-----------------------------
-- Output_Active_Scenarios --
-----------------------------
procedure Output_Active_Scenarios
(Error_Nod : Node_Id;
In_State : Processing_In_State)
is
package Scenarios renames Active_Scenario_Stack;
Header_Posted : Boolean := False;
begin
-- Output the contents of the active scenario stack starting from the
-- bottom, or the least recent scenario.
for Index in Scenarios.First .. Scenarios.Last loop
if not Header_Posted then
Output_Header (Error_Nod);
Header_Posted := True;
end if;
Output_Active_Scenario
(N => Scenarios.Table (Index),
Error_Nod => Error_Nod,
In_State => In_State);
end loop;
end Output_Active_Scenarios;
-----------------
-- Output_Call --
-----------------
procedure Output_Call
(Call : Node_Id;
Call_Rep : Scenario_Rep_Id;
Error_Nod : Node_Id)
is
procedure Output_Accept_Alternative (Alt_Id : Entity_Id);
pragma Inline (Output_Accept_Alternative);
-- Emit a specific diagnostic message concerning accept alternative
-- with entity Alt_Id.
procedure Output_Call (Subp_Id : Entity_Id; Kind : String);
pragma Inline (Output_Call);
-- Emit a specific diagnostic message concerning a call of kind Kind
-- which invokes subprogram Subp_Id.
procedure Output_Type_Actions (Subp_Id : Entity_Id; Action : String);
pragma Inline (Output_Type_Actions);
-- Emit a specific diagnostic message concerning action Action of a
-- type performed by subprogram Subp_Id.
procedure Output_Verification_Call
(Pred : String;
Id : Entity_Id;
Id_Kind : String);
pragma Inline (Output_Verification_Call);
-- Emit a specific diagnostic message concerning the verification of
-- predicate Pred applied to related entity Id with kind Id_Kind.
-------------------------------
-- Output_Accept_Alternative --
-------------------------------
procedure Output_Accept_Alternative (Alt_Id : Entity_Id) is
Entry_Id : constant Entity_Id := Receiving_Entry (Alt_Id);
begin
pragma Assert (Present (Entry_Id));
Error_Msg_NE ("\\ entry & selected #", Error_Nod, Entry_Id);
end Output_Accept_Alternative;
-----------------
-- Output_Call --
-----------------
procedure Output_Call (Subp_Id : Entity_Id; Kind : String) is
begin
Error_Msg_NE ("\\ " & Kind & " & called #", Error_Nod, Subp_Id);
end Output_Call;
-------------------------
-- Output_Type_Actions --
-------------------------
procedure Output_Type_Actions
(Subp_Id : Entity_Id;
Action : String)
is
Typ : constant Entity_Id := First_Formal_Type (Subp_Id);
begin
pragma Assert (Present (Typ));
Error_Msg_NE
("\\ " & Action & " actions for type & #", Error_Nod, Typ);
end Output_Type_Actions;
------------------------------
-- Output_Verification_Call --
------------------------------
procedure Output_Verification_Call
(Pred : String;
Id : Entity_Id;
Id_Kind : String)
is
begin
pragma Assert (Present (Id));
Error_Msg_NE
("\\ " & Pred & " of " & Id_Kind & " & verified #",
Error_Nod, Id);
end Output_Verification_Call;
-- Local variables
Subp_Id : constant Entity_Id := Target (Call_Rep);
-- Start of processing for Output_Call
begin
Error_Msg_Sloc := Sloc (Call);
-- Accept alternative
if Is_Accept_Alternative_Proc (Subp_Id) then
Output_Accept_Alternative (Subp_Id);
-- Adjustment
elsif Is_TSS (Subp_Id, TSS_Deep_Adjust) then
Output_Type_Actions (Subp_Id, "adjustment");
-- Default_Initial_Condition
elsif Is_Default_Initial_Condition_Proc (Subp_Id) then
-- Only do output for a normal DIC procedure, since partial DIC
-- procedures are subsidiary to those.
if not Is_Partial_DIC_Procedure (Subp_Id) then
Output_Verification_Call
(Pred => "Default_Initial_Condition",
Id => First_Formal_Type (Subp_Id),
Id_Kind => "type");
end if;
-- Entries
elsif Is_Protected_Entry (Subp_Id) then
Output_Call (Subp_Id, "entry");
-- Task entry calls are never processed because the entry being
-- invoked does not have a corresponding "body", it has a select. A
-- task entry call appears in the stack of active scenarios for the
-- sole purpose of checking No_Entry_Calls_In_Elaboration_Code and
-- nothing more.
elsif Is_Task_Entry (Subp_Id) then
null;
-- Finalization
elsif Is_TSS (Subp_Id, TSS_Deep_Finalize) then
Output_Type_Actions (Subp_Id, "finalization");
-- Calls to _Finalizer procedures must not appear in the output
-- because this creates confusing noise.
elsif Is_Finalizer_Proc (Subp_Id) then
null;
-- Initial_Condition
elsif Is_Initial_Condition_Proc (Subp_Id) then
Output_Verification_Call
(Pred => "Initial_Condition",
Id => Find_Enclosing_Scope (Call),
Id_Kind => "package");
-- Initialization
elsif Is_Init_Proc (Subp_Id)
or else Is_TSS (Subp_Id, TSS_Deep_Initialize)
then
Output_Type_Actions (Subp_Id, "initialization");
-- Invariant
elsif Is_Invariant_Proc (Subp_Id) then
Output_Verification_Call
(Pred => "invariants",
Id => First_Formal_Type (Subp_Id),
Id_Kind => "type");
-- Partial invariant calls must not appear in the output because this
-- creates confusing noise. Note that a partial invariant is always
-- invoked by the "full" invariant which is already placed on the
-- stack.
elsif Is_Partial_Invariant_Proc (Subp_Id) then
null;
-- _Postconditions
elsif Is_Postconditions_Proc (Subp_Id) then
Output_Verification_Call
(Pred => "postconditions",
Id => Find_Enclosing_Scope (Call),
Id_Kind => "subprogram");
-- Subprograms must come last because some of the previous cases fall
-- under this category.
elsif Ekind (Subp_Id) = E_Function then
Output_Call (Subp_Id, "function");
elsif Ekind (Subp_Id) = E_Procedure then
Output_Call (Subp_Id, "procedure");
else
pragma Assert (False);
return;
end if;
end Output_Call;
-------------------
-- Output_Header --
-------------------
procedure Output_Header (Error_Nod : Node_Id) is
Unit_Id : constant Entity_Id := Find_Top_Unit (Root_Scenario);
begin
if Ekind (Unit_Id) = E_Package then
Error_Msg_NE ("\\ spec of unit & elaborated", Error_Nod, Unit_Id);
elsif Ekind (Unit_Id) = E_Package_Body then
Error_Msg_NE ("\\ body of unit & elaborated", Error_Nod, Unit_Id);
else
Error_Msg_NE ("\\ in body of unit &", Error_Nod, Unit_Id);
end if;
end Output_Header;
--------------------------
-- Output_Instantiation --
--------------------------
procedure Output_Instantiation
(Inst : Node_Id;
Inst_Rep : Scenario_Rep_Id;
Error_Nod : Node_Id)
is
procedure Output_Instantiation (Gen_Id : Entity_Id; Kind : String);
pragma Inline (Output_Instantiation);
-- Emit a specific diagnostic message concerning an instantiation of
-- generic unit Gen_Id. Kind denotes the kind of the instantiation.
--------------------------
-- Output_Instantiation --
--------------------------
procedure Output_Instantiation (Gen_Id : Entity_Id; Kind : String) is
begin
Error_Msg_NE
("\\ " & Kind & " & instantiated as & #", Error_Nod, Gen_Id);
end Output_Instantiation;
-- Local variables
Gen_Id : constant Entity_Id := Target (Inst_Rep);
-- Start of processing for Output_Instantiation
begin
Error_Msg_Node_2 := Defining_Entity (Inst);
Error_Msg_Sloc := Sloc (Inst);
if Nkind (Inst) = N_Function_Instantiation then
Output_Instantiation (Gen_Id, "function");
elsif Nkind (Inst) = N_Package_Instantiation then
Output_Instantiation (Gen_Id, "package");
elsif Nkind (Inst) = N_Procedure_Instantiation then
Output_Instantiation (Gen_Id, "procedure");
else
pragma Assert (False);
return;
end if;
end Output_Instantiation;
---------------------------------
-- Output_Refined_State_Pragma --
---------------------------------
procedure Output_Refined_State_Pragma
(Prag : Node_Id;
Prag_Rep : Scenario_Rep_Id;
Error_Nod : Node_Id)
is
pragma Unreferenced (Prag_Rep);
begin
Error_Msg_Sloc := Sloc (Prag);
Error_Msg_N ("\\ refinement constituents read #", Error_Nod);
end Output_Refined_State_Pragma;
----------------------------
-- Output_Task_Activation --
----------------------------
procedure Output_Task_Activation
(Call : Node_Id;
Call_Rep : Scenario_Rep_Id;
Error_Nod : Node_Id)
is
pragma Unreferenced (Call_Rep);
function Find_Activator return Entity_Id;
-- Find the nearest enclosing construct which houses call Call
--------------------
-- Find_Activator --
--------------------
function Find_Activator return Entity_Id is
Par : Node_Id;
begin
-- Climb the parent chain looking for a package [body] or a
-- construct with a statement sequence.
Par := Parent (Call);
while Present (Par) loop
if Nkind (Par) in N_Package_Body | N_Package_Declaration then
return Defining_Entity (Par);
elsif Nkind (Par) = N_Handled_Sequence_Of_Statements then
return Defining_Entity (Parent (Par));
end if;
Par := Parent (Par);
end loop;
return Empty;
end Find_Activator;
-- Local variables
Activator : constant Entity_Id := Find_Activator;
-- Start of processing for Output_Task_Activation
begin
pragma Assert (Present (Activator));
Error_Msg_NE ("\\ local tasks of & activated", Error_Nod, Activator);
end Output_Task_Activation;
--------------------------------
-- Output_Variable_Assignment --
--------------------------------
procedure Output_Variable_Assignment
(Asmt : Node_Id;
Asmt_Rep : Scenario_Rep_Id;
Error_Nod : Node_Id)
is
Var_Id : constant Entity_Id := Target (Asmt_Rep);
begin
Error_Msg_Sloc := Sloc (Asmt);
Error_Msg_NE ("\\ variable & assigned #", Error_Nod, Var_Id);
end Output_Variable_Assignment;
-------------------------------
-- Output_Variable_Reference --
-------------------------------
procedure Output_Variable_Reference
(Ref : Node_Id;
Ref_Rep : Scenario_Rep_Id;
Error_Nod : Node_Id)
is
Var_Id : constant Entity_Id := Target (Ref_Rep);
begin
Error_Msg_Sloc := Sloc (Ref);
Error_Msg_NE ("\\ variable & read #", Error_Nod, Var_Id);
end Output_Variable_Reference;
-------------------------
-- Pop_Active_Scenario --
-------------------------
procedure Pop_Active_Scenario (N : Node_Id) is
package Scenarios renames Active_Scenario_Stack;
Top : Node_Id renames Scenarios.Table (Scenarios.Last);
begin
pragma Assert (Top = N);
Scenarios.Decrement_Last;
end Pop_Active_Scenario;
--------------------------
-- Push_Active_Scenario --
--------------------------
procedure Push_Active_Scenario (N : Node_Id) is
begin
Active_Scenario_Stack.Append (N);
end Push_Active_Scenario;
-------------------
-- Root_Scenario --
-------------------
function Root_Scenario return Node_Id is
package Scenarios renames Active_Scenario_Stack;
begin
-- Ensure that the scenario stack has at least one active scenario in
-- it. The one at the bottom (index First) is the root scenario.
pragma Assert (Scenarios.Last >= Scenarios.First);
return Scenarios.Table (Scenarios.First);
end Root_Scenario;
end Active_Scenarios;
--------------------------
-- Activation_Processor --
--------------------------
package body Activation_Processor is
------------------------
-- Process_Activation --
------------------------
procedure Process_Activation
(Call : Node_Id;
Call_Rep : Scenario_Rep_Id;
Processor : Activation_Processor_Ptr;
In_State : Processing_In_State)
is
procedure Process_Task_Object (Obj_Id : Entity_Id; Typ : Entity_Id);
pragma Inline (Process_Task_Object);
-- Invoke Processor for task object Obj_Id of type Typ
procedure Process_Task_Objects
(Task_Objs : NE_List.Doubly_Linked_List);
pragma Inline (Process_Task_Objects);
-- Invoke Processor for all task objects found in list Task_Objs
procedure Traverse_List
(List : List_Id;
Task_Objs : NE_List.Doubly_Linked_List);
pragma Inline (Traverse_List);
-- Traverse declarative or statement list List while searching for
-- objects of a task type, or containing task components. If such an
-- object is found, first save it in list Task_Objs and then invoke
-- Processor on it.
-------------------------
-- Process_Task_Object --
-------------------------
procedure Process_Task_Object (Obj_Id : Entity_Id; Typ : Entity_Id) is
Root_Typ : constant Entity_Id :=
Non_Private_View (Root_Type (Typ));
Comp_Id : Entity_Id;
Obj_Rep : Target_Rep_Id;
Root_Rep : Target_Rep_Id;
New_In_State : Processing_In_State := In_State;
-- Each step of the Processing phase constitutes a new state
begin
if Is_Task_Type (Typ) then
Obj_Rep := Target_Representation_Of (Obj_Id, New_In_State);
Root_Rep := Target_Representation_Of (Root_Typ, New_In_State);
-- Warnings are suppressed when a prior scenario is already in
-- that mode, or when the object, activation call, or task type
-- have warnings suppressed. Update the state of the Processing
-- phase to reflect this.
New_In_State.Suppress_Warnings :=
New_In_State.Suppress_Warnings
or else not Elaboration_Warnings_OK (Call_Rep)
or else not Elaboration_Warnings_OK (Obj_Rep)
or else not Elaboration_Warnings_OK (Root_Rep);
-- Update the state of the Processing phase to indicate that
-- any further traversal is now within a task body.
New_In_State.Within_Task_Body := True;
-- Associate the current task type with the activation call
Set_Activated_Task_Type (Call_Rep, Root_Typ);
-- Process the activation of the current task object by calling
-- the supplied processor.
Processor.all
(Call => Call,
Call_Rep => Call_Rep,
Obj_Id => Obj_Id,
Obj_Rep => Obj_Rep,
Task_Typ => Root_Typ,
Task_Rep => Root_Rep,
In_State => New_In_State);
-- Reset the association between the current task and the
-- activtion call.
Set_Activated_Task_Type (Call_Rep, Empty);
-- Examine the component type when the object is an array
elsif Is_Array_Type (Typ) and then Has_Task (Root_Typ) then
Process_Task_Object
(Obj_Id => Obj_Id,
Typ => Component_Type (Typ));
-- Examine individual component types when the object is a record
elsif Is_Record_Type (Typ) and then Has_Task (Root_Typ) then
Comp_Id := First_Component (Typ);
while Present (Comp_Id) loop
Process_Task_Object
(Obj_Id => Obj_Id,
Typ => Etype (Comp_Id));
Next_Component (Comp_Id);
end loop;
end if;
end Process_Task_Object;
--------------------------
-- Process_Task_Objects --
--------------------------
procedure Process_Task_Objects
(Task_Objs : NE_List.Doubly_Linked_List)
is
Iter : NE_List.Iterator;
Obj_Id : Entity_Id;
begin
Iter := NE_List.Iterate (Task_Objs);
while NE_List.Has_Next (Iter) loop
NE_List.Next (Iter, Obj_Id);
Process_Task_Object
(Obj_Id => Obj_Id,
Typ => Etype (Obj_Id));
end loop;
end Process_Task_Objects;
-------------------
-- Traverse_List --
-------------------
procedure Traverse_List
(List : List_Id;
Task_Objs : NE_List.Doubly_Linked_List)
is
Item : Node_Id;
Item_Id : Entity_Id;
Item_Typ : Entity_Id;
begin
-- Examine the contents of the list looking for an object
-- declaration of a task type or one that contains a task
-- within.
Item := First (List);
while Present (Item) loop
if Nkind (Item) = N_Object_Declaration then
Item_Id := Defining_Entity (Item);
Item_Typ := Etype (Item_Id);
if Has_Task (Item_Typ) then
-- The object is either of a task type, or contains a
-- task component. Save it in the list of task objects
-- associated with the activation call.
NE_List.Append (Task_Objs, Item_Id);
Process_Task_Object
(Obj_Id => Item_Id,
Typ => Item_Typ);
end if;
end if;
Next (Item);
end loop;
end Traverse_List;
-- Local variables
Context : Node_Id;
Spec : Node_Id;
Task_Objs : NE_List.Doubly_Linked_List;
-- Start of processing for Process_Activation
begin
-- Nothing to do when the activation is a guaranteed ABE
if Is_Known_Guaranteed_ABE (Call) then
return;
end if;
Task_Objs := Activated_Task_Objects (Call_Rep);
-- The activation call has been processed at least once, and all
-- task objects have already been collected. Directly process the
-- objects without having to reexamine the context of the call.
if NE_List.Present (Task_Objs) then
Process_Task_Objects (Task_Objs);
-- Otherwise the activation call is being processed for the first
-- time. Collect all task objects in case the call is reprocessed
-- multiple times.
else
Task_Objs := NE_List.Create;
Set_Activated_Task_Objects (Call_Rep, Task_Objs);
-- Find the context of the activation call where all task objects
-- being activated are declared. This is usually the parent of the
-- call.
Context := Parent (Call);
-- Handle the case where the activation call appears within the
-- handled statements of a block or a body.
if Nkind (Context) = N_Handled_Sequence_Of_Statements then
Context := Parent (Context);
end if;
-- Process all task objects in both the spec and body when the
-- activation call appears in a package body.
if Nkind (Context) = N_Package_Body then
Spec :=
Specification
(Unit_Declaration_Node (Corresponding_Spec (Context)));
Traverse_List
(List => Visible_Declarations (Spec),
Task_Objs => Task_Objs);
Traverse_List
(List => Private_Declarations (Spec),
Task_Objs => Task_Objs);
Traverse_List
(List => Declarations (Context),
Task_Objs => Task_Objs);
-- Process all task objects in the spec when the activation call
-- appears in a package spec.
elsif Nkind (Context) = N_Package_Specification then
Traverse_List
(List => Visible_Declarations (Context),
Task_Objs => Task_Objs);
Traverse_List
(List => Private_Declarations (Context),
Task_Objs => Task_Objs);
-- Otherwise the context must be a block or a body. Process all
-- task objects found in the declarations.
else
pragma Assert
(Nkind (Context) in
N_Block_Statement | N_Entry_Body | N_Protected_Body |
N_Subprogram_Body | N_Task_Body);
Traverse_List
(List => Declarations (Context),
Task_Objs => Task_Objs);
end if;
end if;
end Process_Activation;
end Activation_Processor;
-----------------------
-- Assignment_Target --
-----------------------
function Assignment_Target (Asmt : Node_Id) return Node_Id is
Nam : Node_Id;
begin
Nam := Name (Asmt);
-- When the name denotes an array or record component, find the whole
-- object.
while Nkind (Nam) in
N_Explicit_Dereference | N_Indexed_Component |
N_Selected_Component | N_Slice
loop
Nam := Prefix (Nam);
end loop;
return Nam;
end Assignment_Target;
--------------------
-- Body_Processor --
--------------------
package body Body_Processor is
---------------------
-- Data structures --
---------------------
-- The following map relates scenario lists to subprogram bodies
Nested_Scenarios_Map : NE_List_Map.Dynamic_Hash_Table := NE_List_Map.Nil;
-- The following set contains all subprogram bodies that have been
-- processed by routine Traverse_Body.
Traversed_Bodies_Set : NE_Set.Membership_Set := NE_Set.Nil;
-----------------------
-- Local subprograms --
-----------------------
function Is_Traversed_Body (N : Node_Id) return Boolean;
pragma Inline (Is_Traversed_Body);
-- Determine whether subprogram body N has already been traversed
function Nested_Scenarios
(N : Node_Id) return NE_List.Doubly_Linked_List;
pragma Inline (Nested_Scenarios);
-- Obtain the list of scenarios associated with subprogram body N
procedure Set_Is_Traversed_Body (N : Node_Id);
pragma Inline (Set_Is_Traversed_Body);
-- Mark subprogram body N as traversed
procedure Set_Nested_Scenarios
(N : Node_Id;
Scenarios : NE_List.Doubly_Linked_List);
pragma Inline (Set_Nested_Scenarios);
-- Associate scenario list Scenarios with subprogram body N
-----------------------------
-- Finalize_Body_Processor --
-----------------------------
procedure Finalize_Body_Processor is
begin
NE_List_Map.Destroy (Nested_Scenarios_Map);
NE_Set.Destroy (Traversed_Bodies_Set);
end Finalize_Body_Processor;
-------------------------------
-- Initialize_Body_Processor --
-------------------------------
procedure Initialize_Body_Processor is
begin
Nested_Scenarios_Map := NE_List_Map.Create (250);
Traversed_Bodies_Set := NE_Set.Create (250);
end Initialize_Body_Processor;
-----------------------
-- Is_Traversed_Body --
-----------------------
function Is_Traversed_Body (N : Node_Id) return Boolean is
pragma Assert (Present (N));
begin
return NE_Set.Contains (Traversed_Bodies_Set, N);
end Is_Traversed_Body;
----------------------
-- Nested_Scenarios --
----------------------
function Nested_Scenarios
(N : Node_Id) return NE_List.Doubly_Linked_List
is
pragma Assert (Present (N));
pragma Assert (Nkind (N) = N_Subprogram_Body);
begin
return NE_List_Map.Get (Nested_Scenarios_Map, N);
end Nested_Scenarios;
----------------------------
-- Reset_Traversed_Bodies --
----------------------------
procedure Reset_Traversed_Bodies is
begin
NE_Set.Reset (Traversed_Bodies_Set);
end Reset_Traversed_Bodies;
---------------------------
-- Set_Is_Traversed_Body --
---------------------------
procedure Set_Is_Traversed_Body (N : Node_Id) is
pragma Assert (Present (N));
begin
NE_Set.Insert (Traversed_Bodies_Set, N);
end Set_Is_Traversed_Body;
--------------------------
-- Set_Nested_Scenarios --
--------------------------
procedure Set_Nested_Scenarios
(N : Node_Id;
Scenarios : NE_List.Doubly_Linked_List)
is
pragma Assert (Present (N));
begin
NE_List_Map.Put (Nested_Scenarios_Map, N, Scenarios);
end Set_Nested_Scenarios;
-------------------
-- Traverse_Body --
-------------------
procedure Traverse_Body
(N : Node_Id;
Requires_Processing : Scenario_Predicate_Ptr;
Processor : Scenario_Processor_Ptr;
In_State : Processing_In_State)
is
Scenarios : NE_List.Doubly_Linked_List := NE_List.Nil;
-- The list of scenarios that appear within the declarations and
-- statement of subprogram body N. The variable is intentionally
-- global because Is_Potential_Scenario needs to populate it.
function In_Task_Body (Nod : Node_Id) return Boolean;
pragma Inline (In_Task_Body);
-- Determine whether arbitrary node Nod appears within a task body
function Is_Synchronous_Suspension_Call
(Nod : Node_Id) return Boolean;
pragma Inline (Is_Synchronous_Suspension_Call);
-- Determine whether arbitrary node Nod denotes a call to one of
-- these routines:
--
-- Ada.Synchronous_Barriers.Wait_For_Release
-- Ada.Synchronous_Task_Control.Suspend_Until_True
procedure Traverse_Collected_Scenarios;
pragma Inline (Traverse_Collected_Scenarios);
-- Traverse the already collected scenarios in list Scenarios by
-- invoking Processor on each individual one.
procedure Traverse_List (List : List_Id);
pragma Inline (Traverse_List);
-- Invoke Traverse_Potential_Scenarios on each node in list List
function Traverse_Potential_Scenario
(Scen : Node_Id) return Traverse_Result;
pragma Inline (Traverse_Potential_Scenario);
-- Determine whether arbitrary node Scen is a suitable scenario using
-- predicate Is_Scenario and traverse it by invoking Processor on it.
procedure Traverse_Potential_Scenarios is
new Traverse_Proc (Traverse_Potential_Scenario);
------------------
-- In_Task_Body --
------------------
function In_Task_Body (Nod : Node_Id) return Boolean is
Par : Node_Id;
begin
-- Climb the parent chain looking for a task body [procedure]
Par := Nod;
while Present (Par) loop
if Nkind (Par) = N_Task_Body then
return True;
elsif Nkind (Par) = N_Subprogram_Body
and then Is_Task_Body_Procedure (Par)
then
return True;
-- Prevent the search from going too far. Note that this test
-- shares nodes with the two cases above, and must come last.
elsif Is_Body_Or_Package_Declaration (Par) then
return False;
end if;
Par := Parent (Par);
end loop;
return False;
end In_Task_Body;
------------------------------------
-- Is_Synchronous_Suspension_Call --
------------------------------------
function Is_Synchronous_Suspension_Call
(Nod : Node_Id) return Boolean
is
Subp_Id : Entity_Id;
begin
-- To qualify, the call must invoke one of the runtime routines
-- which perform synchronous suspension.
if Is_Suitable_Call (Nod) then
Subp_Id := Target (Nod);
return
Is_RTE (Subp_Id, RE_Suspend_Until_True)
or else
Is_RTE (Subp_Id, RE_Wait_For_Release);
end if;
return False;
end Is_Synchronous_Suspension_Call;
----------------------------------
-- Traverse_Collected_Scenarios --
----------------------------------
procedure Traverse_Collected_Scenarios is
Iter : NE_List.Iterator;
Scen : Node_Id;
begin
Iter := NE_List.Iterate (Scenarios);
while NE_List.Has_Next (Iter) loop
NE_List.Next (Iter, Scen);
-- The current scenario satisfies the input predicate, process
-- it.
if Requires_Processing.all (Scen) then
Processor.all (Scen, In_State);
end if;
end loop;
end Traverse_Collected_Scenarios;
-------------------
-- Traverse_List --
-------------------
procedure Traverse_List (List : List_Id) is
Scen : Node_Id;
begin
Scen := First (List);
while Present (Scen) loop
Traverse_Potential_Scenarios (Scen);
Next (Scen);
end loop;
end Traverse_List;
---------------------------------
-- Traverse_Potential_Scenario --
---------------------------------
function Traverse_Potential_Scenario
(Scen : Node_Id) return Traverse_Result
is
begin
-- Special cases
-- Skip constructs which do not have elaboration of their own and
-- need to be elaborated by other means such as invocation, task
-- activation, etc.
if Is_Non_Library_Level_Encapsulator (Scen) then
return Skip;
-- Terminate the traversal of a task body when encountering an
-- accept or select statement, and
--
-- * Entry calls during elaboration are not allowed. In this
-- case the accept or select statement will cause the task
-- to block at elaboration time because there are no entry
-- calls to unblock it.
--
-- or
--
-- * Switch -gnatd_a (stop elaboration checks on accept or
-- select statement) is in effect.
elsif (Debug_Flag_Underscore_A
or else Restriction_Active
(No_Entry_Calls_In_Elaboration_Code))
and then Nkind (Original_Node (Scen)) in
N_Accept_Statement | N_Selective_Accept
then
return Abandon;
-- Terminate the traversal of a task body when encountering a
-- suspension call, and
--
-- * Entry calls during elaboration are not allowed. In this
-- case the suspension call emulates an entry call and will
-- cause the task to block at elaboration time.
--
-- or
--
-- * Switch -gnatd_s (stop elaboration checks on synchronous
-- suspension) is in effect.
--
-- Note that the guard should not be checking the state of flag
-- Within_Task_Body because only suspension calls which appear
-- immediately within the statements of the task are supported.
-- Flag Within_Task_Body carries over to deeper levels of the
-- traversal.
elsif (Debug_Flag_Underscore_S
or else Restriction_Active
(No_Entry_Calls_In_Elaboration_Code))
and then Is_Synchronous_Suspension_Call (Scen)
and then In_Task_Body (Scen)
then
return Abandon;
-- Certain nodes carry semantic lists which act as repositories
-- until expansion transforms the node and relocates the contents.
-- Examine these lists in case expansion is disabled.
elsif Nkind (Scen) in N_And_Then | N_Or_Else then
Traverse_List (Actions (Scen));
elsif Nkind (Scen) in N_Elsif_Part | N_Iteration_Scheme then
Traverse_List (Condition_Actions (Scen));
elsif Nkind (Scen) = N_If_Expression then
Traverse_List (Then_Actions (Scen));
Traverse_List (Else_Actions (Scen));
elsif Nkind (Scen) in
N_Component_Association | N_Iterated_Component_Association
then
Traverse_List (Loop_Actions (Scen));
-- General case
-- The current node satisfies the input predicate, process it
elsif Requires_Processing.all (Scen) then
Processor.all (Scen, In_State);
end if;
-- Save a general scenario regardless of whether it satisfies the
-- input predicate. This allows for quick subsequent traversals of
-- general scenarios, even with different predicates.
if Is_Suitable_Access_Taken (Scen)
or else Is_Suitable_Call (Scen)
or else Is_Suitable_Instantiation (Scen)
or else Is_Suitable_Variable_Assignment (Scen)
or else Is_Suitable_Variable_Reference (Scen)
then
NE_List.Append (Scenarios, Scen);
end if;
return OK;
end Traverse_Potential_Scenario;
-- Start of processing for Traverse_Body
begin
-- Nothing to do when the traversal is suppressed
if In_State.Traversal = No_Traversal then
return;
-- Nothing to do when there is no input
elsif No (N) then
return;
-- Nothing to do when the input is not a subprogram body
elsif Nkind (N) /= N_Subprogram_Body then
return;
-- Nothing to do if the subprogram body was already traversed
elsif Is_Traversed_Body (N) then
return;
end if;
-- Mark the subprogram body as traversed
Set_Is_Traversed_Body (N);
Scenarios := Nested_Scenarios (N);
-- The subprogram body has been traversed at least once, and all
-- scenarios that appear within its declarations and statements
-- have already been collected. Directly retraverse the scenarios
-- without having to retraverse the subprogram body subtree.
if NE_List.Present (Scenarios) then
Traverse_Collected_Scenarios;
-- Otherwise the subprogram body is being traversed for the first
-- time. Collect all scenarios that appear within its declarations
-- and statements in case the subprogram body has to be retraversed
-- multiple times.
else
Scenarios := NE_List.Create;
Set_Nested_Scenarios (N, Scenarios);
Traverse_List (Declarations (N));
Traverse_Potential_Scenarios (Handled_Statement_Sequence (N));
end if;
end Traverse_Body;
end Body_Processor;
-----------------------
-- Build_Call_Marker --
-----------------------
procedure Build_Call_Marker (N : Node_Id) is
function In_External_Context
(Call : Node_Id;
Subp_Id : Entity_Id) return Boolean;
pragma Inline (In_External_Context);
-- Determine whether entry, operator, or subprogram Subp_Id is external
-- to call Call which must reside within an instance.
function In_Premature_Context (Call : Node_Id) return Boolean;
pragma Inline (In_Premature_Context);
-- Determine whether call Call appears within a premature context
function Is_Default_Expression (Call : Node_Id) return Boolean;
pragma Inline (Is_Default_Expression);
-- Determine whether call Call acts as the expression of a defaulted
-- parameter within a source call.
function Is_Generic_Formal_Subp (Subp_Id : Entity_Id) return Boolean;
pragma Inline (Is_Generic_Formal_Subp);
-- Determine whether subprogram Subp_Id denotes a generic formal
-- subprogram which appears in the "prologue" of an instantiation.
-------------------------
-- In_External_Context --
-------------------------
function In_External_Context
(Call : Node_Id;
Subp_Id : Entity_Id) return Boolean
is
Spec_Decl : constant Entity_Id := Unit_Declaration_Node (Subp_Id);
Inst : Node_Id;
Inst_Body : Node_Id;
Inst_Spec : Node_Id;
begin
Inst := Find_Enclosing_Instance (Call);
-- The call appears within an instance
if Present (Inst) then
-- The call comes from the main unit and the target does not
if In_Extended_Main_Code_Unit (Call)
and then not In_Extended_Main_Code_Unit (Spec_Decl)
then
return True;
-- Otherwise the target declaration must not appear within the
-- instance spec or body.
else
Spec_And_Body_From_Node
(N => Inst,
Spec_Decl => Inst_Spec,
Body_Decl => Inst_Body);
return not In_Subtree
(N => Spec_Decl,
Root1 => Inst_Spec,
Root2 => Inst_Body);
end if;
end if;
return False;
end In_External_Context;
--------------------------
-- In_Premature_Context --
--------------------------
function In_Premature_Context (Call : Node_Id) return Boolean is
Par : Node_Id;
begin
-- Climb the parent chain looking for premature contexts
Par := Parent (Call);
while Present (Par) loop
-- Aspect specifications and generic associations are premature
-- contexts because nested calls has not been relocated to their
-- final context.
if Nkind (Par) in N_Aspect_Specification | N_Generic_Association
then
return True;
-- Prevent the search from going too far
elsif Is_Body_Or_Package_Declaration (Par) then
exit;
end if;
Par := Parent (Par);
end loop;
return False;
end In_Premature_Context;
---------------------------
-- Is_Default_Expression --
---------------------------
function Is_Default_Expression (Call : Node_Id) return Boolean is
Outer_Call : constant Node_Id := Parent (Call);
Outer_Nam : Node_Id;
begin
-- To qualify, the node must appear immediately within a source call
-- which invokes a source target.
if Nkind (Outer_Call) in N_Entry_Call_Statement
| N_Function_Call
| N_Procedure_Call_Statement
and then Comes_From_Source (Outer_Call)
then
Outer_Nam := Call_Name (Outer_Call);
return
Is_Entity_Name (Outer_Nam)
and then Present (Entity (Outer_Nam))
and then Is_Subprogram_Or_Entry (Entity (Outer_Nam))
and then Comes_From_Source (Entity (Outer_Nam));
end if;
return False;
end Is_Default_Expression;
----------------------------
-- Is_Generic_Formal_Subp --
----------------------------
function Is_Generic_Formal_Subp (Subp_Id : Entity_Id) return Boolean is
Subp_Decl : constant Node_Id := Unit_Declaration_Node (Subp_Id);
Context : constant Node_Id := Parent (Subp_Decl);
begin
-- To qualify, the subprogram must rename a generic actual subprogram
-- where the enclosing context is an instantiation.
return
Nkind (Subp_Decl) = N_Subprogram_Renaming_Declaration
and then not Comes_From_Source (Subp_Decl)
and then Nkind (Context) in N_Function_Specification
| N_Package_Specification
| N_Procedure_Specification
and then Present (Generic_Parent (Context));
end Is_Generic_Formal_Subp;
-- Local variables
Call_Nam : Node_Id;
Marker : Node_Id;
Subp_Id : Entity_Id;
-- Start of processing for Build_Call_Marker
begin
-- Nothing to do when switch -gnatH (legacy elaboration checking mode
-- enabled) is in effect because the legacy ABE mechanism does not need
-- to carry out this action.
if Legacy_Elaboration_Checks then
return;
-- Nothing to do when the call is being preanalyzed as the marker will
-- be inserted in the wrong place.
elsif Preanalysis_Active then
return;
-- Nothing to do when the elaboration phase of the compiler is not
-- active.
elsif not Elaboration_Phase_Active then
return;
-- Nothing to do when the input does not denote a call or a requeue
elsif Nkind (N) not in N_Entry_Call_Statement
| N_Function_Call
| N_Procedure_Call_Statement
| N_Requeue_Statement
then
return;
-- Nothing to do when the input denotes entry call or requeue statement,
-- and switch -gnatd_e (ignore entry calls and requeue statements for
-- elaboration) is in effect.
elsif Debug_Flag_Underscore_E
and then Nkind (N) in N_Entry_Call_Statement | N_Requeue_Statement
then
return;
-- Nothing to do when the call is analyzed/resolved too early within an
-- intermediate context. This check is saved for last because it incurs
-- a performance penalty.
elsif In_Premature_Context (N) then
return;
end if;
Call_Nam := Call_Name (N);
-- Nothing to do when the call is erroneous or left in a bad state
if not (Is_Entity_Name (Call_Nam)
and then Present (Entity (Call_Nam))
and then Is_Subprogram_Or_Entry (Entity (Call_Nam)))
then
return;
end if;
Subp_Id := Canonical_Subprogram (Entity (Call_Nam));
-- Nothing to do when the call invokes a generic formal subprogram and
-- switch -gnatd.G (ignore calls through generic formal parameters for
-- elaboration) is in effect. This check must be performed with the
-- direct target of the call to avoid the side effects of mapping
-- actuals to formals using renamings.
if Debug_Flag_Dot_GG
and then Is_Generic_Formal_Subp (Entity (Call_Nam))
then
return;
-- Nothing to do when the call appears within the expanded spec or
-- body of an instantiated generic, the call does not invoke a generic
-- formal subprogram, the target is external to the instance, and switch
-- -gnatdL (ignore external calls from instances for elaboration) is in
-- effect. This check must be performed with the direct target of the
-- call to avoid the side effects of mapping actuals to formals using
-- renamings.
elsif Debug_Flag_LL
and then not Is_Generic_Formal_Subp (Entity (Call_Nam))
and then In_External_Context
(Call => N,
Subp_Id => Subp_Id)
then
return;
-- Nothing to do when the call invokes an assertion pragma procedure
-- and switch -gnatd_p (ignore assertion pragmas for elaboration) is
-- in effect.
elsif Debug_Flag_Underscore_P
and then Is_Assertion_Pragma_Target (Subp_Id)
then
return;
-- Static expression functions require no ABE processing
elsif Is_Static_Function (Subp_Id) then
return;
-- Source calls to source targets are always considered because they
-- reflect the original call graph.
elsif Comes_From_Source (N) and then Comes_From_Source (Subp_Id) then
null;
-- A call to a source function which acts as the default expression in
-- another call requires special detection.
elsif Comes_From_Source (Subp_Id)
and then Nkind (N) = N_Function_Call
and then Is_Default_Expression (N)
then
null;
-- The target emulates Ada semantics
elsif Is_Ada_Semantic_Target (Subp_Id) then
null;
-- The target acts as a link between scenarios
elsif Is_Bridge_Target (Subp_Id) then
null;
-- The target emulates SPARK semantics
elsif Is_SPARK_Semantic_Target (Subp_Id) then
null;
-- Otherwise the call is not suitable for ABE processing. This prevents
-- the generation of call markers which will never play a role in ABE
-- diagnostics.
else
return;
end if;
-- At this point it is known that the call will play some role in ABE
-- checks and diagnostics. Create a corresponding call marker in case
-- the original call is heavily transformed by expansion later on.
Marker := Make_Call_Marker (Sloc (N));
-- Inherit the attributes of the original call
Set_Is_Declaration_Level_Node
(Marker, Find_Enclosing_Level (N) = Declaration_Level);
Set_Is_Dispatching_Call
(Marker,
Nkind (N) in N_Subprogram_Call
and then Present (Controlling_Argument (N)));
Set_Is_Elaboration_Checks_OK_Node
(Marker, Is_Elaboration_Checks_OK_Node (N));
Set_Is_Elaboration_Warnings_OK_Node
(Marker, Is_Elaboration_Warnings_OK_Node (N));
Set_Is_Ignored_Ghost_Node (Marker, Is_Ignored_Ghost_Node (N));
Set_Is_Source_Call (Marker, Comes_From_Source (N));
Set_Is_SPARK_Mode_On_Node (Marker, Is_SPARK_Mode_On_Node (N));
Set_Target (Marker, Subp_Id);
-- Ada 2022 (AI12-0175): Calls to certain functions that are essentially
-- unchecked conversions are preelaborable.
if Ada_Version >= Ada_2022 then
Set_Is_Preelaborable_Call (Marker, Is_Preelaborable_Construct (N));
else
Set_Is_Preelaborable_Call (Marker, False);
end if;
-- The marker is inserted prior to the original call. This placement has
-- several desirable effects:
-- 1) The marker appears in the same context, in close proximity to
-- the call.
-- <marker>
-- <call>
-- 2) Inserting the marker prior to the call ensures that an ABE check
-- will take effect prior to the call.
-- <ABE check>
-- <marker>
-- <call>
-- 3) The above two properties are preserved even when the call is a
-- function which is subsequently relocated in order to capture its
-- result. Note that if the call is relocated to a new context, the
-- relocated call will receive a marker of its own.
-- <ABE check>
-- <maker>
-- Temp : ... := Func_Call ...;
-- ... Temp ...
-- The insertion must take place even when the call does not occur in
-- the main unit to keep the tree symmetric. This ensures that internal
-- name serialization is consistent in case the call marker causes the
-- tree to transform in some way.
Insert_Action (N, Marker);
-- The marker becomes the "corresponding" scenario for the call. Save
-- the marker for later processing by the ABE phase.
Record_Elaboration_Scenario (Marker);
end Build_Call_Marker;
-------------------------------------
-- Build_Variable_Reference_Marker --
-------------------------------------
procedure Build_Variable_Reference_Marker
(N : Node_Id;
Read : Boolean;
Write : Boolean)
is
function Ultimate_Variable (Var_Id : Entity_Id) return Entity_Id;
pragma Inline (Ultimate_Variable);
-- Obtain the ultimate renamed variable of variable Var_Id
-----------------------
-- Ultimate_Variable --
-----------------------
function Ultimate_Variable (Var_Id : Entity_Id) return Entity_Id is
Ren_Id : Entity_Id;
begin
Ren_Id := Var_Id;
while Present (Renamed_Entity (Ren_Id))
and then Nkind (Renamed_Entity (Ren_Id)) in N_Entity
loop
Ren_Id := Renamed_Entity (Ren_Id);
end loop;
return Ren_Id;
end Ultimate_Variable;
-- Local variables
Var_Id : constant Entity_Id := Ultimate_Variable (Entity (N));
Marker : Node_Id;
-- Start of processing for Build_Variable_Reference_Marker
begin
-- Nothing to do when the elaboration phase of the compiler is not
-- active.
if not Elaboration_Phase_Active then
return;
end if;
Marker := Make_Variable_Reference_Marker (Sloc (N));
-- Inherit the attributes of the original variable reference
Set_Is_Elaboration_Checks_OK_Node
(Marker, Is_Elaboration_Checks_OK_Node (N));
Set_Is_Elaboration_Warnings_OK_Node
(Marker, Is_Elaboration_Warnings_OK_Node (N));
Set_Is_Read (Marker, Read);
Set_Is_SPARK_Mode_On_Node (Marker, Is_SPARK_Mode_On_Node (N));
Set_Is_Write (Marker, Write);
Set_Target (Marker, Var_Id);
-- The marker is inserted prior to the original variable reference. The
-- insertion must take place even when the reference does not occur in
-- the main unit to keep the tree symmetric. This ensures that internal
-- name serialization is consistent in case the variable marker causes
-- the tree to transform in some way.
Insert_Action (N, Marker);
-- The marker becomes the "corresponding" scenario for the reference.
-- Save the marker for later processing for the ABE phase.
Record_Elaboration_Scenario (Marker);
end Build_Variable_Reference_Marker;
---------------
-- Call_Name --
---------------
function Call_Name (Call : Node_Id) return Node_Id is
Nam : Node_Id;
begin
Nam := Name (Call);
-- When the call invokes an entry family, the name appears as an indexed
-- component.
if Nkind (Nam) = N_Indexed_Component then
Nam := Prefix (Nam);
end if;
-- When the call employs the object.operation form, the name appears as
-- a selected component.
if Nkind (Nam) = N_Selected_Component then
Nam := Selector_Name (Nam);
end if;
return Nam;
end Call_Name;
--------------------------
-- Canonical_Subprogram --
--------------------------
function Canonical_Subprogram (Subp_Id : Entity_Id) return Entity_Id is
Canon_Id : Entity_Id;
begin
Canon_Id := Subp_Id;
-- Use the original protected subprogram when dealing with one of the
-- specialized lock-manipulating versions.
if Is_Protected_Body_Subp (Canon_Id) then
Canon_Id := Protected_Subprogram (Canon_Id);
end if;
-- Obtain the original subprogram except when the subprogram is also
-- an instantiation. In this case the alias is the internally generated
-- subprogram which appears within the anonymous package created for the
-- instantiation, making it unuitable.
if not Is_Generic_Instance (Canon_Id) then
Canon_Id := Get_Renamed_Entity (Canon_Id);
end if;
return Canon_Id;
end Canonical_Subprogram;
---------------------------------
-- Check_Elaboration_Scenarios --
---------------------------------
procedure Check_Elaboration_Scenarios is
Iter : NE_Set.Iterator;
begin
-- Nothing to do when switch -gnatH (legacy elaboration checking mode
-- enabled) is in effect because the legacy ABE mechanism does not need
-- to carry out this action.
if Legacy_Elaboration_Checks then
Finalize_All_Data_Structures;
return;
-- Nothing to do when the elaboration phase of the compiler is not
-- active.
elsif not Elaboration_Phase_Active then
Finalize_All_Data_Structures;
return;
end if;
-- Restore the original elaboration model which was in effect when the
-- scenarios were first recorded. The model may be specified by pragma
-- Elaboration_Checks which appears on the initial declaration of the
-- main unit.
Install_Elaboration_Model (Unit_Entity (Main_Unit_Entity));
-- Examine the context of the main unit and record all units with prior
-- elaboration with respect to it.
Collect_Elaborated_Units;
-- Examine all scenarios saved during the Recording phase applying the
-- Ada or SPARK elaboration rules in order to detect and diagnose ABE
-- issues, install conditional ABE checks, and ensure the elaboration
-- of units.
Iter := Iterate_Declaration_Scenarios;
Check_Conditional_ABE_Scenarios (Iter);
Iter := Iterate_Library_Body_Scenarios;
Check_Conditional_ABE_Scenarios (Iter);
Iter := Iterate_Library_Spec_Scenarios;
Check_Conditional_ABE_Scenarios (Iter);
-- Examine each SPARK scenario saved during the Recording phase which
-- is not necessarily executable during elaboration, but still requires
-- elaboration-related checks.
Check_SPARK_Scenarios;
-- Add conditional ABE checks for all scenarios that require one when
-- the dynamic model is in effect.
Install_Dynamic_ABE_Checks;
-- Examine all scenarios saved during the Recording phase along with
-- invocation constructs within the spec and body of the main unit.
-- Record the declarations and paths that reach into an external unit
-- in the ALI file of the main unit.
Record_Invocation_Graph;
-- Destroy all internal data structures and complete the elaboration
-- phase of the compiler.
Finalize_All_Data_Structures;
Set_Elaboration_Phase (Completed);
end Check_Elaboration_Scenarios;
---------------------
-- Check_Installer --
---------------------
package body Check_Installer is
-----------------------
-- Local subprograms --
-----------------------
function ABE_Check_Or_Failure_OK
(N : Node_Id;
Targ_Id : Entity_Id;
Unit_Id : Entity_Id) return Boolean;
pragma Inline (ABE_Check_Or_Failure_OK);
-- Determine whether a conditional ABE check or guaranteed ABE failure
-- can be installed for scenario N with target Targ_Id which resides in
-- unit Unit_Id.
function Insertion_Node (N : Node_Id) return Node_Id;
pragma Inline (Insertion_Node);
-- Obtain the proper insertion node of an ABE check or failure for
-- scenario N.
procedure Insert_ABE_Check_Or_Failure (N : Node_Id; Check : Node_Id);
pragma Inline (Insert_ABE_Check_Or_Failure);
-- Insert conditional ABE check or guaranteed ABE failure Check prior to
-- scenario N.
procedure Install_Scenario_ABE_Check_Common
(N : Node_Id;
Targ_Id : Entity_Id;
Targ_Rep : Target_Rep_Id);
pragma Inline (Install_Scenario_ABE_Check_Common);
-- Install a conditional ABE check for scenario N to ensure that target
-- Targ_Id is properly elaborated. Targ_Rep is the representation of the
-- target.
procedure Install_Scenario_ABE_Failure_Common (N : Node_Id);
pragma Inline (Install_Scenario_ABE_Failure_Common);
-- Install a guaranteed ABE failure for scenario N
procedure Install_Unit_ABE_Check_Common
(N : Node_Id;
Unit_Id : Entity_Id);
pragma Inline (Install_Unit_ABE_Check_Common);
-- Install a conditional ABE check for scenario N to ensure that unit
-- Unit_Id is properly elaborated.
-----------------------------
-- ABE_Check_Or_Failure_OK --
-----------------------------
function ABE_Check_Or_Failure_OK
(N : Node_Id;
Targ_Id : Entity_Id;
Unit_Id : Entity_Id) return Boolean
is
pragma Unreferenced (Targ_Id);
Ins_Node : constant Node_Id := Insertion_Node (N);
begin
if not Check_Or_Failure_Generation_OK then
return False;
-- Nothing to do when the scenario denots a compilation unit because
-- there is no executable environment at that level.
elsif Nkind (Parent (Ins_Node)) = N_Compilation_Unit then
return False;
-- An ABE check or failure is not needed when the target is defined
-- in a unit which is elaborated prior to the main unit. This check
-- must also consider the following cases:
--
-- * The unit of the target appears in the context of the main unit
--
-- * The unit of the target is subject to pragma Elaborate_Body. An
-- ABE check MUST NOT be generated because the unit is always
-- elaborated prior to the main unit.
--
-- * The unit of the target is the main unit. An ABE check MUST be
-- added in this case because a conditional ABE may be raised
-- depending on the flow of execution within the main unit (flag
-- Same_Unit_OK is False).
elsif Has_Prior_Elaboration
(Unit_Id => Unit_Id,
Context_OK => True,
Elab_Body_OK => True)
then
return False;
end if;
return True;
end ABE_Check_Or_Failure_OK;
------------------------------------
-- Check_Or_Failure_Generation_OK --
------------------------------------
function Check_Or_Failure_Generation_OK return Boolean is
begin
-- An ABE check or failure is not needed when the compilation will
-- not produce an executable.
if Serious_Errors_Detected > 0 then
return False;
-- An ABE check or failure must not be installed when compiling for
-- GNATprove because raise statements are not supported.
elsif GNATprove_Mode then
return False;
end if;
return True;
end Check_Or_Failure_Generation_OK;
--------------------
-- Insertion_Node --
--------------------
function Insertion_Node (N : Node_Id) return Node_Id is
begin
-- When the scenario denotes an instantiation, the proper insertion
-- node is the instance spec. This ensures that the generic actuals
-- will not be evaluated prior to a potential ABE.
if Nkind (N) in N_Generic_Instantiation
and then Present (Instance_Spec (N))
then
return Instance_Spec (N);
-- Otherwise the proper insertion node is the scenario itself
else
return N;
end if;
end Insertion_Node;
---------------------------------
-- Insert_ABE_Check_Or_Failure --
---------------------------------
procedure Insert_ABE_Check_Or_Failure (N : Node_Id; Check : Node_Id) is
Ins_Nod : constant Node_Id := Insertion_Node (N);
Scop_Id : constant Entity_Id := Find_Enclosing_Scope (Ins_Nod);
begin
-- Install the nearest enclosing scope of the scenario as there must
-- be something on the scope stack.
Push_Scope (Scop_Id);
Insert_Action (Ins_Nod, Check);
Pop_Scope;
end Insert_ABE_Check_Or_Failure;
--------------------------------
-- Install_Dynamic_ABE_Checks --
--------------------------------
procedure Install_Dynamic_ABE_Checks is
Iter : NE_Set.Iterator;
N : Node_Id;
begin
if not Check_Or_Failure_Generation_OK then
return;
-- Nothing to do if the dynamic model is not in effect
elsif not Dynamic_Elaboration_Checks then
return;
end if;
-- Install a conditional ABE check for each saved scenario
Iter := Iterate_Dynamic_ABE_Check_Scenarios;
while NE_Set.Has_Next (Iter) loop
NE_Set.Next (Iter, N);
Process_Conditional_ABE
(N => N,
In_State => Dynamic_Model_State);
end loop;
end Install_Dynamic_ABE_Checks;
--------------------------------
-- Install_Scenario_ABE_Check --
--------------------------------
procedure Install_Scenario_ABE_Check
(N : Node_Id;
Targ_Id : Entity_Id;
Targ_Rep : Target_Rep_Id;
Disable : Scenario_Rep_Id)
is
begin
-- Nothing to do when the scenario does not need an ABE check
if not ABE_Check_Or_Failure_OK
(N => N,
Targ_Id => Targ_Id,
Unit_Id => Unit (Targ_Rep))
then
return;
end if;
-- Prevent multiple attempts to install the same ABE check
Disable_Elaboration_Checks (Disable);
Install_Scenario_ABE_Check_Common
(N => N,
Targ_Id => Targ_Id,
Targ_Rep => Targ_Rep);
end Install_Scenario_ABE_Check;
--------------------------------
-- Install_Scenario_ABE_Check --
--------------------------------
procedure Install_Scenario_ABE_Check
(N : Node_Id;
Targ_Id : Entity_Id;
Targ_Rep : Target_Rep_Id;
Disable : Target_Rep_Id)
is
begin
-- Nothing to do when the scenario does not need an ABE check
if not ABE_Check_Or_Failure_OK
(N => N,
Targ_Id => Targ_Id,
Unit_Id => Unit (Targ_Rep))
then
return;
end if;
-- Prevent multiple attempts to install the same ABE check
Disable_Elaboration_Checks (Disable);
Install_Scenario_ABE_Check_Common
(N => N,
Targ_Id => Targ_Id,
Targ_Rep => Targ_Rep);
end Install_Scenario_ABE_Check;
---------------------------------------
-- Install_Scenario_ABE_Check_Common --
---------------------------------------
procedure Install_Scenario_ABE_Check_Common
(N : Node_Id;
Targ_Id : Entity_Id;
Targ_Rep : Target_Rep_Id)
is
Targ_Body : constant Node_Id := Body_Declaration (Targ_Rep);
Targ_Decl : constant Node_Id := Spec_Declaration (Targ_Rep);
pragma Assert (Present (Targ_Body));
pragma Assert (Present (Targ_Decl));
procedure Build_Elaboration_Entity;
pragma Inline (Build_Elaboration_Entity);
-- Create a new elaboration flag for Targ_Id, insert it prior to
-- Targ_Decl, and set it after Targ_Body.
------------------------------
-- Build_Elaboration_Entity --
------------------------------
procedure Build_Elaboration_Entity is
Loc : constant Source_Ptr := Sloc (Targ_Id);
Flag_Id : Entity_Id;
begin
-- Nothing to do if the target has an elaboration flag
if Present (Elaboration_Entity (Targ_Id)) then
return;
end if;
-- Create the declaration of the elaboration flag. The name
-- carries a unique counter in case the name is overloaded.
Flag_Id :=
Make_Defining_Identifier (Loc,
Chars => New_External_Name (Chars (Targ_Id), 'E', -1));
Set_Elaboration_Entity (Targ_Id, Flag_Id);
Set_Elaboration_Entity_Required (Targ_Id);
Push_Scope (Scope (Targ_Id));
-- Generate:
-- Enn : Short_Integer := 0;
Insert_Action (Targ_Decl,
Make_Object_Declaration (Loc,
Defining_Identifier => Flag_Id,
Object_Definition =>
New_Occurrence_Of (Standard_Short_Integer, Loc),
Expression => Make_Integer_Literal (Loc, Uint_0)));
-- Generate:
-- Enn := 1;
Set_Elaboration_Flag (Targ_Body, Targ_Id);
Pop_Scope;
end Build_Elaboration_Entity;
-- Local variables
Loc : constant Source_Ptr := Sloc (N);
-- Start for processing for Install_Scenario_ABE_Check_Common
begin
-- Create an elaboration flag for the target when it does not have
-- one.
Build_Elaboration_Entity;
-- Generate:
-- if not Targ_Id'Elaborated then
-- raise Program_Error with "access before elaboration";
-- end if;
Insert_ABE_Check_Or_Failure
(N => N,
Check =>
Make_Raise_Program_Error (Loc,
Condition =>
Make_Op_Not (Loc,
Right_Opnd =>
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (Targ_Id, Loc),
Attribute_Name => Name_Elaborated)),
Reason => PE_Access_Before_Elaboration));
end Install_Scenario_ABE_Check_Common;
----------------------------------
-- Install_Scenario_ABE_Failure --
----------------------------------
procedure Install_Scenario_ABE_Failure
(N : Node_Id;
Targ_Id : Entity_Id;
Targ_Rep : Target_Rep_Id;
Disable : Scenario_Rep_Id)
is
begin
-- Nothing to do when the scenario does not require an ABE failure
if not ABE_Check_Or_Failure_OK
(N => N,
Targ_Id => Targ_Id,
Unit_Id => Unit (Targ_Rep))
then
return;
end if;
-- Prevent multiple attempts to install the same ABE check
Disable_Elaboration_Checks (Disable);
Install_Scenario_ABE_Failure_Common (N);
end Install_Scenario_ABE_Failure;
----------------------------------
-- Install_Scenario_ABE_Failure --
----------------------------------
procedure Install_Scenario_ABE_Failure
(N : Node_Id;
Targ_Id : Entity_Id;
Targ_Rep : Target_Rep_Id;
Disable : Target_Rep_Id)
is
begin
-- Nothing to do when the scenario does not require an ABE failure
if not ABE_Check_Or_Failure_OK
(N => N,
Targ_Id => Targ_Id,
Unit_Id => Unit (Targ_Rep))
then
return;
end if;
-- Prevent multiple attempts to install the same ABE check
Disable_Elaboration_Checks (Disable);
Install_Scenario_ABE_Failure_Common (N);
end Install_Scenario_ABE_Failure;
-----------------------------------------
-- Install_Scenario_ABE_Failure_Common --
-----------------------------------------
procedure Install_Scenario_ABE_Failure_Common (N : Node_Id) is
Loc : constant Source_Ptr := Sloc (N);
begin
-- Generate:
-- raise Program_Error with "access before elaboration";
Insert_ABE_Check_Or_Failure
(N => N,
Check =>
Make_Raise_Program_Error (Loc,
Reason => PE_Access_Before_Elaboration));
end Install_Scenario_ABE_Failure_Common;
----------------------------
-- Install_Unit_ABE_Check --
----------------------------
procedure Install_Unit_ABE_Check
(N : Node_Id;
Unit_Id : Entity_Id;
Disable : Scenario_Rep_Id)
is
Spec_Id : constant Entity_Id := Unique_Entity (Unit_Id);
begin
-- Nothing to do when the scenario does not require an ABE check
if not ABE_Check_Or_Failure_OK
(N => N,
Targ_Id => Empty,
Unit_Id => Spec_Id)
then
return;
end if;
-- Prevent multiple attempts to install the same ABE check
Disable_Elaboration_Checks (Disable);
Install_Unit_ABE_Check_Common
(N => N,
Unit_Id => Unit_Id);
end Install_Unit_ABE_Check;
----------------------------
-- Install_Unit_ABE_Check --
----------------------------
procedure Install_Unit_ABE_Check
(N : Node_Id;
Unit_Id : Entity_Id;
Disable : Target_Rep_Id)
is
Spec_Id : constant Entity_Id := Unique_Entity (Unit_Id);
begin
-- Nothing to do when the scenario does not require an ABE check
if not ABE_Check_Or_Failure_OK
(N => N,
Targ_Id => Empty,
Unit_Id => Spec_Id)
then
return;
end if;
-- Prevent multiple attempts to install the same ABE check
Disable_Elaboration_Checks (Disable);
Install_Unit_ABE_Check_Common
(N => N,
Unit_Id => Unit_Id);
end Install_Unit_ABE_Check;
-----------------------------------
-- Install_Unit_ABE_Check_Common --
-----------------------------------
procedure Install_Unit_ABE_Check_Common
(N : Node_Id;
Unit_Id : Entity_Id)
is
Loc : constant Source_Ptr := Sloc (N);
Spec_Id : constant Entity_Id := Unique_Entity (Unit_Id);
begin
-- Generate:
-- if not Spec_Id'Elaborated then
-- raise Program_Error with "access before elaboration";
-- end if;
Insert_ABE_Check_Or_Failure
(N => N,
Check =>
Make_Raise_Program_Error (Loc,
Condition =>
Make_Op_Not (Loc,
Right_Opnd =>
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (Spec_Id, Loc),
Attribute_Name => Name_Elaborated)),
Reason => PE_Access_Before_Elaboration));
end Install_Unit_ABE_Check_Common;
end Check_Installer;
----------------------
-- Compilation_Unit --
----------------------
function Compilation_Unit (Unit_Id : Entity_Id) return Node_Id is
Comp_Unit : Node_Id;
begin
Comp_Unit := Parent (Unit_Id);
-- Handle the case where a concurrent subunit is rewritten as a null
-- statement due to expansion activities.
if Nkind (Comp_Unit) = N_Null_Statement
and then Nkind (Original_Node (Comp_Unit)) in
N_Protected_Body | N_Task_Body
then
Comp_Unit := Parent (Comp_Unit);
pragma Assert (Nkind (Comp_Unit) = N_Subunit);
-- Otherwise use the declaration node of the unit
else
Comp_Unit := Parent (Unit_Declaration_Node (Unit_Id));
end if;
-- Handle the case where a subprogram instantiation which acts as a
-- compilation unit is expanded into an anonymous package that wraps
-- the instantiated subprogram.
if Nkind (Comp_Unit) = N_Package_Specification
and then Nkind (Original_Node (Parent (Comp_Unit))) in
N_Function_Instantiation | N_Procedure_Instantiation
then
Comp_Unit := Parent (Parent (Comp_Unit));
-- Handle the case where the compilation unit is a subunit
elsif Nkind (Comp_Unit) = N_Subunit then
Comp_Unit := Parent (Comp_Unit);
end if;
pragma Assert (Nkind (Comp_Unit) = N_Compilation_Unit);
return Comp_Unit;
end Compilation_Unit;
-------------------------------
-- Conditional_ABE_Processor --
-------------------------------
package body Conditional_ABE_Processor is
-----------------------
-- Local subprograms --
-----------------------
function Is_Conditional_ABE_Scenario (N : Node_Id) return Boolean;
pragma Inline (Is_Conditional_ABE_Scenario);
-- Determine whether node N is a suitable scenario for conditional ABE
-- checks and diagnostics.
procedure Process_Conditional_ABE_Access_Taken
(Attr : Node_Id;
Attr_Rep : Scenario_Rep_Id;
In_State : Processing_In_State);
pragma Inline (Process_Conditional_ABE_Access_Taken);
-- Perform ABE checks and diagnostics for attribute reference Attr with
-- representation Attr_Rep which takes 'Access of an entry, operator, or
-- subprogram. In_State is the current state of the Processing phase.
procedure Process_Conditional_ABE_Activation
(Call : Node_Id;
Call_Rep : Scenario_Rep_Id;
Obj_Id : Entity_Id;
Obj_Rep : Target_Rep_Id;
Task_Typ : Entity_Id;
Task_Rep : Target_Rep_Id;
In_State : Processing_In_State);
pragma Inline (Process_Conditional_ABE_Activation);
-- Perform common conditional ABE checks and diagnostics for activation
-- call Call which activates object Obj_Id of task type Task_Typ. Formal
-- Call_Rep denotes the representation of the call. Obj_Rep denotes the
-- representation of the object. Task_Rep denotes the representation of
-- the task type. In_State is the current state of the Processing phase.
procedure Process_Conditional_ABE_Call
(Call : Node_Id;
Call_Rep : Scenario_Rep_Id;
In_State : Processing_In_State);
pragma Inline (Process_Conditional_ABE_Call);
-- Top-level dispatcher for processing of calls. Perform ABE checks and
-- diagnostics for call Call with representation Call_Rep. In_State is
-- the current state of the Processing phase.
procedure Process_Conditional_ABE_Call_Ada
(Call : Node_Id;
Call_Rep : Scenario_Rep_Id;
Subp_Id : Entity_Id;
Subp_Rep : Target_Rep_Id;
In_State : Processing_In_State);
pragma Inline (Process_Conditional_ABE_Call_Ada);
-- Perform ABE checks and diagnostics for call Call which invokes entry,
-- operator, or subprogram Subp_Id using the Ada rules. Call_Rep denotes
-- the representation of the call. Subp_Rep denotes the representation
-- of the subprogram. In_State is the current state of the Processing
-- phase.
procedure Process_Conditional_ABE_Call_SPARK
(Call : Node_Id;
Call_Rep : Scenario_Rep_Id;
Subp_Id : Entity_Id;
Subp_Rep : Target_Rep_Id;
In_State : Processing_In_State);
pragma Inline (Process_Conditional_ABE_Call_SPARK);
-- Perform ABE checks and diagnostics for call Call which invokes entry,
-- operator, or subprogram Subp_Id using the SPARK rules. Call_Rep is
-- the representation of the call. Subp_Rep denotes the representation
-- of the subprogram. In_State is the current state of the Processing
-- phase.
procedure Process_Conditional_ABE_Instantiation
(Inst : Node_Id;
Inst_Rep : Scenario_Rep_Id;
In_State : Processing_In_State);
pragma Inline (Process_Conditional_ABE_Instantiation);
-- Top-level dispatcher for processing of instantiations. Perform ABE
-- checks and diagnostics for instantiation Inst with representation
-- Inst_Rep. In_State is the current state of the Processing phase.
procedure Process_Conditional_ABE_Instantiation_Ada
(Inst : Node_Id;
Inst_Rep : Scenario_Rep_Id;
Gen_Id : Entity_Id;
Gen_Rep : Target_Rep_Id;
In_State : Processing_In_State);
pragma Inline (Process_Conditional_ABE_Instantiation_Ada);
-- Perform ABE checks and diagnostics for instantiation Inst of generic
-- Gen_Id using the Ada rules. Inst_Rep denotes the representation of
-- the instnace. Gen_Rep is the representation of the generic. In_State
-- is the current state of the Processing phase.
procedure Process_Conditional_ABE_Instantiation_SPARK
(Inst : Node_Id;
Inst_Rep : Scenario_Rep_Id;
Gen_Id : Entity_Id;
Gen_Rep : Target_Rep_Id;
In_State : Processing_In_State);
pragma Inline (Process_Conditional_ABE_Instantiation_SPARK);
-- Perform ABE checks and diagnostics for instantiation Inst of generic
-- Gen_Id using the SPARK rules. Inst_Rep denotes the representation of
-- the instnace. Gen_Rep is the representation of the generic. In_State
-- is the current state of the Processing phase.
procedure Process_Conditional_ABE_Variable_Assignment
(Asmt : Node_Id;
Asmt_Rep : Scenario_Rep_Id;
In_State : Processing_In_State);
pragma Inline (Process_Conditional_ABE_Variable_Assignment);
-- Top-level dispatcher for processing of variable assignments. Perform
-- ABE checks and diagnostics for assignment Asmt with representation
-- Asmt_Rep. In_State denotes the current state of the Processing phase.
procedure Process_Conditional_ABE_Variable_Assignment_Ada
(Asmt : Node_Id;
Asmt_Rep : Scenario_Rep_Id;
Var_Id : Entity_Id;
Var_Rep : Target_Rep_Id;
In_State : Processing_In_State);
pragma Inline (Process_Conditional_ABE_Variable_Assignment_Ada);
-- Perform ABE checks and diagnostics for assignment statement Asmt that
-- modifies the value of variable Var_Id using the Ada rules. Asmt_Rep
-- denotes the representation of the assignment. Var_Rep denotes the
-- representation of the variable. In_State is the current state of the
-- Processing phase.
procedure Process_Conditional_ABE_Variable_Assignment_SPARK
(Asmt : Node_Id;
Asmt_Rep : Scenario_Rep_Id;
Var_Id : Entity_Id;
Var_Rep : Target_Rep_Id;
In_State : Processing_In_State);
pragma Inline (Process_Conditional_ABE_Variable_Assignment_SPARK);
-- Perform ABE checks and diagnostics for assignment statement Asmt that
-- modifies the value of variable Var_Id using the SPARK rules. Asmt_Rep
-- denotes the representation of the assignment. Var_Rep denotes the
-- representation of the variable. In_State is the current state of the
-- Processing phase.
procedure Process_Conditional_ABE_Variable_Reference
(Ref : Node_Id;
Ref_Rep : Scenario_Rep_Id;
In_State : Processing_In_State);
pragma Inline (Process_Conditional_ABE_Variable_Reference);
-- Perform ABE checks and diagnostics for variable reference Ref with
-- representation Ref_Rep. In_State denotes the current state of the
-- Processing phase.
procedure Traverse_Conditional_ABE_Body
(N : Node_Id;
In_State : Processing_In_State);
pragma Inline (Traverse_Conditional_ABE_Body);
-- Traverse subprogram body N looking for suitable scenarios that need
-- to be processed for conditional ABE checks and diagnostics. In_State
-- is the current state of the Processing phase.
-------------------------------------
-- Check_Conditional_ABE_Scenarios --
-------------------------------------
procedure Check_Conditional_ABE_Scenarios
(Iter : in out NE_Set.Iterator)
is
N : Node_Id;
begin
while NE_Set.Has_Next (Iter) loop
NE_Set.Next (Iter, N);
-- Reset the traversed status of all subprogram bodies because the
-- current conditional scenario acts as a new DFS traversal root.
Reset_Traversed_Bodies;
Process_Conditional_ABE
(N => N,
In_State => Conditional_ABE_State);
end loop;
end Check_Conditional_ABE_Scenarios;
---------------------------------
-- Is_Conditional_ABE_Scenario --
---------------------------------
function Is_Conditional_ABE_Scenario (N : Node_Id) return Boolean is
begin
return
Is_Suitable_Access_Taken (N)
or else Is_Suitable_Call (N)
or else Is_Suitable_Instantiation (N)
or else Is_Suitable_Variable_Assignment (N)
or else Is_Suitable_Variable_Reference (N);
end Is_Conditional_ABE_Scenario;
-----------------------------
-- Process_Conditional_ABE --
-----------------------------
procedure Process_Conditional_ABE
(N : Node_Id;
In_State : Processing_In_State)
is
Scen : constant Node_Id := Scenario (N);
Scen_Rep : Scenario_Rep_Id;
begin
-- Add the current scenario to the stack of active scenarios
Push_Active_Scenario (Scen);
-- 'Access
if Is_Suitable_Access_Taken (Scen) then
Process_Conditional_ABE_Access_Taken
(Attr => Scen,
Attr_Rep => Scenario_Representation_Of (Scen, In_State),
In_State => In_State);
-- Call or task activation
elsif Is_Suitable_Call (Scen) then
Scen_Rep := Scenario_Representation_Of (Scen, In_State);
-- Routine Build_Call_Marker creates call markers regardless of
-- whether the call occurs within the main unit or not. This way
-- the serialization of internal names is kept consistent. Only
-- call markers found within the main unit must be processed.
if In_Main_Context (Scen) then
Scen_Rep := Scenario_Representation_Of (Scen, In_State);
if Kind (Scen_Rep) = Call_Scenario then
Process_Conditional_ABE_Call
(Call => Scen,
Call_Rep => Scen_Rep,
In_State => In_State);
else
pragma Assert (Kind (Scen_Rep) = Task_Activation_Scenario);
Process_Activation
(Call => Scen,
Call_Rep => Scen_Rep,
Processor => Process_Conditional_ABE_Activation'Access,
In_State => In_State);
end if;
end if;
-- Instantiation
elsif Is_Suitable_Instantiation (Scen) then
Process_Conditional_ABE_Instantiation
(Inst => Scen,
Inst_Rep => Scenario_Representation_Of (Scen, In_State),
In_State => In_State);
-- Variable assignments
elsif Is_Suitable_Variable_Assignment (Scen) then
Process_Conditional_ABE_Variable_Assignment
(Asmt => Scen,
Asmt_Rep => Scenario_Representation_Of (Scen, In_State),
In_State => In_State);
-- Variable references
elsif Is_Suitable_Variable_Reference (Scen) then
-- Routine Build_Variable_Reference_Marker makes variable markers
-- regardless of whether the reference occurs within the main unit
-- or not. This way the serialization of internal names is kept
-- consistent. Only variable markers within the main unit must be
-- processed.
if In_Main_Context (Scen) then
Process_Conditional_ABE_Variable_Reference
(Ref => Scen,
Ref_Rep => Scenario_Representation_Of (Scen, In_State),
In_State => In_State);
end if;
end if;
-- Remove the current scenario from the stack of active scenarios
-- once all ABE diagnostics and checks have been performed.
Pop_Active_Scenario (Scen);
end Process_Conditional_ABE;
------------------------------------------
-- Process_Conditional_ABE_Access_Taken --
------------------------------------------
procedure Process_Conditional_ABE_Access_Taken
(Attr : Node_Id;
Attr_Rep : Scenario_Rep_Id;
In_State : Processing_In_State)
is
function Build_Access_Marker (Subp_Id : Entity_Id) return Node_Id;
pragma Inline (Build_Access_Marker);
-- Create a suitable call marker which invokes subprogram Subp_Id
-------------------------
-- Build_Access_Marker --
-------------------------
function Build_Access_Marker (Subp_Id : Entity_Id) return Node_Id is
Marker : Node_Id;
begin
Marker := Make_Call_Marker (Sloc (Attr));
-- Inherit relevant attributes from the attribute
Set_Target (Marker, Subp_Id);
Set_Is_Declaration_Level_Node
(Marker, Level (Attr_Rep) = Declaration_Level);
Set_Is_Dispatching_Call
(Marker, False);
Set_Is_Elaboration_Checks_OK_Node
(Marker, Elaboration_Checks_OK (Attr_Rep));
Set_Is_Elaboration_Warnings_OK_Node
(Marker, Elaboration_Warnings_OK (Attr_Rep));
Set_Is_Preelaborable_Call
(Marker, False);
Set_Is_Source_Call
(Marker, Comes_From_Source (Attr));
Set_Is_SPARK_Mode_On_Node
(Marker, SPARK_Mode_Of (Attr_Rep) = Is_On);
-- Partially insert the call marker into the tree by setting its
-- parent pointer.
Set_Parent (Marker, Attr);
return Marker;
end Build_Access_Marker;
-- Local variables
Root : constant Node_Id := Root_Scenario;
Subp_Id : constant Entity_Id := Target (Attr_Rep);
Subp_Rep : constant Target_Rep_Id :=
Target_Representation_Of (Subp_Id, In_State);
Body_Decl : constant Node_Id := Body_Declaration (Subp_Rep);
New_In_State : Processing_In_State := In_State;
-- Each step of the Processing phase constitutes a new state
-- Start of processing for Process_Conditional_ABE_Access
begin
-- Output relevant information when switch -gnatel (info messages on
-- implicit Elaborate[_All] pragmas) is in effect.
if Elab_Info_Messages
and then not New_In_State.Suppress_Info_Messages
then
Error_Msg_NE
("info: access to & during elaboration", Attr, Subp_Id);
end if;
-- Warnings are suppressed when a prior scenario is already in that
-- mode or when the attribute or the target have warnings suppressed.
-- Update the state of the Processing phase to reflect this.
New_In_State.Suppress_Warnings :=
New_In_State.Suppress_Warnings
or else not Elaboration_Warnings_OK (Attr_Rep)
or else not Elaboration_Warnings_OK (Subp_Rep);
-- Do not emit any ABE diagnostics when the current or previous
-- scenario in this traversal has suppressed elaboration warnings.
if New_In_State.Suppress_Warnings then
null;
-- Both the attribute and the corresponding subprogram body are in
-- the same unit. The body must appear prior to the root scenario
-- which started the recursive search. If this is not the case, then
-- there is a potential ABE if the access value is used to call the
-- subprogram. Emit a warning only when switch -gnatw.f (warnings on
-- suspucious 'Access) is in effect.
elsif Warn_On_Elab_Access
and then Present (Body_Decl)
and then In_Extended_Main_Code_Unit (Body_Decl)
and then Earlier_In_Extended_Unit (Root, Body_Decl)
then
Error_Msg_Name_1 := Attribute_Name (Attr);
Error_Msg_NE
("??% attribute of & before body seen", Attr, Subp_Id);
Error_Msg_N ("\possible Program_Error on later references", Attr);
Output_Active_Scenarios (Attr, New_In_State);
end if;
-- Treat the attribute an immediate invocation of the target when
-- switch -gnatd.o (conservative elaboration order for indirect
-- calls) is in effect. This has the following desirable effects:
--
-- * Ensure that the unit with the corresponding body is elaborated
-- prior to the main unit.
--
-- * Perform conditional ABE checks and diagnostics
--
-- * Traverse the body of the target (if available)
if Debug_Flag_Dot_O then
Process_Conditional_ABE
(N => Build_Access_Marker (Subp_Id),
In_State => New_In_State);
-- Otherwise ensure that the unit with the corresponding body is
-- elaborated prior to the main unit.
else
Ensure_Prior_Elaboration
(N => Attr,
Unit_Id => Unit (Subp_Rep),
Prag_Nam => Name_Elaborate_All,
In_State => New_In_State);
end if;
end Process_Conditional_ABE_Access_Taken;
----------------------------------------
-- Process_Conditional_ABE_Activation --
----------------------------------------
procedure Process_Conditional_ABE_Activation
(Call : Node_Id;
Call_Rep : Scenario_Rep_Id;
Obj_Id : Entity_Id;
Obj_Rep : Target_Rep_Id;
Task_Typ : Entity_Id;
Task_Rep : Target_Rep_Id;
In_State : Processing_In_State)
is
pragma Unreferenced (Task_Typ);
Body_Decl : constant Node_Id := Body_Declaration (Task_Rep);
Spec_Decl : constant Node_Id := Spec_Declaration (Task_Rep);
Root : constant Node_Id := Root_Scenario;
Unit_Id : constant Node_Id := Unit (Task_Rep);
Check_OK : constant Boolean :=
not In_State.Suppress_Checks
and then Ghost_Mode_Of (Obj_Rep) /= Is_Ignored
and then Ghost_Mode_Of (Task_Rep) /= Is_Ignored
and then Elaboration_Checks_OK (Obj_Rep)
and then Elaboration_Checks_OK (Task_Rep);
-- A run-time ABE check may be installed only when the object and the
-- task type have active elaboration checks, and both are not ignored
-- Ghost constructs.
New_In_State : Processing_In_State := In_State;
-- Each step of the Processing phase constitutes a new state
begin
-- Output relevant information when switch -gnatel (info messages on
-- implicit Elaborate[_All] pragmas) is in effect.
if Elab_Info_Messages
and then not New_In_State.Suppress_Info_Messages
then
Error_Msg_NE
("info: activation of & during elaboration", Call, Obj_Id);
end if;
-- Nothing to do when the call activates a task whose type is defined
-- within an instance and switch -gnatd_i (ignore activations and
-- calls to instances for elaboration) is in effect.
if Debug_Flag_Underscore_I
and then In_External_Instance
(N => Call,
Target_Decl => Spec_Decl)
then
return;
-- Nothing to do when the activation is a guaranteed ABE
elsif Is_Known_Guaranteed_ABE (Call) then
return;
-- Nothing to do when the root scenario appears at the declaration
-- level and the task is in the same unit, but outside this context.
--
-- task type Task_Typ; -- task declaration
--
-- procedure Proc is
-- function A ... is
-- begin
-- if Some_Condition then
-- declare
-- T : Task_Typ;
-- begin
-- <activation call> -- activation site
-- end;
-- ...
-- end A;
--
-- X : ... := A; -- root scenario
-- ...
--
-- task body Task_Typ is
-- ...
-- end Task_Typ;
--
-- In the example above, the context of X is the declarative list of
-- Proc. The "elaboration" of X may reach the activation of T whose
-- body is defined outside of X's context. The task body is relevant
-- only when Proc is invoked, but this happens only during "normal"
-- elaboration, therefore the task body must not be considered if
-- this is not the case.
elsif Is_Up_Level_Target
(Targ_Decl => Spec_Decl,
In_State => New_In_State)
then
return;
-- Nothing to do when the activation is ABE-safe
--
-- generic
-- package Gen is
-- task type Task_Typ;
-- end Gen;
--
-- package body Gen is
-- task body Task_Typ is
-- begin
-- ...
-- end Task_Typ;
-- end Gen;
--
-- with Gen;
-- procedure Main is
-- package Nested is
-- package Inst is new Gen;
-- T : Inst.Task_Typ;
-- <activation call> -- safe activation
-- end Nested;
-- ...
elsif Is_Safe_Activation (Call, Task_Rep) then
-- Note that the task body must still be examined for any nested
-- scenarios.
null;
-- The activation call and the task body are both in the main unit
--
-- If the root scenario appears prior to the task body, then this is
-- a possible ABE with respect to the root scenario.
--
-- task type Task_Typ;
--
-- function A ... is
-- begin
-- if Some_Condition then
-- declare
-- package Pack is
-- T : Task_Typ;
-- end Pack; -- activation of T
-- ...
-- end A;
--
-- X : ... := A; -- root scenario
--
-- task body Task_Typ is -- task body
-- ...
-- end Task_Typ;
--
-- Y : ... := A; -- root scenario
--
-- IMPORTANT: The activation of T is a possible ABE for X, but
-- not for Y. Intalling an unconditional ABE raise prior to the
-- activation call would be wrong as it will fail for Y as well
-- but in Y's case the activation of T is never an ABE.
elsif Present (Body_Decl)
and then In_Extended_Main_Code_Unit (Body_Decl)
then
if Earlier_In_Extended_Unit (Root, Body_Decl) then
-- Do not emit any ABE diagnostics when a previous scenario in
-- this traversal has suppressed elaboration warnings.
if New_In_State.Suppress_Warnings then
null;
-- Do not emit any ABE diagnostics when the activation occurs
-- in a partial finalization context because this action leads
-- to confusing noise.
elsif New_In_State.Within_Partial_Finalization then
null;
-- Otherwise emit the ABE disgnostic
else
Error_Msg_Sloc := Sloc (Call);
Error_Msg_N
("??task & will be activated # before elaboration of its "
& "body", Obj_Id);
Error_Msg_N
("\Program_Error may be raised at run time", Obj_Id);
Output_Active_Scenarios (Obj_Id, New_In_State);
end if;
-- Install a conditional run-time ABE check to verify that the
-- task body has been elaborated prior to the activation call.
if Check_OK then
Install_Scenario_ABE_Check
(N => Call,
Targ_Id => Defining_Entity (Spec_Decl),
Targ_Rep => Task_Rep,
Disable => Obj_Rep);
-- Update the state of the Processing phase to indicate that
-- no implicit Elaborate[_All] pragma must be generated from
-- this point on.
--
-- task type Task_Typ;
--
-- function A ... is
-- begin
-- if Some_Condition then
-- declare
-- package Pack is
-- <ABE check>
-- T : Task_Typ;
-- end Pack; -- activation of T
-- ...
-- end A;
--
-- X : ... := A;
--
-- task body Task_Typ is
-- begin
-- External.Subp; -- imparts Elaborate_All
-- end Task_Typ;
--
-- If Some_Condition is True, then the ABE check will fail
-- at runtime and the call to External.Subp will never take
-- place, rendering the implicit Elaborate_All useless.
--
-- If the value of Some_Condition is False, then the call
-- to External.Subp will never take place, rendering the
-- implicit Elaborate_All useless.
New_In_State.Suppress_Implicit_Pragmas := True;
end if;
end if;
-- Otherwise the task body is not available in this compilation or
-- it resides in an external unit. Install a run-time ABE check to
-- verify that the task body has been elaborated prior to the
-- activation call when the dynamic model is in effect.
elsif Check_OK
and then New_In_State.Processing = Dynamic_Model_Processing
then
Install_Unit_ABE_Check
(N => Call,
Unit_Id => Unit_Id,
Disable => Obj_Rep);
end if;
-- Both the activation call and task type are subject to SPARK_Mode
-- On, this triggers the SPARK rules for task activation. Compared
-- to calls and instantiations, task activation in SPARK does not
-- require the presence of Elaborate[_All] pragmas in case the task
-- type is defined outside the main unit. This is because SPARK uses
-- a special policy which activates all tasks after the main unit has
-- finished its elaboration.
if SPARK_Mode_Of (Call_Rep) = Is_On
and then SPARK_Mode_Of (Task_Rep) = Is_On
then
null;
-- Otherwise the Ada rules are in effect. Ensure that the unit with
-- the task body is elaborated prior to the main unit.
else
Ensure_Prior_Elaboration
(N => Call,
Unit_Id => Unit_Id,
Prag_Nam => Name_Elaborate_All,
In_State => New_In_State);
end if;
Traverse_Conditional_ABE_Body
(N => Body_Decl,
In_State => New_In_State);
end Process_Conditional_ABE_Activation;
----------------------------------
-- Process_Conditional_ABE_Call --
----------------------------------
procedure Process_Conditional_ABE_Call
(Call : Node_Id;
Call_Rep : Scenario_Rep_Id;
In_State : Processing_In_State)
is
function In_Initialization_Context (N : Node_Id) return Boolean;
pragma Inline (In_Initialization_Context);
-- Determine whether arbitrary node N appears within a type init
-- proc, primitive [Deep_]Initialize, or a block created for
-- initialization purposes.
function Is_Partial_Finalization_Proc
(Subp_Id : Entity_Id) return Boolean;
pragma Inline (Is_Partial_Finalization_Proc);
-- Determine whether subprogram Subp_Id is a partial finalization
-- procedure.
-------------------------------
-- In_Initialization_Context --
-------------------------------
function In_Initialization_Context (N : Node_Id) return Boolean is
Par : Node_Id;
Spec_Id : Entity_Id;
begin
-- Climb the parent chain looking for initialization actions
Par := Parent (N);
while Present (Par) loop
-- A block may be part of the initialization actions of a
-- default initialized object.
if Nkind (Par) = N_Block_Statement
and then Is_Initialization_Block (Par)
then
return True;
-- A subprogram body may denote an initialization routine
elsif Nkind (Par) = N_Subprogram_Body then
Spec_Id := Unique_Defining_Entity (Par);
-- The current subprogram body denotes a type init proc or
-- primitive [Deep_]Initialize.
if Is_Init_Proc (Spec_Id)
or else Is_Controlled_Proc (Spec_Id, Name_Initialize)
or else Is_TSS (Spec_Id, TSS_Deep_Initialize)
then
return True;
end if;
-- Prevent the search from going too far
elsif Is_Body_Or_Package_Declaration (Par) then
exit;
end if;
Par := Parent (Par);
end loop;
return False;
end In_Initialization_Context;
----------------------------------
-- Is_Partial_Finalization_Proc --
----------------------------------
function Is_Partial_Finalization_Proc
(Subp_Id : Entity_Id) return Boolean
is
begin
-- To qualify, the subprogram must denote a finalizer procedure
-- or primitive [Deep_]Finalize, and the call must appear within
-- an initialization context.
return
(Is_Controlled_Proc (Subp_Id, Name_Finalize)
or else Is_Finalizer_Proc (Subp_Id)
or else Is_TSS (Subp_Id, TSS_Deep_Finalize))
and then In_Initialization_Context (Call);
end Is_Partial_Finalization_Proc;
-- Local variables
Subp_Id : constant Entity_Id := Target (Call_Rep);
Subp_Rep : constant Target_Rep_Id :=
Target_Representation_Of (Subp_Id, In_State);
Subp_Decl : constant Node_Id := Spec_Declaration (Subp_Rep);
SPARK_Rules_On : constant Boolean :=
SPARK_Mode_Of (Call_Rep) = Is_On
and then SPARK_Mode_Of (Subp_Rep) = Is_On;
New_In_State : Processing_In_State := In_State;
-- Each step of the Processing phase constitutes a new state
-- Start of processing for Process_Conditional_ABE_Call
begin
-- Output relevant information when switch -gnatel (info messages on
-- implicit Elaborate[_All] pragmas) is in effect.
if Elab_Info_Messages
and then not New_In_State.Suppress_Info_Messages
then
Info_Call
(Call => Call,
Subp_Id => Subp_Id,
Info_Msg => True,
In_SPARK => SPARK_Rules_On);
end if;
-- Check whether the invocation of an entry clashes with an existing
-- restriction. This check is relevant only when the processing was
-- started from some library-level scenario.
if Is_Protected_Entry (Subp_Id) then
Check_Restriction (No_Entry_Calls_In_Elaboration_Code, Call);
elsif Is_Task_Entry (Subp_Id) then
Check_Restriction (No_Entry_Calls_In_Elaboration_Code, Call);
-- Task entry calls are never processed because the entry being
-- invoked does not have a corresponding "body", it has a select.
return;
end if;
-- Nothing to do when the call invokes a target defined within an
-- instance and switch -gnatd_i (ignore activations and calls to
-- instances for elaboration) is in effect.
if Debug_Flag_Underscore_I
and then In_External_Instance
(N => Call,
Target_Decl => Subp_Decl)
then
return;
-- Nothing to do when the call is a guaranteed ABE
elsif Is_Known_Guaranteed_ABE (Call) then
return;
-- Nothing to do when the root scenario appears at the declaration
-- level and the target is in the same unit but outside this context.
--
-- function B ...; -- target declaration
--
-- procedure Proc is
-- function A ... is
-- begin
-- if Some_Condition then
-- return B; -- call site
-- ...
-- end A;
--
-- X : ... := A; -- root scenario
-- ...
--
-- function B ... is
-- ...
-- end B;
--
-- In the example above, the context of X is the declarative region
-- of Proc. The "elaboration" of X may eventually reach B which is
-- defined outside of X's context. B is relevant only when Proc is
-- invoked, but this happens only by means of "normal" elaboration,
-- therefore B must not be considered if this is not the case.
elsif Is_Up_Level_Target
(Targ_Decl => Subp_Decl,
In_State => New_In_State)
then
return;
end if;
-- Warnings are suppressed when a prior scenario is already in that
-- mode, or the call or target have warnings suppressed. Update the
-- state of the Processing phase to reflect this.
New_In_State.Suppress_Warnings :=
New_In_State.Suppress_Warnings
or else not Elaboration_Warnings_OK (Call_Rep)
or else not Elaboration_Warnings_OK (Subp_Rep);
-- The call occurs in an initial condition context when a prior
-- scenario is already in that mode, or when the target is an
-- Initial_Condition procedure. Update the state of the Processing
-- phase to reflect this.
New_In_State.Within_Initial_Condition :=
New_In_State.Within_Initial_Condition
or else Is_Initial_Condition_Proc (Subp_Id);
-- The call occurs in a partial finalization context when a prior
-- scenario is already in that mode, or when the target denotes a
-- [Deep_]Finalize primitive or a finalizer within an initialization
-- context. Update the state of the Processing phase to reflect this.
New_In_State.Within_Partial_Finalization :=
New_In_State.Within_Partial_Finalization
or else Is_Partial_Finalization_Proc (Subp_Id);
-- The SPARK rules are in effect. Note that -gnatd.v (enforce SPARK
-- elaboration rules in SPARK code) is intentionally not taken into
-- account here because Process_Conditional_ABE_Call_SPARK has two
-- separate modes of operation.
if SPARK_Rules_On then
Process_Conditional_ABE_Call_SPARK
(Call => Call,
Call_Rep => Call_Rep,
Subp_Id => Subp_Id,
Subp_Rep => Subp_Rep,
In_State => New_In_State);
-- Otherwise the Ada rules are in effect
else
Process_Conditional_ABE_Call_Ada
(Call => Call,
Call_Rep => Call_Rep,
Subp_Id => Subp_Id,
Subp_Rep => Subp_Rep,
In_State => New_In_State);
end if;
-- Inspect the target body (and barried function) for other suitable
-- elaboration scenarios.
Traverse_Conditional_ABE_Body
(N => Barrier_Body_Declaration (Subp_Rep),
In_State => New_In_State);
Traverse_Conditional_ABE_Body
(N => Body_Declaration (Subp_Rep),
In_State => New_In_State);
end Process_Conditional_ABE_Call;
--------------------------------------
-- Process_Conditional_ABE_Call_Ada --
--------------------------------------
procedure Process_Conditional_ABE_Call_Ada
(Call : Node_Id;
Call_Rep : Scenario_Rep_Id;
Subp_Id : Entity_Id;
Subp_Rep : Target_Rep_Id;
In_State : Processing_In_State)
is
Body_Decl : constant Node_Id := Body_Declaration (Subp_Rep);
Root : constant Node_Id := Root_Scenario;
Unit_Id : constant Node_Id := Unit (Subp_Rep);
Check_OK : constant Boolean :=
not In_State.Suppress_Checks
and then Ghost_Mode_Of (Call_Rep) /= Is_Ignored
and then Ghost_Mode_Of (Subp_Rep) /= Is_Ignored
and then Elaboration_Checks_OK (Call_Rep)
and then Elaboration_Checks_OK (Subp_Rep);
-- A run-time ABE check may be installed only when both the call
-- and the target have active elaboration checks, and both are not
-- ignored Ghost constructs.
New_In_State : Processing_In_State := In_State;
-- Each step of the Processing phase constitutes a new state
begin
-- Nothing to do for an Ada dispatching call because there are no
-- ABE diagnostics for either models. ABE checks for the dynamic
-- model are handled by Install_Primitive_Elaboration_Check.
if Is_Dispatching_Call (Call_Rep) then
return;
-- Nothing to do when the call is ABE-safe
--
-- generic
-- function Gen ...;
--
-- function Gen ... is
-- begin
-- ...
-- end Gen;
--
-- with Gen;
-- procedure Main is
-- function Inst is new Gen;
-- X : ... := Inst; -- safe call
-- ...
elsif Is_Safe_Call (Call, Subp_Id, Subp_Rep) then
return;
-- The call and the target body are both in the main unit
--
-- If the root scenario appears prior to the target body, then this
-- is a possible ABE with respect to the root scenario.
--
-- function B ...;
--
-- function A ... is
-- begin
-- if Some_Condition then
-- return B; -- call site
-- ...
-- end A;
--
-- X : ... := A; -- root scenario
--
-- function B ... is -- target body
-- ...
-- end B;
--
-- Y : ... := A; -- root scenario
--
-- IMPORTANT: The call to B from A is a possible ABE for X, but
-- not for Y. Installing an unconditional ABE raise prior to the
-- call to B would be wrong as it will fail for Y as well, but in
-- Y's case the call to B is never an ABE.
elsif Present (Body_Decl)
and then In_Extended_Main_Code_Unit (Body_Decl)
then
if Earlier_In_Extended_Unit (Root, Body_Decl) then
-- Do not emit any ABE diagnostics when a previous scenario in
-- this traversal has suppressed elaboration warnings.
if New_In_State.Suppress_Warnings then
null;
-- Do not emit any ABE diagnostics when the call occurs in a
-- partial finalization context because this leads to confusing
-- noise.
elsif New_In_State.Within_Partial_Finalization then
null;
-- Otherwise emit the ABE diagnostic
else
Error_Msg_NE
("??cannot call & before body seen", Call, Subp_Id);
Error_Msg_N
("\Program_Error may be raised at run time", Call);
Output_Active_Scenarios (Call, New_In_State);
end if;
-- Install a conditional run-time ABE check to verify that the
-- target body has been elaborated prior to the call.
if Check_OK then
Install_Scenario_ABE_Check
(N => Call,
Targ_Id => Subp_Id,
Targ_Rep => Subp_Rep,
Disable => Call_Rep);
-- Update the state of the Processing phase to indicate that
-- no implicit Elaborate[_All] pragma must be generated from
-- this point on.
--
-- function B ...;
--
-- function A ... is
-- begin
-- if Some_Condition then
-- <ABE check>
-- return B;
-- ...
-- end A;
--
-- X : ... := A;
--
-- function B ... is
-- External.Subp; -- imparts Elaborate_All
-- end B;
--
-- If Some_Condition is True, then the ABE check will fail
-- at runtime and the call to External.Subp will never take
-- place, rendering the implicit Elaborate_All useless.
--
-- If the value of Some_Condition is False, then the call
-- to External.Subp will never take place, rendering the
-- implicit Elaborate_All useless.
New_In_State.Suppress_Implicit_Pragmas := True;
end if;
end if;
-- Otherwise the target body is not available in this compilation or
-- it resides in an external unit. Install a run-time ABE check to
-- verify that the target body has been elaborated prior to the call
-- site when the dynamic model is in effect.
elsif Check_OK
and then New_In_State.Processing = Dynamic_Model_Processing
then
Install_Unit_ABE_Check
(N => Call,
Unit_Id => Unit_Id,
Disable => Call_Rep);
end if;
-- Ensure that the unit with the target body is elaborated prior to
-- the main unit. The implicit Elaborate[_All] is generated only when
-- the call has elaboration checks enabled. This behavior parallels
-- that of the old ABE mechanism.
if Elaboration_Checks_OK (Call_Rep) then
Ensure_Prior_Elaboration
(N => Call,
Unit_Id => Unit_Id,
Prag_Nam => Name_Elaborate_All,
In_State => New_In_State);
end if;
end Process_Conditional_ABE_Call_Ada;
----------------------------------------
-- Process_Conditional_ABE_Call_SPARK --
----------------------------------------
procedure Process_Conditional_ABE_Call_SPARK
(Call : Node_Id;
Call_Rep : Scenario_Rep_Id;
Subp_Id : Entity_Id;
Subp_Rep : Target_Rep_Id;
In_State : Processing_In_State)
is
pragma Unreferenced (Call_Rep);
Body_Decl : constant Node_Id := Body_Declaration (Subp_Rep);
Region : Node_Id;
begin
-- Ensure that a suitable elaboration model is in effect for SPARK
-- rule verification.
Check_SPARK_Model_In_Effect;
-- The call and the target body are both in the main unit
if Present (Body_Decl)
and then In_Extended_Main_Code_Unit (Body_Decl)
and then Earlier_In_Extended_Unit (Call, Body_Decl)
then
-- Do not emit any ABE diagnostics when a previous scenario in
-- this traversal has suppressed elaboration warnings.
if In_State.Suppress_Warnings then
null;
-- Do not emit any ABE diagnostics when the call occurs in an
-- initial condition context because this leads to incorrect
-- diagnostics.
elsif In_State.Within_Initial_Condition then
null;
-- Do not emit any ABE diagnostics when the call occurs in a
-- partial finalization context because this leads to confusing
-- noise.
elsif In_State.Within_Partial_Finalization then
null;
-- Ensure that a call that textually precedes the subprogram body
-- it invokes appears within the early call region of the body.
--
-- IMPORTANT: This check must always be performed even when switch
-- -gnatd.v (enforce SPARK elaboration rules in SPARK code) is not
-- specified because the static model cannot guarantee the absence
-- of elaboration issues when dispatching calls are involved.
else
Region := Find_Early_Call_Region (Body_Decl);
if Earlier_In_Extended_Unit (Call, Region) then
Error_Msg_NE
("call must appear within early call region of subprogram "
& "body & (SPARK RM 7.7(3))",
Call, Subp_Id);
Error_Msg_Sloc := Sloc (Region);
Error_Msg_N ("\region starts #", Call);
Error_Msg_Sloc := Sloc (Body_Decl);
Error_Msg_N ("\region ends #", Call);
Output_Active_Scenarios (Call, In_State);
end if;
end if;
end if;
-- A call to a source target or to a target which emulates Ada
-- or SPARK semantics imposes an Elaborate_All requirement on the
-- context of the main unit. Determine whether the context has a
-- pragma strong enough to meet the requirement.
--
-- IMPORTANT: This check must be performed only when switch -gnatd.v
-- (enforce SPARK elaboration rules in SPARK code) is active because
-- the static model can ensure the prior elaboration of the unit
-- which contains a body by installing an implicit Elaborate[_All]
-- pragma.
if Debug_Flag_Dot_V then
if Comes_From_Source (Subp_Id)
or else Is_Ada_Semantic_Target (Subp_Id)
or else Is_SPARK_Semantic_Target (Subp_Id)
then
Meet_Elaboration_Requirement
(N => Call,
Targ_Id => Subp_Id,
Req_Nam => Name_Elaborate_All,
In_State => In_State);
end if;
-- Otherwise ensure that the unit with the target body is elaborated
-- prior to the main unit.
else
Ensure_Prior_Elaboration
(N => Call,
Unit_Id => Unit (Subp_Rep),
Prag_Nam => Name_Elaborate_All,
In_State => In_State);
end if;
end Process_Conditional_ABE_Call_SPARK;
-------------------------------------------
-- Process_Conditional_ABE_Instantiation --
-------------------------------------------
procedure Process_Conditional_ABE_Instantiation
(Inst : Node_Id;
Inst_Rep : Scenario_Rep_Id;
In_State : Processing_In_State)
is
Gen_Id : constant Entity_Id := Target (Inst_Rep);
Gen_Rep : constant Target_Rep_Id :=
Target_Representation_Of (Gen_Id, In_State);
SPARK_Rules_On : constant Boolean :=
SPARK_Mode_Of (Inst_Rep) = Is_On
and then SPARK_Mode_Of (Gen_Rep) = Is_On;
New_In_State : Processing_In_State := In_State;
-- Each step of the Processing phase constitutes a new state
begin
-- Output relevant information when switch -gnatel (info messages on
-- implicit Elaborate[_All] pragmas) is in effect.
if Elab_Info_Messages
and then not New_In_State.Suppress_Info_Messages
then
Info_Instantiation
(Inst => Inst,
Gen_Id => Gen_Id,
Info_Msg => True,
In_SPARK => SPARK_Rules_On);
end if;
-- Nothing to do when the instantiation is a guaranteed ABE
if Is_Known_Guaranteed_ABE (Inst) then
return;
-- Nothing to do when the root scenario appears at the declaration
-- level and the generic is in the same unit, but outside this
-- context.
--
-- generic
-- procedure Gen is ...; -- generic declaration
--
-- procedure Proc is
-- function A ... is
-- begin
-- if Some_Condition then
-- declare
-- procedure I is new Gen; -- instantiation site
-- ...
-- ...
-- end A;
--
-- X : ... := A; -- root scenario
-- ...
--
-- procedure Gen is
-- ...
-- end Gen;
--
-- In the example above, the context of X is the declarative region
-- of Proc. The "elaboration" of X may eventually reach Gen which
-- appears outside of X's context. Gen is relevant only when Proc is
-- invoked, but this happens only by means of "normal" elaboration,
-- therefore Gen must not be considered if this is not the case.
elsif Is_Up_Level_Target
(Targ_Decl => Spec_Declaration (Gen_Rep),
In_State => New_In_State)
then
return;
end if;
-- Warnings are suppressed when a prior scenario is already in that
-- mode, or when the instantiation has warnings suppressed. Update
-- the state of the processing phase to reflect this.
New_In_State.Suppress_Warnings :=
New_In_State.Suppress_Warnings
or else not Elaboration_Warnings_OK (Inst_Rep);
-- The SPARK rules are in effect
if SPARK_Rules_On then
Process_Conditional_ABE_Instantiation_SPARK
(Inst => Inst,
Inst_Rep => Inst_Rep,
Gen_Id => Gen_Id,
Gen_Rep => Gen_Rep,
In_State => New_In_State);
-- Otherwise the Ada rules are in effect, or SPARK code is allowed to
-- violate the SPARK rules.
else
Process_Conditional_ABE_Instantiation_Ada
(Inst => Inst,
Inst_Rep => Inst_Rep,
Gen_Id => Gen_Id,
Gen_Rep => Gen_Rep,
In_State => New_In_State);
end if;
end Process_Conditional_ABE_Instantiation;
-----------------------------------------------
-- Process_Conditional_ABE_Instantiation_Ada --
-----------------------------------------------
procedure Process_Conditional_ABE_Instantiation_Ada
(Inst : Node_Id;
Inst_Rep : Scenario_Rep_Id;
Gen_Id : Entity_Id;
Gen_Rep : Target_Rep_Id;
In_State : Processing_In_State)
is
Body_Decl : constant Node_Id := Body_Declaration (Gen_Rep);
Root : constant Node_Id := Root_Scenario;
Unit_Id : constant Entity_Id := Unit (Gen_Rep);
Check_OK : constant Boolean :=
not In_State.Suppress_Checks
and then Ghost_Mode_Of (Inst_Rep) /= Is_Ignored
and then Ghost_Mode_Of (Gen_Rep) /= Is_Ignored
and then Elaboration_Checks_OK (Inst_Rep)
and then Elaboration_Checks_OK (Gen_Rep);
-- A run-time ABE check may be installed only when both the instance
-- and the generic have active elaboration checks and both are not
-- ignored Ghost constructs.
New_In_State : Processing_In_State := In_State;
-- Each step of the Processing phase constitutes a new state
begin
-- Nothing to do when the instantiation is ABE-safe
--
-- generic
-- package Gen is
-- ...
-- end Gen;
--
-- package body Gen is
-- ...
-- end Gen;
--
-- with Gen;
-- procedure Main is
-- package Inst is new Gen (ABE); -- safe instantiation
-- ...
if Is_Safe_Instantiation (Inst, Gen_Id, Gen_Rep) then
return;
-- The instantiation and the generic body are both in the main unit
--
-- If the root scenario appears prior to the generic body, then this
-- is a possible ABE with respect to the root scenario.
--
-- generic
-- package Gen is
-- ...
-- end Gen;
--
-- function A ... is
-- begin
-- if Some_Condition then
-- declare
-- package Inst is new Gen; -- instantiation site
-- ...
-- end A;
--
-- X : ... := A; -- root scenario
--
-- package body Gen is -- generic body
-- ...
-- end Gen;
--
-- Y : ... := A; -- root scenario
--
-- IMPORTANT: The instantiation of Gen is a possible ABE for X,
-- but not for Y. Installing an unconditional ABE raise prior to
-- the instance site would be wrong as it will fail for Y as well,
-- but in Y's case the instantiation of Gen is never an ABE.
elsif Present (Body_Decl)
and then In_Extended_Main_Code_Unit (Body_Decl)
then
if Earlier_In_Extended_Unit (Root, Body_Decl) then
-- Do not emit any ABE diagnostics when a previous scenario in
-- this traversal has suppressed elaboration warnings.
if New_In_State.Suppress_Warnings then
null;
-- Do not emit any ABE diagnostics when the instantiation
-- occurs in partial finalization context because this leads
-- to unwanted noise.
elsif New_In_State.Within_Partial_Finalization then
null;
-- Otherwise output the diagnostic
else
Error_Msg_NE
("??cannot instantiate & before body seen", Inst, Gen_Id);
Error_Msg_N
("\Program_Error may be raised at run time", Inst);
Output_Active_Scenarios (Inst, New_In_State);
end if;
-- Install a conditional run-time ABE check to verify that the
-- generic body has been elaborated prior to the instantiation.
if Check_OK then
Install_Scenario_ABE_Check
(N => Inst,
Targ_Id => Gen_Id,
Targ_Rep => Gen_Rep,
Disable => Inst_Rep);
-- Update the state of the Processing phase to indicate that
-- no implicit Elaborate[_All] pragma must be generated from
-- this point on.
--
-- generic
-- package Gen is
-- ...
-- end Gen;
--
-- function A ... is
-- begin
-- if Some_Condition then
-- <ABE check>
-- declare Inst is new Gen;
-- ...
-- end A;
--
-- X : ... := A;
--
-- package body Gen is
-- begin
-- External.Subp; -- imparts Elaborate_All
-- end Gen;
--
-- If Some_Condition is True, then the ABE check will fail
-- at runtime and the call to External.Subp will never take
-- place, rendering the implicit Elaborate_All useless.
--
-- If the value of Some_Condition is False, then the call
-- to External.Subp will never take place, rendering the
-- implicit Elaborate_All useless.
New_In_State.Suppress_Implicit_Pragmas := True;
end if;
end if;
-- Otherwise the generic body is not available in this compilation
-- or it resides in an external unit. Install a run-time ABE check
-- to verify that the generic body has been elaborated prior to the
-- instantiation when the dynamic model is in effect.
elsif Check_OK
and then New_In_State.Processing = Dynamic_Model_Processing
then
Install_Unit_ABE_Check
(N => Inst,
Unit_Id => Unit_Id,
Disable => Inst_Rep);
end if;
-- Ensure that the unit with the generic body is elaborated prior
-- to the main unit. No implicit pragma has to be generated if the
-- instantiation has elaboration checks suppressed. This behavior
-- parallels that of the old ABE mechanism.
if Elaboration_Checks_OK (Inst_Rep) then
Ensure_Prior_Elaboration
(N => Inst,
Unit_Id => Unit_Id,
Prag_Nam => Name_Elaborate,
In_State => New_In_State);
end if;
end Process_Conditional_ABE_Instantiation_Ada;
-------------------------------------------------
-- Process_Conditional_ABE_Instantiation_SPARK --
-------------------------------------------------
procedure Process_Conditional_ABE_Instantiation_SPARK
(Inst : Node_Id;
Inst_Rep : Scenario_Rep_Id;
Gen_Id : Entity_Id;
Gen_Rep : Target_Rep_Id;
In_State : Processing_In_State)
is
pragma Unreferenced (Inst_Rep);
Req_Nam : Name_Id;
begin
-- Ensure that a suitable elaboration model is in effect for SPARK
-- rule verification.
Check_SPARK_Model_In_Effect;
-- A source instantiation imposes an Elaborate[_All] requirement
-- on the context of the main unit. Determine whether the context
-- has a pragma strong enough to meet the requirement. The check
-- is orthogonal to the ABE ramifications of the instantiation.
--
-- IMPORTANT: This check must be performed only when switch -gnatd.v
-- (enforce SPARK elaboration rules in SPARK code) is active because
-- the static model can ensure the prior elaboration of the unit
-- which contains a body by installing an implicit Elaborate[_All]
-- pragma.
if Debug_Flag_Dot_V then
if Nkind (Inst) = N_Package_Instantiation then
Req_Nam := Name_Elaborate_All;
else
Req_Nam := Name_Elaborate;
end if;
Meet_Elaboration_Requirement
(N => Inst,
Targ_Id => Gen_Id,
Req_Nam => Req_Nam,
In_State => In_State);
-- Otherwise ensure that the unit with the target body is elaborated
-- prior to the main unit.
else
Ensure_Prior_Elaboration
(N => Inst,
Unit_Id => Unit (Gen_Rep),
Prag_Nam => Name_Elaborate,
In_State => In_State);
end if;
end Process_Conditional_ABE_Instantiation_SPARK;
-------------------------------------------------
-- Process_Conditional_ABE_Variable_Assignment --
-------------------------------------------------
procedure Process_Conditional_ABE_Variable_Assignment
(Asmt : Node_Id;
Asmt_Rep : Scenario_Rep_Id;
In_State : Processing_In_State)
is
Var_Id : constant Entity_Id := Target (Asmt_Rep);
Var_Rep : constant Target_Rep_Id :=
Target_Representation_Of (Var_Id, In_State);
SPARK_Rules_On : constant Boolean :=
SPARK_Mode_Of (Asmt_Rep) = Is_On
and then SPARK_Mode_Of (Var_Rep) = Is_On;
begin
-- Output relevant information when switch -gnatel (info messages on
-- implicit Elaborate[_All] pragmas) is in effect.
if Elab_Info_Messages
and then not In_State.Suppress_Info_Messages
then
Elab_Msg_NE
(Msg => "assignment to & during elaboration",
N => Asmt,
Id => Var_Id,
Info_Msg => True,
In_SPARK => SPARK_Rules_On);
end if;
-- The SPARK rules are in effect. These rules are applied regardless
-- of whether switch -gnatd.v (enforce SPARK elaboration rules in
-- SPARK code) is in effect because the static model cannot ensure
-- safe assignment of variables.
if SPARK_Rules_On then
Process_Conditional_ABE_Variable_Assignment_SPARK
(Asmt => Asmt,
Asmt_Rep => Asmt_Rep,
Var_Id => Var_Id,
Var_Rep => Var_Rep,
In_State => In_State);
-- Otherwise the Ada rules are in effect
else
Process_Conditional_ABE_Variable_Assignment_Ada
(Asmt => Asmt,
Asmt_Rep => Asmt_Rep,
Var_Id => Var_Id,
Var_Rep => Var_Rep,
In_State => In_State);
end if;
end Process_Conditional_ABE_Variable_Assignment;
-----------------------------------------------------
-- Process_Conditional_ABE_Variable_Assignment_Ada --
-----------------------------------------------------
procedure Process_Conditional_ABE_Variable_Assignment_Ada
(Asmt : Node_Id;
Asmt_Rep : Scenario_Rep_Id;
Var_Id : Entity_Id;
Var_Rep : Target_Rep_Id;
In_State : Processing_In_State)
is
pragma Unreferenced (Asmt_Rep);
Var_Decl : constant Node_Id := Variable_Declaration (Var_Rep);
Unit_Id : constant Entity_Id := Unit (Var_Rep);
begin
-- Emit a warning when an uninitialized variable declared in a
-- package spec without a pragma Elaborate_Body is initialized
-- by elaboration code within the corresponding body.
if Is_Elaboration_Warnings_OK_Id (Var_Id)
and then not Is_Initialized (Var_Decl)
and then not Has_Pragma_Elaborate_Body (Unit_Id)
then
-- Do not emit any ABE diagnostics when a previous scenario in
-- this traversal has suppressed elaboration warnings.
if not In_State.Suppress_Warnings then
Error_Msg_NE
("??variable & can be accessed by clients before this "
& "initialization", Asmt, Var_Id);
Error_Msg_NE
("\add pragma ""Elaborate_Body"" to spec & to ensure proper "
& "initialization", Asmt, Unit_Id);
Output_Active_Scenarios (Asmt, In_State);
end if;
-- Generate an implicit Elaborate_Body in the spec
Set_Elaborate_Body_Desirable (Unit_Id);
end if;
end Process_Conditional_ABE_Variable_Assignment_Ada;
-------------------------------------------------------
-- Process_Conditional_ABE_Variable_Assignment_SPARK --
-------------------------------------------------------
procedure Process_Conditional_ABE_Variable_Assignment_SPARK
(Asmt : Node_Id;
Asmt_Rep : Scenario_Rep_Id;
Var_Id : Entity_Id;
Var_Rep : Target_Rep_Id;
In_State : Processing_In_State)
is
pragma Unreferenced (Asmt_Rep);
Var_Decl : constant Node_Id := Variable_Declaration (Var_Rep);
Unit_Id : constant Entity_Id := Unit (Var_Rep);
begin
-- Ensure that a suitable elaboration model is in effect for SPARK
-- rule verification.
Check_SPARK_Model_In_Effect;
-- Do not emit any ABE diagnostics when a previous scenario in this
-- traversal has suppressed elaboration warnings.
if In_State.Suppress_Warnings then
null;
-- Emit an error when an initialized variable declared in a package
-- spec that is missing pragma Elaborate_Body is further modified by
-- elaboration code within the corresponding body.
elsif Is_Elaboration_Warnings_OK_Id (Var_Id)
and then Is_Initialized (Var_Decl)
and then not Has_Pragma_Elaborate_Body (Unit_Id)
then
Error_Msg_NE
("variable & modified by elaboration code in package body",
Asmt, Var_Id);
Error_Msg_NE
("\add pragma ""Elaborate_Body"" to spec & to ensure full "
& "initialization", Asmt, Unit_Id);
Output_Active_Scenarios (Asmt, In_State);
end if;
end Process_Conditional_ABE_Variable_Assignment_SPARK;
------------------------------------------------
-- Process_Conditional_ABE_Variable_Reference --
------------------------------------------------
procedure Process_Conditional_ABE_Variable_Reference
(Ref : Node_Id;
Ref_Rep : Scenario_Rep_Id;
In_State : Processing_In_State)
is
Var_Id : constant Entity_Id := Target (Ref);
Var_Rep : Target_Rep_Id;
Unit_Id : Entity_Id;
begin
-- Nothing to do when the variable reference is not a read
if not Is_Read_Reference (Ref_Rep) then
return;
end if;
Var_Rep := Target_Representation_Of (Var_Id, In_State);
Unit_Id := Unit (Var_Rep);
-- Output relevant information when switch -gnatel (info messages on
-- implicit Elaborate[_All] pragmas) is in effect.
if Elab_Info_Messages
and then not In_State.Suppress_Info_Messages
then
Elab_Msg_NE
(Msg => "read of variable & during elaboration",
N => Ref,
Id => Var_Id,
Info_Msg => True,
In_SPARK => True);
end if;
-- Nothing to do when the variable appears within the main unit
-- because diagnostics on reads are relevant only for external
-- variables.
if Is_Same_Unit (Unit_Id, Main_Unit_Entity) then
null;
-- Nothing to do when the variable is already initialized. Note that
-- the variable may be further modified by the external unit.
elsif Is_Initialized (Variable_Declaration (Var_Rep)) then
null;
-- Nothing to do when the external unit guarantees the initialization
-- of the variable by means of pragma Elaborate_Body.
elsif Has_Pragma_Elaborate_Body (Unit_Id) then
null;
-- A variable read imposes an Elaborate requirement on the context of
-- the main unit. Determine whether the context has a pragma strong
-- enough to meet the requirement.
else
Meet_Elaboration_Requirement
(N => Ref,
Targ_Id => Var_Id,
Req_Nam => Name_Elaborate,
In_State => In_State);
end if;
end Process_Conditional_ABE_Variable_Reference;
-----------------------------------
-- Traverse_Conditional_ABE_Body --
-----------------------------------
procedure Traverse_Conditional_ABE_Body
(N : Node_Id;
In_State : Processing_In_State)
is
begin
Traverse_Body
(N => N,
Requires_Processing => Is_Conditional_ABE_Scenario'Access,
Processor => Process_Conditional_ABE'Access,
In_State => In_State);
end Traverse_Conditional_ABE_Body;
end Conditional_ABE_Processor;
-------------
-- Destroy --
-------------
procedure Destroy (NE : in out Node_Or_Entity_Id) is
pragma Unreferenced (NE);
begin
null;
end Destroy;
-----------------
-- Diagnostics --
-----------------
package body Diagnostics is
-----------------
-- Elab_Msg_NE --
-----------------
procedure Elab_Msg_NE
(Msg : String;
N : Node_Id;
Id : Entity_Id;
Info_Msg : Boolean;
In_SPARK : Boolean)
is
function Prefix return String;
pragma Inline (Prefix);
-- Obtain the prefix of the message
function Suffix return String;
pragma Inline (Suffix);
-- Obtain the suffix of the message
------------
-- Prefix --
------------
function Prefix return String is
begin
if Info_Msg then
return "info: ";
else
return "";
end if;
end Prefix;
------------
-- Suffix --
------------
function Suffix return String is
begin
if In_SPARK then
return " in SPARK";
else
return "";
end if;
end Suffix;
-- Start of processing for Elab_Msg_NE
begin
Error_Msg_NE (Prefix & Msg & Suffix, N, Id);
end Elab_Msg_NE;
---------------
-- Info_Call --
---------------
procedure Info_Call
(Call : Node_Id;
Subp_Id : Entity_Id;
Info_Msg : Boolean;
In_SPARK : Boolean)
is
procedure Info_Accept_Alternative;
pragma Inline (Info_Accept_Alternative);
-- Output information concerning an accept alternative
procedure Info_Simple_Call;
pragma Inline (Info_Simple_Call);
-- Output information concerning the call
procedure Info_Type_Actions (Action : String);
pragma Inline (Info_Type_Actions);
-- Output information concerning action Action of a type
procedure Info_Verification_Call
(Pred : String;
Id : Entity_Id;
Id_Kind : String);
pragma Inline (Info_Verification_Call);
-- Output information concerning the verification of predicate Pred
-- applied to related entity Id with kind Id_Kind.
-----------------------------
-- Info_Accept_Alternative --
-----------------------------
procedure Info_Accept_Alternative is
Entry_Id : constant Entity_Id := Receiving_Entry (Subp_Id);
pragma Assert (Present (Entry_Id));
begin
Elab_Msg_NE
(Msg => "accept for entry & during elaboration",
N => Call,
Id => Entry_Id,
Info_Msg => Info_Msg,
In_SPARK => In_SPARK);
end Info_Accept_Alternative;
----------------------
-- Info_Simple_Call --
----------------------
procedure Info_Simple_Call is
begin
Elab_Msg_NE
(Msg => "call to & during elaboration",
N => Call,
Id => Subp_Id,
Info_Msg => Info_Msg,
In_SPARK => In_SPARK);
end Info_Simple_Call;
-----------------------
-- Info_Type_Actions --
-----------------------
procedure Info_Type_Actions (Action : String) is
Typ : constant Entity_Id := First_Formal_Type (Subp_Id);
pragma Assert (Present (Typ));
begin
Elab_Msg_NE
(Msg => Action & " actions for type & during elaboration",
N => Call,
Id => Typ,
Info_Msg => Info_Msg,
In_SPARK => In_SPARK);
end Info_Type_Actions;
----------------------------
-- Info_Verification_Call --
----------------------------
procedure Info_Verification_Call
(Pred : String;
Id : Entity_Id;
Id_Kind : String)
is
pragma Assert (Present (Id));
begin
Elab_Msg_NE
(Msg =>
"verification of " & Pred & " of " & Id_Kind & " & during "
& "elaboration",
N => Call,
Id => Id,
Info_Msg => Info_Msg,
In_SPARK => In_SPARK);
end Info_Verification_Call;
-- Start of processing for Info_Call
begin
-- Do not output anything for targets defined in internal units
-- because this creates noise.
if not In_Internal_Unit (Subp_Id) then
-- Accept alternative
if Is_Accept_Alternative_Proc (Subp_Id) then
Info_Accept_Alternative;
-- Adjustment
elsif Is_TSS (Subp_Id, TSS_Deep_Adjust) then
Info_Type_Actions ("adjustment");
-- Default_Initial_Condition
elsif Is_Default_Initial_Condition_Proc (Subp_Id) then
Info_Verification_Call
(Pred => "Default_Initial_Condition",
Id => First_Formal_Type (Subp_Id),
Id_Kind => "type");
-- Entries
elsif Is_Protected_Entry (Subp_Id) then
Info_Simple_Call;
-- Task entry calls are never processed because the entry being
-- invoked does not have a corresponding "body", it has a select.
elsif Is_Task_Entry (Subp_Id) then
null;
-- Finalization
elsif Is_TSS (Subp_Id, TSS_Deep_Finalize) then
Info_Type_Actions ("finalization");
-- Calls to _Finalizer procedures must not appear in the output
-- because this creates confusing noise.
elsif Is_Finalizer_Proc (Subp_Id) then
null;
-- Initial_Condition
elsif Is_Initial_Condition_Proc (Subp_Id) then
Info_Verification_Call
(Pred => "Initial_Condition",
Id => Find_Enclosing_Scope (Call),
Id_Kind => "package");
-- Initialization
elsif Is_Init_Proc (Subp_Id)
or else Is_TSS (Subp_Id, TSS_Deep_Initialize)
then
Info_Type_Actions ("initialization");
-- Invariant
elsif Is_Invariant_Proc (Subp_Id) then
Info_Verification_Call
(Pred => "invariants",
Id => First_Formal_Type (Subp_Id),
Id_Kind => "type");
-- Partial invariant calls must not appear in the output because
-- this creates confusing noise.
elsif Is_Partial_Invariant_Proc (Subp_Id) then
null;
-- _Postconditions
elsif Is_Postconditions_Proc (Subp_Id) then
Info_Verification_Call
(Pred => "postconditions",
Id => Find_Enclosing_Scope (Call),
Id_Kind => "subprogram");
-- Subprograms must come last because some of the previous cases
-- fall under this category.
elsif Ekind (Subp_Id) = E_Function then
Info_Simple_Call;
elsif Ekind (Subp_Id) = E_Procedure then
Info_Simple_Call;
else
pragma Assert (False);
return;
end if;
end if;
end Info_Call;
------------------------
-- Info_Instantiation --
------------------------
procedure Info_Instantiation
(Inst : Node_Id;
Gen_Id : Entity_Id;
Info_Msg : Boolean;
In_SPARK : Boolean)
is
begin
Elab_Msg_NE
(Msg => "instantiation of & during elaboration",
N => Inst,
Id => Gen_Id,
Info_Msg => Info_Msg,
In_SPARK => In_SPARK);
end Info_Instantiation;
-----------------------------
-- Info_Variable_Reference --
-----------------------------
procedure Info_Variable_Reference
(Ref : Node_Id;
Var_Id : Entity_Id)
is
begin
if Is_Read (Ref) then
Elab_Msg_NE
(Msg => "read of variable & during elaboration",
N => Ref,
Id => Var_Id,
Info_Msg => False,
In_SPARK => True);
end if;
end Info_Variable_Reference;
end Diagnostics;
---------------------------------
-- Early_Call_Region_Processor --
---------------------------------
package body Early_Call_Region_Processor is
---------------------
-- Data structures --
---------------------
-- The following map relates early call regions to subprogram bodies
procedure Destroy (N : in out Node_Id);
-- Destroy node N
package ECR_Map is new Dynamic_Hash_Tables
(Key_Type => Entity_Id,
Value_Type => Node_Id,
No_Value => Empty,
Expansion_Threshold => 1.5,
Expansion_Factor => 2,
Compression_Threshold => 0.3,
Compression_Factor => 2,
"=" => "=",
Destroy_Value => Destroy,
Hash => Hash);
Early_Call_Regions_Map : ECR_Map.Dynamic_Hash_Table := ECR_Map.Nil;
-----------------------
-- Local subprograms --
-----------------------
function Early_Call_Region (Body_Id : Entity_Id) return Node_Id;
pragma Inline (Early_Call_Region);
-- Obtain the early call region associated with entry or subprogram body
-- Body_Id.
procedure Set_Early_Call_Region (Body_Id : Entity_Id; Start : Node_Id);
pragma Inline (Set_Early_Call_Region);
-- Associate an early call region with begins at construct Start with
-- entry or subprogram body Body_Id.
-------------
-- Destroy --
-------------
procedure Destroy (N : in out Node_Id) is
pragma Unreferenced (N);
begin
null;
end Destroy;
-----------------------
-- Early_Call_Region --
-----------------------
function Early_Call_Region (Body_Id : Entity_Id) return Node_Id is
pragma Assert (Present (Body_Id));
begin
return ECR_Map.Get (Early_Call_Regions_Map, Body_Id);
end Early_Call_Region;
------------------------------------------
-- Finalize_Early_Call_Region_Processor --
------------------------------------------
procedure Finalize_Early_Call_Region_Processor is
begin
ECR_Map.Destroy (Early_Call_Regions_Map);
end Finalize_Early_Call_Region_Processor;
----------------------------
-- Find_Early_Call_Region --
----------------------------
function Find_Early_Call_Region
(Body_Decl : Node_Id;
Assume_Elab_Body : Boolean := False;
Skip_Memoization : Boolean := False) return Node_Id
is
-- NOTE: The routines within Find_Early_Call_Region are intentionally
-- unnested to avoid deep indentation of code.
ECR_Found : exception;
-- This exception is raised when the early call region has been found
Start : Node_Id := Empty;
-- The start of the early call region. This variable is updated by
-- the various nested routines. Due to the use of exceptions, the
-- variable must be global to the nested routines.
-- The algorithm implemented in this routine attempts to find the
-- early call region of a subprogram body by inspecting constructs
-- in reverse declarative order, while navigating the tree. The
-- algorithm consists of an Inspection phase and Advancement phase.
-- The pseudocode is as follows:
--
-- loop
-- inspection phase
-- advancement phase
-- end loop
--
-- The infinite loop is terminated by raising exception ECR_Found.
-- The algorithm utilizes two pointers, Curr and Start, to represent
-- the current construct to inspect and the start of the early call
-- region.
--
-- IMPORTANT: The algorithm must maintain the following invariant at
-- all time for it to function properly:
--
-- A nested construct is entered only when it contains suitable
-- constructs.
--
-- This guarantees that leaving a nested or encapsulating construct
-- functions properly.
--
-- The Inspection phase determines whether the current construct is
-- non-preelaborable, and if it is, the algorithm terminates.
--
-- The Advancement phase walks the tree in reverse declarative order,
-- while entering and leaving nested and encapsulating constructs. It
-- may also terminate the elaborithm. There are several special cases
-- of advancement.
--
-- 1) General case:
--
-- <construct 1>
-- ...
-- <construct N-1> <- Curr
-- <construct N> <- Start
-- <subprogram body>
--
-- In the general case, a declarative or statement list is traversed
-- in reverse order where Curr is the lead pointer, and Start is the
-- last preelaborable construct.
--
-- 2) Entering handled bodies
--
-- package body Nested is <- Curr (2.3)
-- <declarations> <- Curr (2.2)
-- begin
-- <statements> <- Curr (2.1)
-- end Nested;
-- <construct> <- Start
--
-- In this case, the algorithm enters a handled body by starting from
-- the last statement (2.1), or the last declaration (2.2), or the
-- body is consumed (2.3) because it is empty and thus preelaborable.
--
-- 3) Entering package declarations
--
-- package Nested is <- Curr (2.3)
-- <visible declarations> <- Curr (2.2)
-- private
-- <private declarations> <- Curr (2.1)
-- end Nested;
-- <construct> <- Start
--
-- In this case, the algorithm enters a package declaration by
-- starting from the last private declaration (2.1), the last visible
-- declaration (2.2), or the package is consumed (2.3) because it is
-- empty and thus preelaborable.
--
-- 4) Transitioning from list to list of the same construct
--
-- Certain constructs have two eligible lists. The algorithm must
-- thus transition from the second to the first list when the second
-- list is exhausted.
--
-- declare <- Curr (4.2)
-- <declarations> <- Curr (4.1)
-- begin
-- <statements> <- Start
-- end;
--
-- In this case, the algorithm has exhausted the second list (the
-- statements in the example above), and continues with the last
-- declaration (4.1) or the construct is consumed (4.2) because it
-- contains only preelaborable code.
--
-- 5) Transitioning from list to construct
--
-- tack body Task is <- Curr (5.1)
-- <- Curr (Empty)
-- <construct 1> <- Start
--
-- In this case, the algorithm has exhausted a list, Curr is Empty,
-- and the owner of the list is consumed (5.1).
--
-- 6) Transitioning from unit to unit
--
-- A package body with a spec subject to pragma Elaborate_Body
-- extends the possible range of the early call region to the package
-- spec.
--
-- package Pack is <- Curr (6.3)
-- pragma Elaborate_Body; <- Curr (6.2)
-- <visible declarations> <- Curr (6.2)
-- private
-- <private declarations> <- Curr (6.1)
-- end Pack;
--
-- package body Pack is <- Curr, Start
--
-- In this case, the algorithm has reached a package body compilation
-- unit whose spec is subject to pragma Elaborate_Body, or the caller
-- of the algorithm has specified this behavior. This transition is
-- equivalent to 3).
--
-- 7) Transitioning from unit to termination
--
-- Reaching a compilation unit always terminates the algorithm as
-- there are no more lists to examine. This must take case 6) into
-- account.
--
-- 8) Transitioning from subunit to stub
--
-- package body Pack is separate; <- Curr (8.1)
--
-- separate (...)
-- package body Pack is <- Curr, Start
--
-- Reaching a subunit continues the search from the corresponding
-- stub (8.1).
procedure Advance (Curr : in out Node_Id);
pragma Inline (Advance);
-- Update the Curr and Start pointers depending on their location
-- in the tree to the next eligible construct. This routine raises
-- ECR_Found.
procedure Enter_Handled_Body (Curr : in out Node_Id);
pragma Inline (Enter_Handled_Body);
-- Update the Curr and Start pointers to enter a nested handled body
-- if applicable. This routine raises ECR_Found.
procedure Enter_Package_Declaration (Curr : in out Node_Id);
pragma Inline (Enter_Package_Declaration);
-- Update the Curr and Start pointers to enter a nested package spec
-- if applicable. This routine raises ECR_Found.
function Find_ECR (N : Node_Id) return Node_Id;
pragma Inline (Find_ECR);
-- Find an early call region starting from arbitrary node N
function Has_Suitable_Construct (List : List_Id) return Boolean;
pragma Inline (Has_Suitable_Construct);
-- Determine whether list List contains a suitable construct for
-- inclusion into an early call region.
procedure Include (N : Node_Id; Curr : out Node_Id);
pragma Inline (Include);
-- Update the Curr and Start pointers to include arbitrary construct
-- N in the early call region. This routine raises ECR_Found.
function Is_OK_Preelaborable_Construct (N : Node_Id) return Boolean;
pragma Inline (Is_OK_Preelaborable_Construct);
-- Determine whether arbitrary node N denotes a preelaboration-safe
-- construct.
function Is_Suitable_Construct (N : Node_Id) return Boolean;
pragma Inline (Is_Suitable_Construct);
-- Determine whether arbitrary node N denotes a suitable construct
-- for inclusion into the early call region.
procedure Transition_Body_Declarations
(Bod : Node_Id;
Curr : out Node_Id);
pragma Inline (Transition_Body_Declarations);
-- Update the Curr and Start pointers when construct Bod denotes a
-- block statement or a suitable body. This routine raises ECR_Found.
procedure Transition_Handled_Statements
(HSS : Node_Id;
Curr : out Node_Id);
pragma Inline (Transition_Handled_Statements);
-- Update the Curr and Start pointers when node HSS denotes a handled
-- sequence of statements. This routine raises ECR_Found.
procedure Transition_Spec_Declarations
(Spec : Node_Id;
Curr : out Node_Id);
pragma Inline (Transition_Spec_Declarations);
-- Update the Curr and Start pointers when construct Spec denotes
-- a concurrent definition or a package spec. This routine raises
-- ECR_Found.
procedure Transition_Unit (Unit : Node_Id; Curr : out Node_Id);
pragma Inline (Transition_Unit);
-- Update the Curr and Start pointers when node Unit denotes a
-- potential compilation unit. This routine raises ECR_Found.
-------------
-- Advance --
-------------
procedure Advance (Curr : in out Node_Id) is
Context : Node_Id;
begin
-- Curr denotes one of the following cases upon entry into this
-- routine:
--
-- * Empty - There is no current construct when a declarative or
-- a statement list has been exhausted. This does not indicate
-- that the early call region has been computed as it is still
-- possible to transition to another list.
--
-- * Encapsulator - The current construct wraps declarations
-- and/or statements. This indicates that the early call
-- region may extend within the nested construct.
--
-- * Preelaborable - The current construct is preelaborable
-- because Find_ECR would not invoke Advance if this was not
-- the case.
-- The current construct is an encapsulator or is preelaborable
if Present (Curr) then
-- Enter encapsulators by inspecting their declarations and/or
-- statements.
if Nkind (Curr) in N_Block_Statement | N_Package_Body then
Enter_Handled_Body (Curr);
elsif Nkind (Curr) = N_Package_Declaration then
Enter_Package_Declaration (Curr);
-- Early call regions have a property which can be exploited to
-- optimize the algorithm.
--
-- <preceding subprogram body>
-- <preelaborable construct 1>
-- ...
-- <preelaborable construct N>
-- <initiating subprogram body>
--
-- If a traversal initiated from a subprogram body reaches a
-- preceding subprogram body, then both bodies share the same
-- early call region.
--
-- The property results in the following desirable effects:
--
-- * If the preceding body already has an early call region,
-- then the initiating body can reuse it. This minimizes the
-- amount of processing performed by the algorithm.
--
-- * If the preceding body lack an early call region, then the
-- algorithm can compute the early call region, and reuse it
-- for the initiating body. This processing performs the same
-- amount of work, but has the beneficial effect of computing
-- the early call regions of all preceding bodies.
elsif Nkind (Curr) in N_Entry_Body | N_Subprogram_Body then
Start :=
Find_Early_Call_Region
(Body_Decl => Curr,
Assume_Elab_Body => Assume_Elab_Body,
Skip_Memoization => Skip_Memoization);
raise ECR_Found;
-- Otherwise current construct is preelaborable. Unpdate the
-- early call region to include it.
else
Include (Curr, Curr);
end if;
-- Otherwise the current construct is missing, indicating that the
-- current list has been exhausted. Depending on the context of
-- the list, several transitions are possible.
else
-- The invariant of the algorithm ensures that Curr and Start
-- are at the same level of nesting at the point of transition.
-- The algorithm can determine which list the traversal came
-- from by examining Start.
Context := Parent (Start);
-- Attempt the following transitions:
--
-- private declarations -> visible declarations
-- private declarations -> upper level
-- private declarations -> terminate
-- visible declarations -> upper level
-- visible declarations -> terminate
if Nkind (Context) in N_Package_Specification
| N_Protected_Definition
| N_Task_Definition
then
Transition_Spec_Declarations (Context, Curr);
-- Attempt the following transitions:
--
-- statements -> declarations
-- statements -> upper level
-- statements -> corresponding package spec (Elab_Body)
-- statements -> terminate
elsif Nkind (Context) = N_Handled_Sequence_Of_Statements then
Transition_Handled_Statements (Context, Curr);
-- Attempt the following transitions:
--
-- declarations -> upper level
-- declarations -> corresponding package spec (Elab_Body)
-- declarations -> terminate
elsif Nkind (Context) in N_Block_Statement
| N_Entry_Body
| N_Package_Body
| N_Protected_Body
| N_Subprogram_Body
| N_Task_Body
then
Transition_Body_Declarations (Context, Curr);
-- Otherwise it is not possible to transition. Stop the search
-- because there are no more declarations or statements to
-- check.
else
raise ECR_Found;
end if;
end if;
end Advance;
--------------------------
-- Enter_Handled_Body --
--------------------------
procedure Enter_Handled_Body (Curr : in out Node_Id) is
Decls : constant List_Id := Declarations (Curr);
HSS : constant Node_Id := Handled_Statement_Sequence (Curr);
Stmts : List_Id := No_List;
begin
if Present (HSS) then
Stmts := Statements (HSS);
end if;
-- The handled body has a non-empty statement sequence. The
-- construct to inspect is the last statement.
if Has_Suitable_Construct (Stmts) then
Curr := Last (Stmts);
-- The handled body lacks statements, but has non-empty
-- declarations. The construct to inspect is the last declaration.
elsif Has_Suitable_Construct (Decls) then
Curr := Last (Decls);
-- Otherwise the handled body lacks both declarations and
-- statements. The construct to inspect is the node which precedes
-- the handled body. Update the early call region to include the
-- handled body.
else
Include (Curr, Curr);
end if;
end Enter_Handled_Body;
-------------------------------
-- Enter_Package_Declaration --
-------------------------------
procedure Enter_Package_Declaration (Curr : in out Node_Id) is
Pack_Spec : constant Node_Id := Specification (Curr);
Prv_Decls : constant List_Id := Private_Declarations (Pack_Spec);
Vis_Decls : constant List_Id := Visible_Declarations (Pack_Spec);
begin
-- The package has a non-empty private declarations. The construct
-- to inspect is the last private declaration.
if Has_Suitable_Construct (Prv_Decls) then
Curr := Last (Prv_Decls);
-- The package lacks private declarations, but has non-empty
-- visible declarations. In this case the construct to inspect
-- is the last visible declaration.
elsif Has_Suitable_Construct (Vis_Decls) then
Curr := Last (Vis_Decls);
-- Otherwise the package lacks any declarations. The construct
-- to inspect is the node which precedes the package. Update the
-- early call region to include the package declaration.
else
Include (Curr, Curr);
end if;
end Enter_Package_Declaration;
--------------
-- Find_ECR --
--------------
function Find_ECR (N : Node_Id) return Node_Id is
Curr : Node_Id;
begin
-- The early call region starts at N
Curr := Prev (N);
Start := N;
-- Inspect each node in reverse declarative order while going in
-- and out of nested and enclosing constructs. Note that the only
-- way to terminate this infinite loop is to raise ECR_Found.
loop
-- The current construct is not preelaboration-safe. Terminate
-- the traversal.
if Present (Curr)
and then not Is_OK_Preelaborable_Construct (Curr)
then
raise ECR_Found;
end if;
-- Advance to the next suitable construct. This may terminate
-- the traversal by raising ECR_Found.
Advance (Curr);
end loop;
exception
when ECR_Found =>
return Start;
end Find_ECR;
----------------------------
-- Has_Suitable_Construct --
----------------------------
function Has_Suitable_Construct (List : List_Id) return Boolean is
Item : Node_Id;
begin
-- Examine the list in reverse declarative order, looking for a
-- suitable construct.
if Present (List) then
Item := Last (List);
while Present (Item) loop
if Is_Suitable_Construct (Item) then
return True;
end if;
Prev (Item);
end loop;
end if;
return False;
end Has_Suitable_Construct;
-------------
-- Include --
-------------
procedure Include (N : Node_Id; Curr : out Node_Id) is
begin
Start := N;
-- The input node is a compilation unit. This terminates the
-- search because there are no more lists to inspect and there are
-- no more enclosing constructs to climb up to. The transitions
-- are:
--
-- private declarations -> terminate
-- visible declarations -> terminate
-- statements -> terminate
-- declarations -> terminate
if Nkind (Parent (Start)) = N_Compilation_Unit then
raise ECR_Found;
-- Otherwise the input node is still within some list
else
Curr := Prev (Start);
end if;
end Include;
-----------------------------------
-- Is_OK_Preelaborable_Construct --
-----------------------------------
function Is_OK_Preelaborable_Construct (N : Node_Id) return Boolean is
begin
-- Assignment statements are acceptable as long as they were
-- produced by the ABE mechanism to update elaboration flags.
if Nkind (N) = N_Assignment_Statement then
return Is_Elaboration_Code (N);
-- Block statements are acceptable even though they directly
-- violate preelaborability. The intention is not to penalize
-- the early call region when a block contains only preelaborable
-- constructs.
--
-- declare
-- Val : constant Integer := 1;
-- begin
-- pragma Assert (Val = 1);
-- null;
-- end;
--
-- Note that the Advancement phase does enter blocks, and will
-- detect any non-preelaborable declarations or statements within.
elsif Nkind (N) = N_Block_Statement then
return True;
end if;
-- Otherwise the construct must be preelaborable. The check must
-- take the syntactic and semantic structure of the construct. DO
-- NOT use Is_Preelaborable_Construct here.
return not Is_Non_Preelaborable_Construct (N);
end Is_OK_Preelaborable_Construct;
---------------------------
-- Is_Suitable_Construct --
---------------------------
function Is_Suitable_Construct (N : Node_Id) return Boolean is
Context : constant Node_Id := Parent (N);
begin
-- An internally-generated statement sequence which contains only
-- a single null statement is not a suitable construct because it
-- is a byproduct of the parser. Such a null statement should be
-- excluded from the early call region because it carries the
-- source location of the "end" keyword, and may lead to confusing
-- diagnistics.
if Nkind (N) = N_Null_Statement
and then not Comes_From_Source (N)
and then Present (Context)
and then Nkind (Context) = N_Handled_Sequence_Of_Statements
then
return False;
end if;
-- Otherwise only constructs which correspond to pure Ada
-- constructs are considered suitable.
case Nkind (N) is
when N_Call_Marker
| N_Freeze_Entity
| N_Freeze_Generic_Entity
| N_Implicit_Label_Declaration
| N_Itype_Reference
| N_Pop_Constraint_Error_Label
| N_Pop_Program_Error_Label
| N_Pop_Storage_Error_Label
| N_Push_Constraint_Error_Label
| N_Push_Program_Error_Label
| N_Push_Storage_Error_Label
| N_SCIL_Dispatch_Table_Tag_Init
| N_SCIL_Dispatching_Call
| N_SCIL_Membership_Test
| N_Variable_Reference_Marker
=>
return False;
when others =>
return True;
end case;
end Is_Suitable_Construct;
----------------------------------
-- Transition_Body_Declarations --
----------------------------------
procedure Transition_Body_Declarations
(Bod : Node_Id;
Curr : out Node_Id)
is
Decls : constant List_Id := Declarations (Bod);
begin
-- The search must come from the declarations of the body
pragma Assert
(Is_Non_Empty_List (Decls)
and then List_Containing (Start) = Decls);
-- The search finished inspecting the declarations. The construct
-- to inspect is the node which precedes the handled body, unless
-- the body is a compilation unit. The transitions are:
--
-- declarations -> upper level
-- declarations -> corresponding package spec (Elab_Body)
-- declarations -> terminate
Transition_Unit (Bod, Curr);
end Transition_Body_Declarations;
-----------------------------------
-- Transition_Handled_Statements --
-----------------------------------
procedure Transition_Handled_Statements
(HSS : Node_Id;
Curr : out Node_Id)
is
Bod : constant Node_Id := Parent (HSS);
Decls : constant List_Id := Declarations (Bod);
Stmts : constant List_Id := Statements (HSS);
begin
-- The search must come from the statements of certain bodies or
-- statements.
pragma Assert
(Nkind (Bod) in
N_Block_Statement |
N_Entry_Body |
N_Package_Body |
N_Protected_Body |
N_Subprogram_Body |
N_Task_Body);
-- The search must come from the statements of the handled
-- sequence.
pragma Assert
(Is_Non_Empty_List (Stmts)
and then List_Containing (Start) = Stmts);
-- The search finished inspecting the statements. The handled body
-- has non-empty declarations. The construct to inspect is the
-- last declaration. The transitions are:
--
-- statements -> declarations
if Has_Suitable_Construct (Decls) then
Curr := Last (Decls);
-- Otherwise the handled body lacks declarations. The construct to
-- inspect is the node which precedes the handled body, unless the
-- body is a compilation unit. The transitions are:
--
-- statements -> upper level
-- statements -> corresponding package spec (Elab_Body)
-- statements -> terminate
else
Transition_Unit (Bod, Curr);
end if;
end Transition_Handled_Statements;
----------------------------------
-- Transition_Spec_Declarations --
----------------------------------
procedure Transition_Spec_Declarations
(Spec : Node_Id;
Curr : out Node_Id)
is
Prv_Decls : constant List_Id := Private_Declarations (Spec);
Vis_Decls : constant List_Id := Visible_Declarations (Spec);
begin
pragma Assert (Present (Start) and then Is_List_Member (Start));
-- The search came from the private declarations and finished
-- their inspection.
if Has_Suitable_Construct (Prv_Decls)
and then List_Containing (Start) = Prv_Decls
then
-- The context has non-empty visible declarations. The node to
-- inspect is the last visible declaration. The transitions
-- are:
--
-- private declarations -> visible declarations
if Has_Suitable_Construct (Vis_Decls) then
Curr := Last (Vis_Decls);
-- Otherwise the context lacks visible declarations. The
-- construct to inspect is the node which precedes the context
-- unless the context is a compilation unit. The transitions
-- are:
--
-- private declarations -> upper level
-- private declarations -> terminate
else
Transition_Unit (Parent (Spec), Curr);
end if;
-- The search came from the visible declarations and finished
-- their inspections. The construct to inspect is the node which
-- precedes the context, unless the context is a compilaton unit.
-- The transitions are:
--
-- visible declarations -> upper level
-- visible declarations -> terminate
elsif Has_Suitable_Construct (Vis_Decls)
and then List_Containing (Start) = Vis_Decls
then
Transition_Unit (Parent (Spec), Curr);
-- At this point both declarative lists are empty, but the
-- traversal still came from within the spec. This indicates
-- that the invariant of the algorithm has been violated.
else
pragma Assert (False);
raise ECR_Found;
end if;
end Transition_Spec_Declarations;
---------------------
-- Transition_Unit --
---------------------
procedure Transition_Unit
(Unit : Node_Id;
Curr : out Node_Id)
is
Context : constant Node_Id := Parent (Unit);
begin
-- The unit is a compilation unit. This terminates the search
-- because there are no more lists to inspect and there are no
-- more enclosing constructs to climb up to.
if Nkind (Context) = N_Compilation_Unit then
-- A package body with a corresponding spec subject to pragma
-- Elaborate_Body is an exception to the above. The annotation
-- allows the search to continue into the package declaration.
-- The transitions are:
--
-- statements -> corresponding package spec (Elab_Body)
-- declarations -> corresponding package spec (Elab_Body)
if Nkind (Unit) = N_Package_Body
and then (Assume_Elab_Body
or else Has_Pragma_Elaborate_Body
(Corresponding_Spec (Unit)))
then
Curr := Unit_Declaration_Node (Corresponding_Spec (Unit));
Enter_Package_Declaration (Curr);
-- Otherwise terminate the search. The transitions are:
--
-- private declarations -> terminate
-- visible declarations -> terminate
-- statements -> terminate
-- declarations -> terminate
else
raise ECR_Found;
end if;
-- The unit is a subunit. The construct to inspect is the node
-- which precedes the corresponding stub. Update the early call
-- region to include the unit.
elsif Nkind (Context) = N_Subunit then
Start := Unit;
Curr := Corresponding_Stub (Context);
-- Otherwise the unit is nested. The construct to inspect is the
-- node which precedes the unit. Update the early call region to
-- include the unit.
else
Include (Unit, Curr);
end if;
end Transition_Unit;
-- Local variables
Body_Id : constant Entity_Id := Unique_Defining_Entity (Body_Decl);
Region : Node_Id;
-- Start of processing for Find_Early_Call_Region
begin
-- The caller demands the start of the early call region without
-- saving or retrieving it to/from internal data structures.
if Skip_Memoization then
Region := Find_ECR (Body_Decl);
-- Default behavior
else
-- Check whether the early call region of the subprogram body is
-- available.
Region := Early_Call_Region (Body_Id);
if No (Region) then
Region := Find_ECR (Body_Decl);
-- Associate the early call region with the subprogram body in
-- case other scenarios need it.
Set_Early_Call_Region (Body_Id, Region);
end if;
end if;
-- A subprogram body must always have an early call region
pragma Assert (Present (Region));
return Region;
end Find_Early_Call_Region;
--------------------------------------------
-- Initialize_Early_Call_Region_Processor --
--------------------------------------------
procedure Initialize_Early_Call_Region_Processor is
begin
Early_Call_Regions_Map := ECR_Map.Create (100);
end Initialize_Early_Call_Region_Processor;
---------------------------
-- Set_Early_Call_Region --
---------------------------
procedure Set_Early_Call_Region (Body_Id : Entity_Id; Start : Node_Id) is
pragma Assert (Present (Body_Id));
pragma Assert (Present (Start));
begin
ECR_Map.Put (Early_Call_Regions_Map, Body_Id, Start);
end Set_Early_Call_Region;
end Early_Call_Region_Processor;
----------------------
-- Elaborated_Units --
----------------------
package body Elaborated_Units is
-----------
-- Types --
-----------
-- The following type idenfities the elaboration attributes of a unit
type Elaboration_Attributes_Id is new Natural;
No_Elaboration_Attributes : constant Elaboration_Attributes_Id :=
Elaboration_Attributes_Id'First;
First_Elaboration_Attributes : constant Elaboration_Attributes_Id :=
No_Elaboration_Attributes + 1;
-- The following type represents the elaboration attributes of a unit
type Elaboration_Attributes_Record is record
Elab_Pragma : Node_Id := Empty;
-- This attribute denotes a source Elaborate or Elaborate_All pragma
-- which guarantees the prior elaboration of some unit with respect
-- to the main unit. The pragma may come from the following contexts:
--
-- * The main unit
-- * The spec of the main unit (if applicable)
-- * Any parent spec of the main unit (if applicable)
-- * Any parent subunit of the main unit (if applicable)
--
-- The attribute remains Empty if no such pragma is available. Source
-- pragmas play a role in satisfying SPARK elaboration requirements.
With_Clause : Node_Id := Empty;
-- This attribute denotes an internally-generated or a source with
-- clause for some unit withed by the main unit. With clauses carry
-- flags which represent implicit Elaborate or Elaborate_All pragmas.
-- These clauses play a role in supplying elaboration dependencies to
-- binde.
end record;
---------------------
-- Data structures --
---------------------
-- The following table stores all elaboration attributes
package Elaboration_Attributes is new Table.Table
(Table_Index_Type => Elaboration_Attributes_Id,
Table_Component_Type => Elaboration_Attributes_Record,
Table_Low_Bound => First_Elaboration_Attributes,
Table_Initial => 250,
Table_Increment => 200,
Table_Name => "Elaboration_Attributes");
procedure Destroy (EA_Id : in out Elaboration_Attributes_Id);
-- Destroy elaboration attributes EA_Id
package UA_Map is new Dynamic_Hash_Tables
(Key_Type => Entity_Id,
Value_Type => Elaboration_Attributes_Id,
No_Value => No_Elaboration_Attributes,
Expansion_Threshold => 1.5,
Expansion_Factor => 2,
Compression_Threshold => 0.3,
Compression_Factor => 2,
"=" => "=",
Destroy_Value => Destroy,
Hash => Hash);
-- The following map relates an elaboration attributes of a unit to the
-- unit.
Unit_To_Attributes_Map : UA_Map.Dynamic_Hash_Table := UA_Map.Nil;
------------------
-- Constructors --
------------------
function Elaboration_Attributes_Of
(Unit_Id : Entity_Id) return Elaboration_Attributes_Id;
pragma Inline (Elaboration_Attributes_Of);
-- Obtain the elaboration attributes of unit Unit_Id
-----------------------
-- Local subprograms --
-----------------------
function Elab_Pragma (EA_Id : Elaboration_Attributes_Id) return Node_Id;
pragma Inline (Elab_Pragma);
-- Obtain the Elaborate[_All] pragma of elaboration attributes EA_Id
procedure Ensure_Prior_Elaboration_Dynamic
(N : Node_Id;
Unit_Id : Entity_Id;
Prag_Nam : Name_Id;
In_State : Processing_In_State);
pragma Inline (Ensure_Prior_Elaboration_Dynamic);
-- Guarantee the elaboration of unit Unit_Id with respect to the main
-- unit by suggesting the use of Elaborate[_All] with name Prag_Nam. N
-- denotes the related scenario. In_State is the current state of the
-- Processing phase.
procedure Ensure_Prior_Elaboration_Static
(N : Node_Id;
Unit_Id : Entity_Id;
Prag_Nam : Name_Id;
In_State : Processing_In_State);
pragma Inline (Ensure_Prior_Elaboration_Static);
-- Guarantee the elaboration of unit Unit_Id with respect to the main
-- unit by installing an implicit Elaborate[_All] pragma with name
-- Prag_Nam. N denotes the related scenario. In_State is the current
-- state of the Processing phase.
function Present (EA_Id : Elaboration_Attributes_Id) return Boolean;
pragma Inline (Present);
-- Determine whether elaboration attributes UA_Id exist
procedure Set_Elab_Pragma
(EA_Id : Elaboration_Attributes_Id;
Prag : Node_Id);
pragma Inline (Set_Elab_Pragma);
-- Set the Elaborate[_All] pragma of elaboration attributes EA_Id to
-- Prag.
procedure Set_With_Clause
(EA_Id : Elaboration_Attributes_Id;
Clause : Node_Id);
pragma Inline (Set_With_Clause);
-- Set the with clause of elaboration attributes EA_Id to Clause
function With_Clause (EA_Id : Elaboration_Attributes_Id) return Node_Id;
pragma Inline (With_Clause);
-- Obtain the implicit or source with clause of elaboration attributes
-- EA_Id.
------------------------------
-- Collect_Elaborated_Units --
------------------------------
procedure Collect_Elaborated_Units is
procedure Add_Pragma (Prag : Node_Id);
pragma Inline (Add_Pragma);
-- Determine whether pragma Prag denotes a legal Elaborate[_All]
-- pragma. If this is the case, add the related unit to the context.
-- For pragma Elaborate_All, include recursively all units withed by
-- the related unit.
procedure Add_Unit
(Unit_Id : Entity_Id;
Prag : Node_Id;
Full_Context : Boolean);
pragma Inline (Add_Unit);
-- Add unit Unit_Id to the elaboration context. Prag denotes the
-- pragma which prompted the inclusion of the unit to the context.
-- If flag Full_Context is set, examine the nonlimited clauses of
-- unit Unit_Id and add each withed unit to the context.
procedure Find_Elaboration_Context (Comp_Unit : Node_Id);
pragma Inline (Find_Elaboration_Context);
-- Examine the context items of compilation unit Comp_Unit for
-- suitable elaboration-related pragmas and add all related units
-- to the context.
----------------
-- Add_Pragma --
----------------
procedure Add_Pragma (Prag : Node_Id) is
Prag_Args : constant List_Id :=
Pragma_Argument_Associations (Prag);
Prag_Nam : constant Name_Id := Pragma_Name (Prag);
Unit_Arg : Node_Id;
begin
-- Nothing to do if the pragma is not related to elaboration
if Prag_Nam not in Name_Elaborate | Name_Elaborate_All then
return;
-- Nothing to do when the pragma is illegal
elsif Error_Posted (Prag) then
return;
end if;
Unit_Arg := Get_Pragma_Arg (First (Prag_Args));
-- The argument of the pragma may appear in package.package form
if Nkind (Unit_Arg) = N_Selected_Component then
Unit_Arg := Selector_Name (Unit_Arg);
end if;
Add_Unit
(Unit_Id => Entity (Unit_Arg),
Prag => Prag,
Full_Context => Prag_Nam = Name_Elaborate_All);
end Add_Pragma;
--------------
-- Add_Unit --
--------------
procedure Add_Unit
(Unit_Id : Entity_Id;
Prag : Node_Id;
Full_Context : Boolean)
is
Clause : Node_Id;
EA_Id : Elaboration_Attributes_Id;
Unit_Prag : Node_Id;
begin
-- Nothing to do when some previous error left a with clause or a
-- pragma in a bad state.
if No (Unit_Id) then
return;
end if;
EA_Id := Elaboration_Attributes_Of (Unit_Id);
Unit_Prag := Elab_Pragma (EA_Id);
-- The unit is already included in the context by means of pragma
-- Elaborate[_All].
if Present (Unit_Prag) then
-- Upgrade an existing pragma Elaborate when the unit is
-- subject to Elaborate_All because the new pragma covers a
-- larger set of units.
if Pragma_Name (Unit_Prag) = Name_Elaborate
and then Pragma_Name (Prag) = Name_Elaborate_All
then
Set_Elab_Pragma (EA_Id, Prag);
-- Otherwise the unit retains its existing pragma and does not
-- need to be included in the context again.
else
return;
end if;
-- Otherwise the current unit is not included in the context
else
Set_Elab_Pragma (EA_Id, Prag);
end if;
-- Includes all units withed by the current one when computing the
-- full context.
if Full_Context then
-- Process all nonlimited with clauses found in the context of
-- the current unit. Note that limited clauses do not impose an
-- elaboration order.
Clause := First (Context_Items (Compilation_Unit (Unit_Id)));
while Present (Clause) loop
if Nkind (Clause) = N_With_Clause
and then not Error_Posted (Clause)
and then not Limited_Present (Clause)
then
Add_Unit
(Unit_Id => Entity (Name (Clause)),
Prag => Prag,
Full_Context => Full_Context);
end if;
Next (Clause);
end loop;
end if;
end Add_Unit;
------------------------------
-- Find_Elaboration_Context --
------------------------------
procedure Find_Elaboration_Context (Comp_Unit : Node_Id) is
pragma Assert (Nkind (Comp_Unit) = N_Compilation_Unit);
Prag : Node_Id;
begin
-- Process all elaboration-related pragmas found in the context of
-- the compilation unit.
Prag := First (Context_Items (Comp_Unit));
while Present (Prag) loop
if Nkind (Prag) = N_Pragma then
Add_Pragma (Prag);
end if;
Next (Prag);
end loop;
end Find_Elaboration_Context;
-- Local variables
Par_Id : Entity_Id;
Unit_Id : Node_Id;
-- Start of processing for Collect_Elaborated_Units
begin
-- Perform a traversal to examines the context of the main unit. The
-- traversal performs the following jumps:
--
-- subunit -> parent subunit
-- parent subunit -> body
-- body -> spec
-- spec -> parent spec
-- parent spec -> grandparent spec and so on
--
-- The traversal relies on units rather than scopes because the scope
-- of a subunit is some spec, while this traversal must process the
-- body as well. Given that protected and task bodies can also be
-- subunits, this complicates the scope approach even further.
Unit_Id := Unit (Cunit (Main_Unit));
-- Perform the following traversals when the main unit is a subunit
--
-- subunit -> parent subunit
-- parent subunit -> body
while Present (Unit_Id) and then Nkind (Unit_Id) = N_Subunit loop
Find_Elaboration_Context (Parent (Unit_Id));
-- Continue the traversal by going to the unit which contains the
-- corresponding stub.
if Present (Corresponding_Stub (Unit_Id)) then
Unit_Id :=
Unit (Cunit (Get_Source_Unit (Corresponding_Stub (Unit_Id))));
-- Otherwise the subunit may be erroneous or left in a bad state
else
exit;
end if;
end loop;
-- Perform the following traversal now that subunits have been taken
-- care of, or the main unit is a body.
--
-- body -> spec
if Present (Unit_Id)
and then Nkind (Unit_Id) in N_Package_Body | N_Subprogram_Body
then
Find_Elaboration_Context (Parent (Unit_Id));
-- Continue the traversal by going to the unit which contains the
-- corresponding spec.
if Present (Corresponding_Spec (Unit_Id)) then
Unit_Id :=
Unit (Cunit (Get_Source_Unit (Corresponding_Spec (Unit_Id))));
end if;
end if;
-- Perform the following traversals now that the body has been taken
-- care of, or the main unit is a spec.
--
-- spec -> parent spec
-- parent spec -> grandparent spec and so on
if Present (Unit_Id)
and then Nkind (Unit_Id) in N_Generic_Package_Declaration
| N_Generic_Subprogram_Declaration
| N_Package_Declaration
| N_Subprogram_Declaration
then
Find_Elaboration_Context (Parent (Unit_Id));
-- Process a potential chain of parent units which ends with the
-- main unit spec. The traversal can now safely rely on the scope
-- chain.
Par_Id := Scope (Defining_Entity (Unit_Id));
while Present (Par_Id) and then Par_Id /= Standard_Standard loop
Find_Elaboration_Context (Compilation_Unit (Par_Id));
Par_Id := Scope (Par_Id);
end loop;
end if;
end Collect_Elaborated_Units;
-------------
-- Destroy --
-------------
procedure Destroy (EA_Id : in out Elaboration_Attributes_Id) is
pragma Unreferenced (EA_Id);
begin
null;
end Destroy;
-----------------
-- Elab_Pragma --
-----------------
function Elab_Pragma
(EA_Id : Elaboration_Attributes_Id) return Node_Id
is
pragma Assert (Present (EA_Id));
begin
return Elaboration_Attributes.Table (EA_Id).Elab_Pragma;
end Elab_Pragma;
-------------------------------
-- Elaboration_Attributes_Of --
-------------------------------
function Elaboration_Attributes_Of
(Unit_Id : Entity_Id) return Elaboration_Attributes_Id
is
EA_Id : Elaboration_Attributes_Id;
begin
EA_Id := UA_Map.Get (Unit_To_Attributes_Map, Unit_Id);
-- The unit lacks elaboration attributes. This indicates that the
-- unit is encountered for the first time. Create the elaboration
-- attributes for it.
if not Present (EA_Id) then
Elaboration_Attributes.Append
((Elab_Pragma => Empty,
With_Clause => Empty));
EA_Id := Elaboration_Attributes.Last;
-- Associate the elaboration attributes with the unit
UA_Map.Put (Unit_To_Attributes_Map, Unit_Id, EA_Id);
end if;
pragma Assert (Present (EA_Id));
return EA_Id;
end Elaboration_Attributes_Of;
------------------------------
-- Ensure_Prior_Elaboration --
------------------------------
procedure Ensure_Prior_Elaboration
(N : Node_Id;
Unit_Id : Entity_Id;
Prag_Nam : Name_Id;
In_State : Processing_In_State)
is
pragma Assert (Prag_Nam in Name_Elaborate | Name_Elaborate_All);
begin
-- Nothing to do when the need for prior elaboration came from a
-- partial finalization routine which occurs in an initialization
-- context. This behavior parallels that of the old ABE mechanism.
if In_State.Within_Partial_Finalization then
return;
-- Nothing to do when the need for prior elaboration came from a task
-- body and switch -gnatd.y (disable implicit pragma Elaborate_All on
-- task bodies) is in effect.
elsif Debug_Flag_Dot_Y and then In_State.Within_Task_Body then
return;
-- Nothing to do when the unit is elaborated prior to the main unit.
-- This check must also consider the following cases:
--
-- * No check is made against the context of the main unit because
-- this is specific to the elaboration model in effect and requires
-- custom handling (see Ensure_xxx_Prior_Elaboration).
--
-- * Unit_Id is subject to pragma Elaborate_Body. An implicit pragma
-- Elaborate[_All] MUST be generated even though Unit_Id is always
-- elaborated prior to the main unit. This conservative strategy
-- ensures that other units withed by Unit_Id will not lead to an
-- ABE.
--
-- package A is package body A is
-- procedure ABE; procedure ABE is ... end ABE;
-- end A; end A;
--
-- with A;
-- package B is package body B is
-- pragma Elaborate_Body; procedure Proc is
-- begin
-- procedure Proc; A.ABE;
-- package B; end Proc;
-- end B;
--
-- with B;
-- package C is package body C is
-- ... ...
-- end C; begin
-- B.Proc;
-- end C;
--
-- In the example above, the elaboration of C invokes B.Proc. B is
-- subject to pragma Elaborate_Body. If no pragma Elaborate[_All]
-- is gnerated for B in C, then the following elaboratio order will
-- lead to an ABE:
--
-- spec of A elaborated
-- spec of B elaborated
-- body of B elaborated
-- spec of C elaborated
-- body of C elaborated <-- calls B.Proc which calls A.ABE
-- body of A elaborated <-- problem
--
-- The generation of an implicit pragma Elaborate_All (B) ensures
-- that the elaboration-order mechanism will not pick the above
-- order.
--
-- An implicit Elaborate is NOT generated when the unit is subject
-- to Elaborate_Body because both pragmas have the same effect.
--
-- * Unit_Id is the main unit. An implicit pragma Elaborate[_All]
-- MUST NOT be generated in this case because a unit cannot depend
-- on its own elaboration. This case is therefore treated as valid
-- prior elaboration.
elsif Has_Prior_Elaboration
(Unit_Id => Unit_Id,
Same_Unit_OK => True,
Elab_Body_OK => Prag_Nam = Name_Elaborate)
then
return;
end if;
-- Suggest the use of pragma Prag_Nam when the dynamic model is in
-- effect.
if Dynamic_Elaboration_Checks then
Ensure_Prior_Elaboration_Dynamic
(N => N,
Unit_Id => Unit_Id,
Prag_Nam => Prag_Nam,
In_State => In_State);
-- Install an implicit pragma Prag_Nam when the static model is in
-- effect.
else
pragma Assert (Static_Elaboration_Checks);
Ensure_Prior_Elaboration_Static
(N => N,
Unit_Id => Unit_Id,
Prag_Nam => Prag_Nam,
In_State => In_State);
end if;
end Ensure_Prior_Elaboration;
--------------------------------------
-- Ensure_Prior_Elaboration_Dynamic --
--------------------------------------
procedure Ensure_Prior_Elaboration_Dynamic
(N : Node_Id;
Unit_Id : Entity_Id;
Prag_Nam : Name_Id;
In_State : Processing_In_State)
is
procedure Info_Missing_Pragma;
pragma Inline (Info_Missing_Pragma);
-- Output information concerning missing Elaborate or Elaborate_All
-- pragma with name Prag_Nam for scenario N, which would ensure the
-- prior elaboration of Unit_Id.
-------------------------
-- Info_Missing_Pragma --
-------------------------
procedure Info_Missing_Pragma is
begin
-- Internal units are ignored as they cause unnecessary noise
if not In_Internal_Unit (Unit_Id) then
-- The name of the unit subjected to the elaboration pragma is
-- fully qualified to improve the clarity of the info message.
Error_Msg_Name_1 := Prag_Nam;
Error_Msg_Qual_Level := Nat'Last;
Error_Msg_NE ("info: missing pragma % for unit &", N, Unit_Id);
Error_Msg_Qual_Level := 0;
end if;
end Info_Missing_Pragma;
-- Local variables
EA_Id : constant Elaboration_Attributes_Id :=
Elaboration_Attributes_Of (Unit_Id);
N_Lvl : Enclosing_Level_Kind;
N_Rep : Scenario_Rep_Id;
-- Start of processing for Ensure_Prior_Elaboration_Dynamic
begin
-- Nothing to do when the unit is guaranteed prior elaboration by
-- means of a source Elaborate[_All] pragma.
if Present (Elab_Pragma (EA_Id)) then
return;
end if;
-- Output extra information on a missing Elaborate[_All] pragma when
-- switch -gnatel (info messages on implicit Elaborate[_All] pragmas
-- is in effect.
if Elab_Info_Messages
and then not In_State.Suppress_Info_Messages
then
N_Rep := Scenario_Representation_Of (N, In_State);
N_Lvl := Level (N_Rep);
-- Declaration-level scenario
if (Is_Suitable_Call (N) or else Is_Suitable_Instantiation (N))
and then N_Lvl = Declaration_Level
then
null;
-- Library-level scenario
elsif N_Lvl in Library_Level then
null;
-- Instantiation library-level scenario
elsif N_Lvl = Instantiation_Level then
null;
-- Otherwise the scenario does not appear at the proper level
else
return;
end if;
Info_Missing_Pragma;
end if;
end Ensure_Prior_Elaboration_Dynamic;
-------------------------------------
-- Ensure_Prior_Elaboration_Static --
-------------------------------------
procedure Ensure_Prior_Elaboration_Static
(N : Node_Id;
Unit_Id : Entity_Id;
Prag_Nam : Name_Id;
In_State : Processing_In_State)
is
function Find_With_Clause
(Items : List_Id;
Withed_Id : Entity_Id) return Node_Id;
pragma Inline (Find_With_Clause);
-- Find a nonlimited with clause in the list of context items Items
-- that withs unit Withed_Id. Return Empty if no such clause exists.
procedure Info_Implicit_Pragma;
pragma Inline (Info_Implicit_Pragma);
-- Output information concerning an implicitly generated Elaborate
-- or Elaborate_All pragma with name Prag_Nam for scenario N which
-- ensures the prior elaboration of unit Unit_Id.
----------------------
-- Find_With_Clause --
----------------------
function Find_With_Clause
(Items : List_Id;
Withed_Id : Entity_Id) return Node_Id
is
Item : Node_Id;
begin
-- Examine the context clauses looking for a suitable with. Note
-- that limited clauses do not affect the elaboration order.
Item := First (Items);
while Present (Item) loop
if Nkind (Item) = N_With_Clause
and then not Error_Posted (Item)
and then not Limited_Present (Item)
and then Entity (Name (Item)) = Withed_Id
then
return Item;
end if;
Next (Item);
end loop;
return Empty;
end Find_With_Clause;
--------------------------
-- Info_Implicit_Pragma --
--------------------------
procedure Info_Implicit_Pragma is
begin
-- Internal units are ignored as they cause unnecessary noise
if not In_Internal_Unit (Unit_Id) then
-- The name of the unit subjected to the elaboration pragma is
-- fully qualified to improve the clarity of the info message.
Error_Msg_Name_1 := Prag_Nam;
Error_Msg_Qual_Level := Nat'Last;
Error_Msg_NE
("info: implicit pragma % generated for unit &", N, Unit_Id);
Error_Msg_Qual_Level := 0;
Output_Active_Scenarios (N, In_State);
end if;
end Info_Implicit_Pragma;
-- Local variables
EA_Id : constant Elaboration_Attributes_Id :=
Elaboration_Attributes_Of (Unit_Id);
Main_Cunit : constant Node_Id := Cunit (Main_Unit);
Loc : constant Source_Ptr := Sloc (Main_Cunit);
Unit_Cunit : constant Node_Id := Compilation_Unit (Unit_Id);
Unit_Prag : constant Node_Id := Elab_Pragma (EA_Id);
Unit_With : constant Node_Id := With_Clause (EA_Id);
Clause : Node_Id;
Items : List_Id;
-- Start of processing for Ensure_Prior_Elaboration_Static
begin
-- Nothing to do when the caller has suppressed the generation of
-- implicit Elaborate[_All] pragmas.
if In_State.Suppress_Implicit_Pragmas then
return;
-- Nothing to do when the unit is guaranteed prior elaboration by
-- means of a source Elaborate[_All] pragma.
elsif Present (Unit_Prag) then
return;
-- Nothing to do when the unit has an existing implicit Elaborate or
-- Elaborate_All pragma installed by a previous scenario.
elsif Present (Unit_With) then
-- The unit is already guaranteed prior elaboration by means of an
-- implicit Elaborate pragma, however the current scenario imposes
-- a stronger requirement of Elaborate_All. "Upgrade" the existing
-- pragma to match this new requirement.
if Elaborate_Desirable (Unit_With)
and then Prag_Nam = Name_Elaborate_All
then
Set_Elaborate_All_Desirable (Unit_With);
Set_Elaborate_Desirable (Unit_With, False);
end if;
return;
end if;
-- At this point it is known that the unit has no prior elaboration
-- according to pragmas and hierarchical relationships.
Items := Context_Items (Main_Cunit);
if No (Items) then
Items := New_List;
Set_Context_Items (Main_Cunit, Items);
end if;
-- Locate the with clause for the unit. Note that there may not be a
-- clause if the unit is visible through a subunit-body, body-spec,
-- or spec-parent relationship.
Clause :=
Find_With_Clause
(Items => Items,
Withed_Id => Unit_Id);
-- Generate:
-- with Id;
-- Note that adding implicit with clauses is safe because analysis,
-- resolution, and expansion have already taken place and it is not
-- possible to interfere with visibility.
if No (Clause) then
Clause :=
Make_With_Clause (Loc,
Name => New_Occurrence_Of (Unit_Id, Loc));
Set_Implicit_With (Clause);
Set_Library_Unit (Clause, Unit_Cunit);
Append_To (Items, Clause);
end if;
-- Mark the with clause depending on the pragma required
if Prag_Nam = Name_Elaborate then
Set_Elaborate_Desirable (Clause);
else
Set_Elaborate_All_Desirable (Clause);
end if;
-- The implicit Elaborate[_All] ensures the prior elaboration of
-- the unit. Include the unit in the elaboration context of the
-- main unit.
Set_With_Clause (EA_Id, Clause);
-- Output extra information on an implicit Elaborate[_All] pragma
-- when switch -gnatel (info messages on implicit Elaborate[_All]
-- pragmas is in effect.
if Elab_Info_Messages then
Info_Implicit_Pragma;
end if;
end Ensure_Prior_Elaboration_Static;
-------------------------------
-- Finalize_Elaborated_Units --
-------------------------------
procedure Finalize_Elaborated_Units is
begin
UA_Map.Destroy (Unit_To_Attributes_Map);
end Finalize_Elaborated_Units;
---------------------------
-- Has_Prior_Elaboration --
---------------------------
function Has_Prior_Elaboration
(Unit_Id : Entity_Id;
Context_OK : Boolean := False;
Elab_Body_OK : Boolean := False;
Same_Unit_OK : Boolean := False) return Boolean
is
EA_Id : constant Elaboration_Attributes_Id :=
Elaboration_Attributes_Of (Unit_Id);
Main_Id : constant Entity_Id := Main_Unit_Entity;
Unit_Prag : constant Node_Id := Elab_Pragma (EA_Id);
Unit_With : constant Node_Id := With_Clause (EA_Id);
begin
-- A preelaborated unit is always elaborated prior to the main unit
if Is_Preelaborated_Unit (Unit_Id) then
return True;
-- An internal unit is always elaborated prior to a non-internal main
-- unit.
elsif In_Internal_Unit (Unit_Id)
and then not In_Internal_Unit (Main_Id)
then
return True;
-- A unit has prior elaboration if it appears within the context
-- of the main unit. Consider this case only when requested by the
-- caller.
elsif Context_OK
and then (Present (Unit_Prag) or else Present (Unit_With))
then
return True;
-- A unit whose body is elaborated together with its spec has prior
-- elaboration except with respect to itself. Consider this case only
-- when requested by the caller.
elsif Elab_Body_OK
and then Has_Pragma_Elaborate_Body (Unit_Id)
and then not Is_Same_Unit (Unit_Id, Main_Id)
then
return True;
-- A unit has no prior elaboration with respect to itself, but does
-- not require any means of ensuring its own elaboration either.
-- Treat this case as valid prior elaboration only when requested by
-- the caller.
elsif Same_Unit_OK and then Is_Same_Unit (Unit_Id, Main_Id) then
return True;
end if;
return False;
end Has_Prior_Elaboration;
---------------------------------
-- Initialize_Elaborated_Units --
---------------------------------
procedure Initialize_Elaborated_Units is
begin
Unit_To_Attributes_Map := UA_Map.Create (250);
end Initialize_Elaborated_Units;
----------------------------------
-- Meet_Elaboration_Requirement --
----------------------------------
procedure Meet_Elaboration_Requirement
(N : Node_Id;
Targ_Id : Entity_Id;
Req_Nam : Name_Id;
In_State : Processing_In_State)
is
pragma Assert (Req_Nam in Name_Elaborate | Name_Elaborate_All);
Main_Id : constant Entity_Id := Main_Unit_Entity;
Unit_Id : constant Entity_Id := Find_Top_Unit (Targ_Id);
procedure Elaboration_Requirement_Error;
pragma Inline (Elaboration_Requirement_Error);
-- Emit an error concerning scenario N which has failed to meet the
-- elaboration requirement.
function Find_Preelaboration_Pragma
(Prag_Nam : Name_Id) return Node_Id;
pragma Inline (Find_Preelaboration_Pragma);
-- Traverse the visible declarations of unit Unit_Id and locate a
-- source preelaboration-related pragma with name Prag_Nam.
procedure Info_Requirement_Met (Prag : Node_Id);
pragma Inline (Info_Requirement_Met);
-- Output information concerning pragma Prag which meets requirement
-- Req_Nam.
-----------------------------------
-- Elaboration_Requirement_Error --
-----------------------------------
procedure Elaboration_Requirement_Error is
begin
if Is_Suitable_Call (N) then
Info_Call
(Call => N,
Subp_Id => Targ_Id,
Info_Msg => False,
In_SPARK => True);
elsif Is_Suitable_Instantiation (N) then
Info_Instantiation
(Inst => N,
Gen_Id => Targ_Id,
Info_Msg => False,
In_SPARK => True);
elsif Is_Suitable_SPARK_Refined_State_Pragma (N) then
Error_Msg_N
("read of refinement constituents during elaboration in "
& "SPARK", N);
elsif Is_Suitable_Variable_Reference (N) then
Info_Variable_Reference
(Ref => N,
Var_Id => Targ_Id);
-- No other scenario may impose a requirement on the context of
-- the main unit.
else
pragma Assert (False);
return;
end if;
Error_Msg_Name_1 := Req_Nam;
Error_Msg_Node_2 := Unit_Id;
Error_Msg_NE ("\\unit & requires pragma % for &", N, Main_Id);
Output_Active_Scenarios (N, In_State);
end Elaboration_Requirement_Error;
--------------------------------
-- Find_Preelaboration_Pragma --
--------------------------------
function Find_Preelaboration_Pragma
(Prag_Nam : Name_Id) return Node_Id
is
Spec : constant Node_Id := Parent (Unit_Id);
Decl : Node_Id;
begin
-- A preelaboration-related pragma comes from source and appears
-- at the top of the visible declarations of a package.
if Nkind (Spec) = N_Package_Specification then
Decl := First (Visible_Declarations (Spec));
while Present (Decl) loop
if Comes_From_Source (Decl) then
if Nkind (Decl) = N_Pragma
and then Pragma_Name (Decl) = Prag_Nam
then
return Decl;
-- Otherwise the construct terminates the region where
-- the preelaboration-related pragma may appear.
else
exit;
end if;
end if;
Next (Decl);
end loop;
end if;
return Empty;
end Find_Preelaboration_Pragma;
--------------------------
-- Info_Requirement_Met --
--------------------------
procedure Info_Requirement_Met (Prag : Node_Id) is
pragma Assert (Present (Prag));
begin
Error_Msg_Name_1 := Req_Nam;
Error_Msg_Sloc := Sloc (Prag);
Error_Msg_NE
("\\% requirement for unit & met by pragma #", N, Unit_Id);
end Info_Requirement_Met;
-- Local variables
EA_Id : Elaboration_Attributes_Id;
Elab_Nam : Name_Id;
Req_Met : Boolean;
Unit_Prag : Node_Id;
-- Start of processing for Meet_Elaboration_Requirement
begin
-- Assume that the requirement has not been met
Req_Met := False;
-- If the target is within the main unit, either at the source level
-- or through an instantiation, then there is no real requirement to
-- meet because the main unit cannot force its own elaboration by
-- means of an Elaborate[_All] pragma. Treat this case as valid
-- coverage.
if In_Extended_Main_Code_Unit (Targ_Id) then
Req_Met := True;
-- Otherwise the target resides in an external unit
-- The requirement is met when the target comes from an internal unit
-- because such a unit is elaborated prior to a non-internal unit.
elsif In_Internal_Unit (Unit_Id)
and then not In_Internal_Unit (Main_Id)
then
Req_Met := True;
-- The requirement is met when the target comes from a preelaborated
-- unit. This portion must parallel predicate Is_Preelaborated_Unit.
elsif Is_Preelaborated_Unit (Unit_Id) then
Req_Met := True;
-- Output extra information when switch -gnatel (info messages on
-- implicit Elaborate[_All] pragmas.
if Elab_Info_Messages
and then not In_State.Suppress_Info_Messages
then
if Is_Preelaborated (Unit_Id) then
Elab_Nam := Name_Preelaborate;
elsif Is_Pure (Unit_Id) then
Elab_Nam := Name_Pure;
elsif Is_Remote_Call_Interface (Unit_Id) then
Elab_Nam := Name_Remote_Call_Interface;
elsif Is_Remote_Types (Unit_Id) then
Elab_Nam := Name_Remote_Types;
else
pragma Assert (Is_Shared_Passive (Unit_Id));
Elab_Nam := Name_Shared_Passive;
end if;
Info_Requirement_Met (Find_Preelaboration_Pragma (Elab_Nam));
end if;
-- Determine whether the context of the main unit has a pragma strong
-- enough to meet the requirement.
else
EA_Id := Elaboration_Attributes_Of (Unit_Id);
Unit_Prag := Elab_Pragma (EA_Id);
-- The pragma must be either Elaborate_All or be as strong as the
-- requirement.
if Present (Unit_Prag)
and then Pragma_Name (Unit_Prag) in Name_Elaborate_All | Req_Nam
then
Req_Met := True;
-- Output extra information when switch -gnatel (info messages
-- on implicit Elaborate[_All] pragmas.
if Elab_Info_Messages
and then not In_State.Suppress_Info_Messages
then
Info_Requirement_Met (Unit_Prag);
end if;
end if;
end if;
-- The requirement was not met by the context of the main unit, issue
-- an error.
if not Req_Met then
Elaboration_Requirement_Error;
end if;
end Meet_Elaboration_Requirement;
-------------
-- Present --
-------------
function Present (EA_Id : Elaboration_Attributes_Id) return Boolean is
begin
return EA_Id /= No_Elaboration_Attributes;
end Present;
---------------------
-- Set_Elab_Pragma --
---------------------
procedure Set_Elab_Pragma
(EA_Id : Elaboration_Attributes_Id;
Prag : Node_Id)
is
pragma Assert (Present (EA_Id));
begin
Elaboration_Attributes.Table (EA_Id).Elab_Pragma := Prag;
end Set_Elab_Pragma;
---------------------
-- Set_With_Clause --
---------------------
procedure Set_With_Clause
(EA_Id : Elaboration_Attributes_Id;
Clause : Node_Id)
is
pragma Assert (Present (EA_Id));
begin
Elaboration_Attributes.Table (EA_Id).With_Clause := Clause;
end Set_With_Clause;
-----------------
-- With_Clause --
-----------------
function With_Clause
(EA_Id : Elaboration_Attributes_Id) return Node_Id
is
pragma Assert (Present (EA_Id));
begin
return Elaboration_Attributes.Table (EA_Id).With_Clause;
end With_Clause;
end Elaborated_Units;
------------------------------
-- Elaboration_Phase_Active --
------------------------------
function Elaboration_Phase_Active return Boolean is
begin
return Elaboration_Phase = Active;
end Elaboration_Phase_Active;
------------------------------
-- Error_Preelaborated_Call --
------------------------------
procedure Error_Preelaborated_Call (N : Node_Id) is
begin
-- This is a warning in GNAT mode allowing such calls to be used in the
-- predefined library units with appropriate care.
Error_Msg_Warn := GNAT_Mode;
-- Ada 2022 (AI12-0175): Calls to certain functions that are essentially
-- unchecked conversions are preelaborable.
if Ada_Version >= Ada_2022 then
Error_Msg_N
("<<non-preelaborable call not allowed in preelaborated unit", N);
else
Error_Msg_N
("<<non-static call not allowed in preelaborated unit", N);
end if;
end Error_Preelaborated_Call;
----------------------------------
-- Finalize_All_Data_Structures --
----------------------------------
procedure Finalize_All_Data_Structures is
begin
Finalize_Body_Processor;
Finalize_Early_Call_Region_Processor;
Finalize_Elaborated_Units;
Finalize_Internal_Representation;
Finalize_Invocation_Graph;
Finalize_Scenario_Storage;
end Finalize_All_Data_Structures;
-----------------------------
-- Find_Enclosing_Instance --
-----------------------------
function Find_Enclosing_Instance (N : Node_Id) return Node_Id is
Par : Node_Id;
begin
-- Climb the parent chain looking for an enclosing instance spec or body
Par := N;
while Present (Par) loop
if Nkind (Par) in N_Package_Body
| N_Package_Declaration
| N_Subprogram_Body
| N_Subprogram_Declaration
and then Is_Generic_Instance (Unique_Defining_Entity (Par))
then
return Par;
end if;
Par := Parent (Par);
end loop;
return Empty;
end Find_Enclosing_Instance;
--------------------------
-- Find_Enclosing_Level --
--------------------------
function Find_Enclosing_Level (N : Node_Id) return Enclosing_Level_Kind is
function Level_Of (Unit : Node_Id) return Enclosing_Level_Kind;
pragma Inline (Level_Of);
-- Obtain the corresponding level of unit Unit
--------------
-- Level_Of --
--------------
function Level_Of (Unit : Node_Id) return Enclosing_Level_Kind is
Spec_Id : Entity_Id;
begin
if Nkind (Unit) in N_Generic_Instantiation then
return Instantiation_Level;
elsif Nkind (Unit) = N_Generic_Package_Declaration then
return Generic_Spec_Level;
elsif Nkind (Unit) = N_Package_Declaration then
return Library_Spec_Level;
elsif Nkind (Unit) = N_Package_Body then
Spec_Id := Corresponding_Spec (Unit);
-- The body belongs to a generic package
if Present (Spec_Id)
and then Ekind (Spec_Id) = E_Generic_Package
then
return Generic_Body_Level;
-- Otherwise the body belongs to a non-generic package. This also
-- treats an illegal package body without a corresponding spec as
-- a non-generic package body.
else
return Library_Body_Level;
end if;
end if;
return No_Level;
end Level_Of;
-- Local variables
Context : Node_Id;
Curr : Node_Id;
Prev : Node_Id;
-- Start of processing for Find_Enclosing_Level
begin
-- Call markers and instantiations which appear at the declaration level
-- but are later relocated in a different context retain their original
-- declaration level.
if Nkind (N) in N_Call_Marker
| N_Function_Instantiation
| N_Package_Instantiation
| N_Procedure_Instantiation
and then Is_Declaration_Level_Node (N)
then
return Declaration_Level;
end if;
-- Climb the parent chain looking at the enclosing levels
Prev := N;
Curr := Parent (Prev);
while Present (Curr) loop
-- A traversal from a subunit continues via the corresponding stub
if Nkind (Curr) = N_Subunit then
Curr := Corresponding_Stub (Curr);
-- The current construct is a package. Packages are ignored because
-- they are always elaborated when the enclosing context is invoked
-- or elaborated.
elsif Nkind (Curr) in N_Package_Body | N_Package_Declaration then
null;
-- The current construct is a block statement
elsif Nkind (Curr) = N_Block_Statement then
-- Ignore internally generated blocks created by the expander for
-- various purposes such as abort defer/undefer.
if not Comes_From_Source (Curr) then
null;
-- If the traversal came from the handled sequence of statments,
-- then the node appears at the level of the enclosing construct.
-- This is a more reliable test because transients scopes within
-- the declarative region of the encapsulator are hard to detect.
elsif Nkind (Prev) = N_Handled_Sequence_Of_Statements
and then Handled_Statement_Sequence (Curr) = Prev
then
return Find_Enclosing_Level (Parent (Curr));
-- Otherwise the traversal came from the declarations, the node is
-- at the declaration level.
else
return Declaration_Level;
end if;
-- The current construct is a declaration-level encapsulator
elsif Nkind (Curr) in
N_Entry_Body | N_Subprogram_Body | N_Task_Body
then
-- If the traversal came from the handled sequence of statments,
-- then the node cannot possibly appear at any level. This is
-- a more reliable test because transients scopes within the
-- declarative region of the encapsulator are hard to detect.
if Nkind (Prev) = N_Handled_Sequence_Of_Statements
and then Handled_Statement_Sequence (Curr) = Prev
then
return No_Level;
-- Otherwise the traversal came from the declarations, the node is
-- at the declaration level.
else
return Declaration_Level;
end if;
-- The current construct is a non-library-level encapsulator which
-- indicates that the node cannot possibly appear at any level. Note
-- that the check must come after the declaration-level check because
-- both predicates share certain nodes.
elsif Is_Non_Library_Level_Encapsulator (Curr) then
Context := Parent (Curr);
-- The sole exception is when the encapsulator is the compilation
-- utit itself because the compilation unit node requires special
-- processing (see below).
if Present (Context)
and then Nkind (Context) = N_Compilation_Unit
then
null;
-- Otherwise the node is not at any level
else
return No_Level;
end if;
-- The current construct is a compilation unit. The node appears at
-- the [generic] library level when the unit is a [generic] package.
elsif Nkind (Curr) = N_Compilation_Unit then
return Level_Of (Unit (Curr));
end if;
Prev := Curr;
Curr := Parent (Prev);
end loop;
return No_Level;
end Find_Enclosing_Level;
-------------------
-- Find_Top_Unit --
-------------------
function Find_Top_Unit (N : Node_Or_Entity_Id) return Entity_Id is
begin
return Find_Unit_Entity (Unit (Cunit (Get_Top_Level_Code_Unit (N))));
end Find_Top_Unit;
----------------------
-- Find_Unit_Entity --
----------------------
function Find_Unit_Entity (N : Node_Id) return Entity_Id is
Context : constant Node_Id := Parent (N);
Orig_N : constant Node_Id := Original_Node (N);
begin
-- The unit denotes a package body of an instantiation which acts as
-- a compilation unit. The proper entity is that of the package spec.
if Nkind (N) = N_Package_Body
and then Nkind (Orig_N) = N_Package_Instantiation
and then Nkind (Context) = N_Compilation_Unit
then
return Corresponding_Spec (N);
-- The unit denotes an anonymous package created to wrap a subprogram
-- instantiation which acts as a compilation unit. The proper entity is
-- that of the "related instance".
elsif Nkind (N) = N_Package_Declaration
and then Nkind (Orig_N) in
N_Function_Instantiation | N_Procedure_Instantiation
and then Nkind (Context) = N_Compilation_Unit
then
return Related_Instance (Defining_Entity (N));
-- The unit denotes a concurrent body acting as a subunit. Such bodies
-- are generally rewritten into null statements. The proper entity is
-- that of the "original node".
elsif Nkind (N) = N_Subunit
and then Nkind (Proper_Body (N)) = N_Null_Statement
and then Nkind (Original_Node (Proper_Body (N))) in
N_Protected_Body | N_Task_Body
then
return Defining_Entity (Original_Node (Proper_Body (N)));
-- Otherwise the proper entity is the defining entity
else
return Defining_Entity (N);
end if;
end Find_Unit_Entity;
-----------------------
-- First_Formal_Type --
-----------------------
function First_Formal_Type (Subp_Id : Entity_Id) return Entity_Id is
Formal_Id : constant Entity_Id := First_Formal (Subp_Id);
Typ : Entity_Id;
begin
if Present (Formal_Id) then
Typ := Etype (Formal_Id);
-- Handle various combinations of concurrent and private types
loop
if Ekind (Typ) in E_Protected_Type | E_Task_Type
and then Present (Anonymous_Object (Typ))
then
Typ := Anonymous_Object (Typ);
elsif Is_Concurrent_Record_Type (Typ) then
Typ := Corresponding_Concurrent_Type (Typ);
elsif Is_Private_Type (Typ) and then Present (Full_View (Typ)) then
Typ := Full_View (Typ);
else
exit;
end if;
end loop;
return Typ;
end if;
return Empty;
end First_Formal_Type;
------------------------------
-- Guaranteed_ABE_Processor --
------------------------------
package body Guaranteed_ABE_Processor is
function Is_Guaranteed_ABE
(N : Node_Id;
Target_Decl : Node_Id;
Target_Body : Node_Id) return Boolean;
pragma Inline (Is_Guaranteed_ABE);
-- Determine whether scenario N with a target described by its initial
-- declaration Target_Decl and body Target_Decl results in a guaranteed
-- ABE.
procedure Process_Guaranteed_ABE_Activation
(Call : Node_Id;
Call_Rep : Scenario_Rep_Id;
Obj_Id : Entity_Id;
Obj_Rep : Target_Rep_Id;
Task_Typ : Entity_Id;
Task_Rep : Target_Rep_Id;
In_State : Processing_In_State);
pragma Inline (Process_Guaranteed_ABE_Activation);
-- Perform common guaranteed ABE checks and diagnostics for activation
-- call Call which activates object Obj_Id of task type Task_Typ. Formal
-- Call_Rep denotes the representation of the call. Obj_Rep denotes the
-- representation of the object. Task_Rep denotes the representation of
-- the task type. In_State is the current state of the Processing phase.
procedure Process_Guaranteed_ABE_Call
(Call : Node_Id;
Call_Rep : Scenario_Rep_Id;
In_State : Processing_In_State);
pragma Inline (Process_Guaranteed_ABE_Call);
-- Perform common guaranteed ABE checks and diagnostics for call Call
-- with representation Call_Rep. In_State denotes the current state of
-- the Processing phase.
procedure Process_Guaranteed_ABE_Instantiation
(Inst : Node_Id;
Inst_Rep : Scenario_Rep_Id;
In_State : Processing_In_State);
pragma Inline (Process_Guaranteed_ABE_Instantiation);
-- Perform common guaranteed ABE checks and diagnostics for instance
-- Inst with representation Inst_Rep. In_State is the current state of
-- the Processing phase.
-----------------------
-- Is_Guaranteed_ABE --
-----------------------
function Is_Guaranteed_ABE
(N : Node_Id;
Target_Decl : Node_Id;
Target_Body : Node_Id) return Boolean
is
Spec : Node_Id;
begin
-- Avoid cascaded errors if there were previous serious infractions.
-- As a result the scenario will not be treated as a guaranteed ABE.
-- This behavior parallels that of the old ABE mechanism.
if Serious_Errors_Detected > 0 then
return False;
-- The scenario and the target appear in the same context ignoring
-- enclosing library levels.
elsif In_Same_Context (N, Target_Decl) then
-- The target body has already been encountered. The scenario
-- results in a guaranteed ABE if it appears prior to the body.
if Present (Target_Body) then
return Earlier_In_Extended_Unit (N, Target_Body);
-- Otherwise the body has not been encountered yet. The scenario
-- is a guaranteed ABE since the body will appear later, unless
-- this is a null specification, which can occur if expansion is
-- disabled (e.g. -gnatc or GNATprove mode). It is assumed that
-- the caller has already ensured that the scenario is ABE-safe
-- because optional bodies are not considered here.
else
Spec := Specification (Target_Decl);
if Nkind (Spec) /= N_Procedure_Specification
or else not Null_Present (Spec)
then
return True;
end if;
end if;
end if;
return False;
end Is_Guaranteed_ABE;
----------------------------
-- Process_Guaranteed_ABE --
----------------------------
procedure Process_Guaranteed_ABE
(N : Node_Id;
In_State : Processing_In_State)
is
Scen : constant Node_Id := Scenario (N);
Scen_Rep : Scenario_Rep_Id;
begin
-- Add the current scenario to the stack of active scenarios
Push_Active_Scenario (Scen);
-- Only calls, instantiations, and task activations may result in a
-- guaranteed ABE.
-- Call or task activation
if Is_Suitable_Call (Scen) then
Scen_Rep := Scenario_Representation_Of (Scen, In_State);
if Kind (Scen_Rep) = Call_Scenario then
Process_Guaranteed_ABE_Call
(Call => Scen,
Call_Rep => Scen_Rep,
In_State => In_State);
else
pragma Assert (Kind (Scen_Rep) = Task_Activation_Scenario);
Process_Activation
(Call => Scen,
Call_Rep => Scenario_Representation_Of (Scen, In_State),
Processor => Process_Guaranteed_ABE_Activation'Access,
In_State => In_State);
end if;
-- Instantiation
elsif Is_Suitable_Instantiation (Scen) then
Process_Guaranteed_ABE_Instantiation
(Inst => Scen,
Inst_Rep => Scenario_Representation_Of (Scen, In_State),
In_State => In_State);
end if;
-- Remove the current scenario from the stack of active scenarios
-- once all ABE diagnostics and checks have been performed.
Pop_Active_Scenario (Scen);
end Process_Guaranteed_ABE;
---------------------------------------
-- Process_Guaranteed_ABE_Activation --
---------------------------------------
procedure Process_Guaranteed_ABE_Activation
(Call : Node_Id;
Call_Rep : Scenario_Rep_Id;
Obj_Id : Entity_Id;
Obj_Rep : Target_Rep_Id;
Task_Typ : Entity_Id;
Task_Rep : Target_Rep_Id;
In_State : Processing_In_State)
is
Spec_Decl : constant Node_Id := Spec_Declaration (Task_Rep);
Check_OK : constant Boolean :=
not In_State.Suppress_Checks
and then Ghost_Mode_Of (Obj_Rep) /= Is_Ignored
and then Ghost_Mode_Of (Task_Rep) /= Is_Ignored
and then Elaboration_Checks_OK (Obj_Rep)
and then Elaboration_Checks_OK (Task_Rep);
-- A run-time ABE check may be installed only when the object and the
-- task type have active elaboration checks, and both are not ignored
-- Ghost constructs.
begin
-- Nothing to do when the root scenario appears at the declaration
-- level and the task is in the same unit, but outside this context.
--
-- task type Task_Typ; -- task declaration
--
-- procedure Proc is
-- function A ... is
-- begin
-- if Some_Condition then
-- declare
-- T : Task_Typ;
-- begin
-- <activation call> -- activation site
-- end;
-- ...
-- end A;
--
-- X : ... := A; -- root scenario
-- ...
--
-- task body Task_Typ is
-- ...
-- end Task_Typ;
--
-- In the example above, the context of X is the declarative list
-- of Proc. The "elaboration" of X may reach the activation of T
-- whose body is defined outside of X's context. The task body is
-- relevant only when Proc is invoked, but this happens only in
-- "normal" elaboration, therefore the task body must not be
-- considered if this is not the case.
if Is_Up_Level_Target
(Targ_Decl => Spec_Decl,
In_State => In_State)
then
return;
-- Nothing to do when the activation is ABE-safe
--
-- generic
-- package Gen is
-- task type Task_Typ;
-- end Gen;
--
-- package body Gen is
-- task body Task_Typ is
-- begin
-- ...
-- end Task_Typ;
-- end Gen;
--
-- with Gen;
-- procedure Main is
-- package Nested is
-- package Inst is new Gen;
-- T : Inst.Task_Typ;
-- end Nested; -- safe activation
-- ...
elsif Is_Safe_Activation (Call, Task_Rep) then
return;
-- An activation call leads to a guaranteed ABE when the activation
-- call and the task appear within the same context ignoring library
-- levels, and the body of the task has not been seen yet or appears
-- after the activation call.
--
-- procedure Guaranteed_ABE is
-- task type Task_Typ;
--
-- package Nested is
-- T : Task_Typ;
-- <activation call> -- guaranteed ABE
-- end Nested;
--
-- task body Task_Typ is
-- ...
-- end Task_Typ;
-- ...
elsif Is_Guaranteed_ABE
(N => Call,
Target_Decl => Spec_Decl,
Target_Body => Body_Declaration (Task_Rep))
then
if Elaboration_Warnings_OK (Call_Rep) then
Error_Msg_Sloc := Sloc (Call);
Error_Msg_N
("??task & will be activated # before elaboration of its "
& "body", Obj_Id);
Error_Msg_N
("\Program_Error will be raised at run time", Obj_Id);
end if;
-- Mark the activation call as a guaranteed ABE
Set_Is_Known_Guaranteed_ABE (Call);
-- Install a run-time ABE failue because this activation call will
-- always result in an ABE.
if Check_OK then
Install_Scenario_ABE_Failure
(N => Call,
Targ_Id => Task_Typ,
Targ_Rep => Task_Rep,
Disable => Obj_Rep);
end if;
end if;
end Process_Guaranteed_ABE_Activation;
---------------------------------
-- Process_Guaranteed_ABE_Call --
---------------------------------
procedure Process_Guaranteed_ABE_Call
(Call : Node_Id;
Call_Rep : Scenario_Rep_Id;
In_State : Processing_In_State)
is
Subp_Id : constant Entity_Id := Target (Call_Rep);
Subp_Rep : constant Target_Rep_Id :=
Target_Representation_Of (Subp_Id, In_State);
Spec_Decl : constant Node_Id := Spec_Declaration (Subp_Rep);
Check_OK : constant Boolean :=
not In_State.Suppress_Checks
and then Ghost_Mode_Of (Call_Rep) /= Is_Ignored
and then Ghost_Mode_Of (Subp_Rep) /= Is_Ignored
and then Elaboration_Checks_OK (Call_Rep)
and then Elaboration_Checks_OK (Subp_Rep);
-- A run-time ABE check may be installed only when both the call
-- and the target have active elaboration checks, and both are not
-- ignored Ghost constructs.
begin
-- Nothing to do when the root scenario appears at the declaration
-- level and the target is in the same unit but outside this context.
--
-- function B ...; -- target declaration
--
-- procedure Proc is
-- function A ... is
-- begin
-- if Some_Condition then
-- return B; -- call site
-- ...
-- end A;
--
-- X : ... := A; -- root scenario
-- ...
--
-- function B ... is
-- ...
-- end B;
--
-- In the example above, the context of X is the declarative region
-- of Proc. The "elaboration" of X may eventually reach B which is
-- defined outside of X's context. B is relevant only when Proc is
-- invoked, but this happens only by means of "normal" elaboration,
-- therefore B must not be considered if this is not the case.
if Is_Up_Level_Target
(Targ_Decl => Spec_Decl,
In_State => In_State)
then
return;
-- Nothing to do when the call is ABE-safe
--
-- generic
-- function Gen ...;
--
-- function Gen ... is
-- begin
-- ...
-- end Gen;
--
-- with Gen;
-- procedure Main is
-- function Inst is new Gen;
-- X : ... := Inst; -- safe call
-- ...
elsif Is_Safe_Call (Call, Subp_Id, Subp_Rep) then
return;
-- A call leads to a guaranteed ABE when the call and the target
-- appear within the same context ignoring library levels, and the
-- body of the target has not been seen yet or appears after the
-- call.
--
-- procedure Guaranteed_ABE is
-- function Func ...;
--
-- package Nested is
-- Obj : ... := Func; -- guaranteed ABE
-- end Nested;
--
-- function Func ... is
-- ...
-- end Func;
-- ...
elsif Is_Guaranteed_ABE
(N => Call,
Target_Decl => Spec_Decl,
Target_Body => Body_Declaration (Subp_Rep))
then
if Elaboration_Warnings_OK (Call_Rep) then
Error_Msg_NE
("??cannot call & before body seen", Call, Subp_Id);
Error_Msg_N ("\Program_Error will be raised at run time", Call);
end if;
-- Mark the call as a guaranteed ABE
Set_Is_Known_Guaranteed_ABE (Call);
-- Install a run-time ABE failure because the call will always
-- result in an ABE.
if Check_OK then
Install_Scenario_ABE_Failure
(N => Call,
Targ_Id => Subp_Id,
Targ_Rep => Subp_Rep,
Disable => Call_Rep);
end if;
end if;
end Process_Guaranteed_ABE_Call;
------------------------------------------
-- Process_Guaranteed_ABE_Instantiation --
------------------------------------------
procedure Process_Guaranteed_ABE_Instantiation
(Inst : Node_Id;
Inst_Rep : Scenario_Rep_Id;
In_State : Processing_In_State)
is
Gen_Id : constant Entity_Id := Target (Inst_Rep);
Gen_Rep : constant Target_Rep_Id :=
Target_Representation_Of (Gen_Id, In_State);
Spec_Decl : constant Node_Id := Spec_Declaration (Gen_Rep);
Check_OK : constant Boolean :=
not In_State.Suppress_Checks
and then Ghost_Mode_Of (Inst_Rep) /= Is_Ignored
and then Ghost_Mode_Of (Gen_Rep) /= Is_Ignored
and then Elaboration_Checks_OK (Inst_Rep)
and then Elaboration_Checks_OK (Gen_Rep);
-- A run-time ABE check may be installed only when both the instance
-- and the generic have active elaboration checks and both are not
-- ignored Ghost constructs.
begin
-- Nothing to do when the root scenario appears at the declaration
-- level and the generic is in the same unit, but outside this
-- context.
--
-- generic
-- procedure Gen is ...; -- generic declaration
--
-- procedure Proc is
-- function A ... is
-- begin
-- if Some_Condition then
-- declare
-- procedure I is new Gen; -- instantiation site
-- ...
-- ...
-- end A;
--
-- X : ... := A; -- root scenario
-- ...
--
-- procedure Gen is
-- ...
-- end Gen;
--
-- In the example above, the context of X is the declarative region
-- of Proc. The "elaboration" of X may eventually reach Gen which
-- appears outside of X's context. Gen is relevant only when Proc is
-- invoked, but this happens only by means of "normal" elaboration,
-- therefore Gen must not be considered if this is not the case.
if Is_Up_Level_Target
(Targ_Decl => Spec_Decl,
In_State => In_State)
then
return;
-- Nothing to do when the instantiation is ABE-safe
--
-- generic
-- package Gen is
-- ...
-- end Gen;
--
-- package body Gen is
-- ...
-- end Gen;
--
-- with Gen;
-- procedure Main is
-- package Inst is new Gen (ABE); -- safe instantiation
-- ...
elsif Is_Safe_Instantiation (Inst, Gen_Id, Gen_Rep) then
return;
-- An instantiation leads to a guaranteed ABE when the instantiation
-- and the generic appear within the same context ignoring library
-- levels, and the body of the generic has not been seen yet or
-- appears after the instantiation.
--
-- procedure Guaranteed_ABE is
-- generic
-- procedure Gen;
--
-- package Nested is
-- procedure Inst is new Gen; -- guaranteed ABE
-- end Nested;
--
-- procedure Gen is
-- ...
-- end Gen;
-- ...
elsif Is_Guaranteed_ABE
(N => Inst,
Target_Decl => Spec_Decl,
Target_Body => Body_Declaration (Gen_Rep))
then
if Elaboration_Warnings_OK (Inst_Rep) then
Error_Msg_NE
("??cannot instantiate & before body seen", Inst, Gen_Id);
Error_Msg_N ("\Program_Error will be raised at run time", Inst);
end if;
-- Mark the instantiation as a guarantee ABE. This automatically
-- suppresses the instantiation of the generic body.
Set_Is_Known_Guaranteed_ABE (Inst);
-- Install a run-time ABE failure because the instantiation will
-- always result in an ABE.
if Check_OK then
Install_Scenario_ABE_Failure
(N => Inst,
Targ_Id => Gen_Id,
Targ_Rep => Gen_Rep,
Disable => Inst_Rep);
end if;
end if;
end Process_Guaranteed_ABE_Instantiation;
end Guaranteed_ABE_Processor;
--------------
-- Has_Body --
--------------
function Has_Body (Pack_Decl : Node_Id) return Boolean is
function Find_Corresponding_Body (Spec_Id : Entity_Id) return Node_Id;
pragma Inline (Find_Corresponding_Body);
-- Try to locate the corresponding body of spec Spec_Id. If no body is
-- found, return Empty.
function Find_Body
(Spec_Id : Entity_Id;
From : Node_Id) return Node_Id;
pragma Inline (Find_Body);
-- Try to locate the corresponding body of spec Spec_Id in the node list
-- which follows arbitrary node From. If no body is found, return Empty.
function Load_Package_Body (Unit_Nam : Unit_Name_Type) return Node_Id;
pragma Inline (Load_Package_Body);
-- Attempt to load the body of unit Unit_Nam. If the load failed, return
-- Empty. If the compilation will not generate code, return Empty.
-----------------------------
-- Find_Corresponding_Body --
-----------------------------
function Find_Corresponding_Body (Spec_Id : Entity_Id) return Node_Id is
Context : constant Entity_Id := Scope (Spec_Id);
Spec_Decl : constant Node_Id := Unit_Declaration_Node (Spec_Id);
Body_Decl : Node_Id;
Body_Id : Entity_Id;
begin
if Is_Compilation_Unit (Spec_Id) then
Body_Id := Corresponding_Body (Spec_Decl);
if Present (Body_Id) then
return Unit_Declaration_Node (Body_Id);
-- The package is at the library and requires a body. Load the
-- corresponding body because the optional body may be declared
-- there.
elsif Unit_Requires_Body (Spec_Id) then
return
Load_Package_Body
(Get_Body_Name (Unit_Name (Get_Source_Unit (Spec_Decl))));
-- Otherwise there is no optional body
else
return Empty;
end if;
-- The immediate context is a package. The optional body may be
-- within the body of that package.
-- procedure Proc is
-- package Nested_1 is
-- package Nested_2 is
-- generic
-- package Pack is
-- end Pack;
-- end Nested_2;
-- end Nested_1;
-- package body Nested_1 is
-- package body Nested_2 is separate;
-- end Nested_1;
-- separate (Proc.Nested_1.Nested_2)
-- package body Nested_2 is
-- package body Pack is -- optional body
-- ...
-- end Pack;
-- end Nested_2;
elsif Is_Package_Or_Generic_Package (Context) then
Body_Decl := Find_Corresponding_Body (Context);
-- The optional body is within the body of the enclosing package
if Present (Body_Decl) then
return
Find_Body
(Spec_Id => Spec_Id,
From => First (Declarations (Body_Decl)));
-- Otherwise the enclosing package does not have a body. This may
-- be the result of an error or a genuine lack of a body.
else
return Empty;
end if;
-- Otherwise the immediate context is a body. The optional body may
-- be within the same list as the spec.
-- procedure Proc is
-- generic
-- package Pack is
-- end Pack;
-- package body Pack is -- optional body
-- ...
-- end Pack;
else
return
Find_Body
(Spec_Id => Spec_Id,
From => Next (Spec_Decl));
end if;
end Find_Corresponding_Body;
---------------
-- Find_Body --
---------------
function Find_Body
(Spec_Id : Entity_Id;
From : Node_Id) return Node_Id
is
Spec_Nam : constant Name_Id := Chars (Spec_Id);
Item : Node_Id;
Lib_Unit : Node_Id;
begin
Item := From;
while Present (Item) loop
-- The current item denotes the optional body
if Nkind (Item) = N_Package_Body
and then Chars (Defining_Entity (Item)) = Spec_Nam
then
return Item;
-- The current item denotes a stub, the optional body may be in
-- the subunit.
elsif Nkind (Item) = N_Package_Body_Stub
and then Chars (Defining_Entity (Item)) = Spec_Nam
then
Lib_Unit := Library_Unit (Item);
-- The corresponding subunit was previously loaded
if Present (Lib_Unit) then
return Lib_Unit;
-- Otherwise attempt to load the corresponding subunit
else
return Load_Package_Body (Get_Unit_Name (Item));
end if;
end if;
Next (Item);
end loop;
return Empty;
end Find_Body;
-----------------------
-- Load_Package_Body --
-----------------------
function Load_Package_Body (Unit_Nam : Unit_Name_Type) return Node_Id is
Body_Decl : Node_Id;
Unit_Num : Unit_Number_Type;
begin
-- The load is performed only when the compilation will generate code
if Operating_Mode = Generate_Code then
Unit_Num :=
Load_Unit
(Load_Name => Unit_Nam,
Required => False,
Subunit => False,
Error_Node => Pack_Decl);
-- The load failed most likely because the physical file is
-- missing.
if Unit_Num = No_Unit then
return Empty;
-- Otherwise the load was successful, return the body of the unit
else
Body_Decl := Unit (Cunit (Unit_Num));
-- If the unit is a subunit with an available proper body,
-- return the proper body.
if Nkind (Body_Decl) = N_Subunit
and then Present (Proper_Body (Body_Decl))
then
Body_Decl := Proper_Body (Body_Decl);
end if;
return Body_Decl;
end if;
end if;
return Empty;
end Load_Package_Body;
-- Local variables
Pack_Id : constant Entity_Id := Defining_Entity (Pack_Decl);
-- Start of processing for Has_Body
begin
-- The body is available
if Present (Corresponding_Body (Pack_Decl)) then
return True;
-- The body is required if the package spec contains a construct which
-- requires a completion in a body.
elsif Unit_Requires_Body (Pack_Id) then
return True;
-- The body may be optional
else
return Present (Find_Corresponding_Body (Pack_Id));
end if;
end Has_Body;
----------
-- Hash --
----------
function Hash (NE : Node_Or_Entity_Id) return Bucket_Range_Type is
pragma Assert (Present (NE));
begin
return Bucket_Range_Type (NE);
end Hash;
--------------------------
-- In_External_Instance --
--------------------------
function In_External_Instance
(N : Node_Id;
Target_Decl : Node_Id) return Boolean
is
Inst : Node_Id;
Inst_Body : Node_Id;
Inst_Spec : Node_Id;
begin
Inst := Find_Enclosing_Instance (Target_Decl);
-- The target declaration appears within an instance spec. Visibility is
-- ignored because internally generated primitives for private types may
-- reside in the private declarations and still be invoked from outside.
if Present (Inst) and then Nkind (Inst) = N_Package_Declaration then
-- The scenario comes from the main unit and the instance does not
if In_Extended_Main_Code_Unit (N)
and then not In_Extended_Main_Code_Unit (Inst)
then
return True;
-- Otherwise the scenario must not appear within the instance spec or
-- body.
else
Spec_And_Body_From_Node
(N => Inst,
Spec_Decl => Inst_Spec,
Body_Decl => Inst_Body);
return not In_Subtree
(N => N,
Root1 => Inst_Spec,
Root2 => Inst_Body);
end if;
end if;
return False;
end In_External_Instance;
---------------------
-- In_Main_Context --
---------------------
function In_Main_Context (N : Node_Id) return Boolean is
begin
-- Scenarios outside the main unit are not considered because the ALI
-- information supplied to binde is for the main unit only.
if not In_Extended_Main_Code_Unit (N) then
return False;
-- Scenarios within internal units are not considered unless switch
-- -gnatdE (elaboration checks on predefined units) is in effect.
elsif not Debug_Flag_EE and then In_Internal_Unit (N) then
return False;
end if;
return True;
end In_Main_Context;
---------------------
-- In_Same_Context --
---------------------
function In_Same_Context
(N1 : Node_Id;
N2 : Node_Id;
Nested_OK : Boolean := False) return Boolean
is
function Find_Enclosing_Context (N : Node_Id) return Node_Id;
pragma Inline (Find_Enclosing_Context);
-- Return the nearest enclosing non-library-level or compilation unit
-- node which encapsulates arbitrary node N. Return Empty is no such
-- context is available.
function In_Nested_Context
(Outer : Node_Id;
Inner : Node_Id) return Boolean;
pragma Inline (In_Nested_Context);
-- Determine whether arbitrary node Outer encapsulates arbitrary node
-- Inner.
----------------------------
-- Find_Enclosing_Context --
----------------------------
function Find_Enclosing_Context (N : Node_Id) return Node_Id is
Context : Node_Id;
Par : Node_Id;
begin
Par := Parent (N);
while Present (Par) loop
-- A traversal from a subunit continues via the corresponding stub
if Nkind (Par) = N_Subunit then
Par := Corresponding_Stub (Par);
-- Stop the traversal when the nearest enclosing non-library-level
-- encapsulator has been reached.
elsif Is_Non_Library_Level_Encapsulator (Par) then
Context := Parent (Par);
-- The sole exception is when the encapsulator is the unit of
-- compilation because this case requires special processing
-- (see below).
if Present (Context)
and then Nkind (Context) = N_Compilation_Unit
then
null;
else
return Par;
end if;
-- Reaching a compilation unit node without hitting a non-library-
-- level encapsulator indicates that N is at the library level in
-- which case the compilation unit is the context.
elsif Nkind (Par) = N_Compilation_Unit then
return Par;
end if;
Par := Parent (Par);
end loop;
return Empty;
end Find_Enclosing_Context;
-----------------------
-- In_Nested_Context --
-----------------------
function In_Nested_Context
(Outer : Node_Id;
Inner : Node_Id) return Boolean
is
Par : Node_Id;
begin
Par := Inner;
while Present (Par) loop
-- A traversal from a subunit continues via the corresponding stub
if Nkind (Par) = N_Subunit then
Par := Corresponding_Stub (Par);
elsif Par = Outer then
return True;
end if;
Par := Parent (Par);
end loop;
return False;
end In_Nested_Context;
-- Local variables
Context_1 : constant Node_Id := Find_Enclosing_Context (N1);
Context_2 : constant Node_Id := Find_Enclosing_Context (N2);
-- Start of processing for In_Same_Context
begin
-- Both nodes appear within the same context
if Context_1 = Context_2 then
return True;
-- Both nodes appear in compilation units. Determine whether one unit
-- is the body of the other.
elsif Nkind (Context_1) = N_Compilation_Unit
and then Nkind (Context_2) = N_Compilation_Unit
then
return
Is_Same_Unit
(Unit_1 => Defining_Entity (Unit (Context_1)),
Unit_2 => Defining_Entity (Unit (Context_2)));
-- The context of N1 encloses the context of N2
elsif Nested_OK and then In_Nested_Context (Context_1, Context_2) then
return True;
end if;
return False;
end In_Same_Context;
----------------
-- Initialize --
----------------
procedure Initialize is
begin
-- Set the soft link which enables Atree.Rewrite to update a scenario
-- each time it is transformed into another node.
Set_Rewriting_Proc (Update_Elaboration_Scenario'Access);
-- Create all internal data structures and activate the elaboration
-- phase of the compiler.
Initialize_All_Data_Structures;
Set_Elaboration_Phase (Active);
end Initialize;
------------------------------------
-- Initialize_All_Data_Structures --
------------------------------------
procedure Initialize_All_Data_Structures is
begin
Initialize_Body_Processor;
Initialize_Early_Call_Region_Processor;
Initialize_Elaborated_Units;
Initialize_Internal_Representation;
Initialize_Invocation_Graph;
Initialize_Scenario_Storage;
end Initialize_All_Data_Structures;
--------------------------
-- Instantiated_Generic --
--------------------------
function Instantiated_Generic (Inst : Node_Id) return Entity_Id is
begin
-- Traverse a possible chain of renamings to obtain the original generic
-- being instantiatied.
return Get_Renamed_Entity (Entity (Name (Inst)));
end Instantiated_Generic;
-----------------------------
-- Internal_Representation --
-----------------------------
package body Internal_Representation is
-----------
-- Types --
-----------
-- The following type represents the contents of a scenario
type Scenario_Rep_Record is record
Elab_Checks_OK : Boolean := False;
-- The status of elaboration checks for the scenario
Elab_Warnings_OK : Boolean := False;
-- The status of elaboration warnings for the scenario
GM : Extended_Ghost_Mode := Is_Checked_Or_Not_Specified;
-- The Ghost mode of the scenario
Kind : Scenario_Kind := No_Scenario;
-- The nature of the scenario
Level : Enclosing_Level_Kind := No_Level;
-- The enclosing level where the scenario resides
SM : Extended_SPARK_Mode := Is_Off_Or_Not_Specified;
-- The SPARK mode of the scenario
Target : Entity_Id := Empty;
-- The target of the scenario
-- The following attributes are multiplexed and depend on the Kind of
-- the scenario. They are mapped as follows:
--
-- Call_Scenario
-- Is_Dispatching_Call (Flag_1)
--
-- Task_Activation_Scenario
-- Activated_Task_Objects (List_1)
-- Activated_Task_Type (Field_1)
--
-- Variable_Reference
-- Is_Read_Reference (Flag_1)
Flag_1 : Boolean := False;
Field_1 : Node_Or_Entity_Id := Empty;
List_1 : NE_List.Doubly_Linked_List := NE_List.Nil;
end record;
-- The following type represents the contents of a target
type Target_Rep_Record is record
Body_Decl : Node_Id := Empty;
-- The declaration of the target body
Elab_Checks_OK : Boolean := False;
-- The status of elaboration checks for the target
Elab_Warnings_OK : Boolean := False;
-- The status of elaboration warnings for the target
GM : Extended_Ghost_Mode := Is_Checked_Or_Not_Specified;
-- The Ghost mode of the target
Kind : Target_Kind := No_Target;
-- The nature of the target
SM : Extended_SPARK_Mode := Is_Off_Or_Not_Specified;
-- The SPARK mode of the target
Spec_Decl : Node_Id := Empty;
-- The declaration of the target spec
Unit : Entity_Id := Empty;
-- The top unit where the target is declared
Version : Representation_Kind := No_Representation;
-- The version of the target representation
-- The following attributes are multiplexed and depend on the Kind of
-- the target. They are mapped as follows:
--
-- Subprogram_Target
-- Barrier_Body_Declaration (Field_1)
--
-- Variable_Target
-- Variable_Declaration (Field_1)
Field_1 : Node_Or_Entity_Id := Empty;
end record;
---------------------
-- Data structures --
---------------------
procedure Destroy (T_Id : in out Target_Rep_Id);
-- Destroy a target representation T_Id
package ETT_Map is new Dynamic_Hash_Tables
(Key_Type => Entity_Id,
Value_Type => Target_Rep_Id,
No_Value => No_Target_Rep,
Expansion_Threshold => 1.5,
Expansion_Factor => 2,
Compression_Threshold => 0.3,
Compression_Factor => 2,
"=" => "=",
Destroy_Value => Destroy,
Hash => Hash);
-- The following map relates target representations to entities
Entity_To_Target_Map : ETT_Map.Dynamic_Hash_Table := ETT_Map.Nil;
procedure Destroy (S_Id : in out Scenario_Rep_Id);
-- Destroy a scenario representation S_Id
package NTS_Map is new Dynamic_Hash_Tables
(Key_Type => Node_Id,
Value_Type => Scenario_Rep_Id,
No_Value => No_Scenario_Rep,
Expansion_Threshold => 1.5,
Expansion_Factor => 2,
Compression_Threshold => 0.3,
Compression_Factor => 2,
"=" => "=",
Destroy_Value => Destroy,
Hash => Hash);
-- The following map relates scenario representations to nodes
Node_To_Scenario_Map : NTS_Map.Dynamic_Hash_Table := NTS_Map.Nil;
-- The following table stores all scenario representations
package Scenario_Reps is new Table.Table
(Table_Index_Type => Scenario_Rep_Id,
Table_Component_Type => Scenario_Rep_Record,
Table_Low_Bound => First_Scenario_Rep,
Table_Initial => 1000,
Table_Increment => 200,
Table_Name => "Scenario_Reps");
-- The following table stores all target representations
package Target_Reps is new Table.Table
(Table_Index_Type => Target_Rep_Id,
Table_Component_Type => Target_Rep_Record,
Table_Low_Bound => First_Target_Rep,
Table_Initial => 1000,
Table_Increment => 200,
Table_Name => "Target_Reps");
--------------
-- Builders --
--------------
function Create_Access_Taken_Rep
(Attr : Node_Id) return Scenario_Rep_Record;
pragma Inline (Create_Access_Taken_Rep);
-- Create the representation of 'Access attribute Attr
function Create_Call_Or_Task_Activation_Rep
(Call : Node_Id) return Scenario_Rep_Record;
pragma Inline (Create_Call_Or_Task_Activation_Rep);
-- Create the representation of call or task activation Call
function Create_Derived_Type_Rep
(Typ_Decl : Node_Id) return Scenario_Rep_Record;
pragma Inline (Create_Derived_Type_Rep);
-- Create the representation of a derived type described by declaration
-- Typ_Decl.
function Create_Generic_Rep
(Gen_Id : Entity_Id) return Target_Rep_Record;
pragma Inline (Create_Generic_Rep);
-- Create the representation of generic Gen_Id
function Create_Instantiation_Rep
(Inst : Node_Id) return Scenario_Rep_Record;
pragma Inline (Create_Instantiation_Rep);
-- Create the representation of instantiation Inst
function Create_Package_Rep
(Pack_Id : Entity_Id) return Target_Rep_Record;
pragma Inline (Create_Package_Rep);
-- Create the representation of package Pack_Id
function Create_Protected_Entry_Rep
(PE_Id : Entity_Id) return Target_Rep_Record;
pragma Inline (Create_Protected_Entry_Rep);
-- Create the representation of protected entry PE_Id
function Create_Protected_Subprogram_Rep
(PS_Id : Entity_Id) return Target_Rep_Record;
pragma Inline (Create_Protected_Subprogram_Rep);
-- Create the representation of protected subprogram PS_Id
function Create_Refined_State_Pragma_Rep
(Prag : Node_Id) return Scenario_Rep_Record;
pragma Inline (Create_Refined_State_Pragma_Rep);
-- Create the representation of Refined_State pragma Prag
function Create_Scenario_Rep
(N : Node_Id;
In_State : Processing_In_State) return Scenario_Rep_Record;
pragma Inline (Create_Scenario_Rep);
-- Top level dispatcher. Create the representation of elaboration
-- scenario N. In_State is the current state of the Processing phase.
function Create_Subprogram_Rep
(Subp_Id : Entity_Id) return Target_Rep_Record;
pragma Inline (Create_Subprogram_Rep);
-- Create the representation of entry, operator, or subprogram Subp_Id
function Create_Target_Rep
(Id : Entity_Id;
In_State : Processing_In_State) return Target_Rep_Record;
pragma Inline (Create_Target_Rep);
-- Top level dispatcher. Create the representation of elaboration target
-- Id. In_State is the current state of the Processing phase.
function Create_Task_Entry_Rep
(TE_Id : Entity_Id) return Target_Rep_Record;
pragma Inline (Create_Task_Entry_Rep);
-- Create the representation of task entry TE_Id
function Create_Task_Rep (Task_Typ : Entity_Id) return Target_Rep_Record;
pragma Inline (Create_Task_Rep);
-- Create the representation of task type Typ
function Create_Variable_Assignment_Rep
(Asmt : Node_Id) return Scenario_Rep_Record;
pragma Inline (Create_Variable_Assignment_Rep);
-- Create the representation of variable assignment Asmt
function Create_Variable_Reference_Rep
(Ref : Node_Id) return Scenario_Rep_Record;
pragma Inline (Create_Variable_Reference_Rep);
-- Create the representation of variable reference Ref
function Create_Variable_Rep
(Var_Id : Entity_Id) return Target_Rep_Record;
pragma Inline (Create_Variable_Rep);
-- Create the representation of variable Var_Id
-----------------------
-- Local subprograms --
-----------------------
function Ghost_Mode_Of_Entity
(Id : Entity_Id) return Extended_Ghost_Mode;
pragma Inline (Ghost_Mode_Of_Entity);
-- Obtain the extended Ghost mode of arbitrary entity Id
function Ghost_Mode_Of_Node (N : Node_Id) return Extended_Ghost_Mode;
pragma Inline (Ghost_Mode_Of_Node);
-- Obtain the extended Ghost mode of arbitrary node N
function Present (S_Id : Scenario_Rep_Id) return Boolean;
pragma Inline (Present);
-- Determine whether scenario representation S_Id exists
function Present (T_Id : Target_Rep_Id) return Boolean;
pragma Inline (Present);
-- Determine whether target representation T_Id exists
function SPARK_Mode_Of_Entity
(Id : Entity_Id) return Extended_SPARK_Mode;
pragma Inline (SPARK_Mode_Of_Entity);
-- Obtain the extended SPARK mode of arbitrary entity Id
function SPARK_Mode_Of_Node (N : Node_Id) return Extended_SPARK_Mode;
pragma Inline (SPARK_Mode_Of_Node);
-- Obtain the extended SPARK mode of arbitrary node N
function To_Ghost_Mode
(Ignored_Status : Boolean) return Extended_Ghost_Mode;
pragma Inline (To_Ghost_Mode);
-- Convert a Ghost mode indicated by Ignored_Status into its extended
-- equivalent.
function To_SPARK_Mode (On_Status : Boolean) return Extended_SPARK_Mode;
pragma Inline (To_SPARK_Mode);
-- Convert a SPARK mode indicated by On_Status into its extended
-- equivalent.
function Version (T_Id : Target_Rep_Id) return Representation_Kind;
pragma Inline (Version);
-- Obtain the version of target representation T_Id
----------------------------
-- Activated_Task_Objects --
----------------------------
function Activated_Task_Objects
(S_Id : Scenario_Rep_Id) return NE_List.Doubly_Linked_List
is
pragma Assert (Present (S_Id));
pragma Assert (Kind (S_Id) = Task_Activation_Scenario);
begin
return Scenario_Reps.Table (S_Id).List_1;
end Activated_Task_Objects;
-------------------------
-- Activated_Task_Type --
-------------------------
function Activated_Task_Type
(S_Id : Scenario_Rep_Id) return Entity_Id
is
pragma Assert (Present (S_Id));
pragma Assert (Kind (S_Id) = Task_Activation_Scenario);
begin
return Scenario_Reps.Table (S_Id).Field_1;
end Activated_Task_Type;
------------------------------
-- Barrier_Body_Declaration --
------------------------------
function Barrier_Body_Declaration
(T_Id : Target_Rep_Id) return Node_Id
is
pragma Assert (Present (T_Id));
pragma Assert (Kind (T_Id) = Subprogram_Target);
begin
return Target_Reps.Table (T_Id).Field_1;
end Barrier_Body_Declaration;
----------------------
-- Body_Declaration --
----------------------
function Body_Declaration (T_Id : Target_Rep_Id) return Node_Id is
pragma Assert (Present (T_Id));
begin
return Target_Reps.Table (T_Id).Body_Decl;
end Body_Declaration;
-----------------------------
-- Create_Access_Taken_Rep --
-----------------------------
function Create_Access_Taken_Rep
(Attr : Node_Id) return Scenario_Rep_Record
is
Rec : Scenario_Rep_Record;
begin
Rec.Elab_Checks_OK := Is_Elaboration_Checks_OK_Node (Attr);
Rec.Elab_Warnings_OK := Is_Elaboration_Warnings_OK_Node (Attr);
Rec.GM := Is_Checked_Or_Not_Specified;
Rec.SM := SPARK_Mode_Of_Node (Attr);
Rec.Kind := Access_Taken_Scenario;
Rec.Target := Canonical_Subprogram (Entity (Prefix (Attr)));
return Rec;
end Create_Access_Taken_Rep;
----------------------------------------
-- Create_Call_Or_Task_Activation_Rep --
----------------------------------------
function Create_Call_Or_Task_Activation_Rep
(Call : Node_Id) return Scenario_Rep_Record
is
Subp_Id : constant Entity_Id := Canonical_Subprogram (Target (Call));
Kind : Scenario_Kind;
Rec : Scenario_Rep_Record;
begin
if Is_Activation_Proc (Subp_Id) then
Kind := Task_Activation_Scenario;
else
Kind := Call_Scenario;
end if;
Rec.Elab_Checks_OK := Is_Elaboration_Checks_OK_Node (Call);
Rec.Elab_Warnings_OK := Is_Elaboration_Warnings_OK_Node (Call);
Rec.GM := Ghost_Mode_Of_Node (Call);
Rec.SM := SPARK_Mode_Of_Node (Call);
Rec.Kind := Kind;
Rec.Target := Subp_Id;
-- Scenario-specific attributes
Rec.Flag_1 := Is_Dispatching_Call (Call); -- Dispatching_Call
return Rec;
end Create_Call_Or_Task_Activation_Rep;
-----------------------------
-- Create_Derived_Type_Rep --
-----------------------------
function Create_Derived_Type_Rep
(Typ_Decl : Node_Id) return Scenario_Rep_Record
is
Typ : constant Entity_Id := Defining_Entity (Typ_Decl);
Rec : Scenario_Rep_Record;
begin
Rec.Elab_Checks_OK := False; -- not relevant
Rec.Elab_Warnings_OK := False; -- not relevant
Rec.GM := Ghost_Mode_Of_Entity (Typ);
Rec.SM := SPARK_Mode_Of_Entity (Typ);
Rec.Kind := Derived_Type_Scenario;
Rec.Target := Typ;
return Rec;
end Create_Derived_Type_Rep;
------------------------
-- Create_Generic_Rep --
------------------------
function Create_Generic_Rep
(Gen_Id : Entity_Id) return Target_Rep_Record
is
Rec : Target_Rep_Record;
begin
Rec.Kind := Generic_Target;
Spec_And_Body_From_Entity
(Id => Gen_Id,
Body_Decl => Rec.Body_Decl,
Spec_Decl => Rec.Spec_Decl);
return Rec;
end Create_Generic_Rep;
------------------------------
-- Create_Instantiation_Rep --
------------------------------
function Create_Instantiation_Rep
(Inst : Node_Id) return Scenario_Rep_Record
is
Rec : Scenario_Rep_Record;
begin
Rec.Elab_Checks_OK := Is_Elaboration_Checks_OK_Node (Inst);
Rec.Elab_Warnings_OK := Is_Elaboration_Warnings_OK_Node (Inst);
Rec.GM := Ghost_Mode_Of_Node (Inst);
Rec.SM := SPARK_Mode_Of_Node (Inst);
Rec.Kind := Instantiation_Scenario;
Rec.Target := Instantiated_Generic (Inst);
return Rec;
end Create_Instantiation_Rep;
------------------------
-- Create_Package_Rep --
------------------------
function Create_Package_Rep
(Pack_Id : Entity_Id) return Target_Rep_Record
is
Rec : Target_Rep_Record;
begin
Rec.Kind := Package_Target;
Spec_And_Body_From_Entity
(Id => Pack_Id,
Body_Decl => Rec.Body_Decl,
Spec_Decl => Rec.Spec_Decl);
return Rec;
end Create_Package_Rep;
--------------------------------
-- Create_Protected_Entry_Rep --
--------------------------------
function Create_Protected_Entry_Rep
(PE_Id : Entity_Id) return Target_Rep_Record
is
Prot_Id : constant Entity_Id := Protected_Body_Subprogram (PE_Id);
Barf_Id : Entity_Id;
Dummy : Node_Id;
Rec : Target_Rep_Record;
Spec_Id : Entity_Id;
begin
-- When the entry [family] has already been expanded, it carries both
-- the procedure which emulates the behavior of the entry [family] as
-- well as the barrier function.
if Present (Prot_Id) then
Barf_Id := Barrier_Function (PE_Id);
Spec_Id := Prot_Id;
-- Otherwise no expansion took place
else
Barf_Id := Empty;
Spec_Id := PE_Id;
end if;
Rec.Kind := Subprogram_Target;
Spec_And_Body_From_Entity
(Id => Spec_Id,
Body_Decl => Rec.Body_Decl,
Spec_Decl => Rec.Spec_Decl);
-- Target-specific attributes
if Present (Barf_Id) then
Spec_And_Body_From_Entity
(Id => Barf_Id,
Body_Decl => Rec.Field_1, -- Barrier_Body_Declaration
Spec_Decl => Dummy);
end if;
return Rec;
end Create_Protected_Entry_Rep;
-------------------------------------
-- Create_Protected_Subprogram_Rep --
-------------------------------------
function Create_Protected_Subprogram_Rep
(PS_Id : Entity_Id) return Target_Rep_Record
is
Prot_Id : constant Entity_Id := Protected_Body_Subprogram (PS_Id);
Rec : Target_Rep_Record;
Spec_Id : Entity_Id;
begin
-- When the protected subprogram has already been expanded, it
-- carries the subprogram which seizes the lock and invokes the
-- original statements.
if Present (Prot_Id) then
Spec_Id := Prot_Id;
-- Otherwise no expansion took place
else
Spec_Id := PS_Id;
end if;
Rec.Kind := Subprogram_Target;
Spec_And_Body_From_Entity
(Id => Spec_Id,
Body_Decl => Rec.Body_Decl,
Spec_Decl => Rec.Spec_Decl);
return Rec;
end Create_Protected_Subprogram_Rep;
-------------------------------------
-- Create_Refined_State_Pragma_Rep --
-------------------------------------
function Create_Refined_State_Pragma_Rep
(Prag : Node_Id) return Scenario_Rep_Record
is
Rec : Scenario_Rep_Record;
begin
Rec.Elab_Checks_OK := False; -- not relevant
Rec.Elab_Warnings_OK := False; -- not relevant
Rec.GM :=
To_Ghost_Mode (Is_Ignored_Ghost_Pragma (Prag));
Rec.SM := Is_Off_Or_Not_Specified;
Rec.Kind := Refined_State_Pragma_Scenario;
Rec.Target := Empty;
return Rec;
end Create_Refined_State_Pragma_Rep;
-------------------------
-- Create_Scenario_Rep --
-------------------------
function Create_Scenario_Rep
(N : Node_Id;
In_State : Processing_In_State) return Scenario_Rep_Record
is
pragma Unreferenced (In_State);
Rec : Scenario_Rep_Record;
begin
if Is_Suitable_Access_Taken (N) then
Rec := Create_Access_Taken_Rep (N);
elsif Is_Suitable_Call (N) then
Rec := Create_Call_Or_Task_Activation_Rep (N);
elsif Is_Suitable_Instantiation (N) then
Rec := Create_Instantiation_Rep (N);
elsif Is_Suitable_SPARK_Derived_Type (N) then
Rec := Create_Derived_Type_Rep (N);
elsif Is_Suitable_SPARK_Refined_State_Pragma (N) then
Rec := Create_Refined_State_Pragma_Rep (N);
elsif Is_Suitable_Variable_Assignment (N) then
Rec := Create_Variable_Assignment_Rep (N);
elsif Is_Suitable_Variable_Reference (N) then
Rec := Create_Variable_Reference_Rep (N);
else
pragma Assert (False);
return Rec;
end if;
-- Common scenario attributes
Rec.Level := Find_Enclosing_Level (N);
return Rec;
end Create_Scenario_Rep;
---------------------------
-- Create_Subprogram_Rep --
---------------------------
function Create_Subprogram_Rep
(Subp_Id : Entity_Id) return Target_Rep_Record
is
Rec : Target_Rep_Record;
Spec_Id : Entity_Id;
begin
Spec_Id := Subp_Id;
-- The elaboration target denotes an internal function that returns a
-- constrained array type in a SPARK-to-C compilation. In this case
-- the function receives a corresponding procedure which has an out
-- parameter. The proper body for ABE checks and diagnostics is that
-- of the procedure.
if Ekind (Spec_Id) = E_Function
and then Rewritten_For_C (Spec_Id)
then
Spec_Id := Corresponding_Procedure (Spec_Id);
end if;
Rec.Kind := Subprogram_Target;
Spec_And_Body_From_Entity
(Id => Spec_Id,
Body_Decl => Rec.Body_Decl,
Spec_Decl => Rec.Spec_Decl);
return Rec;
end Create_Subprogram_Rep;
-----------------------
-- Create_Target_Rep --
-----------------------
function Create_Target_Rep
(Id : Entity_Id;
In_State : Processing_In_State) return Target_Rep_Record
is
Rec : Target_Rep_Record;
begin
if Is_Generic_Unit (Id) then
Rec := Create_Generic_Rep (Id);
elsif Is_Protected_Entry (Id) then
Rec := Create_Protected_Entry_Rep (Id);
elsif Is_Protected_Subp (Id) then
Rec := Create_Protected_Subprogram_Rep (Id);
elsif Is_Task_Entry (Id) then
Rec := Create_Task_Entry_Rep (Id);
elsif Is_Task_Type (Id) then
Rec := Create_Task_Rep (Id);
elsif Ekind (Id) in E_Constant | E_Variable then
Rec := Create_Variable_Rep (Id);
elsif Ekind (Id) in E_Entry | E_Function | E_Operator | E_Procedure
then
Rec := Create_Subprogram_Rep (Id);
elsif Ekind (Id) = E_Package then
Rec := Create_Package_Rep (Id);
else
pragma Assert (False);
return Rec;
end if;
-- Common target attributes
Rec.Elab_Checks_OK := Is_Elaboration_Checks_OK_Id (Id);
Rec.Elab_Warnings_OK := Is_Elaboration_Warnings_OK_Id (Id);
Rec.GM := Ghost_Mode_Of_Entity (Id);
Rec.SM := SPARK_Mode_Of_Entity (Id);
Rec.Unit := Find_Top_Unit (Id);
Rec.Version := In_State.Representation;
return Rec;
end Create_Target_Rep;
---------------------------
-- Create_Task_Entry_Rep --
---------------------------
function Create_Task_Entry_Rep
(TE_Id : Entity_Id) return Target_Rep_Record
is
Task_Typ : constant Entity_Id := Non_Private_View (Scope (TE_Id));
Task_Body_Id : constant Entity_Id := Task_Body_Procedure (Task_Typ);
Rec : Target_Rep_Record;
Spec_Id : Entity_Id;
begin
-- The task type has already been expanded, it carries the procedure
-- which emulates the behavior of the task body.
if Present (Task_Body_Id) then
Spec_Id := Task_Body_Id;
-- Otherwise no expansion took place
else
Spec_Id := TE_Id;
end if;
Rec.Kind := Subprogram_Target;
Spec_And_Body_From_Entity
(Id => Spec_Id,
Body_Decl => Rec.Body_Decl,
Spec_Decl => Rec.Spec_Decl);
return Rec;
end Create_Task_Entry_Rep;
---------------------
-- Create_Task_Rep --
---------------------
function Create_Task_Rep
(Task_Typ : Entity_Id) return Target_Rep_Record
is
Task_Body_Id : constant Entity_Id := Task_Body_Procedure (Task_Typ);
Rec : Target_Rep_Record;
Spec_Id : Entity_Id;
begin
-- The task type has already been expanded, it carries the procedure
-- which emulates the behavior of the task body.
if Present (Task_Body_Id) then
Spec_Id := Task_Body_Id;
-- Otherwise no expansion took place
else
Spec_Id := Task_Typ;
end if;
Rec.Kind := Task_Target;
Spec_And_Body_From_Entity
(Id => Spec_Id,
Body_Decl => Rec.Body_Decl,
Spec_Decl => Rec.Spec_Decl);
return Rec;
end Create_Task_Rep;
------------------------------------
-- Create_Variable_Assignment_Rep --
------------------------------------
function Create_Variable_Assignment_Rep
(Asmt : Node_Id) return Scenario_Rep_Record
is
Var_Id : constant Entity_Id := Entity (Assignment_Target (Asmt));
Rec : Scenario_Rep_Record;
begin
Rec.Elab_Checks_OK := Is_Elaboration_Checks_OK_Node (Asmt);
Rec.Elab_Warnings_OK := Is_Elaboration_Warnings_OK_Id (Var_Id);
Rec.GM := Ghost_Mode_Of_Node (Asmt);
Rec.SM := SPARK_Mode_Of_Node (Asmt);
Rec.Kind := Variable_Assignment_Scenario;
Rec.Target := Var_Id;
return Rec;
end Create_Variable_Assignment_Rep;
-----------------------------------
-- Create_Variable_Reference_Rep --
-----------------------------------
function Create_Variable_Reference_Rep
(Ref : Node_Id) return Scenario_Rep_Record
is
Rec : Scenario_Rep_Record;
begin
Rec.Elab_Checks_OK := Is_Elaboration_Checks_OK_Node (Ref);
Rec.Elab_Warnings_OK := Is_Elaboration_Warnings_OK_Node (Ref);
Rec.GM := Ghost_Mode_Of_Node (Ref);
Rec.SM := SPARK_Mode_Of_Node (Ref);
Rec.Kind := Variable_Reference_Scenario;
Rec.Target := Target (Ref);
-- Scenario-specific attributes
Rec.Flag_1 := Is_Read (Ref); -- Is_Read_Reference
return Rec;
end Create_Variable_Reference_Rep;
-------------------------
-- Create_Variable_Rep --
-------------------------
function Create_Variable_Rep
(Var_Id : Entity_Id) return Target_Rep_Record
is
Rec : Target_Rep_Record;
begin
Rec.Kind := Variable_Target;
-- Target-specific attributes
Rec.Field_1 := Declaration_Node (Var_Id); -- Variable_Declaration
return Rec;
end Create_Variable_Rep;
-------------
-- Destroy --
-------------
procedure Destroy (S_Id : in out Scenario_Rep_Id) is
pragma Unreferenced (S_Id);
begin
null;
end Destroy;
-------------
-- Destroy --
-------------
procedure Destroy (T_Id : in out Target_Rep_Id) is
pragma Unreferenced (T_Id);
begin
null;
end Destroy;
--------------------------------
-- Disable_Elaboration_Checks --
--------------------------------
procedure Disable_Elaboration_Checks (S_Id : Scenario_Rep_Id) is
pragma Assert (Present (S_Id));
begin
Scenario_Reps.Table (S_Id).Elab_Checks_OK := False;
end Disable_Elaboration_Checks;
--------------------------------
-- Disable_Elaboration_Checks --
--------------------------------
procedure Disable_Elaboration_Checks (T_Id : Target_Rep_Id) is
pragma Assert (Present (T_Id));
begin
Target_Reps.Table (T_Id).Elab_Checks_OK := False;
end Disable_Elaboration_Checks;
---------------------------
-- Elaboration_Checks_OK --
---------------------------
function Elaboration_Checks_OK (S_Id : Scenario_Rep_Id) return Boolean is
pragma Assert (Present (S_Id));
begin
return Scenario_Reps.Table (S_Id).Elab_Checks_OK;
end Elaboration_Checks_OK;
---------------------------
-- Elaboration_Checks_OK --
---------------------------
function Elaboration_Checks_OK (T_Id : Target_Rep_Id) return Boolean is
pragma Assert (Present (T_Id));
begin
return Target_Reps.Table (T_Id).Elab_Checks_OK;
end Elaboration_Checks_OK;
-----------------------------
-- Elaboration_Warnings_OK --
-----------------------------
function Elaboration_Warnings_OK
(S_Id : Scenario_Rep_Id) return Boolean
is
pragma Assert (Present (S_Id));
begin
return Scenario_Reps.Table (S_Id).Elab_Warnings_OK;
end Elaboration_Warnings_OK;
-----------------------------
-- Elaboration_Warnings_OK --
-----------------------------
function Elaboration_Warnings_OK (T_Id : Target_Rep_Id) return Boolean is
pragma Assert (Present (T_Id));
begin
return Target_Reps.Table (T_Id).Elab_Warnings_OK;
end Elaboration_Warnings_OK;
--------------------------------------
-- Finalize_Internal_Representation --
--------------------------------------
procedure Finalize_Internal_Representation is
begin
ETT_Map.Destroy (Entity_To_Target_Map);
NTS_Map.Destroy (Node_To_Scenario_Map);
end Finalize_Internal_Representation;
-------------------
-- Ghost_Mode_Of --
-------------------
function Ghost_Mode_Of
(S_Id : Scenario_Rep_Id) return Extended_Ghost_Mode
is
pragma Assert (Present (S_Id));
begin
return Scenario_Reps.Table (S_Id).GM;
end Ghost_Mode_Of;
-------------------
-- Ghost_Mode_Of --
-------------------
function Ghost_Mode_Of
(T_Id : Target_Rep_Id) return Extended_Ghost_Mode
is
pragma Assert (Present (T_Id));
begin
return Target_Reps.Table (T_Id).GM;
end Ghost_Mode_Of;
--------------------------
-- Ghost_Mode_Of_Entity --
--------------------------
function Ghost_Mode_Of_Entity
(Id : Entity_Id) return Extended_Ghost_Mode
is
begin
return To_Ghost_Mode (Is_Ignored_Ghost_Entity (Id));
end Ghost_Mode_Of_Entity;
------------------------
-- Ghost_Mode_Of_Node --
------------------------
function Ghost_Mode_Of_Node (N : Node_Id) return Extended_Ghost_Mode is
begin
return To_Ghost_Mode (Is_Ignored_Ghost_Node (N));
end Ghost_Mode_Of_Node;
----------------------------------------
-- Initialize_Internal_Representation --
----------------------------------------
procedure Initialize_Internal_Representation is
begin
Entity_To_Target_Map := ETT_Map.Create (500);
Node_To_Scenario_Map := NTS_Map.Create (500);
end Initialize_Internal_Representation;
-------------------------
-- Is_Dispatching_Call --
-------------------------
function Is_Dispatching_Call (S_Id : Scenario_Rep_Id) return Boolean is
pragma Assert (Present (S_Id));
pragma Assert (Kind (S_Id) = Call_Scenario);
begin
return Scenario_Reps.Table (S_Id).Flag_1;
end Is_Dispatching_Call;
-----------------------
-- Is_Read_Reference --
-----------------------
function Is_Read_Reference (S_Id : Scenario_Rep_Id) return Boolean is
pragma Assert (Present (S_Id));
pragma Assert (Kind (S_Id) = Variable_Reference_Scenario);
begin
return Scenario_Reps.Table (S_Id).Flag_1;
end Is_Read_Reference;
----------
-- Kind --
----------
function Kind (S_Id : Scenario_Rep_Id) return Scenario_Kind is
pragma Assert (Present (S_Id));
begin
return Scenario_Reps.Table (S_Id).Kind;
end Kind;
----------
-- Kind --
----------
function Kind (T_Id : Target_Rep_Id) return Target_Kind is
pragma Assert (Present (T_Id));
begin
return Target_Reps.Table (T_Id).Kind;
end Kind;
-----------
-- Level --
-----------
function Level (S_Id : Scenario_Rep_Id) return Enclosing_Level_Kind is
pragma Assert (Present (S_Id));
begin
return Scenario_Reps.Table (S_Id).Level;
end Level;
-------------
-- Present --
-------------
function Present (S_Id : Scenario_Rep_Id) return Boolean is
begin
return S_Id /= No_Scenario_Rep;
end Present;
-------------
-- Present --
-------------
function Present (T_Id : Target_Rep_Id) return Boolean is
begin
return T_Id /= No_Target_Rep;
end Present;
--------------------------------
-- Scenario_Representation_Of --
--------------------------------
function Scenario_Representation_Of
(N : Node_Id;
In_State : Processing_In_State) return Scenario_Rep_Id
is
S_Id : Scenario_Rep_Id;
begin
S_Id := NTS_Map.Get (Node_To_Scenario_Map, N);
-- The elaboration scenario lacks a representation. This indicates
-- that the scenario is encountered for the first time. Create the
-- representation of it.
if not Present (S_Id) then
Scenario_Reps.Append (Create_Scenario_Rep (N, In_State));
S_Id := Scenario_Reps.Last;
-- Associate the internal representation with the elaboration
-- scenario.
NTS_Map.Put (Node_To_Scenario_Map, N, S_Id);
end if;
pragma Assert (Present (S_Id));
return S_Id;
end Scenario_Representation_Of;
--------------------------------
-- Set_Activated_Task_Objects --
--------------------------------
procedure Set_Activated_Task_Objects
(S_Id : Scenario_Rep_Id;
Task_Objs : NE_List.Doubly_Linked_List)
is
pragma Assert (Present (S_Id));
pragma Assert (Kind (S_Id) = Task_Activation_Scenario);
begin
Scenario_Reps.Table (S_Id).List_1 := Task_Objs;
end Set_Activated_Task_Objects;
-----------------------------
-- Set_Activated_Task_Type --
-----------------------------
procedure Set_Activated_Task_Type
(S_Id : Scenario_Rep_Id;
Task_Typ : Entity_Id)
is
pragma Assert (Present (S_Id));
pragma Assert (Kind (S_Id) = Task_Activation_Scenario);
begin
Scenario_Reps.Table (S_Id).Field_1 := Task_Typ;
end Set_Activated_Task_Type;
-------------------
-- SPARK_Mode_Of --
-------------------
function SPARK_Mode_Of
(S_Id : Scenario_Rep_Id) return Extended_SPARK_Mode
is
pragma Assert (Present (S_Id));
begin
return Scenario_Reps.Table (S_Id).SM;
end SPARK_Mode_Of;
-------------------
-- SPARK_Mode_Of --
-------------------
function SPARK_Mode_Of
(T_Id : Target_Rep_Id) return Extended_SPARK_Mode
is
pragma Assert (Present (T_Id));
begin
return Target_Reps.Table (T_Id).SM;
end SPARK_Mode_Of;
--------------------------
-- SPARK_Mode_Of_Entity --
--------------------------
function SPARK_Mode_Of_Entity
(Id : Entity_Id) return Extended_SPARK_Mode
is
Prag : constant Node_Id := SPARK_Pragma (Id);
begin
return
To_SPARK_Mode
(Present (Prag)
and then Get_SPARK_Mode_From_Annotation (Prag) = On);
end SPARK_Mode_Of_Entity;
------------------------
-- SPARK_Mode_Of_Node --
------------------------
function SPARK_Mode_Of_Node (N : Node_Id) return Extended_SPARK_Mode is
begin
return To_SPARK_Mode (Is_SPARK_Mode_On_Node (N));
end SPARK_Mode_Of_Node;
----------------------
-- Spec_Declaration --
----------------------
function Spec_Declaration (T_Id : Target_Rep_Id) return Node_Id is
pragma Assert (Present (T_Id));
begin
return Target_Reps.Table (T_Id).Spec_Decl;
end Spec_Declaration;
------------
-- Target --
------------
function Target (S_Id : Scenario_Rep_Id) return Entity_Id is
pragma Assert (Present (S_Id));
begin
return Scenario_Reps.Table (S_Id).Target;
end Target;
------------------------------
-- Target_Representation_Of --
------------------------------
function Target_Representation_Of
(Id : Entity_Id;
In_State : Processing_In_State) return Target_Rep_Id
is
T_Id : Target_Rep_Id;
begin
T_Id := ETT_Map.Get (Entity_To_Target_Map, Id);
-- The elaboration target lacks an internal representation. This
-- indicates that the target is encountered for the first time.
-- Create the internal representation of it.
if not Present (T_Id) then
Target_Reps.Append (Create_Target_Rep (Id, In_State));
T_Id := Target_Reps.Last;
-- Associate the internal representation with the elaboration
-- target.
ETT_Map.Put (Entity_To_Target_Map, Id, T_Id);
-- The Processing phase is working with a partially analyzed tree,
-- where various attributes become available as analysis continues.
-- This case arrises in the context of guaranteed ABE processing.
-- Update the existing representation by including new attributes.
elsif In_State.Representation = Inconsistent_Representation then
Target_Reps.Table (T_Id) := Create_Target_Rep (Id, In_State);
-- Otherwise the Processing phase imposes a particular representation
-- version which is not satisfied by the target. This case arrises
-- when the Processing phase switches from guaranteed ABE checks and
-- diagnostics to some other mode of operation. Update the existing
-- representation to include all attributes.
elsif In_State.Representation /= Version (T_Id) then
Target_Reps.Table (T_Id) := Create_Target_Rep (Id, In_State);
end if;
pragma Assert (Present (T_Id));
return T_Id;
end Target_Representation_Of;
-------------------
-- To_Ghost_Mode --
-------------------
function To_Ghost_Mode
(Ignored_Status : Boolean) return Extended_Ghost_Mode
is
begin
if Ignored_Status then
return Is_Ignored;
else
return Is_Checked_Or_Not_Specified;
end if;
end To_Ghost_Mode;
-------------------
-- To_SPARK_Mode --
-------------------
function To_SPARK_Mode
(On_Status : Boolean) return Extended_SPARK_Mode
is
begin
if On_Status then
return Is_On;
else
return Is_Off_Or_Not_Specified;
end if;
end To_SPARK_Mode;
----------
-- Unit --
----------
function Unit (T_Id : Target_Rep_Id) return Entity_Id is
pragma Assert (Present (T_Id));
begin
return Target_Reps.Table (T_Id).Unit;
end Unit;
--------------------------
-- Variable_Declaration --
--------------------------
function Variable_Declaration (T_Id : Target_Rep_Id) return Node_Id is
pragma Assert (Present (T_Id));
pragma Assert (Kind (T_Id) = Variable_Target);
begin
return Target_Reps.Table (T_Id).Field_1;
end Variable_Declaration;
-------------
-- Version --
-------------
function Version (T_Id : Target_Rep_Id) return Representation_Kind is
pragma Assert (Present (T_Id));
begin
return Target_Reps.Table (T_Id).Version;
end Version;
end Internal_Representation;
----------------------
-- Invocation_Graph --
----------------------
package body Invocation_Graph is
-----------
-- Types --
-----------
-- The following type represents simplified version of an invocation
-- relation.
type Invoker_Target_Relation is record
Invoker : Entity_Id := Empty;
Target : Entity_Id := Empty;
end record;
-- The following variables define the entities of the dummy elaboration
-- procedures used as origins of library level paths.
Elab_Body_Id : Entity_Id := Empty;
Elab_Spec_Id : Entity_Id := Empty;
---------------------
-- Data structures --
---------------------
-- The following set contains all declared invocation constructs. It
-- ensures that the same construct is not declared multiple times in
-- the ALI file of the main unit.
Saved_Constructs_Set : NE_Set.Membership_Set := NE_Set.Nil;
function Hash (Key : Invoker_Target_Relation) return Bucket_Range_Type;
-- Obtain the hash value of pair Key
package IR_Set is new Membership_Sets
(Element_Type => Invoker_Target_Relation,
"=" => "=",
Hash => Hash);
-- The following set contains all recorded simple invocation relations.
-- It ensures that multiple relations involving the same invoker and
-- target do not appear in the ALI file of the main unit.
Saved_Relations_Set : IR_Set.Membership_Set := IR_Set.Nil;
--------------
-- Builders --
--------------
function Signature_Of (Id : Entity_Id) return Invocation_Signature_Id;
pragma Inline (Signature_Of);
-- Obtain the invication signature id of arbitrary entity Id
-----------------------
-- Local subprograms --
-----------------------
procedure Build_Elaborate_Body_Procedure;
pragma Inline (Build_Elaborate_Body_Procedure);
-- Create a dummy elaborate body procedure and store its entity in
-- Elab_Body_Id.
procedure Build_Elaborate_Procedure
(Proc_Id : out Entity_Id;
Proc_Nam : Name_Id;
Loc : Source_Ptr);
pragma Inline (Build_Elaborate_Procedure);
-- Create a dummy elaborate procedure with name Proc_Nam and source
-- location Loc. The entity is returned in Proc_Id.
procedure Build_Elaborate_Spec_Procedure;
pragma Inline (Build_Elaborate_Spec_Procedure);
-- Create a dummy elaborate spec procedure and store its entity in
-- Elab_Spec_Id.
function Build_Subprogram_Invocation
(Subp_Id : Entity_Id) return Node_Id;
pragma Inline (Build_Subprogram_Invocation);
-- Create a dummy call marker that invokes subprogram Subp_Id
function Build_Task_Activation
(Task_Typ : Entity_Id;
In_State : Processing_In_State) return Node_Id;
pragma Inline (Build_Task_Activation);
-- Create a dummy call marker that activates an anonymous task object of
-- type Task_Typ.
procedure Declare_Invocation_Construct
(Constr_Id : Entity_Id;
In_State : Processing_In_State);
pragma Inline (Declare_Invocation_Construct);
-- Declare invocation construct Constr_Id by creating a declaration for
-- it in the ALI file of the main unit. In_State is the current state of
-- the Processing phase.
function Invocation_Graph_Recording_OK return Boolean;
pragma Inline (Invocation_Graph_Recording_OK);
-- Determine whether the invocation graph can be recorded
function Is_Invocation_Scenario (N : Node_Id) return Boolean;
pragma Inline (Is_Invocation_Scenario);
-- Determine whether node N is a suitable scenario for invocation graph
-- recording purposes.
function Is_Invocation_Target (Id : Entity_Id) return Boolean;
pragma Inline (Is_Invocation_Target);
-- Determine whether arbitrary entity Id denotes an invocation target
function Is_Saved_Construct (Constr : Entity_Id) return Boolean;
pragma Inline (Is_Saved_Construct);
-- Determine whether invocation construct Constr has already been
-- declared in the ALI file of the main unit.
function Is_Saved_Relation
(Rel : Invoker_Target_Relation) return Boolean;
pragma Inline (Is_Saved_Relation);
-- Determine whether simple invocation relation Rel has already been
-- recorded in the ALI file of the main unit.
procedure Process_Declarations
(Decls : List_Id;
In_State : Processing_In_State);
pragma Inline (Process_Declarations);
-- Process declaration list Decls by processing all invocation scenarios
-- within it.
procedure Process_Freeze_Node
(Fnode : Node_Id;
In_State : Processing_In_State);
pragma Inline (Process_Freeze_Node);
-- Process freeze node Fnode by processing all invocation scenarios in
-- its Actions list.
procedure Process_Invocation_Activation
(Call : Node_Id;
Call_Rep : Scenario_Rep_Id;
Obj_Id : Entity_Id;
Obj_Rep : Target_Rep_Id;
Task_Typ : Entity_Id;
Task_Rep : Target_Rep_Id;
In_State : Processing_In_State);
pragma Inline (Process_Invocation_Activation);
-- Process activation call Call which activates object Obj_Id of task
-- type Task_Typ by processing all invocation scenarios within the task
-- body. Call_Rep is the representation of the call. Obj_Rep denotes the
-- representation of the object. Task_Rep is the representation of the
-- task type. In_State is the current state of the Processing phase.
procedure Process_Invocation_Body_Scenarios;
pragma Inline (Process_Invocation_Body_Scenarios);
-- Process all library level body scenarios
procedure Process_Invocation_Call
(Call : Node_Id;
Call_Rep : Scenario_Rep_Id;
In_State : Processing_In_State);
pragma Inline (Process_Invocation_Call);
-- Process invocation call scenario Call with representation Call_Rep.
-- In_State is the current state of the Processing phase.
procedure Process_Invocation_Instantiation
(Inst : Node_Id;
Inst_Rep : Scenario_Rep_Id;
In_State : Processing_In_State);
pragma Inline (Process_Invocation_Instantiation);
-- Process invocation instantiation scenario Inst with representation
-- Inst_Rep. In_State is the current state of the Processing phase.
procedure Process_Invocation_Scenario
(N : Node_Id;
In_State : Processing_In_State);
pragma Inline (Process_Invocation_Scenario);
-- Process single invocation scenario N. In_State is the current state
-- of the Processing phase.
procedure Process_Invocation_Scenarios
(Iter : in out NE_Set.Iterator;
In_State : Processing_In_State);
pragma Inline (Process_Invocation_Scenarios);
-- Process all invocation scenarios obtained via iterator Iter. In_State
-- is the current state of the Processing phase.
procedure Process_Invocation_Spec_Scenarios;
pragma Inline (Process_Invocation_Spec_Scenarios);
-- Process all library level spec scenarios
procedure Process_Main_Unit;
pragma Inline (Process_Main_Unit);
-- Process all invocation scenarios within the main unit
procedure Process_Package_Declaration
(Pack_Decl : Node_Id;
In_State : Processing_In_State);
pragma Inline (Process_Package_Declaration);
-- Process package declaration Pack_Decl by processing all invocation
-- scenarios in its visible and private declarations. If the main unit
-- contains a generic, the declarations of the body are also examined.
-- In_State is the current state of the Processing phase.
procedure Process_Protected_Type_Declaration
(Prot_Decl : Node_Id;
In_State : Processing_In_State);
pragma Inline (Process_Protected_Type_Declaration);
-- Process the declarations of protected type Prot_Decl. In_State is the
-- current state of the Processing phase.
procedure Process_Subprogram_Declaration
(Subp_Decl : Node_Id;
In_State : Processing_In_State);
pragma Inline (Process_Subprogram_Declaration);
-- Process subprogram declaration Subp_Decl by processing all invocation
-- scenarios within its body. In_State denotes the current state of the
-- Processing phase.
procedure Process_Subprogram_Instantiation
(Inst : Node_Id;
In_State : Processing_In_State);
pragma Inline (Process_Subprogram_Instantiation);
-- Process subprogram instantiation Inst. In_State is the current state
-- of the Processing phase.
procedure Process_Task_Type_Declaration
(Task_Decl : Node_Id;
In_State : Processing_In_State);
pragma Inline (Process_Task_Type_Declaration);
-- Process task declaration Task_Decl by processing all invocation
-- scenarios within its body. In_State is the current state of the
-- Processing phase.
procedure Record_Full_Invocation_Path (In_State : Processing_In_State);
pragma Inline (Record_Full_Invocation_Path);
-- Record all relations between scenario pairs found in the stack of
-- active scenarios. In_State is the current state of the Processing
-- phase.
procedure Record_Invocation_Graph_Encoding;
pragma Inline (Record_Invocation_Graph_Encoding);
-- Record the encoding format used to capture information related to
-- invocation constructs and relations.
procedure Record_Invocation_Path (In_State : Processing_In_State);
pragma Inline (Record_Invocation_Path);
-- Record the invocation relations found within the path represented in
-- the active scenario stack. In_State denotes the current state of the
-- Processing phase.
procedure Record_Simple_Invocation_Path (In_State : Processing_In_State);
pragma Inline (Record_Simple_Invocation_Path);
-- Record a single relation from the start to the end of the stack of
-- active scenarios. In_State is the current state of the Processing
-- phase.
procedure Record_Invocation_Relation
(Invk_Id : Entity_Id;
Targ_Id : Entity_Id;
In_State : Processing_In_State);
pragma Inline (Record_Invocation_Relation);
-- Record an invocation relation with invoker Invk_Id and target Targ_Id
-- by creating an entry for it in the ALI file of the main unit. Formal
-- In_State denotes the current state of the Processing phase.
procedure Set_Is_Saved_Construct (Constr : Entity_Id);
pragma Inline (Set_Is_Saved_Construct);
-- Mark invocation construct Constr as declared in the ALI file of the
-- main unit.
procedure Set_Is_Saved_Relation (Rel : Invoker_Target_Relation);
pragma Inline (Set_Is_Saved_Relation);
-- Mark simple invocation relation Rel as recorded in the ALI file of
-- the main unit.
function Target_Of
(Pos : Active_Scenario_Pos;
In_State : Processing_In_State) return Entity_Id;
pragma Inline (Target_Of);
-- Given position within the active scenario stack Pos, obtain the
-- target of the indicated scenario. In_State is the current state
-- of the Processing phase.
procedure Traverse_Invocation_Body
(N : Node_Id;
In_State : Processing_In_State);
pragma Inline (Traverse_Invocation_Body);
-- Traverse subprogram body N looking for suitable invocation scenarios
-- that need to be processed for invocation graph recording purposes.
-- In_State is the current state of the Processing phase.
procedure Write_Invocation_Path (In_State : Processing_In_State);
pragma Inline (Write_Invocation_Path);
-- Write out a path represented by the active scenario on the stack to
-- standard output. In_State denotes the current state of the Processing
-- phase.
------------------------------------
-- Build_Elaborate_Body_Procedure --
------------------------------------
procedure Build_Elaborate_Body_Procedure is
Body_Decl : Node_Id;
Spec_Decl : Node_Id;
begin
-- Nothing to do when a previous call already created the procedure
if Present (Elab_Body_Id) then
return;
end if;
Spec_And_Body_From_Entity
(Id => Main_Unit_Entity,
Body_Decl => Body_Decl,
Spec_Decl => Spec_Decl);
pragma Assert (Present (Body_Decl));
Build_Elaborate_Procedure
(Proc_Id => Elab_Body_Id,
Proc_Nam => Name_B,
Loc => Sloc (Body_Decl));
end Build_Elaborate_Body_Procedure;
-------------------------------
-- Build_Elaborate_Procedure --
-------------------------------
procedure Build_Elaborate_Procedure
(Proc_Id : out Entity_Id;
Proc_Nam : Name_Id;
Loc : Source_Ptr)
is
Proc_Decl : Node_Id;
pragma Unreferenced (Proc_Decl);
begin
Proc_Id := Make_Defining_Identifier (Loc, Proc_Nam);
-- Partially decorate the elaboration procedure because it will not
-- be insertred into the tree and analyzed.
Mutate_Ekind (Proc_Id, E_Procedure);
Set_Etype (Proc_Id, Standard_Void_Type);
Set_Scope (Proc_Id, Unique_Entity (Main_Unit_Entity));
-- Create a dummy declaration for the elaboration procedure. The
-- declaration does not need to be syntactically legal, but must
-- carry an accurate source location.
Proc_Decl :=
Make_Subprogram_Body (Loc,
Specification =>
Make_Procedure_Specification (Loc,
Defining_Unit_Name => Proc_Id),
Declarations => No_List,
Handled_Statement_Sequence => Empty);
end Build_Elaborate_Procedure;
------------------------------------
-- Build_Elaborate_Spec_Procedure --
------------------------------------
procedure Build_Elaborate_Spec_Procedure is
Body_Decl : Node_Id;
Spec_Decl : Node_Id;
begin
-- Nothing to do when a previous call already created the procedure
if Present (Elab_Spec_Id) then
return;
end if;
Spec_And_Body_From_Entity
(Id => Main_Unit_Entity,
Body_Decl => Body_Decl,
Spec_Decl => Spec_Decl);
pragma Assert (Present (Spec_Decl));
Build_Elaborate_Procedure
(Proc_Id => Elab_Spec_Id,
Proc_Nam => Name_S,
Loc => Sloc (Spec_Decl));
end Build_Elaborate_Spec_Procedure;
---------------------------------
-- Build_Subprogram_Invocation --
---------------------------------
function Build_Subprogram_Invocation
(Subp_Id : Entity_Id) return Node_Id
is
Marker : constant Node_Id := Make_Call_Marker (Sloc (Subp_Id));
Subp_Decl : constant Node_Id := Unit_Declaration_Node (Subp_Id);
begin
-- Create a dummy call marker which invokes the subprogram
Set_Is_Declaration_Level_Node (Marker, False);
Set_Is_Dispatching_Call (Marker, False);
Set_Is_Elaboration_Checks_OK_Node (Marker, False);
Set_Is_Elaboration_Warnings_OK_Node (Marker, False);
Set_Is_Ignored_Ghost_Node (Marker, False);
Set_Is_Preelaborable_Call (Marker, False);
Set_Is_Source_Call (Marker, False);
Set_Is_SPARK_Mode_On_Node (Marker, False);
-- Invoke the uniform canonical entity of the subprogram
Set_Target (Marker, Canonical_Subprogram (Subp_Id));
-- Partially insert the marker into the tree
Set_Parent (Marker, Parent (Subp_Decl));
return Marker;
end Build_Subprogram_Invocation;
---------------------------
-- Build_Task_Activation --
---------------------------
function Build_Task_Activation
(Task_Typ : Entity_Id;
In_State : Processing_In_State) return Node_Id
is
Loc : constant Source_Ptr := Sloc (Task_Typ);
Marker : constant Node_Id := Make_Call_Marker (Loc);
Task_Decl : constant Node_Id := Unit_Declaration_Node (Task_Typ);
Activ_Id : Entity_Id;
Marker_Rep_Id : Scenario_Rep_Id;
Task_Obj : Entity_Id;
Task_Objs : NE_List.Doubly_Linked_List;
begin
-- Create a dummy call marker which activates some tasks
Set_Is_Declaration_Level_Node (Marker, False);
Set_Is_Dispatching_Call (Marker, False);
Set_Is_Elaboration_Checks_OK_Node (Marker, False);
Set_Is_Elaboration_Warnings_OK_Node (Marker, False);
Set_Is_Ignored_Ghost_Node (Marker, False);
Set_Is_Preelaborable_Call (Marker, False);
Set_Is_Source_Call (Marker, False);
Set_Is_SPARK_Mode_On_Node (Marker, False);
-- Invoke the appropriate version of Activate_Tasks
if Restricted_Profile then
Activ_Id := RTE (RE_Activate_Restricted_Tasks);
else
Activ_Id := RTE (RE_Activate_Tasks);
end if;
Set_Target (Marker, Activ_Id);
-- Partially insert the marker into the tree
Set_Parent (Marker, Parent (Task_Decl));
-- Create a dummy task object. Partially decorate the object because
-- it will not be inserted into the tree and analyzed.
Task_Obj := Make_Temporary (Loc, 'T');
Mutate_Ekind (Task_Obj, E_Variable);
Set_Etype (Task_Obj, Task_Typ);
-- Associate the dummy task object with the activation call
Task_Objs := NE_List.Create;
NE_List.Append (Task_Objs, Task_Obj);
Marker_Rep_Id := Scenario_Representation_Of (Marker, In_State);
Set_Activated_Task_Objects (Marker_Rep_Id, Task_Objs);
Set_Activated_Task_Type (Marker_Rep_Id, Task_Typ);
return Marker;
end Build_Task_Activation;
----------------------------------
-- Declare_Invocation_Construct --
----------------------------------
procedure Declare_Invocation_Construct
(Constr_Id : Entity_Id;
In_State : Processing_In_State)
is
function Body_Placement_Of
(Id : Entity_Id) return Declaration_Placement_Kind;
pragma Inline (Body_Placement_Of);
-- Obtain the placement of arbitrary entity Id's body
function Declaration_Placement_Of_Node
(N : Node_Id) return Declaration_Placement_Kind;
pragma Inline (Declaration_Placement_Of_Node);
-- Obtain the placement of arbitrary node N
function Kind_Of (Id : Entity_Id) return Invocation_Construct_Kind;
pragma Inline (Kind_Of);
-- Obtain the invocation construct kind of arbitrary entity Id
function Spec_Placement_Of
(Id : Entity_Id) return Declaration_Placement_Kind;
pragma Inline (Spec_Placement_Of);
-- Obtain the placement of arbitrary entity Id's spec
-----------------------
-- Body_Placement_Of --
-----------------------
function Body_Placement_Of
(Id : Entity_Id) return Declaration_Placement_Kind
is
Id_Rep : constant Target_Rep_Id :=
Target_Representation_Of (Id, In_State);
Body_Decl : constant Node_Id := Body_Declaration (Id_Rep);
Spec_Decl : constant Node_Id := Spec_Declaration (Id_Rep);
begin
-- The entity has a body
if Present (Body_Decl) then
return Declaration_Placement_Of_Node (Body_Decl);
-- Otherwise the entity must have a spec
else
pragma Assert (Present (Spec_Decl));
return Declaration_Placement_Of_Node (Spec_Decl);
end if;
end Body_Placement_Of;
-----------------------------------
-- Declaration_Placement_Of_Node --
-----------------------------------
function Declaration_Placement_Of_Node
(N : Node_Id) return Declaration_Placement_Kind
is
Main_Unit_Id : constant Entity_Id := Main_Unit_Entity;
N_Unit_Id : constant Entity_Id := Find_Top_Unit (N);
begin
-- The node is in the main unit, its placement depends on the main
-- unit kind.
if N_Unit_Id = Main_Unit_Id then
-- The main unit is a body
if Ekind (Main_Unit_Id) in E_Package_Body | E_Subprogram_Body
then
return In_Body;
-- The main unit is a stand-alone subprogram body
elsif Ekind (Main_Unit_Id) in E_Function | E_Procedure
and then Nkind (Unit_Declaration_Node (Main_Unit_Id)) =
N_Subprogram_Body
then
return In_Body;
-- Otherwise the main unit is a spec
else
return In_Spec;
end if;
-- Otherwise the node is in the complementary unit of the main
-- unit. The main unit is a body, the node is in the spec.
elsif Ekind (Main_Unit_Id) in E_Package_Body | E_Subprogram_Body
then
return In_Spec;
-- The main unit is a spec, the node is in the body
else
return In_Body;
end if;
end Declaration_Placement_Of_Node;
-------------
-- Kind_Of --
-------------
function Kind_Of (Id : Entity_Id) return Invocation_Construct_Kind is
begin
if Id = Elab_Body_Id then
return Elaborate_Body_Procedure;
elsif Id = Elab_Spec_Id then
return Elaborate_Spec_Procedure;
else
return Regular_Construct;
end if;
end Kind_Of;
-----------------------
-- Spec_Placement_Of --
-----------------------
function Spec_Placement_Of
(Id : Entity_Id) return Declaration_Placement_Kind
is
Id_Rep : constant Target_Rep_Id :=
Target_Representation_Of (Id, In_State);
Body_Decl : constant Node_Id := Body_Declaration (Id_Rep);
Spec_Decl : constant Node_Id := Spec_Declaration (Id_Rep);
begin
-- The entity has a spec
if Present (Spec_Decl) then
return Declaration_Placement_Of_Node (Spec_Decl);
-- Otherwise the entity must have a body
else
pragma Assert (Present (Body_Decl));
return Declaration_Placement_Of_Node (Body_Decl);
end if;
end Spec_Placement_Of;
-- Start of processing for Declare_Invocation_Construct
begin
-- Nothing to do when the construct has already been declared in the
-- ALI file.
if Is_Saved_Construct (Constr_Id) then
return;
end if;
-- Mark the construct as declared in the ALI file
Set_Is_Saved_Construct (Constr_Id);
-- Add the construct in the ALI file
Add_Invocation_Construct
(Body_Placement => Body_Placement_Of (Constr_Id),
Kind => Kind_Of (Constr_Id),
Signature => Signature_Of (Constr_Id),
Spec_Placement => Spec_Placement_Of (Constr_Id),
Update_Units => False);
end Declare_Invocation_Construct;
-------------------------------
-- Finalize_Invocation_Graph --
-------------------------------
procedure Finalize_Invocation_Graph is
begin
NE_Set.Destroy (Saved_Constructs_Set);
IR_Set.Destroy (Saved_Relations_Set);
end Finalize_Invocation_Graph;
----------
-- Hash --
----------
function Hash (Key : Invoker_Target_Relation) return Bucket_Range_Type is
pragma Assert (Present (Key.Invoker));
pragma Assert (Present (Key.Target));
begin
return
Hash_Two_Keys
(Bucket_Range_Type (Key.Invoker),
Bucket_Range_Type (Key.Target));
end Hash;
---------------------------------
-- Initialize_Invocation_Graph --
---------------------------------
procedure Initialize_Invocation_Graph is
begin
Saved_Constructs_Set := NE_Set.Create (100);
Saved_Relations_Set := IR_Set.Create (200);
end Initialize_Invocation_Graph;
-----------------------------------
-- Invocation_Graph_Recording_OK --
-----------------------------------
function Invocation_Graph_Recording_OK return Boolean is
Main_Cunit : constant Node_Id := Cunit (Main_Unit);
begin
-- Nothing to do when compiling for GNATprove because the invocation
-- graph is not needed.
if GNATprove_Mode then
return False;
-- Nothing to do when the compilation will not produce an ALI file
elsif Serious_Errors_Detected > 0 then
return False;
-- Nothing to do when the main unit requires a body. Processing the
-- completing body will create the ALI file for the unit and record
-- the invocation graph.
elsif Body_Required (Main_Cunit) then
return False;
end if;
return True;
end Invocation_Graph_Recording_OK;
----------------------------
-- Is_Invocation_Scenario --
----------------------------
function Is_Invocation_Scenario (N : Node_Id) return Boolean is
begin
return
Is_Suitable_Access_Taken (N)
or else Is_Suitable_Call (N)
or else Is_Suitable_Instantiation (N);
end Is_Invocation_Scenario;
--------------------------
-- Is_Invocation_Target --
--------------------------
function Is_Invocation_Target (Id : Entity_Id) return Boolean is
begin
-- To qualify, the entity must either come from source, or denote an
-- Ada, bridge, or SPARK target.
return
Comes_From_Source (Id)
or else Is_Ada_Semantic_Target (Id)
or else Is_Bridge_Target (Id)
or else Is_SPARK_Semantic_Target (Id);
end Is_Invocation_Target;
------------------------
-- Is_Saved_Construct --
------------------------
function Is_Saved_Construct (Constr : Entity_Id) return Boolean is
pragma Assert (Present (Constr));
begin
return NE_Set.Contains (Saved_Constructs_Set, Constr);
end Is_Saved_Construct;
-----------------------
-- Is_Saved_Relation --
-----------------------
function Is_Saved_Relation
(Rel : Invoker_Target_Relation) return Boolean
is
pragma Assert (Present (Rel.Invoker));
pragma Assert (Present (Rel.Target));
begin
return IR_Set.Contains (Saved_Relations_Set, Rel);
end Is_Saved_Relation;
--------------------------
-- Process_Declarations --
--------------------------
procedure Process_Declarations
(Decls : List_Id;
In_State : Processing_In_State)
is
Decl : Node_Id;
begin
Decl := First (Decls);
while Present (Decl) loop
-- Freeze node
if Nkind (Decl) = N_Freeze_Entity then
Process_Freeze_Node
(Fnode => Decl,
In_State => In_State);
-- Package (nested)
elsif Nkind (Decl) = N_Package_Declaration then
Process_Package_Declaration
(Pack_Decl => Decl,
In_State => In_State);
-- Protected type
elsif Nkind (Decl) in N_Protected_Type_Declaration
| N_Single_Protected_Declaration
then
Process_Protected_Type_Declaration
(Prot_Decl => Decl,
In_State => In_State);
-- Subprogram or entry
elsif Nkind (Decl) in N_Entry_Declaration
| N_Subprogram_Declaration
then
Process_Subprogram_Declaration
(Subp_Decl => Decl,
In_State => In_State);
-- Subprogram body (stand alone)
elsif Nkind (Decl) = N_Subprogram_Body
and then No (Corresponding_Spec (Decl))
then
Process_Subprogram_Declaration
(Subp_Decl => Decl,
In_State => In_State);
-- Subprogram instantiation
elsif Nkind (Decl) in N_Subprogram_Instantiation then
Process_Subprogram_Instantiation
(Inst => Decl,
In_State => In_State);
-- Task type
elsif Nkind (Decl) in N_Single_Task_Declaration
| N_Task_Type_Declaration
then
Process_Task_Type_Declaration
(Task_Decl => Decl,
In_State => In_State);
-- Task type (derived)
elsif Nkind (Decl) = N_Full_Type_Declaration
and then Is_Task_Type (Defining_Entity (Decl))
then
Process_Task_Type_Declaration
(Task_Decl => Decl,
In_State => In_State);
end if;
Next (Decl);
end loop;
end Process_Declarations;
-------------------------
-- Process_Freeze_Node --
-------------------------
procedure Process_Freeze_Node
(Fnode : Node_Id;
In_State : Processing_In_State)
is
begin
Process_Declarations
(Decls => Actions (Fnode),
In_State => In_State);
end Process_Freeze_Node;
-----------------------------------
-- Process_Invocation_Activation --
-----------------------------------
procedure Process_Invocation_Activation
(Call : Node_Id;
Call_Rep : Scenario_Rep_Id;
Obj_Id : Entity_Id;
Obj_Rep : Target_Rep_Id;
Task_Typ : Entity_Id;
Task_Rep : Target_Rep_Id;
In_State : Processing_In_State)
is
pragma Unreferenced (Call);
pragma Unreferenced (Call_Rep);
pragma Unreferenced (Obj_Id);
pragma Unreferenced (Obj_Rep);
begin
-- Nothing to do when the task type appears within an internal unit
if In_Internal_Unit (Task_Typ) then
return;
end if;
-- The task type being activated is within the main unit. Extend the
-- DFS traversal into its body.
if In_Extended_Main_Code_Unit (Task_Typ) then
Traverse_Invocation_Body
(N => Body_Declaration (Task_Rep),
In_State => In_State);
-- The task type being activated resides within an external unit
--
-- Main unit External unit
-- +-----------+ +-------------+
-- | | | |
-- | Start ------------> Task_Typ |
-- | | | |
-- +-----------+ +-------------+
--
-- Record the invocation path which originates from Start and reaches
-- the task type.
else
Record_Invocation_Path (In_State);
end if;
end Process_Invocation_Activation;
---------------------------------------
-- Process_Invocation_Body_Scenarios --
---------------------------------------
procedure Process_Invocation_Body_Scenarios is
Iter : NE_Set.Iterator := Iterate_Library_Body_Scenarios;
begin
Process_Invocation_Scenarios
(Iter => Iter,
In_State => Invocation_Body_State);
end Process_Invocation_Body_Scenarios;
-----------------------------
-- Process_Invocation_Call --
-----------------------------
procedure Process_Invocation_Call
(Call : Node_Id;
Call_Rep : Scenario_Rep_Id;
In_State : Processing_In_State)
is
pragma Unreferenced (Call);
Subp_Id : constant Entity_Id := Target (Call_Rep);
Subp_Rep : constant Target_Rep_Id :=
Target_Representation_Of (Subp_Id, In_State);
begin
-- Nothing to do when the subprogram appears within an internal unit
if In_Internal_Unit (Subp_Id) then
return;
-- Nothing to do for an abstract subprogram because it has no body to
-- examine.
elsif Ekind (Subp_Id) in E_Function | E_Procedure
and then Is_Abstract_Subprogram (Subp_Id)
then
return;
-- Nothin to do for a formal subprogram because it has no body to
-- examine.
elsif Is_Formal_Subprogram (Subp_Id) then
return;
end if;
-- The subprogram being called is within the main unit. Extend the
-- DFS traversal into its barrier function and body.
if In_Extended_Main_Code_Unit (Subp_Id) then
if Ekind (Subp_Id) in E_Entry | E_Entry_Family | E_Procedure then
Traverse_Invocation_Body
(N => Barrier_Body_Declaration (Subp_Rep),
In_State => In_State);
end if;
Traverse_Invocation_Body
(N => Body_Declaration (Subp_Rep),
In_State => In_State);
-- The subprogram being called resides within an external unit
--
-- Main unit External unit
-- +-----------+ +-------------+
-- | | | |
-- | Start ------------> Subp_Id |
-- | | | |
-- +-----------+ +-------------+
--
-- Record the invocation path which originates from Start and reaches
-- the subprogram.
else
Record_Invocation_Path (In_State);
end if;
end Process_Invocation_Call;
--------------------------------------
-- Process_Invocation_Instantiation --
--------------------------------------
procedure Process_Invocation_Instantiation
(Inst : Node_Id;
Inst_Rep : Scenario_Rep_Id;
In_State : Processing_In_State)
is
pragma Unreferenced (Inst);
Gen_Id : constant Entity_Id := Target (Inst_Rep);
begin
-- Nothing to do when the generic appears within an internal unit
if In_Internal_Unit (Gen_Id) then
return;
end if;
-- The generic being instantiated resides within an external unit
--
-- Main unit External unit
-- +-----------+ +-------------+
-- | | | |
-- | Start ------------> Generic |
-- | | | |
-- +-----------+ +-------------+
--
-- Record the invocation path which originates from Start and reaches
-- the generic.
if not In_Extended_Main_Code_Unit (Gen_Id) then
Record_Invocation_Path (In_State);
end if;
end Process_Invocation_Instantiation;
---------------------------------
-- Process_Invocation_Scenario --
---------------------------------
procedure Process_Invocation_Scenario
(N : Node_Id;
In_State : Processing_In_State)
is
Scen : constant Node_Id := Scenario (N);
Scen_Rep : Scenario_Rep_Id;
begin
-- Add the current scenario to the stack of active scenarios
Push_Active_Scenario (Scen);
-- Call or task activation
if Is_Suitable_Call (Scen) then
Scen_Rep := Scenario_Representation_Of (Scen, In_State);
-- Routine Build_Call_Marker creates call markers regardless of
-- whether the call occurs within the main unit or not. This way
-- the serialization of internal names is kept consistent. Only
-- call markers found within the main unit must be processed.
if In_Main_Context (Scen) then
Scen_Rep := Scenario_Representation_Of (Scen, In_State);
if Kind (Scen_Rep) = Call_Scenario then
Process_Invocation_Call
(Call => Scen,
Call_Rep => Scen_Rep,
In_State => In_State);
else
pragma Assert (Kind (Scen_Rep) = Task_Activation_Scenario);
Process_Activation
(Call => Scen,
Call_Rep => Scen_Rep,
Processor => Process_Invocation_Activation'Access,
In_State => In_State);
end if;
end if;
-- Instantiation
elsif Is_Suitable_Instantiation (Scen) then
Process_Invocation_Instantiation
(Inst => Scen,
Inst_Rep => Scenario_Representation_Of (Scen, In_State),
In_State => In_State);
end if;
-- Remove the current scenario from the stack of active scenarios
-- once all invocation constructs and paths have been saved.
Pop_Active_Scenario (Scen);
end Process_Invocation_Scenario;
----------------------------------
-- Process_Invocation_Scenarios --
----------------------------------
procedure Process_Invocation_Scenarios
(Iter : in out NE_Set.Iterator;
In_State : Processing_In_State)
is
N : Node_Id;
begin
while NE_Set.Has_Next (Iter) loop
NE_Set.Next (Iter, N);
-- Reset the traversed status of all subprogram bodies because the
-- current invocation scenario acts as a new DFS traversal root.
Reset_Traversed_Bodies;
Process_Invocation_Scenario (N, In_State);
end loop;
end Process_Invocation_Scenarios;
---------------------------------------
-- Process_Invocation_Spec_Scenarios --
---------------------------------------
procedure Process_Invocation_Spec_Scenarios is
Iter : NE_Set.Iterator := Iterate_Library_Spec_Scenarios;
begin
Process_Invocation_Scenarios
(Iter => Iter,
In_State => Invocation_Spec_State);
end Process_Invocation_Spec_Scenarios;
-----------------------
-- Process_Main_Unit --
-----------------------
procedure Process_Main_Unit is
Unit_Decl : constant Node_Id := Unit (Cunit (Main_Unit));
Spec_Id : Entity_Id;
begin
-- The main unit is a [generic] package body
if Nkind (Unit_Decl) = N_Package_Body then
Spec_Id := Corresponding_Spec (Unit_Decl);
pragma Assert (Present (Spec_Id));
Process_Package_Declaration
(Pack_Decl => Unit_Declaration_Node (Spec_Id),
In_State => Invocation_Construct_State);
-- The main unit is a [generic] package declaration
elsif Nkind (Unit_Decl) = N_Package_Declaration then
Process_Package_Declaration
(Pack_Decl => Unit_Decl,
In_State => Invocation_Construct_State);
-- The main unit is a [generic] subprogram body
elsif Nkind (Unit_Decl) = N_Subprogram_Body then
Spec_Id := Corresponding_Spec (Unit_Decl);
-- The body completes a previous declaration
if Present (Spec_Id) then
Process_Subprogram_Declaration
(Subp_Decl => Unit_Declaration_Node (Spec_Id),
In_State => Invocation_Construct_State);
-- Otherwise the body is stand-alone
else
Process_Subprogram_Declaration
(Subp_Decl => Unit_Decl,
In_State => Invocation_Construct_State);
end if;
-- The main unit is a subprogram instantiation
elsif Nkind (Unit_Decl) in N_Subprogram_Instantiation then
Process_Subprogram_Instantiation
(Inst => Unit_Decl,
In_State => Invocation_Construct_State);
-- The main unit is an imported subprogram declaration
elsif Nkind (Unit_Decl) = N_Subprogram_Declaration then
Process_Subprogram_Declaration
(Subp_Decl => Unit_Decl,
In_State => Invocation_Construct_State);
end if;
end Process_Main_Unit;
---------------------------------
-- Process_Package_Declaration --
---------------------------------
procedure Process_Package_Declaration
(Pack_Decl : Node_Id;
In_State : Processing_In_State)
is
Body_Id : constant Entity_Id := Corresponding_Body (Pack_Decl);
Spec : constant Node_Id := Specification (Pack_Decl);
Spec_Id : constant Entity_Id := Defining_Entity (Pack_Decl);
begin
-- Add a declaration for the generic package in the ALI of the main
-- unit in case a client unit instantiates it.
if Ekind (Spec_Id) = E_Generic_Package then
Declare_Invocation_Construct
(Constr_Id => Spec_Id,
In_State => In_State);
-- Otherwise inspect the visible and private declarations of the
-- package for invocation constructs.
else
Process_Declarations
(Decls => Visible_Declarations (Spec),
In_State => In_State);
Process_Declarations
(Decls => Private_Declarations (Spec),
In_State => In_State);
-- The package body containst at least one generic unit or an
-- inlinable subprogram. Such constructs may grant clients of
-- the main unit access to the private enclosing contexts of
-- the constructs. Process the main unit body to discover and
-- encode relevant invocation constructs and relations that
-- may ultimately reach an external unit.
if Present (Body_Id)
and then Save_Invocation_Graph_Of_Body (Cunit (Main_Unit))
then
Process_Declarations
(Decls => Declarations (Unit_Declaration_Node (Body_Id)),
In_State => In_State);
end if;
end if;
end Process_Package_Declaration;
----------------------------------------
-- Process_Protected_Type_Declaration --
----------------------------------------
procedure Process_Protected_Type_Declaration
(Prot_Decl : Node_Id;
In_State : Processing_In_State)
is
Prot_Def : constant Node_Id := Protected_Definition (Prot_Decl);
begin
if Present (Prot_Def) then
Process_Declarations
(Decls => Visible_Declarations (Prot_Def),
In_State => In_State);
end if;
end Process_Protected_Type_Declaration;
------------------------------------
-- Process_Subprogram_Declaration --
------------------------------------
procedure Process_Subprogram_Declaration
(Subp_Decl : Node_Id;
In_State : Processing_In_State)
is
Subp_Id : constant Entity_Id := Defining_Entity (Subp_Decl);
begin
-- Nothing to do when the subprogram is not an invocation target
if not Is_Invocation_Target (Subp_Id) then
return;
end if;
-- Add a declaration for the subprogram in the ALI file of the main
-- unit in case a client unit calls or instantiates it.
Declare_Invocation_Construct
(Constr_Id => Subp_Id,
In_State => In_State);
-- Do not process subprograms without a body because they do not
-- contain any invocation scenarios.
if Is_Bodiless_Subprogram (Subp_Id) then
null;
-- Do not process generic subprograms because generics must not be
-- examined.
elsif Is_Generic_Subprogram (Subp_Id) then
null;
-- Otherwise create a dummy scenario which calls the subprogram to
-- act as a root for a DFS traversal.
else
-- Reset the traversed status of all subprogram bodies because the
-- subprogram acts as a new DFS traversal root.
Reset_Traversed_Bodies;
Process_Invocation_Scenario
(N => Build_Subprogram_Invocation (Subp_Id),
In_State => In_State);
end if;
end Process_Subprogram_Declaration;
--------------------------------------
-- Process_Subprogram_Instantiation --
--------------------------------------
procedure Process_Subprogram_Instantiation
(Inst : Node_Id;
In_State : Processing_In_State)
is
begin
-- Add a declaration for the instantiation in the ALI file of the
-- main unit in case a client unit calls it.
Declare_Invocation_Construct
(Constr_Id => Defining_Entity (Inst),
In_State => In_State);
end Process_Subprogram_Instantiation;
-----------------------------------
-- Process_Task_Type_Declaration --
-----------------------------------
procedure Process_Task_Type_Declaration
(Task_Decl : Node_Id;
In_State : Processing_In_State)
is
Task_Typ : constant Entity_Id := Defining_Entity (Task_Decl);
Task_Def : Node_Id;
begin
-- Add a declaration for the task type the ALI file of the main unit
-- in case a client unit creates a task object and activates it.
Declare_Invocation_Construct
(Constr_Id => Task_Typ,
In_State => In_State);
-- Process the entries of the task type because they represent valid
-- entry points into the task body.
if Nkind (Task_Decl) in N_Single_Task_Declaration
| N_Task_Type_Declaration
then
Task_Def := Task_Definition (Task_Decl);
if Present (Task_Def) then
Process_Declarations
(Decls => Visible_Declarations (Task_Def),
In_State => In_State);
end if;
end if;
-- Reset the traversed status of all subprogram bodies because the
-- task type acts as a new DFS traversal root.
Reset_Traversed_Bodies;
-- Create a dummy scenario which activates an anonymous object of the
-- task type to acts as a root of a DFS traversal.
Process_Invocation_Scenario
(N => Build_Task_Activation (Task_Typ, In_State),
In_State => In_State);
end Process_Task_Type_Declaration;
---------------------------------
-- Record_Full_Invocation_Path --
---------------------------------
procedure Record_Full_Invocation_Path (In_State : Processing_In_State) is
package Scenarios renames Active_Scenario_Stack;
begin
-- The path originates from the elaboration of the body. Add an extra
-- relation from the elaboration body procedure to the first active
-- scenario.
if In_State.Processing = Invocation_Body_Processing then
Build_Elaborate_Body_Procedure;
Record_Invocation_Relation
(Invk_Id => Elab_Body_Id,
Targ_Id => Target_Of (Scenarios.First, In_State),
In_State => In_State);
-- The path originates from the elaboration of the spec. Add an extra
-- relation from the elaboration spec procedure to the first active
-- scenario.
elsif In_State.Processing = Invocation_Spec_Processing then
Build_Elaborate_Spec_Procedure;
Record_Invocation_Relation
(Invk_Id => Elab_Spec_Id,
Targ_Id => Target_Of (Scenarios.First, In_State),
In_State => In_State);
end if;
-- Record individual relations formed by pairs of scenarios
for Index in Scenarios.First .. Scenarios.Last - 1 loop
Record_Invocation_Relation
(Invk_Id => Target_Of (Index, In_State),
Targ_Id => Target_Of (Index + 1, In_State),
In_State => In_State);
end loop;
end Record_Full_Invocation_Path;
-----------------------------
-- Record_Invocation_Graph --
-----------------------------
procedure Record_Invocation_Graph is
begin
-- Nothing to do when the invocation graph is not recorded
if not Invocation_Graph_Recording_OK then
return;
end if;
-- Save the encoding format used to capture information about the
-- invocation constructs and relations in the ALI file of the main
-- unit.
Record_Invocation_Graph_Encoding;
-- Examine all library level invocation scenarios and perform DFS
-- traversals from each one. Encode a path in the ALI file of the
-- main unit if it reaches into an external unit.
Process_Invocation_Body_Scenarios;
Process_Invocation_Spec_Scenarios;
-- Examine all invocation constructs within the spec and body of the
-- main unit and perform DFS traversals from each one. Encode a path
-- in the ALI file of the main unit if it reaches into an external
-- unit.
Process_Main_Unit;
end Record_Invocation_Graph;
--------------------------------------
-- Record_Invocation_Graph_Encoding --
--------------------------------------
procedure Record_Invocation_Graph_Encoding is
Kind : Invocation_Graph_Encoding_Kind := No_Encoding;
begin
-- Switch -gnatd_F (encode full invocation paths in ALI files) is in
-- effect.
if Debug_Flag_Underscore_FF then
Kind := Full_Path_Encoding;
else
Kind := Endpoints_Encoding;
end if;
-- Save the encoding format in the ALI file of the main unit
Set_Invocation_Graph_Encoding
(Kind => Kind,
Update_Units => False);
end Record_Invocation_Graph_Encoding;
----------------------------
-- Record_Invocation_Path --
----------------------------
procedure Record_Invocation_Path (In_State : Processing_In_State) is
package Scenarios renames Active_Scenario_Stack;
begin
-- Save a path when the active scenario stack contains at least one
-- invocation scenario.
if Scenarios.Last - Scenarios.First < 0 then
return;
end if;
-- Register all relations in the path when switch -gnatd_F (encode
-- full invocation paths in ALI files) is in effect.
if Debug_Flag_Underscore_FF then
Record_Full_Invocation_Path (In_State);
-- Otherwise register a single relation
else
Record_Simple_Invocation_Path (In_State);
end if;
Write_Invocation_Path (In_State);
end Record_Invocation_Path;
--------------------------------
-- Record_Invocation_Relation --
--------------------------------
procedure Record_Invocation_Relation
(Invk_Id : Entity_Id;
Targ_Id : Entity_Id;
In_State : Processing_In_State)
is
pragma Assert (Present (Invk_Id));
pragma Assert (Present (Targ_Id));
procedure Get_Invocation_Attributes
(Extra : out Entity_Id;
Kind : out Invocation_Kind);
pragma Inline (Get_Invocation_Attributes);
-- Return the additional entity used in error diagnostics in Extra
-- and the invocation kind in Kind which pertain to the invocation
-- relation with invoker Invk_Id and target Targ_Id.
-------------------------------
-- Get_Invocation_Attributes --
-------------------------------
procedure Get_Invocation_Attributes
(Extra : out Entity_Id;
Kind : out Invocation_Kind)
is
Targ_Rep : constant Target_Rep_Id :=
Target_Representation_Of (Targ_Id, In_State);
Spec_Decl : constant Node_Id := Spec_Declaration (Targ_Rep);
begin
-- Accept within a task body
if Is_Accept_Alternative_Proc (Targ_Id) then
Extra := Receiving_Entry (Targ_Id);
Kind := Accept_Alternative;
-- Activation of a task object
elsif Is_Activation_Proc (Targ_Id)
or else Is_Task_Type (Targ_Id)
then
Extra := Empty;
Kind := Task_Activation;
-- Controlled adjustment actions
elsif Is_Controlled_Proc (Targ_Id, Name_Adjust) then
Extra := First_Formal_Type (Targ_Id);
Kind := Controlled_Adjustment;
-- Controlled finalization actions
elsif Is_Controlled_Proc (Targ_Id, Name_Finalize)
or else Is_Finalizer_Proc (Targ_Id)
then
Extra := First_Formal_Type (Targ_Id);
Kind := Controlled_Finalization;
-- Controlled initialization actions
elsif Is_Controlled_Proc (Targ_Id, Name_Initialize) then
Extra := First_Formal_Type (Targ_Id);
Kind := Controlled_Initialization;
-- Default_Initial_Condition verification
elsif Is_Default_Initial_Condition_Proc (Targ_Id) then
Extra := First_Formal_Type (Targ_Id);
Kind := Default_Initial_Condition_Verification;
-- Initialization of object
elsif Is_Init_Proc (Targ_Id) then
Extra := First_Formal_Type (Targ_Id);
Kind := Type_Initialization;
-- Initial_Condition verification
elsif Is_Initial_Condition_Proc (Targ_Id) then
Extra := First_Formal_Type (Targ_Id);
Kind := Initial_Condition_Verification;
-- Instantiation
elsif Is_Generic_Unit (Targ_Id) then
Extra := Empty;
Kind := Instantiation;
-- Internal controlled adjustment actions
elsif Is_TSS (Targ_Id, TSS_Deep_Adjust) then
Extra := First_Formal_Type (Targ_Id);
Kind := Internal_Controlled_Adjustment;
-- Internal controlled finalization actions
elsif Is_TSS (Targ_Id, TSS_Deep_Finalize) then
Extra := First_Formal_Type (Targ_Id);
Kind := Internal_Controlled_Finalization;
-- Internal controlled initialization actions
elsif Is_TSS (Targ_Id, TSS_Deep_Initialize) then
Extra := First_Formal_Type (Targ_Id);
Kind := Internal_Controlled_Initialization;
-- Invariant verification
elsif Is_Invariant_Proc (Targ_Id)
or else Is_Partial_Invariant_Proc (Targ_Id)
then
Extra := First_Formal_Type (Targ_Id);
Kind := Invariant_Verification;
-- Postcondition verification
elsif Is_Postconditions_Proc (Targ_Id) then
Extra := Find_Enclosing_Scope (Spec_Decl);
Kind := Postcondition_Verification;
-- Protected entry call
elsif Is_Protected_Entry (Targ_Id) then
Extra := Empty;
Kind := Protected_Entry_Call;
-- Protected subprogram call
elsif Is_Protected_Subp (Targ_Id) then
Extra := Empty;
Kind := Protected_Subprogram_Call;
-- Task entry call
elsif Is_Task_Entry (Targ_Id) then
Extra := Empty;
Kind := Task_Entry_Call;
-- Entry, operator, or subprogram call. This case must come last
-- because most invocations above are variations of this case.
elsif Ekind (Targ_Id) in
E_Entry | E_Function | E_Operator | E_Procedure
then
Extra := Empty;
Kind := Call;
else
pragma Assert (False);
Extra := Empty;
Kind := No_Invocation;
end if;
end Get_Invocation_Attributes;
-- Local variables
Extra : Entity_Id;
Extra_Nam : Name_Id;
Kind : Invocation_Kind;
Rel : Invoker_Target_Relation;
-- Start of processing for Record_Invocation_Relation
begin
Rel.Invoker := Invk_Id;
Rel.Target := Targ_Id;
-- Nothing to do when the invocation relation has already been
-- recorded in ALI file of the main unit.
if Is_Saved_Relation (Rel) then
return;
end if;
-- Mark the relation as recorded in the ALI file
Set_Is_Saved_Relation (Rel);
-- Declare the invoker in the ALI file
Declare_Invocation_Construct
(Constr_Id => Invk_Id,
In_State => In_State);
-- Obtain the invocation-specific attributes of the relation
Get_Invocation_Attributes (Extra, Kind);
-- Certain invocations lack an extra entity used in error diagnostics
if Present (Extra) then
Extra_Nam := Chars (Extra);
else
Extra_Nam := No_Name;
end if;
-- Add the relation in the ALI file
Add_Invocation_Relation
(Extra => Extra_Nam,
Invoker => Signature_Of (Invk_Id),
Kind => Kind,
Target => Signature_Of (Targ_Id),
Update_Units => False);
end Record_Invocation_Relation;
-----------------------------------
-- Record_Simple_Invocation_Path --
-----------------------------------
procedure Record_Simple_Invocation_Path
(In_State : Processing_In_State)
is
package Scenarios renames Active_Scenario_Stack;
Last_Targ : constant Entity_Id :=
Target_Of (Scenarios.Last, In_State);
First_Targ : Entity_Id;
begin
-- The path originates from the elaboration of the body. Add an extra
-- relation from the elaboration body procedure to the first active
-- scenario.
if In_State.Processing = Invocation_Body_Processing then
Build_Elaborate_Body_Procedure;
First_Targ := Elab_Body_Id;
-- The path originates from the elaboration of the spec. Add an extra
-- relation from the elaboration spec procedure to the first active
-- scenario.
elsif In_State.Processing = Invocation_Spec_Processing then
Build_Elaborate_Spec_Procedure;
First_Targ := Elab_Spec_Id;
else
First_Targ := Target_Of (Scenarios.First, In_State);
end if;
-- Record a single relation from the first to the last scenario
if First_Targ /= Last_Targ then
Record_Invocation_Relation
(Invk_Id => First_Targ,
Targ_Id => Last_Targ,
In_State => In_State);
end if;
end Record_Simple_Invocation_Path;
----------------------------
-- Set_Is_Saved_Construct --
----------------------------
procedure Set_Is_Saved_Construct (Constr : Entity_Id) is
pragma Assert (Present (Constr));
begin
NE_Set.Insert (Saved_Constructs_Set, Constr);
end Set_Is_Saved_Construct;
---------------------------
-- Set_Is_Saved_Relation --
---------------------------
procedure Set_Is_Saved_Relation (Rel : Invoker_Target_Relation) is
begin
IR_Set.Insert (Saved_Relations_Set, Rel);
end Set_Is_Saved_Relation;
------------------
-- Signature_Of --
------------------
function Signature_Of (Id : Entity_Id) return Invocation_Signature_Id is
Loc : constant Source_Ptr := Sloc (Id);
function Instantiation_Locations return Name_Id;
pragma Inline (Instantiation_Locations);
-- Create a concatenation of all lines and colums of each instance
-- where source location Loc appears. Return No_Name if no instances
-- exist.
function Qualified_Scope return Name_Id;
pragma Inline (Qualified_Scope);
-- Obtain the qualified name of Id's scope
-----------------------------
-- Instantiation_Locations --
-----------------------------
function Instantiation_Locations return Name_Id is
Buffer : Bounded_String (2052);
Inst : Source_Ptr;
Loc_Nam : Name_Id;
SFI : Source_File_Index;
begin
SFI := Get_Source_File_Index (Loc);
Inst := Instantiation (SFI);
-- The location is within an instance. Construct a concatenation
-- of all lines and colums of each individual instance using the
-- following format:
--
-- line1_column1_line2_column2_ ... _lineN_columnN
if Inst /= No_Location then
loop
Append (Buffer, Nat (Get_Logical_Line_Number (Inst)));
Append (Buffer, '_');
Append (Buffer, Nat (Get_Column_Number (Inst)));
SFI := Get_Source_File_Index (Inst);
Inst := Instantiation (SFI);
exit when Inst = No_Location;
Append (Buffer, '_');
end loop;
Loc_Nam := Name_Find (Buffer);
return Loc_Nam;
-- Otherwise there no instances are involved
else
return No_Name;
end if;
end Instantiation_Locations;
---------------------
-- Qualified_Scope --
---------------------
function Qualified_Scope return Name_Id is
Scop : Entity_Id;
begin
Scop := Scope (Id);
-- The entity appears within an anonymous concurrent type created
-- for a single protected or task type declaration. Use the entity
-- of the anonymous object as it represents the original scope.
if Is_Concurrent_Type (Scop)
and then Present (Anonymous_Object (Scop))
then
Scop := Anonymous_Object (Scop);
end if;
return Get_Qualified_Name (Scop);
end Qualified_Scope;
-- Start of processing for Signature_Of
begin
return
Invocation_Signature_Of
(Column => Nat (Get_Column_Number (Loc)),
Line => Nat (Get_Logical_Line_Number (Loc)),
Locations => Instantiation_Locations,
Name => Chars (Id),
Scope => Qualified_Scope);
end Signature_Of;
---------------
-- Target_Of --
---------------
function Target_Of
(Pos : Active_Scenario_Pos;
In_State : Processing_In_State) return Entity_Id
is
package Scenarios renames Active_Scenario_Stack;
-- Ensure that the position is within the bounds of the active
-- scenario stack.
pragma Assert (Scenarios.First <= Pos);
pragma Assert (Pos <= Scenarios.Last);
Scen_Rep : constant Scenario_Rep_Id :=
Scenario_Representation_Of
(Scenarios.Table (Pos), In_State);
begin
-- The true target of an activation call is the current task type
-- rather than routine Activate_Tasks.
if Kind (Scen_Rep) = Task_Activation_Scenario then
return Activated_Task_Type (Scen_Rep);
else
return Target (Scen_Rep);
end if;
end Target_Of;
------------------------------
-- Traverse_Invocation_Body --
------------------------------
procedure Traverse_Invocation_Body
(N : Node_Id;
In_State : Processing_In_State)
is
begin
Traverse_Body
(N => N,
Requires_Processing => Is_Invocation_Scenario'Access,
Processor => Process_Invocation_Scenario'Access,
In_State => In_State);
end Traverse_Invocation_Body;
---------------------------
-- Write_Invocation_Path --
---------------------------
procedure Write_Invocation_Path (In_State : Processing_In_State) is
procedure Write_Target (Targ_Id : Entity_Id; Is_First : Boolean);
pragma Inline (Write_Target);
-- Write out invocation target Targ_Id to standard output. Flag
-- Is_First should be set when the target is first in a path.
-------------
-- Targ_Id --
-------------
procedure Write_Target (Targ_Id : Entity_Id; Is_First : Boolean) is
begin
if not Is_First then
Write_Str (" --> ");
end if;
Write_Name (Get_Qualified_Name (Targ_Id));
Write_Eol;
end Write_Target;
-- Local variables
package Scenarios renames Active_Scenario_Stack;
First_Seen : Boolean := False;
-- Start of processing for Write_Invocation_Path
begin
-- Nothing to do when flag -gnatd_T (output trace information on
-- invocation path recording) is not in effect.
if not Debug_Flag_Underscore_TT then
return;
end if;
-- The path originates from the elaboration of the body. Write the
-- elaboration body procedure.
if In_State.Processing = Invocation_Body_Processing then
Write_Target (Elab_Body_Id, True);
First_Seen := True;
-- The path originates from the elaboration of the spec. Write the
-- elaboration spec procedure.
elsif In_State.Processing = Invocation_Spec_Processing then
Write_Target (Elab_Spec_Id, True);
First_Seen := True;
end if;
-- Write each individual target invoked by its corresponding scenario
-- on the active scenario stack.
for Index in Scenarios.First .. Scenarios.Last loop
Write_Target
(Targ_Id => Target_Of (Index, In_State),
Is_First => Index = Scenarios.First and then not First_Seen);
end loop;
Write_Eol;
end Write_Invocation_Path;
end Invocation_Graph;
------------------------
-- Is_Safe_Activation --
------------------------
function Is_Safe_Activation
(Call : Node_Id;
Task_Rep : Target_Rep_Id) return Boolean
is
begin
-- The activation of a task coming from an external instance cannot
-- cause an ABE because the generic was already instantiated. Note
-- that the instantiation itself may lead to an ABE.
return
In_External_Instance
(N => Call,
Target_Decl => Spec_Declaration (Task_Rep));
end Is_Safe_Activation;
------------------
-- Is_Safe_Call --
------------------
function Is_Safe_Call
(Call : Node_Id;
Subp_Id : Entity_Id;
Subp_Rep : Target_Rep_Id) return Boolean
is
Body_Decl : constant Node_Id := Body_Declaration (Subp_Rep);
Spec_Decl : constant Node_Id := Spec_Declaration (Subp_Rep);
begin
-- The target is either an abstract subprogram, formal subprogram, or
-- imported, in which case it does not have a body at compile or bind
-- time. Assume that the call is ABE-safe.
if Is_Bodiless_Subprogram (Subp_Id) then
return True;
-- The target is an instantiation of a generic subprogram. The call
-- cannot cause an ABE because the generic was already instantiated.
-- Note that the instantiation itself may lead to an ABE.
elsif Is_Generic_Instance (Subp_Id) then
return True;
-- The invocation of a target coming from an external instance cannot
-- cause an ABE because the generic was already instantiated. Note that
-- the instantiation itself may lead to an ABE.
elsif In_External_Instance
(N => Call,
Target_Decl => Spec_Decl)
then
return True;
-- The target is a subprogram body without a previous declaration. The
-- call cannot cause an ABE because the body has already been seen.
elsif Nkind (Spec_Decl) = N_Subprogram_Body
and then No (Corresponding_Spec (Spec_Decl))
then
return True;
-- The target is a subprogram body stub without a prior declaration.
-- The call cannot cause an ABE because the proper body substitutes
-- the stub.
elsif Nkind (Spec_Decl) = N_Subprogram_Body_Stub
and then No (Corresponding_Spec_Of_Stub (Spec_Decl))
then
return True;
-- A call to an expression function that is not a completion cannot
-- cause an ABE because it has no prior declaration; this remains
-- true even if the FE transforms the callee into something else.
elsif Nkind (Original_Node (Spec_Decl)) = N_Expression_Function then
return True;
-- Subprogram bodies which wrap attribute references used as actuals
-- in instantiations are always ABE-safe. These bodies are artifacts
-- of expansion.
elsif Present (Body_Decl)
and then Nkind (Body_Decl) = N_Subprogram_Body
and then Was_Attribute_Reference (Body_Decl)
then
return True;
end if;
return False;
end Is_Safe_Call;
---------------------------
-- Is_Safe_Instantiation --
---------------------------
function Is_Safe_Instantiation
(Inst : Node_Id;
Gen_Id : Entity_Id;
Gen_Rep : Target_Rep_Id) return Boolean
is
Spec_Decl : constant Node_Id := Spec_Declaration (Gen_Rep);
begin
-- The generic is an intrinsic subprogram in which case it does not
-- have a body at compile or bind time. Assume that the instantiation
-- is ABE-safe.
if Is_Bodiless_Subprogram (Gen_Id) then
return True;
-- The instantiation of an external nested generic cannot cause an ABE
-- if the outer generic was already instantiated. Note that the instance
-- of the outer generic may lead to an ABE.
elsif In_External_Instance
(N => Inst,
Target_Decl => Spec_Decl)
then
return True;
-- The generic is a package. The instantiation cannot cause an ABE when
-- the package has no body.
elsif Ekind (Gen_Id) = E_Generic_Package
and then not Has_Body (Spec_Decl)
then
return True;
end if;
return False;
end Is_Safe_Instantiation;
------------------
-- Is_Same_Unit --
------------------
function Is_Same_Unit
(Unit_1 : Entity_Id;
Unit_2 : Entity_Id) return Boolean
is
begin
return Unit_Entity (Unit_1) = Unit_Entity (Unit_2);
end Is_Same_Unit;
-------------------------------
-- Kill_Elaboration_Scenario --
-------------------------------
procedure Kill_Elaboration_Scenario (N : Node_Id) is
begin
-- Nothing to do when switch -gnatH (legacy elaboration checking mode
-- enabled) is in effect because the legacy ABE lechanism does not need
-- to carry out this action.
if Legacy_Elaboration_Checks then
return;
-- Nothing to do when the elaboration phase of the compiler is not
-- active.
elsif not Elaboration_Phase_Active then
return;
end if;
-- Eliminate a recorded scenario when it appears within dead code
-- because it will not be executed at elaboration time.
if Is_Scenario (N) then
Delete_Scenario (N);
end if;
end Kill_Elaboration_Scenario;
----------------------
-- Main_Unit_Entity --
----------------------
function Main_Unit_Entity return Entity_Id is
begin
-- Note that Cunit_Entity (Main_Unit) is not reliable in the presence of
-- generic bodies and may return an outdated entity.
return Defining_Entity (Unit (Cunit (Main_Unit)));
end Main_Unit_Entity;
----------------------
-- Non_Private_View --
----------------------
function Non_Private_View (Typ : Entity_Id) return Entity_Id is
begin
if Is_Private_Type (Typ) and then Present (Full_View (Typ)) then
return Full_View (Typ);
else
return Typ;
end if;
end Non_Private_View;
---------------------------------
-- Record_Elaboration_Scenario --
---------------------------------
procedure Record_Elaboration_Scenario (N : Node_Id) is
procedure Check_Preelaborated_Call
(Call : Node_Id;
Call_Lvl : Enclosing_Level_Kind);
pragma Inline (Check_Preelaborated_Call);
-- Verify that entry, operator, or subprogram call Call with enclosing
-- level Call_Lvl does not appear at the library level of preelaborated
-- unit.
function Find_Code_Unit (Nod : Node_Or_Entity_Id) return Entity_Id;
pragma Inline (Find_Code_Unit);
-- Return the code unit which contains arbitrary node or entity Nod.
-- This is the unit of the file which physically contains the related
-- construct denoted by Nod except when Nod is within an instantiation.
-- In that case the unit is that of the top-level instantiation.
function In_Preelaborated_Context (Nod : Node_Id) return Boolean;
pragma Inline (In_Preelaborated_Context);
-- Determine whether arbitrary node Nod appears within a preelaborated
-- context.
procedure Record_Access_Taken
(Attr : Node_Id;
Attr_Lvl : Enclosing_Level_Kind);
pragma Inline (Record_Access_Taken);
-- Record 'Access scenario Attr with enclosing level Attr_Lvl
procedure Record_Call_Or_Task_Activation
(Call : Node_Id;
Call_Lvl : Enclosing_Level_Kind);
pragma Inline (Record_Call_Or_Task_Activation);
-- Record call scenario Call with enclosing level Call_Lvl
procedure Record_Instantiation
(Inst : Node_Id;
Inst_Lvl : Enclosing_Level_Kind);
pragma Inline (Record_Instantiation);
-- Record instantiation scenario Inst with enclosing level Inst_Lvl
procedure Record_Variable_Assignment
(Asmt : Node_Id;
Asmt_Lvl : Enclosing_Level_Kind);
pragma Inline (Record_Variable_Assignment);
-- Record variable assignment scenario Asmt with enclosing level
-- Asmt_Lvl.
procedure Record_Variable_Reference
(Ref : Node_Id;
Ref_Lvl : Enclosing_Level_Kind);
pragma Inline (Record_Variable_Reference);
-- Record variable reference scenario Ref with enclosing level Ref_Lvl
------------------------------
-- Check_Preelaborated_Call --
------------------------------
procedure Check_Preelaborated_Call
(Call : Node_Id;
Call_Lvl : Enclosing_Level_Kind)
is
begin
-- Nothing to do when the call is internally generated because it is
-- assumed that it will never violate preelaboration.
if not Is_Source_Call (Call) then
return;
-- Nothing to do when the call is preelaborable by definition
elsif Is_Preelaborable_Call (Call) then
return;
-- Library-level calls are always considered because they are part of
-- the associated unit's elaboration actions.
elsif Call_Lvl in Library_Level then
null;
-- Calls at the library level of a generic package body have to be
-- checked because they would render an instantiation illegal if the
-- template is marked as preelaborated. Note that this does not apply
-- to calls at the library level of a generic package spec.
elsif Call_Lvl = Generic_Body_Level then
null;
-- Otherwise the call does not appear at the proper level and must
-- not be considered for this check.
else
return;
end if;
-- If the call appears within a preelaborated unit, give an error
if In_Preelaborated_Context (Call) then
Error_Preelaborated_Call (Call);
end if;
end Check_Preelaborated_Call;
--------------------
-- Find_Code_Unit --
--------------------
function Find_Code_Unit (Nod : Node_Or_Entity_Id) return Entity_Id is
begin
return Find_Unit_Entity (Unit (Cunit (Get_Code_Unit (Nod))));
end Find_Code_Unit;
------------------------------
-- In_Preelaborated_Context --
------------------------------
function In_Preelaborated_Context (Nod : Node_Id) return Boolean is
Body_Id : constant Entity_Id := Find_Code_Unit (Nod);
Spec_Id : constant Entity_Id := Unique_Entity (Body_Id);
begin
-- The node appears within a package body whose corresponding spec is
-- subject to pragma Remote_Call_Interface or Remote_Types. This does
-- not result in a preelaborated context because the package body may
-- be on another machine.
if Ekind (Body_Id) = E_Package_Body
and then Is_Package_Or_Generic_Package (Spec_Id)
and then (Is_Remote_Call_Interface (Spec_Id)
or else Is_Remote_Types (Spec_Id))
then
return False;
-- Otherwise the node appears within a preelaborated context when the
-- associated unit is preelaborated.
else
return Is_Preelaborated_Unit (Spec_Id);
end if;
end In_Preelaborated_Context;
-------------------------
-- Record_Access_Taken --
-------------------------
procedure Record_Access_Taken
(Attr : Node_Id;
Attr_Lvl : Enclosing_Level_Kind)
is
begin
-- Signal any enclosing local exception handlers that the 'Access may
-- raise Program_Error due to a failed ABE check when switch -gnatd.o
-- (conservative elaboration order for indirect calls) is in effect.
-- Marking the exception handlers ensures proper expansion by both
-- the front and back end restriction when No_Exception_Propagation
-- is in effect.
if Debug_Flag_Dot_O then
Possible_Local_Raise (Attr, Standard_Program_Error);
end if;
-- Add 'Access to the appropriate set
if Attr_Lvl = Library_Body_Level then
Add_Library_Body_Scenario (Attr);
elsif Attr_Lvl = Library_Spec_Level
or else Attr_Lvl = Instantiation_Level
then
Add_Library_Spec_Scenario (Attr);
end if;
-- 'Access requires a conditional ABE check when the dynamic model is
-- in effect.
Add_Dynamic_ABE_Check_Scenario (Attr);
end Record_Access_Taken;
------------------------------------
-- Record_Call_Or_Task_Activation --
------------------------------------
procedure Record_Call_Or_Task_Activation
(Call : Node_Id;
Call_Lvl : Enclosing_Level_Kind)
is
begin
-- Signal any enclosing local exception handlers that the call may
-- raise Program_Error due to failed ABE check. Marking the exception
-- handlers ensures proper expansion by both the front and back end
-- restriction when No_Exception_Propagation is in effect.
Possible_Local_Raise (Call, Standard_Program_Error);
-- Perform early detection of guaranteed ABEs in order to suppress
-- the instantiation of generic bodies because gigi cannot handle
-- certain types of premature instantiations.
Process_Guaranteed_ABE
(N => Call,
In_State => Guaranteed_ABE_State);
-- Add the call or task activation to the appropriate set
if Call_Lvl = Declaration_Level then
Add_Declaration_Scenario (Call);
elsif Call_Lvl = Library_Body_Level then
Add_Library_Body_Scenario (Call);
elsif Call_Lvl = Library_Spec_Level
or else Call_Lvl = Instantiation_Level
then
Add_Library_Spec_Scenario (Call);
end if;
-- A call or a task activation requires a conditional ABE check when
-- the dynamic model is in effect.
Add_Dynamic_ABE_Check_Scenario (Call);
end Record_Call_Or_Task_Activation;
--------------------------
-- Record_Instantiation --
--------------------------
procedure Record_Instantiation
(Inst : Node_Id;
Inst_Lvl : Enclosing_Level_Kind)
is
begin
-- Signal enclosing local exception handlers that instantiation may
-- raise Program_Error due to failed ABE check. Marking the exception
-- handlers ensures proper expansion by both the front and back end
-- restriction when No_Exception_Propagation is in effect.
Possible_Local_Raise (Inst, Standard_Program_Error);
-- Perform early detection of guaranteed ABEs in order to suppress
-- the instantiation of generic bodies because gigi cannot handle
-- certain types of premature instantiations.
Process_Guaranteed_ABE
(N => Inst,
In_State => Guaranteed_ABE_State);
-- Add the instantiation to the appropriate set
if Inst_Lvl = Declaration_Level then
Add_Declaration_Scenario (Inst);
elsif Inst_Lvl = Library_Body_Level then
Add_Library_Body_Scenario (Inst);
elsif Inst_Lvl = Library_Spec_Level
or else Inst_Lvl = Instantiation_Level
then
Add_Library_Spec_Scenario (Inst);
end if;
-- Instantiations of generics subject to SPARK_Mode On require
-- elaboration-related checks even though the instantiations may
-- not appear within elaboration code.
if Is_Suitable_SPARK_Instantiation (Inst) then
Add_SPARK_Scenario (Inst);
end if;
-- An instantiation requires a conditional ABE check when the dynamic
-- model is in effect.
Add_Dynamic_ABE_Check_Scenario (Inst);
end Record_Instantiation;
--------------------------------
-- Record_Variable_Assignment --
--------------------------------
procedure Record_Variable_Assignment
(Asmt : Node_Id;
Asmt_Lvl : Enclosing_Level_Kind)
is
begin
-- Add the variable assignment to the appropriate set
if Asmt_Lvl = Library_Body_Level then
Add_Library_Body_Scenario (Asmt);
elsif Asmt_Lvl = Library_Spec_Level
or else Asmt_Lvl = Instantiation_Level
then
Add_Library_Spec_Scenario (Asmt);
end if;
end Record_Variable_Assignment;
-------------------------------
-- Record_Variable_Reference --
-------------------------------
procedure Record_Variable_Reference
(Ref : Node_Id;
Ref_Lvl : Enclosing_Level_Kind)
is
begin
-- Add the variable reference to the appropriate set
if Ref_Lvl = Library_Body_Level then
Add_Library_Body_Scenario (Ref);
elsif Ref_Lvl = Library_Spec_Level
or else Ref_Lvl = Instantiation_Level
then
Add_Library_Spec_Scenario (Ref);
end if;
end Record_Variable_Reference;
-- Local variables
Scen : constant Node_Id := Scenario (N);
Scen_Lvl : Enclosing_Level_Kind;
-- Start of processing for Record_Elaboration_Scenario
begin
-- Nothing to do when switch -gnatH (legacy elaboration checking mode
-- enabled) is in effect because the legacy ABE mechanism does not need
-- to carry out this action.
if Legacy_Elaboration_Checks then
return;
-- Nothing to do when the scenario is being preanalyzed
elsif Preanalysis_Active then
return;
-- Nothing to do when the elaboration phase of the compiler is not
-- active.
elsif not Elaboration_Phase_Active then
return;
end if;
Scen_Lvl := Find_Enclosing_Level (Scen);
-- Ensure that a library-level call does not appear in a preelaborated
-- unit. The check must come before ignoring scenarios within external
-- units or inside generics because calls in those context must also be
-- verified.
if Is_Suitable_Call (Scen) then
Check_Preelaborated_Call (Scen, Scen_Lvl);
end if;
-- Nothing to do when the scenario does not appear within the main unit
if not In_Main_Context (Scen) then
return;
-- Nothing to do when the scenario appears within a generic
elsif Inside_A_Generic then
return;
-- 'Access
elsif Is_Suitable_Access_Taken (Scen) then
Record_Access_Taken
(Attr => Scen,
Attr_Lvl => Scen_Lvl);
-- Call or task activation
elsif Is_Suitable_Call (Scen) then
Record_Call_Or_Task_Activation
(Call => Scen,
Call_Lvl => Scen_Lvl);
-- Derived type declaration
elsif Is_Suitable_SPARK_Derived_Type (Scen) then
Add_SPARK_Scenario (Scen);
-- Instantiation
elsif Is_Suitable_Instantiation (Scen) then
Record_Instantiation
(Inst => Scen,
Inst_Lvl => Scen_Lvl);
-- Refined_State pragma
elsif Is_Suitable_SPARK_Refined_State_Pragma (Scen) then
Add_SPARK_Scenario (Scen);
-- Variable assignment
elsif Is_Suitable_Variable_Assignment (Scen) then
Record_Variable_Assignment
(Asmt => Scen,
Asmt_Lvl => Scen_Lvl);
-- Variable reference
elsif Is_Suitable_Variable_Reference (Scen) then
Record_Variable_Reference
(Ref => Scen,
Ref_Lvl => Scen_Lvl);
end if;
end Record_Elaboration_Scenario;
--------------
-- Scenario --
--------------
function Scenario (N : Node_Id) return Node_Id is
Orig_N : constant Node_Id := Original_Node (N);
begin
-- An expanded instantiation is rewritten into a spec-body pair where
-- N denotes the spec. In this case the original instantiation is the
-- proper elaboration scenario.
if Nkind (Orig_N) in N_Generic_Instantiation then
return Orig_N;
-- Otherwise the scenario is already in its proper form
else
return N;
end if;
end Scenario;
----------------------
-- Scenario_Storage --
----------------------
package body Scenario_Storage is
---------------------
-- Data structures --
---------------------
-- The following sets store all scenarios
Declaration_Scenarios : NE_Set.Membership_Set := NE_Set.Nil;
Dynamic_ABE_Check_Scenarios : NE_Set.Membership_Set := NE_Set.Nil;
Library_Body_Scenarios : NE_Set.Membership_Set := NE_Set.Nil;
Library_Spec_Scenarios : NE_Set.Membership_Set := NE_Set.Nil;
SPARK_Scenarios : NE_Set.Membership_Set := NE_Set.Nil;
-------------------------------
-- Finalize_Scenario_Storage --
-------------------------------
procedure Finalize_Scenario_Storage is
begin
NE_Set.Destroy (Declaration_Scenarios);
NE_Set.Destroy (Dynamic_ABE_Check_Scenarios);
NE_Set.Destroy (Library_Body_Scenarios);
NE_Set.Destroy (Library_Spec_Scenarios);
NE_Set.Destroy (SPARK_Scenarios);
end Finalize_Scenario_Storage;
---------------------------------
-- Initialize_Scenario_Storage --
---------------------------------
procedure Initialize_Scenario_Storage is
begin
Declaration_Scenarios := NE_Set.Create (1000);
Dynamic_ABE_Check_Scenarios := NE_Set.Create (500);
Library_Body_Scenarios := NE_Set.Create (1000);
Library_Spec_Scenarios := NE_Set.Create (1000);
SPARK_Scenarios := NE_Set.Create (100);
end Initialize_Scenario_Storage;
------------------------------
-- Add_Declaration_Scenario --
------------------------------
procedure Add_Declaration_Scenario (N : Node_Id) is
pragma Assert (Present (N));
begin
NE_Set.Insert (Declaration_Scenarios, N);
end Add_Declaration_Scenario;
------------------------------------
-- Add_Dynamic_ABE_Check_Scenario --
------------------------------------
procedure Add_Dynamic_ABE_Check_Scenario (N : Node_Id) is
pragma Assert (Present (N));
begin
if not Check_Or_Failure_Generation_OK then
return;
-- Nothing to do if the dynamic model is not in effect
elsif not Dynamic_Elaboration_Checks then
return;
end if;
NE_Set.Insert (Dynamic_ABE_Check_Scenarios, N);
end Add_Dynamic_ABE_Check_Scenario;
-------------------------------
-- Add_Library_Body_Scenario --
-------------------------------
procedure Add_Library_Body_Scenario (N : Node_Id) is
pragma Assert (Present (N));
begin
NE_Set.Insert (Library_Body_Scenarios, N);
end Add_Library_Body_Scenario;
-------------------------------
-- Add_Library_Spec_Scenario --
-------------------------------
procedure Add_Library_Spec_Scenario (N : Node_Id) is
pragma Assert (Present (N));
begin
NE_Set.Insert (Library_Spec_Scenarios, N);
end Add_Library_Spec_Scenario;
------------------------
-- Add_SPARK_Scenario --
------------------------
procedure Add_SPARK_Scenario (N : Node_Id) is
pragma Assert (Present (N));
begin
NE_Set.Insert (SPARK_Scenarios, N);
end Add_SPARK_Scenario;
---------------------
-- Delete_Scenario --
---------------------
procedure Delete_Scenario (N : Node_Id) is
pragma Assert (Present (N));
begin
-- Delete the scenario from whichever set it belongs to
NE_Set.Delete (Declaration_Scenarios, N);
NE_Set.Delete (Dynamic_ABE_Check_Scenarios, N);
NE_Set.Delete (Library_Body_Scenarios, N);
NE_Set.Delete (Library_Spec_Scenarios, N);
NE_Set.Delete (SPARK_Scenarios, N);
end Delete_Scenario;
-----------------------------------
-- Iterate_Declaration_Scenarios --
-----------------------------------
function Iterate_Declaration_Scenarios return NE_Set.Iterator is
begin
return NE_Set.Iterate (Declaration_Scenarios);
end Iterate_Declaration_Scenarios;
-----------------------------------------
-- Iterate_Dynamic_ABE_Check_Scenarios --
-----------------------------------------
function Iterate_Dynamic_ABE_Check_Scenarios return NE_Set.Iterator is
begin
return NE_Set.Iterate (Dynamic_ABE_Check_Scenarios);
end Iterate_Dynamic_ABE_Check_Scenarios;
------------------------------------
-- Iterate_Library_Body_Scenarios --
------------------------------------
function Iterate_Library_Body_Scenarios return NE_Set.Iterator is
begin
return NE_Set.Iterate (Library_Body_Scenarios);
end Iterate_Library_Body_Scenarios;
------------------------------------
-- Iterate_Library_Spec_Scenarios --
------------------------------------
function Iterate_Library_Spec_Scenarios return NE_Set.Iterator is
begin
return NE_Set.Iterate (Library_Spec_Scenarios);
end Iterate_Library_Spec_Scenarios;
-----------------------------
-- Iterate_SPARK_Scenarios --
-----------------------------
function Iterate_SPARK_Scenarios return NE_Set.Iterator is
begin
return NE_Set.Iterate (SPARK_Scenarios);
end Iterate_SPARK_Scenarios;
----------------------
-- Replace_Scenario --
----------------------
procedure Replace_Scenario (Old_N : Node_Id; New_N : Node_Id) is
procedure Replace_Scenario_In (Scenarios : NE_Set.Membership_Set);
-- Determine whether scenario Old_N is present in set Scenarios, and
-- if this is the case it, replace it with New_N.
-------------------------
-- Replace_Scenario_In --
-------------------------
procedure Replace_Scenario_In (Scenarios : NE_Set.Membership_Set) is
begin
-- The set is intentionally checked for existance because node
-- rewriting may occur after Sem_Elab has verified all scenarios
-- and data structures have been destroyed.
if NE_Set.Present (Scenarios)
and then NE_Set.Contains (Scenarios, Old_N)
then
NE_Set.Delete (Scenarios, Old_N);
NE_Set.Insert (Scenarios, New_N);
end if;
end Replace_Scenario_In;
-- Start of processing for Replace_Scenario
begin
Replace_Scenario_In (Declaration_Scenarios);
Replace_Scenario_In (Dynamic_ABE_Check_Scenarios);
Replace_Scenario_In (Library_Body_Scenarios);
Replace_Scenario_In (Library_Spec_Scenarios);
Replace_Scenario_In (SPARK_Scenarios);
end Replace_Scenario;
end Scenario_Storage;
---------------
-- Semantics --
---------------
package body Semantics is
--------------------------------
-- Is_Accept_Alternative_Proc --
--------------------------------
function Is_Accept_Alternative_Proc (Id : Entity_Id) return Boolean is
begin
-- To qualify, the entity must denote a procedure with a receiving
-- entry.
return
Ekind (Id) = E_Procedure and then Present (Receiving_Entry (Id));
end Is_Accept_Alternative_Proc;
------------------------
-- Is_Activation_Proc --
------------------------
function Is_Activation_Proc (Id : Entity_Id) return Boolean is
begin
-- To qualify, the entity must denote one of the runtime procedures
-- in charge of task activation.
if Ekind (Id) = E_Procedure then
if Restricted_Profile then
return Is_RTE (Id, RE_Activate_Restricted_Tasks);
else
return Is_RTE (Id, RE_Activate_Tasks);
end if;
end if;
return False;
end Is_Activation_Proc;
----------------------------
-- Is_Ada_Semantic_Target --
----------------------------
function Is_Ada_Semantic_Target (Id : Entity_Id) return Boolean is
begin
return
Is_Activation_Proc (Id)
or else Is_Controlled_Proc (Id, Name_Adjust)
or else Is_Controlled_Proc (Id, Name_Finalize)
or else Is_Controlled_Proc (Id, Name_Initialize)
or else Is_Init_Proc (Id)
or else Is_Invariant_Proc (Id)
or else Is_Protected_Entry (Id)
or else Is_Protected_Subp (Id)
or else Is_Protected_Body_Subp (Id)
or else Is_Subprogram_Inst (Id)
or else Is_Task_Entry (Id);
end Is_Ada_Semantic_Target;
--------------------------------
-- Is_Assertion_Pragma_Target --
--------------------------------
function Is_Assertion_Pragma_Target (Id : Entity_Id) return Boolean is
begin
return
Is_Default_Initial_Condition_Proc (Id)
or else Is_Initial_Condition_Proc (Id)
or else Is_Invariant_Proc (Id)
or else Is_Partial_Invariant_Proc (Id)
or else Is_Postconditions_Proc (Id);
end Is_Assertion_Pragma_Target;
----------------------------
-- Is_Bodiless_Subprogram --
----------------------------
function Is_Bodiless_Subprogram (Subp_Id : Entity_Id) return Boolean is
begin
-- An abstract subprogram does not have a body
if Ekind (Subp_Id) in E_Function | E_Operator | E_Procedure
and then Is_Abstract_Subprogram (Subp_Id)
then
return True;
-- A formal subprogram does not have a body
elsif Is_Formal_Subprogram (Subp_Id) then
return True;
-- An imported subprogram may have a body, however it is not known at
-- compile or bind time where the body resides and whether it will be
-- elaborated on time.
elsif Is_Imported (Subp_Id) then
return True;
end if;
return False;
end Is_Bodiless_Subprogram;
----------------------
-- Is_Bridge_Target --
----------------------
function Is_Bridge_Target (Id : Entity_Id) return Boolean is
begin
return
Is_Accept_Alternative_Proc (Id)
or else Is_Finalizer_Proc (Id)
or else Is_Partial_Invariant_Proc (Id)
or else Is_Postconditions_Proc (Id)
or else Is_TSS (Id, TSS_Deep_Adjust)
or else Is_TSS (Id, TSS_Deep_Finalize)
or else Is_TSS (Id, TSS_Deep_Initialize);
end Is_Bridge_Target;
------------------------
-- Is_Controlled_Proc --
------------------------
function Is_Controlled_Proc
(Subp_Id : Entity_Id;
Subp_Nam : Name_Id) return Boolean
is
Formal_Id : Entity_Id;
begin
pragma Assert
(Subp_Nam in Name_Adjust | Name_Finalize | Name_Initialize);
-- To qualify, the subprogram must denote a source procedure with
-- name Adjust, Finalize, or Initialize where the sole formal is
-- controlled.
if Comes_From_Source (Subp_Id)
and then Ekind (Subp_Id) = E_Procedure
and then Chars (Subp_Id) = Subp_Nam
then
Formal_Id := First_Formal (Subp_Id);
return
Present (Formal_Id)
and then Is_Controlled (Etype (Formal_Id))
and then No (Next_Formal (Formal_Id));
end if;
return False;
end Is_Controlled_Proc;
---------------------------------------
-- Is_Default_Initial_Condition_Proc --
---------------------------------------
function Is_Default_Initial_Condition_Proc
(Id : Entity_Id) return Boolean
is
begin
-- To qualify, the entity must denote a Default_Initial_Condition
-- procedure.
return Ekind (Id) = E_Procedure and then Is_DIC_Procedure (Id);
end Is_Default_Initial_Condition_Proc;
-----------------------
-- Is_Finalizer_Proc --
-----------------------
function Is_Finalizer_Proc (Id : Entity_Id) return Boolean is
begin
-- To qualify, the entity must denote a _Finalizer procedure
return Ekind (Id) = E_Procedure and then Chars (Id) = Name_uFinalizer;
end Is_Finalizer_Proc;
-------------------------------
-- Is_Initial_Condition_Proc --
-------------------------------
function Is_Initial_Condition_Proc (Id : Entity_Id) return Boolean is
begin
-- To qualify, the entity must denote an Initial_Condition procedure
return
Ekind (Id) = E_Procedure
and then Is_Initial_Condition_Procedure (Id);
end Is_Initial_Condition_Proc;
--------------------
-- Is_Initialized --
--------------------
function Is_Initialized (Obj_Decl : Node_Id) return Boolean is
begin
-- To qualify, the object declaration must have an expression
return
Present (Expression (Obj_Decl))
or else Has_Init_Expression (Obj_Decl);
end Is_Initialized;
-----------------------
-- Is_Invariant_Proc --
-----------------------
function Is_Invariant_Proc (Id : Entity_Id) return Boolean is
begin
-- To qualify, the entity must denote the "full" invariant procedure
return Ekind (Id) = E_Procedure and then Is_Invariant_Procedure (Id);
end Is_Invariant_Proc;
---------------------------------------
-- Is_Non_Library_Level_Encapsulator --
---------------------------------------
function Is_Non_Library_Level_Encapsulator
(N : Node_Id) return Boolean
is
begin
case Nkind (N) is
when N_Abstract_Subprogram_Declaration
| N_Aspect_Specification
| N_Component_Declaration
| N_Entry_Body
| N_Entry_Declaration
| N_Expression_Function
| N_Formal_Abstract_Subprogram_Declaration
| N_Formal_Concrete_Subprogram_Declaration
| N_Formal_Object_Declaration
| N_Formal_Package_Declaration
| N_Formal_Type_Declaration
| N_Generic_Association
| N_Implicit_Label_Declaration
| N_Incomplete_Type_Declaration
| N_Private_Extension_Declaration
| N_Private_Type_Declaration
| N_Protected_Body
| N_Protected_Type_Declaration
| N_Single_Protected_Declaration
| N_Single_Task_Declaration
| N_Subprogram_Body
| N_Subprogram_Declaration
| N_Task_Body
| N_Task_Type_Declaration
=>
return True;
when others =>
return Is_Generic_Declaration_Or_Body (N);
end case;
end Is_Non_Library_Level_Encapsulator;
-------------------------------
-- Is_Partial_Invariant_Proc --
-------------------------------
function Is_Partial_Invariant_Proc (Id : Entity_Id) return Boolean is
begin
-- To qualify, the entity must denote the "partial" invariant
-- procedure.
return
Ekind (Id) = E_Procedure
and then Is_Partial_Invariant_Procedure (Id);
end Is_Partial_Invariant_Proc;
----------------------------
-- Is_Postconditions_Proc --
----------------------------
function Is_Postconditions_Proc (Id : Entity_Id) return Boolean is
begin
-- To qualify, the entity must denote a _Postconditions procedure
return
Ekind (Id) = E_Procedure and then Chars (Id) = Name_uPostconditions;
end Is_Postconditions_Proc;
---------------------------
-- Is_Preelaborated_Unit --
---------------------------
function Is_Preelaborated_Unit (Id : Entity_Id) return Boolean is
begin
return
Is_Preelaborated (Id)
or else Is_Pure (Id)
or else Is_Remote_Call_Interface (Id)
or else Is_Remote_Types (Id)
or else Is_Shared_Passive (Id);
end Is_Preelaborated_Unit;
------------------------
-- Is_Protected_Entry --
------------------------
function Is_Protected_Entry (Id : Entity_Id) return Boolean is
begin
-- To qualify, the entity must denote an entry defined in a protected
-- type.
return
Is_Entry (Id)
and then Is_Protected_Type (Non_Private_View (Scope (Id)));
end Is_Protected_Entry;
-----------------------
-- Is_Protected_Subp --
-----------------------
function Is_Protected_Subp (Id : Entity_Id) return Boolean is
begin
-- To qualify, the entity must denote a subprogram defined within a
-- protected type.
return
Ekind (Id) in E_Function | E_Procedure
and then Is_Protected_Type (Non_Private_View (Scope (Id)));
end Is_Protected_Subp;
----------------------------
-- Is_Protected_Body_Subp --
----------------------------
function Is_Protected_Body_Subp (Id : Entity_Id) return Boolean is
begin
-- To qualify, the entity must denote a subprogram with attribute
-- Protected_Subprogram set.
return
Ekind (Id) in E_Function | E_Procedure
and then Present (Protected_Subprogram (Id));
end Is_Protected_Body_Subp;
-----------------
-- Is_Scenario --
-----------------
function Is_Scenario (N : Node_Id) return Boolean is
begin
case Nkind (N) is
when N_Assignment_Statement
| N_Attribute_Reference
| N_Call_Marker
| N_Entry_Call_Statement
| N_Expanded_Name
| N_Function_Call
| N_Function_Instantiation
| N_Identifier
| N_Package_Instantiation
| N_Procedure_Call_Statement
| N_Procedure_Instantiation
| N_Requeue_Statement
=>
return True;
when others =>
return False;
end case;
end Is_Scenario;
------------------------------
-- Is_SPARK_Semantic_Target --
------------------------------
function Is_SPARK_Semantic_Target (Id : Entity_Id) return Boolean is
begin
return
Is_Default_Initial_Condition_Proc (Id)
or else Is_Initial_Condition_Proc (Id);
end Is_SPARK_Semantic_Target;
------------------------
-- Is_Subprogram_Inst --
------------------------
function Is_Subprogram_Inst (Id : Entity_Id) return Boolean is
begin
-- To qualify, the entity must denote a function or a procedure which
-- is hidden within an anonymous package, and is a generic instance.
return
Ekind (Id) in E_Function | E_Procedure
and then Is_Hidden (Id)
and then Is_Generic_Instance (Id);
end Is_Subprogram_Inst;
------------------------------
-- Is_Suitable_Access_Taken --
------------------------------
function Is_Suitable_Access_Taken (N : Node_Id) return Boolean is
Nam : Name_Id;
Pref : Node_Id;
Subp_Id : Entity_Id;
begin
-- Nothing to do when switch -gnatd.U (ignore 'Access) is in effect
if Debug_Flag_Dot_UU then
return False;
-- Nothing to do when the scenario is not an attribute reference
elsif Nkind (N) /= N_Attribute_Reference then
return False;
-- Nothing to do for internally-generated attributes because they are
-- assumed to be ABE safe.
elsif not Comes_From_Source (N) then
return False;
end if;
Nam := Attribute_Name (N);
Pref := Prefix (N);
-- Sanitize the prefix of the attribute
if not Is_Entity_Name (Pref) then
return False;
elsif No (Entity (Pref)) then
return False;
end if;
Subp_Id := Entity (Pref);
if not Is_Subprogram_Or_Entry (Subp_Id) then
return False;
end if;
-- Traverse a possible chain of renamings to obtain the original
-- entry or subprogram which the prefix may rename.
Subp_Id := Get_Renamed_Entity (Subp_Id);
-- To qualify, the attribute must meet the following prerequisites:
return
-- The prefix must denote a source entry, operator, or subprogram
-- which is not imported.
Comes_From_Source (Subp_Id)
and then Is_Subprogram_Or_Entry (Subp_Id)
and then not Is_Bodiless_Subprogram (Subp_Id)
-- The attribute name must be one of the 'Access forms. Note that
-- 'Unchecked_Access cannot apply to a subprogram.
and then Nam in Name_Access | Name_Unrestricted_Access;
end Is_Suitable_Access_Taken;
----------------------
-- Is_Suitable_Call --
----------------------
function Is_Suitable_Call (N : Node_Id) return Boolean is
begin
-- Entry and subprogram calls are intentionally ignored because they
-- may undergo expansion depending on the compilation mode, previous
-- errors, generic context, etc. Call markers play the role of calls
-- and provide a uniform foundation for ABE processing.
return Nkind (N) = N_Call_Marker;
end Is_Suitable_Call;
-------------------------------
-- Is_Suitable_Instantiation --
-------------------------------
function Is_Suitable_Instantiation (N : Node_Id) return Boolean is
Inst : constant Node_Id := Scenario (N);
begin
-- To qualify, the instantiation must come from source
return
Comes_From_Source (Inst)
and then Nkind (Inst) in N_Generic_Instantiation;
end Is_Suitable_Instantiation;
------------------------------------
-- Is_Suitable_SPARK_Derived_Type --
------------------------------------
function Is_Suitable_SPARK_Derived_Type (N : Node_Id) return Boolean is
Prag : Node_Id;
Typ : Entity_Id;
begin
-- To qualify, the type declaration must denote a derived tagged type
-- with primitive operations, subject to pragma SPARK_Mode On.
if Nkind (N) = N_Full_Type_Declaration
and then Nkind (Type_Definition (N)) = N_Derived_Type_Definition
then
Typ := Defining_Entity (N);
Prag := SPARK_Pragma (Typ);
return
Is_Tagged_Type (Typ)
and then Has_Primitive_Operations (Typ)
and then Present (Prag)
and then Get_SPARK_Mode_From_Annotation (Prag) = On;
end if;
return False;
end Is_Suitable_SPARK_Derived_Type;
-------------------------------------
-- Is_Suitable_SPARK_Instantiation --
-------------------------------------
function Is_Suitable_SPARK_Instantiation (N : Node_Id) return Boolean is
Inst : constant Node_Id := Scenario (N);
Gen_Id : Entity_Id;
Prag : Node_Id;
begin
-- To qualify, both the instantiation and the generic must be subject
-- to SPARK_Mode On.
if Is_Suitable_Instantiation (N) then
Gen_Id := Instantiated_Generic (Inst);
Prag := SPARK_Pragma (Gen_Id);
return
Is_SPARK_Mode_On_Node (Inst)
and then Present (Prag)
and then Get_SPARK_Mode_From_Annotation (Prag) = On;
end if;
return False;
end Is_Suitable_SPARK_Instantiation;
--------------------------------------------
-- Is_Suitable_SPARK_Refined_State_Pragma --
--------------------------------------------
function Is_Suitable_SPARK_Refined_State_Pragma
(N : Node_Id) return Boolean
is
begin
-- To qualfy, the pragma must denote Refined_State
return
Nkind (N) = N_Pragma
and then Pragma_Name (N) = Name_Refined_State;
end Is_Suitable_SPARK_Refined_State_Pragma;
-------------------------------------
-- Is_Suitable_Variable_Assignment --
-------------------------------------
function Is_Suitable_Variable_Assignment (N : Node_Id) return Boolean is
N_Unit : Node_Id;
N_Unit_Id : Entity_Id;
Nam : Node_Id;
Var_Decl : Node_Id;
Var_Id : Entity_Id;
Var_Unit : Node_Id;
Var_Unit_Id : Entity_Id;
begin
-- Nothing to do when the scenario is not an assignment
if Nkind (N) /= N_Assignment_Statement then
return False;
-- Nothing to do for internally-generated assignments because they
-- are assumed to be ABE safe.
elsif not Comes_From_Source (N) then
return False;
-- Assignments are ignored in GNAT mode on the assumption that
-- they are ABE-safe. This behavior parallels that of the old
-- ABE mechanism.
elsif GNAT_Mode then
return False;
end if;
Nam := Assignment_Target (N);
-- Sanitize the left hand side of the assignment
if not Is_Entity_Name (Nam) then
return False;
elsif No (Entity (Nam)) then
return False;
end if;
Var_Id := Entity (Nam);
-- Sanitize the variable
if Var_Id = Any_Id then
return False;
elsif Ekind (Var_Id) /= E_Variable then
return False;
end if;
Var_Decl := Declaration_Node (Var_Id);
if Nkind (Var_Decl) /= N_Object_Declaration then
return False;
end if;
N_Unit_Id := Find_Top_Unit (N);
N_Unit := Unit_Declaration_Node (N_Unit_Id);
Var_Unit_Id := Find_Top_Unit (Var_Decl);
Var_Unit := Unit_Declaration_Node (Var_Unit_Id);
-- To qualify, the assignment must meet the following prerequisites:
return
Comes_From_Source (Var_Id)
-- The variable must be declared in the spec of compilation unit
-- U.
and then Nkind (Var_Unit) = N_Package_Declaration
and then Find_Enclosing_Level (Var_Decl) = Library_Spec_Level
-- The assignment must occur in the body of compilation unit U
and then Nkind (N_Unit) = N_Package_Body
and then Present (Corresponding_Body (Var_Unit))
and then Corresponding_Body (Var_Unit) = N_Unit_Id;
end Is_Suitable_Variable_Assignment;
------------------------------------
-- Is_Suitable_Variable_Reference --
------------------------------------
function Is_Suitable_Variable_Reference (N : Node_Id) return Boolean is
begin
-- Expanded names and identifiers are intentionally ignored because
-- they be folded, optimized away, etc. Variable references markers
-- play the role of variable references and provide a uniform
-- foundation for ABE processing.
return Nkind (N) = N_Variable_Reference_Marker;
end Is_Suitable_Variable_Reference;
-------------------
-- Is_Task_Entry --
-------------------
function Is_Task_Entry (Id : Entity_Id) return Boolean is
begin
-- To qualify, the entity must denote an entry defined in a task type
return
Is_Entry (Id) and then Is_Task_Type (Non_Private_View (Scope (Id)));
end Is_Task_Entry;
------------------------
-- Is_Up_Level_Target --
------------------------
function Is_Up_Level_Target
(Targ_Decl : Node_Id;
In_State : Processing_In_State) return Boolean
is
Root : constant Node_Id := Root_Scenario;
Root_Rep : constant Scenario_Rep_Id :=
Scenario_Representation_Of (Root, In_State);
begin
-- The root appears within the declaratons of a block statement,
-- entry body, subprogram body, or task body ignoring enclosing
-- packages. The root is always within the main unit.
if not In_State.Suppress_Up_Level_Targets
and then Level (Root_Rep) = Declaration_Level
then
-- The target is within the main unit. It acts as an up-level
-- target when it appears within a context which encloses the
-- root.
--
-- package body Main_Unit is
-- function Func ...; -- target
--
-- procedure Proc is
-- X : ... := Func; -- root scenario
if In_Extended_Main_Code_Unit (Targ_Decl) then
return not In_Same_Context (Root, Targ_Decl, Nested_OK => True);
-- Otherwise the target is external to the main unit which makes
-- it an up-level target.
else
return True;
end if;
end if;
return False;
end Is_Up_Level_Target;
end Semantics;
---------------------------
-- Set_Elaboration_Phase --
---------------------------
procedure Set_Elaboration_Phase (Status : Elaboration_Phase_Status) is
begin
Elaboration_Phase := Status;
end Set_Elaboration_Phase;
---------------------
-- SPARK_Processor --
---------------------
package body SPARK_Processor is
-----------------------
-- Local subprograms --
-----------------------
procedure Process_SPARK_Derived_Type
(Typ_Decl : Node_Id;
Typ_Rep : Scenario_Rep_Id;
In_State : Processing_In_State);
pragma Inline (Process_SPARK_Derived_Type);
-- Verify that the freeze node of a derived type denoted by declaration
-- Typ_Decl is within the early call region of each overriding primitive
-- body that belongs to the derived type (SPARK RM 7.7(8)). Typ_Rep is
-- the representation of the type. In_State denotes the current state of
-- the Processing phase.
procedure Process_SPARK_Instantiation
(Inst : Node_Id;
Inst_Rep : Scenario_Rep_Id;
In_State : Processing_In_State);
pragma Inline (Process_SPARK_Instantiation);
-- Verify that instantiation Inst does not precede the generic body it
-- instantiates (SPARK RM 7.7(6)). Inst_Rep is the representation of the
-- instantiation. In_State is the current state of the Processing phase.
procedure Process_SPARK_Refined_State_Pragma
(Prag : Node_Id;
Prag_Rep : Scenario_Rep_Id;
In_State : Processing_In_State);
pragma Inline (Process_SPARK_Refined_State_Pragma);
-- Verify that each constituent of Refined_State pragma Prag which
-- belongs to abstract state mentioned in pragma Initializes has prior
-- elaboration with respect to the main unit (SPARK RM 7.7.1(7)).
-- Prag_Rep is the representation of the pragma. In_State denotes the
-- current state of the Processing phase.
procedure Process_SPARK_Scenario
(N : Node_Id;
In_State : Processing_In_State);
pragma Inline (Process_SPARK_Scenario);
-- Top-level dispatcher for verifying SPARK scenarios which are not
-- always executable during elaboration but still need elaboration-
-- related checks. In_State is the current state of the Processing
-- phase.
---------------------------------
-- Check_SPARK_Model_In_Effect --
---------------------------------
SPARK_Model_Warning_Posted : Boolean := False;
-- This flag prevents the same SPARK model-related warning from being
-- emitted multiple times.
procedure Check_SPARK_Model_In_Effect is
Spec_Id : constant Entity_Id := Unique_Entity (Main_Unit_Entity);
begin
-- Do not emit the warning multiple times as this creates useless
-- noise.
if SPARK_Model_Warning_Posted then
null;
-- SPARK rule verification requires the "strict" static model
elsif Static_Elaboration_Checks
and not Relaxed_Elaboration_Checks
then
null;
-- Any other combination of models does not guarantee the absence of
-- ABE problems for SPARK rule verification purposes. Note that there
-- is no need to check for the presence of the legacy ABE mechanism
-- because the legacy code has its own dedicated processing for SPARK
-- rules.
else
SPARK_Model_Warning_Posted := True;
Error_Msg_N
("??SPARK elaboration checks require static elaboration model",
Spec_Id);
if Dynamic_Elaboration_Checks then
Error_Msg_N
("\dynamic elaboration model is in effect", Spec_Id);
else
pragma Assert (Relaxed_Elaboration_Checks);
Error_Msg_N
("\relaxed elaboration model is in effect", Spec_Id);
end if;
end if;
end Check_SPARK_Model_In_Effect;
---------------------------
-- Check_SPARK_Scenarios --
---------------------------
procedure Check_SPARK_Scenarios is
Iter : NE_Set.Iterator;
N : Node_Id;
begin
Iter := Iterate_SPARK_Scenarios;
while NE_Set.Has_Next (Iter) loop
NE_Set.Next (Iter, N);
Process_SPARK_Scenario
(N => N,
In_State => SPARK_State);
end loop;
end Check_SPARK_Scenarios;
--------------------------------
-- Process_SPARK_Derived_Type --
--------------------------------
procedure Process_SPARK_Derived_Type
(Typ_Decl : Node_Id;
Typ_Rep : Scenario_Rep_Id;
In_State : Processing_In_State)
is
pragma Unreferenced (In_State);
Typ : constant Entity_Id := Target (Typ_Rep);
Stop_Check : exception;
-- This exception is raised when the freeze node violates the
-- placement rules.
procedure Check_Overriding_Primitive
(Prim : Entity_Id;
FNode : Node_Id);
pragma Inline (Check_Overriding_Primitive);
-- Verify that freeze node FNode is within the early call region of
-- overriding primitive Prim's body.
function Freeze_Node_Location (FNode : Node_Id) return Source_Ptr;
pragma Inline (Freeze_Node_Location);
-- Return a more accurate source location associated with freeze node
-- FNode.
function Precedes_Source_Construct (N : Node_Id) return Boolean;
pragma Inline (Precedes_Source_Construct);
-- Determine whether arbitrary node N appears prior to some source
-- construct.
procedure Suggest_Elaborate_Body
(N : Node_Id;
Body_Decl : Node_Id;
Error_Nod : Node_Id);
pragma Inline (Suggest_Elaborate_Body);
-- Suggest the use of pragma Elaborate_Body when the pragma will
-- allow for node N to appear within the early call region of
-- subprogram body Body_Decl. The suggestion is attached to
-- Error_Nod as a continuation error.
--------------------------------
-- Check_Overriding_Primitive --
--------------------------------
procedure Check_Overriding_Primitive
(Prim : Entity_Id;
FNode : Node_Id)
is
Prim_Decl : constant Node_Id := Unit_Declaration_Node (Prim);
Body_Decl : Node_Id;
Body_Id : Entity_Id;
Region : Node_Id;
begin
-- Nothing to do for predefined primitives because they are
-- artifacts of tagged type expansion and cannot override source
-- primitives. Nothing to do as well for inherited primitives, as
-- the check concerns overriding ones.
if Is_Predefined_Dispatching_Operation (Prim)
or else not Is_Overriding_Subprogram (Prim)
then
return;
end if;
Body_Id := Corresponding_Body (Prim_Decl);
-- Nothing to do when the primitive does not have a corresponding
-- body. This can happen when the unit with the bodies is not the
-- main unit subjected to ABE checks.
if No (Body_Id) then
return;
-- The primitive overrides a parent or progenitor primitive
elsif Present (Overridden_Operation (Prim)) then
-- Nothing to do when overriding an interface primitive happens
-- by inheriting a non-interface primitive as the check would
-- be done on the parent primitive.
if Present (Alias (Prim)) then
return;
end if;
-- Nothing to do when the primitive is not overriding. The body of
-- such a primitive cannot be targeted by a dispatching call which
-- is executable during elaboration, and cannot cause an ABE.
else
return;
end if;
Body_Decl := Unit_Declaration_Node (Body_Id);
Region := Find_Early_Call_Region (Body_Decl);
-- The freeze node appears prior to the early call region of the
-- primitive body.
-- IMPORTANT: This check must always be performed even when
-- -gnatd.v (enforce SPARK elaboration rules in SPARK code) is not
-- specified because the static model cannot guarantee the absence
-- of ABEs in the presence of dispatching calls.
if Earlier_In_Extended_Unit (FNode, Region) then
Error_Msg_Node_2 := Prim;
Error_Msg_NE
("first freezing point of type & must appear within early "
& "call region of primitive body & (SPARK RM 7.7(8))",
Typ_Decl, Typ);
Error_Msg_Sloc := Sloc (Region);
Error_Msg_N ("\region starts #", Typ_Decl);
Error_Msg_Sloc := Sloc (Body_Decl);
Error_Msg_N ("\region ends #", Typ_Decl);
Error_Msg_Sloc := Freeze_Node_Location (FNode);
Error_Msg_N ("\first freezing point #", Typ_Decl);
-- If applicable, suggest the use of pragma Elaborate_Body in
-- the associated package spec.
Suggest_Elaborate_Body
(N => FNode,
Body_Decl => Body_Decl,
Error_Nod => Typ_Decl);
raise Stop_Check;
end if;
end Check_Overriding_Primitive;
--------------------------
-- Freeze_Node_Location --
--------------------------
function Freeze_Node_Location (FNode : Node_Id) return Source_Ptr is
Context : constant Node_Id := Parent (FNode);
Loc : constant Source_Ptr := Sloc (FNode);
Prv_Decls : List_Id;
Vis_Decls : List_Id;
begin
-- In general, the source location of the freeze node is as close
-- as possible to the real freeze point, except when the freeze
-- node is at the "bottom" of a package spec.
if Nkind (Context) = N_Package_Specification then
Prv_Decls := Private_Declarations (Context);
Vis_Decls := Visible_Declarations (Context);
-- The freeze node appears in the private declarations of the
-- package.
if Present (Prv_Decls)
and then List_Containing (FNode) = Prv_Decls
then
null;
-- The freeze node appears in the visible declarations of the
-- package and there are no private declarations.
elsif Present (Vis_Decls)
and then List_Containing (FNode) = Vis_Decls
and then (No (Prv_Decls) or else Is_Empty_List (Prv_Decls))
then
null;
-- Otherwise the freeze node is not in the "last" declarative
-- list of the package. Use the existing source location of the
-- freeze node.
else
return Loc;
end if;
-- The freeze node appears at the "bottom" of the package when
-- it is in the "last" declarative list and is either the last
-- in the list or is followed by internal constructs only. In
-- that case the more appropriate source location is that of
-- the package end label.
if not Precedes_Source_Construct (FNode) then
return Sloc (End_Label (Context));
end if;
end if;
return Loc;
end Freeze_Node_Location;
-------------------------------
-- Precedes_Source_Construct --
-------------------------------
function Precedes_Source_Construct (N : Node_Id) return Boolean is
Decl : Node_Id;
begin
Decl := Next (N);
while Present (Decl) loop
if Comes_From_Source (Decl) then
return True;
-- A generated body for a source expression function is treated
-- as a source construct.
elsif Nkind (Decl) = N_Subprogram_Body
and then Was_Expression_Function (Decl)
and then Comes_From_Source (Original_Node (Decl))
then
return True;
end if;
Next (Decl);
end loop;
return False;
end Precedes_Source_Construct;
----------------------------
-- Suggest_Elaborate_Body --
----------------------------
procedure Suggest_Elaborate_Body
(N : Node_Id;
Body_Decl : Node_Id;
Error_Nod : Node_Id)
is
Unit_Id : constant Node_Id := Unit (Cunit (Main_Unit));
Region : Node_Id;
begin
-- The suggestion applies only when the subprogram body resides in
-- a compilation package body, and a pragma Elaborate_Body would
-- allow for the node to appear in the early call region of the
-- subprogram body. This implies that all code from the subprogram
-- body up to the node is preelaborable.
if Nkind (Unit_Id) = N_Package_Body then
-- Find the start of the early call region again assuming that
-- the package spec has pragma Elaborate_Body. Note that the
-- internal data structures are intentionally not updated
-- because this is a speculative search.
Region :=
Find_Early_Call_Region
(Body_Decl => Body_Decl,
Assume_Elab_Body => True,
Skip_Memoization => True);
-- If the node appears within the early call region, assuming
-- that the package spec carries pragma Elaborate_Body, then it
-- is safe to suggest the pragma.
if Earlier_In_Extended_Unit (Region, N) then
Error_Msg_Name_1 := Name_Elaborate_Body;
Error_Msg_NE
("\consider adding pragma % in spec of unit &",
Error_Nod, Defining_Entity (Unit_Id));
end if;
end if;
end Suggest_Elaborate_Body;
-- Local variables
FNode : constant Node_Id := Freeze_Node (Typ);
Prims : constant Elist_Id := Direct_Primitive_Operations (Typ);
Prim_Elmt : Elmt_Id;
-- Start of processing for Process_SPARK_Derived_Type
begin
-- A type should have its freeze node set by the time SPARK scenarios
-- are being verified.
pragma Assert (Present (FNode));
-- Verify that the freeze node of the derived type is within the
-- early call region of each overriding primitive body
-- (SPARK RM 7.7(8)).
if Present (Prims) then
Prim_Elmt := First_Elmt (Prims);
while Present (Prim_Elmt) loop
Check_Overriding_Primitive
(Prim => Node (Prim_Elmt),
FNode => FNode);
Next_Elmt (Prim_Elmt);
end loop;
end if;
exception
when Stop_Check =>
null;
end Process_SPARK_Derived_Type;
---------------------------------
-- Process_SPARK_Instantiation --
---------------------------------
procedure Process_SPARK_Instantiation
(Inst : Node_Id;
Inst_Rep : Scenario_Rep_Id;
In_State : Processing_In_State)
is
Gen_Id : constant Entity_Id := Target (Inst_Rep);
Gen_Rep : constant Target_Rep_Id :=
Target_Representation_Of (Gen_Id, In_State);
Body_Decl : constant Node_Id := Body_Declaration (Gen_Rep);
begin
-- The instantiation and the generic body are both in the main unit
if Present (Body_Decl)
and then In_Extended_Main_Code_Unit (Body_Decl)
-- If the instantiation appears prior to the generic body, then the
-- instantiation is illegal (SPARK RM 7.7(6)).
-- IMPORTANT: This check must always be performed even when
-- -gnatd.v (enforce SPARK elaboration rules in SPARK code) is not
-- specified because the rule prevents use-before-declaration of
-- objects that may precede the generic body.
and then Earlier_In_Extended_Unit (Inst, Body_Decl)
then
Error_Msg_NE
("cannot instantiate & before body seen", Inst, Gen_Id);
end if;
end Process_SPARK_Instantiation;
----------------------------
-- Process_SPARK_Scenario --
----------------------------
procedure Process_SPARK_Scenario
(N : Node_Id;
In_State : Processing_In_State)
is
Scen : constant Node_Id := Scenario (N);
begin
-- Ensure that a suitable elaboration model is in effect for SPARK
-- rule verification.
Check_SPARK_Model_In_Effect;
-- Add the current scenario to the stack of active scenarios
Push_Active_Scenario (Scen);
-- Derived type
if Is_Suitable_SPARK_Derived_Type (Scen) then
Process_SPARK_Derived_Type
(Typ_Decl => Scen,
Typ_Rep => Scenario_Representation_Of (Scen, In_State),
In_State => In_State);
-- Instantiation
elsif Is_Suitable_SPARK_Instantiation (Scen) then
Process_SPARK_Instantiation
(Inst => Scen,
Inst_Rep => Scenario_Representation_Of (Scen, In_State),
In_State => In_State);
-- Refined_State pragma
elsif Is_Suitable_SPARK_Refined_State_Pragma (Scen) then
Process_SPARK_Refined_State_Pragma
(Prag => Scen,
Prag_Rep => Scenario_Representation_Of (Scen, In_State),
In_State => In_State);
end if;
-- Remove the current scenario from the stack of active scenarios
-- once all ABE diagnostics and checks have been performed.
Pop_Active_Scenario (Scen);
end Process_SPARK_Scenario;
----------------------------------------
-- Process_SPARK_Refined_State_Pragma --
----------------------------------------
procedure Process_SPARK_Refined_State_Pragma
(Prag : Node_Id;
Prag_Rep : Scenario_Rep_Id;
In_State : Processing_In_State)
is
pragma Unreferenced (Prag_Rep);
procedure Check_SPARK_Constituent (Constit_Id : Entity_Id);
pragma Inline (Check_SPARK_Constituent);
-- Ensure that a single constituent Constit_Id is elaborated prior to
-- the main unit.
procedure Check_SPARK_Constituents (Constits : Elist_Id);
pragma Inline (Check_SPARK_Constituents);
-- Ensure that all constituents found in list Constits are elaborated
-- prior to the main unit.
procedure Check_SPARK_Initialized_State (State : Node_Id);
pragma Inline (Check_SPARK_Initialized_State);
-- Ensure that the constituents of single abstract state State are
-- elaborated prior to the main unit.
procedure Check_SPARK_Initialized_States (Pack_Id : Entity_Id);
pragma Inline (Check_SPARK_Initialized_States);
-- Ensure that the constituents of all abstract states which appear
-- in the Initializes pragma of package Pack_Id are elaborated prior
-- to the main unit.
-----------------------------
-- Check_SPARK_Constituent --
-----------------------------
procedure Check_SPARK_Constituent (Constit_Id : Entity_Id) is
SM_Prag : Node_Id;
begin
-- Nothing to do for "null" constituents
if Nkind (Constit_Id) = N_Null then
return;
-- Nothing to do for illegal constituents
elsif Error_Posted (Constit_Id) then
return;
end if;
SM_Prag := SPARK_Pragma (Constit_Id);
-- The check applies only when the constituent is subject to
-- pragma SPARK_Mode On.
if Present (SM_Prag)
and then Get_SPARK_Mode_From_Annotation (SM_Prag) = On
then
-- An external constituent of an abstract state which appears
-- in the Initializes pragma of a package spec imposes an
-- Elaborate requirement on the context of the main unit.
-- Determine whether the context has a pragma strong enough to
-- meet the requirement.
-- IMPORTANT: This check is performed only when -gnatd.v
-- (enforce SPARK elaboration rules in SPARK code) is in effect
-- because the static model can ensure the prior elaboration of
-- the unit which contains a constituent by installing implicit
-- Elaborate pragma.
if Debug_Flag_Dot_V then
Meet_Elaboration_Requirement
(N => Prag,
Targ_Id => Constit_Id,
Req_Nam => Name_Elaborate,
In_State => In_State);
-- Otherwise ensure that the unit with the external constituent
-- is elaborated prior to the main unit.
else
Ensure_Prior_Elaboration
(N => Prag,
Unit_Id => Find_Top_Unit (Constit_Id),
Prag_Nam => Name_Elaborate,
In_State => In_State);
end if;
end if;
end Check_SPARK_Constituent;
------------------------------
-- Check_SPARK_Constituents --
------------------------------
procedure Check_SPARK_Constituents (Constits : Elist_Id) is
Constit_Elmt : Elmt_Id;
begin
if Present (Constits) then
Constit_Elmt := First_Elmt (Constits);
while Present (Constit_Elmt) loop
Check_SPARK_Constituent (Node (Constit_Elmt));
Next_Elmt (Constit_Elmt);
end loop;
end if;
end Check_SPARK_Constituents;
-----------------------------------
-- Check_SPARK_Initialized_State --
-----------------------------------
procedure Check_SPARK_Initialized_State (State : Node_Id) is
SM_Prag : Node_Id;
State_Id : Entity_Id;
begin
-- Nothing to do for "null" initialization items
if Nkind (State) = N_Null then
return;
-- Nothing to do for illegal states
elsif Error_Posted (State) then
return;
end if;
State_Id := Entity_Of (State);
-- Sanitize the state
if No (State_Id) then
return;
elsif Error_Posted (State_Id) then
return;
elsif Ekind (State_Id) /= E_Abstract_State then
return;
end if;
-- The check is performed only when the abstract state is subject
-- to SPARK_Mode On.
SM_Prag := SPARK_Pragma (State_Id);
if Present (SM_Prag)
and then Get_SPARK_Mode_From_Annotation (SM_Prag) = On
then
Check_SPARK_Constituents (Refinement_Constituents (State_Id));
end if;
end Check_SPARK_Initialized_State;
------------------------------------
-- Check_SPARK_Initialized_States --
------------------------------------
procedure Check_SPARK_Initialized_States (Pack_Id : Entity_Id) is
Init_Prag : constant Node_Id :=
Get_Pragma (Pack_Id, Pragma_Initializes);
Init : Node_Id;
Inits : Node_Id;
begin
if Present (Init_Prag) then
Inits := Expression (Get_Argument (Init_Prag, Pack_Id));
-- Avoid processing a "null" initialization list. The only
-- other alternative is an aggregate.
if Nkind (Inits) = N_Aggregate then
-- The initialization items appear in list form:
--
-- (state1, state2)
if Present (Expressions (Inits)) then
Init := First (Expressions (Inits));
while Present (Init) loop
Check_SPARK_Initialized_State (Init);
Next (Init);
end loop;
end if;
-- The initialization items appear in associated form:
--
-- (state1 => item1,
-- state2 => (item2, item3))
if Present (Component_Associations (Inits)) then
Init := First (Component_Associations (Inits));
while Present (Init) loop
Check_SPARK_Initialized_State (Init);
Next (Init);
end loop;
end if;
end if;
end if;
end Check_SPARK_Initialized_States;
-- Local variables
Pack_Body : constant Node_Id := Find_Related_Package_Or_Body (Prag);
-- Start of processing for Process_SPARK_Refined_State_Pragma
begin
-- Pragma Refined_State must be associated with a package body
pragma Assert
(Present (Pack_Body) and then Nkind (Pack_Body) = N_Package_Body);
-- Verify that each external contitunent of an abstract state
-- mentioned in pragma Initializes is properly elaborated.
Check_SPARK_Initialized_States (Unique_Defining_Entity (Pack_Body));
end Process_SPARK_Refined_State_Pragma;
end SPARK_Processor;
-------------------------------
-- Spec_And_Body_From_Entity --
-------------------------------
procedure Spec_And_Body_From_Entity
(Id : Entity_Id;
Spec_Decl : out Node_Id;
Body_Decl : out Node_Id)
is
begin
Spec_And_Body_From_Node
(N => Unit_Declaration_Node (Id),
Spec_Decl => Spec_Decl,
Body_Decl => Body_Decl);
end Spec_And_Body_From_Entity;
-----------------------------
-- Spec_And_Body_From_Node --
-----------------------------
procedure Spec_And_Body_From_Node
(N : Node_Id;
Spec_Decl : out Node_Id;
Body_Decl : out Node_Id)
is
Body_Id : Entity_Id;
Spec_Id : Entity_Id;
begin
-- Assume that the construct lacks spec and body
Body_Decl := Empty;
Spec_Decl := Empty;
-- Bodies
if Nkind (N) in N_Package_Body
| N_Protected_Body
| N_Subprogram_Body
| N_Task_Body
then
Spec_Id := Corresponding_Spec (N);
-- The body completes a previous declaration
if Present (Spec_Id) then
Spec_Decl := Unit_Declaration_Node (Spec_Id);
-- Otherwise the body acts as the initial declaration, and is both a
-- spec and body. There is no need to look for an optional body.
else
Body_Decl := N;
Spec_Decl := N;
return;
end if;
-- Declarations
elsif Nkind (N) in N_Entry_Declaration
| N_Generic_Package_Declaration
| N_Generic_Subprogram_Declaration
| N_Package_Declaration
| N_Protected_Type_Declaration
| N_Subprogram_Declaration
| N_Task_Type_Declaration
then
Spec_Decl := N;
-- Expression function
elsif Nkind (N) = N_Expression_Function then
Spec_Id := Corresponding_Spec (N);
pragma Assert (Present (Spec_Id));
Spec_Decl := Unit_Declaration_Node (Spec_Id);
-- Instantiations
elsif Nkind (N) in N_Generic_Instantiation then
Spec_Decl := Instance_Spec (N);
pragma Assert (Present (Spec_Decl));
-- Stubs
elsif Nkind (N) in N_Body_Stub then
Spec_Id := Corresponding_Spec_Of_Stub (N);
-- The stub completes a previous declaration
if Present (Spec_Id) then
Spec_Decl := Unit_Declaration_Node (Spec_Id);
-- Otherwise the stub acts as a spec
else
Spec_Decl := N;
end if;
end if;
-- Obtain an optional or mandatory body
if Present (Spec_Decl) then
Body_Id := Corresponding_Body (Spec_Decl);
if Present (Body_Id) then
Body_Decl := Unit_Declaration_Node (Body_Id);
end if;
end if;
end Spec_And_Body_From_Node;
-------------------------------
-- Static_Elaboration_Checks --
-------------------------------
function Static_Elaboration_Checks return Boolean is
begin
return not Dynamic_Elaboration_Checks;
end Static_Elaboration_Checks;
-----------------
-- Unit_Entity --
-----------------
function Unit_Entity (Unit_Id : Entity_Id) return Entity_Id is
function Is_Subunit (Id : Entity_Id) return Boolean;
pragma Inline (Is_Subunit);
-- Determine whether the entity of an initial declaration denotes a
-- subunit.
----------------
-- Is_Subunit --
----------------
function Is_Subunit (Id : Entity_Id) return Boolean is
Decl : constant Node_Id := Unit_Declaration_Node (Id);
begin
return
Nkind (Decl) in N_Generic_Package_Declaration
| N_Generic_Subprogram_Declaration
| N_Package_Declaration
| N_Protected_Type_Declaration
| N_Subprogram_Declaration
| N_Task_Type_Declaration
and then Present (Corresponding_Body (Decl))
and then Nkind (Parent (Unit_Declaration_Node
(Corresponding_Body (Decl)))) = N_Subunit;
end Is_Subunit;
-- Local variables
Id : Entity_Id;
-- Start of processing for Unit_Entity
begin
Id := Unique_Entity (Unit_Id);
-- Skip all subunits found in the scope chain which ends at the input
-- unit.
while Is_Subunit (Id) loop
Id := Scope (Id);
end loop;
return Id;
end Unit_Entity;
---------------------------------
-- Update_Elaboration_Scenario --
---------------------------------
procedure Update_Elaboration_Scenario (New_N : Node_Id; Old_N : Node_Id) is
begin
-- Nothing to do when the elaboration phase of the compiler is not
-- active.
if not Elaboration_Phase_Active then
return;
-- Nothing to do when the old and new scenarios are one and the same
elsif Old_N = New_N then
return;
end if;
-- A scenario is being transformed by Atree.Rewrite. Update all relevant
-- internal data structures to reflect this change. This ensures that a
-- potential run-time conditional ABE check or a guaranteed ABE failure
-- is inserted at the proper place in the tree.
if Is_Scenario (Old_N) then
Replace_Scenario (Old_N, New_N);
end if;
end Update_Elaboration_Scenario;
---------------------------------------------------------------------------
-- --
-- L E G A C Y A C C E S S B E F O R E E L A B O R A T I O N --
-- --
-- M E C H A N I S M --
-- --
---------------------------------------------------------------------------
-- This section contains the implementation of the pre-18.x legacy ABE
-- mechanism. The mechanism can be activated using switch -gnatH (legacy
-- elaboration checking mode enabled).
-----------------------------
-- Description of Approach --
-----------------------------
-- Every non-static call that is encountered by Sem_Res results in a call
-- to Check_Elab_Call, with N being the call node, and Outer set to its
-- default value of True. In addition X'Access is treated like a call
-- for the access-to-procedure case, and in SPARK mode only we also
-- check variable references.
-- The goal of Check_Elab_Call is to determine whether or not the reference
-- in question can generate an access before elaboration error (raising
-- Program_Error) either by directly calling a subprogram whose body
-- has not yet been elaborated, or indirectly, by calling a subprogram
-- whose body has been elaborated, but which contains a call to such a
-- subprogram.
-- In addition, in SPARK mode, we are checking for a variable reference in
-- another package, which requires an explicit Elaborate_All pragma.
-- The only references that we need to look at the outer level are
-- references that occur in elaboration code. There are two cases. The
-- reference can be at the outer level of elaboration code, or it can
-- be within another unit, e.g. the elaboration code of a subprogram.
-- In the case of an elaboration call at the outer level, we must trace
-- all calls to outer level routines either within the current unit or to
-- other units that are with'ed. For calls within the current unit, we can
-- determine if the body has been elaborated or not, and if it has not,
-- then a warning is generated.
-- Note that there are two subcases. If the original call directly calls a
-- subprogram whose body has not been elaborated, then we know that an ABE
-- will take place, and we replace the call by a raise of Program_Error.
-- If the call is indirect, then we don't know that the PE will be raised,
-- since the call might be guarded by a conditional. In this case we set
-- Do_Elab_Check on the call so that a dynamic check is generated, and
-- output a warning.
-- For calls to a subprogram in a with'ed unit or a 'Access or variable
-- reference (SPARK mode case), we require that a pragma Elaborate_All
-- or pragma Elaborate be present, or that the referenced unit have a
-- pragma Preelaborate, pragma Pure, or pragma Elaborate_Body. If none
-- of these conditions is met, then a warning is generated that a pragma
-- Elaborate_All may be needed (error in the SPARK case), or an implicit
-- pragma is generated.
-- For the case of an elaboration call at some inner level, we are
-- interested in tracing only calls to subprograms at the same level, i.e.
-- those that can be called during elaboration. Any calls to outer level
-- routines cannot cause ABE's as a result of the original call (there
-- might be an outer level call to the subprogram from outside that causes
-- the ABE, but that gets analyzed separately).
-- Note that we never trace calls to inner level subprograms, since these
-- cannot result in ABE's unless there is an elaboration problem at a lower
-- level, which will be separately detected.
-- Note on pragma Elaborate. The checking here assumes that a pragma
-- Elaborate on a with'ed unit guarantees that subprograms within the unit
-- can be called without causing an ABE. This is not in fact the case since
-- pragma Elaborate does not guarantee the transitive coverage guaranteed
-- by Elaborate_All. However, we decide to trust the user in this case.
--------------------------------------
-- Instantiation Elaboration Errors --
--------------------------------------
-- A special case arises when an instantiation appears in a context that is
-- known to be before the body is elaborated, e.g.
-- generic package x is ...
-- ...
-- package xx is new x;
-- ...
-- package body x is ...
-- In this situation it is certain that an elaboration error will occur,
-- and an unconditional raise Program_Error statement is inserted before
-- the instantiation, and a warning generated.
-- The problem is that in this case we have no place to put the body of
-- the instantiation. We can't put it in the normal place, because it is
-- too early, and will cause errors to occur as a result of referencing
-- entities before they are declared.
-- Our approach in this case is simply to avoid creating the body of the
-- instantiation in such a case. The instantiation spec is modified to
-- include dummy bodies for all subprograms, so that the resulting code
-- does not contain subprogram specs with no corresponding bodies.
-- The following table records the recursive call chain for output in the
-- Output routine. Each entry records the call node and the entity of the
-- called routine. The number of entries in the table (i.e. the value of
-- Elab_Call.Last) indicates the current depth of recursion and is used to
-- identify the outer level.
type Elab_Call_Element is record
Cloc : Source_Ptr;
Ent : Entity_Id;
end record;
package Elab_Call is new Table.Table
(Table_Component_Type => Elab_Call_Element,
Table_Index_Type => Int,
Table_Low_Bound => 1,
Table_Initial => 50,
Table_Increment => 100,
Table_Name => "Elab_Call");
-- The following table records all calls that have been processed starting
-- from an outer level call. The table prevents both infinite recursion and
-- useless reanalysis of calls within the same context. The use of context
-- is important because it allows for proper checks in more complex code:
-- if ... then
-- Call; -- requires a check
-- Call; -- does not need a check thanks to the table
-- elsif ... then
-- Call; -- requires a check, different context
-- end if;
-- Call; -- requires a check, different context
type Visited_Element is record
Subp_Id : Entity_Id;
-- The entity of the subprogram being called
Context : Node_Id;
-- The context where the call to the subprogram occurs
end record;
package Elab_Visited is new Table.Table
(Table_Component_Type => Visited_Element,
Table_Index_Type => Int,
Table_Low_Bound => 1,
Table_Initial => 200,
Table_Increment => 100,
Table_Name => "Elab_Visited");
-- The following table records delayed calls which must be examined after
-- all generic bodies have been instantiated.
type Delay_Element is record
N : Node_Id;
-- The parameter N from the call to Check_Internal_Call. Note that this
-- node may get rewritten over the delay period by expansion in the call
-- case (but not in the instantiation case).
E : Entity_Id;
-- The parameter E from the call to Check_Internal_Call
Orig_Ent : Entity_Id;
-- The parameter Orig_Ent from the call to Check_Internal_Call
Curscop : Entity_Id;
-- The current scope of the call. This is restored when we complete the
-- delayed call, so that we do this in the right scope.
Outer_Scope : Entity_Id;
-- Save scope of outer level call
From_Elab_Code : Boolean;
-- Save indication of whether this call is from elaboration code
In_Task_Activation : Boolean;
-- Save indication of whether this call is from a task body. Tasks are
-- activated at the "begin", which is after all local procedure bodies,
-- so calls to those procedures can't fail, even if they occur after the
-- task body.
From_SPARK_Code : Boolean;
-- Save indication of whether this call is under SPARK_Mode => On
end record;
package Delay_Check is new Table.Table
(Table_Component_Type => Delay_Element,
Table_Index_Type => Int,
Table_Low_Bound => 1,
Table_Initial => 1000,
Table_Increment => 100,
Table_Name => "Delay_Check");
C_Scope : Entity_Id;
-- Top-level scope of current scope. Compute this only once at the outer
-- level, i.e. for a call to Check_Elab_Call from outside this unit.
Outer_Level_Sloc : Source_Ptr;
-- Save Sloc value for outer level call node for comparisons of source
-- locations. A body is too late if it appears after the *outer* level
-- call, not the particular call that is being analyzed.
From_Elab_Code : Boolean;
-- This flag shows whether the outer level call currently being examined
-- is or is not in elaboration code. We are only interested in calls to
-- routines in other units if this flag is True.
In_Task_Activation : Boolean := False;
-- This flag indicates whether we are performing elaboration checks on task
-- bodies, at the point of activation. If true, we do not raise
-- Program_Error for calls to local procedures, because all local bodies
-- are known to be elaborated. However, we still need to trace such calls,
-- because a local procedure could call a procedure in another package,
-- so we might need an implicit Elaborate_All.
Delaying_Elab_Checks : Boolean := True;
-- This is set True till the compilation is complete, including the
-- insertion of all instance bodies. Then when Check_Elab_Calls is called,
-- the delay table is used to make the delayed calls and this flag is reset
-- to False, so that the calls are processed.
-----------------------
-- Local Subprograms --
-----------------------
-- Note: Outer_Scope in all following specs represents the scope of
-- interest of the outer level call. If it is set to Standard_Standard,
-- then it means the outer level call was at elaboration level, and that
-- thus all calls are of interest. If it was set to some other scope,
-- then the original call was an inner call, and we are not interested
-- in calls that go outside this scope.
procedure Activate_Elaborate_All_Desirable (N : Node_Id; U : Entity_Id);
-- Analysis of construct N shows that we should set Elaborate_All_Desirable
-- for the WITH clause for unit U (which will always be present). A special
-- case is when N is a function or procedure instantiation, in which case
-- it is sufficient to set Elaborate_Desirable, since in this case there is
-- no possibility of transitive elaboration issues.
procedure Check_A_Call
(N : Node_Id;
E : Entity_Id;
Outer_Scope : Entity_Id;
Inter_Unit_Only : Boolean;
Generate_Warnings : Boolean := True;
In_Init_Proc : Boolean := False);
-- This is the internal recursive routine that is called to check for
-- possible elaboration error. The argument N is a subprogram call or
-- generic instantiation, or 'Access attribute reference to be checked, and
-- E is the entity of the called subprogram, or instantiated generic unit,
-- or subprogram referenced by 'Access.
--
-- In SPARK mode, N can also be a variable reference, since in SPARK this
-- also triggers a requirement for Elaborate_All, and in this case E is the
-- entity being referenced.
--
-- Outer_Scope is the outer level scope for the original reference.
-- Inter_Unit_Only is set if the call is only to be checked in the
-- case where it is to another unit (and skipped if within a unit).
-- Generate_Warnings is set to False to suppress warning messages about
-- missing pragma Elaborate_All's. These messages are not wanted for
-- inner calls in the dynamic model. Note that an instance of the Access
-- attribute applied to a subprogram also generates a call to this
-- procedure (since the referenced subprogram may be called later
-- indirectly). Flag In_Init_Proc should be set whenever the current
-- context is a type init proc.
--
-- Note: this might better be called Check_A_Reference to recognize the
-- variable case for SPARK, but we prefer to retain the historical name
-- since in practice this is mostly about checking calls for the possible
-- occurrence of an access-before-elaboration exception.
procedure Check_Bad_Instantiation (N : Node_Id);
-- N is a node for an instantiation (if called with any other node kind,
-- Check_Bad_Instantiation ignores the call). This subprogram checks for
-- the special case of a generic instantiation of a generic spec in the
-- same declarative part as the instantiation where a body is present and
-- has not yet been seen. This is an obvious error, but needs to be checked
-- specially at the time of the instantiation, since it is a case where we
-- cannot insert the body anywhere. If this case is detected, warnings are
-- generated, and a raise of Program_Error is inserted. In addition any
-- subprograms in the generic spec are stubbed, and the Bad_Instantiation
-- flag is set on the instantiation node. The caller in Sem_Ch12 uses this
-- flag as an indication that no attempt should be made to insert an
-- instance body.
procedure Check_Internal_Call
(N : Node_Id;
E : Entity_Id;
Outer_Scope : Entity_Id;
Orig_Ent : Entity_Id);
-- N is a function call or procedure statement call node and E is the
-- entity of the called function, which is within the current compilation
-- unit (where subunits count as part of the parent). This call checks if
-- this call, or any call within any accessed body could cause an ABE, and
-- if so, outputs a warning. Orig_Ent differs from E only in the case of
-- renamings, and points to the original name of the entity. This is used
-- for error messages. Outer_Scope is the outer level scope for the
-- original call.
procedure Check_Internal_Call_Continue
(N : Node_Id;
E : Entity_Id;
Outer_Scope : Entity_Id;
Orig_Ent : Entity_Id);
-- The processing for Check_Internal_Call is divided up into two phases,
-- and this represents the second phase. The second phase is delayed if
-- Delaying_Elab_Checks is set to True. In this delayed case, the first
-- phase makes an entry in the Delay_Check table, which is processed when
-- Check_Elab_Calls is called. N, E and Orig_Ent are as for the call to
-- Check_Internal_Call. Outer_Scope is the outer level scope for the
-- original call.
function Get_Referenced_Ent (N : Node_Id) return Entity_Id;
-- N is either a function or procedure call or an access attribute that
-- references a subprogram. This call retrieves the relevant entity. If
-- this is a call to a protected subprogram, the entity is a selected
-- component. The callable entity may be absent, in which case Empty is
-- returned. This happens with non-analyzed calls in nested generics.
--
-- If SPARK_Mode is On, then N can also be a reference to an E_Variable
-- entity, in which case, the value returned is simply this entity.
function Has_Generic_Body (N : Node_Id) return Boolean;
-- N is a generic package instantiation node, and this routine determines
-- if this package spec does in fact have a generic body. If so, then
-- True is returned, otherwise False. Note that this is not at all the
-- same as checking if the unit requires a body, since it deals with
-- the case of optional bodies accurately (i.e. if a body is optional,
-- then it looks to see if a body is actually present). Note: this
-- function can only do a fully correct job if in generating code mode
-- where all bodies have to be present. If we are operating in semantics
-- check only mode, then in some cases of optional bodies, a result of
-- False may incorrectly be given. In practice this simply means that
-- some cases of warnings for incorrect order of elaboration will only
-- be given when generating code, which is not a big problem (and is
-- inevitable, given the optional body semantics of Ada).
procedure Insert_Elab_Check (N : Node_Id; C : Node_Id := Empty);
-- Given code for an elaboration check (or unconditional raise if the check
-- is not needed), inserts the code in the appropriate place. N is the call
-- or instantiation node for which the check code is required. C is the
-- test whose failure triggers the raise.
function Is_Call_Of_Generic_Formal (N : Node_Id) return Boolean;
-- Returns True if node N is a call to a generic formal subprogram
function Is_Finalization_Procedure (Id : Entity_Id) return Boolean;
-- Determine whether entity Id denotes a [Deep_]Finalize procedure
procedure Output_Calls
(N : Node_Id;
Check_Elab_Flag : Boolean);
-- Outputs chain of calls stored in the Elab_Call table. The caller has
-- already generated the main warning message, so the warnings generated
-- are all continuation messages. The argument is the call node at which
-- the messages are to be placed. When Check_Elab_Flag is set, calls are
-- enumerated only when flag Elab_Warning is set for the dynamic case or
-- when flag Elab_Info_Messages is set for the static case.
function Same_Elaboration_Scope (Scop1, Scop2 : Entity_Id) return Boolean;
-- Given two scopes, determine whether they are the same scope from an
-- elaboration point of view, i.e. packages and blocks are ignored.
procedure Set_C_Scope;
-- On entry C_Scope is set to some scope. On return, C_Scope is reset
-- to be the enclosing compilation unit of this scope.
procedure Set_Elaboration_Constraint
(Call : Node_Id;
Subp : Entity_Id;
Scop : Entity_Id);
-- The current unit U may depend semantically on some unit P that is not
-- in the current context. If there is an elaboration call that reaches P,
-- we need to indicate that P requires an Elaborate_All, but this is not
-- effective in U's ali file, if there is no with_clause for P. In this
-- case we add the Elaborate_All on the unit Q that directly or indirectly
-- makes P available. This can happen in two cases:
--
-- a) Q declares a subtype of a type declared in P, and the call is an
-- initialization call for an object of that subtype.
--
-- b) Q declares an object of some tagged type whose root type is
-- declared in P, and the initialization call uses object notation on
-- that object to reach a primitive operation or a classwide operation
-- declared in P.
--
-- If P appears in the context of U, the current processing is correct.
-- Otherwise we must identify these two cases to retrieve Q and place the
-- Elaborate_All_Desirable on it.
function Spec_Entity (E : Entity_Id) return Entity_Id;
-- Given a compilation unit entity, if it is a spec entity, it is returned
-- unchanged. If it is a body entity, then the spec for the corresponding
-- spec is returned
function Within (E1, E2 : Entity_Id) return Boolean;
-- Given two scopes E1 and E2, returns True if E1 is equal to E2, or is one
-- of its contained scopes, False otherwise.
function Within_Elaborate_All
(Unit : Unit_Number_Type;
E : Entity_Id) return Boolean;
-- Return True if we are within the scope of an Elaborate_All for E, or if
-- we are within the scope of an Elaborate_All for some other unit U, and U
-- with's E. This prevents spurious warnings when the called entity is
-- renamed within U, or in case of generic instances.
--------------------------------------
-- Activate_Elaborate_All_Desirable --
--------------------------------------
procedure Activate_Elaborate_All_Desirable (N : Node_Id; U : Entity_Id) is
UN : constant Unit_Number_Type := Get_Code_Unit (N);
CU : constant Node_Id := Cunit (UN);
UE : constant Entity_Id := Cunit_Entity (UN);
Unm : constant Unit_Name_Type := Unit_Name (UN);
CI : constant List_Id := Context_Items (CU);
Itm : Node_Id;
Ent : Entity_Id;
procedure Add_To_Context_And_Mark (Itm : Node_Id);
-- This procedure is called when the elaborate indication must be
-- applied to a unit not in the context of the referencing unit. The
-- unit gets added to the context as an implicit with.
function In_Withs_Of (UEs : Entity_Id) return Boolean;
-- UEs is the spec entity of a unit. If the unit to be marked is
-- in the context item list of this unit spec, then the call returns
-- True and Itm is left set to point to the relevant N_With_Clause node.
procedure Set_Elab_Flag (Itm : Node_Id);
-- Sets Elaborate_[All_]Desirable as appropriate on Itm
-----------------------------
-- Add_To_Context_And_Mark --
-----------------------------
procedure Add_To_Context_And_Mark (Itm : Node_Id) is
CW : constant Node_Id :=
Make_With_Clause (Sloc (Itm),
Name => Name (Itm));
begin
Set_Library_Unit (CW, Library_Unit (Itm));
Set_Implicit_With (CW);
-- Set elaborate all desirable on copy and then append the copy to
-- the list of body with's and we are done.
Set_Elab_Flag (CW);
Append_To (CI, CW);
end Add_To_Context_And_Mark;
-----------------
-- In_Withs_Of --
-----------------
function In_Withs_Of (UEs : Entity_Id) return Boolean is
UNs : constant Unit_Number_Type := Get_Source_Unit (UEs);
CUs : constant Node_Id := Cunit (UNs);
CIs : constant List_Id := Context_Items (CUs);
begin
Itm := First (CIs);
while Present (Itm) loop
if Nkind (Itm) = N_With_Clause then
Ent :=
Cunit_Entity (Get_Cunit_Unit_Number (Library_Unit (Itm)));
if U = Ent then
return True;
end if;
end if;
Next (Itm);
end loop;
return False;
end In_Withs_Of;
-------------------
-- Set_Elab_Flag --
-------------------
procedure Set_Elab_Flag (Itm : Node_Id) is
begin
if Nkind (N) in N_Subprogram_Instantiation then
Set_Elaborate_Desirable (Itm);
else
Set_Elaborate_All_Desirable (Itm);
end if;
end Set_Elab_Flag;
-- Start of processing for Activate_Elaborate_All_Desirable
begin
-- Do not set binder indication if expansion is disabled, as when
-- compiling a generic unit.
if not Expander_Active then
return;
end if;
-- If an instance of a generic package contains a controlled object (so
-- we're calling Initialize at elaboration time), and the instance is in
-- a package body P that says "with P;", then we need to return without
-- adding "pragma Elaborate_All (P);" to P.
if U = Main_Unit_Entity then
return;
end if;
Itm := First (CI);
while Present (Itm) loop
if Nkind (Itm) = N_With_Clause then
Ent := Cunit_Entity (Get_Cunit_Unit_Number (Library_Unit (Itm)));
-- If we find it, then mark elaborate all desirable and return
if U = Ent then
Set_Elab_Flag (Itm);
return;
end if;
end if;
Next (Itm);
end loop;
-- If we fall through then the with clause is not present in the
-- current unit. One legitimate possibility is that the with clause
-- is present in the spec when we are a body.
if Is_Body_Name (Unm)
and then In_Withs_Of (Spec_Entity (UE))
then
Add_To_Context_And_Mark (Itm);
return;
end if;
-- Similarly, we may be in the spec or body of a child unit, where
-- the unit in question is with'ed by some ancestor of the child unit.
if Is_Child_Name (Unm) then
declare
Pkg : Entity_Id;
begin
Pkg := UE;
loop
Pkg := Scope (Pkg);
exit when Pkg = Standard_Standard;
if In_Withs_Of (Pkg) then
Add_To_Context_And_Mark (Itm);
return;
end if;
end loop;
end;
end if;
-- Here if we do not find with clause on spec or body. We just ignore
-- this case; it means that the elaboration involves some other unit
-- than the unit being compiled, and will be caught elsewhere.
end Activate_Elaborate_All_Desirable;
------------------
-- Check_A_Call --
------------------
procedure Check_A_Call
(N : Node_Id;
E : Entity_Id;
Outer_Scope : Entity_Id;
Inter_Unit_Only : Boolean;
Generate_Warnings : Boolean := True;
In_Init_Proc : Boolean := False)
is
Access_Case : constant Boolean := Nkind (N) = N_Attribute_Reference;
-- Indicates if we have Access attribute case
function Call_To_Instance_From_Outside (Id : Entity_Id) return Boolean;
-- True if we're calling an instance of a generic subprogram, or a
-- subprogram in an instance of a generic package, and the call is
-- outside that instance.
procedure Elab_Warning
(Msg_D : String;
Msg_S : String;
Ent : Node_Or_Entity_Id);
-- Generate a call to Error_Msg_NE with parameters Msg_D or Msg_S (for
-- dynamic or static elaboration model), N and Ent. Msg_D is a real
-- warning (output if Msg_D is non-null and Elab_Warnings is set),
-- Msg_S is an info message (output if Elab_Info_Messages is set).
function Find_W_Scope return Entity_Id;
-- Find top-level scope for called entity (not following renamings
-- or derivations). This is where the Elaborate_All will go if it is
-- needed. We start with the called entity, except in the case of an
-- initialization procedure outside the current package, where the init
-- proc is in the root package, and we start from the entity of the name
-- in the call.
-----------------------------------
-- Call_To_Instance_From_Outside --
-----------------------------------
function Call_To_Instance_From_Outside (Id : Entity_Id) return Boolean is
Scop : Entity_Id := Id;
begin
loop
if Scop = Standard_Standard then
return False;
end if;
if Is_Generic_Instance (Scop) then
return not In_Open_Scopes (Scop);
end if;
Scop := Scope (Scop);
end loop;
end Call_To_Instance_From_Outside;
------------------
-- Elab_Warning --
------------------
procedure Elab_Warning
(Msg_D : String;
Msg_S : String;
Ent : Node_Or_Entity_Id)
is
begin
-- Dynamic elaboration checks, real warning
if Dynamic_Elaboration_Checks then
if not Access_Case then
if Msg_D /= "" and then Elab_Warnings then
Error_Msg_NE (Msg_D, N, Ent);
end if;
-- In the access case emit first warning message as well,
-- otherwise list of calls will appear as errors.
elsif Elab_Warnings then
Error_Msg_NE (Msg_S, N, Ent);
end if;
-- Static elaboration checks, info message
else
if Elab_Info_Messages then
Error_Msg_NE (Msg_S, N, Ent);
end if;
end if;
end Elab_Warning;
------------------
-- Find_W_Scope --
------------------
function Find_W_Scope return Entity_Id is
Refed_Ent : constant Entity_Id := Get_Referenced_Ent (N);
W_Scope : Entity_Id;
begin
if Is_Init_Proc (Refed_Ent)
and then not In_Same_Extended_Unit (N, Refed_Ent)
then
W_Scope := Scope (Refed_Ent);
else
W_Scope := E;
end if;
-- Now loop through scopes to get to the enclosing compilation unit
while not Is_Compilation_Unit (W_Scope) loop
W_Scope := Scope (W_Scope);
end loop;
return W_Scope;
end Find_W_Scope;
-- Local variables
Inst_Case : constant Boolean := Nkind (N) in N_Generic_Instantiation;
-- Indicates if we have instantiation case
Loc : constant Source_Ptr := Sloc (N);
Variable_Case : constant Boolean :=
Nkind (N) in N_Has_Entity
and then Present (Entity (N))
and then Ekind (Entity (N)) = E_Variable;
-- Indicates if we have variable reference case
W_Scope : constant Entity_Id := Find_W_Scope;
-- Top-level scope of directly called entity for subprogram. This
-- differs from E_Scope in the case where renamings or derivations
-- are involved, since it does not follow these links. W_Scope is
-- generally in a visible unit, and it is this scope that may require
-- an Elaborate_All. However, there are some cases (initialization
-- calls and calls involving object notation) where W_Scope might not
-- be in the context of the current unit, and there is an intermediate
-- package that is, in which case the Elaborate_All has to be placed
-- on this intermediate package. These special cases are handled in
-- Set_Elaboration_Constraint.
Ent : Entity_Id;
Callee_Unit_Internal : Boolean;
Caller_Unit_Internal : Boolean;
Decl : Node_Id;
Inst_Callee : Source_Ptr;
Inst_Caller : Source_Ptr;
Unit_Callee : Unit_Number_Type;
Unit_Caller : Unit_Number_Type;
Body_Acts_As_Spec : Boolean;
-- Set to true if call is to body acting as spec (no separate spec)
Cunit_SC : Boolean := False;
-- Set to suppress dynamic elaboration checks where one of the
-- enclosing scopes has Elaboration_Checks_Suppressed set, or else
-- if a pragma Elaborate[_All] applies to that scope, in which case
-- warnings on the scope are also suppressed. For the internal case,
-- we ignore this flag.
E_Scope : Entity_Id;
-- Top-level scope of entity for called subprogram. This value includes
-- following renamings and derivations, so this scope can be in a
-- non-visible unit. This is the scope that is to be investigated to
-- see whether an elaboration check is required.
Is_DIC : Boolean;
-- Flag set when the subprogram being invoked is the procedure generated
-- for pragma Default_Initial_Condition.
SPARK_Elab_Errors : Boolean;
-- Flag set when an entity is called or a variable is read during SPARK
-- dynamic elaboration.
-- Start of processing for Check_A_Call
begin
-- If the call is known to be within a local Suppress Elaboration
-- pragma, nothing to check. This can happen in task bodies. But
-- we ignore this for a call to a generic formal.
if Nkind (N) in N_Subprogram_Call
and then No_Elaboration_Check (N)
and then not Is_Call_Of_Generic_Formal (N)
then
return;
-- If this is a rewrite of a Valid_Scalars attribute, then nothing to
-- check, we don't mind in this case if the call occurs before the body
-- since this is all generated code.
elsif Nkind (Original_Node (N)) = N_Attribute_Reference
and then Attribute_Name (Original_Node (N)) = Name_Valid_Scalars
then
return;
-- Intrinsics such as instances of Unchecked_Deallocation do not have
-- any body, so elaboration checking is not needed, and would be wrong.
elsif Is_Intrinsic_Subprogram (E) then
return;
-- Do not consider references to internal variables for SPARK semantics
elsif Variable_Case and then not Comes_From_Source (E) then
return;
end if;
-- Proceed with check
Ent := E;
-- For a variable reference, just set Body_Acts_As_Spec to False
if Variable_Case then
Body_Acts_As_Spec := False;
-- Additional checks for all other cases
else
-- Go to parent for derived subprogram, or to original subprogram in
-- the case of a renaming (Alias covers both these cases).
loop
if (Suppress_Elaboration_Warnings (Ent)
or else Elaboration_Checks_Suppressed (Ent))
and then (Inst_Case or else No (Alias (Ent)))
then
return;
end if;
-- Nothing to do for imported entities
if Is_Imported (Ent) then
return;
end if;
exit when Inst_Case or else No (Alias (Ent));
Ent := Alias (Ent);
end loop;
Decl := Unit_Declaration_Node (Ent);
if Nkind (Decl) = N_Subprogram_Body then
Body_Acts_As_Spec := True;
elsif Nkind (Decl) in
N_Subprogram_Declaration | N_Subprogram_Body_Stub
or else Inst_Case
then
Body_Acts_As_Spec := False;
-- If we have none of an instantiation, subprogram body or subprogram
-- declaration, or in the SPARK case, a variable reference, then
-- it is not a case that we want to check. (One case is a call to a
-- generic formal subprogram, where we do not want the check in the
-- template).
else
return;
end if;
end if;
E_Scope := Ent;
loop
if Elaboration_Checks_Suppressed (E_Scope)
or else Suppress_Elaboration_Warnings (E_Scope)
then
Cunit_SC := True;
end if;
-- Exit when we get to compilation unit, not counting subunits
exit when Is_Compilation_Unit (E_Scope)
and then (Is_Child_Unit (E_Scope)
or else Scope (E_Scope) = Standard_Standard);
pragma Assert (E_Scope /= Standard_Standard);
-- Move up a scope looking for compilation unit
E_Scope := Scope (E_Scope);
end loop;
-- No checks needed for pure or preelaborated compilation units
if Is_Pure (E_Scope) or else Is_Preelaborated (E_Scope) then
return;
end if;
-- If the generic entity is within a deeper instance than we are, then
-- either the instantiation to which we refer itself caused an ABE, in
-- which case that will be handled separately, or else we know that the
-- body we need appears as needed at the point of the instantiation.
-- However, this assumption is only valid if we are in static mode.
if not Dynamic_Elaboration_Checks
and then
Instantiation_Depth (Sloc (Ent)) > Instantiation_Depth (Sloc (N))
then
return;
end if;
-- Do not give a warning for a package with no body
if Ekind (Ent) = E_Generic_Package and then not Has_Generic_Body (N) then
return;
end if;
-- Case of entity is in same unit as call or instantiation. In the
-- instantiation case, W_Scope may be different from E_Scope; we want
-- the unit in which the instantiation occurs, since we're analyzing
-- based on the expansion.
if W_Scope = C_Scope then
if not Inter_Unit_Only then
Check_Internal_Call (N, Ent, Outer_Scope, E);
end if;
return;
end if;
-- Case of entity is not in current unit (i.e. with'ed unit case)
-- We are only interested in such calls if the outer call was from
-- elaboration code, or if we are in Dynamic_Elaboration_Checks mode.
if not From_Elab_Code and then not Dynamic_Elaboration_Checks then
return;
end if;
-- Nothing to do if some scope said that no checks were required
if Cunit_SC then
return;
end if;
-- Nothing to do for a generic instance, because a call to an instance
-- cannot fail the elaboration check, because the body of the instance
-- is always elaborated immediately after the spec.
if Call_To_Instance_From_Outside (Ent) then
return;
end if;
-- Nothing to do if subprogram with no separate spec. However, a call
-- to Deep_Initialize may result in a call to a user-defined Initialize
-- procedure, which imposes a body dependency. This happens only if the
-- type is controlled and the Initialize procedure is not inherited.
if Body_Acts_As_Spec then
if Is_TSS (Ent, TSS_Deep_Initialize) then
declare
Typ : constant Entity_Id := Etype (First_Formal (Ent));
Init : Entity_Id;
begin
if not Is_Controlled (Typ) then
return;
else
Init := Find_Prim_Op (Typ, Name_Initialize);
if Comes_From_Source (Init) then
Ent := Init;
else
return;
end if;
end if;
end;
else
return;
end if;
end if;
-- Check cases of internal units
Callee_Unit_Internal := In_Internal_Unit (E_Scope);
-- Do not give a warning if the with'ed unit is internal and this is
-- the generic instantiation case (this saves a lot of hassle dealing
-- with the Text_IO special child units)
if Callee_Unit_Internal and Inst_Case then
return;
end if;
if C_Scope = Standard_Standard then
Caller_Unit_Internal := False;
else
Caller_Unit_Internal := In_Internal_Unit (C_Scope);
end if;
-- Do not give a warning if the with'ed unit is internal and the caller
-- is not internal (since the binder always elaborates internal units
-- first).
if Callee_Unit_Internal and not Caller_Unit_Internal then
return;
end if;
-- For now, if debug flag -gnatdE is not set, do no checking for one
-- internal unit withing another. This fixes the problem with the sgi
-- build and storage errors. To be resolved later ???
if (Callee_Unit_Internal and Caller_Unit_Internal)
and not Debug_Flag_EE
then
return;
end if;
if Is_TSS (E, TSS_Deep_Initialize) then
Ent := E;
end if;
-- If the call is in an instance, and the called entity is not
-- defined in the same instance, then the elaboration issue focuses
-- around the unit containing the template, it is this unit that
-- requires an Elaborate_All.
-- However, if we are doing dynamic elaboration, we need to chase the
-- call in the usual manner.
-- We also need to chase the call in the usual manner if it is a call
-- to a generic formal parameter, since that case was not handled as
-- part of the processing of the template.
Inst_Caller := Instantiation (Get_Source_File_Index (Sloc (N)));
Inst_Callee := Instantiation (Get_Source_File_Index (Sloc (Ent)));
if Inst_Caller = No_Location then
Unit_Caller := No_Unit;
else
Unit_Caller := Get_Source_Unit (N);
end if;
if Inst_Callee = No_Location then
Unit_Callee := No_Unit;
else
Unit_Callee := Get_Source_Unit (Ent);
end if;
if Unit_Caller /= No_Unit
and then Unit_Callee /= Unit_Caller
and then not Dynamic_Elaboration_Checks
and then not Is_Call_Of_Generic_Formal (N)
then
E_Scope := Spec_Entity (Cunit_Entity (Unit_Caller));
-- If we don't get a spec entity, just ignore call. Not quite
-- clear why this check is necessary. ???
if No (E_Scope) then
return;
end if;
-- Otherwise step to enclosing compilation unit
while not Is_Compilation_Unit (E_Scope) loop
E_Scope := Scope (E_Scope);
end loop;
-- For the case where N is not an instance, and is not a call within
-- instance to other than a generic formal, we recompute E_Scope
-- for the error message, since we do NOT want to go to the unit
-- that has the ultimate declaration in the case of renaming and
-- derivation and we also want to go to the generic unit in the
-- case of an instance, and no further.
else
-- Loop to carefully follow renamings and derivations one step
-- outside the current unit, but not further.
if not (Inst_Case or Variable_Case)
and then Present (Alias (Ent))
then
E_Scope := Alias (Ent);
else
E_Scope := Ent;
end if;
loop
while not Is_Compilation_Unit (E_Scope) loop
E_Scope := Scope (E_Scope);
end loop;
-- If E_Scope is the same as C_Scope, it means that there
-- definitely was a local renaming or derivation, and we
-- are not yet out of the current unit.
exit when E_Scope /= C_Scope;
Ent := Alias (Ent);
E_Scope := Ent;
-- If no alias, there could be a previous error, but not if we've
-- already reached the outermost level (Standard).
if No (Ent) then
return;
end if;
end loop;
end if;
if Within_Elaborate_All (Current_Sem_Unit, E_Scope) then
return;
end if;
-- Determine whether the Default_Initial_Condition procedure of some
-- type is being invoked.
Is_DIC := Ekind (Ent) = E_Procedure and then Is_DIC_Procedure (Ent);
-- Checks related to Default_Initial_Condition fall under the SPARK
-- umbrella because this is a SPARK-specific annotation.
SPARK_Elab_Errors :=
SPARK_Mode = On and (Is_DIC or Dynamic_Elaboration_Checks);
-- Now check if an Elaborate_All (or dynamic check) is needed
if (Elab_Info_Messages or Elab_Warnings or SPARK_Elab_Errors)
and then Generate_Warnings
and then not Suppress_Elaboration_Warnings (Ent)
and then not Elaboration_Checks_Suppressed (Ent)
and then not Suppress_Elaboration_Warnings (E_Scope)
and then not Elaboration_Checks_Suppressed (E_Scope)
then
-- Instantiation case
if Inst_Case then
if Comes_From_Source (Ent) and then SPARK_Elab_Errors then
Error_Msg_NE
("instantiation of & during elaboration in SPARK", N, Ent);
else
Elab_Warning
("instantiation of & may raise Program_Error?l?",
"info: instantiation of & during elaboration?$?", Ent);
end if;
-- Indirect call case, info message only in static elaboration
-- case, because the attribute reference itself cannot raise an
-- exception. Note that SPARK does not permit indirect calls.
elsif Access_Case then
Elab_Warning ("", "info: access to & during elaboration?$?", Ent);
-- Variable reference in SPARK mode
elsif Variable_Case then
if Comes_From_Source (Ent) and then SPARK_Elab_Errors then
Error_Msg_NE
("reference to & during elaboration in SPARK", N, Ent);
end if;
-- Subprogram call case
else
if Nkind (Name (N)) in N_Has_Entity
and then Is_Init_Proc (Entity (Name (N)))
and then Comes_From_Source (Ent)
then
Elab_Warning
("implicit call to & may raise Program_Error?l?",
"info: implicit call to & during elaboration?$?",
Ent);
elsif SPARK_Elab_Errors then
-- Emit a specialized error message when the elaboration of an
-- object of a private type evaluates the expression of pragma
-- Default_Initial_Condition. This prevents the internal name
-- of the procedure from appearing in the error message.
if Is_DIC then
Error_Msg_N
("call to Default_Initial_Condition during elaboration in "
& "SPARK", N);
else
Error_Msg_NE
("call to & during elaboration in SPARK", N, Ent);
end if;
else
Elab_Warning
("call to & may raise Program_Error?l?",
"info: call to & during elaboration?$?",
Ent);
end if;
end if;
Error_Msg_Qual_Level := Nat'Last;
-- Case of Elaborate_All not present and required, for SPARK this
-- is an error, so give an error message.
if SPARK_Elab_Errors then
Error_Msg_NE -- CODEFIX
("\Elaborate_All pragma required for&", N, W_Scope);
-- Otherwise we generate an implicit pragma. For a subprogram
-- instantiation, Elaborate is good enough, since no transitive
-- call is possible at elaboration time in this case.
elsif Nkind (N) in N_Subprogram_Instantiation then
Elab_Warning
("\missing pragma Elaborate for&?l?",
"\implicit pragma Elaborate for& generated?$?",
W_Scope);
-- For all other cases, we need an implicit Elaborate_All
else
Elab_Warning
("\missing pragma Elaborate_All for&?l?",
"\implicit pragma Elaborate_All for & generated?$?",
W_Scope);
end if;
Error_Msg_Qual_Level := 0;
-- Take into account the flags related to elaboration warning
-- messages when enumerating the various calls involved. This
-- ensures the proper pairing of the main warning and the
-- clarification messages generated by Output_Calls.
Output_Calls (N, Check_Elab_Flag => True);
-- Set flag to prevent further warnings for same unit unless in
-- All_Errors_Mode.
if not All_Errors_Mode and not Dynamic_Elaboration_Checks then
Set_Suppress_Elaboration_Warnings (W_Scope);
end if;
end if;
-- Check for runtime elaboration check required
if Dynamic_Elaboration_Checks then
if not Elaboration_Checks_Suppressed (Ent)
and then not Elaboration_Checks_Suppressed (W_Scope)
and then not Elaboration_Checks_Suppressed (E_Scope)
and then not Cunit_SC
then
-- Runtime elaboration check required. Generate check of the
-- elaboration Boolean for the unit containing the entity.
-- Note that for this case, we do check the real unit (the one
-- from following renamings, since that is the issue).
-- Could this possibly miss a useless but required PE???
Insert_Elab_Check (N,
Make_Attribute_Reference (Loc,
Attribute_Name => Name_Elaborated,
Prefix =>
New_Occurrence_Of (Spec_Entity (E_Scope), Loc)));
-- Prevent duplicate elaboration checks on the same call, which
-- can happen if the body enclosing the call appears itself in a
-- call whose elaboration check is delayed.
if Nkind (N) in N_Subprogram_Call then
Set_No_Elaboration_Check (N);
end if;
end if;
-- Case of static elaboration model
else
-- Do not do anything if elaboration checks suppressed. Note that
-- we check Ent here, not E, since we want the real entity for the
-- body to see if checks are suppressed for it, not the dummy
-- entry for renamings or derivations.
if Elaboration_Checks_Suppressed (Ent)
or else Elaboration_Checks_Suppressed (E_Scope)
or else Elaboration_Checks_Suppressed (W_Scope)
then
null;
-- Do not generate an Elaborate_All for finalization routines
-- that perform partial clean up as part of initialization.
elsif In_Init_Proc and then Is_Finalization_Procedure (Ent) then
null;
-- Here we need to generate an implicit elaborate all
else
-- Generate Elaborate_All warning unless suppressed
if (Elab_Info_Messages and Generate_Warnings and not Inst_Case)
and then not Suppress_Elaboration_Warnings (Ent)
and then not Suppress_Elaboration_Warnings (E_Scope)
and then not Suppress_Elaboration_Warnings (W_Scope)
then
Error_Msg_Node_2 := W_Scope;
Error_Msg_NE
("info: call to& in elaboration code requires pragma "
& "Elaborate_All on&?$?", N, E);
end if;
-- Set indication for binder to generate Elaborate_All
Set_Elaboration_Constraint (N, E, W_Scope);
end if;
end if;
end Check_A_Call;
-----------------------------
-- Check_Bad_Instantiation --
-----------------------------
procedure Check_Bad_Instantiation (N : Node_Id) is
Ent : Entity_Id;
begin
-- Nothing to do if we do not have an instantiation (happens in some
-- error cases, and also in the formal package declaration case)
if Nkind (N) not in N_Generic_Instantiation then
return;
-- Nothing to do if serious errors detected (avoid cascaded errors)
elsif Serious_Errors_Detected /= 0 then
return;
-- Nothing to do if not in full analysis mode
elsif not Full_Analysis then
return;
-- Nothing to do if inside a generic template
elsif Inside_A_Generic then
return;
-- Nothing to do if a library level instantiation
elsif Nkind (Parent (N)) = N_Compilation_Unit then
return;
-- Nothing to do if we are compiling a proper body for semantic
-- purposes only. The generic body may be in another proper body.
elsif
Nkind (Parent (Unit_Declaration_Node (Main_Unit_Entity))) = N_Subunit
then
return;
end if;
Ent := Get_Generic_Entity (N);
-- The case we are interested in is when the generic spec is in the
-- current declarative part
if not Same_Elaboration_Scope (Current_Scope, Scope (Ent))
or else not In_Same_Extended_Unit (N, Ent)
then
return;
end if;
-- If the generic entity is within a deeper instance than we are, then
-- either the instantiation to which we refer itself caused an ABE, in
-- which case that will be handled separately. Otherwise, we know that
-- the body we need appears as needed at the point of the instantiation.
-- If they are both at the same level but not within the same instance
-- then the body of the generic will be in the earlier instance.
declare
D1 : constant Nat := Instantiation_Depth (Sloc (Ent));
D2 : constant Nat := Instantiation_Depth (Sloc (N));
begin
if D1 > D2 then
return;
elsif D1 = D2
and then Is_Generic_Instance (Scope (Ent))
and then not In_Open_Scopes (Scope (Ent))
then
return;
end if;
end;
-- Now we can proceed, if the entity being called has a completion,
-- then we are definitely OK, since we have already seen the body.
if Has_Completion (Ent) then
return;
end if;
-- If there is no body, then nothing to do
if not Has_Generic_Body (N) then
return;
end if;
-- Here we definitely have a bad instantiation
Error_Msg_Warn := SPARK_Mode /= On;
Error_Msg_NE ("cannot instantiate& before body seen<<", N, Ent);
Error_Msg_N ("\Program_Error [<<", N);
Insert_Elab_Check (N);
Set_Is_Known_Guaranteed_ABE (N);
end Check_Bad_Instantiation;
---------------------
-- Check_Elab_Call --
---------------------
procedure Check_Elab_Call
(N : Node_Id;
Outer_Scope : Entity_Id := Empty;
In_Init_Proc : Boolean := False)
is
Ent : Entity_Id;
P : Node_Id;
begin
pragma Assert (Legacy_Elaboration_Checks);
-- If the reference is not in the main unit, there is nothing to check.
-- Elaboration call from units in the context of the main unit will lead
-- to semantic dependencies when those units are compiled.
if not In_Extended_Main_Code_Unit (N) then
return;
end if;
-- For an entry call, check relevant restriction
if Nkind (N) = N_Entry_Call_Statement
and then not In_Subprogram_Or_Concurrent_Unit
then
Check_Restriction (No_Entry_Calls_In_Elaboration_Code, N);
-- Nothing to do if this is not an expected type of reference (happens
-- in some error conditions, and in some cases where rewriting occurs).
elsif Nkind (N) not in N_Subprogram_Call
and then Nkind (N) /= N_Attribute_Reference
and then (SPARK_Mode /= On
or else Nkind (N) not in N_Has_Entity
or else No (Entity (N))
or else Ekind (Entity (N)) /= E_Variable)
then
return;
-- Nothing to do if this is a call already rewritten for elab checking.
-- Such calls appear as the targets of If_Expressions.
-- This check MUST be wrong, it catches far too much
elsif Nkind (Parent (N)) = N_If_Expression then
return;
-- Nothing to do if inside a generic template
elsif Inside_A_Generic
and then No (Enclosing_Generic_Body (N))
then
return;
-- Nothing to do if call is being preanalyzed, as when within a
-- pre/postcondition, a predicate, or an invariant.
elsif In_Spec_Expression then
return;
end if;
-- Nothing to do if this is a call to a postcondition, which is always
-- within a subprogram body, even though the current scope may be the
-- enclosing scope of the subprogram.
if Nkind (N) = N_Procedure_Call_Statement
and then Is_Entity_Name (Name (N))
and then Chars (Entity (Name (N))) = Name_uPostconditions
then
return;
end if;
-- Here we have a reference at elaboration time that must be checked
if Debug_Flag_Underscore_LL then
Write_Str (" Check_Elab_Ref: ");
if Nkind (N) = N_Attribute_Reference then
if not Is_Entity_Name (Prefix (N)) then
Write_Str ("<<not entity name>>");
else
Write_Name (Chars (Entity (Prefix (N))));
end if;
Write_Str ("'Access");
elsif No (Name (N)) or else not Is_Entity_Name (Name (N)) then
Write_Str ("<<not entity name>> ");
else
Write_Name (Chars (Entity (Name (N))));
end if;
Write_Str (" reference at ");
Write_Location (Sloc (N));
Write_Eol;
end if;
-- Climb up the tree to make sure we are not inside default expression
-- of a parameter specification or a record component, since in both
-- these cases, we will be doing the actual reference later, not now,
-- and it is at the time of the actual reference (statically speaking)
-- that we must do our static check, not at the time of its initial
-- analysis).
-- However, we have to check references within component definitions
-- (e.g. a function call that determines an array component bound),
-- so we terminate the loop in that case.
P := Parent (N);
while Present (P) loop
if Nkind (P) in N_Parameter_Specification | N_Component_Declaration
then
return;
-- The reference occurs within the constraint of a component,
-- so it must be checked.
elsif Nkind (P) = N_Component_Definition then
exit;
else
P := Parent (P);
end if;
end loop;
-- Stuff that happens only at the outer level
if No (Outer_Scope) then
Elab_Visited.Set_Last (0);
-- Nothing to do if current scope is Standard (this is a bit odd, but
-- it happens in the case of generic instantiations).
C_Scope := Current_Scope;
if C_Scope = Standard_Standard then
return;
end if;
-- First case, we are in elaboration code
From_Elab_Code := not In_Subprogram_Or_Concurrent_Unit;
if From_Elab_Code then
-- Complain if ref that comes from source in preelaborated unit
-- and we are not inside a subprogram (i.e. we are in elab code).
-- Ada 2022 (AI12-0175): Calls to certain functions that are
-- essentially unchecked conversions are preelaborable.
if Comes_From_Source (N)
and then In_Preelaborated_Unit
and then not In_Inlined_Body
and then Nkind (N) /= N_Attribute_Reference
and then not (Ada_Version >= Ada_2022
and then Is_Preelaborable_Construct (N))
then
Error_Preelaborated_Call (N);
return;
end if;
-- Second case, we are inside a subprogram or concurrent unit, which
-- means we are not in elaboration code.
else
-- In this case, the issue is whether we are inside the
-- declarative part of the unit in which we live, or inside its
-- statements. In the latter case, there is no issue of ABE calls
-- at this level (a call from outside to the unit in which we live
-- might cause an ABE, but that will be detected when we analyze
-- that outer level call, as it recurses into the called unit).
-- Climb up the tree, doing this test, and also testing for being
-- inside a default expression, which, as discussed above, is not
-- checked at this stage.
declare
P : Node_Id;
L : List_Id;
begin
P := N;
loop
-- If we find a parentless subtree, it seems safe to assume
-- that we are not in a declarative part and that no
-- checking is required.
if No (P) then
return;
end if;
if Is_List_Member (P) then
L := List_Containing (P);
P := Parent (L);
else
L := No_List;
P := Parent (P);
end if;
exit when Nkind (P) = N_Subunit;
-- Filter out case of default expressions, where we do not
-- do the check at this stage.
if Nkind (P) in
N_Parameter_Specification | N_Component_Declaration
then
return;
end if;
-- A protected body has no elaboration code and contains
-- only other bodies.
if Nkind (P) = N_Protected_Body then
return;
elsif Nkind (P) in N_Subprogram_Body
| N_Task_Body
| N_Block_Statement
| N_Entry_Body
then
if L = Declarations (P) then
exit;
-- We are not in elaboration code, but we are doing
-- dynamic elaboration checks, in this case, we still
-- need to do the reference, since the subprogram we are
-- in could be called from another unit, also in dynamic
-- elaboration check mode, at elaboration time.
elsif Dynamic_Elaboration_Checks then
-- We provide a debug flag to disable this check. That
-- way we have an easy work around for regressions
-- that are caused by this new check. This debug flag
-- can be removed later.
if Debug_Flag_DD then
return;
end if;
-- Do the check in this case
exit;
elsif Nkind (P) = N_Task_Body then
-- The check is deferred until Check_Task_Activation
-- but we need to capture local suppress pragmas
-- that may inhibit checks on this call.
Ent := Get_Referenced_Ent (N);
if No (Ent) then
return;
elsif Elaboration_Checks_Suppressed (Current_Scope)
or else Elaboration_Checks_Suppressed (Ent)
or else Elaboration_Checks_Suppressed (Scope (Ent))
then
if Nkind (N) in N_Subprogram_Call then
Set_No_Elaboration_Check (N);
end if;
end if;
return;
-- Static model, call is not in elaboration code, we
-- never need to worry, because in the static model the
-- top-level caller always takes care of things.
else
return;
end if;
end if;
end loop;
end;
end if;
end if;
Ent := Get_Referenced_Ent (N);
if No (Ent) then
return;
end if;
-- Determine whether a prior call to the same subprogram was already
-- examined within the same context. If this is the case, then there is
-- no need to proceed with the various warnings and checks because the
-- work was already done for the previous call.
declare
Self : constant Visited_Element :=
(Subp_Id => Ent, Context => Parent (N));
begin
for Index in 1 .. Elab_Visited.Last loop
if Self = Elab_Visited.Table (Index) then
return;
end if;
end loop;
end;
-- See if we need to analyze this reference. We analyze it if either of
-- the following conditions is met:
-- It is an inner level call (since in this case it was triggered
-- by an outer level call from elaboration code), but only if the
-- call is within the scope of the original outer level call.
-- It is an outer level reference from elaboration code, or a call to
-- an entity is in the same elaboration scope.
-- And in these cases, we will check both inter-unit calls and
-- intra-unit (within a single unit) calls.
C_Scope := Current_Scope;
-- If not outer level reference, then we follow it if it is within the
-- original scope of the outer reference.
if Present (Outer_Scope)
and then Within (Scope (Ent), Outer_Scope)
then
Set_C_Scope;
Check_A_Call
(N => N,
E => Ent,
Outer_Scope => Outer_Scope,
Inter_Unit_Only => False,
In_Init_Proc => In_Init_Proc);
-- Nothing to do if elaboration checks suppressed for this scope.
-- However, an interesting exception, the fact that elaboration checks
-- are suppressed within an instance (because we can trace the body when
-- we process the template) does not extend to calls to generic formal
-- subprograms.
elsif Elaboration_Checks_Suppressed (Current_Scope)
and then not Is_Call_Of_Generic_Formal (N)
then
null;
elsif From_Elab_Code then
Set_C_Scope;
Check_A_Call (N, Ent, Standard_Standard, Inter_Unit_Only => False);
elsif Same_Elaboration_Scope (C_Scope, Scope (Ent)) then
Set_C_Scope;
Check_A_Call (N, Ent, Scope (Ent), Inter_Unit_Only => False);
-- If none of those cases holds, but Dynamic_Elaboration_Checks mode
-- is set, then we will do the check, but only in the inter-unit case
-- (this is to accommodate unguarded elaboration calls from other units
-- in which this same mode is set). We don't want warnings in this case,
-- it would generate warnings having nothing to do with elaboration.
elsif Dynamic_Elaboration_Checks then
Set_C_Scope;
Check_A_Call
(N,
Ent,
Standard_Standard,
Inter_Unit_Only => True,
Generate_Warnings => False);
-- Otherwise nothing to do
else
return;
end if;
-- A call to an Init_Proc in elaboration code may bring additional
-- dependencies, if some of the record components thereof have
-- initializations that are function calls that come from source. We
-- treat the current node as a call to each of these functions, to check
-- their elaboration impact.
if Is_Init_Proc (Ent) and then From_Elab_Code then
Process_Init_Proc : declare
Unit_Decl : constant Node_Id := Unit_Declaration_Node (Ent);
function Check_Init_Call (Nod : Node_Id) return Traverse_Result;
-- Find subprogram calls within body of Init_Proc for Traverse
-- instantiation below.
procedure Traverse_Body is new Traverse_Proc (Check_Init_Call);
-- Traversal procedure to find all calls with body of Init_Proc
---------------------
-- Check_Init_Call --
---------------------
function Check_Init_Call (Nod : Node_Id) return Traverse_Result is
Func : Entity_Id;
begin
if Nkind (Nod) in N_Subprogram_Call
and then Is_Entity_Name (Name (Nod))
then
Func := Entity (Name (Nod));
if Comes_From_Source (Func) then
Check_A_Call
(N, Func, Standard_Standard, Inter_Unit_Only => True);
end if;
return OK;
else
return OK;
end if;
end Check_Init_Call;
-- Start of processing for Process_Init_Proc
begin
if Nkind (Unit_Decl) = N_Subprogram_Body then
Traverse_Body (Handled_Statement_Sequence (Unit_Decl));
end if;
end Process_Init_Proc;
end if;
end Check_Elab_Call;
-----------------------
-- Check_Elab_Assign --
-----------------------
procedure Check_Elab_Assign (N : Node_Id) is
Ent : Entity_Id;
Scop : Entity_Id;
Pkg_Spec : Entity_Id;
Pkg_Body : Entity_Id;
begin
pragma Assert (Legacy_Elaboration_Checks);
-- For record or array component, check prefix. If it is an access type,
-- then there is nothing to do (we do not know what is being assigned),
-- but otherwise this is an assignment to the prefix.
if Nkind (N) in N_Indexed_Component | N_Selected_Component | N_Slice then
if not Is_Access_Type (Etype (Prefix (N))) then
Check_Elab_Assign (Prefix (N));
end if;
return;
end if;
-- For type conversion, check expression
if Nkind (N) = N_Type_Conversion then
Check_Elab_Assign (Expression (N));
return;
end if;
-- Nothing to do if this is not an entity reference otherwise get entity
if Is_Entity_Name (N) then
Ent := Entity (N);
else
return;
end if;
-- What we are looking for is a reference in the body of a package that
-- modifies a variable declared in the visible part of the package spec.
if Present (Ent)
and then Comes_From_Source (N)
and then not Suppress_Elaboration_Warnings (Ent)
and then Ekind (Ent) = E_Variable
and then not In_Private_Part (Ent)
and then Is_Library_Level_Entity (Ent)
then
Scop := Current_Scope;
loop
if No (Scop) or else Scop = Standard_Standard then
return;
elsif Ekind (Scop) = E_Package
and then Is_Compilation_Unit (Scop)
then
exit;
else
Scop := Scope (Scop);
end if;
end loop;
-- Here Scop points to the containing library package
Pkg_Spec := Scop;
Pkg_Body := Body_Entity (Pkg_Spec);
-- All OK if the package has an Elaborate_Body pragma
if Has_Pragma_Elaborate_Body (Scop) then
return;
end if;
-- OK if entity being modified is not in containing package spec
if not In_Same_Source_Unit (Scop, Ent) then
return;
end if;
-- All OK if entity appears in generic package or generic instance.
-- We just get too messed up trying to give proper warnings in the
-- presence of generics. Better no message than a junk one.
Scop := Scope (Ent);
while Present (Scop) and then Scop /= Pkg_Spec loop
if Ekind (Scop) = E_Generic_Package then
return;
elsif Ekind (Scop) = E_Package
and then Is_Generic_Instance (Scop)
then
return;
end if;
Scop := Scope (Scop);
end loop;
-- All OK if in task, don't issue warnings there
if In_Task_Activation then
return;
end if;
-- OK if no package body
if No (Pkg_Body) then
return;
end if;
-- OK if reference is not in package body
if not In_Same_Source_Unit (Pkg_Body, N) then
return;
end if;
-- OK if package body has no handled statement sequence
declare
HSS : constant Node_Id :=
Handled_Statement_Sequence (Declaration_Node (Pkg_Body));
begin
if No (HSS) or else not Comes_From_Source (HSS) then
return;
end if;
end;
-- We definitely have a case of a modification of an entity in
-- the package spec from the elaboration code of the package body.
-- We may not give the warning (because there are some additional
-- checks to avoid too many false positives), but it would be a good
-- idea for the binder to try to keep the body elaboration close to
-- the spec elaboration.
Set_Elaborate_Body_Desirable (Pkg_Spec);
-- All OK in gnat mode (we know what we are doing)
if GNAT_Mode then
return;
end if;
-- All OK if all warnings suppressed
if Warning_Mode = Suppress then
return;
end if;
-- All OK if elaboration checks suppressed for entity
if Checks_May_Be_Suppressed (Ent)
and then Is_Check_Suppressed (Ent, Elaboration_Check)
then
return;
end if;
-- OK if the entity is initialized. Note that the No_Initialization
-- flag usually means that the initialization has been rewritten into
-- assignments, but that still counts for us.
declare
Decl : constant Node_Id := Declaration_Node (Ent);
begin
if Nkind (Decl) = N_Object_Declaration
and then (Present (Expression (Decl))
or else No_Initialization (Decl))
then
return;
end if;
end;
-- Here is where we give the warning
-- All OK if warnings suppressed on the entity
if not Has_Warnings_Off (Ent) then
Error_Msg_Sloc := Sloc (Ent);
Error_Msg_NE
("??& can be accessed by clients before this initialization",
N, Ent);
Error_Msg_NE
("\??add Elaborate_Body to spec to ensure & is initialized",
N, Ent);
end if;
if not All_Errors_Mode then
Set_Suppress_Elaboration_Warnings (Ent);
end if;
end if;
end Check_Elab_Assign;
----------------------
-- Check_Elab_Calls --
----------------------
-- WARNING: This routine manages SPARK regions
procedure Check_Elab_Calls is
Saved_SM : SPARK_Mode_Type;
Saved_SMP : Node_Id;
begin
pragma Assert (Legacy_Elaboration_Checks);
-- If expansion is disabled, do not generate any checks, unless we
-- are in GNATprove mode, so that errors are issued in GNATprove for
-- violations of static elaboration rules in SPARK code. Also skip
-- checks if any subunits are missing because in either case we lack the
-- full information that we need, and no object file will be created in
-- any case.
if (not Expander_Active and not GNATprove_Mode)
or else Is_Generic_Unit (Cunit_Entity (Main_Unit))
or else Subunits_Missing
then
return;
end if;
-- Skip delayed calls if we had any errors
if Serious_Errors_Detected = 0 then
Delaying_Elab_Checks := False;
Expander_Mode_Save_And_Set (True);
for J in Delay_Check.First .. Delay_Check.Last loop
Push_Scope (Delay_Check.Table (J).Curscop);
From_Elab_Code := Delay_Check.Table (J).From_Elab_Code;
In_Task_Activation := Delay_Check.Table (J).In_Task_Activation;
Saved_SM := SPARK_Mode;
Saved_SMP := SPARK_Mode_Pragma;
-- Set appropriate value of SPARK_Mode
if Delay_Check.Table (J).From_SPARK_Code then
SPARK_Mode := On;
end if;
Check_Internal_Call_Continue
(N => Delay_Check.Table (J).N,
E => Delay_Check.Table (J).E,
Outer_Scope => Delay_Check.Table (J).Outer_Scope,
Orig_Ent => Delay_Check.Table (J).Orig_Ent);
Restore_SPARK_Mode (Saved_SM, Saved_SMP);
Pop_Scope;
end loop;
-- Set Delaying_Elab_Checks back on for next main compilation
Expander_Mode_Restore;
Delaying_Elab_Checks := True;
end if;
end Check_Elab_Calls;
------------------------------
-- Check_Elab_Instantiation --
------------------------------
procedure Check_Elab_Instantiation
(N : Node_Id;
Outer_Scope : Entity_Id := Empty)
is
Ent : Entity_Id;
begin
pragma Assert (Legacy_Elaboration_Checks);
-- Check for and deal with bad instantiation case. There is some
-- duplicated code here, but we will worry about this later ???
Check_Bad_Instantiation (N);
if Is_Known_Guaranteed_ABE (N) then
return;
end if;
-- Nothing to do if we do not have an instantiation (happens in some
-- error cases, and also in the formal package declaration case)
if Nkind (N) not in N_Generic_Instantiation then
return;
end if;
-- Nothing to do if inside a generic template
if Inside_A_Generic then
return;
end if;
-- Nothing to do if the instantiation is not in the main unit
if not In_Extended_Main_Code_Unit (N) then
return;
end if;
Ent := Get_Generic_Entity (N);
From_Elab_Code := not In_Subprogram_Or_Concurrent_Unit;
-- See if we need to analyze this instantiation. We analyze it if
-- either of the following conditions is met:
-- It is an inner level instantiation (since in this case it was
-- triggered by an outer level call from elaboration code), but
-- only if the instantiation is within the scope of the original
-- outer level call.
-- It is an outer level instantiation from elaboration code, or the
-- instantiated entity is in the same elaboration scope.
-- And in these cases, we will check both the inter-unit case and
-- the intra-unit (within a single unit) case.
C_Scope := Current_Scope;
if Present (Outer_Scope) and then Within (Scope (Ent), Outer_Scope) then
Set_C_Scope;
Check_A_Call (N, Ent, Outer_Scope, Inter_Unit_Only => False);
elsif From_Elab_Code then
Set_C_Scope;
Check_A_Call (N, Ent, Standard_Standard, Inter_Unit_Only => False);
elsif Same_Elaboration_Scope (C_Scope, Scope (Ent)) then
Set_C_Scope;
Check_A_Call (N, Ent, Scope (Ent), Inter_Unit_Only => False);
-- If none of those cases holds, but Dynamic_Elaboration_Checks mode is
-- set, then we will do the check, but only in the inter-unit case (this
-- is to accommodate unguarded elaboration calls from other units in
-- which this same mode is set). We inhibit warnings in this case, since
-- this instantiation is not occurring in elaboration code.
elsif Dynamic_Elaboration_Checks then
Set_C_Scope;
Check_A_Call
(N,
Ent,
Standard_Standard,
Inter_Unit_Only => True,
Generate_Warnings => False);
else
return;
end if;
end Check_Elab_Instantiation;
-------------------------
-- Check_Internal_Call --
-------------------------
procedure Check_Internal_Call
(N : Node_Id;
E : Entity_Id;
Outer_Scope : Entity_Id;
Orig_Ent : Entity_Id)
is
function Within_Initial_Condition (Call : Node_Id) return Boolean;
-- Determine whether call Call occurs within pragma Initial_Condition or
-- pragma Check with check_kind set to Initial_Condition.
------------------------------
-- Within_Initial_Condition --
------------------------------
function Within_Initial_Condition (Call : Node_Id) return Boolean is
Args : List_Id;
Nam : Name_Id;
Par : Node_Id;
begin
-- Traverse the parent chain looking for an enclosing pragma
Par := Call;
while Present (Par) loop
if Nkind (Par) = N_Pragma then
Nam := Pragma_Name (Par);
-- Pragma Initial_Condition appears in its alternative from as
-- Check (Initial_Condition, ...).
if Nam = Name_Check then
Args := Pragma_Argument_Associations (Par);
-- Pragma Check should have at least two arguments
pragma Assert (Present (Args));
return
Chars (Expression (First (Args))) = Name_Initial_Condition;
-- Direct match
elsif Nam = Name_Initial_Condition then
return True;
-- Since pragmas are never nested within other pragmas, stop
-- the traversal.
else
return False;
end if;
-- Prevent the search from going too far
elsif Is_Body_Or_Package_Declaration (Par) then
exit;
end if;
Par := Parent (Par);
-- If assertions are not enabled, the check pragma is rewritten
-- as an if_statement in sem_prag, to generate various warnings
-- on boolean expressions. Retrieve the original pragma.
if Nkind (Original_Node (Par)) = N_Pragma then
Par := Original_Node (Par);
end if;
end loop;
return False;
end Within_Initial_Condition;
-- Local variables
Inst_Case : constant Boolean := Nkind (N) in N_Generic_Instantiation;
-- Start of processing for Check_Internal_Call
begin
-- For P'Access, we want to warn if the -gnatw.f switch is set, and the
-- node comes from source.
if Nkind (N) = N_Attribute_Reference
and then ((not Warn_On_Elab_Access and then not Debug_Flag_Dot_O)
or else not Comes_From_Source (N))
then
return;
-- If not function or procedure call, instantiation, or 'Access, then
-- ignore call (this happens in some error cases and rewriting cases).
elsif Nkind (N) not in N_Attribute_Reference
| N_Function_Call
| N_Procedure_Call_Statement
and then not Inst_Case
then
return;
-- Nothing to do if this is a call or instantiation that has already
-- been found to be a sure ABE.
elsif Nkind (N) /= N_Attribute_Reference
and then Is_Known_Guaranteed_ABE (N)
then
return;
-- Nothing to do if errors already detected (avoid cascaded errors)
elsif Serious_Errors_Detected /= 0 then
return;
-- Nothing to do if not in full analysis mode
elsif not Full_Analysis then
return;
-- Nothing to do if analyzing in special spec-expression mode, since the
-- call is not actually being made at this time.
elsif In_Spec_Expression then
return;
-- Nothing to do for call to intrinsic subprogram
elsif Is_Intrinsic_Subprogram (E) then
return;
-- Nothing to do if call is within a generic unit
elsif Inside_A_Generic then
return;
-- Nothing to do when the call appears within pragma Initial_Condition.
-- The pragma is part of the elaboration statements of a package body
-- and may only call external subprograms or subprograms whose body is
-- already available.
elsif Within_Initial_Condition (N) then
return;
end if;
-- Delay this call if we are still delaying calls
if Delaying_Elab_Checks then
Delay_Check.Append
((N => N,
E => E,
Orig_Ent => Orig_Ent,
Curscop => Current_Scope,
Outer_Scope => Outer_Scope,
From_Elab_Code => From_Elab_Code,
In_Task_Activation => In_Task_Activation,
From_SPARK_Code => SPARK_Mode = On));
return;
-- Otherwise, call phase 2 continuation right now
else
Check_Internal_Call_Continue (N, E, Outer_Scope, Orig_Ent);
end if;
end Check_Internal_Call;
----------------------------------
-- Check_Internal_Call_Continue --
----------------------------------
procedure Check_Internal_Call_Continue
(N : Node_Id;
E : Entity_Id;
Outer_Scope : Entity_Id;
Orig_Ent : Entity_Id)
is
function Find_Elab_Reference (N : Node_Id) return Traverse_Result;
-- Function applied to each node as we traverse the body. Checks for
-- call or entity reference that needs checking, and if so checks it.
-- Always returns OK, so entire tree is traversed, except that as
-- described below subprogram bodies are skipped for now.
procedure Traverse is new Atree.Traverse_Proc (Find_Elab_Reference);
-- Traverse procedure using above Find_Elab_Reference function
-------------------------
-- Find_Elab_Reference --
-------------------------
function Find_Elab_Reference (N : Node_Id) return Traverse_Result is
Actual : Node_Id;
begin
-- If user has specified that there are no entry calls in elaboration
-- code, do not trace past an accept statement, because the rendez-
-- vous will happen after elaboration.
if Nkind (Original_Node (N)) in
N_Accept_Statement | N_Selective_Accept
and then Restriction_Active (No_Entry_Calls_In_Elaboration_Code)
then
return Abandon;
-- If we have a function call, check it
elsif Nkind (N) = N_Function_Call then
Check_Elab_Call (N, Outer_Scope);
return OK;
-- If we have a procedure call, check the call, and also check
-- arguments that are assignments (OUT or IN OUT mode formals).
elsif Nkind (N) = N_Procedure_Call_Statement then
Check_Elab_Call (N, Outer_Scope, In_Init_Proc => Is_Init_Proc (E));
Actual := First_Actual (N);
while Present (Actual) loop
if Known_To_Be_Assigned (Actual) then
Check_Elab_Assign (Actual);
end if;
Next_Actual (Actual);
end loop;
return OK;
-- If we have an access attribute for a subprogram, check it.
-- Suppress this behavior under debug flag.
elsif not Debug_Flag_Dot_UU
and then Nkind (N) = N_Attribute_Reference
and then
Attribute_Name (N) in Name_Access | Name_Unrestricted_Access
and then Is_Entity_Name (Prefix (N))
and then Is_Subprogram (Entity (Prefix (N)))
then
Check_Elab_Call (N, Outer_Scope);
return OK;
-- In SPARK mode, if we have an entity reference to a variable, then
-- check it. For now we consider any reference.
elsif SPARK_Mode = On
and then Nkind (N) in N_Has_Entity
and then Present (Entity (N))
and then Ekind (Entity (N)) = E_Variable
then
Check_Elab_Call (N, Outer_Scope);
return OK;
-- If we have a generic instantiation, check it
elsif Nkind (N) in N_Generic_Instantiation then
Check_Elab_Instantiation (N, Outer_Scope);
return OK;
-- Skip subprogram bodies that come from source (wait for call to
-- analyze these). The reason for the come from source test is to
-- avoid catching task bodies.
-- For task bodies, we should really avoid these too, waiting for the
-- task activation, but that's too much trouble to catch for now, so
-- we go in unconditionally. This is not so terrible, it means the
-- error backtrace is not quite complete, and we are too eager to
-- scan bodies of tasks that are unused, but this is hardly very
-- significant.
elsif Nkind (N) = N_Subprogram_Body
and then Comes_From_Source (N)
then
return Skip;
elsif Nkind (N) = N_Assignment_Statement
and then Comes_From_Source (N)
then
Check_Elab_Assign (Name (N));
return OK;
else
return OK;
end if;
end Find_Elab_Reference;
Inst_Case : constant Boolean := Is_Generic_Unit (E);
Loc : constant Source_Ptr := Sloc (N);
Ebody : Entity_Id;
Sbody : Node_Id;
-- Start of processing for Check_Internal_Call_Continue
begin
-- Save outer level call if at outer level
if Elab_Call.Last = 0 then
Outer_Level_Sloc := Loc;
end if;
-- If the call is to a function that renames a literal, no check needed
if Ekind (E) = E_Enumeration_Literal then
return;
end if;
-- Register the subprogram as examined within this particular context.
-- This ensures that calls to the same subprogram but in different
-- contexts receive warnings and checks of their own since the calls
-- may be reached through different flow paths.
Elab_Visited.Append ((Subp_Id => E, Context => Parent (N)));
Sbody := Unit_Declaration_Node (E);
if Nkind (Sbody) not in N_Subprogram_Body | N_Package_Body then
Ebody := Corresponding_Body (Sbody);
if No (Ebody) then
return;
else
Sbody := Unit_Declaration_Node (Ebody);
end if;
end if;
-- If the body appears after the outer level call or instantiation then
-- we have an error case handled below.
if Earlier_In_Extended_Unit (Outer_Level_Sloc, Sloc (Sbody))
and then not In_Task_Activation
then
null;
-- If we have the instantiation case we are done, since we now know that
-- the body of the generic appeared earlier.
elsif Inst_Case then
return;
-- Otherwise we have a call, so we trace through the called body to see
-- if it has any problems.
else
pragma Assert (Nkind (Sbody) = N_Subprogram_Body);
Elab_Call.Append ((Cloc => Loc, Ent => E));
if Debug_Flag_Underscore_LL then
Write_Str ("Elab_Call.Last = ");
Write_Int (Int (Elab_Call.Last));
Write_Str (" Ent = ");
Write_Name (Chars (E));
Write_Str (" at ");
Write_Location (Sloc (N));
Write_Eol;
end if;
-- Now traverse declarations and statements of subprogram body. Note
-- that we cannot simply Traverse (Sbody), since traverse does not
-- normally visit subprogram bodies.
declare
Decl : Node_Id;
begin
Decl := First (Declarations (Sbody));
while Present (Decl) loop
Traverse (Decl);
Next (Decl);
end loop;
end;
Traverse (Handled_Statement_Sequence (Sbody));
Elab_Call.Decrement_Last;
return;
end if;
-- Here is the case of calling a subprogram where the body has not yet
-- been encountered. A warning message is needed, except if this is the
-- case of appearing within an aspect specification that results in
-- a check call, we do not really have such a situation, so no warning
-- is needed (e.g. the case of a precondition, where the call appears
-- textually before the body, but in actual fact is moved to the
-- appropriate subprogram body and so does not need a check).
declare
P : Node_Id;
O : Node_Id;
begin
P := Parent (N);
loop
-- Keep looking at parents if we are still in the subexpression
if Nkind (P) in N_Subexpr then
P := Parent (P);
-- Here P is the parent of the expression, check for special case
else
O := Original_Node (P);
-- Definitely not the special case if orig node is not a pragma
exit when Nkind (O) /= N_Pragma;
-- Check we have an If statement or a null statement (happens
-- when the If has been expanded to be True).
exit when Nkind (P) not in N_If_Statement | N_Null_Statement;
-- Our special case will be indicated either by the pragma
-- coming from an aspect ...
if Present (Corresponding_Aspect (O)) then
return;
-- Or, in the case of an initial condition, specifically by a
-- Check pragma specifying an Initial_Condition check.
elsif Pragma_Name (O) = Name_Check
and then
Chars
(Expression (First (Pragma_Argument_Associations (O)))) =
Name_Initial_Condition
then
return;
-- For anything else, we have an error
else
exit;
end if;
end if;
end loop;
end;
-- Not that special case, warning and dynamic check is required
-- If we have nothing in the call stack, then this is at the outer
-- level, and the ABE is bound to occur, unless it's a 'Access, or
-- it's a renaming.
if Elab_Call.Last = 0 then
Error_Msg_Warn := SPARK_Mode /= On;
declare
Insert_Check : Boolean := True;
-- This flag is set to True if an elaboration check should be
-- inserted.
begin
if In_Task_Activation then
Insert_Check := False;
elsif Inst_Case then
Error_Msg_NE
("cannot instantiate& before body seen<<", N, Orig_Ent);
elsif Nkind (N) = N_Attribute_Reference then
Error_Msg_NE
("Access attribute of & before body seen<<", N, Orig_Ent);
Error_Msg_N
("\possible Program_Error on later references<<", N);
Insert_Check := False;
elsif Nkind (Unit_Declaration_Node (Orig_Ent)) /=
N_Subprogram_Renaming_Declaration
or else Is_Generic_Actual_Subprogram (Orig_Ent)
then
Error_Msg_NE
("cannot call& before body seen<<", N, Orig_Ent);
else
Insert_Check := False;
end if;
if Insert_Check then
Error_Msg_N ("\Program_Error [<<", N);
Insert_Elab_Check (N);
end if;
end;
-- Call is not at outer level
else
-- Do not generate elaboration checks in GNATprove mode because the
-- elaboration counter and the check are both forms of expansion.
if GNATprove_Mode then
null;
-- Generate an elaboration check
elsif not Elaboration_Checks_Suppressed (E) then
Set_Elaboration_Entity_Required (E);
-- Create a declaration of the elaboration entity, and insert it
-- prior to the subprogram or the generic unit, within the same
-- scope. Since the subprogram may be overloaded, create a unique
-- entity.
if No (Elaboration_Entity (E)) then
declare
Loce : constant Source_Ptr := Sloc (E);
Ent : constant Entity_Id :=
Make_Defining_Identifier (Loc,
New_External_Name (Chars (E), 'E', -1));
begin
Set_Elaboration_Entity (E, Ent);
Push_Scope (Scope (E));
Insert_Action (Declaration_Node (E),
Make_Object_Declaration (Loce,
Defining_Identifier => Ent,
Object_Definition =>
New_Occurrence_Of (Standard_Short_Integer, Loce),
Expression =>
Make_Integer_Literal (Loc, Uint_0)));
-- Set elaboration flag at the point of the body
Set_Elaboration_Flag (Sbody, E);
-- Kill current value indication. This is necessary because
-- the tests of this flag are inserted out of sequence and
-- must not pick up bogus indications of the wrong constant
-- value. Also, this is never a true constant, since one way
-- or another, it gets reset.
Set_Current_Value (Ent, Empty);
Set_Last_Assignment (Ent, Empty);
Set_Is_True_Constant (Ent, False);
Pop_Scope;
end;
end if;
-- Generate:
-- if Enn = 0 then
-- raise Program_Error with "access before elaboration";
-- end if;
Insert_Elab_Check (N,
Make_Attribute_Reference (Loc,
Attribute_Name => Name_Elaborated,
Prefix => New_Occurrence_Of (E, Loc)));
end if;
-- Generate the warning
if not Suppress_Elaboration_Warnings (E)
and then not Elaboration_Checks_Suppressed (E)
-- Suppress this warning if we have a function call that occurred
-- within an assertion expression, since we can get false warnings
-- in this case, due to the out of order handling in this case.
and then
(Nkind (Original_Node (N)) /= N_Function_Call
or else not In_Assertion_Expression_Pragma (Original_Node (N)))
then
Error_Msg_Warn := SPARK_Mode /= On;
if Inst_Case then
Error_Msg_NE
("instantiation of& may occur before body is seen<l<",
N, Orig_Ent);
else
-- A rather specific check. For Finalize/Adjust/Initialize, if
-- the type has Warnings_Off set, suppress the warning.
if Chars (E) in Name_Adjust
| Name_Finalize
| Name_Initialize
and then Present (First_Formal (E))
then
declare
T : constant Entity_Id := Etype (First_Formal (E));
begin
if Is_Controlled (T) then
if Warnings_Off (T)
or else (Ekind (T) = E_Private_Type
and then Warnings_Off (Full_View (T)))
then
goto Output;
end if;
end if;
end;
end if;
-- Go ahead and give warning if not this special case
Error_Msg_NE
("call to& may occur before body is seen<l<", N, Orig_Ent);
end if;
Error_Msg_N ("\Program_Error ]<l<", N);
-- There is no need to query the elaboration warning message flags
-- because the main message is an error, not a warning, therefore
-- all the clarification messages produces by Output_Calls must be
-- emitted unconditionally.
<<Output>>
Output_Calls (N, Check_Elab_Flag => False);
end if;
end if;
end Check_Internal_Call_Continue;
---------------------------
-- Check_Task_Activation --
---------------------------
procedure Check_Task_Activation (N : Node_Id) is
Loc : constant Source_Ptr := Sloc (N);
Inter_Procs : constant Elist_Id := New_Elmt_List;
Intra_Procs : constant Elist_Id := New_Elmt_List;
Ent : Entity_Id;
P : Entity_Id;
Task_Scope : Entity_Id;
Cunit_SC : Boolean := False;
Decl : Node_Id;
Elmt : Elmt_Id;
Enclosing : Entity_Id;
procedure Add_Task_Proc (Typ : Entity_Id);
-- Add to Task_Procs the task body procedure(s) of task types in Typ.
-- For record types, this procedure recurses over component types.
procedure Collect_Tasks (Decls : List_Id);
-- Collect the types of the tasks that are to be activated in the given
-- list of declarations, in order to perform elaboration checks on the
-- corresponding task procedures that are called implicitly here.
function Outer_Unit (E : Entity_Id) return Entity_Id;
-- find enclosing compilation unit of Entity, ignoring subunits, or
-- else enclosing subprogram. If E is not a package, there is no need
-- for inter-unit elaboration checks.
-------------------
-- Add_Task_Proc --
-------------------
procedure Add_Task_Proc (Typ : Entity_Id) is
Comp : Entity_Id;
Proc : Entity_Id := Empty;
begin
if Is_Task_Type (Typ) then
Proc := Get_Task_Body_Procedure (Typ);
elsif Is_Array_Type (Typ)
and then Has_Task (Base_Type (Typ))
then
Add_Task_Proc (Component_Type (Typ));
elsif Is_Record_Type (Typ)
and then Has_Task (Base_Type (Typ))
then
Comp := First_Component (Typ);
while Present (Comp) loop
Add_Task_Proc (Etype (Comp));
Next_Component (Comp);
end loop;
end if;
-- If the task type is another unit, we will perform the usual
-- elaboration check on its enclosing unit. If the type is in the
-- same unit, we can trace the task body as for an internal call,
-- but we only need to examine other external calls, because at
-- the point the task is activated, internal subprogram bodies
-- will have been elaborated already. We keep separate lists for
-- each kind of task.
-- Skip this test if errors have occurred, since in this case
-- we can get false indications.
if Serious_Errors_Detected /= 0 then
return;
end if;
if Present (Proc) then
if Outer_Unit (Scope (Proc)) = Enclosing then
if No (Corresponding_Body (Unit_Declaration_Node (Proc)))
and then
(not Is_Generic_Instance (Scope (Proc))
or else Scope (Proc) = Scope (Defining_Identifier (Decl)))
then
Error_Msg_Warn := SPARK_Mode /= On;
Error_Msg_N
("task will be activated before elaboration of its body<<",
Decl);
Error_Msg_N ("\Program_Error [<<", Decl);
elsif Present
(Corresponding_Body (Unit_Declaration_Node (Proc)))
then
Append_Elmt (Proc, Intra_Procs);
end if;
else
-- No need for multiple entries of the same type
Elmt := First_Elmt (Inter_Procs);
while Present (Elmt) loop
if Node (Elmt) = Proc then
return;
end if;
Next_Elmt (Elmt);
end loop;
Append_Elmt (Proc, Inter_Procs);
end if;
end if;
end Add_Task_Proc;
-------------------
-- Collect_Tasks --
-------------------
procedure Collect_Tasks (Decls : List_Id) is
begin
if Present (Decls) then
Decl := First (Decls);
while Present (Decl) loop
if Nkind (Decl) = N_Object_Declaration
and then Has_Task (Etype (Defining_Identifier (Decl)))
then
Add_Task_Proc (Etype (Defining_Identifier (Decl)));
end if;
Next (Decl);
end loop;
end if;
end Collect_Tasks;
----------------
-- Outer_Unit --
----------------
function Outer_Unit (E : Entity_Id) return Entity_Id is
Outer : Entity_Id;
begin
Outer := E;
while Present (Outer) loop
if Elaboration_Checks_Suppressed (Outer) then
Cunit_SC := True;
end if;
exit when Is_Child_Unit (Outer)
or else Scope (Outer) = Standard_Standard
or else Ekind (Outer) /= E_Package;
Outer := Scope (Outer);
end loop;
return Outer;
end Outer_Unit;
-- Start of processing for Check_Task_Activation
begin
pragma Assert (Legacy_Elaboration_Checks);
Enclosing := Outer_Unit (Current_Scope);
-- Find all tasks declared in the current unit
if Nkind (N) = N_Package_Body then
P := Unit_Declaration_Node (Corresponding_Spec (N));
Collect_Tasks (Declarations (N));
Collect_Tasks (Visible_Declarations (Specification (P)));
Collect_Tasks (Private_Declarations (Specification (P)));
elsif Nkind (N) = N_Package_Declaration then
Collect_Tasks (Visible_Declarations (Specification (N)));
Collect_Tasks (Private_Declarations (Specification (N)));
else
Collect_Tasks (Declarations (N));
end if;
-- We only perform detailed checks in all tasks that are library level
-- entities. If the master is a subprogram or task, activation will
-- depend on the activation of the master itself.
-- Should dynamic checks be added in the more general case???
if Ekind (Enclosing) /= E_Package then
return;
end if;
-- For task types defined in other units, we want the unit containing
-- the task body to be elaborated before the current one.
Elmt := First_Elmt (Inter_Procs);
while Present (Elmt) loop
Ent := Node (Elmt);
Task_Scope := Outer_Unit (Scope (Ent));
if not Is_Compilation_Unit (Task_Scope) then
null;
elsif Suppress_Elaboration_Warnings (Task_Scope)
or else Elaboration_Checks_Suppressed (Task_Scope)
then
null;
elsif Dynamic_Elaboration_Checks then
if not Elaboration_Checks_Suppressed (Ent)
and then not Cunit_SC
and then not Restriction_Active
(No_Entry_Calls_In_Elaboration_Code)
then
-- Runtime elaboration check required. Generate check of the
-- elaboration counter for the unit containing the entity.
Insert_Elab_Check (N,
Make_Attribute_Reference (Loc,
Prefix =>
New_Occurrence_Of (Spec_Entity (Task_Scope), Loc),
Attribute_Name => Name_Elaborated));
end if;
else
-- Force the binder to elaborate other unit first
if Elab_Info_Messages
and then not Suppress_Elaboration_Warnings (Ent)
and then not Elaboration_Checks_Suppressed (Ent)
and then not Suppress_Elaboration_Warnings (Task_Scope)
and then not Elaboration_Checks_Suppressed (Task_Scope)
then
Error_Msg_Node_2 := Task_Scope;
Error_Msg_NE
("info: activation of an instance of task type & requires "
& "pragma Elaborate_All on &?$?", N, Ent);
end if;
Activate_Elaborate_All_Desirable (N, Task_Scope);
Set_Suppress_Elaboration_Warnings (Task_Scope);
end if;
Next_Elmt (Elmt);
end loop;
-- For tasks declared in the current unit, trace other calls within the
-- task procedure bodies, which are available.
if not Debug_Flag_Dot_Y then
In_Task_Activation := True;
Elmt := First_Elmt (Intra_Procs);
while Present (Elmt) loop
Ent := Node (Elmt);
Check_Internal_Call_Continue (N, Ent, Enclosing, Ent);
Next_Elmt (Elmt);
end loop;
In_Task_Activation := False;
end if;
end Check_Task_Activation;
------------------------
-- Get_Referenced_Ent --
------------------------
function Get_Referenced_Ent (N : Node_Id) return Entity_Id is
Nam : Node_Id;
begin
if Nkind (N) in N_Has_Entity
and then Present (Entity (N))
and then Ekind (Entity (N)) = E_Variable
then
return Entity (N);
end if;
if Nkind (N) = N_Attribute_Reference then
Nam := Prefix (N);
else
Nam := Name (N);
end if;
if No (Nam) then
return Empty;
elsif Nkind (Nam) = N_Selected_Component then
return Entity (Selector_Name (Nam));
elsif not Is_Entity_Name (Nam) then
return Empty;
else
return Entity (Nam);
end if;
end Get_Referenced_Ent;
----------------------
-- Has_Generic_Body --
----------------------
function Has_Generic_Body (N : Node_Id) return Boolean is
Ent : constant Entity_Id := Get_Generic_Entity (N);
Decl : constant Node_Id := Unit_Declaration_Node (Ent);
Scop : Entity_Id;
function Find_Body_In (E : Entity_Id; N : Node_Id) return Node_Id;
-- Determine if the list of nodes headed by N and linked by Next
-- contains a package body for the package spec entity E, and if so
-- return the package body. If not, then returns Empty.
function Load_Package_Body (Nam : Unit_Name_Type) return Node_Id;
-- This procedure is called load the unit whose name is given by Nam.
-- This unit is being loaded to see whether it contains an optional
-- generic body. The returned value is the loaded unit, which is always
-- a package body (only package bodies can contain other entities in the
-- sense in which Has_Generic_Body is interested). We only attempt to
-- load bodies if we are generating code. If we are in semantics check
-- only mode, then it would be wrong to load bodies that are not
-- required from a semantic point of view, so in this case we return
-- Empty. The result is that the caller may incorrectly decide that a
-- generic spec does not have a body when in fact it does, but the only
-- harm in this is that some warnings on elaboration problems may be
-- lost in semantic checks only mode, which is not big loss. We also
-- return Empty if we go for a body and it is not there.
function Locate_Corresponding_Body (PE : Entity_Id) return Node_Id;
-- PE is the entity for a package spec. This function locates the
-- corresponding package body, returning Empty if none is found. The
-- package body returned is fully parsed but may not yet be analyzed,
-- so only syntactic fields should be referenced.
------------------
-- Find_Body_In --
------------------
function Find_Body_In (E : Entity_Id; N : Node_Id) return Node_Id is
Nod : Node_Id;
begin
Nod := N;
while Present (Nod) loop
-- If we found the package body we are looking for, return it
if Nkind (Nod) = N_Package_Body
and then Chars (Defining_Unit_Name (Nod)) = Chars (E)
then
return Nod;
-- If we found the stub for the body, go after the subunit,
-- loading it if necessary.
elsif Nkind (Nod) = N_Package_Body_Stub
and then Chars (Defining_Identifier (Nod)) = Chars (E)
then
if Present (Library_Unit (Nod)) then
return Unit (Library_Unit (Nod));
else
return Load_Package_Body (Get_Unit_Name (Nod));
end if;
-- If neither package body nor stub, keep looking on chain
else
Next (Nod);
end if;
end loop;
return Empty;
end Find_Body_In;
-----------------------
-- Load_Package_Body --
-----------------------
function Load_Package_Body (Nam : Unit_Name_Type) return Node_Id is
U : Unit_Number_Type;
begin
if Operating_Mode /= Generate_Code then
return Empty;
else
U :=
Load_Unit
(Load_Name => Nam,
Required => False,
Subunit => False,
Error_Node => N);
if U = No_Unit then
return Empty;
else
return Unit (Cunit (U));
end if;
end if;
end Load_Package_Body;
-------------------------------
-- Locate_Corresponding_Body --
-------------------------------
function Locate_Corresponding_Body (PE : Entity_Id) return Node_Id is
Spec : constant Node_Id := Declaration_Node (PE);
Decl : constant Node_Id := Parent (Spec);
Scop : constant Entity_Id := Scope (PE);
PBody : Node_Id;
begin
if Is_Library_Level_Entity (PE) then
-- If package is a library unit that requires a body, we have no
-- choice but to go after that body because it might contain an
-- optional body for the original generic package.
if Unit_Requires_Body (PE) then
-- Load the body. Note that we are a little careful here to use
-- Spec to get the unit number, rather than PE or Decl, since
-- in the case where the package is itself a library level
-- instantiation, Spec will properly reference the generic
-- template, which is what we really want.
return
Load_Package_Body
(Get_Body_Name (Unit_Name (Get_Source_Unit (Spec))));
-- But if the package is a library unit that does NOT require
-- a body, then no body is permitted, so we are sure that there
-- is no body for the original generic package.
else
return Empty;
end if;
-- Otherwise look and see if we are embedded in a further package
elsif Is_Package_Or_Generic_Package (Scop) then
-- If so, get the body of the enclosing package, and look in
-- its package body for the package body we are looking for.
PBody := Locate_Corresponding_Body (Scop);
if No (PBody) then
return Empty;
else
return Find_Body_In (PE, First (Declarations (PBody)));
end if;
-- If we are not embedded in a further package, then the body
-- must be in the same declarative part as we are.
else
return Find_Body_In (PE, Next (Decl));
end if;
end Locate_Corresponding_Body;
-- Start of processing for Has_Generic_Body
begin
if Present (Corresponding_Body (Decl)) then
return True;
elsif Unit_Requires_Body (Ent) then
return True;
-- Compilation units cannot have optional bodies
elsif Is_Compilation_Unit (Ent) then
return False;
-- Otherwise look at what scope we are in
else
Scop := Scope (Ent);
-- Case of entity is in other than a package spec, in this case
-- the body, if present, must be in the same declarative part.
if not Is_Package_Or_Generic_Package (Scop) then
declare
P : Node_Id;
begin
-- Declaration node may get us a spec, so if so, go to
-- the parent declaration.
P := Declaration_Node (Ent);
while not Is_List_Member (P) loop
P := Parent (P);
end loop;
return Present (Find_Body_In (Ent, Next (P)));
end;
-- If the entity is in a package spec, then we have to locate
-- the corresponding package body, and look there.
else
declare
PBody : constant Node_Id := Locate_Corresponding_Body (Scop);
begin
if No (PBody) then
return False;
else
return
Present
(Find_Body_In (Ent, (First (Declarations (PBody)))));
end if;
end;
end if;
end if;
end Has_Generic_Body;
-----------------------
-- Insert_Elab_Check --
-----------------------
procedure Insert_Elab_Check (N : Node_Id; C : Node_Id := Empty) is
Nod : Node_Id;
Loc : constant Source_Ptr := Sloc (N);
Chk : Node_Id;
-- The check (N_Raise_Program_Error) node to be inserted
begin
-- If expansion is disabled, do not generate any checks. Also
-- skip checks if any subunits are missing because in either
-- case we lack the full information that we need, and no object
-- file will be created in any case.
if not Expander_Active or else Subunits_Missing then
return;
end if;
-- If we have a generic instantiation, where Instance_Spec is set,
-- then this field points to a generic instance spec that has
-- been inserted before the instantiation node itself, so that
-- is where we want to insert a check.
if Nkind (N) in N_Generic_Instantiation
and then Present (Instance_Spec (N))
then
Nod := Instance_Spec (N);
else
Nod := N;
end if;
-- Build check node, possibly with condition
Chk :=
Make_Raise_Program_Error (Loc, Reason => PE_Access_Before_Elaboration);
if Present (C) then
Set_Condition (Chk, Make_Op_Not (Loc, Right_Opnd => C));
end if;
-- If we are inserting at the top level, insert in Aux_Decls
if Nkind (Parent (Nod)) = N_Compilation_Unit then
declare
ADN : constant Node_Id := Aux_Decls_Node (Parent (Nod));
begin
if No (Declarations (ADN)) then
Set_Declarations (ADN, New_List (Chk));
else
Append_To (Declarations (ADN), Chk);
end if;
Analyze (Chk);
end;
-- Otherwise just insert as an action on the node in question
else
Insert_Action (Nod, Chk);
end if;
end Insert_Elab_Check;
-------------------------------
-- Is_Call_Of_Generic_Formal --
-------------------------------
function Is_Call_Of_Generic_Formal (N : Node_Id) return Boolean is
begin
return Nkind (N) in N_Subprogram_Call
-- Always return False if debug flag -gnatd.G is set
and then not Debug_Flag_Dot_GG
-- For now, we detect this by looking for the strange identifier
-- node, whose Chars reflect the name of the generic formal, but
-- the Chars of the Entity references the generic actual.
and then Nkind (Name (N)) = N_Identifier
and then Chars (Name (N)) /= Chars (Entity (Name (N)));
end Is_Call_Of_Generic_Formal;
-------------------------------
-- Is_Finalization_Procedure --
-------------------------------
function Is_Finalization_Procedure (Id : Entity_Id) return Boolean is
begin
-- Check whether Id is a procedure with at least one parameter
if Ekind (Id) = E_Procedure and then Present (First_Formal (Id)) then
declare
Typ : constant Entity_Id := Etype (First_Formal (Id));
Deep_Fin : Entity_Id := Empty;
Fin : Entity_Id := Empty;
begin
-- If the type of the first formal does not require finalization
-- actions, then this is definitely not [Deep_]Finalize.
if not Needs_Finalization (Typ) then
return False;
end if;
-- At this point we have the following scenario:
-- procedure Name (Param1 : [in] [out] Ctrl[; Param2 : ...]);
-- Recover the two possible versions of [Deep_]Finalize using the
-- type of the first parameter and compare with the input.
Deep_Fin := TSS (Typ, TSS_Deep_Finalize);
if Is_Controlled (Typ) then
Fin := Find_Prim_Op (Typ, Name_Finalize);
end if;
return (Present (Deep_Fin) and then Id = Deep_Fin)
or else (Present (Fin) and then Id = Fin);
end;
end if;
return False;
end Is_Finalization_Procedure;
------------------
-- Output_Calls --
------------------
procedure Output_Calls
(N : Node_Id;
Check_Elab_Flag : Boolean)
is
function Emit (Flag : Boolean) return Boolean;
-- Determine whether to emit an error message based on the combination
-- of flags Check_Elab_Flag and Flag.
function Is_Printable_Error_Name return Boolean;
-- An internal function, used to determine if a name, stored in the
-- Name_Buffer, is either a non-internal name, or is an internal name
-- that is printable by the error message circuits (i.e. it has a single
-- upper case letter at the end).
----------
-- Emit --
----------
function Emit (Flag : Boolean) return Boolean is
begin
if Check_Elab_Flag then
return Flag;
else
return True;
end if;
end Emit;
-----------------------------
-- Is_Printable_Error_Name --
-----------------------------
function Is_Printable_Error_Name return Boolean is
begin
if not Is_Internal_Name then
return True;
elsif Name_Len = 1 then
return False;
else
Name_Len := Name_Len - 1;
return not Is_Internal_Name;
end if;
end Is_Printable_Error_Name;
-- Local variables
Ent : Entity_Id;
-- Start of processing for Output_Calls
begin
for J in reverse 1 .. Elab_Call.Last loop
Error_Msg_Sloc := Elab_Call.Table (J).Cloc;
Ent := Elab_Call.Table (J).Ent;
Get_Name_String (Chars (Ent));
-- Dynamic elaboration model, warnings controlled by -gnatwl
if Dynamic_Elaboration_Checks then
if Emit (Elab_Warnings) then
if Is_Generic_Unit (Ent) then
Error_Msg_NE ("\\?l?& instantiated #", N, Ent);
elsif Is_Init_Proc (Ent) then
Error_Msg_N ("\\?l?initialization procedure called #", N);
elsif Is_Printable_Error_Name then
Error_Msg_NE ("\\?l?& called #", N, Ent);
else
Error_Msg_N ("\\?l?called #", N);
end if;
end if;
-- Static elaboration model, info messages controlled by -gnatel
else
if Emit (Elab_Info_Messages) then
if Is_Generic_Unit (Ent) then
Error_Msg_NE ("\\?$?& instantiated #", N, Ent);
elsif Is_Init_Proc (Ent) then
Error_Msg_N ("\\?$?initialization procedure called #", N);
elsif Is_Printable_Error_Name then
Error_Msg_NE ("\\?$?& called #", N, Ent);
else
Error_Msg_N ("\\?$?called #", N);
end if;
end if;
end if;
end loop;
end Output_Calls;
----------------------------
-- Same_Elaboration_Scope --
----------------------------
function Same_Elaboration_Scope (Scop1, Scop2 : Entity_Id) return Boolean is
S1 : Entity_Id;
S2 : Entity_Id;
begin
-- Find elaboration scope for Scop1
-- This is either a subprogram or a compilation unit.
S1 := Scop1;
while S1 /= Standard_Standard
and then not Is_Compilation_Unit (S1)
and then Ekind (S1) in E_Package | E_Protected_Type | E_Block
loop
S1 := Scope (S1);
end loop;
-- Find elaboration scope for Scop2
S2 := Scop2;
while S2 /= Standard_Standard
and then not Is_Compilation_Unit (S2)
and then Ekind (S2) in E_Package | E_Protected_Type | E_Block
loop
S2 := Scope (S2);
end loop;
return S1 = S2;
end Same_Elaboration_Scope;
-----------------
-- Set_C_Scope --
-----------------
procedure Set_C_Scope is
begin
while not Is_Compilation_Unit (C_Scope) loop
C_Scope := Scope (C_Scope);
end loop;
end Set_C_Scope;
--------------------------------
-- Set_Elaboration_Constraint --
--------------------------------
procedure Set_Elaboration_Constraint
(Call : Node_Id;
Subp : Entity_Id;
Scop : Entity_Id)
is
Elab_Unit : Entity_Id;
-- Check whether this is a call to an Initialize subprogram for a
-- controlled type. Note that Call can also be a 'Access attribute
-- reference, which now generates an elaboration check.
Init_Call : constant Boolean :=
Nkind (Call) = N_Procedure_Call_Statement
and then Chars (Subp) = Name_Initialize
and then Comes_From_Source (Subp)
and then Present (Parameter_Associations (Call))
and then Is_Controlled (Etype (First_Actual (Call)));
begin
-- If the unit is mentioned in a with_clause of the current unit, it is
-- visible, and we can set the elaboration flag.
if Is_Immediately_Visible (Scop)
or else (Is_Child_Unit (Scop) and then Is_Visible_Lib_Unit (Scop))
then
Activate_Elaborate_All_Desirable (Call, Scop);
Set_Suppress_Elaboration_Warnings (Scop);
return;
end if;
-- If this is not an initialization call or a call using object notation
-- we know that the unit of the called entity is in the context, and we
-- can set the flag as well. The unit need not be visible if the call
-- occurs within an instantiation.
if Is_Init_Proc (Subp)
or else Init_Call
or else Nkind (Original_Node (Call)) = N_Selected_Component
then
null; -- detailed processing follows.
else
Activate_Elaborate_All_Desirable (Call, Scop);
Set_Suppress_Elaboration_Warnings (Scop);
return;
end if;
-- If the unit is not in the context, there must be an intermediate unit
-- that is, on which we need to place to elaboration flag. This happens
-- with init proc calls.
if Is_Init_Proc (Subp) or else Init_Call then
-- The initialization call is on an object whose type is not declared
-- in the same scope as the subprogram. The type of the object must
-- be a subtype of the type of operation. This object is the first
-- actual in the call.
declare
Typ : constant Entity_Id :=
Etype (First (Parameter_Associations (Call)));
begin
Elab_Unit := Scope (Typ);
while (Present (Elab_Unit))
and then not Is_Compilation_Unit (Elab_Unit)
loop
Elab_Unit := Scope (Elab_Unit);
end loop;
end;
-- If original node uses selected component notation, the prefix is
-- visible and determines the scope that must be elaborated. After
-- rewriting, the prefix is the first actual in the call.
elsif Nkind (Original_Node (Call)) = N_Selected_Component then
Elab_Unit := Scope (Etype (First (Parameter_Associations (Call))));
-- Not one of special cases above
else
-- Using previously computed scope. If the elaboration check is
-- done after analysis, the scope is not visible any longer, but
-- must still be in the context.
Elab_Unit := Scop;
end if;
Activate_Elaborate_All_Desirable (Call, Elab_Unit);
Set_Suppress_Elaboration_Warnings (Elab_Unit);
end Set_Elaboration_Constraint;
-----------------
-- Spec_Entity --
-----------------
function Spec_Entity (E : Entity_Id) return Entity_Id is
Decl : Node_Id;
begin
-- Check for case of body entity
-- Why is the check for E_Void needed???
if Ekind (E) in E_Void | E_Subprogram_Body | E_Package_Body then
Decl := E;
loop
Decl := Parent (Decl);
exit when Nkind (Decl) in N_Proper_Body;
end loop;
return Corresponding_Spec (Decl);
else
return E;
end if;
end Spec_Entity;
------------
-- Within --
------------
function Within (E1, E2 : Entity_Id) return Boolean is
Scop : Entity_Id;
begin
Scop := E1;
loop
if Scop = E2 then
return True;
elsif Scop = Standard_Standard then
return False;
else
Scop := Scope (Scop);
end if;
end loop;
end Within;
--------------------------
-- Within_Elaborate_All --
--------------------------
function Within_Elaborate_All
(Unit : Unit_Number_Type;
E : Entity_Id) return Boolean
is
type Unit_Number_Set is array (Main_Unit .. Last_Unit) of Boolean;
pragma Pack (Unit_Number_Set);
Seen : Unit_Number_Set := (others => False);
-- Seen (X) is True after we have seen unit X in the walk. This is used
-- to prevent processing the same unit more than once.
Result : Boolean := False;
procedure Helper (Unit : Unit_Number_Type);
-- This helper procedure does all the work for Within_Elaborate_All. It
-- walks the dependency graph, and sets Result to True if it finds an
-- appropriate Elaborate_All.
------------
-- Helper --
------------
procedure Helper (Unit : Unit_Number_Type) is
CU : constant Node_Id := Cunit (Unit);
Item : Node_Id;
Item2 : Node_Id;
Elab_Id : Entity_Id;
Par : Node_Id;
begin
if Seen (Unit) then
return;
else
Seen (Unit) := True;
end if;
-- First, check for Elaborate_Alls on this unit
Item := First (Context_Items (CU));
while Present (Item) loop
if Nkind (Item) = N_Pragma
and then Pragma_Name (Item) = Name_Elaborate_All
then
-- Return if some previous error on the pragma itself. The
-- pragma may be unanalyzed, because of a previous error, or
-- if it is the context of a subunit, inherited by its parent.
if Error_Posted (Item) or else not Analyzed (Item) then
return;
end if;
Elab_Id :=
Entity
(Expression (First (Pragma_Argument_Associations (Item))));
if E = Elab_Id then
Result := True;
return;
end if;
Par := Parent (Unit_Declaration_Node (Elab_Id));
Item2 := First (Context_Items (Par));
while Present (Item2) loop
if Nkind (Item2) = N_With_Clause
and then Entity (Name (Item2)) = E
and then not Limited_Present (Item2)
then
Result := True;
return;
end if;
Next (Item2);
end loop;
end if;
Next (Item);
end loop;
-- Second, recurse on with's. We could do this as part of the above
-- loop, but it's probably more efficient to have two loops, because
-- the relevant Elaborate_All is likely to be on the initial unit. In
-- other words, we're walking the with's breadth-first. This part is
-- only necessary in the dynamic elaboration model.
if Dynamic_Elaboration_Checks then
Item := First (Context_Items (CU));
while Present (Item) loop
if Nkind (Item) = N_With_Clause
and then not Limited_Present (Item)
then
-- Note: the following call to Get_Cunit_Unit_Number does a
-- linear search, which could be slow, but it's OK because
-- we're about to give a warning anyway. Also, there might
-- be hundreds of units, but not millions. If it turns out
-- to be a problem, we could store the Get_Cunit_Unit_Number
-- in each N_Compilation_Unit node, but that would involve
-- rearranging N_Compilation_Unit_Aux to make room.
Helper (Get_Cunit_Unit_Number (Library_Unit (Item)));
if Result then
return;
end if;
end if;
Next (Item);
end loop;
end if;
end Helper;
-- Start of processing for Within_Elaborate_All
begin
Helper (Unit);
return Result;
end Within_Elaborate_All;
end Sem_Elab;