;; Machine description for AArch64 architecture. ;; Copyright (C) 2009-2021 Free Software Foundation, Inc. ;; Contributed by ARM Ltd. ;; ;; This file is part of GCC. ;; ;; GCC is free software; you can redistribute it and/or modify it ;; under the terms of the GNU General Public License as published by ;; the Free Software Foundation; either version 3, or (at your option) ;; any later version. ;; ;; GCC is distributed in the hope that it will be useful, but ;; WITHOUT ANY WARRANTY; without even the implied warranty of ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ;; General Public License for more details. ;; ;; You should have received a copy of the GNU General Public License ;; along with GCC; see the file COPYING3. If not see ;; http://www.gnu.org/licenses/.

;; Register numbers (define_constants [ (R0_REGNUM 0) (R1_REGNUM 1) (R2_REGNUM 2) (R3_REGNUM 3) (R4_REGNUM 4) (R5_REGNUM 5) (R6_REGNUM 6) (R7_REGNUM 7) (R8_REGNUM 8) (R9_REGNUM 9) (R10_REGNUM 10) (R11_REGNUM 11) (R12_REGNUM 12) (R13_REGNUM 13) (R14_REGNUM 14) (R15_REGNUM 15) (R16_REGNUM 16) (R17_REGNUM 17) (R18_REGNUM 18) (R19_REGNUM 19) (R20_REGNUM 20) (R21_REGNUM 21) (R22_REGNUM 22) (R23_REGNUM 23) (R24_REGNUM 24) (R25_REGNUM 25) (R26_REGNUM 26) (R27_REGNUM 27) (R28_REGNUM 28) (R29_REGNUM 29) (R30_REGNUM 30) (SP_REGNUM 31) (V0_REGNUM 32) (V1_REGNUM 33) (V2_REGNUM 34) (V3_REGNUM 35) (V4_REGNUM 36) (V5_REGNUM 37) (V6_REGNUM 38) (V7_REGNUM 39) (V8_REGNUM 40) (V9_REGNUM 41) (V10_REGNUM 42) (V11_REGNUM 43) (V12_REGNUM 44) (V13_REGNUM 45) (V14_REGNUM 46) (V15_REGNUM 47) (V16_REGNUM 48) (V17_REGNUM 49) (V18_REGNUM 50) (V19_REGNUM 51) (V20_REGNUM 52) (V21_REGNUM 53) (V22_REGNUM 54) (V23_REGNUM 55) (V24_REGNUM 56) (V25_REGNUM 57) (V26_REGNUM 58) (V27_REGNUM 59) (V28_REGNUM 60) (V29_REGNUM 61) (V30_REGNUM 62) (V31_REGNUM 63) (SFP_REGNUM 64) (AP_REGNUM 65) (CC_REGNUM 66) ;; Defined only to make the DWARF description simpler. (VG_REGNUM 67) (P0_REGNUM 68) (P1_REGNUM 69) (P2_REGNUM 70) (P3_REGNUM 71) (P4_REGNUM 72) (P5_REGNUM 73) (P6_REGNUM 74) (P7_REGNUM 75) (P8_REGNUM 76) (P9_REGNUM 77) (P10_REGNUM 78) (P11_REGNUM 79) (P12_REGNUM 80) (P13_REGNUM 81) (P14_REGNUM 82) (P15_REGNUM 83) (LAST_SAVED_REGNUM 83) (FFR_REGNUM 84) ;; “FFR token”: a fake register used for representing the scheduling ;; restrictions on FFR-related operations. (FFRT_REGNUM 85) ;; The pair of scratch registers used for stack probing with -fstack-check. ;; Leave R9 alone as a possible choice for the static chain. ;; Note that the use of these registers is mutually exclusive with the use ;; of STACK_CLASH_SVE_CFA_REGNUM, which is for -fstack-clash-protection ;; rather than -fstack-check. (PROBE_STACK_FIRST_REGNUM 10) (PROBE_STACK_SECOND_REGNUM 11) ;; Scratch register used by stack clash protection to calculate ;; SVE CFA offsets during probing. (STACK_CLASH_SVE_CFA_REGNUM 11) ;; Scratch registers for prologue/epilogue use. (EP0_REGNUM 12) (EP1_REGNUM 13) ;; A couple of call-clobbered registers that we need to reserve when ;; tracking speculation this is not ABI, so is subject to change. (SPECULATION_SCRATCH_REGNUM 14) (SPECULATION_TRACKER_REGNUM 15) ;; Scratch registers used in frame layout. (IP0_REGNUM 16) (IP1_REGNUM 17) (FP_REGNUM 29) (LR_REGNUM 30) ] )

(define_c_enum “unspec” [ UNSPEC_AUTIA1716 UNSPEC_AUTIB1716 UNSPEC_AUTIASP UNSPEC_AUTIBSP UNSPEC_CALLEE_ABI UNSPEC_CASESI UNSPEC_CRC32B UNSPEC_CRC32CB UNSPEC_CRC32CH UNSPEC_CRC32CW UNSPEC_CRC32CX UNSPEC_CRC32H UNSPEC_CRC32W UNSPEC_CRC32X UNSPEC_FCVTZS UNSPEC_FCVTZU UNSPEC_FJCVTZS UNSPEC_FRINT32Z UNSPEC_FRINT32X UNSPEC_FRINT64Z UNSPEC_FRINT64X UNSPEC_URECPE UNSPEC_FRECPE UNSPEC_FRECPS UNSPEC_FRECPX UNSPEC_FRINTA UNSPEC_FRINTI UNSPEC_FRINTM UNSPEC_FRINTN UNSPEC_FRINTP UNSPEC_FRINTX UNSPEC_FRINTZ UNSPEC_GOTSMALLPIC UNSPEC_GOTSMALLPIC28K UNSPEC_GOTSMALLTLS UNSPEC_GOTTINYPIC UNSPEC_GOTTINYTLS UNSPEC_LD1 UNSPEC_LD2 UNSPEC_LD2_DREG UNSPEC_LD2_DUP UNSPEC_LD3 UNSPEC_LD3_DREG UNSPEC_LD3_DUP UNSPEC_LD4 UNSPEC_LD4_DREG UNSPEC_LD4_DUP UNSPEC_LD2_LANE UNSPEC_LD3_LANE UNSPEC_LD4_LANE UNSPEC_MB UNSPEC_NOP UNSPEC_PACIA1716 UNSPEC_PACIB1716 UNSPEC_PACIASP UNSPEC_PACIBSP UNSPEC_PRLG_STK UNSPEC_REV UNSPEC_RBIT UNSPEC_SABAL UNSPEC_SABAL2 UNSPEC_SABDL UNSPEC_SABDL2 UNSPEC_SADALP UNSPEC_SCVTF UNSPEC_SISD_NEG UNSPEC_SISD_SSHL UNSPEC_SISD_USHL UNSPEC_SSHL_2S UNSPEC_ST1 UNSPEC_ST2 UNSPEC_ST3 UNSPEC_ST4 UNSPEC_ST2_LANE UNSPEC_ST3_LANE UNSPEC_ST4_LANE UNSPEC_TLS UNSPEC_TLSDESC UNSPEC_TLSLE12 UNSPEC_TLSLE24 UNSPEC_TLSLE32 UNSPEC_TLSLE48 UNSPEC_UABAL UNSPEC_UABAL2 UNSPEC_UABDL UNSPEC_UABDL2 UNSPEC_UADALP UNSPEC_UCVTF UNSPEC_USHL_2S UNSPEC_VSTRUCTDUMMY UNSPEC_SSP_SYSREG UNSPEC_SP_SET UNSPEC_SP_TEST UNSPEC_RSHRN UNSPEC_RSQRT UNSPEC_RSQRTE UNSPEC_RSQRTS UNSPEC_NZCV UNSPEC_XPACLRI UNSPEC_LD1_SVE UNSPEC_ST1_SVE UNSPEC_LDNT1_SVE UNSPEC_STNT1_SVE UNSPEC_LD1RQ UNSPEC_LD1_GATHER UNSPEC_LDFF1_GATHER UNSPEC_LDNT1_GATHER UNSPEC_ST1_SCATTER UNSPEC_STNT1_SCATTER UNSPEC_PRED_X UNSPEC_PRED_Z UNSPEC_PTEST UNSPEC_PTRUE UNSPEC_UNPACKSHI UNSPEC_UNPACKUHI UNSPEC_UNPACKSLO UNSPEC_UNPACKULO UNSPEC_PACK UNSPEC_WHILEGE UNSPEC_WHILEGT UNSPEC_WHILEHI UNSPEC_WHILEHS UNSPEC_WHILELE UNSPEC_WHILELO UNSPEC_WHILELS UNSPEC_WHILELT UNSPEC_WHILERW UNSPEC_WHILEWR UNSPEC_LDN UNSPEC_STN UNSPEC_INSR UNSPEC_CLASTA UNSPEC_CLASTB UNSPEC_FADDA UNSPEC_REV_SUBREG UNSPEC_REINTERPRET UNSPEC_SPECULATION_TRACKER UNSPEC_SPECULATION_TRACKER_REV UNSPEC_COPYSIGN UNSPEC_TTEST ; Represent transaction test. UNSPEC_UPDATE_FFR UNSPEC_UPDATE_FFRT UNSPEC_RDFFR UNSPEC_WRFFR ;; Represents an SVE-style lane index, in which the indexing applies ;; within the containing 128-bit block. UNSPEC_SVE_LANE_SELECT UNSPEC_SVE_CNT_PAT UNSPEC_SVE_PREFETCH UNSPEC_SVE_PREFETCH_GATHER UNSPEC_SVE_COMPACT UNSPEC_SVE_SPLICE UNSPEC_GEN_TAG ; Generate a 4-bit MTE tag. UNSPEC_GEN_TAG_RND ; Generate a random 4-bit MTE tag. UNSPEC_TAG_SPACE ; Translate address to MTE tag address space. UNSPEC_LD1RO UNSPEC_SALT_ADDR ])

(define_c_enum “unspecv” [ UNSPECV_EH_RETURN ; Represent EH_RETURN UNSPECV_GET_FPCR ; Represent fetch of FPCR content. UNSPECV_SET_FPCR ; Represent assign of FPCR content. UNSPECV_GET_FPSR ; Represent fetch of FPSR content. UNSPECV_SET_FPSR ; Represent assign of FPSR content. UNSPECV_BLOCKAGE ; Represent a blockage UNSPECV_PROBE_STACK_RANGE ; Represent stack range probing. UNSPECV_SPECULATION_BARRIER ; Represent speculation barrier. UNSPECV_BTI_NOARG ; Represent BTI. UNSPECV_BTI_C ; Represent BTI c. UNSPECV_BTI_J ; Represent BTI j. UNSPECV_BTI_JC ; Represent BTI jc. UNSPECV_TSTART ; Represent transaction start. UNSPECV_TCOMMIT ; Represent transaction commit. UNSPECV_TCANCEL ; Represent transaction cancel. UNSPEC_RNDR ; Represent RNDR UNSPEC_RNDRRS ; Represent RNDRRS ] )

;; These constants are used as a const_int in various SVE unspecs ;; to indicate whether the governing predicate is known to be a PTRUE. (define_constants [; Indicates that the predicate might not be a PTRUE. (SVE_MAYBE_NOT_PTRUE 0)

; Indicates that the predicate is known to be a PTRUE. (SVE_KNOWN_PTRUE 1)])

;; These constants are used as a const_int in predicated SVE FP arithmetic ;; to indicate whether the operation is allowed to make additional lanes ;; active without worrying about the effect on faulting behavior. (define_constants [; Indicates either that all lanes are active or that the instruction may ; operate on inactive inputs even if doing so could induce a fault. (SVE_RELAXED_GP 0)

; Indicates that some lanes might be inactive and that the instruction ; must not operate on inactive inputs if doing so could induce a fault. (SVE_STRICT_GP 1)])

;; If further include files are added the defintion of MD_INCLUDES ;; must be updated.

(include “constraints.md”) (include “predicates.md”) (include “iterators.md”)

;; ------------------------------------------------------------------- ;; Instruction types and attributes ;; -------------------------------------------------------------------

; The “type” attribute is included here from AArch32 backend to be able ; to share pipeline descriptions. (include “../arm/types.md”)

;; It is important to set the fp or simd attributes to yes when a pattern ;; alternative uses the FP or SIMD register files, usually signified by use of ;; the ‘w’ constraint. This will ensure that the alternative will be ;; disabled when compiling with -mgeneral-regs-only or with the +nofp/+nosimd ;; architecture extensions. If all the alternatives in a pattern use the ;; FP or SIMD registers then the pattern predicate should include TARGET_FLOAT ;; or TARGET_SIMD.

;; Attributes of the architecture required to support the instruction (or ;; alternative). This attribute is used to compute attribute “enabled”, use type ;; “any” to enable an alternative in all cases.

(define_enum “arches” [ any rcpc8_4 fp simd sve fp16])

(define_enum_attr “arch” “arches” (const_string “any”))

;; [For compatibility with Arm in pipeline models] ;; Attribute that specifies whether or not the instruction touches fp ;; registers. ;; Note that this attribute is not used anywhere in either the arm or aarch64 ;; backends except in the scheduling description for xgene1. In that ;; scheduling description this attribute is used to subclass the load_4 and ;; load_8 types. (define_attr “fp” “no,yes” (if_then_else (eq_attr “arch” “fp”) (const_string “yes”) (const_string “no”)))

(define_attr “arch_enabled” “no,yes” (if_then_else (ior (eq_attr “arch” “any”)

(and (eq_attr "arch" "rcpc8_4")
     (match_test "AARCH64_ISA_RCPC8_4"))

(and (eq_attr "arch" "fp")
     (match_test "TARGET_FLOAT"))

(and (eq_attr "arch" "simd")
     (match_test "TARGET_SIMD"))

(and (eq_attr "arch" "fp16")
     (match_test "TARGET_FP_F16INST"))

(and (eq_attr "arch" "sve")
     (match_test "TARGET_SVE")))
(const_string "yes")
(const_string "no")))

;; Attribute that controls whether an alternative is enabled or not. ;; Currently it is only used to disable alternatives which touch fp or simd ;; registers when -mgeneral-regs-only is specified or to require a special ;; architecture support. (define_attr “enabled” “no,yes” (attr “arch_enabled”))

;; Attribute that specifies whether we are dealing with a branch to a ;; label that is far away, i.e. further away than the maximum/minimum ;; representable in a signed 21-bits number. ;; 0 :=: no ;; 1 :=: yes (define_attr “far_branch” "" (const_int 0))

;; Attribute that specifies whether the alternative uses MOVPRFX. (define_attr “movprfx” “no,yes” (const_string “no”))

;; Attribute to specify that an alternative has the length of a single ;; instruction plus a speculation barrier. (define_attr “sls_length” “none,retbr,casesi” (const_string “none”))

(define_attr “length” "" (cond [(eq_attr “movprfx” “yes”) (const_int 8)

 (eq_attr "sls_length" "retbr")
   (cond [(match_test "!aarch64_harden_sls_retbr_p ()") (const_int 4)
	  (match_test "TARGET_SB") (const_int 8)]
	 (const_int 12))

 (eq_attr "sls_length" "casesi")
   (cond [(match_test "!aarch64_harden_sls_retbr_p ()") (const_int 16)
	  (match_test "TARGET_SB") (const_int 20)]
	 (const_int 24))
]
  (const_int 4)))

;; Strictly for compatibility with AArch32 in pipeline models, since AArch64 has ;; no predicated insns. (define_attr “predicated” “yes,no” (const_string “no”))

;; Set to true on an insn that requires the speculation tracking state to be ;; in the tracking register before the insn issues. Otherwise the compiler ;; may chose to hold the tracking state encoded in SP. (define_attr “speculation_barrier” “true,false” (const_string “false”))

;; ------------------------------------------------------------------- ;; Pipeline descriptions and scheduling ;; -------------------------------------------------------------------

;; Processor types. (include “aarch64-tune.md”)

;; Scheduling (include “../arm/cortex-a53.md”) (include “../arm/cortex-a57.md”) (include “../arm/exynos-m1.md”) (include “falkor.md”) (include “saphira.md”) (include “thunderx.md”) (include “../arm/xgene1.md”) (include “thunderx2t99.md”) (include “tsv110.md”) (include “thunderx3t110.md”)

;; ------------------------------------------------------------------- ;; Jumps and other miscellaneous insns ;; -------------------------------------------------------------------

(define_insn “indirect_jump” [(set (pc) (match_operand:DI 0 “register_operand” “r”))] "" { output_asm_insn (“br\t%0”, operands); return aarch64_sls_barrier (aarch64_harden_sls_retbr_p ()); } [(set_attr “type” “branch”) (set_attr “sls_length” “retbr”)] )

(define_insn “jump” [(set (pc) (label_ref (match_operand 0 "" "")))] "" “b\t%l0” [(set_attr “type” “branch”)] )

(define_expand “cbranch4” [(set (pc) (if_then_else (match_operator 0 “aarch64_comparison_operator” [(match_operand:GPI 1 “register_operand”) (match_operand:GPI 2 “aarch64_plus_operand”)]) (label_ref (match_operand 3 "" "")) (pc)))] "" " operands[1] = aarch64_gen_compare_reg (GET_CODE (operands[0]), operands[1], operands[2]); operands[2] = const0_rtx; " )

(define_expand “cbranch4” [(set (pc) (if_then_else (match_operator 0 “aarch64_comparison_operator” [(match_operand:GPF 1 “register_operand”) (match_operand:GPF 2 “aarch64_fp_compare_operand”)]) (label_ref (match_operand 3 "" "")) (pc)))] "" " operands[1] = aarch64_gen_compare_reg (GET_CODE (operands[0]), operands[1], operands[2]); operands[2] = const0_rtx; " )

(define_expand “cbranchcc4” [(set (pc) (if_then_else (match_operator 0 “aarch64_comparison_operator” [(match_operand 1 “cc_register”) (match_operand 2 “const0_operand”)]) (label_ref (match_operand 3 "" "")) (pc)))] "" "")

(define_insn “@ccmp<CC_ONLY:mode>GPI:mode” [(set (match_operand:CC_ONLY 1 “cc_register” "") (if_then_else:CC_ONLY (match_operator 4 “aarch64_comparison_operator” [(match_operand 0 “cc_register” "") (const_int 0)]) (compare:CC_ONLY (match_operand:GPI 2 “register_operand” “r,r,r”) (match_operand:GPI 3 “aarch64_ccmp_operand” “r,Uss,Usn”)) (unspec:CC_ONLY [(match_operand 5 “immediate_operand”)] UNSPEC_NZCV)))] "" “@ ccmp\t%2, %3, %k5, %m4 ccmp\t%2, %3, %k5, %m4 ccmn\t%2, #%n3, %k5, %m4” [(set_attr “type” “alus_sreg,alus_imm,alus_imm”)] )

(define_insn “@ccmp<CCFP_CCFPE:mode>GPF:mode” [(set (match_operand:CCFP_CCFPE 1 “cc_register” "") (if_then_else:CCFP_CCFPE (match_operator 4 “aarch64_comparison_operator” [(match_operand 0 “cc_register” "") (const_int 0)]) (compare:CCFP_CCFPE (match_operand:GPF 2 “register_operand” “w”) (match_operand:GPF 3 “register_operand” “w”)) (unspec:CCFP_CCFPE [(match_operand 5 “immediate_operand”)] UNSPEC_NZCV)))] “TARGET_FLOAT” “fccmp\t%2, %3, %k5, %m4” [(set_attr “type” “fccmp”)] )

(define_insn “@ccmp<CC_ONLY:mode>GPI:mode_rev” [(set (match_operand:CC_ONLY 1 “cc_register” "") (if_then_else:CC_ONLY (match_operator 4 “aarch64_comparison_operator” [(match_operand 0 “cc_register” "") (const_int 0)]) (unspec:CC_ONLY [(match_operand 5 “immediate_operand”)] UNSPEC_NZCV) (compare:CC_ONLY (match_operand:GPI 2 “register_operand” “r,r,r”) (match_operand:GPI 3 “aarch64_ccmp_operand” “r,Uss,Usn”))))] "" “@ ccmp\t%2, %3, %k5, %M4 ccmp\t%2, %3, %k5, %M4 ccmn\t%2, #%n3, %k5, %M4” [(set_attr “type” “alus_sreg,alus_imm,alus_imm”)] )

(define_insn “@ccmp<CCFP_CCFPE:mode>GPF:mode_rev” [(set (match_operand:CCFP_CCFPE 1 “cc_register” "") (if_then_else:CCFP_CCFPE (match_operator 4 “aarch64_comparison_operator” [(match_operand 0 “cc_register” "") (const_int 0)]) (unspec:CCFP_CCFPE [(match_operand 5 “immediate_operand”)] UNSPEC_NZCV) (compare:CCFP_CCFPE (match_operand:GPF 2 “register_operand” “w”) (match_operand:GPF 3 “register_operand” “w”))))] “TARGET_FLOAT” “fccmp\t%2, %3, %k5, %M4” [(set_attr “type” “fccmp”)] )

;; Expansion of signed mod by a power of 2 using CSNEG. ;; For x0 % n where n is a power of 2 produce: ;; negs x1, x0 ;; and x0, x0, #(n - 1) ;; and x1, x1, #(n - 1) ;; csneg x0, x0, x1, mi

(define_expand “mod3” [(match_operand:GPI 0 “register_operand”) (match_operand:GPI 1 “register_operand”) (match_operand:GPI 2 “const_int_operand”)] "" { HOST_WIDE_INT val = INTVAL (operands[2]);

if (val <= 0
   || exact_log2 (val) <= 0
   || !aarch64_bitmask_imm (val - 1, <MODE>mode))
  FAIL;

rtx mask = GEN_INT (val - 1);

/* In the special case of x0 % 2 we can do the even shorter:
cmp    x0, xzr
and    x0, x0, 1
cneg   x0, x0, lt.  */
if (val == 2)
  {
rtx masked = gen_reg_rtx (<MODE>mode);
rtx ccreg = aarch64_gen_compare_reg (LT, operands[1], const0_rtx);
emit_insn (gen_and<mode>3 (masked, operands[1], mask));
rtx x = gen_rtx_LT (VOIDmode, ccreg, const0_rtx);
emit_insn (gen_csneg3<mode>_insn (operands[0], x, masked, masked));
DONE;
  }

rtx neg_op = gen_reg_rtx (<MODE>mode);
rtx_insn *insn = emit_insn (gen_neg<mode>2_compare0 (neg_op, operands[1]));

/* Extract the condition register and mode.  */
rtx cmp = XVECEXP (PATTERN (insn), 0, 0);
rtx cc_reg = SET_DEST (cmp);
rtx cond = gen_rtx_GE (VOIDmode, cc_reg, const0_rtx);

rtx masked_pos = gen_reg_rtx (<MODE>mode);
emit_insn (gen_and<mode>3 (masked_pos, operands[1], mask));

rtx masked_neg = gen_reg_rtx (<MODE>mode);
emit_insn (gen_and<mode>3 (masked_neg, neg_op, mask));

emit_insn (gen_csneg3<mode>_insn (operands[0], cond,
			       masked_neg, masked_pos));
DONE;

} )

(define_insn “condjump” [(set (pc) (if_then_else (match_operator 0 “aarch64_comparison_operator” [(match_operand 1 “cc_register” "") (const_int 0)]) (label_ref (match_operand 2 "" "")) (pc)))] "" { /* GCC's traditional style has been to use “beq” instead of “b.eq”, etc., but the “.” is required for SVE conditions. */ bool use_dot_p = GET_MODE (operands[1]) == CC_NZCmode; if (get_attr_length (insn) == 8) return aarch64_gen_far_branch (operands, 2, “Lbcond”, use_dot_p ? “b.%M0\t” : “b%M0\t”); else return use_dot_p ? “b.%m0\t%l2” : “b%m0\t%l2”; } [(set_attr “type” “branch”) (set (attr “length”) (if_then_else (and (ge (minus (match_dup 2) (pc)) (const_int -1048576)) (lt (minus (match_dup 2) (pc)) (const_int 1048572))) (const_int 4) (const_int 8))) (set (attr “far_branch”) (if_then_else (and (ge (minus (match_dup 2) (pc)) (const_int -1048576)) (lt (minus (match_dup 2) (pc)) (const_int 1048572))) (const_int 0) (const_int 1)))] )

;; For a 24-bit immediate CST we can optimize the compare for equality ;; and branch sequence from: ;; mov x0, #imm1 ;; movk x0, #imm2, lsl 16 /* x0 contains CST. */ ;; cmp x1, x0 ;; b<ne,eq> .Label ;; into the shorter: ;; sub x0, x1, #(CST & 0xfff000) ;; subs x0, x0, #(CST & 0x000fff) ;; b<ne,eq> .Label (define_insn_and_split “*compare_condjumpGPI:mode” [(set (pc) (if_then_else (EQL (match_operand:GPI 0 “register_operand” “r”) (match_operand:GPI 1 “aarch64_imm24” “n”)) (label_ref:P (match_operand 2 "" "")) (pc)))] “!aarch64_move_imm (INTVAL (operands[1]), GPI:MODEmode) && !aarch64_plus_operand (operands[1], GPI:MODEmode) && !reload_completed” “#” “&& true” [(const_int 0)] { HOST_WIDE_INT lo_imm = UINTVAL (operands[1]) & 0xfff; HOST_WIDE_INT hi_imm = UINTVAL (operands[1]) & 0xfff000; rtx tmp = gen_reg_rtx (GPI:MODEmode); emit_insn (gen_addGPI:mode3 (tmp, operands[0], GEN_INT (-hi_imm))); emit_insn (gen_addGPI:mode3_compare0 (tmp, tmp, GEN_INT (-lo_imm))); rtx cc_reg = gen_rtx_REG (CC_NZmode, CC_REGNUM); rtx cmp_rtx = gen_rtx_fmt_ee (EQL:CMP, GPI:MODEmode, cc_reg, const0_rtx); emit_jump_insn (gen_condjump (cmp_rtx, cc_reg, operands[2])); DONE; } )

(define_expand “casesi” [(match_operand:SI 0 “register_operand”) ; Index (match_operand:SI 1 “const_int_operand”) ; Lower bound (match_operand:SI 2 “const_int_operand”) ; Total range (match_operand:DI 3 "" "") ; Table label (match_operand:DI 4 "" "")] ; Out of range label "" { if (operands[1] != const0_rtx) { rtx reg = gen_reg_rtx (SImode);

/* Canonical RTL says that if you have:

   (minus (X) (CONST))

       then this should be emitted as:

       (plus (X) (-CONST))

   The use of trunc_int_for_mode ensures that the resulting
   constant can be represented in SImode, this is important
   for the corner case where operand[1] is INT_MIN.  */

operands[1]
  = GEN_INT (trunc_int_for_mode (-UINTVAL (operands[1]), SImode));

if (!(*insn_data[CODE_FOR_addsi3].operand[2].predicate)
      (operands[1], SImode))
  operands[1] = force_reg (SImode, operands[1]);
emit_insn (gen_addsi3 (reg, operands[0], operands[1]));
operands[0] = reg;
  }

if (!aarch64_plus_operand (operands[2], SImode))
  operands[2] = force_reg (SImode, operands[2]);
emit_jump_insn (gen_cbranchsi4 (gen_rtx_GTU (SImode, const0_rtx,
					 const0_rtx),
			    operands[0], operands[2], operands[4]));

operands[2] = force_reg (DImode, gen_rtx_LABEL_REF (DImode, operands[3]));
operands[2]
  = gen_rtx_UNSPEC (Pmode, gen_rtvec (2, operands[2], operands[0]),
		UNSPEC_CASESI);
operands[2] = gen_rtx_MEM (DImode, operands[2]);
MEM_READONLY_P (operands[2]) = 1;
MEM_NOTRAP_P (operands[2]) = 1;
emit_jump_insn (gen_casesi_dispatch (operands[2], operands[3]));
DONE;

} )

(define_expand “casesi_dispatch” [(parallel [(set (pc) (match_operand:DI 0 "")) (clobber (reg:CC CC_REGNUM)) (clobber (match_scratch:DI 2)) (clobber (match_scratch:DI 3)) (use (label_ref:DI (match_operand 1 "")))])] "")

(define_insn “*casesi_dispatch” [(parallel [(set (pc) (mem:DI (unspec [(match_operand:DI 0 “register_operand” “r”) (match_operand:SI 1 “register_operand” “r”)] UNSPEC_CASESI))) (clobber (reg:CC CC_REGNUM)) (clobber (match_scratch:DI 3 “=r”)) (clobber (match_scratch:DI 4 “=r”)) (use (label_ref:DI (match_operand 2 "" "")))])] "" "* return aarch64_output_casesi (operands); " [(set_attr “sls_length” “casesi”) (set_attr “type” “branch”)] )

(define_insn “nop” [(unspec[(const_int 0)] UNSPEC_NOP)] "" “nop” [(set_attr “type” “no_insn”)] )

(define_insn “prefetch” [(prefetch (match_operand:DI 0 “aarch64_prefetch_operand” “Dp”) (match_operand:QI 1 “const_int_operand” "") (match_operand:QI 2 “const_int_operand” ""))] "" { const char * pftype[2][4] = { {“prfm\tPLDL1STRM, %0”, “prfm\tPLDL3KEEP, %0”, “prfm\tPLDL2KEEP, %0”, “prfm\tPLDL1KEEP, %0”}, {“prfm\tPSTL1STRM, %0”, “prfm\tPSTL3KEEP, %0”, “prfm\tPSTL2KEEP, %0”, “prfm\tPSTL1KEEP, %0”}, };

int locality = INTVAL (operands[2]);

gcc_assert (IN_RANGE (locality, 0, 3));

/* PRFM accepts the same addresses as a 64-bit LDR so wrap
   the address into a DImode MEM so that aarch64_print_operand knows
   how to print it.  */
operands[0] = gen_rtx_MEM (DImode, operands[0]);
return pftype[INTVAL(operands[1])][locality];

} [(set_attr “type” “load_4”)] )

(define_insn “trap” [(trap_if (const_int 1) (const_int 8))] "" “brk #1000” [(set_attr “type” “trap”)])

(define_expand “prologue” [(clobber (const_int 0))] "" " aarch64_expand_prologue (); DONE; " )

(define_expand “epilogue” [(clobber (const_int 0))] "" " aarch64_expand_epilogue (false); DONE; " )

(define_expand “sibcall_epilogue” [(clobber (const_int 0))] "" " aarch64_expand_epilogue (true); DONE; " )

(define_insn “*do_return” [(return)] "" { const char *ret = NULL; if (aarch64_return_address_signing_enabled () && (TARGET_PAUTH) && !crtl->calls_eh_return) { if (aarch64_ra_sign_key == AARCH64_KEY_B) ret = “retab”; else ret = “retaa”; } else ret = “ret”; output_asm_insn (ret, operands); return aarch64_sls_barrier (aarch64_harden_sls_retbr_p ()); } [(set_attr “type” “branch”) (set_attr “sls_length” “retbr”)] )

(define_expand “return” [(simple_return)] “aarch64_use_return_insn_p ()” "" )

(define_insn “simple_return” [(simple_return)] "" { output_asm_insn (“ret”, operands); return aarch64_sls_barrier (aarch64_harden_sls_retbr_p ()); } [(set_attr “type” “branch”) (set_attr “sls_length” “retbr”)] )

(define_insn “*cb1” [(set (pc) (if_then_else (EQL (match_operand:GPI 0 “register_operand” “r”) (const_int 0)) (label_ref (match_operand 1 "" "")) (pc)))] “!aarch64_track_speculation” { if (get_attr_length (insn) == 8) return aarch64_gen_far_branch (operands, 1, “Lcb”, "<inv_cb>\t%0, "); else return “\t%0, %l1”; } [(set_attr “type” “branch”) (set (attr “length”) (if_then_else (and (ge (minus (match_dup 1) (pc)) (const_int -1048576)) (lt (minus (match_dup 1) (pc)) (const_int 1048572))) (const_int 4) (const_int 8))) (set (attr “far_branch”) (if_then_else (and (ge (minus (match_dup 2) (pc)) (const_int -1048576)) (lt (minus (match_dup 2) (pc)) (const_int 1048572))) (const_int 0) (const_int 1)))] )

(define_insn “*tb1” [(set (pc) (if_then_else (EQL (zero_extract:DI (match_operand:GPI 0 “register_operand” “r”) (const_int 1) (match_operand 1 “aarch64_simd_shift_imm_” “n”)) (const_int 0)) (label_ref (match_operand 2 "" "")) (pc))) (clobber (reg:CC CC_REGNUM))] “!aarch64_track_speculation” { if (get_attr_length (insn) == 8) { if (get_attr_far_branch (insn) == 1) return aarch64_gen_far_branch (operands, 2, “Ltb”, "<inv_tb>\t%0, %1, "); else { operands[1] = GEN_INT (HOST_WIDE_INT_1U << UINTVAL (operands[1])); return “tst\t%0, %1;\t%l2”; } } else return “\t%0, %1, %l2”; } [(set_attr “type” “branch”) (set (attr “length”) (if_then_else (and (ge (minus (match_dup 2) (pc)) (const_int -32768)) (lt (minus (match_dup 2) (pc)) (const_int 32764))) (const_int 4) (const_int 8))) (set (attr “far_branch”) (if_then_else (and (ge (minus (match_dup 2) (pc)) (const_int -1048576)) (lt (minus (match_dup 2) (pc)) (const_int 1048572))) (const_int 0) (const_int 1)))]

)

(define_insn “*cb1” [(set (pc) (if_then_else (LTGE (match_operand:ALLI 0 “register_operand” “r”) (const_int 0)) (label_ref (match_operand 1 "" "")) (pc))) (clobber (reg:CC CC_REGNUM))] “!aarch64_track_speculation” { if (get_attr_length (insn) == 8) { if (get_attr_far_branch (insn) == 1) return aarch64_gen_far_branch (operands, 1, “Ltb”, "<inv_tb>\t%0, , "); else { char buf[64]; uint64_t val = ((uint64_t) 1) << (GET_MODE_SIZE (mode) * BITS_PER_UNIT - 1); sprintf (buf, “tst\t%%0, %” PRId64, val); output_asm_insn (buf, operands); return “\t%l1”; } } else return “\t%0, , %l1”; } [(set_attr “type” “branch”) (set (attr “length”) (if_then_else (and (ge (minus (match_dup 1) (pc)) (const_int -32768)) (lt (minus (match_dup 1) (pc)) (const_int 32764))) (const_int 4) (const_int 8))) (set (attr “far_branch”) (if_then_else (and (ge (minus (match_dup 1) (pc)) (const_int -1048576)) (lt (minus (match_dup 1) (pc)) (const_int 1048572))) (const_int 0) (const_int 1)))] )

;; ------------------------------------------------------------------- ;; Subroutine calls and sibcalls ;; -------------------------------------------------------------------

(define_expand “call” [(parallel [(call (match_operand 0 “memory_operand”) (match_operand 1 “general_operand”)) (unspec:DI [(match_operand 2 “const_int_operand”)] UNSPEC_CALLEE_ABI) (clobber (reg:DI LR_REGNUM))])] "" " { aarch64_expand_call (NULL_RTX, operands[0], operands[2], false); DONE; }" )

(define_insn “*call_insn” [(call (mem:DI (match_operand:DI 0 “aarch64_call_insn_operand” “Ucr, Usf”)) (match_operand 1 "" "")) (unspec:DI [(match_operand:DI 2 “const_int_operand”)] UNSPEC_CALLEE_ABI) (clobber (reg:DI LR_REGNUM))] "" "@

  • return aarch64_indirect_call_asm (operands[0]); bl\t%c0" [(set_attr “type” “call, call”)])

(define_expand “call_value” [(parallel [(set (match_operand 0 "“) (call (match_operand 1 “memory_operand”) (match_operand 2 “general_operand”))) (unspec:DI [(match_operand 3 “const_int_operand”)] UNSPEC_CALLEE_ABI) (clobber (reg:DI LR_REGNUM))])] "" " { aarch64_expand_call (operands[0], operands[1], operands[3], false); DONE; }” )

(define_insn “*call_value_insn” [(set (match_operand 0 "" "") (call (mem:DI (match_operand:DI 1 “aarch64_call_insn_operand” “Ucr, Usf”)) (match_operand 2 "" ""))) (unspec:DI [(match_operand:DI 3 “const_int_operand”)] UNSPEC_CALLEE_ABI) (clobber (reg:DI LR_REGNUM))] "" "@

  • return aarch64_indirect_call_asm (operands[1]); bl\t%c1" [(set_attr “type” “call, call”)] )

(define_expand “sibcall” [(parallel [(call (match_operand 0 “memory_operand”) (match_operand 1 “general_operand”)) (unspec:DI [(match_operand 2 “const_int_operand”)] UNSPEC_CALLEE_ABI) (return)])] "" { aarch64_expand_call (NULL_RTX, operands[0], operands[2], true); DONE; } )

(define_expand “sibcall_value” [(parallel [(set (match_operand 0 "") (call (match_operand 1 “memory_operand”) (match_operand 2 “general_operand”))) (unspec:DI [(match_operand 3 “const_int_operand”)] UNSPEC_CALLEE_ABI) (return)])] "" { aarch64_expand_call (operands[0], operands[1], operands[3], true); DONE; } )

(define_insn “*sibcall_insn” [(call (mem:DI (match_operand:DI 0 “aarch64_call_insn_operand” “Ucs, Usf”)) (match_operand 1 "")) (unspec:DI [(match_operand:DI 2 “const_int_operand”)] UNSPEC_CALLEE_ABI) (return)] “SIBLING_CALL_P (insn)” { if (which_alternative == 0) { output_asm_insn (“br\t%0”, operands); return aarch64_sls_barrier (aarch64_harden_sls_retbr_p ()); } return “b\t%c0”; } [(set_attr “type” “branch, branch”) (set_attr “sls_length” “retbr,none”)] )

(define_insn “*sibcall_value_insn” [(set (match_operand 0 "") (call (mem:DI (match_operand:DI 1 “aarch64_call_insn_operand” “Ucs, Usf”)) (match_operand 2 ""))) (unspec:DI [(match_operand:DI 3 “const_int_operand”)] UNSPEC_CALLEE_ABI) (return)] “SIBLING_CALL_P (insn)” { if (which_alternative == 0) { output_asm_insn (“br\t%1”, operands); return aarch64_sls_barrier (aarch64_harden_sls_retbr_p ()); } return “b\t%c1”; } [(set_attr “type” “branch, branch”) (set_attr “sls_length” “retbr,none”)] )

;; Call subroutine returning any type.

(define_expand “untyped_call” [(parallel [(call (match_operand 0 "") (const_int 0)) (match_operand 1 "") (match_operand 2 "")])] "" { int i;

/* Untyped calls always use the default ABI. It's only possible to use ABI variants if we know the type of the target function. */ emit_call_insn (gen_call (operands[0], const0_rtx, const0_rtx));

for (i = 0; i < XVECLEN (operands[2], 0); i++) { rtx set = XVECEXP (operands[2], 0, i); emit_move_insn (SET_DEST (set), SET_SRC (set)); }

/* The optimizer does not know that the call sets the function value registers we stored in the result block. We avoid problems by claiming that all hard registers are used and clobbered at this point. */ emit_insn (gen_blockage ()); DONE; })

;; ------------------------------------------------------------------- ;; Moves ;; -------------------------------------------------------------------

(define_expand “mov” [(set (match_operand:SHORT 0 “nonimmediate_operand”) (match_operand:SHORT 1 “general_operand”))] "" " if (GET_CODE (operands[0]) == MEM && operands[1] != const0_rtx) operands[1] = force_reg (mode, operands[1]);

if (GET_CODE (operands[1]) == CONST_POLY_INT)
  {
aarch64_expand_mov_immediate (operands[0], operands[1]);
DONE;
  }

" )

(define_insn “*mov_aarch64” [(set (match_operand:SHORT 0 “nonimmediate_operand” “=r,r, w,r ,r,w, m,m,r,w,w”) (match_operand:SHORT 1 “aarch64_mov_operand” " r,M,D,Usv,m,m,rZ,w,w,r,w"))] “(register_operand (operands[0], mode) || aarch64_reg_or_zero (operands[1], mode))” { switch (which_alternative) { case 0: return “mov\t%w0, %w1”; case 1: return “mov\t%w0, %1”; case 2: return aarch64_output_scalar_simd_mov_immediate (operands[1], mode); case 3: return aarch64_output_sve_cnt_immediate ("cnt", "%x0", operands[1]); case 4: return “ldr\t%w0, %1”; case 5: return “ldr\t%0, %1”; case 6: return “str\t%w1, %0”; case 7: return “str\t%1, %0”; case 8: return “umov\t%w0, %1.[0]”; case 9: return “dup\t%0., %w1”; case 10: return “dup\t%0, %1.[0]”; default: gcc_unreachable (); } } ;; The “mov_imm” type for CNT is just a placeholder. [(set_attr “type” “mov_reg,mov_imm,neon_move,mov_imm,load_4,load_4,store_4, store_4,neon_to_gp,neon_from_gp,neon_dup”) (set_attr “arch” “,,simd,sve,,,,,simd,simd,simd”)] )

(define_expand “mov” [(set (match_operand:GPI 0 “nonimmediate_operand”) (match_operand:GPI 1 “general_operand”))] "" " if (MEM_P (operands[0]) && !MEM_VOLATILE_P (operands[0]) && CONST_INT_P (operands[1]) && mode == DImode && aarch64_split_dimode_const_store (operands[0], operands[1])) DONE;

if (GET_CODE (operands[0]) == MEM && operands[1] != const0_rtx)
  operands[1] = force_reg (<MODE>mode, operands[1]);

/* Lower moves of symbolic constants into individual instructions.
   Doing this now is sometimes necessary for correctness, since some
   sequences require temporary pseudo registers.  Lowering now is also
   often better for optimization, since more RTL passes get the
   chance to optimize the individual instructions.

   When called after RA, also split multi-instruction moves into
   smaller pieces now, since we can't be sure that sure that there
   will be a following split pass.  */
if (CONST_INT_P (operands[1])
? (reload_completed
   && !aarch64_mov_imm_operand (operands[1], <MODE>mode))
: CONSTANT_P (operands[1]))
 {
   aarch64_expand_mov_immediate (operands[0], operands[1]);
   DONE;
 }

" )

(define_insn_and_split “*movsi_aarch64” [(set (match_operand:SI 0 “nonimmediate_operand” “=r,k,r,r,r,r, r,w, m, m, r, r, w,r,w, w”) (match_operand:SI 1 “aarch64_mov_operand” " r,r,k,M,n,Usv,m,m,rZ,w,Usa,Ush,rZ,w,w,Ds"))] “(register_operand (operands[0], SImode) || aarch64_reg_or_zero (operands[1], SImode))” "@ mov\t%w0, %w1 mov\t%w0, %w1 mov\t%w0, %w1 mov\t%w0, %1

  • return aarch64_output_sve_cnt_immediate ("cnt", "%x0", operands[1]); ldr\t%w0, %1 ldr\t%s0, %1 str\t%w1, %0 str\t%s1, %0 adr\t%x0, %c1 adrp\t%x0, %A1 fmov\t%s0, %w1 fmov\t%w0, %s1 fmov\t%s0, %s1
  • return aarch64_output_scalar_simd_mov_immediate (operands[1], SImode);" “CONST_INT_P (operands[1]) && !aarch64_move_imm (INTVAL (operands[1]), SImode) && REG_P (operands[0]) && GP_REGNUM_P (REGNO (operands[0]))” [(const_int 0)] “{ aarch64_expand_mov_immediate (operands[0], operands[1]); DONE; }” ;; The “mov_imm” type for CNT is just a placeholder. [(set_attr “type” “mov_reg,mov_reg,mov_reg,mov_imm,mov_imm,mov_imm,load_4, load_4,store_4,store_4,adr,adr,f_mcr,f_mrc,fmov,neon_move”) (set_attr “arch” “,,,,,sve,,fp,,fp,,*,fp,fp,fp,simd”)] )

(define_insn_and_split “*movdi_aarch64” [(set (match_operand:DI 0 “nonimmediate_operand” “=r,k,r,r,r,r,r, r,w, m,m, r, r, w,r,w, w”) (match_operand:DI 1 “aarch64_mov_operand” " r,r,k,N,M,n,Usv,m,m,rZ,w,Usa,Ush,rZ,w,w,Dd"))] “(register_operand (operands[0], DImode) || aarch64_reg_or_zero (operands[1], DImode))” "@ mov\t%x0, %x1 mov\t%0, %x1 mov\t%x0, %1 mov\t%x0, %1 mov\t%w0, %1

  • return aarch64_output_sve_cnt_immediate ("cnt", "%x0", operands[1]); ldr\t%x0, %1 ldr\t%d0, %1 str\t%x1, %0 str\t%d1, %0 adr\t%x0, %c1 adrp\t%x0, %A1 fmov\t%d0, %x1 fmov\t%x0, %d1 fmov\t%d0, %d1
  • return aarch64_output_scalar_simd_mov_immediate (operands[1], DImode);" “(CONST_INT_P (operands[1]) && !aarch64_move_imm (INTVAL (operands[1]), DImode)) && REG_P (operands[0]) && GP_REGNUM_P (REGNO (operands[0]))” [(const_int 0)] “{ aarch64_expand_mov_immediate (operands[0], operands[1]); DONE; }” ;; The “mov_imm” type for CNTD is just a placeholder. [(set_attr “type” “mov_reg,mov_reg,mov_reg,mov_imm,mov_imm,mov_imm,mov_imm, load_8,load_8,store_8,store_8,adr,adr,f_mcr,f_mrc,fmov, neon_move”) (set_attr “arch” “,,,,,,sve,,fp,,fp,,,fp,fp,fp,simd”)] )

(define_insn “insv_imm” [(set (zero_extract:GPI (match_operand:GPI 0 “register_operand” “+r”) (const_int 16) (match_operand:GPI 1 “const_int_operand” “n”)) (match_operand:GPI 2 “const_int_operand” “n”))] “UINTVAL (operands[1]) < GET_MODE_BITSIZE (mode) && UINTVAL (operands[1]) % 16 == 0” “movk\t%0, %X2, lsl %1” [(set_attr “type” “mov_imm”)] )

;; Match MOVK as a normal AND and IOR operation. (define_insn “aarch64_movk” [(set (match_operand:GPI 0 “register_operand” “=r”) (ior:GPI (and:GPI (match_operand:GPI 1 “register_operand” “0”) (match_operand:GPI 2 “const_int_operand”)) (match_operand:GPI 3 “const_int_operand”)))] “aarch64_movk_shift (rtx_mode_t (operands[2], mode), rtx_mode_t (operands[3], mode)) >= 0” { int shift = aarch64_movk_shift (rtx_mode_t (operands[2], mode), rtx_mode_t (operands[3], mode)); operands[2] = gen_int_mode (UINTVAL (operands[3]) >> shift, SImode); operands[3] = gen_int_mode (shift, SImode); return “movk\t%0, #%X2, lsl %3”; } [(set_attr “type” “mov_imm”)] )

(define_expand “movti” [(set (match_operand:TI 0 “nonimmediate_operand”) (match_operand:TI 1 “general_operand”))] "" " if (GET_CODE (operands[0]) == MEM && operands[1] != const0_rtx) operands[1] = force_reg (TImode, operands[1]);

if (GET_CODE (operands[1]) == CONST_POLY_INT)
  {
emit_move_insn (gen_lowpart (DImode, operands[0]),
		gen_lowpart (DImode, operands[1]));
emit_move_insn (gen_highpart (DImode, operands[0]), const0_rtx);
DONE;
  }

" )

(define_insn “*movti_aarch64” [(set (match_operand:TI 0 “nonimmediate_operand” “= r,w,w, r,w,r,m,m,w,m”) (match_operand:TI 1 “aarch64_movti_operand” " rUti,Z,r, w,w,m,r,Z,m,w"))] “(register_operand (operands[0], TImode) || aarch64_reg_or_zero (operands[1], TImode))” "@

movi\t%0.2d, #0

mov\t%0.16b, %1.16b ldp\t%0, %H0, %1 stp\t%1, %H1, %0 stp\txzr, xzr, %0 ldr\t%q0, %1 str\t%q1, %0" [(set_attr “type” “multiple,neon_move,f_mcr,f_mrc,neon_logic_q,
load_16,store_16,store_16,
load_16,store_16”) (set_attr “length” “8,4,8,8,4,4,4,4,4,4”) (set_attr “arch” “,simd,,,simd,,,,fp,fp”)] )

;; Split a TImode register-register or register-immediate move into ;; its component DImode pieces, taking care to handle overlapping ;; source and dest registers. (define_split [(set (match_operand:TI 0 “register_operand” "") (match_operand:TI 1 “aarch64_reg_or_imm” ""))] “reload_completed && aarch64_split_128bit_move_p (operands[0], operands[1])” [(const_int 0)] { aarch64_split_128bit_move (operands[0], operands[1]); DONE; })

(define_expand “mov” [(set (match_operand:GPF_TF_F16_MOV 0 “nonimmediate_operand”) (match_operand:GPF_TF_F16_MOV 1 “general_operand”))] "" { if (!TARGET_FLOAT) { aarch64_err_no_fpadvsimd (mode); machine_mode intmode = int_mode_for_size (GET_MODE_BITSIZE (mode), 0).require (); emit_move_insn (gen_lowpart (intmode, operands[0]), gen_lowpart (intmode, operands[1])); DONE; }

if (GET_CODE (operands[0]) == MEM
    && ! (GET_CODE (operands[1]) == CONST_DOUBLE
      && aarch64_float_const_zero_rtx_p (operands[1])))
  operands[1] = force_reg (<MODE>mode, operands[1]);

} )

(define_insn “*mov_aarch64” [(set (match_operand:HFBF 0 “nonimmediate_operand” “=w,w , w,?r,w,w ,w ,w,m,r,m ,r”) (match_operand:HFBF 1 “general_operand” “Y ,?rY,?r, w,w,Ufc,Uvi,m,w,m,rY,r”))] “TARGET_FLOAT && (register_operand (operands[0], mode) || aarch64_reg_or_fp_zero (operands[1], mode))” "@ movi\t%0.4h, #0 fmov\t%h0, %w1 dup\t%w0.4h, %w1 umov\t%w0, %1.h[0] mov\t%0.h[0], %1.h[0] fmov\t%h0, %1

  • return aarch64_output_scalar_simd_mov_immediate (operands[1], HImode); ldr\t%h0, %1 str\t%h1, %0 ldrh\t%w0, %1 strh\t%w1, %0 mov\t%w0, %w1" [(set_attr “type” “neon_move,f_mcr,neon_move,neon_to_gp, neon_move,fconsts,
    neon_move,f_loads,f_stores,load_4,store_4,mov_reg”) (set_attr “arch” “simd,fp16,simd,simd,simd,fp16,simd,,,,,*”)] )

(define_insn “*movsf_aarch64” [(set (match_operand:SF 0 “nonimmediate_operand” “=w,w ,?r,w,w ,w ,w,m,r,m ,r,r”) (match_operand:SF 1 “general_operand” “Y ,?rY, w,w,Ufc,Uvi,m,w,m,rY,r,M”))] “TARGET_FLOAT && (register_operand (operands[0], SFmode) || aarch64_reg_or_fp_zero (operands[1], SFmode))” "@ movi\t%0.2s, #0 fmov\t%s0, %w1 fmov\t%w0, %s1 fmov\t%s0, %s1 fmov\t%s0, %1

  • return aarch64_output_scalar_simd_mov_immediate (operands[1], SImode); ldr\t%s0, %1 str\t%s1, %0 ldr\t%w0, %1 str\t%w1, %0 mov\t%w0, %w1 mov\t%w0, %1" [(set_attr “type” “neon_move,f_mcr,f_mrc,fmov,fconsts,neon_move,
    f_loads,f_stores,load_4,store_4,mov_reg,
    fconsts”) (set_attr “arch” “simd,,,,,simd,,,,,,”)] )

(define_insn “*movdf_aarch64” [(set (match_operand:DF 0 “nonimmediate_operand” “=w, w ,?r,w,w ,w ,w,m,r,m ,r,r”) (match_operand:DF 1 “general_operand” “Y , ?rY, w,w,Ufc,Uvi,m,w,m,rY,r,N”))] “TARGET_FLOAT && (register_operand (operands[0], DFmode) || aarch64_reg_or_fp_zero (operands[1], DFmode))” "@ movi\t%d0, #0 fmov\t%d0, %x1 fmov\t%x0, %d1 fmov\t%d0, %d1 fmov\t%d0, %1

  • return aarch64_output_scalar_simd_mov_immediate (operands[1], DImode); ldr\t%d0, %1 str\t%d1, %0 ldr\t%x0, %1 str\t%x1, %0 mov\t%x0, %x1 mov\t%x0, %1" [(set_attr “type” “neon_move,f_mcr,f_mrc,fmov,fconstd,neon_move,
    f_loadd,f_stored,load_8,store_8,mov_reg,
    fconstd”) (set_attr “arch” “simd,,,,,simd,,,,,,”)] )

(define_split [(set (match_operand:GPF_HF 0 “nonimmediate_operand”) (match_operand:GPF_HF 1 “general_operand”))] “can_create_pseudo_p () && !aarch64_can_const_movi_rtx_p (operands[1], mode) && !aarch64_float_const_representable_p (operands[1]) && aarch64_float_const_rtx_p (operands[1])” [(const_int 0)] { unsigned HOST_WIDE_INT ival; if (!aarch64_reinterpret_float_as_int (operands[1], &ival)) FAIL;

rtx tmp = gen_reg_rtx (<FCVT_TARGET>mode);
emit_move_insn (tmp, gen_int_mode (ival, <FCVT_TARGET>mode));
emit_move_insn (operands[0], gen_lowpart (<MODE>mode, tmp));
DONE;

} )

(define_insn “*movtf_aarch64” [(set (match_operand:TF 0 “nonimmediate_operand” “=w,?r ,w ,?r,w,?w,w,m,?r,m ,m”) (match_operand:TF 1 “general_operand” " w,?rY,?r,w ,Y,Y ,m,w,m ,?r,Y"))] “TARGET_FLOAT && (register_operand (operands[0], TFmode) || aarch64_reg_or_fp_zero (operands[1], TFmode))” "@ mov\t%0.16b, %1.16b

movi\t%0.2d, #0 fmov\t%s0, wzr ldr\t%q0, %1 str\t%q1, %0 ldp\t%0, %H0, %1 stp\t%1, %H1, %0 stp\txzr, xzr, %0" [(set_attr “type” “logic_reg,multiple,f_mcr,f_mrc,neon_move_q,f_mcr,
f_loadd,f_stored,load_16,store_16,store_16”) (set_attr “length” “4,8,8,8,4,4,4,4,4,4,4”) (set_attr “arch” “simd,,,,simd,,,,,,*”)] )

(define_split [(set (match_operand:TF 0 “register_operand” "") (match_operand:TF 1 “nonmemory_operand” ""))] “reload_completed && aarch64_split_128bit_move_p (operands[0], operands[1])” [(const_int 0)] { aarch64_split_128bit_move (operands[0], operands[1]); DONE; } )

;; 0 is dst ;; 1 is src ;; 2 is size of copy in bytes ;; 3 is alignment

(define_expand “cpymemdi” [(match_operand:BLK 0 “memory_operand”) (match_operand:BLK 1 “memory_operand”) (match_operand:DI 2 “immediate_operand”) (match_operand:DI 3 “immediate_operand”)] “!STRICT_ALIGNMENT” { if (aarch64_expand_cpymem (operands)) DONE; FAIL; } )

;; 0 is dst ;; 1 is val ;; 2 is size of copy in bytes ;; 3 is alignment

(define_expand “setmemdi” [(set (match_operand:BLK 0 “memory_operand”) ;; Dest (match_operand:QI 2 “nonmemory_operand”)) ;; Value (use (match_operand:DI 1 “immediate_operand”)) ;; Length (match_operand 3 “immediate_operand”)] ;; Align “TARGET_SIMD” { if (aarch64_expand_setmem (operands)) DONE;

FAIL; })

;; Operands 1 and 3 are tied together by the final condition; so we allow ;; fairly lax checking on the second memory operation. (define_insn “load_pair_sw_SX:modeSX2:mode” [(set (match_operand:SX 0 “register_operand” “=r,w”) (match_operand:SX 1 “aarch64_mem_pair_operand” “Ump,Ump”)) (set (match_operand:SX2 2 “register_operand” “=r,w”) (match_operand:SX2 3 “memory_operand” “m,m”))] “rtx_equal_p (XEXP (operands[3], 0), plus_constant (Pmode, XEXP (operands[1], 0), GET_MODE_SIZE (SX:MODEmode)))” “@ ldp\t%w0, %w2, %z1 ldp\t%s0, %s2, %z1” [(set_attr “type” “load_8,neon_load1_2reg”) (set_attr “arch” “*,fp”)] )

;; Storing different modes that can still be merged (define_insn “load_pair_dw_DX:modeDX2:mode” [(set (match_operand:DX 0 “register_operand” “=r,w”) (match_operand:DX 1 “aarch64_mem_pair_operand” “Ump,Ump”)) (set (match_operand:DX2 2 “register_operand” “=r,w”) (match_operand:DX2 3 “memory_operand” “m,m”))] “rtx_equal_p (XEXP (operands[3], 0), plus_constant (Pmode, XEXP (operands[1], 0), GET_MODE_SIZE (DX:MODEmode)))” “@ ldp\t%x0, %x2, %z1 ldp\t%d0, %d2, %z1” [(set_attr “type” “load_16,neon_load1_2reg”) (set_attr “arch” “*,fp”)] )

(define_insn “load_pair_dw_tftf” [(set (match_operand:TF 0 “register_operand” “=w”) (match_operand:TF 1 “aarch64_mem_pair_operand” “Ump”)) (set (match_operand:TF 2 “register_operand” “=w”) (match_operand:TF 3 “memory_operand” “m”))] “TARGET_SIMD && rtx_equal_p (XEXP (operands[3], 0), plus_constant (Pmode, XEXP (operands[1], 0), GET_MODE_SIZE (TFmode)))” “ldp\t%q0, %q2, %z1” [(set_attr “type” “neon_ldp_q”) (set_attr “fp” “yes”)] )

;; Operands 0 and 2 are tied together by the final condition; so we allow ;; fairly lax checking on the second memory operation. (define_insn “store_pair_sw_SX:modeSX2:mode” [(set (match_operand:SX 0 “aarch64_mem_pair_operand” “=Ump,Ump”) (match_operand:SX 1 “aarch64_reg_zero_or_fp_zero” “rYZ,w”)) (set (match_operand:SX2 2 “memory_operand” “=m,m”) (match_operand:SX2 3 “aarch64_reg_zero_or_fp_zero” “rYZ,w”))] “rtx_equal_p (XEXP (operands[2], 0), plus_constant (Pmode, XEXP (operands[0], 0), GET_MODE_SIZE (SX:MODEmode)))” “@ stp\t%w1, %w3, %z0 stp\t%s1, %s3, %z0” [(set_attr “type” “store_8,neon_store1_2reg”) (set_attr “arch” “*,fp”)] )

;; Storing different modes that can still be merged (define_insn “store_pair_dw_DX:modeDX2:mode” [(set (match_operand:DX 0 “aarch64_mem_pair_operand” “=Ump,Ump”) (match_operand:DX 1 “aarch64_reg_zero_or_fp_zero” “rYZ,w”)) (set (match_operand:DX2 2 “memory_operand” “=m,m”) (match_operand:DX2 3 “aarch64_reg_zero_or_fp_zero” “rYZ,w”))] “rtx_equal_p (XEXP (operands[2], 0), plus_constant (Pmode, XEXP (operands[0], 0), GET_MODE_SIZE (DX:MODEmode)))” “@ stp\t%x1, %x3, %z0 stp\t%d1, %d3, %z0” [(set_attr “type” “store_16,neon_store1_2reg”) (set_attr “arch” “*,fp”)] )

(define_insn “store_pair_dw_tftf” [(set (match_operand:TF 0 “aarch64_mem_pair_operand” “=Ump”) (match_operand:TF 1 “register_operand” “w”)) (set (match_operand:TF 2 “memory_operand” “=m”) (match_operand:TF 3 “register_operand” “w”))] “TARGET_SIMD && rtx_equal_p (XEXP (operands[2], 0), plus_constant (Pmode, XEXP (operands[0], 0), GET_MODE_SIZE (TFmode)))” “stp\t%q1, %q3, %z0” [(set_attr “type” “neon_stp_q”) (set_attr “fp” “yes”)] )

;; Load pair with post-index writeback. This is primarily used in function ;; epilogues. (define_insn “loadwb_pairGPI:mode_<P:mode>” [(parallel [(set (match_operand:P 0 “register_operand” “=k”) (plus:P (match_operand:P 1 “register_operand” “0”) (match_operand:P 4 “aarch64_mem_pair_offset” “n”))) (set (match_operand:GPI 2 “register_operand” “=r”) (mem:GPI (match_dup 1))) (set (match_operand:GPI 3 “register_operand” “=r”) (mem:GPI (plus:P (match_dup 1) (match_operand:P 5 “const_int_operand” “n”))))])] “INTVAL (operands[5]) == GET_MODE_SIZE (GPI:MODEmode)” “ldp\t%GPI:w2, %GPI:w3, [%1], %4” [(set_attr “type” “load_GPI:ldpstp_sz”)] )

(define_insn “loadwb_pairGPF:mode_<P:mode>” [(parallel [(set (match_operand:P 0 “register_operand” “=k”) (plus:P (match_operand:P 1 “register_operand” “0”) (match_operand:P 4 “aarch64_mem_pair_offset” “n”))) (set (match_operand:GPF 2 “register_operand” “=w”) (mem:GPF (match_dup 1))) (set (match_operand:GPF 3 “register_operand” “=w”) (mem:GPF (plus:P (match_dup 1) (match_operand:P 5 “const_int_operand” “n”))))])] “INTVAL (operands[5]) == GET_MODE_SIZE (GPF:MODEmode)” “ldp\t%GPF:w2, %GPF:w3, [%1], %4” [(set_attr “type” “neon_load1_2reg”)] )

(define_insn “loadwb_pairTX:mode_<P:mode>” [(parallel [(set (match_operand:P 0 “register_operand” “=k”) (plus:P (match_operand:P 1 “register_operand” “0”) (match_operand:P 4 “aarch64_mem_pair_offset” “n”))) (set (match_operand:TX 2 “register_operand” “=w”) (mem:TX (match_dup 1))) (set (match_operand:TX 3 “register_operand” “=w”) (mem:TX (plus:P (match_dup 1) (match_operand:P 5 “const_int_operand” “n”))))])] “TARGET_SIMD && INTVAL (operands[5]) == GET_MODE_SIZE (TX:MODEmode)” “ldp\t%q2, %q3, [%1], %4” [(set_attr “type” “neon_ldp_q”)] )

;; Store pair with pre-index writeback. This is primarily used in function ;; prologues. (define_insn “storewb_pairGPI:mode_<P:mode>” [(parallel [(set (match_operand:P 0 “register_operand” “=&k”) (plus:P (match_operand:P 1 “register_operand” “0”) (match_operand:P 4 “aarch64_mem_pair_offset” “n”))) (set (mem:GPI (plus:P (match_dup 0) (match_dup 4))) (match_operand:GPI 2 “register_operand” “r”)) (set (mem:GPI (plus:P (match_dup 0) (match_operand:P 5 “const_int_operand” “n”))) (match_operand:GPI 3 “register_operand” “r”))])] “INTVAL (operands[5]) == INTVAL (operands[4]) + GET_MODE_SIZE (GPI:MODEmode)” “stp\t%GPI:w2, %GPI:w3, [%0, %4]!” [(set_attr “type” “store_GPI:ldpstp_sz”)] )

(define_insn “storewb_pairGPF:mode_<P:mode>” [(parallel [(set (match_operand:P 0 “register_operand” “=&k”) (plus:P (match_operand:P 1 “register_operand” “0”) (match_operand:P 4 “aarch64_mem_pair_offset” “n”))) (set (mem:GPF (plus:P (match_dup 0) (match_dup 4))) (match_operand:GPF 2 “register_operand” “w”)) (set (mem:GPF (plus:P (match_dup 0) (match_operand:P 5 “const_int_operand” “n”))) (match_operand:GPF 3 “register_operand” “w”))])] “INTVAL (operands[5]) == INTVAL (operands[4]) + GET_MODE_SIZE (GPF:MODEmode)” “stp\t%GPF:w2, %GPF:w3, [%0, %4]!” [(set_attr “type” “neon_store1_2reg”)] )

(define_insn “storewb_pairTX:mode_<P:mode>” [(parallel [(set (match_operand:P 0 “register_operand” “=&k”) (plus:P (match_operand:P 1 “register_operand” “0”) (match_operand:P 4 “aarch64_mem_pair_offset” “n”))) (set (mem:TX (plus:P (match_dup 0) (match_dup 4))) (match_operand:TX 2 “register_operand” “w”)) (set (mem:TX (plus:P (match_dup 0) (match_operand:P 5 “const_int_operand” “n”))) (match_operand:TX 3 “register_operand” “w”))])] “TARGET_SIMD && INTVAL (operands[5]) == INTVAL (operands[4]) + GET_MODE_SIZE (TX:MODEmode)” “stp\t%q2, %q3, [%0, %4]!” [(set_attr “type” “neon_stp_q”)] )

;; ------------------------------------------------------------------- ;; Sign/Zero extension ;; -------------------------------------------------------------------

(define_expand “sidi2” [(set (match_operand:DI 0 “register_operand”) (ANY_EXTEND:DI (match_operand:SI 1 “nonimmediate_operand”)))] "" )

(define_insn “*extendsidi2_aarch64” [(set (match_operand:DI 0 “register_operand” “=r,r”) (sign_extend:DI (match_operand:SI 1 “nonimmediate_operand” “r,m”)))] "" “@ sxtw\t%0, %w1 ldrsw\t%0, %1” [(set_attr “type” “extend,load_4”)] )

(define_insn “*load_pair_extendsidi2_aarch64” [(set (match_operand:DI 0 “register_operand” “=r”) (sign_extend:DI (match_operand:SI 1 “aarch64_mem_pair_operand” “Ump”))) (set (match_operand:DI 2 “register_operand” “=r”) (sign_extend:DI (match_operand:SI 3 “memory_operand” “m”)))] “rtx_equal_p (XEXP (operands[3], 0), plus_constant (Pmode, XEXP (operands[1], 0), GET_MODE_SIZE (SImode)))” “ldpsw\t%0, %2, %z1” [(set_attr “type” “load_8”)] )

(define_insn “*zero_extendsidi2_aarch64” [(set (match_operand:DI 0 “register_operand” “=r,r,w,w,r,w”) (zero_extend:DI (match_operand:SI 1 “nonimmediate_operand” “r,m,r,m,w,w”)))] "" “@ uxtw\t%0, %w1 ldr\t%w0, %1 fmov\t%s0, %w1 ldr\t%s0, %1 fmov\t%w0, %s1 fmov\t%s0, %s1” [(set_attr “type” “mov_reg,load_4,f_mcr,f_loads,f_mrc,fmov”) (set_attr “arch” “,,fp,fp,fp,fp”)] )

(define_insn “*load_pair_zero_extendsidi2_aarch64” [(set (match_operand:DI 0 “register_operand” “=r,w”) (zero_extend:DI (match_operand:SI 1 “aarch64_mem_pair_operand” “Ump,Ump”))) (set (match_operand:DI 2 “register_operand” “=r,w”) (zero_extend:DI (match_operand:SI 3 “memory_operand” “m,m”)))] “rtx_equal_p (XEXP (operands[3], 0), plus_constant (Pmode, XEXP (operands[1], 0), GET_MODE_SIZE (SImode)))” “@ ldp\t%w0, %w2, %z1 ldp\t%s0, %s2, %z1” [(set_attr “type” “load_8,neon_load1_2reg”) (set_attr “arch” “*,fp”)] )

(define_expand “<ANY_EXTEND:optab>SHORT:modeGPI:mode2” [(set (match_operand:GPI 0 “register_operand”) (ANY_EXTEND:GPI (match_operand:SHORT 1 “nonimmediate_operand”)))] "" )

(define_insn “*extendSHORT:modeGPI:mode2_aarch64” [(set (match_operand:GPI 0 “register_operand” “=r,r,r”) (sign_extend:GPI (match_operand:SHORT 1 “nonimmediate_operand” “r,m,w”)))] "" “@ sxtSHORT:size\t%GPI:w0, %w1 ldrsSHORT:size\t%GPI:w0, %1 smov\t%GPI:w0, %1.SHORT:size[0]” [(set_attr “type” “extend,load_4,neon_to_gp”) (set_attr “arch” “,,fp”)] )

(define_insn “*zero_extendSHORT:modeGPI:mode2_aarch64” [(set (match_operand:GPI 0 “register_operand” “=r,r,w,r”) (zero_extend:GPI (match_operand:SHORT 1 “nonimmediate_operand” “r,m,m,w”)))] "" “@ and\t%GPI:w0, %GPI:w1, SHORT:short_mask ldrSHORT:size\t%w0, %1 ldr\t%SHORT:size0, %1 umov\t%w0, %1.SHORT:size[0]” [(set_attr “type” “logic_imm,load_4,f_loads,neon_to_gp”) (set_attr “arch” “,,fp,fp”)] )

(define_expand “qihi2” [(set (match_operand:HI 0 “register_operand”) (ANY_EXTEND:HI (match_operand:QI 1 “nonimmediate_operand”)))] "" )

(define_insn “*extendqihi2_aarch64” [(set (match_operand:HI 0 “register_operand” “=r,r”) (sign_extend:HI (match_operand:QI 1 “nonimmediate_operand” “r,m”)))] "" “@ sxtb\t%w0, %w1 ldrsb\t%w0, %1” [(set_attr “type” “extend,load_4”)] )

(define_insn “*zero_extendqihi2_aarch64” [(set (match_operand:HI 0 “register_operand” “=r,r”) (zero_extend:HI (match_operand:QI 1 “nonimmediate_operand” “r,m”)))] "" “@ and\t%w0, %w1, 255 ldrb\t%w0, %1” [(set_attr “type” “logic_imm,load_4”)] )

;; ------------------------------------------------------------------- ;; Simple arithmetic ;; -------------------------------------------------------------------

(define_expand “add3” [(set (match_operand:GPI 0 “register_operand”) (plus:GPI (match_operand:GPI 1 “register_operand”) (match_operand:GPI 2 “aarch64_pluslong_or_poly_operand”)))] "" { /* If operands[1] is a subreg extract the inner RTX. */ rtx op1 = REG_P (operands[1]) ? operands[1] : SUBREG_REG (operands[1]);

/* If the constant is too large for a single instruction and isn‘t frame based, split off the immediate so it is available for CSE. / if (!aarch64_plus_immediate (operands[2], mode) && !(TARGET_SVE && aarch64_sve_plus_immediate (operands[2], mode)) && can_create_pseudo_p () && (!REG_P (op1) || !REGNO_PTR_FRAME_P (REGNO (op1)))) operands[2] = force_reg (mode, operands[2]); / Some tunings prefer to avoid VL-based operations. Split off the poly immediate here. The rtx costs hook will reject attempts to combine them back. / else if (GET_CODE (operands[2]) == CONST_POLY_INT && can_create_pseudo_p () && (aarch64_tune_params.extra_tuning_flags & AARCH64_EXTRA_TUNE_CSE_SVE_VL_CONSTANTS)) operands[2] = force_reg (mode, operands[2]); / Expand polynomial additions now if the destination is the stack pointer, since we don’t want to use that as a temporary. */ else if (operands[0] == stack_pointer_rtx && aarch64_split_add_offset_immediate (operands[2], mode)) { aarch64_split_add_offset (mode, operands[0], operands[1], operands[2], NULL_RTX, NULL_RTX); DONE; } })

(define_insn “*add3_aarch64” [(set (match_operand:GPI 0 “register_operand” “=rk,rk,w,rk,r,r,rk”) (plus:GPI (match_operand:GPI 1 “register_operand” “%rk,rk,w,rk,rk,0,rk”) (match_operand:GPI 2 “aarch64_pluslong_operand” “I,r,w,J,Uaa,Uai,Uav”)))] "" "@ add\t%0, %1, %2 add\t%0, %1, %2 add\t%0, %1, %2 sub\t%0, %1, #%n2

  • return aarch64_output_sve_scalar_inc_dec (operands[2]);
  • return aarch64_output_sve_addvl_addpl (operands[2]);" ;; The “alu_imm” types for INC/DEC and ADDVL/ADDPL are just placeholders. [(set_attr “type” “alu_imm,alu_sreg,neon_add,alu_imm,multiple,alu_imm,alu_imm”) (set_attr “arch” “,,simd,,,sve,sve”)] )

;; zero_extend version of above (define_insn “*addsi3_aarch64_uxtw” [(set (match_operand:DI 0 “register_operand” “=rk,rk,rk,r”) (zero_extend:DI (plus:SI (match_operand:SI 1 “register_operand” “%rk,rk,rk,rk”) (match_operand:SI 2 “aarch64_pluslong_operand” “I,r,J,Uaa”))))] "" “@ add\t%w0, %w1, %2 add\t%w0, %w1, %w2 sub\t%w0, %w1, #%n2 #” [(set_attr “type” “alu_imm,alu_sreg,alu_imm,multiple”)] )

;; If there's a free register, and we can load the constant with a ;; single instruction, do so. This has a chance to improve scheduling. (define_peephole2 [(match_scratch:GPI 3 “r”) (set (match_operand:GPI 0 “register_operand”) (plus:GPI (match_operand:GPI 1 “register_operand”) (match_operand:GPI 2 “aarch64_pluslong_strict_immedate”)))] “aarch64_move_imm (INTVAL (operands[2]), mode)” [(set (match_dup 3) (match_dup 2)) (set (match_dup 0) (plus:GPI (match_dup 1) (match_dup 3)))] )

(define_peephole2 [(match_scratch:SI 3 “r”) (set (match_operand:DI 0 “register_operand”) (zero_extend:DI (plus:SI (match_operand:SI 1 “register_operand”) (match_operand:SI 2 “aarch64_pluslong_strict_immedate”))))] “aarch64_move_imm (INTVAL (operands[2]), SImode)” [(set (match_dup 3) (match_dup 2)) (set (match_dup 0) (zero_extend:DI (plus:SI (match_dup 1) (match_dup 3))))] )

;; After peephole2 has had a chance to run, split any remaining long ;; additions into two add immediates. (define_split [(set (match_operand:GPI 0 “register_operand”) (plus:GPI (match_operand:GPI 1 “register_operand”) (match_operand:GPI 2 “aarch64_pluslong_strict_immedate”)))] “epilogue_completed” [(set (match_dup 0) (plus:GPI (match_dup 1) (match_dup 3))) (set (match_dup 0) (plus:GPI (match_dup 0) (match_dup 4)))] { HOST_WIDE_INT i = INTVAL (operands[2]); HOST_WIDE_INT s = (i >= 0 ? i & 0xfff : -(-i & 0xfff)); operands[3] = GEN_INT (i - s); operands[4] = GEN_INT (s); } )

;; Match addition of polynomial offsets that require one temporary, for which ;; we can use the early-clobbered destination register. This is a separate ;; pattern so that the early clobber doesn‘t affect register allocation ;; for other forms of addition. However, we still need to provide an ;; all-register alternative, in case the offset goes out of range after ;; elimination. For completeness we might as well provide all GPR-based ;; alternatives from the main pattern. ;; ;; We don’t have a pattern for additions requiring two temporaries since at ;; present LRA doesn't allow new scratches to be added during elimination. ;; Such offsets should be rare anyway. ;; ;; ??? But if we added LRA support for new scratches, much of the ugliness ;; here would go away. We could just handle all polynomial constants in ;; this pattern. (define_insn_and_split “*add3_poly_1” [(set (match_operand:GPI 0 “register_operand” “=r,r,r,r,r,r,&r”) (plus:GPI (match_operand:GPI 1 “register_operand” “%rk,rk,rk,rk,0,rk,rk”) (match_operand:GPI 2 “aarch64_pluslong_or_poly_operand” “I,r,J,Uaa,Uai,Uav,Uat”)))] “TARGET_SVE && operands[0] != stack_pointer_rtx” "@ add\t%0, %1, %2 add\t%0, %1, %2 sub\t%0, %1, #%n2

  • return aarch64_output_sve_scalar_inc_dec (operands[2]);
  • return aarch64_output_sve_addvl_addpl (operands[2]); #" “&& epilogue_completed && !reg_overlap_mentioned_p (operands[0], operands[1]) && aarch64_split_add_offset_immediate (operands[2], mode)” [(const_int 0)] { aarch64_split_add_offset (mode, operands[0], operands[1], operands[2], operands[0], NULL_RTX); DONE; } ;; The “alu_imm” types for INC/DEC and ADDVL/ADDPL are just placeholders. [(set_attr “type” “alu_imm,alu_sreg,alu_imm,multiple,alu_imm,alu_imm,multiple”)] )

(define_split [(set (match_operand:DI 0 “register_operand”) (zero_extend:DI (plus:SI (match_operand:SI 1 “register_operand”) (match_operand:SI 2 “aarch64_pluslong_strict_immedate”))))] “epilogue_completed” [(set (match_dup 5) (plus:SI (match_dup 1) (match_dup 3))) (set (match_dup 0) (zero_extend:DI (plus:SI (match_dup 5) (match_dup 4))))] { HOST_WIDE_INT i = INTVAL (operands[2]); HOST_WIDE_INT s = (i >= 0 ? i & 0xfff : -(-i & 0xfff)); operands[3] = GEN_INT (i - s); operands[4] = GEN_INT (s); operands[5] = gen_lowpart (SImode, operands[0]); } )

(define_expand “addv4” [(match_operand:GPI 0 “register_operand”) (match_operand:GPI 1 “register_operand”) (match_operand:GPI 2 “aarch64_plus_operand”) (label_ref (match_operand 3 "" ""))] "" { if (CONST_INT_P (operands[2])) emit_insn (gen_add3_compareV_imm (operands[0], operands[1], operands[2])); else emit_insn (gen_add3_compareV (operands[0], operands[1], operands[2])); aarch64_gen_unlikely_cbranch (NE, CC_Vmode, operands[3]);

DONE; })

(define_expand “uaddv4” [(match_operand:GPI 0 “register_operand”) (match_operand:GPI 1 “register_operand”) (match_operand:GPI 2 “register_operand”) (label_ref (match_operand 3 "" ""))] "" { emit_insn (gen_add3_compareC (operands[0], operands[1], operands[2])); aarch64_gen_unlikely_cbranch (LTU, CC_Cmode, operands[3]);

DONE; })

(define_expand “addti3” [(set (match_operand:TI 0 “register_operand”) (plus:TI (match_operand:TI 1 “register_operand”) (match_operand:TI 2 “aarch64_reg_or_imm”)))] "" { rtx low_dest, op1_low, op2_low, high_dest, op1_high, op2_high;

aarch64_addti_scratch_regs (operands[1], operands[2], &low_dest, &op1_low, &op2_low, &high_dest, &op1_high, &op2_high);

if (op2_low == const0_rtx) { low_dest = op1_low; if (!aarch64_pluslong_operand (op2_high, DImode)) op2_high = force_reg (DImode, op2_high); emit_insn (gen_adddi3 (high_dest, op1_high, op2_high)); } else { emit_insn (gen_adddi3_compareC (low_dest, op1_low, force_reg (DImode, op2_low))); emit_insn (gen_adddi3_carryin (high_dest, op1_high, force_reg (DImode, op2_high))); }

emit_move_insn (gen_lowpart (DImode, operands[0]), low_dest); emit_move_insn (gen_highpart (DImode, operands[0]), high_dest);

DONE; })

(define_expand “addvti4” [(match_operand:TI 0 “register_operand”) (match_operand:TI 1 “register_operand”) (match_operand:TI 2 “aarch64_reg_or_imm”) (label_ref (match_operand 3 "" ""))] "" { rtx low_dest, op1_low, op2_low, high_dest, op1_high, op2_high;

aarch64_addti_scratch_regs (operands[1], operands[2], &low_dest, &op1_low, &op2_low, &high_dest, &op1_high, &op2_high);

if (op2_low == const0_rtx) { low_dest = op1_low; emit_insn (gen_adddi3_compareV (high_dest, op1_high, force_reg (DImode, op2_high))); } else { emit_insn (gen_adddi3_compareC (low_dest, op1_low, force_reg (DImode, op2_low))); emit_insn (gen_adddi3_carryinV (high_dest, op1_high, force_reg (DImode, op2_high))); }

emit_move_insn (gen_lowpart (DImode, operands[0]), low_dest); emit_move_insn (gen_highpart (DImode, operands[0]), high_dest);

aarch64_gen_unlikely_cbranch (NE, CC_Vmode, operands[3]); DONE; })

(define_expand “uaddvti4” [(match_operand:TI 0 “register_operand”) (match_operand:TI 1 “register_operand”) (match_operand:TI 2 “aarch64_reg_or_imm”) (label_ref (match_operand 3 "" ""))] "" { rtx low_dest, op1_low, op2_low, high_dest, op1_high, op2_high;

aarch64_addti_scratch_regs (operands[1], operands[2], &low_dest, &op1_low, &op2_low, &high_dest, &op1_high, &op2_high);

if (op2_low == const0_rtx) { low_dest = op1_low; emit_insn (gen_adddi3_compareC (high_dest, op1_high, force_reg (DImode, op2_high))); } else { emit_insn (gen_adddi3_compareC (low_dest, op1_low, force_reg (DImode, op2_low))); emit_insn (gen_adddi3_carryinC (high_dest, op1_high, force_reg (DImode, op2_high))); }

emit_move_insn (gen_lowpart (DImode, operands[0]), low_dest); emit_move_insn (gen_highpart (DImode, operands[0]), high_dest);

aarch64_gen_unlikely_cbranch (GEU, CC_ADCmode, operands[3]); DONE; })

(define_insn “add3_compare0” [(set (reg:CC_NZ CC_REGNUM) (compare:CC_NZ (plus:GPI (match_operand:GPI 1 “register_operand” “%rk,rk,rk”) (match_operand:GPI 2 “aarch64_plus_operand” “r,I,J”)) (const_int 0))) (set (match_operand:GPI 0 “register_operand” “=r,r,r”) (plus:GPI (match_dup 1) (match_dup 2)))] "" “@ adds\t%0, %1, %2 adds\t%0, %1, %2 subs\t%0, %1, #%n2” [(set_attr “type” “alus_sreg,alus_imm,alus_imm”)] )

;; zero_extend version of above (define_insn “*addsi3_compare0_uxtw” [(set (reg:CC_NZ CC_REGNUM) (compare:CC_NZ (plus:SI (match_operand:SI 1 “register_operand” “%rk,rk,rk”) (match_operand:SI 2 “aarch64_plus_operand” “r,I,J”)) (const_int 0))) (set (match_operand:DI 0 “register_operand” “=r,r,r”) (zero_extend:DI (plus:SI (match_dup 1) (match_dup 2))))] "" “@ adds\t%w0, %w1, %w2 adds\t%w0, %w1, %2 subs\t%w0, %w1, #%n2” [(set_attr “type” “alus_sreg,alus_imm,alus_imm”)] )

(define_insn “*add3_compareC_cconly” [(set (reg:CC_C CC_REGNUM) (compare:CC_C (plus:GPI (match_operand:GPI 0 “register_operand” “r,r,r”) (match_operand:GPI 1 “aarch64_plus_operand” “r,I,J”)) (match_dup 0)))] "" “@ cmn\t%0, %1 cmn\t%0, %1 cmp\t%0, #%n1” [(set_attr “type” “alus_sreg,alus_imm,alus_imm”)] )

(define_insn “add3_compareC” [(set (reg:CC_C CC_REGNUM) (compare:CC_C (plus:GPI (match_operand:GPI 1 “register_operand” “rk,rk,rk”) (match_operand:GPI 2 “aarch64_plus_operand” “r,I,J”)) (match_dup 1))) (set (match_operand:GPI 0 “register_operand” “=r,r,r”) (plus:GPI (match_dup 1) (match_dup 2)))] "" “@ adds\t%0, %1, %2 adds\t%0, %1, %2 subs\t%0, %1, #%n2” [(set_attr “type” “alus_sreg,alus_imm,alus_imm”)] )

(define_insn “*add3_compareV_cconly_imm” [(set (reg:CC_V CC_REGNUM) (compare:CC_V (plus: (sign_extend: (match_operand:GPI 0 “register_operand” “r,r”)) (match_operand: 1 “const_scalar_int_operand” "")) (sign_extend: (plus:GPI (match_dup 0) (match_operand:GPI 2 “aarch64_plus_immediate” “I,J”)))))] “INTVAL (operands[1]) == INTVAL (operands[2])” “@ cmn\t%0, %1 cmp\t%0, #%n1” [(set_attr “type” “alus_imm”)] )

(define_insn “*add3_compareV_cconly” [(set (reg:CC_V CC_REGNUM) (compare:CC_V (plus: (sign_extend: (match_operand:GPI 0 “register_operand” “r”)) (sign_extend: (match_operand:GPI 1 “register_operand” “r”))) (sign_extend: (plus:GPI (match_dup 0) (match_dup 1)))))] "" “cmn\t%0, %1” [(set_attr “type” “alus_sreg”)] )

(define_insn “add3_compareV_imm” [(set (reg:CC_V CC_REGNUM) (compare:CC_V (plus: (sign_extend: (match_operand:GPI 1 “register_operand” “rk,rk”)) (match_operand:GPI 2 “aarch64_plus_immediate” “I,J”)) (sign_extend: (plus:GPI (match_dup 1) (match_dup 2))))) (set (match_operand:GPI 0 “register_operand” “=r,r”) (plus:GPI (match_dup 1) (match_dup 2)))] "" “@ adds\t%0, %1, %2 subs\t%0, %1, #%n2” [(set_attr “type” “alus_imm,alus_imm”)] )

(define_insn “add3_compareV” [(set (reg:CC_V CC_REGNUM) (compare:CC_V (plus: (sign_extend: (match_operand:GPI 1 “register_operand” “rk”)) (sign_extend: (match_operand:GPI 2 “register_operand” “r”))) (sign_extend: (plus:GPI (match_dup 1) (match_dup 2))))) (set (match_operand:GPI 0 “register_operand” “=r”) (plus:GPI (match_dup 1) (match_dup 2)))] "" “adds\t%0, %1, %2” [(set_attr “type” “alus_sreg”)] )

(define_insn “*adds_shift_imm_” [(set (reg:CC_NZ CC_REGNUM) (compare:CC_NZ (plus:GPI (ASHIFT:GPI (match_operand:GPI 1 “register_operand” “r”) (match_operand:QI 2 “aarch64_shift_imm_” “n”)) (match_operand:GPI 3 “register_operand” “r”)) (const_int 0))) (set (match_operand:GPI 0 “register_operand” “=r”) (plus:GPI (ASHIFT:GPI (match_dup 1) (match_dup 2)) (match_dup 3)))] "" “adds\t%0, %3, %1, %2” [(set_attr “type” “alus_shift_imm”)] )

(define_insn “*subs_shift_imm_” [(set (reg:CC_NZ CC_REGNUM) (compare:CC_NZ (minus:GPI (match_operand:GPI 1 “register_operand” “r”) (ASHIFT:GPI (match_operand:GPI 2 “register_operand” “r”) (match_operand:QI 3 “aarch64_shift_imm_” “n”))) (const_int 0))) (set (match_operand:GPI 0 “register_operand” “=r”) (minus:GPI (match_dup 1) (ASHIFT:GPI (match_dup 2) (match_dup 3))))] "" “subs\t%0, %1, %2, %3” [(set_attr “type” “alus_shift_imm”)] )

(define_insn “*adds_ALLX:mode_GPI:mode” [(set (reg:CC_NZ CC_REGNUM) (compare:CC_NZ (plus:GPI (ANY_EXTEND:GPI (match_operand:ALLX 1 “register_operand” “r”)) (match_operand:GPI 2 “register_operand” “rk”)) (const_int 0))) (set (match_operand:GPI 0 “register_operand” “=r”) (plus:GPI (ANY_EXTEND:GPI (match_dup 1)) (match_dup 2)))] "" “adds\t%GPI:w0, %GPI:w2, %w1, xtALLX:size” [(set_attr “type” “alus_ext”)] )

(define_insn “*subs_ALLX:mode_GPI:mode” [(set (reg:CC_NZ CC_REGNUM) (compare:CC_NZ (minus:GPI (match_operand:GPI 1 “register_operand” “rk”) (ANY_EXTEND:GPI (match_operand:ALLX 2 “register_operand” “r”))) (const_int 0))) (set (match_operand:GPI 0 “register_operand” “=r”) (minus:GPI (match_dup 1) (ANY_EXTEND:GPI (match_dup 2))))] "" “subs\t%GPI:w0, %GPI:w1, %w2, xtALLX:size” [(set_attr “type” “alus_ext”)] )

(define_insn “*adds_ALLX:modeshiftGPI:mode” [(set (reg:CC_NZ CC_REGNUM) (compare:CC_NZ (plus:GPI (ashift:GPI (ANY_EXTEND:GPI (match_operand:ALLX 1 “register_operand” “r”)) (match_operand 2 “aarch64_imm3” “Ui3”)) (match_operand:GPI 3 “register_operand” “rk”)) (const_int 0))) (set (match_operand:GPI 0 “register_operand” “=rk”) (plus:GPI (ashift:GPI (ANY_EXTEND:GPI (match_dup 1)) (match_dup 2)) (match_dup 3)))] "" “adds\t%GPI:w0, %GPI:w3, %w1, xtALLX:size %2” [(set_attr “type” “alus_ext”)] )

(define_insn “*subs_ALLX:modeshiftGPI:mode” [(set (reg:CC_NZ CC_REGNUM) (compare:CC_NZ (minus:GPI (match_operand:GPI 1 “register_operand” “rk”) (ashift:GPI (ANY_EXTEND:GPI (match_operand:ALLX 2 “register_operand” “r”)) (match_operand 3 “aarch64_imm3” “Ui3”))) (const_int 0))) (set (match_operand:GPI 0 “register_operand” “=rk”) (minus:GPI (match_dup 1) (ashift:GPI (ANY_EXTEND:GPI (match_dup 2)) (match_dup 3))))] "" “subs\t%GPI:w0, %GPI:w1, %w2, xtALLX:size %3” [(set_attr “type” “alus_ext”)] )

(define_insn “*add3nr_compare0” [(set (reg:CC_NZ CC_REGNUM) (compare:CC_NZ (plus:GPI (match_operand:GPI 0 “register_operand” “%r,r,r”) (match_operand:GPI 1 “aarch64_plus_operand” “r,I,J”)) (const_int 0)))] "" “@ cmn\t%0, %1 cmn\t%0, %1 cmp\t%0, #%n1” [(set_attr “type” “alus_sreg,alus_imm,alus_imm”)] )

(define_insn “aarch64_sub_compare0” [(set (reg:CC_NZ CC_REGNUM) (compare:CC_NZ (minus:GPI (match_operand:GPI 0 “register_operand” “r”) (match_operand:GPI 1 “aarch64_plus_operand” “r”)) (const_int 0)))] "" “cmp\t%0, %1” [(set_attr “type” “alus_sreg”)] )

(define_insn “*compare_neg” [(set (reg:CC_Z CC_REGNUM) (compare:CC_Z (neg:GPI (match_operand:GPI 0 “register_operand” “r”)) (match_operand:GPI 1 “register_operand” “r”)))] "" “cmn\t%1, %0” [(set_attr “type” “alus_sreg”)] )

(define_insn “*add__” [(set (match_operand:GPI 0 “register_operand” “=r”) (plus:GPI (ASHIFT:GPI (match_operand:GPI 1 “register_operand” “r”) (match_operand:QI 2 “aarch64_shift_imm_” “n”)) (match_operand:GPI 3 “register_operand” “r”)))] "" “add\t%0, %3, %1, %2” [(set_attr “autodetect_type” “alu_shift__op2”)] )

;; zero_extend version of above (define_insn “*add__si_uxtw” [(set (match_operand:DI 0 “register_operand” “=r”) (zero_extend:DI (plus:SI (ASHIFT:SI (match_operand:SI 1 “register_operand” “r”) (match_operand:QI 2 “aarch64_shift_imm_si” “n”)) (match_operand:SI 3 “register_operand” “r”))))] "" “add\t%w0, %w3, %w1, %2” [(set_attr “autodetect_type” “alu_shift__op2”)] )

(define_insn “*add_ALLX:mode_GPI:mode” [(set (match_operand:GPI 0 “register_operand” “=rk”) (plus:GPI (ANY_EXTEND:GPI (match_operand:ALLX 1 “register_operand” “r”)) (match_operand:GPI 2 “register_operand” “r”)))] "" “add\t%GPI:w0, %GPI:w2, %w1, xtALLX:size” [(set_attr “type” “alu_ext”)] )

;; zero_extend version of above (define_insn “*add_SHORT:mode_si_uxtw” [(set (match_operand:DI 0 “register_operand” “=rk”) (zero_extend:DI (plus:SI (ANY_EXTEND:SI (match_operand:SHORT 1 “register_operand” “r”)) (match_operand:GPI 2 “register_operand” “r”))))] "" “add\t%w0, %w2, %w1, xtSHORT:size” [(set_attr “type” “alu_ext”)] )

(define_insn “*add_ALLX:modeshftGPI:mode” [(set (match_operand:GPI 0 “register_operand” “=rk”) (plus:GPI (ashift:GPI (ANY_EXTEND:GPI (match_operand:ALLX 1 “register_operand” “r”)) (match_operand 2 “aarch64_imm3” “Ui3”)) (match_operand:GPI 3 “register_operand” “r”)))] "" “add\t%GPI:w0, %GPI:w3, %w1, xtALLX:size %2” [(set_attr “type” “alu_ext”)] )

;; zero_extend version of above (define_insn “*add_SHORT:mode_shft_si_uxtw” [(set (match_operand:DI 0 “register_operand” “=rk”) (zero_extend:DI (plus:SI (ashift:SI (ANY_EXTEND:SI (match_operand:SHORT 1 “register_operand” “r”)) (match_operand 2 “aarch64_imm3” “Ui3”)) (match_operand:SI 3 “register_operand” “r”))))] "" “add\t%w0, %w3, %w1, xtSHORT:size %2” [(set_attr “type” “alu_ext”)] )

(define_expand “add3_carryin” [(set (match_operand:GPI 0 “register_operand”) (plus:GPI (plus:GPI (ltu:GPI (reg:CC_C CC_REGNUM) (const_int 0)) (match_operand:GPI 1 “aarch64_reg_or_zero”)) (match_operand:GPI 2 “aarch64_reg_or_zero”)))] "" "" )

;; Note that add with carry with two zero inputs is matched by cset, ;; and that add with carry with one zero input is matched by cinc.

(define_insn “*add3_carryin” [(set (match_operand:GPI 0 “register_operand” “=r”) (plus:GPI (plus:GPI (match_operand:GPI 3 “aarch64_carry_operation” "") (match_operand:GPI 1 “register_operand” “r”)) (match_operand:GPI 2 “register_operand” “r”)))] "" “adc\t%0, %1, %2” [(set_attr “type” “adc_reg”)] )

;; zero_extend version of above (define_insn “*addsi3_carryin_uxtw” [(set (match_operand:DI 0 “register_operand” “=r”) (zero_extend:DI (plus:SI (plus:SI (match_operand:SI 3 “aarch64_carry_operation” "") (match_operand:SI 1 “register_operand” “r”)) (match_operand:SI 2 “register_operand” “r”))))] "" “adc\t%w0, %w1, %w2” [(set_attr “type” “adc_reg”)] )

(define_expand “add3_carryinC” [(parallel [(set (match_dup 3) (compare:CC_ADC (plus: (plus: (match_dup 4) (zero_extend: (match_operand:GPI 1 “register_operand”))) (zero_extend: (match_operand:GPI 2 “register_operand”))) (match_dup 6))) (set (match_operand:GPI 0 “register_operand”) (plus:GPI (plus:GPI (match_dup 5) (match_dup 1)) (match_dup 2)))])] "" { operands[3] = gen_rtx_REG (CC_ADCmode, CC_REGNUM); rtx ccin = gen_rtx_REG (CC_Cmode, CC_REGNUM); operands[4] = gen_rtx_LTU (mode, ccin, const0_rtx); operands[5] = gen_rtx_LTU (mode, ccin, const0_rtx); operands[6] = immed_wide_int_const (wi::shwi (1, mode) << GET_MODE_BITSIZE (mode), TImode); })

(define_insn “*add3_carryinC_zero” [(set (reg:CC_ADC CC_REGNUM) (compare:CC_ADC (plus: (match_operand: 2 “aarch64_carry_operation” "") (zero_extend: (match_operand:GPI 1 “register_operand” “r”))) (match_operand 4 “const_scalar_int_operand” ""))) (set (match_operand:GPI 0 “register_operand” “=r”) (plus:GPI (match_operand:GPI 3 “aarch64_carry_operation” "") (match_dup 1)))] “rtx_mode_t (operands[4], mode) == (wi::shwi (1, mode) << (unsigned) GET_MODE_BITSIZE (mode))” “adcs\t%0, %1, zr” [(set_attr “type” “adc_reg”)] )

(define_insn “*add3_carryinC” [(set (reg:CC_ADC CC_REGNUM) (compare:CC_ADC (plus: (plus: (match_operand: 3 “aarch64_carry_operation” "") (zero_extend: (match_operand:GPI 1 “register_operand” “r”))) (zero_extend: (match_operand:GPI 2 “register_operand” “r”))) (match_operand 5 “const_scalar_int_operand” ""))) (set (match_operand:GPI 0 “register_operand” “=r”) (plus:GPI (plus:GPI (match_operand:GPI 4 “aarch64_carry_operation” "") (match_dup 1)) (match_dup 2)))] “rtx_mode_t (operands[5], mode) == (wi::shwi (1, mode) << (unsigned) GET_MODE_BITSIZE (mode))” “adcs\t%0, %1, %2” [(set_attr “type” “adc_reg”)] )

(define_expand “add3_carryinV” [(parallel [(set (reg:CC_V CC_REGNUM) (compare:CC_V (plus: (plus: (match_dup 3) (sign_extend: (match_operand:GPI 1 “register_operand”))) (sign_extend: (match_operand:GPI 2 “register_operand”))) (sign_extend: (plus:GPI (plus:GPI (match_dup 4) (match_dup 1)) (match_dup 2))))) (set (match_operand:GPI 0 “register_operand”) (plus:GPI (plus:GPI (match_dup 4) (match_dup 1)) (match_dup 2)))])] "" { rtx cc = gen_rtx_REG (CC_Cmode, CC_REGNUM); operands[3] = gen_rtx_LTU (mode, cc, const0_rtx); operands[4] = gen_rtx_LTU (mode, cc, const0_rtx); })

(define_insn “*add3_carryinV_zero” [(set (reg:CC_V CC_REGNUM) (compare:CC_V (plus: (match_operand: 2 “aarch64_carry_operation” "") (sign_extend: (match_operand:GPI 1 “register_operand” “r”))) (sign_extend: (plus:GPI (match_operand:GPI 3 “aarch64_carry_operation” "") (match_dup 1))))) (set (match_operand:GPI 0 “register_operand” “=r”) (plus:GPI (match_dup 3) (match_dup 1)))] "" “adcs\t%0, %1, zr” [(set_attr “type” “adc_reg”)] )

(define_insn “*add3_carryinV” [(set (reg:CC_V CC_REGNUM) (compare:CC_V (plus: (plus: (match_operand: 3 “aarch64_carry_operation” "") (sign_extend: (match_operand:GPI 1 “register_operand” “r”))) (sign_extend: (match_operand:GPI 2 “register_operand” “r”))) (sign_extend: (plus:GPI (plus:GPI (match_operand:GPI 4 “aarch64_carry_operation” "") (match_dup 1)) (match_dup 2))))) (set (match_operand:GPI 0 “register_operand” “=r”) (plus:GPI (plus:GPI (match_dup 4) (match_dup 1)) (match_dup 2)))] "" “adcs\t%0, %1, %2” [(set_attr “type” “adc_reg”)] )

(define_insn “*add_uxt_shift2” [(set (match_operand:GPI 0 “register_operand” “=rk”) (plus:GPI (and:GPI (ashift:GPI (match_operand:GPI 1 “register_operand” “r”) (match_operand 2 “aarch64_imm3” “Ui3”)) (match_operand 3 “const_int_operand” “n”)) (match_operand:GPI 4 “register_operand” “r”)))] “aarch64_uxt_size (INTVAL (operands[2]), INTVAL (operands[3])) != 0” “* operands[3] = GEN_INT (aarch64_uxt_size (INTVAL(operands[2]), INTVAL (operands[3]))); return "add\t%0, %4, %w1, uxt%e3 %2";” [(set_attr “type” “alu_ext”)] )

;; zero_extend version of above (define_insn “*add_uxtsi_shift2_uxtw” [(set (match_operand:DI 0 “register_operand” “=rk”) (zero_extend:DI (plus:SI (and:SI (ashift:SI (match_operand:SI 1 “register_operand” “r”) (match_operand 2 “aarch64_imm3” “Ui3”)) (match_operand 3 “const_int_operand” “n”)) (match_operand:SI 4 “register_operand” “r”))))] “aarch64_uxt_size (INTVAL (operands[2]), INTVAL (operands[3])) != 0” “* operands[3] = GEN_INT (aarch64_uxt_size (INTVAL (operands[2]), INTVAL (operands[3]))); return "add\t%w0, %w4, %w1, uxt%e3 %2";” [(set_attr “type” “alu_ext”)] )

(define_insn “subsi3” [(set (match_operand:SI 0 “register_operand” “=rk”) (minus:SI (match_operand:SI 1 “register_operand” “rk”) (match_operand:SI 2 “register_operand” “r”)))] "" “sub\t%w0, %w1, %w2” [(set_attr “type” “alu_sreg”)] )

;; zero_extend version of above (define_insn “*subsi3_uxtw” [(set (match_operand:DI 0 “register_operand” “=rk”) (zero_extend:DI (minus:SI (match_operand:SI 1 “register_operand” “rk”) (match_operand:SI 2 “register_operand” “r”))))] "" “sub\t%w0, %w1, %w2” [(set_attr “type” “alu_sreg”)] )

(define_insn “subdi3” [(set (match_operand:DI 0 “register_operand” “=rk,w”) (minus:DI (match_operand:DI 1 “register_operand” “rk,w”) (match_operand:DI 2 “register_operand” “r,w”)))] "" “@ sub\t%x0, %x1, %x2 sub\t%d0, %d1, %d2” [(set_attr “type” “alu_sreg, neon_sub”) (set_attr “arch” “*,simd”)] )

(define_expand “subvGPI:mode4” [(match_operand:GPI 0 “register_operand”) (match_operand:GPI 1 “register_operand”) (match_operand:GPI 2 “aarch64_plus_operand”) (label_ref (match_operand 3 "" ""))] "" { if (CONST_INT_P (operands[2])) emit_insn (gen_subv_imm (operands[0], operands[1], operands[2])); else emit_insn (gen_subv_insn (operands[0], operands[1], operands[2])); aarch64_gen_unlikely_cbranch (NE, CC_Vmode, operands[3]);

DONE; })

(define_insn “subvGPI:mode_insn” [(set (reg:CC_V CC_REGNUM) (compare:CC_V (sign_extend: (minus:GPI (match_operand:GPI 1 “register_operand” “rk”) (match_operand:GPI 2 “register_operand” “r”))) (minus: (sign_extend: (match_dup 1)) (sign_extend: (match_dup 2))))) (set (match_operand:GPI 0 “register_operand” “=r”) (minus:GPI (match_dup 1) (match_dup 2)))] "" “subs\t%0, %1, %2” [(set_attr “type” “alus_sreg”)] )

(define_insn “subvGPI:mode_imm” [(set (reg:CC_V CC_REGNUM) (compare:CC_V (sign_extend: (minus:GPI (match_operand:GPI 1 “register_operand” “rk,rk”) (match_operand:GPI 2 “aarch64_plus_immediate” “I,J”))) (minus: (sign_extend: (match_dup 1)) (match_dup 2)))) (set (match_operand:GPI 0 “register_operand” “=r,r”) (minus:GPI (match_dup 1) (match_dup 2)))] "" “@ subs\t%0, %1, %2 adds\t%0, %1, #%n2” [(set_attr “type” “alus_sreg”)] )

(define_expand “negvGPI:mode3” [(match_operand:GPI 0 “register_operand”) (match_operand:GPI 1 “register_operand”) (label_ref (match_operand 2 "" ""))] "" { emit_insn (gen_negv_insn (operands[0], operands[1])); aarch64_gen_unlikely_cbranch (NE, CC_Vmode, operands[2]);

DONE;

} )

(define_insn “negvGPI:mode_insn” [(set (reg:CC_V CC_REGNUM) (compare:CC_V (sign_extend: (neg:GPI (match_operand:GPI 1 “register_operand” “r”))) (neg: (sign_extend: (match_dup 1))))) (set (match_operand:GPI 0 “register_operand” “=r”) (neg:GPI (match_dup 1)))] "" “negs\t%0, %1” [(set_attr “type” “alus_sreg”)] )

(define_insn “negvGPI:mode_cmp_only” [(set (reg:CC_V CC_REGNUM) (compare:CC_V (sign_extend: (neg:GPI (match_operand:GPI 0 “register_operand” “r”))) (neg: (sign_extend: (match_dup 0)))))] "" “negs\t%zr, %0” [(set_attr “type” “alus_sreg”)] )

(define_insn “*cmpvGPI:mode_insn” [(set (reg:CC_V CC_REGNUM) (compare:CC_V (sign_extend: (minus:GPI (match_operand:GPI 0 “register_operand” “r,r,r”) (match_operand:GPI 1 “aarch64_plus_operand” “r,I,J”))) (minus: (sign_extend: (match_dup 0)) (sign_extend: (match_dup 1)))))] "" “@ cmp\t%0, %1 cmp\t%0, %1 cmp\t%0, #%n1” [(set_attr “type” “alus_sreg”)] )

(define_expand “usubv4” [(match_operand:GPI 0 “register_operand”) (match_operand:GPI 1 “aarch64_reg_or_zero”) (match_operand:GPI 2 “aarch64_reg_or_zero”) (label_ref (match_operand 3 "" ""))] "" { emit_insn (gen_sub3_compare1 (operands[0], operands[1], operands[2])); aarch64_gen_unlikely_cbranch (LTU, CCmode, operands[3]);

DONE; })

(define_expand “subti3” [(set (match_operand:TI 0 “register_operand”) (minus:TI (match_operand:TI 1 “aarch64_reg_or_zero”) (match_operand:TI 2 “register_operand”)))] "" { rtx low_dest, op1_low, op2_low, high_dest, op1_high, op2_high;

aarch64_subvti_scratch_regs (operands[1], operands[2], &low_dest, &op1_low, &op2_low, &high_dest, &op1_high, &op2_high);

emit_insn (gen_subdi3_compare1 (low_dest, op1_low, op2_low)); emit_insn (gen_subdi3_carryin (high_dest, op1_high, op2_high));

emit_move_insn (gen_lowpart (DImode, operands[0]), low_dest); emit_move_insn (gen_highpart (DImode, operands[0]), high_dest); DONE; })

(define_expand “subvti4” [(match_operand:TI 0 “register_operand”) (match_operand:TI 1 “register_operand”) (match_operand:TI 2 “aarch64_reg_or_imm”) (label_ref (match_operand 3 "" ""))] "" { rtx low_dest, op1_low, op2_low, high_dest, op1_high, op2_high;

aarch64_subvti_scratch_regs (operands[1], operands[2], &low_dest, &op1_low, &op2_low, &high_dest, &op1_high, &op2_high); aarch64_expand_subvti (operands[0], low_dest, op1_low, op2_low, high_dest, op1_high, op2_high, false);

aarch64_gen_unlikely_cbranch (NE, CC_Vmode, operands[3]); DONE; })

(define_expand “usubvti4” [(match_operand:TI 0 “register_operand”) (match_operand:TI 1 “register_operand”) (match_operand:TI 2 “aarch64_reg_or_imm”) (label_ref (match_operand 3 "" ""))] "" { rtx low_dest, op1_low, op2_low, high_dest, op1_high, op2_high;

aarch64_subvti_scratch_regs (operands[1], operands[2], &low_dest, &op1_low, &op2_low, &high_dest, &op1_high, &op2_high); aarch64_expand_subvti (operands[0], low_dest, op1_low, op2_low, high_dest, op1_high, op2_high, true);

aarch64_gen_unlikely_cbranch (LTU, CCmode, operands[3]); DONE; })

(define_expand “negvti3” [(match_operand:TI 0 “register_operand”) (match_operand:TI 1 “register_operand”) (label_ref (match_operand 2 "" ""))] "" { emit_insn (gen_negdi_carryout (gen_lowpart (DImode, operands[0]), gen_lowpart (DImode, operands[1]))); emit_insn (gen_negvdi_carryinV (gen_highpart (DImode, operands[0]), gen_highpart (DImode, operands[1]))); aarch64_gen_unlikely_cbranch (NE, CC_Vmode, operands[2]);

DONE;

} )

(define_insn “negdi_carryout” [(set (reg:CC CC_REGNUM) (compare:CC (const_int 0) (match_operand:DI 1 “register_operand” “r”))) (set (match_operand:DI 0 “register_operand” “=r”) (neg:DI (match_dup 1)))] "" “negs\t%0, %1” [(set_attr “type” “alus_sreg”)] )

(define_insn “negvdi_carryinV” [(set (reg:CC_V CC_REGNUM) (compare:CC_V (neg:TI (plus:TI (ltu:TI (reg:CC CC_REGNUM) (const_int 0)) (sign_extend:TI (match_operand:DI 1 “register_operand” “r”)))) (sign_extend:TI (neg:DI (plus:DI (ltu:DI (reg:CC CC_REGNUM) (const_int 0)) (match_dup 1)))))) (set (match_operand:DI 0 “register_operand” “=r”) (neg:DI (plus:DI (ltu:DI (reg:CC CC_REGNUM) (const_int 0)) (match_dup 1))))] "" “ngcs\t%0, %1” [(set_attr “type” “alus_sreg”)] )

(define_insn “*sub3_compare0” [(set (reg:CC_NZ CC_REGNUM) (compare:CC_NZ (minus:GPI (match_operand:GPI 1 “register_operand” “rk”) (match_operand:GPI 2 “register_operand” “r”)) (const_int 0))) (set (match_operand:GPI 0 “register_operand” “=r”) (minus:GPI (match_dup 1) (match_dup 2)))] "" “subs\t%0, %1, %2” [(set_attr “type” “alus_sreg”)] )

;; zero_extend version of above (define_insn “*subsi3_compare0_uxtw” [(set (reg:CC_NZ CC_REGNUM) (compare:CC_NZ (minus:SI (match_operand:SI 1 “register_operand” “rk”) (match_operand:SI 2 “register_operand” “r”)) (const_int 0))) (set (match_operand:DI 0 “register_operand” “=r”) (zero_extend:DI (minus:SI (match_dup 1) (match_dup 2))))] "" “subs\t%w0, %w1, %w2” [(set_attr “type” “alus_sreg”)] )

(define_insn “sub3_compare1_imm” [(set (reg:CC CC_REGNUM) (compare:CC (match_operand:GPI 1 “register_operand” “rk,rk”) (match_operand:GPI 2 “aarch64_plus_immediate” “I,J”))) (set (match_operand:GPI 0 “register_operand” “=r,r”) (plus:GPI (match_dup 1) (match_operand:GPI 3 “aarch64_plus_immediate” “J,I”)))] “UINTVAL (operands[2]) == -UINTVAL (operands[3])” “@ subs\t%0, %1, %2 adds\t%0, %1, #%n2” [(set_attr “type” “alus_imm”)] )

(define_insn “sub3_compare1” [(set (reg:CC CC_REGNUM) (compare:CC (match_operand:GPI 1 “aarch64_reg_or_zero” “rkZ”) (match_operand:GPI 2 “aarch64_reg_or_zero” “rZ”))) (set (match_operand:GPI 0 “register_operand” “=r”) (minus:GPI (match_dup 1) (match_dup 2)))] "" “subs\t%0, %1, %2” [(set_attr “type” “alus_sreg”)] )

(define_peephole2 [(set (match_operand:GPI 0 “aarch64_general_reg”) (minus:GPI (match_operand:GPI 1 “aarch64_reg_or_zero”) (match_operand:GPI 2 “aarch64_reg_or_zero”))) (set (reg:CC CC_REGNUM) (compare:CC (match_dup 1) (match_dup 2)))] “!reg_overlap_mentioned_p (operands[0], operands[1]) && !reg_overlap_mentioned_p (operands[0], operands[2])” [(const_int 0)] { emit_insn (gen_sub3_compare1 (operands[0], operands[1], operands[2])); DONE; } )

;; Same as the above peephole but with the compare and minus in ;; swapped order. The restriction on overlap between operand 0 ;; and operands 1 and 2 doesn't apply here. (define_peephole2 [(set (reg:CC CC_REGNUM) (compare:CC (match_operand:GPI 1 “aarch64_reg_or_zero”) (match_operand:GPI 2 “aarch64_reg_or_zero”))) (set (match_operand:GPI 0 “aarch64_general_reg”) (minus:GPI (match_dup 1) (match_dup 2)))] "" [(const_int 0)] { emit_insn (gen_sub3_compare1 (operands[0], operands[1], operands[2])); DONE; } )

(define_peephole2 [(set (match_operand:GPI 0 “aarch64_general_reg”) (plus:GPI (match_operand:GPI 1 “register_operand”) (match_operand:GPI 2 “aarch64_plus_immediate”))) (set (reg:CC CC_REGNUM) (compare:CC (match_dup 1) (match_operand:GPI 3 “const_int_operand”)))] “!reg_overlap_mentioned_p (operands[0], operands[1]) && INTVAL (operands[3]) == -INTVAL (operands[2])” [(const_int 0)] { emit_insn (gen_sub3_compare1_imm (operands[0], operands[1], operands[3], operands[2])); DONE; } )

;; Same as the above peephole but with the compare and minus in ;; swapped order. The restriction on overlap between operand 0 ;; and operands 1 doesn't apply here. (define_peephole2 [(set (reg:CC CC_REGNUM) (compare:CC (match_operand:GPI 1 “register_operand”) (match_operand:GPI 3 “const_int_operand”))) (set (match_operand:GPI 0 “aarch64_general_reg”) (plus:GPI (match_dup 1) (match_operand:GPI 2 “aarch64_plus_immediate”)))] “INTVAL (operands[3]) == -INTVAL (operands[2])” [(const_int 0)] { emit_insn (gen_sub3_compare1_imm (operands[0], operands[1], operands[3], operands[2])); DONE; } )

(define_insn “*sub__” [(set (match_operand:GPI 0 “register_operand” “=r”) (minus:GPI (match_operand:GPI 3 “register_operand” “r”) (ASHIFT:GPI (match_operand:GPI 1 “register_operand” “r”) (match_operand:QI 2 “aarch64_shift_imm_” “n”))))] "" “sub\t%0, %3, %1, %2” [(set_attr “autodetect_type” “alu_shift__op2”)] )

;; zero_extend version of above (define_insn “*sub__si_uxtw” [(set (match_operand:DI 0 “register_operand” “=r”) (zero_extend:DI (minus:SI (match_operand:SI 3 “register_operand” “r”) (ASHIFT:SI (match_operand:SI 1 “register_operand” “r”) (match_operand:QI 2 “aarch64_shift_imm_si” “n”)))))] "" “sub\t%w0, %w3, %w1, %2” [(set_attr “autodetect_type” “alu_shift__op2”)] )

(define_insn “*sub_ALLX:mode_GPI:mode” [(set (match_operand:GPI 0 “register_operand” “=rk”) (minus:GPI (match_operand:GPI 1 “register_operand” “rk”) (ANY_EXTEND:GPI (match_operand:ALLX 2 “register_operand” “r”))))] "" “sub\t%GPI:w0, %GPI:w1, %w2, xtALLX:size” [(set_attr “type” “alu_ext”)] )

;; zero_extend version of above (define_insn “*sub_SHORT:mode_si_uxtw” [(set (match_operand:DI 0 “register_operand” “=rk”) (zero_extend:DI (minus:SI (match_operand:SI 1 “register_operand” “rk”) (ANY_EXTEND:SI (match_operand:SHORT 2 “register_operand” “r”)))))] "" “sub\t%w0, %w1, %w2, xtSHORT:size” [(set_attr “type” “alu_ext”)] )

(define_insn “*sub_ALLX:modeshftGPI:mode” [(set (match_operand:GPI 0 “register_operand” “=rk”) (minus:GPI (match_operand:GPI 1 “register_operand” “rk”) (ashift:GPI (ANY_EXTEND:GPI (match_operand:ALLX 2 “register_operand” “r”)) (match_operand 3 “aarch64_imm3” “Ui3”))))] "" “sub\t%GPI:w0, %GPI:w1, %w2, xtALLX:size %3” [(set_attr “type” “alu_ext”)] )

;; zero_extend version of above (define_insn “*sub_SHORT:mode_shft_si_uxtw” [(set (match_operand:DI 0 “register_operand” “=rk”) (zero_extend:DI (minus:SI (match_operand:SI 1 “register_operand” “rk”) (ashift:SI (ANY_EXTEND:SI (match_operand:SHORT 2 “register_operand” “r”)) (match_operand 3 “aarch64_imm3” “Ui3”)))))] "" “sub\t%w0, %w1, %w2, xtSHORT:size %3” [(set_attr “type” “alu_ext”)] )

;; The hardware description is op1 + ~op2 + C. ;; = op1 + (-op2 + 1) + (1 - !C) ;; = op1 - op2 - 1 + 1 - !C ;; = op1 - op2 - !C. ;; We describe the latter.

(define_insn “*sub3_carryin0” [(set (match_operand:GPI 0 “register_operand” “=r”) (minus:GPI (match_operand:GPI 1 “aarch64_reg_or_zero” “rZ”) (match_operand:GPI 2 “aarch64_borrow_operation” "")))] "" “sbc\t%0, %1, zr” [(set_attr “type” “adc_reg”)] )

;; zero_extend version of the above (define_insn “*subsi3_carryin_uxtw” [(set (match_operand:DI 0 “register_operand” “=r”) (zero_extend:DI (minus:SI (match_operand:SI 1 “aarch64_reg_or_zero” “rZ”) (match_operand:SI 2 “aarch64_borrow_operation” ""))))] "" “sbc\t%w0, %w1, wzr” [(set_attr “type” “adc_reg”)] )

(define_expand “sub3_carryin” [(set (match_operand:GPI 0 “register_operand”) (minus:GPI (minus:GPI (match_operand:GPI 1 “aarch64_reg_or_zero”) (match_operand:GPI 2 “register_operand”)) (ltu:GPI (reg:CC CC_REGNUM) (const_int 0))))] "" "" )

(define_insn “*sub3_carryin” [(set (match_operand:GPI 0 “register_operand” “=r”) (minus:GPI (minus:GPI (match_operand:GPI 1 “aarch64_reg_or_zero” “rZ”) (match_operand:GPI 2 “register_operand” “r”)) (match_operand:GPI 3 “aarch64_borrow_operation” "")))]

"" “sbc\t%0, %1, %2” [(set_attr “type” “adc_reg”)] )

;; zero_extend version of the above (define_insn “*subsi3_carryin_uxtw” [(set (match_operand:DI 0 “register_operand” “=r”) (zero_extend:DI (minus:SI (minus:SI (match_operand:SI 1 “aarch64_reg_or_zero” “rZ”) (match_operand:SI 2 “register_operand” “r”)) (match_operand:SI 3 “aarch64_borrow_operation” ""))))]

"" “sbc\t%w0, %w1, %w2” [(set_attr “type” “adc_reg”)] )

(define_insn “*sub3_carryin_alt” [(set (match_operand:GPI 0 “register_operand” “=r”) (minus:GPI (minus:GPI (match_operand:GPI 1 “aarch64_reg_or_zero” “rZ”) (match_operand:GPI 3 “aarch64_borrow_operation” "")) (match_operand:GPI 2 “register_operand” “r”)))] "" “sbc\t%0, %1, %2” [(set_attr “type” “adc_reg”)] )

;; zero_extend version of the above (define_insn “*subsi3_carryin_alt_uxtw” [(set (match_operand:DI 0 “register_operand” “=r”) (zero_extend:DI (minus:SI (minus:SI (match_operand:SI 1 “aarch64_reg_or_zero” “rZ”) (match_operand:SI 3 “aarch64_borrow_operation” "")) (match_operand:SI 2 “register_operand” “r”))))] "" “sbc\t%w0, %w1, %w2” [(set_attr “type” “adc_reg”)] )

(define_expand “usubGPI:mode3_carryinC” [(parallel [(set (reg:CC CC_REGNUM) (compare:CC (zero_extend: (match_operand:GPI 1 “aarch64_reg_or_zero”)) (plus: (zero_extend: (match_operand:GPI 2 “register_operand”)) (ltu: (reg:CC CC_REGNUM) (const_int 0))))) (set (match_operand:GPI 0 “register_operand”) (minus:GPI (minus:GPI (match_dup 1) (match_dup 2)) (ltu:GPI (reg:CC CC_REGNUM) (const_int 0))))])] "" )

(define_insn “*usubGPI:mode3_carryinC_z1” [(set (reg:CC CC_REGNUM) (compare:CC (const_int 0) (plus: (zero_extend: (match_operand:GPI 1 “register_operand” “r”)) (match_operand: 2 “aarch64_borrow_operation” "")))) (set (match_operand:GPI 0 “register_operand” “=r”) (minus:GPI (neg:GPI (match_dup 1)) (match_operand:GPI 3 “aarch64_borrow_operation” "")))] "" “sbcs\t%0, zr, %1” [(set_attr “type” “adc_reg”)] )

(define_insn “*usubGPI:mode3_carryinC_z2” [(set (reg:CC CC_REGNUM) (compare:CC (zero_extend: (match_operand:GPI 1 “register_operand” “r”)) (match_operand: 2 “aarch64_borrow_operation” ""))) (set (match_operand:GPI 0 “register_operand” “=r”) (minus:GPI (match_dup 1) (match_operand:GPI 3 “aarch64_borrow_operation” "")))] "" “sbcs\t%0, %1, zr” [(set_attr “type” “adc_reg”)] )

(define_insn “*usubGPI:mode3_carryinC” [(set (reg:CC CC_REGNUM) (compare:CC (zero_extend: (match_operand:GPI 1 “register_operand” “r”)) (plus: (zero_extend: (match_operand:GPI 2 “register_operand” “r”)) (match_operand: 3 “aarch64_borrow_operation” "")))) (set (match_operand:GPI 0 “register_operand” “=r”) (minus:GPI (minus:GPI (match_dup 1) (match_dup 2)) (match_operand:GPI 4 “aarch64_borrow_operation” "")))] "" “sbcs\t%0, %1, %2” [(set_attr “type” “adc_reg”)] )

(define_expand “subGPI:mode3_carryinV” [(parallel [(set (reg:CC_V CC_REGNUM) (compare:CC_V (minus: (sign_extend: (match_operand:GPI 1 “aarch64_reg_or_zero”)) (plus: (sign_extend: (match_operand:GPI 2 “register_operand”)) (ltu: (reg:CC CC_REGNUM) (const_int 0)))) (sign_extend: (minus:GPI (match_dup 1) (plus:GPI (ltu:GPI (reg:CC CC_REGNUM) (const_int 0)) (match_dup 2)))))) (set (match_operand:GPI 0 “register_operand”) (minus:GPI (minus:GPI (match_dup 1) (match_dup 2)) (ltu:GPI (reg:CC CC_REGNUM) (const_int 0))))])] "" )

(define_insn “*sub3_carryinV_z2” [(set (reg:CC_V CC_REGNUM) (compare:CC_V (minus: (sign_extend: (match_operand:GPI 1 “register_operand” “r”)) (match_operand: 2 “aarch64_borrow_operation” "")) (sign_extend: (minus:GPI (match_dup 1) (match_operand:GPI 3 “aarch64_borrow_operation” ""))))) (set (match_operand:GPI 0 “register_operand” “=r”) (minus:GPI (match_dup 1) (match_dup 3)))] "" “sbcs\t%0, %1, zr” [(set_attr “type” “adc_reg”)] )

(define_insn “*sub3_carryinV” [(set (reg:CC_V CC_REGNUM) (compare:CC_V (minus: (sign_extend: (match_operand:GPI 1 “register_operand” “r”)) (plus: (sign_extend: (match_operand:GPI 2 “register_operand” “r”)) (match_operand: 3 “aarch64_borrow_operation” ""))) (sign_extend: (minus:GPI (match_dup 1) (plus:GPI (match_operand:GPI 4 “aarch64_borrow_operation” "") (match_dup 2)))))) (set (match_operand:GPI 0 “register_operand” “=r”) (minus:GPI (minus:GPI (match_dup 1) (match_dup 2)) (match_dup 4)))] "" “sbcs\t%0, %1, %2” [(set_attr “type” “adc_reg”)] )

(define_insn “*sub_uxt_shift2” [(set (match_operand:GPI 0 “register_operand” “=rk”) (minus:GPI (match_operand:GPI 4 “register_operand” “rk”) (and:GPI (ashift:GPI (match_operand:GPI 1 “register_operand” “r”) (match_operand 2 “aarch64_imm3” “Ui3”)) (match_operand 3 “const_int_operand” “n”))))] “aarch64_uxt_size (INTVAL (operands[2]),INTVAL (operands[3])) != 0” “* operands[3] = GEN_INT (aarch64_uxt_size (INTVAL (operands[2]), INTVAL (operands[3]))); return "sub\t%0, %4, %w1, uxt%e3 %2";” [(set_attr “type” “alu_ext”)] )

;; zero_extend version of above (define_insn “*sub_uxtsi_shift2_uxtw” [(set (match_operand:DI 0 “register_operand” “=rk”) (zero_extend:DI (minus:SI (match_operand:SI 4 “register_operand” “rk”) (and:SI (ashift:SI (match_operand:SI 1 “register_operand” “r”) (match_operand 2 “aarch64_imm3” “Ui3”)) (match_operand 3 “const_int_operand” “n”)))))] “aarch64_uxt_size (INTVAL (operands[2]),INTVAL (operands[3])) != 0” “* operands[3] = GEN_INT (aarch64_uxt_size (INTVAL (operands[2]), INTVAL (operands[3]))); return "sub\t%w0, %w4, %w1, uxt%e3 %2";” [(set_attr “type” “alu_ext”)] )

(define_expand “abs2” [(match_operand:GPI 0 “register_operand”) (match_operand:GPI 1 “register_operand”)] "" { rtx ccreg = aarch64_gen_compare_reg (LT, operands[1], const0_rtx); rtx x = gen_rtx_LT (VOIDmode, ccreg, const0_rtx); emit_insn (gen_csneg3_insn (operands[0], x, operands[1], operands[1])); DONE; } )

(define_insn “neg2” [(set (match_operand:GPI 0 “register_operand” “=r,w”) (neg:GPI (match_operand:GPI 1 “register_operand” “r,w”)))] "" “@ neg\t%0, %1 neg\t%0, %1” [(set_attr “type” “alu_sreg, neon_neg”) (set_attr “arch” “*,simd”)] )

;; zero_extend version of above (define_insn “*negsi2_uxtw” [(set (match_operand:DI 0 “register_operand” “=r”) (zero_extend:DI (neg:SI (match_operand:SI 1 “register_operand” “r”))))] "" “neg\t%w0, %w1” [(set_attr “type” “alu_sreg”)] )

(define_insn “*ngc” [(set (match_operand:GPI 0 “register_operand” “=r”) (minus:GPI (neg:GPI (match_operand:GPI 2 “aarch64_borrow_operation” "")) (match_operand:GPI 1 “register_operand” “r”)))] "" “ngc\t%0, %1” [(set_attr “type” “adc_reg”)] )

(define_insn “*ngcsi_uxtw” [(set (match_operand:DI 0 “register_operand” “=r”) (zero_extend:DI (minus:SI (neg:SI (match_operand:SI 2 “aarch64_borrow_operation” "")) (match_operand:SI 1 “register_operand” “r”))))] "" “ngc\t%w0, %w1” [(set_attr “type” “adc_reg”)] )

(define_insn “neg2_compare0” [(set (reg:CC_NZ CC_REGNUM) (compare:CC_NZ (neg:GPI (match_operand:GPI 1 “register_operand” “r”)) (const_int 0))) (set (match_operand:GPI 0 “register_operand” “=r”) (neg:GPI (match_dup 1)))] "" “negs\t%0, %1” [(set_attr “type” “alus_sreg”)] )

;; zero_extend version of above (define_insn “*negsi2_compare0_uxtw” [(set (reg:CC_NZ CC_REGNUM) (compare:CC_NZ (neg:SI (match_operand:SI 1 “register_operand” “r”)) (const_int 0))) (set (match_operand:DI 0 “register_operand” “=r”) (zero_extend:DI (neg:SI (match_dup 1))))] "" “negs\t%w0, %w1” [(set_attr “type” “alus_sreg”)] )

(define_insn “*neg_3_compare0” [(set (reg:CC_NZ CC_REGNUM) (compare:CC_NZ (neg:GPI (ASHIFT:GPI (match_operand:GPI 1 “register_operand” “r”) (match_operand:QI 2 “aarch64_shift_imm_” “n”))) (const_int 0))) (set (match_operand:GPI 0 “register_operand” “=r”) (neg:GPI (ASHIFT:GPI (match_dup 1) (match_dup 2))))] "" “negs\t%0, %1, %2” [(set_attr “type” “alus_shift_imm”)] )

(define_insn “*neg__2” [(set (match_operand:GPI 0 “register_operand” “=r”) (neg:GPI (ASHIFT:GPI (match_operand:GPI 1 “register_operand” “r”) (match_operand:QI 2 “aarch64_shift_imm_” “n”))))] "" “neg\t%0, %1, %2” [(set_attr “autodetect_type” “alu_shift__op2”)] )

;; zero_extend version of above (define_insn “*neg__si2_uxtw” [(set (match_operand:DI 0 “register_operand” “=r”) (zero_extend:DI (neg:SI (ASHIFT:SI (match_operand:SI 1 “register_operand” “r”) (match_operand:QI 2 “aarch64_shift_imm_si” “n”)))))] "" “neg\t%w0, %w1, %2” [(set_attr “autodetect_type” “alu_shift__op2”)] )

(define_insn “*neg_asr_si2_extr” [(set (match_operand:SI 0 “register_operand” “=r”) (neg:SI (match_operator:SI 4 “subreg_lowpart_operator” [(sign_extract:DI (match_operand:DI 1 “register_operand” “r”) (match_operand 3 “aarch64_simd_shift_imm_offset_si” “n”) (match_operand 2 “aarch64_simd_shift_imm_offset_si” “n”))])))] “INTVAL (operands[2]) + INTVAL (operands[3]) == 32” “neg\t%w0, %w1, asr %2” [(set_attr “autodetect_type” “alu_shift_asr_op2”)] )

(define_insn “mul3” [(set (match_operand:GPI 0 “register_operand” “=r”) (mult:GPI (match_operand:GPI 1 “register_operand” “r”) (match_operand:GPI 2 “register_operand” “r”)))] "" “mul\t%0, %1, %2” [(set_attr “type” “mul”)] )

;; zero_extend version of above (define_insn “*mulsi3_uxtw” [(set (match_operand:DI 0 “register_operand” “=r”) (zero_extend:DI (mult:SI (match_operand:SI 1 “register_operand” “r”) (match_operand:SI 2 “register_operand” “r”))))] "" “mul\t%w0, %w1, %w2” [(set_attr “type” “mul”)] )

(define_insn “madd” [(set (match_operand:GPI 0 “register_operand” “=r”) (plus:GPI (mult:GPI (match_operand:GPI 1 “register_operand” “r”) (match_operand:GPI 2 “register_operand” “r”)) (match_operand:GPI 3 “register_operand” “r”)))] "" “madd\t%0, %1, %2, %3” [(set_attr “type” “mla”)] )

;; zero_extend version of above (define_insn “*maddsi_uxtw” [(set (match_operand:DI 0 “register_operand” “=r”) (zero_extend:DI (plus:SI (mult:SI (match_operand:SI 1 “register_operand” “r”) (match_operand:SI 2 “register_operand” “r”)) (match_operand:SI 3 “register_operand” “r”))))] "" “madd\t%w0, %w1, %w2, %w3” [(set_attr “type” “mla”)] )

(define_insn “*msub” [(set (match_operand:GPI 0 “register_operand” “=r”) (minus:GPI (match_operand:GPI 3 “register_operand” “r”) (mult:GPI (match_operand:GPI 1 “register_operand” “r”) (match_operand:GPI 2 “register_operand” “r”))))]

"" “msub\t%0, %1, %2, %3” [(set_attr “type” “mla”)] )

;; zero_extend version of above (define_insn “*msubsi_uxtw” [(set (match_operand:DI 0 “register_operand” “=r”) (zero_extend:DI (minus:SI (match_operand:SI 3 “register_operand” “r”) (mult:SI (match_operand:SI 1 “register_operand” “r”) (match_operand:SI 2 “register_operand” “r”)))))]

"" “msub\t%w0, %w1, %w2, %w3” [(set_attr “type” “mla”)] )

(define_insn “*mul_neg” [(set (match_operand:GPI 0 “register_operand” “=r”) (mult:GPI (neg:GPI (match_operand:GPI 1 “register_operand” “r”)) (match_operand:GPI 2 “register_operand” “r”)))]

"" “mneg\t%0, %1, %2” [(set_attr “type” “mul”)] )

;; zero_extend version of above (define_insn “*mulsi_neg_uxtw” [(set (match_operand:DI 0 “register_operand” “=r”) (zero_extend:DI (mult:SI (neg:SI (match_operand:SI 1 “register_operand” “r”)) (match_operand:SI 2 “register_operand” “r”))))]

"" “mneg\t%w0, %w1, %w2” [(set_attr “type” “mul”)] )

(define_insn “<su_optab>mulsidi3” [(set (match_operand:DI 0 “register_operand” “=r”) (mult:DI (ANY_EXTEND:DI (match_operand:SI 1 “register_operand” “r”)) (ANY_EXTEND:DI (match_operand:SI 2 “register_operand” “r”))))] "" “mull\t%0, %w1, %w2” [(set_attr “type” “mull”)] )

(define_insn “<su_optab>maddsidi4” [(set (match_operand:DI 0 “register_operand” “=r”) (plus:DI (mult:DI (ANY_EXTEND:DI (match_operand:SI 1 “register_operand” “r”)) (ANY_EXTEND:DI (match_operand:SI 2 “register_operand” “r”))) (match_operand:DI 3 “register_operand” “r”)))] "" “maddl\t%0, %w1, %w2, %3” [(set_attr “type” “mlal”)] )

(define_insn “<su_optab>msubsidi4” [(set (match_operand:DI 0 “register_operand” “=r”) (minus:DI (match_operand:DI 3 “register_operand” “r”) (mult:DI (ANY_EXTEND:DI (match_operand:SI 1 “register_operand” “r”)) (ANY_EXTEND:DI (match_operand:SI 2 “register_operand” “r”)))))] "" “msubl\t%0, %w1, %w2, %3” [(set_attr “type” “mlal”)] )

(define_insn “*<su_optab>mulsidi_neg” [(set (match_operand:DI 0 “register_operand” “=r”) (mult:DI (neg:DI (ANY_EXTEND:DI (match_operand:SI 1 “register_operand” “r”))) (ANY_EXTEND:DI (match_operand:SI 2 “register_operand” “r”))))] "" “mnegl\t%0, %w1, %w2” [(set_attr “type” “mull”)] )

(define_expand “<su_optab>mulditi3” [(set (match_operand:TI 0 “register_operand”) (mult:TI (ANY_EXTEND:TI (match_operand:DI 1 “register_operand”)) (ANY_EXTEND:TI (match_operand:DI 2 “register_operand”))))] "" { rtx low = gen_reg_rtx (DImode); emit_insn (gen_muldi3 (low, operands[1], operands[2]));

rtx high = gen_reg_rtx (DImode); emit_insn (gen_muldi3_highpart (high, operands[1], operands[2]));

emit_move_insn (gen_lowpart (DImode, operands[0]), low); emit_move_insn (gen_highpart (DImode, operands[0]), high); DONE; })

;; The default expansion of multi3 using umuldi3_highpart will perform ;; the additions in an order that fails to combine into two madd insns. (define_expand “multi3” [(set (match_operand:TI 0 “register_operand”) (mult:TI (match_operand:TI 1 “register_operand”) (match_operand:TI 2 “register_operand”)))] "" { rtx l0 = gen_reg_rtx (DImode); rtx l1 = gen_lowpart (DImode, operands[1]); rtx l2 = gen_lowpart (DImode, operands[2]); rtx h0 = gen_reg_rtx (DImode); rtx h1 = gen_highpart (DImode, operands[1]); rtx h2 = gen_highpart (DImode, operands[2]);

emit_insn (gen_muldi3 (l0, l1, l2)); emit_insn (gen_umuldi3_highpart (h0, l1, l2)); emit_insn (gen_madddi (h0, h1, l2, h0)); emit_insn (gen_madddi (h0, l1, h2, h0));

emit_move_insn (gen_lowpart (DImode, operands[0]), l0); emit_move_insn (gen_highpart (DImode, operands[0]), h0); DONE; })

(define_insn “muldi3_highpart” [(set (match_operand:DI 0 “register_operand” “=r”) (truncate:DI (lshiftrt:TI (mult:TI (ANY_EXTEND:TI (match_operand:DI 1 “register_operand” “r”)) (ANY_EXTEND:TI (match_operand:DI 2 “register_operand” “r”))) (const_int 64))))] "" “mulh\t%0, %1, %2” [(set_attr “type” “mull”)] )

(define_insn “<su_optab>div3” [(set (match_operand:GPI 0 “register_operand” “=r”) (ANY_DIV:GPI (match_operand:GPI 1 “register_operand” “r”) (match_operand:GPI 2 “register_operand” “r”)))] "" “div\t%0, %1, %2” [(set_attr “type” “div”)] )

;; zero_extend version of above (define_insn “*<su_optab>divsi3_uxtw” [(set (match_operand:DI 0 “register_operand” “=r”) (zero_extend:DI (ANY_DIV:SI (match_operand:SI 1 “register_operand” “r”) (match_operand:SI 2 “register_operand” “r”))))] "" “div\t%w0, %w1, %w2” [(set_attr “type” “div”)] )

;; ------------------------------------------------------------------- ;; Comparison insns ;; -------------------------------------------------------------------

(define_insn “cmp” [(set (reg:CC CC_REGNUM) (compare:CC (match_operand:GPI 0 “register_operand” “rk,rk,rk”) (match_operand:GPI 1 “aarch64_plus_operand” “r,I,J”)))] "" “@ cmp\t%0, %1 cmp\t%0, %1 cmn\t%0, #%n1” [(set_attr “type” “alus_sreg,alus_imm,alus_imm”)] )

(define_insn “fcmp” [(set (reg:CCFP CC_REGNUM) (compare:CCFP (match_operand:GPF 0 “register_operand” “w,w”) (match_operand:GPF 1 “aarch64_fp_compare_operand” “Y,w”)))] “TARGET_FLOAT” “@ fcmp\t%0, #0.0 fcmp\t%0, %1” [(set_attr “type” “fcmp”)] )

(define_insn “fcmpe” [(set (reg:CCFPE CC_REGNUM) (compare:CCFPE (match_operand:GPF 0 “register_operand” “w,w”) (match_operand:GPF 1 “aarch64_fp_compare_operand” “Y,w”)))] “TARGET_FLOAT” “@ fcmpe\t%0, #0.0 fcmpe\t%0, %1” [(set_attr “type” “fcmp”)] )

(define_insn “*cmp_swp__reg” [(set (reg:CC_SWP CC_REGNUM) (compare:CC_SWP (ASHIFT:GPI (match_operand:GPI 0 “register_operand” “r”) (match_operand:QI 1 “aarch64_shift_imm_” “n”)) (match_operand:GPI 2 “aarch64_reg_or_zero” “rZ”)))] "" “cmp\t%2, %0, %1” [(set_attr “type” “alus_shift_imm”)] )

(define_insn “*cmp_swp_ALLX:mode_regGPI:mode” [(set (reg:CC_SWP CC_REGNUM) (compare:CC_SWP (ANY_EXTEND:GPI (match_operand:ALLX 0 “register_operand” “r”)) (match_operand:GPI 1 “register_operand” “r”)))] "" “cmp\t%GPI:w1, %w0, xtALLX:size” [(set_attr “type” “alus_ext”)] )

(define_insn “*cmp_swp_ALLX:modeshftGPI:mode” [(set (reg:CC_SWP CC_REGNUM) (compare:CC_SWP (ashift:GPI (ANY_EXTEND:GPI (match_operand:ALLX 0 “register_operand” “r”)) (match_operand 1 “aarch64_imm3” “Ui3”)) (match_operand:GPI 2 “register_operand” “r”)))] "" “cmp\t%GPI:w2, %w0, xtALLX:size %1” [(set_attr “type” “alus_ext”)] )

;; ------------------------------------------------------------------- ;; Store-flag and conditional select insns ;; -------------------------------------------------------------------

(define_expand “cstore4” [(set (match_operand:SI 0 “register_operand”) (match_operator:SI 1 “aarch64_comparison_operator” [(match_operand:GPI 2 “register_operand”) (match_operand:GPI 3 “aarch64_plus_operand”)]))] "" " operands[2] = aarch64_gen_compare_reg (GET_CODE (operands[1]), operands[2], operands[3]); operands[3] = const0_rtx; " )

(define_expand “cstorecc4” [(set (match_operand:SI 0 “register_operand”) (match_operator 1 “aarch64_comparison_operator_mode” [(match_operand 2 “cc_register”) (match_operand 3 “const0_operand”)]))] "" “{ emit_insn (gen_rtx_SET (operands[0], operands[1])); DONE; }”)

(define_expand “cstore4” [(set (match_operand:SI 0 “register_operand”) (match_operator:SI 1 “aarch64_comparison_operator_mode” [(match_operand:GPF 2 “register_operand”) (match_operand:GPF 3 “aarch64_fp_compare_operand”)]))] "" " operands[2] = aarch64_gen_compare_reg (GET_CODE (operands[1]), operands[2], operands[3]); operands[3] = const0_rtx; " )

(define_insn “aarch64_cstore” [(set (match_operand:ALLI 0 “register_operand” “=r”) (match_operator:ALLI 1 “aarch64_comparison_operator_mode” [(match_operand 2 “cc_register” "") (const_int 0)]))] "" “cset\t%0, %m1” [(set_attr “type” “csel”)] )

;; For a 24-bit immediate CST we can optimize the compare for equality ;; and branch sequence from: ;; mov x0, #imm1 ;; movk x0, #imm2, lsl 16 /* x0 contains CST. */ ;; cmp x1, x0 ;; cset x2, <ne,eq> ;; into the shorter: ;; sub x0, x1, #(CST & 0xfff000) ;; subs x0, x0, #(CST & 0x000fff) ;; cset x2, <ne, eq>. (define_insn_and_split “*compare_cstore_insn” [(set (match_operand:GPI 0 “register_operand” “=r”) (EQL:GPI (match_operand:GPI 1 “register_operand” “r”) (match_operand:GPI 2 “aarch64_imm24” “n”))) (clobber (reg:CC CC_REGNUM))] “!aarch64_move_imm (INTVAL (operands[2]), mode) && !aarch64_plus_operand (operands[2], mode) && !reload_completed” “#” “&& true” [(const_int 0)] { HOST_WIDE_INT lo_imm = UINTVAL (operands[2]) & 0xfff; HOST_WIDE_INT hi_imm = UINTVAL (operands[2]) & 0xfff000; rtx tmp = gen_reg_rtx (mode); emit_insn (gen_add3 (tmp, operands[1], GEN_INT (-hi_imm))); emit_insn (gen_add3_compare0 (tmp, tmp, GEN_INT (-lo_imm))); rtx cc_reg = gen_rtx_REG (CC_NZmode, CC_REGNUM); rtx cmp_rtx = gen_rtx_fmt_ee (EQL:CMP, mode, cc_reg, const0_rtx); emit_insn (gen_aarch64_cstore (operands[0], cmp_rtx, cc_reg)); DONE; } [(set_attr “type” “csel”)] )

;; zero_extend version of the above (define_insn “*cstoresi_insn_uxtw” [(set (match_operand:DI 0 “register_operand” “=r”) (zero_extend:DI (match_operator:SI 1 “aarch64_comparison_operator_mode” [(match_operand 2 “cc_register” "") (const_int 0)])))] "" “cset\t%w0, %m1” [(set_attr “type” “csel”)] )

(define_insn “cstore_neg” [(set (match_operand:ALLI 0 “register_operand” “=r”) (neg:ALLI (match_operator:ALLI 1 “aarch64_comparison_operator_mode” [(match_operand 2 “cc_register” "") (const_int 0)])))] "" “csetm\t%0, %m1” [(set_attr “type” “csel”)] )

;; zero_extend version of the above (define_insn “*cstoresi_neg_uxtw” [(set (match_operand:DI 0 “register_operand” “=r”) (zero_extend:DI (neg:SI (match_operator:SI 1 “aarch64_comparison_operator_mode” [(match_operand 2 “cc_register” "") (const_int 0)]))))] "" “csetm\t%w0, %m1” [(set_attr “type” “csel”)] )

(define_expand “cmov6” [(set (match_operand:GPI 0 “register_operand”) (if_then_else:GPI (match_operator 1 “aarch64_comparison_operator” [(match_operand:GPI 2 “register_operand”) (match_operand:GPI 3 “aarch64_plus_operand”)]) (match_operand:GPI 4 “register_operand”) (match_operand:GPI 5 “register_operand”)))] "" " operands[2] = aarch64_gen_compare_reg (GET_CODE (operands[1]), operands[2], operands[3]); operands[3] = const0_rtx; " )

(define_expand “cmov6” [(set (match_operand:GPF 0 “register_operand”) (if_then_else:GPF (match_operator 1 “aarch64_comparison_operator” [(match_operand:GPF 2 “register_operand”) (match_operand:GPF 3 “aarch64_fp_compare_operand”)]) (match_operand:GPF 4 “register_operand”) (match_operand:GPF 5 “register_operand”)))] "" " operands[2] = aarch64_gen_compare_reg (GET_CODE (operands[1]), operands[2], operands[3]); operands[3] = const0_rtx; " )

(define_insn “*cmov_insn” [(set (match_operand:ALLI 0 “register_operand” “=r,r,r,r,r,r,r”) (if_then_else:ALLI (match_operator 1 “aarch64_comparison_operator” [(match_operand 2 “cc_register” "") (const_int 0)]) (match_operand:ALLI 3 “aarch64_reg_zero_or_m1_or_1” “rZ,rZ,UsM,rZ,Ui1,UsM,Ui1”) (match_operand:ALLI 4 “aarch64_reg_zero_or_m1_or_1” “rZ,UsM,rZ,Ui1,rZ,UsM,Ui1”)))] “!((operands[3] == const1_rtx && operands[4] == constm1_rtx) || (operands[3] == constm1_rtx && operands[4] == const1_rtx))” ;; Final two alternatives should be unreachable, but included for completeness “@ csel\t%0, %3, %4, %m1 csinv\t%0, %3, zr, %m1 csinv\t%0, %4, zr, %M1 csinc\t%0, %3, zr, %m1 csinc\t%0, %4, zr, %M1 mov\t%0, -1 mov\t%0, 1” [(set_attr “type” “csel, csel, csel, csel, csel, mov_imm, mov_imm”)] )

;; zero_extend version of above (define_insn “*cmovsi_insn_uxtw” [(set (match_operand:DI 0 “register_operand” “=r,r,r,r,r,r,r”) (zero_extend:DI (if_then_else:SI (match_operator 1 “aarch64_comparison_operator” [(match_operand 2 “cc_register” "") (const_int 0)]) (match_operand:SI 3 “aarch64_reg_zero_or_m1_or_1” “rZ,rZ,UsM,rZ,Ui1,UsM,Ui1”) (match_operand:SI 4 “aarch64_reg_zero_or_m1_or_1” “rZ,UsM,rZ,Ui1,rZ,UsM,Ui1”))))] “!((operands[3] == const1_rtx && operands[4] == constm1_rtx) || (operands[3] == constm1_rtx && operands[4] == const1_rtx))” ;; Final two alternatives should be unreachable, but included for completeness “@ csel\t%w0, %w3, %w4, %m1 csinv\t%w0, %w3, wzr, %m1 csinv\t%w0, %w4, wzr, %M1 csinc\t%w0, %w3, wzr, %m1 csinc\t%w0, %w4, wzr, %M1 mov\t%w0, -1 mov\t%w0, 1” [(set_attr “type” “csel, csel, csel, csel, csel, mov_imm, mov_imm”)] )

(define_insn “*cmovdi_insn_uxtw” [(set (match_operand:DI 0 “register_operand” “=r”) (if_then_else:DI (match_operator 1 “aarch64_comparison_operator” [(match_operand 2 “cc_register” "") (const_int 0)]) (zero_extend:DI (match_operand:SI 3 “register_operand” “r”)) (zero_extend:DI (match_operand:SI 4 “register_operand” “r”))))] "" “csel\t%w0, %w3, %w4, %m1” [(set_attr “type” “csel”)] )

(define_insn “*cmov_insn” [(set (match_operand:GPF 0 “register_operand” “=w”) (if_then_else:GPF (match_operator 1 “aarch64_comparison_operator” [(match_operand 2 “cc_register” "") (const_int 0)]) (match_operand:GPF 3 “register_operand” “w”) (match_operand:GPF 4 “register_operand” “w”)))] “TARGET_FLOAT” “fcsel\t%0, %3, %4, %m1” [(set_attr “type” “fcsel”)] )

(define_expand “movcc” [(set (match_operand:ALLI 0 “register_operand”) (if_then_else:ALLI (match_operand 1 “aarch64_comparison_operator”) (match_operand:ALLI 2 “register_operand”) (match_operand:ALLI 3 “register_operand”)))] "" { rtx ccreg; enum rtx_code code = GET_CODE (operands[1]);

if (code == UNEQ || code == LTGT)
  FAIL;

ccreg = aarch64_gen_compare_reg (code, XEXP (operands[1], 0),
			     XEXP (operands[1], 1));
operands[1] = gen_rtx_fmt_ee (code, VOIDmode, ccreg, const0_rtx);

} )

(define_expand “movGPF:modeGPI:modecc” [(set (match_operand:GPI 0 “register_operand”) (if_then_else:GPI (match_operand 1 “aarch64_comparison_operator”) (match_operand:GPF 2 “register_operand”) (match_operand:GPF 3 “register_operand”)))] "" { rtx ccreg; enum rtx_code code = GET_CODE (operands[1]);

if (code == UNEQ || code == LTGT)
  FAIL;

ccreg = aarch64_gen_compare_reg (code, XEXP (operands[1], 0),
			  XEXP (operands[1], 1));
operands[1] = gen_rtx_fmt_ee (code, VOIDmode, ccreg, const0_rtx);

} )

(define_expand “movcc” [(set (match_operand:GPF 0 “register_operand”) (if_then_else:GPF (match_operand 1 “aarch64_comparison_operator”) (match_operand:GPF 2 “register_operand”) (match_operand:GPF 3 “register_operand”)))] "" { rtx ccreg; enum rtx_code code = GET_CODE (operands[1]);

if (code == UNEQ || code == LTGT)
  FAIL;

ccreg = aarch64_gen_compare_reg (code, XEXP (operands[1], 0),
			  XEXP (operands[1], 1));
operands[1] = gen_rtx_fmt_ee (code, VOIDmode, ccreg, const0_rtx);

} )

(define_expand “<neg_not_op>cc” [(set (match_operand:GPI 0 “register_operand”) (if_then_else:GPI (match_operand 1 “aarch64_comparison_operator”) (NEG_NOT:GPI (match_operand:GPI 2 “register_operand”)) (match_operand:GPI 3 “register_operand”)))] "" { rtx ccreg; enum rtx_code code = GET_CODE (operands[1]);

if (code == UNEQ || code == LTGT)
  FAIL;

ccreg = aarch64_gen_compare_reg (code, XEXP (operands[1], 0),
			      XEXP (operands[1], 1));
operands[1] = gen_rtx_fmt_ee (code, VOIDmode, ccreg, const0_rtx);

} )

;; CRC32 instructions. (define_insn “aarch64_<crc_variant>” [(set (match_operand:SI 0 “register_operand” “=r”) (unspec:SI [(match_operand:SI 1 “register_operand” “r”) (match_operand:<crc_mode> 2 “register_operand” “r”)] CRC))] “TARGET_CRC32” { if (GET_MODE_BITSIZE (<crc_mode>mode) >= 64) return “<crc_variant>\t%w0, %w1, %x2”; else return “<crc_variant>\t%w0, %w1, %w2”; } [(set_attr “type” “crc”)] )

(define_insn “*csinc2_insn” [(set (match_operand:GPI 0 “register_operand” “=r”) (plus:GPI (match_operand 2 “aarch64_comparison_operation” "") (match_operand:GPI 1 “register_operand” “r”)))] "" “cinc\t%0, %1, %m2” [(set_attr “type” “csel”)] )

(define_insn “csinc3_insn” [(set (match_operand:GPI 0 “register_operand” “=r”) (if_then_else:GPI (match_operand 1 “aarch64_comparison_operation” "") (plus:GPI (match_operand:GPI 2 “register_operand” “r”) (const_int 1)) (match_operand:GPI 3 “aarch64_reg_or_zero” “rZ”)))] "" “csinc\t%0, %3, %2, %M1” [(set_attr “type” “csel”)] )

(define_insn “*csinv3_insn” [(set (match_operand:GPI 0 “register_operand” “=r”) (if_then_else:GPI (match_operand 1 “aarch64_comparison_operation” "") (not:GPI (match_operand:GPI 2 “register_operand” “r”)) (match_operand:GPI 3 “aarch64_reg_or_zero” “rZ”)))] "" “csinv\t%0, %3, %2, %M1” [(set_attr “type” “csel”)] )

(define_insn “*cs<neg_not_cs>3_uxtw_insn4” [(set (match_operand:DI 0 “register_operand” “=r”) (zero_extend:DI (if_then_else:SI (match_operand 1 “aarch64_comparison_operation” "") (NEG_NOT:SI (match_operand:SI 2 “register_operand” “r”)) (match_operand:SI 3 “aarch64_reg_or_zero” “rZ”))))] "" “cs<neg_not_cs>\t%w0, %w3, %w2, %M1” [(set_attr “type” “csel”)] )

(define_insn “csneg3_insn” [(set (match_operand:GPI 0 “register_operand” “=r”) (if_then_else:GPI (match_operand 1 “aarch64_comparison_operation” "") (neg:GPI (match_operand:GPI 2 “register_operand” “r”)) (match_operand:GPI 3 “aarch64_reg_or_zero” “rZ”)))] "" “csneg\t%0, %3, %2, %M1” [(set_attr “type” “csel”)] )

(define_insn “*csinv3_uxtw_insn1” [(set (match_operand:DI 0 “register_operand” “=r”) (if_then_else:DI (match_operand 1 “aarch64_comparison_operation” "") (zero_extend:DI (match_operand:SI 2 “register_operand” “r”)) (zero_extend:DI (NEG_NOT:SI (match_operand:SI 3 “register_operand” “r”)))))] "" “cs<neg_not_cs>\t%w0, %w2, %w3, %m1” [(set_attr “type” “csel”)] )

(define_insn “*csinv3_uxtw_insn2” [(set (match_operand:DI 0 “register_operand” “=r”) (if_then_else:DI (match_operand 1 “aarch64_comparison_operation” "") (zero_extend:DI (NEG_NOT:SI (match_operand:SI 2 “register_operand” “r”))) (zero_extend:DI (match_operand:SI 3 “register_operand” “r”))))] "" “cs<neg_not_cs>\t%w0, %w3, %w2, %M1” [(set_attr “type” “csel”)] )

(define_insn “*csinv3_uxtw_insn3” [(set (match_operand:DI 0 “register_operand” “=r”) (if_then_else:DI (match_operand 1 “aarch64_comparison_operation” "") (zero_extend:DI (NEG_NOT:SI (match_operand:SI 2 “register_operand” “r”))) (const_int 0)))] "" “cs<neg_not_cs>\t%w0, wzr, %w2, %M1” [(set_attr “type” “csel”)] )

;; If X can be loaded by a single CNT[BHWD] instruction, ;; ;; A = UMAX (B, X) ;; ;; is equivalent to: ;; ;; TMP = UQDEC[BHWD] (B, X) ;; A = TMP + X ;; ;; Defining the pattern this way means that: ;; ;; A = UMAX (B, X) - X ;; ;; becomes: ;; ;; TMP1 = UQDEC[BHWD] (B, X) ;; TMP2 = TMP1 + X ;; A = TMP2 - X ;; ;; which combine can optimize to: ;; ;; A = UQDEC[BHWD] (B, X) ;; ;; We don't use match_operand predicates because the order of the operands ;; can vary: the CNT[BHWD] constant will come first if the other operand is ;; a simpler constant (such as a CONST_INT), otherwise it will come second. (define_expand “umax3” [(set (match_operand:GPI 0 “register_operand”) (umax:GPI (match_operand:GPI 1 "") (match_operand:GPI 2 "")))] “TARGET_SVE” { if (aarch64_sve_cnt_immediate (operands[1], mode)) std::swap (operands[1], operands[2]); else if (!aarch64_sve_cnt_immediate (operands[2], mode)) FAIL; rtx temp = gen_reg_rtx (mode); operands[1] = force_reg (mode, operands[1]); emit_insn (gen_aarch64_uqdec (temp, operands[1], operands[2])); emit_insn (gen_add3 (operands[0], temp, operands[2])); DONE; } )

;; Saturating unsigned subtraction of a CNT[BHWD] immediate. (define_insn “aarch64_uqdec” [(set (match_operand:GPI 0 “register_operand” “=r”) (minus:GPI (umax:GPI (match_operand:GPI 1 “register_operand” “0”) (match_operand:GPI 2 “aarch64_sve_cnt_immediate” “Usv”)) (match_dup 2)))] “TARGET_SVE” { return aarch64_output_sve_cnt_immediate (“uqdec”, “%0”, operands[2]); } )

;; ------------------------------------------------------------------- ;; Logical operations ;; -------------------------------------------------------------------

(define_insn_and_split “*aarch64_and_imm2” [(set (match_operand:GPI 0 “register_operand” “=rk”) (and:GPI (match_operand:GPI 1 “register_operand” “%r”) (match_operand:GPI 2 “aarch64_logical_and_immediate” “”)))] "" “#” “true” [(const_int 0)] { HOST_WIDE_INT val = INTVAL (operands[2]); rtx imm1 = GEN_INT (aarch64_and_split_imm1 (val)); rtx imm2 = GEN_INT (aarch64_and_split_imm2 (val));

 emit_insn (gen_and<mode>3 (operands[0], operands[1], imm1));
 emit_insn (gen_and<mode>3 (operands[0], operands[0], imm2));
 DONE;

} )

(define_insn “3” [(set (match_operand:GPI 0 “register_operand” “=r,rk,w”) (LOGICAL:GPI (match_operand:GPI 1 “register_operand” “%r,r,w”) (match_operand:GPI 2 “aarch64_logical_operand” “r,,w”)))] "" “@ \t%0, %1, %2 \t%0, %1, %2 \t%0., %1., %2.” [(set_attr “type” “logic_reg,logic_imm,neon_logic”) (set_attr “arch” “,,simd”)] )

;; zero_extend version of above (define_insn “*si3_uxtw” [(set (match_operand:DI 0 “register_operand” “=r,rk”) (zero_extend:DI (LOGICAL:SI (match_operand:SI 1 “register_operand” “%r,r”) (match_operand:SI 2 “aarch64_logical_operand” “r,K”))))] "" “@ \t%w0, %w1, %w2 \t%w0, %w1, %2” [(set_attr “type” “logic_reg,logic_imm”)] )

(define_insn “*and3_compare0” [(set (reg:CC_NZ CC_REGNUM) (compare:CC_NZ (and:GPI (match_operand:GPI 1 “register_operand” “%r,r”) (match_operand:GPI 2 “aarch64_logical_operand” “r,”)) (const_int 0))) (set (match_operand:GPI 0 “register_operand” “=r,r”) (and:GPI (match_dup 1) (match_dup 2)))] "" “@ ands\t%0, %1, %2 ands\t%0, %1, %2” [(set_attr “type” “logics_reg,logics_imm”)] )

;; zero_extend version of above (define_insn “*andsi3_compare0_uxtw” [(set (reg:CC_NZ CC_REGNUM) (compare:CC_NZ (and:SI (match_operand:SI 1 “register_operand” “%r,r”) (match_operand:SI 2 “aarch64_logical_operand” “r,K”)) (const_int 0))) (set (match_operand:DI 0 “register_operand” “=r,r”) (zero_extend:DI (and:SI (match_dup 1) (match_dup 2))))] "" “@ ands\t%w0, %w1, %w2 ands\t%w0, %w1, %2” [(set_attr “type” “logics_reg,logics_imm”)] )

(define_insn “*and_SHIFT:optab3_compare0” [(set (reg:CC_NZ CC_REGNUM) (compare:CC_NZ (and:GPI (SHIFT:GPI (match_operand:GPI 1 “register_operand” “r”) (match_operand:QI 2 “aarch64_shift_imm_” “n”)) (match_operand:GPI 3 “register_operand” “r”)) (const_int 0))) (set (match_operand:GPI 0 “register_operand” “=r”) (and:GPI (SHIFT:GPI (match_dup 1) (match_dup 2)) (match_dup 3)))] "" “ands\t%0, %3, %1, SHIFT:shift %2” [(set_attr “type” “logics_shift_imm”)] )

;; zero_extend version of above (define_insn “*and_SHIFT:optabsi3_compare0_uxtw” [(set (reg:CC_NZ CC_REGNUM) (compare:CC_NZ (and:SI (SHIFT:SI (match_operand:SI 1 “register_operand” “r”) (match_operand:QI 2 “aarch64_shift_imm_si” “n”)) (match_operand:SI 3 “register_operand” “r”)) (const_int 0))) (set (match_operand:DI 0 “register_operand” “=r”) (zero_extend:DI (and:SI (SHIFT:SI (match_dup 1) (match_dup 2)) (match_dup 3))))] "" “ands\t%w0, %w3, %w1, SHIFT:shift %2” [(set_attr “type” “logics_shift_imm”)] )

(define_insn “*LOGICAL:optab_SHIFT:optab3” [(set (match_operand:GPI 0 “register_operand” “=r”) (LOGICAL:GPI (SHIFT:GPI (match_operand:GPI 1 “register_operand” “r”) (match_operand:QI 2 “aarch64_shift_imm_” “n”)) (match_operand:GPI 3 “register_operand” “r”)))] "" “LOGICAL:logical\t%0, %3, %1, SHIFT:shift %2” [(set_attr “type” “logic_shift_imm”)] )

(define_split [(set (match_operand:GPI 0 “register_operand”) (LOGICAL:GPI (and:GPI (ashift:GPI (match_operand:GPI 1 “register_operand”) (match_operand:QI 2 “aarch64_shift_imm_”)) (match_operand:GPI 3 “const_int_operand”)) (zero_extend:GPI (match_operand 4 “register_operand”))))] “can_create_pseudo_p () && ((paradoxical_subreg_p (operands[1]) && rtx_equal_p (SUBREG_REG (operands[1]), operands[4])) || (REG_P (operands[1]) && REG_P (operands[4]) && REGNO (operands[1]) == REGNO (operands[4]))) && (trunc_int_for_mode (GET_MODE_MASK (GET_MODE (operands[4])) << INTVAL (operands[2]), mode) == INTVAL (operands[3]))” [(set (match_dup 5) (zero_extend:GPI (match_dup 4))) (set (match_dup 0) (LOGICAL:GPI (ashift:GPI (match_dup 5) (match_dup 2)) (match_dup 5)))] “operands[5] = gen_reg_rtx (mode);” )

(define_split [(set (match_operand:GPI 0 “register_operand”) (LOGICAL:GPI (and:GPI (ashift:GPI (match_operand:GPI 1 “register_operand”) (match_operand:QI 2 “aarch64_shift_imm_”)) (match_operand:GPI 4 “const_int_operand”)) (and:GPI (match_dup 1) (match_operand:GPI 3 “const_int_operand”))))] “can_create_pseudo_p () && pow2_or_zerop (UINTVAL (operands[3]) + 1) && (trunc_int_for_mode (UINTVAL (operands[3]) << INTVAL (operands[2]), mode) == INTVAL (operands[4]))” [(set (match_dup 5) (and:GPI (match_dup 1) (match_dup 3))) (set (match_dup 0) (LOGICAL:GPI (ashift:GPI (match_dup 5) (match_dup 2)) (match_dup 5)))] “operands[5] = gen_reg_rtx (mode);” )

(define_split [(set (match_operand:GPI 0 “register_operand”) (LOGICAL:GPI (ashift:GPI (sign_extend:GPI (match_operand 1 “register_operand”)) (match_operand:QI 2 “aarch64_shift_imm_”)) (sign_extend:GPI (match_dup 1))))] “can_create_pseudo_p ()” [(set (match_dup 3) (sign_extend:GPI (match_dup 1))) (set (match_dup 0) (LOGICAL:GPI (ashift:GPI (match_dup 3) (match_dup 2)) (match_dup 3)))] “operands[3] = gen_reg_rtx (mode);” )

(define_insn “*_rol3” [(set (match_operand:GPI 0 “register_operand” “=r”) (LOGICAL:GPI (rotate:GPI (match_operand:GPI 1 “register_operand” “r”) (match_operand:QI 2 “aarch64_shift_imm_” “n”)) (match_operand:GPI 3 “register_operand” “r”)))] "" “\t%0, %3, %1, ror #( - %2)” [(set_attr “type” “logic_shift_imm”)] )

;; zero_extend versions of above (define_insn “*LOGICAL:optab_SHIFT:optabsi3_uxtw” [(set (match_operand:DI 0 “register_operand” “=r”) (zero_extend:DI (LOGICAL:SI (SHIFT:SI (match_operand:SI 1 “register_operand” “r”) (match_operand:QI 2 “aarch64_shift_imm_si” “n”)) (match_operand:SI 3 “register_operand” “r”))))] "" “LOGICAL:logical\t%w0, %w3, %w1, SHIFT:shift %2” [(set_attr “type” “logic_shift_imm”)] )

(define_insn “*_rolsi3_uxtw” [(set (match_operand:DI 0 “register_operand” “=r”) (zero_extend:DI (LOGICAL:SI (rotate:SI (match_operand:SI 1 “register_operand” “r”) (match_operand:QI 2 “aarch64_shift_imm_si” “n”)) (match_operand:SI 3 “register_operand” “r”))))] "" “\t%w0, %w3, %w1, ror #(32 - %2)” [(set_attr “type” “logic_shift_imm”)] )

(define_insn “one_cmpl2” [(set (match_operand:GPI 0 “register_operand” “=r,w”) (not:GPI (match_operand:GPI 1 “register_operand” “r,w”)))] "" “@ mvn\t%0, %1 mvn\t%0.8b, %1.8b” [(set_attr “type” “logic_reg,neon_logic”) (set_attr “arch” “*,simd”)] )

(define_insn “*one_cmpl_zero_extend” [(set (match_operand:DI 0 “register_operand” “=r”) (zero_extend:DI (not:SI (match_operand:SI 1 “register_operand” “r”))))] "" “mvn\t%w0, %w1” [(set_attr “type” “logic_reg”)] )

(define_insn “*one_cmpl_2” [(set (match_operand:GPI 0 “register_operand” “=r”) (not:GPI (SHIFT:GPI (match_operand:GPI 1 “register_operand” “r”) (match_operand:QI 2 “aarch64_shift_imm_” “n”))))] "" “mvn\t%0, %1, %2” [(set_attr “type” “logic_shift_imm”)] )

;; Binary logical operators negating one operand, i.e. (a & !b), (a | !b).

(define_insn “*NLOGICAL:optab_one_cmpl3” [(set (match_operand:GPI 0 “register_operand” “=r,w”) (NLOGICAL:GPI (not:GPI (match_operand:GPI 1 “register_operand” “r,w”)) (match_operand:GPI 2 “register_operand” “r,w”)))] "" “@ NLOGICAL:nlogical\t%0, %2, %1 NLOGICAL:nlogical\t%0., %2., %1.” [(set_attr “type” “logic_reg,neon_logic”) (set_attr “arch” “*,simd”)] )

(define_insn “*NLOGICAL:optab_one_cmplsidi3_ze” [(set (match_operand:DI 0 “register_operand” “=r”) (zero_extend:DI (NLOGICAL:SI (not:SI (match_operand:SI 1 “register_operand” “r”)) (match_operand:SI 2 “register_operand” “r”))))] "" “NLOGICAL:nlogical\t%w0, %w2, %w1” [(set_attr “type” “logic_reg”)] )

(define_insn “*xor_one_cmplsidi3_ze” [(set (match_operand:DI 0 “register_operand” “=r”) (zero_extend:DI (not:SI (xor:SI (match_operand:SI 1 “register_operand” “r”) (match_operand:SI 2 “register_operand” “r”)))))] "" “eon\t%w0, %w1, %w2” [(set_attr “type” “logic_reg”)] )

;; (xor (not a) b) is simplify_rtx-ed down to (not (xor a b)). ;; eon does not operate on SIMD registers so the vector variant must be split. (define_insn_and_split “*xor_one_cmpl3” [(set (match_operand:GPI 0 “register_operand” “=r,w”) (not:GPI (xor:GPI (match_operand:GPI 1 “register_operand” “r,?w”) (match_operand:GPI 2 “register_operand” “r,w”))))] "" “@ eon\t%0, %1, %2 #” “reload_completed && FP_REGNUM_P (REGNO (operands[0]))” ;; For SIMD registers. [(set (match_operand:GPI 0 “register_operand” “=w”) (xor:GPI (match_operand:GPI 1 “register_operand” “w”) (match_operand:GPI 2 “register_operand” “w”))) (set (match_dup 0) (not:GPI (match_dup 0)))] "" [(set_attr “type” “logic_reg,multiple”) (set_attr “arch” “*,simd”)] )

(define_insn “*and_one_cmpl3_compare0” [(set (reg:CC_NZ CC_REGNUM) (compare:CC_NZ (and:GPI (not:GPI (match_operand:GPI 1 “register_operand” “r”)) (match_operand:GPI 2 “register_operand” “r”)) (const_int 0))) (set (match_operand:GPI 0 “register_operand” “=r”) (and:GPI (not:GPI (match_dup 1)) (match_dup 2)))] "" “bics\t%0, %2, %1” [(set_attr “type” “logics_reg”)] )

;; zero_extend version of above (define_insn “*and_one_cmplsi3_compare0_uxtw” [(set (reg:CC_NZ CC_REGNUM) (compare:CC_NZ (and:SI (not:SI (match_operand:SI 1 “register_operand” “r”)) (match_operand:SI 2 “register_operand” “r”)) (const_int 0))) (set (match_operand:DI 0 “register_operand” “=r”) (zero_extend:DI (and:SI (not:SI (match_dup 1)) (match_dup 2))))] "" “bics\t%w0, %w2, %w1” [(set_attr “type” “logics_reg”)] )

(define_insn “*and_one_cmpl3_compare0_no_reuse” [(set (reg:CC_NZ CC_REGNUM) (compare:CC_NZ (and:GPI (not:GPI (match_operand:GPI 0 “register_operand” “r”)) (match_operand:GPI 1 “register_operand” “r”)) (const_int 0)))] "" “bics\tzr, %1, %0” [(set_attr “type” “logics_reg”)] )

(define_insn “LOGICAL:optabone_cmplSHIFT:optab3” [(set (match_operand:GPI 0 “register_operand” “=r”) (LOGICAL:GPI (not:GPI (SHIFT:GPI (match_operand:GPI 1 “register_operand” “r”) (match_operand:QI 2 “aarch64_shift_imm_” “n”))) (match_operand:GPI 3 “register_operand” “r”)))] "" “LOGICAL:nlogical\t%0, %3, %1, SHIFT:shift %2” [(set_attr “type” “logic_shift_imm”)] )

(define_insn “*eor_one_cmpl_SHIFT:optab3_alt” [(set (match_operand:GPI 0 “register_operand” “=r”) (not:GPI (xor:GPI (SHIFT:GPI (match_operand:GPI 1 “register_operand” “r”) (match_operand:QI 2 “aarch64_shift_imm_” “n”)) (match_operand:GPI 3 “register_operand” “r”))))] "" “eon\t%0, %3, %1, SHIFT:shift %2” [(set_attr “type” “logic_shift_imm”)] )

;; Zero-extend version of the above. (define_insn “*eor_one_cmpl_SHIFT:optabsidi3_alt_ze” [(set (match_operand:DI 0 “register_operand” “=r”) (zero_extend:DI (not:SI (xor:SI (SHIFT:SI (match_operand:SI 1 “register_operand” “r”) (match_operand:QI 2 “aarch64_shift_imm_si” “n”)) (match_operand:SI 3 “register_operand” “r”)))))] "" “eon\t%w0, %w3, %w1, SHIFT:shift %2” [(set_attr “type” “logic_shift_imm”)] )

(define_insn “*and_one_cmpl_SHIFT:optab3_compare0” [(set (reg:CC_NZ CC_REGNUM) (compare:CC_NZ (and:GPI (not:GPI (SHIFT:GPI (match_operand:GPI 1 “register_operand” “r”) (match_operand:QI 2 “aarch64_shift_imm_” “n”))) (match_operand:GPI 3 “register_operand” “r”)) (const_int 0))) (set (match_operand:GPI 0 “register_operand” “=r”) (and:GPI (not:GPI (SHIFT:GPI (match_dup 1) (match_dup 2))) (match_dup 3)))] "" “bics\t%0, %3, %1, SHIFT:shift %2” [(set_attr “type” “logics_shift_imm”)] )

;; zero_extend version of above (define_insn “*and_one_cmpl_SHIFT:optabsi3_compare0_uxtw” [(set (reg:CC_NZ CC_REGNUM) (compare:CC_NZ (and:SI (not:SI (SHIFT:SI (match_operand:SI 1 “register_operand” “r”) (match_operand:QI 2 “aarch64_shift_imm_si” “n”))) (match_operand:SI 3 “register_operand” “r”)) (const_int 0))) (set (match_operand:DI 0 “register_operand” “=r”) (zero_extend:DI (and:SI (not:SI (SHIFT:SI (match_dup 1) (match_dup 2))) (match_dup 3))))] "" “bics\t%w0, %w3, %w1, SHIFT:shift %2” [(set_attr “type” “logics_shift_imm”)] )

(define_insn “*and_one_cmpl_SHIFT:optab3_compare0_no_reuse” [(set (reg:CC_NZ CC_REGNUM) (compare:CC_NZ (and:GPI (not:GPI (SHIFT:GPI (match_operand:GPI 0 “register_operand” “r”) (match_operand:QI 1 “aarch64_shift_imm_” “n”))) (match_operand:GPI 2 “register_operand” “r”)) (const_int 0)))] "" “bics\tzr, %2, %0, SHIFT:shift %1” [(set_attr “type” “logics_shift_imm”)] )

(define_insn “clz2” [(set (match_operand:GPI 0 “register_operand” “=r”) (clz:GPI (match_operand:GPI 1 “register_operand” “r”)))] "" “clz\t%0, %1” [(set_attr “type” “clz”)] )

(define_expand “ffs2” [(match_operand:GPI 0 “register_operand”) (match_operand:GPI 1 “register_operand”)] "" { rtx ccreg = aarch64_gen_compare_reg (EQ, operands[1], const0_rtx); rtx x = gen_rtx_NE (VOIDmode, ccreg, const0_rtx);

emit_insn (gen_rbit<mode>2 (operands[0], operands[1]));
emit_insn (gen_clz<mode>2 (operands[0], operands[0]));
emit_insn (gen_csinc3<mode>_insn (operands[0], x, operands[0], const0_rtx));
DONE;

} )

;; Pop count be done via the “CNT” instruction in AdvSIMD. ;; ;; MOV v.1d, x0 ;; CNT v1.8b, v.8b ;; ADDV b2, v1.8b ;; MOV w0, v2.b[0]

(define_expand “popcount2” [(match_operand:GPI 0 “register_operand”) (match_operand:GPI 1 “register_operand”)] “TARGET_SIMD” { rtx v = gen_reg_rtx (V8QImode); rtx v1 = gen_reg_rtx (V8QImode); rtx in = operands[1]; rtx out = operands[0]; if(mode == SImode) { rtx tmp; tmp = gen_reg_rtx (DImode); /* If we have SImode, zero extend to DImode, pop count does not change if we have extra zeros. */ emit_insn (gen_zero_extendsidi2 (tmp, in)); in = tmp; } emit_move_insn (v, gen_lowpart (V8QImode, in)); emit_insn (gen_popcountv8qi2 (v1, v)); emit_insn (gen_aarch64_zero_extend_reduc_plus_v8qi (out, v1)); DONE; })

(define_insn “clrsb2” [(set (match_operand:GPI 0 “register_operand” “=r”) (clrsb:GPI (match_operand:GPI 1 “register_operand” “r”)))] "" “cls\t%0, %1” [(set_attr “type” “clz”)] )

(define_insn “rbit2” [(set (match_operand:GPI 0 “register_operand” “=r”) (unspec:GPI [(match_operand:GPI 1 “register_operand” “r”)] UNSPEC_RBIT))] "" “rbit\t%0, %1” [(set_attr “type” “rbit”)] )

;; Split after reload into RBIT + CLZ. Since RBIT is represented as an UNSPEC ;; it is unlikely to fold with any other operation, so keep this as a CTZ ;; expression and split after reload to enable scheduling them apart if ;; needed.

(define_insn_and_split “ctz2” [(set (match_operand:GPI 0 “register_operand” “=r”) (ctz:GPI (match_operand:GPI 1 “register_operand” “r”)))] "" “#” “reload_completed” [(const_int 0)] " emit_insn (gen_rbit2 (operands[0], operands[1])); emit_insn (gen_clz2 (operands[0], operands[0])); DONE; ")

(define_insn “*and_compare0” [(set (reg:CC_NZ CC_REGNUM) (compare:CC_NZ (match_operand:SHORT 0 “register_operand” “r”) (const_int 0)))] "" “tst\t%0, <short_mask>” [(set_attr “type” “alus_imm”)] )

(define_insn “*andsGPI:mode_compare0” [(set (reg:CC_NZ CC_REGNUM) (compare:CC_NZ (zero_extend:GPI (match_operand:SHORT 1 “register_operand” “r”)) (const_int 0))) (set (match_operand:GPI 0 “register_operand” “=r”) (zero_extend:GPI (match_dup 1)))] "" “ands\t%GPI:w0, %GPI:w1, <short_mask>” [(set_attr “type” “alus_imm”)] )

(define_insn “*and3nr_compare0” [(set (reg:CC_NZ CC_REGNUM) (compare:CC_NZ (and:GPI (match_operand:GPI 0 “register_operand” “%r,r”) (match_operand:GPI 1 “aarch64_logical_operand” “r,”)) (const_int 0)))] "" “@ tst\t%0, %1 tst\t%0, %1” [(set_attr “type” “logics_reg,logics_imm”)] )

(define_split [(set (reg:CC_NZ CC_REGNUM) (compare:CC_NZ (and:GPI (match_operand:GPI 0 “register_operand”) (match_operand:GPI 1 “aarch64_mov_imm_operand”)) (const_int 0))) (clobber (match_operand:SI 2 “register_operand”))] "" [(set (match_dup 2) (match_dup 1)) (set (reg:CC_NZ CC_REGNUM) (compare:CC_NZ (and:GPI (match_dup 0) (match_dup 2)) (const_int 0)))] )

(define_insn “*and3nr_compare0_zextract” [(set (reg:CC_NZ CC_REGNUM) (compare:CC_NZ (zero_extract:GPI (match_operand:GPI 0 “register_operand” “r”) (match_operand:GPI 1 “const_int_operand” “n”) (match_operand:GPI 2 “const_int_operand” “n”)) (const_int 0)))] “INTVAL (operands[1]) > 0 && ((INTVAL (operands[1]) + INTVAL (operands[2])) <= GET_MODE_BITSIZE (mode)) && aarch64_bitmask_imm ( UINTVAL (aarch64_mask_from_zextract_ops (operands[1], operands[2])), mode)” { operands[1] = aarch64_mask_from_zextract_ops (operands[1], operands[2]); return “tst\t%0, %1”; } [(set_attr “type” “logics_shift_imm”)] )

(define_insn “*and_SHIFT:optab3nr_compare0” [(set (reg:CC_NZ CC_REGNUM) (compare:CC_NZ (and:GPI (SHIFT:GPI (match_operand:GPI 0 “register_operand” “r”) (match_operand:QI 1 “aarch64_shift_imm_” “n”)) (match_operand:GPI 2 “register_operand” “r”)) (const_int 0)))] "" “tst\t%2, %0, SHIFT:shift %1” [(set_attr “type” “logics_shift_imm”)] )

(define_split [(set (reg:CC_NZ CC_REGNUM) (compare:CC_NZ (and:GPI (SHIFT:GPI (match_operand:GPI 0 “register_operand”) (match_operand:QI 1 “aarch64_shift_imm_”)) (match_operand:GPI 2 “aarch64_mov_imm_operand”)) (const_int 0))) (clobber (match_operand:SI 3 “register_operand”))] "" [(set (match_dup 3) (match_dup 2)) (set (reg:CC_NZ CC_REGNUM) (compare:CC_NZ (and:GPI (SHIFT:GPI (match_dup 0) (match_dup 1)) (match_dup 3)) (const_int 0)))] )

;; ------------------------------------------------------------------- ;; Shifts ;; -------------------------------------------------------------------

(define_expand “3” [(set (match_operand:GPI 0 “register_operand”) (ASHIFT:GPI (match_operand:GPI 1 “register_operand”) (match_operand:QI 2 “aarch64_reg_or_imm”)))] "" { if (CONST_INT_P (operands[2])) { operands[2] = GEN_INT (INTVAL (operands[2]) & (GET_MODE_BITSIZE (mode) - 1));

    if (operands[2] == const0_rtx)
      {
    emit_insn (gen_mov<mode> (operands[0], operands[1]));
    DONE;
      }
  }

} )

(define_expand “ashl3” [(set (match_operand:SHORT 0 “register_operand”) (ashift:SHORT (match_operand:SHORT 1 “register_operand”) (match_operand:QI 2 “const_int_operand”)))] "" { operands[2] = GEN_INT (INTVAL (operands[2]) & GET_MODE_MASK (mode));

if (operands[2] == const0_rtx)
  {
emit_insn (gen_mov<mode> (operands[0], operands[1]));
DONE;
  }

} )

(define_expand “rotr3” [(set (match_operand:GPI 0 “register_operand”) (rotatert:GPI (match_operand:GPI 1 “register_operand”) (match_operand:QI 2 “aarch64_reg_or_imm”)))] "" { if (CONST_INT_P (operands[2])) { operands[2] = GEN_INT (INTVAL (operands[2]) & (GET_MODE_BITSIZE (mode) - 1));

    if (operands[2] == const0_rtx)
      {
    emit_insn (gen_mov<mode> (operands[0], operands[1]));
    DONE;
      }
  }

} )

(define_expand “rotl3” [(set (match_operand:GPI 0 “register_operand”) (rotatert:GPI (match_operand:GPI 1 “register_operand”) (match_operand:QI 2 “aarch64_reg_or_imm”)))] "" { /* (SZ - cnt) % SZ == -cnt % SZ */ if (CONST_INT_P (operands[2])) { operands[2] = GEN_INT ((-UINTVAL (operands[2])) & (GET_MODE_BITSIZE (mode) - 1)); if (operands[2] == const0_rtx) { emit_insn (gen_mov (operands[0], operands[1])); DONE; } } else operands[2] = expand_simple_unop (QImode, NEG, operands[2], NULL_RTX, 1); } )

;; When the LSL, LSR, ASR, ROR instructions operate on all register arguments ;; they truncate the shift/rotate amount by the size of the registers they ;; operate on: 32 for W-regs, 64 for X-regs. This allows us to optimise away ;; such redundant masking instructions. GCC can do that automatically when ;; SHIFT_COUNT_TRUNCATED is true, but we can‘t enable it for TARGET_SIMD ;; because some of the SISD shift alternatives don’t perform this truncations. ;; So this pattern exists to catch such cases.

(define_insn “*aarch64_reg3_mask1” [(set (match_operand:GPI 0 “register_operand” “=r”) (SHIFT:GPI (match_operand:GPI 1 “register_operand” “r”) (match_operator 4 “subreg_lowpart_operator” [(and:GPI (match_operand:GPI 2 “register_operand” “r”) (match_operand 3 “const_int_operand” “n”))])))] “(~INTVAL (operands[3]) & (GET_MODE_BITSIZE (mode) - 1)) == 0” “\t%0, %1, %2” [(set_attr “type” “shift_reg”)] )

(define_insn_and_split “*aarch64_reg3_neg_mask2” [(set (match_operand:GPI 0 “register_operand” “=&r”) (SHIFT:GPI (match_operand:GPI 1 “register_operand” “r”) (match_operator 4 “subreg_lowpart_operator” [(neg:SI (and:SI (match_operand:SI 2 “register_operand” “r”) (match_operand 3 “const_int_operand” “n”)))])))] “((~INTVAL (operands[3]) & (GET_MODE_BITSIZE (mode) - 1)) == 0)” “#” “&& true” [(const_int 0)] { rtx tmp = (can_create_pseudo_p () ? gen_reg_rtx (SImode) : lowpart_subreg (SImode, operands[0], mode)); emit_insn (gen_negsi2 (tmp, operands[2]));

rtx and_op = gen_rtx_AND (SImode, tmp, operands[3]);
rtx subreg_tmp = gen_rtx_SUBREG (GET_MODE (operands[4]), and_op,
			     SUBREG_BYTE (operands[4]));
emit_insn (gen_<optab><mode>3 (operands[0], operands[1], subreg_tmp));
DONE;

} )

(define_insn_and_split “*aarch64_ashl_reg_3_minus_mask” [(set (match_operand:GPI 0 “register_operand” “=&r”) (ashift:GPI (match_operand:GPI 1 “register_operand” “r”) (minus:QI (match_operand 2 “const_int_operand” “n”) (match_operator 5 “subreg_lowpart_operator” [(and:SI (match_operand:SI 3 “register_operand” “r”) (match_operand 4 “const_int_operand” “n”))]))))] “((~INTVAL (operands[4]) & (GET_MODE_BITSIZE (mode) - 1)) == 0) && INTVAL (operands[2]) == GET_MODE_BITSIZE (mode)” “#” “&& true” [(const_int 0)] { rtx tmp = (can_create_pseudo_p () ? gen_reg_rtx (SImode) : operands[0]);

emit_insn (gen_negsi2 (tmp, operands[3]));

rtx and_op = gen_rtx_AND (SImode, tmp, operands[4]);
rtx subreg_tmp = gen_rtx_SUBREG (GET_MODE (operands[5]), and_op,
			     SUBREG_BYTE (operands[5]));

emit_insn (gen_ashl<mode>3 (operands[0], operands[1], subreg_tmp));
DONE;

} )

(define_insn “*aarch64__reg_di3_mask2” [(set (match_operand:DI 0 “register_operand” “=r”) (SHIFT:DI (match_operand:DI 1 “register_operand” “r”) (match_operator 4 “subreg_lowpart_operator” [(and:SI (match_operand:SI 2 “register_operand” “r”) (match_operand 3 “const_int_operand” “n”))])))] “((~INTVAL (operands[3]) & (GET_MODE_BITSIZE (DImode) - 1)) == 0)” { rtx xop[3]; xop[0] = operands[0]; xop[1] = operands[1]; xop[2] = gen_lowpart (GET_MODE (operands[4]), operands[2]); output_asm_insn (“\t%x0, %x1, %x2”, xop); return ""; } [(set_attr “type” “shift_reg”)] )

(define_insn_and_split “*aarch64__reg_minus3” [(set (match_operand:GPI 0 “register_operand” “=&r”) (ASHIFT:GPI (match_operand:GPI 1 “register_operand” “r”) (minus:QI (match_operand 2 “const_int_operand” “n”) (match_operand:QI 3 “register_operand” “r”))))] “INTVAL (operands[2]) == GET_MODE_BITSIZE (mode)” “#” “&& true” [(const_int 0)] { rtx subreg_tmp = gen_lowpart (SImode, operands[3]);

rtx tmp = (can_create_pseudo_p () ? gen_reg_rtx (SImode)
       : gen_lowpart (SImode, operands[0]));

emit_insn (gen_negsi2 (tmp, subreg_tmp));

rtx and_op = gen_rtx_AND (SImode, tmp,
		      GEN_INT (GET_MODE_BITSIZE (<MODE>mode) - 1));

rtx subreg_tmp2 = gen_lowpart_SUBREG (QImode, and_op);

emit_insn (gen_<optab><mode>3 (operands[0], operands[1], subreg_tmp2));
DONE;

} [(set_attr “length” “8”)] )

;; Logical left shift using SISD or Integer instruction (define_insn “*aarch64_ashl_sisd_or_int_3” [(set (match_operand:GPI 0 “register_operand” “=r,r,w,w”) (ashift:GPI (match_operand:GPI 1 “register_operand” “r,r,w,w”) (match_operand:QI 2 “aarch64_reg_or_shift_imm_” “Us,r,Us,w”)))] "" “@ lsl\t%0, %1, %2 lsl\t%0, %1, %2 shl\t%0, %1, %2 ushl\t%0, %1, %2” [(set_attr “type” “bfx,shift_reg,neon_shift_imm, neon_shift_reg”) (set_attr “arch” “,,simd,simd”)] )

;; Logical right shift using SISD or Integer instruction (define_insn “*aarch64_lshr_sisd_or_int_3” [(set (match_operand:GPI 0 “register_operand” “=r,r,w,&w,&w”) (lshiftrt:GPI (match_operand:GPI 1 “register_operand” “r,r,w,w,w”) (match_operand:QI 2 “aarch64_reg_or_shift_imm_” “Us,r,Us<cmode_simd>,w,0”)))] "" "@ lsr\t%0, %1, %2 lsr\t%0, %1, %2 ushr\t%0, %1, %2

#" [(set_attr “type” “bfx,shift_reg,neon_shift_imm,neon_shift_reg,neon_shift_reg”) (set_attr “arch” “,,simd,simd,simd”)] )

(define_split [(set (match_operand:DI 0 “aarch64_simd_register”) (lshiftrt:DI (match_operand:DI 1 “aarch64_simd_register”) (match_operand:QI 2 “aarch64_simd_register”)))] “TARGET_SIMD && reload_completed” [(set (match_dup 3) (unspec:QI [(match_dup 2)] UNSPEC_SISD_NEG)) (set (match_dup 0) (unspec:DI [(match_dup 1) (match_dup 3)] UNSPEC_SISD_USHL))] { operands[3] = gen_lowpart (QImode, operands[0]); } )

(define_split [(set (match_operand:SI 0 “aarch64_simd_register”) (lshiftrt:SI (match_operand:SI 1 “aarch64_simd_register”) (match_operand:QI 2 “aarch64_simd_register”)))] “TARGET_SIMD && reload_completed” [(set (match_dup 3) (unspec:QI [(match_dup 2)] UNSPEC_SISD_NEG)) (set (match_dup 0) (unspec:SI [(match_dup 1) (match_dup 3)] UNSPEC_USHL_2S))] { operands[3] = gen_lowpart (QImode, operands[0]); } )

;; Arithmetic right shift using SISD or Integer instruction (define_insn “*aarch64_ashr_sisd_or_int_3” [(set (match_operand:GPI 0 “register_operand” “=r,r,w,&w,&w”) (ashiftrt:GPI (match_operand:GPI 1 “register_operand” “r,r,w,w,w”) (match_operand:QI 2 “aarch64_reg_or_shift_imm_di” “Us,r,Us<cmode_simd>,w,0”)))] "" "@ asr\t%0, %1, %2 asr\t%0, %1, %2 sshr\t%0, %1, %2

#" [(set_attr “type” “bfx,shift_reg,neon_shift_imm,neon_shift_reg,neon_shift_reg”) (set_attr “arch” “,,simd,simd,simd”)] )

(define_split [(set (match_operand:DI 0 “aarch64_simd_register”) (ashiftrt:DI (match_operand:DI 1 “aarch64_simd_register”) (match_operand:QI 2 “aarch64_simd_register”)))] “TARGET_SIMD && reload_completed” [(set (match_dup 3) (unspec:QI [(match_dup 2)] UNSPEC_SISD_NEG)) (set (match_dup 0) (unspec:DI [(match_dup 1) (match_dup 3)] UNSPEC_SISD_SSHL))] { operands[3] = gen_lowpart (QImode, operands[0]); } )

(define_split [(set (match_operand:SI 0 “aarch64_simd_register”) (ashiftrt:SI (match_operand:SI 1 “aarch64_simd_register”) (match_operand:QI 2 “aarch64_simd_register”)))] “TARGET_SIMD && reload_completed” [(set (match_dup 3) (unspec:QI [(match_dup 2)] UNSPEC_SISD_NEG)) (set (match_dup 0) (unspec:SI [(match_dup 1) (match_dup 3)] UNSPEC_SSHL_2S))] { operands[3] = gen_lowpart (QImode, operands[0]); } )

(define_insn “*aarch64_sisd_ushl” [(set (match_operand:DI 0 “register_operand” “=w”) (unspec:DI [(match_operand:DI 1 “register_operand” “w”) (match_operand:QI 2 “register_operand” “w”)] UNSPEC_SISD_USHL))] “TARGET_SIMD” “ushl\t%d0, %d1, %d2” [(set_attr “type” “neon_shift_reg”)] )

(define_insn “*aarch64_ushl_2s” [(set (match_operand:SI 0 “register_operand” “=w”) (unspec:SI [(match_operand:SI 1 “register_operand” “w”) (match_operand:QI 2 “register_operand” “w”)] UNSPEC_USHL_2S))] “TARGET_SIMD” “ushl\t%0.2s, %1.2s, %2.2s” [(set_attr “type” “neon_shift_reg”)] )

(define_insn “*aarch64_sisd_sshl” [(set (match_operand:DI 0 “register_operand” “=w”) (unspec:DI [(match_operand:DI 1 “register_operand” “w”) (match_operand:QI 2 “register_operand” “w”)] UNSPEC_SISD_SSHL))] “TARGET_SIMD” “sshl\t%d0, %d1, %d2” [(set_attr “type” “neon_shift_reg”)] )

(define_insn “*aarch64_sshl_2s” [(set (match_operand:SI 0 “register_operand” “=w”) (unspec:SI [(match_operand:SI 1 “register_operand” “w”) (match_operand:QI 2 “register_operand” “w”)] UNSPEC_SSHL_2S))] “TARGET_SIMD” “sshl\t%0.2s, %1.2s, %2.2s” [(set_attr “type” “neon_shift_reg”)] )

(define_insn “*aarch64_sisd_neg_qi” [(set (match_operand:QI 0 “register_operand” “=w”) (unspec:QI [(match_operand:QI 1 “register_operand” “w”)] UNSPEC_SISD_NEG))] “TARGET_SIMD” “neg\t%d0, %d1” [(set_attr “type” “neon_neg”)] )

;; Rotate right (define_insn “*ror3_insn” [(set (match_operand:GPI 0 “register_operand” “=r,r”) (rotatert:GPI (match_operand:GPI 1 “register_operand” “r,r”) (match_operand:QI 2 “aarch64_reg_or_shift_imm_” “Us,r”)))] "" “@ ror\t%0, %1, %2 ror\t%0, %1, %2” [(set_attr “type” “rotate_imm,shift_reg”)] )

;; zero_extend version of above (define_insn “*si3_insn_uxtw” [(set (match_operand:DI 0 “register_operand” “=r,r”) (zero_extend:DI (SHIFT:SI (match_operand:SI 1 “register_operand” “r,r”) (match_operand:QI 2 “aarch64_reg_or_shift_imm_si” “Uss,r”))))] "" “@ \t%w0, %w1, %2 \t%w0, %w1, %w2” [(set_attr “type” “bfx,shift_reg”)] )

(define_insn “*3_insn” [(set (match_operand:SHORT 0 “register_operand” “=r”) (ASHIFT:SHORT (match_operand:SHORT 1 “register_operand” “r”) (match_operand 2 “const_int_operand” “n”)))] “UINTVAL (operands[2]) < GET_MODE_BITSIZE (mode)” { operands[3] = GEN_INT ( - UINTVAL (operands[2])); return “\t%w0, %w1, %2, %3”; } [(set_attr “type” “bfx”)] )

(define_insn “*extr5_insn” [(set (match_operand:GPI 0 “register_operand” “=r”) (ior:GPI (ashift:GPI (match_operand:GPI 1 “register_operand” “r”) (match_operand 3 “const_int_operand” “n”)) (lshiftrt:GPI (match_operand:GPI 2 “register_operand” “r”) (match_operand 4 “const_int_operand” “n”))))] “UINTVAL (operands[3]) < GET_MODE_BITSIZE (mode) && (UINTVAL (operands[3]) + UINTVAL (operands[4]) == GET_MODE_BITSIZE (mode))” “extr\t%0, %1, %2, %4” [(set_attr “type” “rotate_imm”)] )

;; There are no canonicalisation rules for ashift and lshiftrt inside an ior ;; so we have to match both orderings. (define_insn “*extr5_insn_alt” [(set (match_operand:GPI 0 “register_operand” “=r”) (ior:GPI (lshiftrt:GPI (match_operand:GPI 2 “register_operand” “r”) (match_operand 4 “const_int_operand” “n”)) (ashift:GPI (match_operand:GPI 1 “register_operand” “r”) (match_operand 3 “const_int_operand” “n”))))] “UINTVAL (operands[3]) < GET_MODE_BITSIZE (mode) && (UINTVAL (operands[3]) + UINTVAL (operands[4]) == GET_MODE_BITSIZE (mode))” “extr\t%0, %1, %2, %4” [(set_attr “type” “rotate_imm”)] )

;; zero_extend version of the above (define_insn “*extrsi5_insn_uxtw” [(set (match_operand:DI 0 “register_operand” “=r”) (zero_extend:DI (ior:SI (ashift:SI (match_operand:SI 1 “register_operand” “r”) (match_operand 3 “const_int_operand” “n”)) (lshiftrt:SI (match_operand:SI 2 “register_operand” “r”) (match_operand 4 “const_int_operand” “n”)))))] “UINTVAL (operands[3]) < 32 && (UINTVAL (operands[3]) + UINTVAL (operands[4]) == 32)” “extr\t%w0, %w1, %w2, %4” [(set_attr “type” “rotate_imm”)] )

(define_insn “*extrsi5_insn_uxtw_alt” [(set (match_operand:DI 0 “register_operand” “=r”) (zero_extend:DI (ior:SI (lshiftrt:SI (match_operand:SI 2 “register_operand” “r”) (match_operand 4 “const_int_operand” “n”)) (ashift:SI (match_operand:SI 1 “register_operand” “r”) (match_operand 3 “const_int_operand” “n”)))))] “UINTVAL (operands[3]) < 32 && (UINTVAL (operands[3]) + UINTVAL (operands[4]) == 32)” “extr\t%w0, %w1, %w2, %4” [(set_attr “type” “rotate_imm”)] )

(define_insn “*extrsi5_insn_di” [(set (match_operand:SI 0 “register_operand” “=r”) (ior:SI (ashift:SI (match_operand:SI 1 “register_operand” “r”) (match_operand 3 “const_int_operand” “n”)) (match_operator:SI 6 “subreg_lowpart_operator” [(zero_extract:DI (match_operand:DI 2 “register_operand” “r”) (match_operand 5 “const_int_operand” “n”) (match_operand 4 “const_int_operand” “n”))])))] “UINTVAL (operands[3]) < 32 && UINTVAL (operands[3]) + UINTVAL (operands[4]) == 32 && INTVAL (operands[3]) == INTVAL (operands[5])” “extr\t%w0, %w1, %w2, %4” [(set_attr “type” “rotate_imm”)] )

(define_insn “*ror3_insn” [(set (match_operand:GPI 0 “register_operand” “=r”) (rotate:GPI (match_operand:GPI 1 “register_operand” “r”) (match_operand 2 “const_int_operand” “n”)))] “UINTVAL (operands[2]) < GET_MODE_BITSIZE (mode)” { operands[3] = GEN_INT ( - UINTVAL (operands[2])); return “ror\t%0, %1, %3”; } [(set_attr “type” “rotate_imm”)] )

;; zero_extend version of the above (define_insn “*rorsi3_insn_uxtw” [(set (match_operand:DI 0 “register_operand” “=r”) (zero_extend:DI (rotate:SI (match_operand:SI 1 “register_operand” “r”) (match_operand 2 “const_int_operand” “n”))))] “UINTVAL (operands[2]) < 32” { operands[3] = GEN_INT (32 - UINTVAL (operands[2])); return “ror\t%w0, %w1, %3”; } [(set_attr “type” “rotate_imm”)] )

(define_insn “*<ANY_EXTEND:optab>GPI:mode_ashlSHORT:mode” [(set (match_operand:GPI 0 “register_operand” “=r”) (ANY_EXTEND:GPI (ashift:SHORT (match_operand:SHORT 1 “register_operand” “r”) (match_operand 2 “const_int_operand” “n”))))] “UINTVAL (operands[2]) < GET_MODE_BITSIZE (SHORT:MODEmode)” { operands[3] = GEN_INT (SHORT:sizen - UINTVAL (operands[2])); return “bfiz\t%GPI:w0, %GPI:w1, %2, %3”; } [(set_attr “type” “bfx”)] )

(define_insn “*zero_extendGPI:mode_lshrSHORT:mode” [(set (match_operand:GPI 0 “register_operand” “=r”) (zero_extend:GPI (lshiftrt:SHORT (match_operand:SHORT 1 “register_operand” “r”) (match_operand 2 “const_int_operand” “n”))))] “UINTVAL (operands[2]) < GET_MODE_BITSIZE (SHORT:MODEmode)” { operands[3] = GEN_INT (SHORT:sizen - UINTVAL (operands[2])); return “ubfx\t%GPI:w0, %GPI:w1, %2, %3”; } [(set_attr “type” “bfx”)] )

(define_insn “*extendGPI:mode_ashrSHORT:mode” [(set (match_operand:GPI 0 “register_operand” “=r”) (sign_extend:GPI (ashiftrt:SHORT (match_operand:SHORT 1 “register_operand” “r”) (match_operand 2 “const_int_operand” “n”))))] “UINTVAL (operands[2]) < GET_MODE_BITSIZE (SHORT:MODEmode)” { operands[3] = GEN_INT (SHORT:sizen - UINTVAL (operands[2])); return “sbfx\t%GPI:w0, %GPI:w1, %2, %3”; } [(set_attr “type” “bfx”)] )

;; ------------------------------------------------------------------- ;; Bitfields ;; -------------------------------------------------------------------

(define_expand “” [(set (match_operand:DI 0 “register_operand”) (ANY_EXTRACT:DI (match_operand:DI 1 “register_operand”) (match_operand 2 “aarch64_simd_shift_imm_offset_di”) (match_operand 3 “aarch64_simd_shift_imm_di”)))] "" { if (!IN_RANGE (INTVAL (operands[2]) + INTVAL (operands[3]), 1, GET_MODE_BITSIZE (DImode) - 1)) FAIL; } )

(define_insn “*” [(set (match_operand:GPI 0 “register_operand” “=r”) (ANY_EXTRACT:GPI (match_operand:GPI 1 “register_operand” “r”) (match_operand 2 “aarch64_simd_shift_imm_offset_” “n”) (match_operand 3 “aarch64_simd_shift_imm_” “n”)))] “IN_RANGE (INTVAL (operands[2]) + INTVAL (operands[3]), 1, GET_MODE_BITSIZE (mode) - 1)” “bfx\t%0, %1, %3, %2” [(set_attr “type” “bfx”)] )

;; When the bit position and width add up to 32 we can use a W-reg LSR ;; instruction taking advantage of the implicit zero-extension of the X-reg. (define_split [(set (match_operand:DI 0 “register_operand”) (zero_extract:DI (match_operand:DI 1 “register_operand”) (match_operand 2 “aarch64_simd_shift_imm_offset_di”) (match_operand 3 “aarch64_simd_shift_imm_di”)))] “IN_RANGE (INTVAL (operands[2]) + INTVAL (operands[3]), 1, GET_MODE_BITSIZE (DImode) - 1) && (INTVAL (operands[2]) + INTVAL (operands[3])) == GET_MODE_BITSIZE (SImode)” [(set (match_dup 0) (zero_extend:DI (lshiftrt:SI (match_dup 4) (match_dup 3))))] { operands[4] = gen_lowpart (SImode, operands[1]); } )

;; Bitfield Insert (insv) (define_expand “insv” [(set (zero_extract:GPI (match_operand:GPI 0 “register_operand”) (match_operand 1 “const_int_operand”) (match_operand 2 “const_int_operand”)) (match_operand:GPI 3 “general_operand”))] "" { unsigned HOST_WIDE_INT width = UINTVAL (operands[1]); unsigned HOST_WIDE_INT pos = UINTVAL (operands[2]); rtx value = operands[3];

if (width == 0 || (pos + width) > GET_MODE_BITSIZE (mode)) FAIL;

if (CONST_INT_P (value)) { unsigned HOST_WIDE_INT mask = ((unsigned HOST_WIDE_INT)1 << width) - 1;

  /* Prefer AND/OR for inserting all zeros or all ones.  */
  if ((UINTVAL (value) & mask) == 0
   || (UINTVAL (value) & mask) == mask)
FAIL;

  /* 16-bit aligned 16-bit wide insert is handled by insv_imm.  */
  if (width == 16 && (pos % 16) == 0)
DONE;
}

operands[3] = force_reg (mode, value); })

(define_insn “*insv_reg” [(set (zero_extract:GPI (match_operand:GPI 0 “register_operand” “+r”) (match_operand 1 “const_int_operand” “n”) (match_operand 2 “const_int_operand” “n”)) (match_operand:GPI 3 “register_operand” “r”))] “!(UINTVAL (operands[1]) == 0 || (UINTVAL (operands[2]) + UINTVAL (operands[1]) > GET_MODE_BITSIZE (mode)))” “bfi\t%0, %3, %2, %1” [(set_attr “type” “bfm”)] )

(define_insn “*aarch64_bfiGPI:modeALLX:mode4” [(set (zero_extract:GPI (match_operand:GPI 0 “register_operand” “+r”) (match_operand 1 “const_int_operand” “n”) (match_operand 2 “const_int_operand” “n”)) (zero_extend:GPI (match_operand:ALLX 3 “register_operand” “r”)))] “UINTVAL (operands[1]) <= ALLX:sizen” “bfi\t%GPI:w0, %GPI:w3, %2, %1” [(set_attr “type” “bfm”)] )

;; Match a bfi instruction where the shift of OP3 means that we are ;; actually copying the least significant bits of OP3 into OP0 by way ;; of the AND masks and the IOR instruction. A similar instruction ;; with the two parts of the IOR swapped around was never triggered ;; in a bootstrap build and test of GCC so it was not included.

(define_insn “*aarch64_bfiGPI:mode5_shift” [(set (match_operand:GPI 0 “register_operand” “=r”) (ior:GPI (and:GPI (match_operand:GPI 1 “register_operand” “0”) (match_operand:GPI 2 “const_int_operand” “n”)) (and:GPI (ashift:GPI (match_operand:GPI 3 “register_operand” “r”) (match_operand:GPI 4 “aarch64_simd_shift_imm_” “n”)) (match_operand:GPI 5 “const_int_operand” “n”))))] “aarch64_masks_and_shift_for_bfi_p (mode, UINTVAL (operands[2]), UINTVAL (operands[4]), UINTVAL(operands[5]))” “bfi\t%GPI:w0, %GPI:w3, %4, %P5” [(set_attr “type” “bfm”)] )

(define_insn “*aarch64_bfiGPI:mode5_shift_alt” [(set (match_operand:GPI 0 “register_operand” “=r”) (ior:GPI (and:GPI (ashift:GPI (match_operand:GPI 1 “register_operand” “r”) (match_operand:GPI 2 “aarch64_simd_shift_imm_” “n”)) (match_operand:GPI 3 “const_int_operand” “n”)) (and:GPI (match_operand:GPI 4 “register_operand” “0”) (match_operand:GPI 5 “const_int_operand” “n”))))] “aarch64_masks_and_shift_for_bfi_p (mode, UINTVAL (operands[5]), UINTVAL (operands[2]), UINTVAL(operands[3]))” “bfi\t%GPI:w0, %GPI:w1, %2, %P3” [(set_attr “type” “bfm”)] )

;; Like *aarch64_bfiGPI:mode5_shift but with no and of the ashift because ;; the shift is large enough to remove the need for an AND instruction.

(define_insn “*aarch64_bfiGPI:mode4_noand” [(set (match_operand:GPI 0 “register_operand” “=r”) (ior:GPI (and:GPI (match_operand:GPI 1 “register_operand” “0”) (match_operand:GPI 2 “const_int_operand” “n”)) (ashift:GPI (match_operand:GPI 3 “register_operand” “r”) (match_operand:GPI 4 “aarch64_simd_shift_imm_” “n”))))] “aarch64_masks_and_shift_for_bfi_p (mode, UINTVAL (operands[2]), UINTVAL (operands[4]), HOST_WIDE_INT_M1U << UINTVAL (operands[4]) )” { operands[5] = GEN_INT (GET_MODE_BITSIZE (mode) - UINTVAL (operands[4])); return “bfi\t%GPI:w0, %GPI:w3, %4, %5”; } [(set_attr “type” “bfm”)] )

(define_insn “*aarch64_bfiGPI:mode4_noand_alt” [(set (match_operand:GPI 0 “register_operand” “=r”) (ior:GPI (ashift:GPI (match_operand:GPI 1 “register_operand” “r”) (match_operand:GPI 2 “aarch64_simd_shift_imm_” “n”)) (and:GPI (match_operand:GPI 3 “register_operand” “0”) (match_operand:GPI 4 “const_int_operand” “n”))))] “aarch64_masks_and_shift_for_bfi_p (mode, UINTVAL (operands[4]), UINTVAL (operands[2]), HOST_WIDE_INT_M1U << UINTVAL (operands[2]) )” { operands[5] = GEN_INT (GET_MODE_BITSIZE (mode) - UINTVAL (operands[2])); return “bfi\t%GPI:w0, %GPI:w1, %2, %5”; } [(set_attr “type” “bfm”)] )

;; Like *aarch64_bfiGPI:mode5_shift but with no shifting, we are just ;; copying the least significant bits of OP3 to OP0. We need two versions ;; of the instruction to handle different checks on the constant values.

(define_insn “*aarch64_bfiGPI:mode4_noshift” [(set (match_operand:GPI 0 “register_operand” “=r”) (ior:GPI (and:GPI (match_operand:GPI 1 “register_operand” “0”) (match_operand:GPI 2 “const_int_operand” “n”)) (and:GPI (match_operand:GPI 3 “register_operand” “r”) (match_operand:GPI 4 “const_int_operand” “n”))))] “aarch64_masks_and_shift_for_bfi_p (mode, UINTVAL (operands[2]), 0, UINTVAL (operands[4]))” “bfi\t%GPI:w0, %GPI:w3, 0, %P4” [(set_attr “type” “bfm”)] )

(define_insn “*aarch64_bfiGPI:mode4_noshift_alt” [(set (match_operand:GPI 0 “register_operand” “=r”) (ior:GPI (and:GPI (match_operand:GPI 3 “register_operand” “r”) (match_operand:GPI 4 “const_int_operand” “n”)) (and:GPI (match_operand:GPI 1 “register_operand” “0”) (match_operand:GPI 2 “const_int_operand” “n”))))] “aarch64_masks_and_shift_for_bfi_p (mode, UINTVAL (operands[2]), 0, UINTVAL (operands[4]))” “bfi\t%GPI:w0, %GPI:w3, 0, %P4” [(set_attr “type” “bfm”)] )

(define_insn “*aarch64_bfxil_extr” [(set (match_operand:GPI 0 “register_operand” “=r”) (ior:GPI (and:GPI (match_operand:GPI 1 “register_operand” “0”) (match_operand:GPI 2 “const_int_operand” “n”)) (zero_extract:GPI (match_operand:GPI 3 “register_operand” “r”) (match_operand:GPI 4 “aarch64_simd_shift_imm_” “n”) (match_operand:GPI 5 “aarch64_simd_shift_imm_” “n”))))] “UINTVAL (operands[2]) == HOST_WIDE_INT_M1U << INTVAL (operands[4]) && INTVAL (operands[4]) && (UINTVAL (operands[4]) + UINTVAL (operands[5]) <= GET_MODE_BITSIZE (mode))” “bfxil\t%GPI:w0, %GPI:w3, %5, %4” [(set_attr “type” “bfm”)] )

(define_insn “*aarch64_bfxilsi_extrdi” [(set (match_operand:SI 0 “register_operand” “=r”) (ior:SI (and:SI (match_operand:SI 1 “register_operand” “0”) (match_operand:SI 2 “const_int_operand” “n”)) (match_operator:SI 6 “subreg_lowpart_operator” [(zero_extract:DI (match_operand:DI 3 “register_operand” “r”) (match_operand:SI 4 “aarch64_simd_shift_imm_si” “n”) (match_operand:SI 5 “aarch64_simd_shift_imm_si” “n”))])))] “UINTVAL (operands[2]) == HOST_WIDE_INT_M1U << INTVAL (operands[4]) && INTVAL (operands[4]) && UINTVAL (operands[4]) + UINTVAL (operands[5]) <= 32” “bfxil\t%w0, %w3, %5, %4” [(set_attr “type” “bfm”)] )

(define_insn “*extr_insv_lower_reg” [(set (zero_extract:GPI (match_operand:GPI 0 “register_operand” “+r”) (match_operand 1 “const_int_operand” “n”) (const_int 0)) (zero_extract:GPI (match_operand:GPI 2 “register_operand” “r”) (match_dup 1) (match_operand 3 “const_int_operand” “n”)))] “!(UINTVAL (operands[1]) == 0 || (UINTVAL (operands[3]) + UINTVAL (operands[1]) > GET_MODE_BITSIZE (mode)))” “bfxil\t%0, %2, %3, %1” [(set_attr “type” “bfm”)] )

(define_insn “*ALLX:modeshftGPI:mode” [(set (match_operand:GPI 0 “register_operand” “=r”) (ashift:GPI (ANY_EXTEND:GPI (match_operand:ALLX 1 “register_operand” “r”)) (match_operand 2 “const_int_operand” “n”)))] “UINTVAL (operands[2]) < GPI:sizen” { operands[3] = (ALLX:sizen <= (GPI:sizen - UINTVAL (operands[2]))) ? GEN_INT (ALLX:sizen) : GEN_INT (GPI:sizen - UINTVAL (operands[2])); return “bfiz\t%GPI:w0, %GPI:w1, %2, %3”; } [(set_attr “type” “bfx”)] )

;; XXX We should match (any_extend (ashift)) here, like (and (ashift)) below

(define_insn “*andim_ashift_bfiz” [(set (match_operand:GPI 0 “register_operand” “=r”) (and:GPI (ashift:GPI (match_operand:GPI 1 “register_operand” “r”) (match_operand 2 “const_int_operand” “n”)) (match_operand 3 “const_int_operand” “n”)))] “aarch64_mask_and_shift_for_ubfiz_p (mode, operands[3], operands[2])” “ubfiz\t%0, %1, %2, %P3” [(set_attr “type” “bfx”)] )

;; Match sbfiz pattern in a shift left + shift right operation.

(define_insn “*ashift_extv_bfiz” [(set (match_operand:GPI 0 “register_operand” “=r”) (ashift:GPI (sign_extract:GPI (match_operand:GPI 1 “register_operand” “r”) (match_operand 2 “aarch64_simd_shift_imm_offset_” “n”) (const_int 0)) (match_operand 3 “aarch64_simd_shift_imm_” “n”)))] “IN_RANGE (INTVAL (operands[2]) + INTVAL (operands[3]), 1, GET_MODE_BITSIZE (mode) - 1)” “sbfiz\t%0, %1, %3, %2” [(set_attr “type” “bfx”)] )

(define_insn “*ashiftsi_extvdi_bfiz” [(set (match_operand:SI 0 “register_operand” “=r”) (ashift:SI (match_operator:SI 4 “subreg_lowpart_operator” [(sign_extract:DI (match_operand:DI 1 “register_operand” “r”) (match_operand 2 “aarch64_simd_shift_imm_offset_si”) (const_int 0))]) (match_operand 3 “aarch64_simd_shift_imm_si”)))] “IN_RANGE (INTVAL (operands[2]) + INTVAL (operands[3]), 1, GET_MODE_BITSIZE (SImode) - 1)” “sbfiz\t%w0, %w1, %3, %2” [(set_attr “type” “bfx”)] )

;; When the bit position and width of the equivalent extraction add up to 32 ;; we can use a W-reg LSL instruction taking advantage of the implicit ;; zero-extension of the X-reg. (define_split [(set (match_operand:DI 0 “register_operand”) (and:DI (ashift:DI (match_operand:DI 1 “register_operand”) (match_operand 2 “const_int_operand”)) (match_operand 3 “const_int_operand”)))] “aarch64_mask_and_shift_for_ubfiz_p (DImode, operands[3], operands[2]) && (INTVAL (operands[2]) + popcount_hwi (INTVAL (operands[3]))) == GET_MODE_BITSIZE (SImode)” [(set (match_dup 0) (zero_extend:DI (ashift:SI (match_dup 4) (match_dup 2))))] { operands[4] = gen_lowpart (SImode, operands[1]); } )

(define_insn “bswap2” [(set (match_operand:GPI 0 “register_operand” “=r”) (bswap:GPI (match_operand:GPI 1 “register_operand” “r”)))] "" “rev\t%0, %1” [(set_attr “type” “rev”)] )

(define_insn “bswaphi2” [(set (match_operand:HI 0 “register_operand” “=r”) (bswap:HI (match_operand:HI 1 “register_operand” “r”)))] "" “rev16\t%w0, %w1” [(set_attr “type” “rev”)] )

(define_insn “*aarch64_bfxil” [(set (match_operand:GPI 0 “register_operand” “=r,r”) (ior:GPI (and:GPI (match_operand:GPI 1 “register_operand” “r,0”) (match_operand:GPI 3 “const_int_operand” “n, Ulc”)) (and:GPI (match_operand:GPI 2 “register_operand” “0,r”) (match_operand:GPI 4 “const_int_operand” “Ulc, n”))))] “(INTVAL (operands[3]) == ~INTVAL (operands[4])) && (aarch64_high_bits_all_ones_p (INTVAL (operands[3])) || aarch64_high_bits_all_ones_p (INTVAL (operands[4])))” { switch (which_alternative) { case 0: operands[3] = GEN_INT (ctz_hwi (~INTVAL (operands[3]))); return “bfxil\t%0, %1, 0, %3”; case 1: operands[3] = GEN_INT (ctz_hwi (~INTVAL (operands[4]))); return “bfxil\t%0, %2, 0, %3”; default: gcc_unreachable (); } } [(set_attr “type” “bfm”)] )

; Zero-extended version of above (aarch64_bfxil) (define_insn “*aarch64_bfxilsi_uxtw” [(set (match_operand:DI 0 “register_operand” “=r,r”) (zero_extend:DI (ior:SI (and:SI (match_operand:SI 1 “register_operand” “r,0”) (match_operand:SI 3 “const_int_operand” “n, Ulc”)) (and:SI (match_operand:SI 2 “register_operand” “0,r”) (match_operand:SI 4 “const_int_operand” “Ulc, n”)))))] “(INTVAL (operands[3]) == ~INTVAL (operands[4])) && (aarch64_high_bits_all_ones_p (INTVAL (operands[3])) || aarch64_high_bits_all_ones_p (INTVAL (operands[4])))” { switch (which_alternative) { case 0: operands[3] = GEN_INT (ctz_hwi (~INTVAL (operands[3]))); return “bfxil\t%w0, %w1, 0, %3”; case 1: operands[3] = GEN_INT (ctz_hwi (~INTVAL (operands[4]))); return “bfxil\t%w0, %w2, 0, %3”; default: gcc_unreachable (); } } [(set_attr “type” “bfm”)] )

;; There are no canonicalisation rules for the position of the lshiftrt, ashift ;; operations within an IOR/AND RTX, therefore we have two patterns matching ;; each valid permutation.

(define_insn “rev162” [(set (match_operand:GPI 0 “register_operand” “=r”) (ior:GPI (and:GPI (ashift:GPI (match_operand:GPI 1 “register_operand” “r”) (const_int 8)) (match_operand:GPI 3 “const_int_operand” “n”)) (and:GPI (lshiftrt:GPI (match_dup 1) (const_int 8)) (match_operand:GPI 2 “const_int_operand” “n”))))] “aarch_rev16_shleft_mask_imm_p (operands[3], mode) && aarch_rev16_shright_mask_imm_p (operands[2], mode)” “rev16\t%0, %1” [(set_attr “type” “rev”)] )

(define_insn “rev162_alt” [(set (match_operand:GPI 0 “register_operand” “=r”) (ior:GPI (and:GPI (lshiftrt:GPI (match_operand:GPI 1 “register_operand” “r”) (const_int 8)) (match_operand:GPI 2 “const_int_operand” “n”)) (and:GPI (ashift:GPI (match_dup 1) (const_int 8)) (match_operand:GPI 3 “const_int_operand” “n”))))] “aarch_rev16_shleft_mask_imm_p (operands[3], mode) && aarch_rev16_shright_mask_imm_p (operands[2], mode)” “rev16\t%0, %1” [(set_attr “type” “rev”)] )

;; zero_extend version of above (define_insn “*bswapsi2_uxtw” [(set (match_operand:DI 0 “register_operand” “=r”) (zero_extend:DI (bswap:SI (match_operand:SI 1 “register_operand” “r”))))] "" “rev\t%w0, %w1” [(set_attr “type” “rev”)] )

;; ------------------------------------------------------------------- ;; Floating-point intrinsics ;; -------------------------------------------------------------------

;; frint floating-point round to integral standard patterns. ;; Expands to btrunc, ceil, floor, nearbyint, rint, round, frintn.

(define_insn “<frint_pattern>2” [(set (match_operand:GPF_F16 0 “register_operand” “=w”) (unspec:GPF_F16 [(match_operand:GPF_F16 1 “register_operand” “w”)] FRINT))] “TARGET_FLOAT” “frint<frint_suffix>\t%0, %1” [(set_attr “type” “f_rint”)] )

;; frcvt floating-point round to integer and convert standard patterns. ;; Expands to lbtrunc, lceil, lfloor, lround. (define_insn “l<fcvt_pattern><su_optab><GPF_F16:mode>GPI:mode2” [(set (match_operand:GPI 0 “register_operand” “=r”) (FIXUORS:GPI (unspec:GPF_F16 [(match_operand:GPF_F16 1 “register_operand” “w”)] FCVT)))] “TARGET_FLOAT” “fcvt<frint_suffix>\t%GPI:w0, %<GPF_F16:s>1” [(set_attr “type” “f_cvtf2i”)] )

(define_insn “*aarch64_fcvt<su_optab>GPF:modeGPI:mode2_mult” [(set (match_operand:GPI 0 “register_operand” “=r”) (FIXUORS:GPI (mult:GPF (match_operand:GPF 1 “register_operand” “w”) (match_operand:GPF 2 “aarch64_fp_pow2” “F”))))] “TARGET_FLOAT && IN_RANGE (aarch64_fpconst_pow_of_2 (operands[2]), 1, GET_MODE_BITSIZE (GPI:MODEmode))” { int fbits = aarch64_fpconst_pow_of_2 (operands[2]); char buf[64]; snprintf (buf, 64, “fcvtz\t%%GPI:w0, %%GPF:s1, #%d”, fbits); output_asm_insn (buf, operands); return ""; } [(set_attr “type” “f_cvtf2i”)] )

;; fma - expand fma into patterns with the accumulator operand first since ;; reusing the accumulator results in better register allocation. ;; The register allocator considers copy preferences in operand order, ;; so this prefers fmadd s0, s1, s2, s0 over fmadd s1, s1, s2, s0.

(define_expand “fma4” [(set (match_operand:GPF_F16 0 “register_operand”) (fma:GPF_F16 (match_operand:GPF_F16 1 “register_operand”) (match_operand:GPF_F16 2 “register_operand”) (match_operand:GPF_F16 3 “register_operand”)))] “TARGET_FLOAT” )

(define_insn “*aarch64_fma4” [(set (match_operand:GPF_F16 0 “register_operand” “=w”) (fma:GPF_F16 (match_operand:GPF_F16 2 “register_operand” “w”) (match_operand:GPF_F16 3 “register_operand” “w”) (match_operand:GPF_F16 1 “register_operand” “w”)))] “TARGET_FLOAT” “fmadd\t%0, %2, %3, %1” [(set_attr “type” “fmac”)] )

(define_expand “fnma4” [(set (match_operand:GPF_F16 0 “register_operand”) (fma:GPF_F16 (neg:GPF_F16 (match_operand:GPF_F16 1 “register_operand”)) (match_operand:GPF_F16 2 “register_operand”) (match_operand:GPF_F16 3 “register_operand”)))] “TARGET_FLOAT” )

(define_insn “*aarch64_fnma4” [(set (match_operand:GPF_F16 0 “register_operand” “=w”) (fma:GPF_F16 (neg:GPF_F16 (match_operand:GPF_F16 2 “register_operand” “w”)) (match_operand:GPF_F16 3 “register_operand” “w”) (match_operand:GPF_F16 1 “register_operand” “w”)))] “TARGET_FLOAT” “fmsub\t%0, %2, %3, %1” [(set_attr “type” “fmac”)] )

(define_expand “fms4” [(set (match_operand:GPF 0 “register_operand”) (fma:GPF (match_operand:GPF 1 “register_operand”) (match_operand:GPF 2 “register_operand”) (neg:GPF (match_operand:GPF 3 “register_operand”))))] “TARGET_FLOAT” )

(define_insn “*aarch64_fms4” [(set (match_operand:GPF 0 “register_operand” “=w”) (fma:GPF (match_operand:GPF 2 “register_operand” “w”) (match_operand:GPF 3 “register_operand” “w”) (neg:GPF (match_operand:GPF 1 “register_operand” “w”))))] “TARGET_FLOAT” “fnmsub\t%0, %2, %3, %1” [(set_attr “type” “fmac”)] )

(define_expand “fnms4” [(set (match_operand:GPF 0 “register_operand”) (fma:GPF (neg:GPF (match_operand:GPF 1 “register_operand”)) (match_operand:GPF 2 “register_operand”) (neg:GPF (match_operand:GPF 3 “register_operand”))))] “TARGET_FLOAT” )

(define_insn “*aarch64_fnms4” [(set (match_operand:GPF 0 “register_operand” “=w”) (fma:GPF (neg:GPF (match_operand:GPF 2 “register_operand” “w”)) (match_operand:GPF 3 “register_operand” “w”) (neg:GPF (match_operand:GPF 1 “register_operand” “w”))))] “TARGET_FLOAT” “fnmadd\t%0, %2, %3, %1” [(set_attr “type” “fmac”)] )

;; If signed zeros are ignored, -(a * b + c) = -a * b - c. (define_insn “*aarch64_fnmadd4” [(set (match_operand:GPF 0 “register_operand” “=w”) (neg:GPF (fma:GPF (match_operand:GPF 2 “register_operand” “w”) (match_operand:GPF 3 “register_operand” “w”) (match_operand:GPF 1 “register_operand” “w”))))] “!HONOR_SIGNED_ZEROS (mode) && TARGET_FLOAT” “fnmadd\t%0, %2, %3, %1” [(set_attr “type” “fmac”)] )

;; ------------------------------------------------------------------- ;; Floating-point conversions ;; -------------------------------------------------------------------

(define_insn “extendsfdf2” [(set (match_operand:DF 0 “register_operand” “=w”) (float_extend:DF (match_operand:SF 1 “register_operand” “w”)))] “TARGET_FLOAT” “fcvt\t%d0, %s1” [(set_attr “type” “f_cvt”)] )

(define_insn “extendhfsf2” [(set (match_operand:SF 0 “register_operand” “=w”) (float_extend:SF (match_operand:HF 1 “register_operand” “w”)))] “TARGET_FLOAT” “fcvt\t%s0, %h1” [(set_attr “type” “f_cvt”)] )

(define_insn “extendhfdf2” [(set (match_operand:DF 0 “register_operand” “=w”) (float_extend:DF (match_operand:HF 1 “register_operand” “w”)))] “TARGET_FLOAT” “fcvt\t%d0, %h1” [(set_attr “type” “f_cvt”)] )

(define_insn “truncdfsf2” [(set (match_operand:SF 0 “register_operand” “=w”) (float_truncate:SF (match_operand:DF 1 “register_operand” “w”)))] “TARGET_FLOAT” “fcvt\t%s0, %d1” [(set_attr “type” “f_cvt”)] )

(define_insn “truncsfhf2” [(set (match_operand:HF 0 “register_operand” “=w”) (float_truncate:HF (match_operand:SF 1 “register_operand” “w”)))] “TARGET_FLOAT” “fcvt\t%h0, %s1” [(set_attr “type” “f_cvt”)] )

(define_insn “truncdfhf2” [(set (match_operand:HF 0 “register_operand” “=w”) (float_truncate:HF (match_operand:DF 1 “register_operand” “w”)))] “TARGET_FLOAT” “fcvt\t%h0, %d1” [(set_attr “type” “f_cvt”)] )

;; Convert SF -> SI or DF -> DI while preferring w = w register constraints ;; and making r = w more expensive

(define_insn “_trunc<fcvt_target>GPI:mode2” [(set (match_operand:GPI 0 “register_operand” “=w,?r”) (FIXUORS:GPI (match_operand:<FCVT_TARGET> 1 “register_operand” “w,w”)))] “TARGET_FLOAT” “@ fcvtz\t%0, %1 fcvtz\t%0, %1” [(set_attr “type” “neon_fp_to_int_s,f_cvtf2i”) (set_attr “arch” “simd,fp”)] )

;; Convert HF -> SI or DI

(define_insn “_trunchfGPI:mode2” [(set (match_operand:GPI 0 “register_operand” “=r”) (FIXUORS:GPI (match_operand:HF 1 “register_operand” “w”)))] “TARGET_FP_F16INST” “fcvtz\t%0, %h1” [(set_attr “type” “f_cvtf2i”)] )

;; Convert DF -> SI or SF -> DI which can only be accomplished with ;; input in a fp register and output in a integer register

(define_insn “_trunc<fcvt_change_mode>GPI:mode2” [(set (match_operand:GPI 0 “register_operand” “=r”) (FIXUORS:GPI (match_operand:<FCVT_CHANGE_MODE> 1 “register_operand” “w”)))] “TARGET_FLOAT” “fcvtz\t%0, %1” [(set_attr “type” “f_cvtf2i”)] )

(define_insn “*fix_to_zero_extenddi2” [(set (match_operand:DI 0 “register_operand” “=r”) (zero_extend:DI (unsigned_fix:SI (match_operand:GPF 1 “register_operand” “w”))))] “TARGET_FLOAT” “fcvtzu\t%w0, %1” [(set_attr “type” “f_cvtf2i”)] )

;; Equal width integer to fp and multiply combine. (define_insn “*aarch64_<su_optab>cvtf<fcvt_target>GPF:mode2_mult” [(set (match_operand:GPF 0 “register_operand” “=w,w”) (mult:GPF (FLOATUORS:GPF (match_operand:<FCVT_TARGET> 1 “register_operand” “w,?r”)) (match_operand:GPF 2 “aarch64_fp_pow2_recip” “Dt,Dt”)))] “TARGET_FLOAT” { operands[2] = GEN_INT (aarch64_fpconst_pow2_recip (operands[2])); switch (which_alternative) { case 0: return “<su_optab>cvtf\t%GPF:s0, %1, #%2”; case 1: return “<su_optab>cvtf\t%GPF:s0, %1, #%2”; default: gcc_unreachable (); } } [(set_attr “type” “neon_int_to_fp_,f_cvti2f”) (set_attr “arch” “simd,fp”)] )

;; Unequal width integer to fp and multiply combine. (define_insn “*aarch64_<su_optab>cvtf<fcvt_iesize>GPF:mode2_mult” [(set (match_operand:GPF 0 “register_operand” “=w”) (mult:GPF (FLOATUORS:GPF (match_operand:<FCVT_IESIZE> 1 “register_operand” “r”)) (match_operand:GPF 2 “aarch64_fp_pow2_recip” “Dt”)))] “TARGET_FLOAT” { operands[2] = GEN_INT (aarch64_fpconst_pow2_recip (operands[2])); return “<su_optab>cvtf\t%GPF:s0, %1, #%2”; } [(set_attr “type” “f_cvti2f”)] )

;; Equal width integer to fp conversion. (define_insn “<fcvt_target>GPF:mode2” [(set (match_operand:GPF 0 “register_operand” “=w,w”) (FLOATUORS:GPF (match_operand:<FCVT_TARGET> 1 “register_operand” “w,?r”)))] “TARGET_FLOAT” “@ <su_optab>cvtf\t%GPF:s0, %1 <su_optab>cvtf\t%GPF:s0, %1” [(set_attr “type” “neon_int_to_fp_,f_cvti2f”) (set_attr “arch” “simd,fp”)] )

;; Unequal width integer to fp conversions. (define_insn “<fcvt_iesize>GPF:mode2” [(set (match_operand:GPF 0 “register_operand” “=w”) (FLOATUORS:GPF (match_operand:<FCVT_IESIZE> 1 “register_operand” “r”)))] “TARGET_FLOAT” “<su_optab>cvtf\t%GPF:s0, %1” [(set_attr “type” “f_cvti2f”)] )

;; If we do not have ARMv8.2-A 16-bit floating point extensions, the ;; midend will arrange for an SImode conversion to HFmode to first go ;; through DFmode, then to HFmode. But first it will try converting ;; to DImode then down, which would match our DImode pattern below and ;; give very poor code-generation. So, we must provide our own emulation ;; of the mid-end logic.

(define_insn “aarch64_fp16_hf2” [(set (match_operand:HF 0 “register_operand” “=w”) (FLOATUORS:HF (match_operand:GPI 1 “register_operand” “r”)))] “TARGET_FP_F16INST” “<su_optab>cvtf\t%h0, %1” [(set_attr “type” “f_cvti2f”)] )

(define_expand “sihf2” [(set (match_operand:HF 0 “register_operand”) (FLOATUORS:HF (match_operand:SI 1 “register_operand”)))] “TARGET_FLOAT” { if (TARGET_FP_F16INST) emit_insn (gen_aarch64_fp16_sihf2 (operands[0], operands[1])); else { rtx convert_target = gen_reg_rtx (DFmode); emit_insn (gen_sidf2 (convert_target, operands[1])); emit_insn (gen_truncdfhf2 (operands[0], convert_target)); } DONE; } )

;; For DImode there is no wide enough floating-point mode that we ;; can convert through natively (TFmode would work, but requires a library ;; call). However, we know that any value >= 65504 will be rounded ;; to infinity on conversion. This is well within the range of SImode, so ;; we can: ;; Saturate to SImode. ;; Convert from that to DFmode ;; Convert from that to HFmode (phew!). ;; Note that the saturation to SImode requires the SIMD extensions. If ;; we ever need to provide this pattern where the SIMD extensions are not ;; available, we would need a different approach.

(define_expand “dihf2” [(set (match_operand:HF 0 “register_operand”) (FLOATUORS:HF (match_operand:DI 1 “register_operand”)))] “TARGET_FLOAT && (TARGET_FP_F16INST || TARGET_SIMD)” { if (TARGET_FP_F16INST) emit_insn (gen_aarch64_fp16_dihf2 (operands[0], operands[1])); else { rtx sat_target = gen_reg_rtx (SImode); emit_insn (gen_aarch64_<su_optab>qmovndi (sat_target, operands[1])); emit_insn (gen_sihf2 (operands[0], sat_target)); }

DONE; } )

;; Convert between fixed-point and floating-point (scalar modes)

(define_insn “<FCVT_F2FIXED:fcvt_fixed_insn>GPF:mode3” [(set (match_operand:GPF:FCVT_TARGET 0 “register_operand” “=r, w”) (unspec:GPF:FCVT_TARGET [(match_operand:GPF 1 “register_operand” “w, w”) (match_operand:SI 2 “immediate_operand” “i, i”)] FCVT_F2FIXED))] "" “@ <FCVT_F2FIXED:fcvt_fixed_insn>\t%GPF:w10, %GPF:s1, #%2 <FCVT_F2FIXED:fcvt_fixed_insn>\t%GPF:s0, %GPF:s1, #%2” [(set_attr “type” “f_cvtf2i, neon_fp_to_int_GPF:Vetype”) (set_attr “arch” “fp,simd”)] )

(define_insn “<FCVT_FIXED2F:fcvt_fixed_insn>GPI:mode3” [(set (match_operand:GPI:FCVT_TARGET 0 “register_operand” “=w, w”) (unspec:GPI:FCVT_TARGET [(match_operand:GPI 1 “register_operand” “r, w”) (match_operand:SI 2 “immediate_operand” “i, i”)] FCVT_FIXED2F))] "" “@ <FCVT_FIXED2F:fcvt_fixed_insn>\t%GPI:v0, %GPI:w1, #%2 <FCVT_FIXED2F:fcvt_fixed_insn>\t%GPI:v0, %GPI:v1, #%2” [(set_attr “type” “f_cvti2f, neon_int_to_fp_GPI:Vetype”) (set_attr “arch” “fp,simd”)] )

(define_insn “<FCVT_F2FIXED:fcvt_fixed_insn>hf3” [(set (match_operand:GPI 0 “register_operand” “=r”) (unspec:GPI [(match_operand:HF 1 “register_operand” “w”) (match_operand:SI 2 “immediate_operand” “i”)] FCVT_F2FIXED))] “TARGET_FP_F16INST” “<FCVT_F2FIXED:fcvt_fixed_insn>\t%GPI:w0, %h1, #%2” [(set_attr “type” “f_cvtf2i”)] )

(define_insn “<FCVT_FIXED2F:fcvt_fixed_insn>hf3” [(set (match_operand:HF 0 “register_operand” “=w”) (unspec:HF [(match_operand:GPI 1 “register_operand” “r”) (match_operand:SI 2 “immediate_operand” “i”)] FCVT_FIXED2F))] “TARGET_FP_F16INST” “<FCVT_FIXED2F:fcvt_fixed_insn>\t%h0, %GPI:w1, #%2” [(set_attr “type” “f_cvti2f”)] )

(define_insn “<FCVT_F2FIXED:fcvt_fixed_insn>hf3” [(set (match_operand:HI 0 “register_operand” “=w”) (unspec:HI [(match_operand:HF 1 “register_operand” “w”) (match_operand:SI 2 “immediate_operand” “i”)] FCVT_F2FIXED))] “TARGET_SIMD” “<FCVT_F2FIXED:fcvt_fixed_insn>\t%h0, %h1, #%2” [(set_attr “type” “neon_fp_to_int_s”)] )

(define_insn “<FCVT_FIXED2F:fcvt_fixed_insn>hi3” [(set (match_operand:HF 0 “register_operand” “=w”) (unspec:HF [(match_operand:HI 1 “register_operand” “w”) (match_operand:SI 2 “immediate_operand” “i”)] FCVT_FIXED2F))] “TARGET_SIMD” “<FCVT_FIXED2F:fcvt_fixed_insn>\t%h0, %h1, #%2” [(set_attr “type” “neon_int_to_fp_s”)] )

;; ------------------------------------------------------------------- ;; Floating-point arithmetic ;; -------------------------------------------------------------------

(define_insn “add3” [(set (match_operand:GPF_F16 0 “register_operand” “=w”) (plus:GPF_F16 (match_operand:GPF_F16 1 “register_operand” “w”) (match_operand:GPF_F16 2 “register_operand” “w”)))] “TARGET_FLOAT” “fadd\t%0, %1, %2” [(set_attr “type” “fadd”)] )

(define_insn “sub3” [(set (match_operand:GPF_F16 0 “register_operand” “=w”) (minus:GPF_F16 (match_operand:GPF_F16 1 “register_operand” “w”) (match_operand:GPF_F16 2 “register_operand” “w”)))] “TARGET_FLOAT” “fsub\t%0, %1, %2” [(set_attr “type” “fadd”)] )

(define_insn “mul3” [(set (match_operand:GPF_F16 0 “register_operand” “=w”) (mult:GPF_F16 (match_operand:GPF_F16 1 “register_operand” “w”) (match_operand:GPF_F16 2 “register_operand” “w”)))] “TARGET_FLOAT” “fmul\t%0, %1, %2” [(set_attr “type” “fmul”)] )

(define_insn “*fnmul3” [(set (match_operand:GPF 0 “register_operand” “=w”) (mult:GPF (neg:GPF (match_operand:GPF 1 “register_operand” “w”)) (match_operand:GPF 2 “register_operand” “w”)))] “TARGET_FLOAT && !flag_rounding_math” “fnmul\t%0, %1, %2” [(set_attr “type” “fmul”)] )

(define_insn “*fnmul3” [(set (match_operand:GPF 0 “register_operand” “=w”) (neg:GPF (mult:GPF (match_operand:GPF 1 “register_operand” “w”) (match_operand:GPF 2 “register_operand” “w”))))] “TARGET_FLOAT” “fnmul\t%0, %1, %2” [(set_attr “type” “fmul”)] )

(define_expand “div3” [(set (match_operand:GPF_F16 0 “register_operand”) (div:GPF_F16 (match_operand:GPF_F16 1 “general_operand”) (match_operand:GPF_F16 2 “register_operand”)))] “TARGET_FLOAT” { if (aarch64_emit_approx_div (operands[0], operands[1], operands[2])) DONE;

operands[1] = force_reg (mode, operands[1]); })

(define_insn “*div3” [(set (match_operand:GPF_F16 0 “register_operand” “=w”) (div:GPF_F16 (match_operand:GPF_F16 1 “register_operand” “w”) (match_operand:GPF_F16 2 “register_operand” “w”)))] “TARGET_FLOAT” “fdiv\t%0, %1, %2” [(set_attr “type” “fdiv”)] )

(define_insn “neg2” [(set (match_operand:GPF_F16 0 “register_operand” “=w”) (neg:GPF_F16 (match_operand:GPF_F16 1 “register_operand” “w”)))] “TARGET_FLOAT” “fneg\t%0, %1” [(set_attr “type” “ffarith”)] )

(define_expand “sqrt2” [(set (match_operand:GPF_F16 0 “register_operand”) (sqrt:GPF_F16 (match_operand:GPF_F16 1 “register_operand”)))] “TARGET_FLOAT” { if (aarch64_emit_approx_sqrt (operands[0], operands[1], false)) DONE; })

(define_insn “*sqrt2” [(set (match_operand:GPF_F16 0 “register_operand” “=w”) (sqrt:GPF_F16 (match_operand:GPF_F16 1 “register_operand” “w”)))] “TARGET_FLOAT” “fsqrt\t%0, %1” [(set_attr “type” “fsqrt”)] )

(define_insn “abs2” [(set (match_operand:GPF_F16 0 “register_operand” “=w”) (abs:GPF_F16 (match_operand:GPF_F16 1 “register_operand” “w”)))] “TARGET_FLOAT” “fabs\t%0, %1” [(set_attr “type” “ffarith”)] )

;; Given that smax/smin do not specify the result when either input is NaN, ;; we could use either FMAXNM or FMAX for smax, and either FMINNM or FMIN ;; for smin.

(define_insn “smax3” [(set (match_operand:GPF 0 “register_operand” “=w”) (smax:GPF (match_operand:GPF 1 “register_operand” “w”) (match_operand:GPF 2 “register_operand” “w”)))] “TARGET_FLOAT” “fmaxnm\t%0, %1, %2” [(set_attr “type” “f_minmax”)] )

(define_insn “smin3” [(set (match_operand:GPF 0 “register_operand” “=w”) (smin:GPF (match_operand:GPF 1 “register_operand” “w”) (match_operand:GPF 2 “register_operand” “w”)))] “TARGET_FLOAT” “fminnm\t%0, %1, %2” [(set_attr “type” “f_minmax”)] )

;; Scalar forms for fmax, fmin, fmaxnm, fminnm. ;; fmaxnm and fminnm are used for the fmax3 standard pattern names, ;; which implement the IEEE fmax ()/fmin () functions. (define_insn “<maxmin_uns>3” [(set (match_operand:GPF_F16 0 “register_operand” “=w”) (unspec:GPF_F16 [(match_operand:GPF_F16 1 “register_operand” “w”) (match_operand:GPF_F16 2 “register_operand” “w”)] FMAXMIN_UNS))] “TARGET_FLOAT” “<maxmin_uns_op>\t%0, %1, %2” [(set_attr “type” “f_minmax”)] )

(define_expand “lrintGPF:modeGPI:mode2” [(match_operand:GPI 0 “register_operand”) (match_operand:GPF 1 “register_operand”)] “TARGET_FLOAT && ((GET_MODE_BITSIZE (GPF:MODEmode) <= LONG_TYPE_SIZE) || !flag_trapping_math || flag_fp_int_builtin_inexact)” { rtx cvt = gen_reg_rtx (GPF:MODEmode); emit_insn (gen_rintGPF:mode2 (cvt, operands[1])); emit_insn (gen_lbtruncGPF:modeGPI:mode2 (operands[0], cvt)); DONE; } )

;; For copysign (x, y), we want to generate: ;; ;; LDR d2, #(1 << 63) ;; BSL v2.8b, [y], [x] ;; ;; or another, equivalent, sequence using one of BSL/BIT/BIF. Because ;; we expect these operations to nearly always operate on ;; floating-point values, we do not want the operation to be ;; simplified into a bit-field insert operation that operates on the ;; integer side, since typically that would involve three inter-bank ;; register copies. As we do not expect copysign to be followed by ;; other logical operations on the result, it seems preferable to keep ;; this as an unspec operation, rather than exposing the underlying ;; logic to the compiler.

(define_expand “copysignGPF:mode3” [(match_operand:GPF 0 “register_operand”) (match_operand:GPF 1 “register_operand”) (match_operand:GPF 2 “register_operand”)] “TARGET_FLOAT && TARGET_SIMD” { rtx bitmask = gen_reg_rtx (<V_INT_EQUIV>mode); emit_move_insn (bitmask, GEN_INT (HOST_WIDE_INT_M1U << (GET_MODE_BITSIZE (mode) - 1))); emit_insn (gen_copysign3_insn (operands[0], operands[1], operands[2], bitmask)); DONE; } )

(define_insn “copysignGPF:mode3_insn” [(set (match_operand:GPF 0 “register_operand” “=w,w,w,r”) (unspec:GPF [(match_operand:GPF 1 “register_operand” “w,0,w,r”) (match_operand:GPF 2 “register_operand” “w,w,0,0”) (match_operand:<V_INT_EQUIV> 3 “register_operand” “0,w,w,X”)] UNSPEC_COPYSIGN))] “TARGET_FLOAT && TARGET_SIMD” “@ bsl\t%0., %2., %1. bit\t%0., %2., %3. bif\t%0., %1., %3. bfxil\t%0, %1, #0, ” [(set_attr “type” “neon_bsl,neon_bsl,neon_bsl,bfm”)] )

;; For xorsign (x, y), we want to generate: ;; ;; LDR d2, #1<<63 ;; AND v3.8B, v1.8B, v2.8B ;; EOR v0.8B, v0.8B, v3.8B ;;

(define_expand “xorsign3” [(match_operand:GPF 0 “register_operand”) (match_operand:GPF 1 “register_operand”) (match_operand:GPF 2 “register_operand”)] “TARGET_FLOAT && TARGET_SIMD” {

machine_mode imode = <V_INT_EQUIV>mode; rtx mask = gen_reg_rtx (imode); rtx op1x = gen_reg_rtx (imode); rtx op2x = gen_reg_rtx (imode);

int bits = GET_MODE_BITSIZE (mode) - 1; emit_move_insn (mask, GEN_INT (trunc_int_for_mode (HOST_WIDE_INT_M1U << bits, imode)));

emit_insn (gen_and<v_int_equiv>3 (op2x, mask, lowpart_subreg (imode, operands[2], mode))); emit_insn (gen_xor<v_int_equiv>3 (op1x, lowpart_subreg (imode, operands[1], mode), op2x)); emit_move_insn (operands[0], lowpart_subreg (mode, op1x, imode)); DONE; } )

;; ------------------------------------------------------------------- ;; Reload support ;; ------------------------------------------------------------------- ;; Reload Scalar Floating point modes from constant pool. ;; The AArch64 port doesn't have __int128 constant move support. ;; The patterns need constraints due to TARGET_SECONDARY_RELOAD hook. (define_expand “@aarch64_reload_movcp<GPF_TF:mode><P:mode>” [(set (match_operand:GPF_TF 0 “register_operand” “=w”) (mem:GPF_TF (match_operand 1 “aarch64_constant_pool_symref” “S”))) (clobber (match_operand:P 2 “register_operand” “=&r”))] “TARGET_FLOAT” { aarch64_expand_mov_immediate (operands[2], XEXP (operands[1], 0)); emit_move_insn (operands[0], gen_rtx_MEM (<GPF_TF:MODE>mode, operands[2])); DONE; } )

;; Reload Vector modes from constant pool. (define_expand “@aarch64_reload_movcpVALL:mode<P:mode>” [(set (match_operand:VALL 0 “register_operand” “=w”) (mem:VALL (match_operand 1 “aarch64_constant_pool_symref” “S”))) (clobber (match_operand:P 2 “register_operand” “=&r”))] “TARGET_FLOAT” { aarch64_expand_mov_immediate (operands[2], XEXP (operands[1], 0)); emit_move_insn (operands[0], gen_rtx_MEM (VALL:MODEmode, operands[2])); DONE; } )

(define_expand “@aarch64_reload_mov” [(set (match_operand:TX 0 “register_operand” “=w”) (match_operand:TX 1 “register_operand” “w”)) (clobber (match_operand:DI 2 “register_operand” “=&r”)) ] “TARGET_FLOAT” { rtx op0 = simplify_gen_subreg (TImode, operands[0], mode, 0); rtx op1 = simplify_gen_subreg (TImode, operands[1], mode, 0); gen_aarch64_movtilow_tilow (op0, op1); gen_aarch64_movdi_tihigh (operands[2], op1); gen_aarch64_movtihigh_di (op0, operands[2]); DONE; } )

;; The following secondary reload helpers patterns are invoked ;; after or during reload as we don't want these patterns to start ;; kicking in during the combiner.

(define_insn “@aarch64_movdi_low” [(set (match_operand:DI 0 “register_operand” “=r”) (zero_extract:DI (match_operand:TX 1 “register_operand” “w”) (const_int 64) (const_int 0)))] “TARGET_FLOAT && (reload_completed || reload_in_progress)” “fmov\t%x0, %d1” [(set_attr “type” “f_mrc”) (set_attr “length” “4”) ])

(define_insn “@aarch64_movdi_high” [(set (match_operand:DI 0 “register_operand” “=r”) (zero_extract:DI (match_operand:TX 1 “register_operand” “w”) (const_int 64) (const_int 64)))] “TARGET_FLOAT && (reload_completed || reload_in_progress)” “fmov\t%x0, %1.d[1]” [(set_attr “type” “f_mrc”) (set_attr “length” “4”) ])

(define_insn “@aarch64_movhigh_di” [(set (zero_extract:TX (match_operand:TX 0 “register_operand” “+w”) (const_int 64) (const_int 64)) (zero_extend:TX (match_operand:DI 1 “register_operand” “r”)))] “TARGET_FLOAT && (reload_completed || reload_in_progress)” “fmov\t%0.d[1], %x1” [(set_attr “type” “f_mcr”) (set_attr “length” “4”) ])

(define_insn “@aarch64_movlow_di” [(set (match_operand:TX 0 “register_operand” “=w”) (zero_extend:TX (match_operand:DI 1 “register_operand” “r”)))] “TARGET_FLOAT && (reload_completed || reload_in_progress)” “fmov\t%d0, %x1” [(set_attr “type” “f_mcr”) (set_attr “length” “4”) ])

(define_insn “aarch64_movtilow_tilow” [(set (match_operand:TI 0 “register_operand” “=w”) (zero_extend:TI (truncate:DI (match_operand:TI 1 “register_operand” “w”))))] “TARGET_FLOAT && (reload_completed || reload_in_progress)” “fmov\t%d0, %d1” [(set_attr “type” “fmov”) (set_attr “length” “4”) ])

;; There is a deliberate reason why the parameters of high and lo_sum‘s ;; don’t have modes for ADRP and ADD instructions. This is to allow high ;; and lo_sum's to be used with the labels defining the jump tables in ;; rodata section.

(define_expand “add_losym” [(set (match_operand 0 “register_operand”) (lo_sum (match_operand 1 “register_operand”) (match_operand 2 “aarch64_valid_symref”)))] "" { machine_mode mode = GET_MODE (operands[0]);

emit_insn ((mode == DImode ? gen_add_losym_di : gen_add_losym_si) (operands[0], operands[1], operands[2])); DONE; })

(define_insn “add_losym_” [(set (match_operand:P 0 “register_operand” “=r”) (lo_sum:P (match_operand:P 1 “register_operand” “r”) (match_operand 2 “aarch64_valid_symref” “S”)))] "" “add\t%0, %1, :lo12:%c2” [(set_attr “type” “alu_imm”)] )

(define_insn “ldr_got_small_” [(set (match_operand:PTR 0 “register_operand” “=r”) (unspec:PTR [(mem:PTR (lo_sum:PTR (match_operand:PTR 1 “register_operand” “r”) (match_operand:PTR 2 “aarch64_valid_symref” “S”)))] UNSPEC_GOTSMALLPIC))] "" “ldr\t%0, [%1, #:got_lo12:%c2]” [(set_attr “type” “load_<ldst_sz>”)] )

(define_insn “ldr_got_small_sidi” [(set (match_operand:DI 0 “register_operand” “=r”) (zero_extend:DI (unspec:SI [(mem:SI (lo_sum:DI (match_operand:DI 1 “register_operand” “r”) (match_operand:DI 2 “aarch64_valid_symref” “S”)))] UNSPEC_GOTSMALLPIC)))] “TARGET_ILP32” “ldr\t%w0, [%1, #:got_lo12:%c2]” [(set_attr “type” “load_4”)] )

(define_insn “ldr_got_small_28k_” [(set (match_operand:PTR 0 “register_operand” “=r”) (unspec:PTR [(mem:PTR (lo_sum:PTR (match_operand:PTR 1 “register_operand” “r”) (match_operand:PTR 2 “aarch64_valid_symref” “S”)))] UNSPEC_GOTSMALLPIC28K))] "" “ldr\t%0, [%1, #:<got_modifier>:%c2]” [(set_attr “type” “load_<ldst_sz>”)] )

(define_insn “ldr_got_small_28k_sidi” [(set (match_operand:DI 0 “register_operand” “=r”) (zero_extend:DI (unspec:SI [(mem:SI (lo_sum:DI (match_operand:DI 1 “register_operand” “r”) (match_operand:DI 2 “aarch64_valid_symref” “S”)))] UNSPEC_GOTSMALLPIC28K)))] “TARGET_ILP32” “ldr\t%w0, [%1, #:gotpage_lo14:%c2]” [(set_attr “type” “load_4”)] )

(define_insn “@ldr_got_tiny_” [(set (match_operand:PTR 0 “register_operand” “=r”) (unspec:PTR [(match_operand:PTR 1 “aarch64_valid_symref” “S”)] UNSPEC_GOTTINYPIC))] "" “ldr\t%0, %L1” [(set_attr “type” “load_<ldst_sz>”)] )

(define_insn “ldr_got_tiny_sidi” [(set (match_operand:DI 0 “register_operand” “=r”) (zero_extend:DI (unspec:SI [(match_operand:DI 1 “aarch64_valid_symref” “S”)] UNSPEC_GOTTINYPIC)))] “TARGET_ILP32” “ldr\t%w0, %L1” [(set_attr “type” “load_4”)] )

(define_insn “aarch64_load_tp_hard” [(set (match_operand:DI 0 “register_operand” “=r”) (unspec:DI [(const_int 0)] UNSPEC_TLS))] "" “mrs\t%0, tpidr_el0” [(set_attr “type” “mrs”)] )

;; The TLS ABI specifically requires that the compiler does not schedule ;; instructions in the TLS stubs, in order to enable linker relaxation. ;; Therefore we treat the stubs as an atomic sequence. (define_expand “tlsgd_small_” [(parallel [(set (match_operand:PTR 0 “register_operand”) (call (mem:DI (match_dup 2)) (const_int 1))) (unspec:DI [(const_int 0)] UNSPEC_CALLEE_ABI) (unspec:DI [(match_operand 1 “aarch64_valid_symref”)] UNSPEC_GOTSMALLTLS) (clobber (reg:DI LR_REGNUM))])] "" { operands[2] = aarch64_tls_get_addr (); })

(define_insn “*tlsgd_small_” [(set (match_operand:PTR 0 “register_operand” "") (call (mem:DI (match_operand:DI 2 "" "")) (const_int 1))) (unspec:DI [(const_int 0)] UNSPEC_CALLEE_ABI) (unspec:DI [(match_operand 1 “aarch64_valid_symref” “S”)] UNSPEC_GOTSMALLTLS) (clobber (reg:DI LR_REGNUM)) ] "" “adrp\tx0, %A1;add\tx0, x0, %L1;bl\t%2;nop” [(set_attr “type” “call”) (set_attr “length” “16”)])

(define_insn “tlsie_small_” [(set (match_operand:PTR 0 “register_operand” “=r”) (unspec:PTR [(match_operand 1 “aarch64_tls_ie_symref” “S”)] UNSPEC_GOTSMALLTLS))] "" “adrp\t%0, %A1;ldr\t%0, [%0, #%L1]” [(set_attr “type” “load_4”) (set_attr “length” “8”)] )

(define_insn “tlsie_small_sidi” [(set (match_operand:DI 0 “register_operand” “=r”) (zero_extend:DI (unspec:SI [(match_operand 1 “aarch64_tls_ie_symref” “S”)] UNSPEC_GOTSMALLTLS)))] "" “adrp\t%0, %A1;ldr\t%w0, [%0, #%L1]” [(set_attr “type” “load_4”) (set_attr “length” “8”)] )

(define_insn “tlsie_tiny_” [(set (match_operand:PTR 0 “register_operand” “=&r”) (unspec:PTR [(match_operand 1 “aarch64_tls_ie_symref” “S”) (match_operand:PTR 2 “register_operand” “r”)] UNSPEC_GOTTINYTLS))] "" “ldr\t%0, %L1;add\t%0, %0, %2” [(set_attr “type” “multiple”) (set_attr “length” “8”)] )

(define_insn “tlsie_tiny_sidi” [(set (match_operand:DI 0 “register_operand” “=&r”) (zero_extend:DI (unspec:SI [(match_operand 1 “aarch64_tls_ie_symref” “S”) (match_operand:DI 2 “register_operand” “r”) ] UNSPEC_GOTTINYTLS)))] "" “ldr\t%w0, %L1;add\t%w0, %w0, %w2” [(set_attr “type” “multiple”) (set_attr “length” “8”)] )

(define_insn “tlsle12_” [(set (match_operand:P 0 “register_operand” “=r”) (unspec:P [(match_operand:P 1 “register_operand” “r”) (match_operand 2 “aarch64_tls_le_symref” “S”)] UNSPEC_TLSLE12))] "" “add\t%0, %1, #%L2”; [(set_attr “type” “alu_sreg”) (set_attr “length” “4”)] )

(define_insn “tlsle24_” [(set (match_operand:P 0 “register_operand” “=r”) (unspec:P [(match_operand:P 1 “register_operand” “r”) (match_operand 2 “aarch64_tls_le_symref” “S”)] UNSPEC_TLSLE24))] "" “add\t%0, %1, #%G2, lsl #12;add\t%0, %0, #%L2” [(set_attr “type” “multiple”) (set_attr “length” “8”)] )

(define_insn “tlsle32_” [(set (match_operand:P 0 “register_operand” “=r”) (unspec:P [(match_operand 1 “aarch64_tls_le_symref” “S”)] UNSPEC_TLSLE32))] "" “movz\t%0, #:tprel_g1:%1;movk\t%0, #:tprel_g0_nc:%1” [(set_attr “type” “multiple”) (set_attr “length” “8”)] )

(define_insn “tlsle48_” [(set (match_operand:P 0 “register_operand” “=r”) (unspec:P [(match_operand 1 “aarch64_tls_le_symref” “S”)] UNSPEC_TLSLE48))] "" “movz\t%0, #:tprel_g2:%1;movk\t%0, #:tprel_g1_nc:%1;movk\t%0, #:tprel_g0_nc:%1” [(set_attr “type” “multiple”) (set_attr “length” “12”)] )

(define_expand “tlsdesc_small_” [(unspec:PTR [(match_operand 0 “aarch64_valid_symref”)] UNSPEC_TLSDESC)] “TARGET_TLS_DESC” { if (TARGET_SVE) { rtx abi = gen_int_mode (aarch64_tlsdesc_abi_id (), DImode); rtx_insn *call = emit_call_insn (gen_tlsdesc_small_sve_ (operands[0], abi)); RTL_CONST_CALL_P (call) = 1; } else emit_insn (gen_tlsdesc_small_advsimd_ (operands[0])); DONE; } )

;; tlsdesc calls preserve all core and Advanced SIMD registers except ;; R0 and LR. (define_insn “tlsdesc_small_advsimd_” [(set (reg:PTR R0_REGNUM) (unspec:PTR [(match_operand 0 “aarch64_valid_symref” “S”)] UNSPEC_TLSDESC)) (clobber (reg:DI LR_REGNUM)) (clobber (reg:CC CC_REGNUM)) (clobber (match_scratch:DI 1 “=r”)) (use (reg:DI FP_REGNUM))] “TARGET_TLS_DESC && !TARGET_SVE” “adrp\tx0, %A0;ldr\t%1, [x0, #%L0];add\t0, 0, %L0;.tlsdesccall\t%0;blr\t%1” [(set_attr “type” “call”) (set_attr “length” “16”)])

;; For SVE, model tlsdesc calls as normal calls, with the callee ABI ;; describing the extra call-preserved guarantees. This would work ;; for non-SVE too, but avoiding a call is probably better if we can. (define_insn “tlsdesc_small_sve_” [(set (reg:PTR R0_REGNUM) (call (mem:DI (unspec:PTR [(match_operand 0 “aarch64_valid_symref”)] UNSPEC_TLSDESC)) (const_int 0))) (unspec:DI [(match_operand:DI 1 “const_int_operand”)] UNSPEC_CALLEE_ABI) (clobber (reg:DI LR_REGNUM))] “TARGET_TLS_DESC && TARGET_SVE” “adrp\tx0, %A0;ldr\t30, [x0, #%L0];add\t0, 0, %L0;.tlsdesccall\t%0;blr\tx30” [(set_attr “type” “call”) (set_attr “length” “16”)])

(define_insn “stack_tie” [(set (mem:BLK (scratch)) (unspec:BLK [(match_operand:DI 0 “register_operand” “rk”) (match_operand:DI 1 “register_operand” “rk”)] UNSPEC_PRLG_STK))] "" "" [(set_attr “length” “0”)] )

(define_insn “aarch64_fjcvtzs” [(set (match_operand:SI 0 “register_operand” “=r”) (unspec:SI [(match_operand:DF 1 “register_operand” “w”)] UNSPEC_FJCVTZS)) (clobber (reg:CC CC_REGNUM))] “TARGET_JSCVT” “fjcvtzs\t%w0, %d1” [(set_attr “type” “f_cvtf2i”)] )

;; Pointer authentication patterns are always provided. In architecture ;; revisions prior to ARMv8.3-A these HINT instructions operate as NOPs. ;; This lets the user write portable software which authenticates pointers ;; when run on something which implements ARMv8.3-A, and which runs ;; correctly, but does not authenticate pointers, where ARMv8.3-A is not ;; implemented.

;; Signing/Authenticating R30 using SP as the salt.

(define_insn “<pauth_mnem_prefix>sp” [(set (reg:DI R30_REGNUM) (unspec:DI [(reg:DI R30_REGNUM) (reg:DI SP_REGNUM)] PAUTH_LR_SP))] "" “hint\t<pauth_hint_num> // <pauth_mnem_prefix>sp”; )

;; Signing/Authenticating X17 using X16 as the salt.

(define_insn “<pauth_mnem_prefix>1716” [(set (reg:DI R17_REGNUM) (unspec:DI [(reg:DI R17_REGNUM) (reg:DI R16_REGNUM)] PAUTH_17_16))] "" “hint\t<pauth_hint_num> // <pauth_mnem_prefix>1716”; )

;; Stripping the signature in R30.

(define_insn “xpaclri” [(set (reg:DI R30_REGNUM) (unspec:DI [(reg:DI R30_REGNUM)] UNSPEC_XPACLRI))] "" “hint\t7 // xpaclri” )

;; UNSPEC_VOLATILE is considered to use and clobber all hard registers and ;; all of memory. This blocks insns from being moved across this point.

(define_insn “blockage” [(unspec_volatile [(const_int 0)] UNSPECV_BLOCKAGE)] "" "" [(set_attr “length” “0”) (set_attr “type” “block”)] )

(define_insn “probe_stack_range” [(set (match_operand:DI 0 “register_operand” “=rk”) (unspec_volatile:DI [(match_operand:DI 1 “register_operand” “0”) (match_operand:DI 2 “register_operand” “r”)] UNSPECV_PROBE_STACK_RANGE))] "" { return aarch64_output_probe_stack_range (operands[0], operands[2]); } [(set_attr “length” “32”)] )

;; This instruction is used to generate the stack clash stack adjustment and ;; probing loop. We can't change the control flow during prologue and epilogue ;; code generation. So we must emit a volatile unspec and expand it later on.

(define_insn “@probe_sve_stack_clash_” [(set (match_operand:P 0 “register_operand” “=rk”) (unspec_volatile:P [(match_operand:P 1 “register_operand” “0”) (match_operand:P 2 “register_operand” “r”) (match_operand:P 3 “const_int_operand” “n”) (match_operand:P 4 “aarch64_plus_immediate” “L”)] UNSPECV_PROBE_STACK_RANGE))] “TARGET_SVE” { return aarch64_output_probe_sve_stack_clash (operands[0], operands[2], operands[3], operands[4]); } [(set_attr “length” “28”)] )

;; Named pattern for expanding thread pointer reference. (define_expand “get_thread_pointerdi” [(match_operand:DI 0 “register_operand”)] "" { rtx tmp = aarch64_load_tp (operands[0]); if (tmp != operands[0]) emit_move_insn (operands[0], tmp); DONE; })

;; Defined for -mstack-protector-guard=sysreg, which goes through this ;; pattern rather than stack_protect_combined_set. Our implementation ;; of the latter can handle both. (define_expand “stack_protect_set” [(match_operand 0 “memory_operand”) (match_operand 1 "")] "" { emit_insn (gen_stack_protect_combined_set (operands[0], operands[1])); DONE; })

(define_expand “stack_protect_combined_set” [(match_operand 0 “memory_operand”) (match_operand 1 "")] "" { machine_mode mode = GET_MODE (operands[0]); operands[1] = aarch64_stack_protect_canary_mem (mode, operands[1], AARCH64_SALT_SSP_SET); emit_insn ((mode == DImode ? gen_stack_protect_set_di : gen_stack_protect_set_si) (operands[0], operands[1])); DONE; })

;; Operand 1 is either AARCH64_SALT_SSP_SET or AARCH64_SALT_SSP_TEST. (define_insn “reg_stack_protect_address_” [(set (match_operand:PTR 0 “register_operand” “=r”) (unspec:PTR [(match_operand 1 “const_int_operand”)] UNSPEC_SSP_SYSREG))] “aarch64_stack_protector_guard != SSP_GLOBAL” { char buf[150]; snprintf (buf, 150, “mrs\t%%0, %s”, aarch64_stack_protector_guard_reg_str); output_asm_insn (buf, operands); return ""; } [(set_attr “type” “mrs”)])

;; DO NOT SPLIT THIS PATTERN. It is important for security reasons that the ;; canary value does not live beyond the life of this sequence. (define_insn “stack_protect_set_” [(set (match_operand:PTR 0 “memory_operand” “=m”) (unspec:PTR [(match_operand:PTR 1 “memory_operand” “m”)] UNSPEC_SP_SET)) (set (match_scratch:PTR 2 “=&r”) (const_int 0))] "" “ldr\t%2, %1;str\t%2, %0;mov\t%2, 0” [(set_attr “length” “12”) (set_attr “type” “multiple”)])

;; Defined for -mstack-protector-guard=sysreg, which goes through this ;; pattern rather than stack_protect_combined_test. Our implementation ;; of the latter can handle both. (define_expand “stack_protect_test” [(match_operand 0 “memory_operand”) (match_operand 1 "") (match_operand 2)] "" { emit_insn (gen_stack_protect_combined_test (operands[0], operands[1], operands[2])); DONE; })

(define_expand “stack_protect_combined_test” [(match_operand 0 “memory_operand”) (match_operand 1 "") (match_operand 2)] "" { machine_mode mode = GET_MODE (operands[0]); operands[1] = aarch64_stack_protect_canary_mem (mode, operands[1], AARCH64_SALT_SSP_TEST); emit_insn ((mode == DImode ? gen_stack_protect_test_di : gen_stack_protect_test_si) (operands[0], operands[1]));

rtx cc_reg = gen_rtx_REG (CCmode, CC_REGNUM); emit_jump_insn (gen_condjump (gen_rtx_EQ (VOIDmode, cc_reg, const0_rtx), cc_reg, operands[2])); DONE; })

;; DO NOT SPLIT THIS PATTERN. It is important for security reasons that the ;; canary value does not live beyond the end of this sequence. (define_insn “stack_protect_test_” [(set (reg:CC CC_REGNUM) (unspec:CC [(match_operand:PTR 0 “memory_operand” “m”) (match_operand:PTR 1 “memory_operand” “m”)] UNSPEC_SP_TEST)) (clobber (match_scratch:PTR 2 “=&r”)) (clobber (match_scratch:PTR 3 “=&r”))] "" “ldr\t%2, %0;ldr\t%3, %1;subs\t%2, %2, %3;mov\t%3, 0” [(set_attr “length” “16”) (set_attr “type” “multiple”)])

;; Write into the Floating-point Status or Control Register. (define_insn “@aarch64_set_<fpscr_name>GPI:mode” [(unspec_volatile [(match_operand:GPI 0 “register_operand” “r”)] SET_FPSCR)] "" “msr\t<fpscr_name>, %0” [(set_attr “type” “mrs”)])

;; Read into the Floating-point Status or Control Register. (define_insn “@aarch64_get_<fpscr_name>GPI:mode” [(set (match_operand:GPI 0 “register_operand” “=r”) (unspec_volatile:GPI [(const_int 0)] GET_FPSCR))] "" “mrs\t%0, <fpscr_name>” [(set_attr “type” “mrs”)])

;; Define the subtract-one-and-jump insns so loop.c ;; knows what to generate. (define_expand “doloop_end” [(use (match_operand 0 "" "")) ; loop pseudo (use (match_operand 1 "" ""))] ; label “optimize > 0 && flag_modulo_sched” { rtx s0; rtx bcomp; rtx loc_ref; rtx cc_reg; rtx insn; rtx cmp;

/* Currently SMS relies on the do-loop pattern to recognize loops where (1) the control part consists of all insns defining and/or using a certain ‘count’ register and (2) the loop count can be adjusted by modifying this register prior to the loop. ??? The possible introduction of a new block to initialize the new IV can potentially affect branch optimizations. */

if (GET_MODE (operands[0]) != DImode) FAIL;

s0 = operands [0]; insn = emit_insn (gen_adddi3_compare0 (s0, s0, GEN_INT (-1)));

cmp = XVECEXP (PATTERN (insn), 0, 0); cc_reg = SET_DEST (cmp); bcomp = gen_rtx_NE (VOIDmode, cc_reg, const0_rtx); loc_ref = gen_rtx_LABEL_REF (VOIDmode, operands [1]); emit_jump_insn (gen_rtx_SET (pc_rtx, gen_rtx_IF_THEN_ELSE (VOIDmode, bcomp, loc_ref, pc_rtx))); DONE; })

;; Track speculation through conditional branches. We assume that ;; SPECULATION_TRACKER_REGNUM is reserved for this purpose when necessary. (define_insn “speculation_tracker” [(set (reg:DI SPECULATION_TRACKER_REGNUM) (unspec:DI [(reg:DI SPECULATION_TRACKER_REGNUM) (match_operand 0)] UNSPEC_SPECULATION_TRACKER))] "" { operands[1] = gen_rtx_REG (DImode, SPECULATION_TRACKER_REGNUM); output_asm_insn (“csel\t%1, %1, xzr, %m0”, operands); return ""; } [(set_attr “type” “csel”)] )

;; Like speculation_tracker, but track the inverse condition. (define_insn “speculation_tracker_rev” [(set (reg:DI SPECULATION_TRACKER_REGNUM) (unspec:DI [(reg:DI SPECULATION_TRACKER_REGNUM) (match_operand 0)] UNSPEC_SPECULATION_TRACKER_REV))] "" { operands[1] = gen_rtx_REG (DImode, SPECULATION_TRACKER_REGNUM); output_asm_insn (“csel\t%1, %1, xzr, %M0”, operands); return ""; } [(set_attr “type” “csel”)] )

;; BTI instructions (define_insn “bti_noarg” [(unspec_volatile [(const_int 0)] UNSPECV_BTI_NOARG)] "" “hint\t32 // bti” [(set_attr “type” “no_insn”)] )

(define_insn “bti_c” [(unspec_volatile [(const_int 0)] UNSPECV_BTI_C)] "" “hint\t34 // bti c” [(set_attr “type” “no_insn”)] )

(define_insn “bti_j” [(unspec_volatile [(const_int 0)] UNSPECV_BTI_J)] "" “hint\t36 // bti j” [(set_attr “type” “no_insn”)] )

(define_insn “bti_jc” [(unspec_volatile [(const_int 0)] UNSPECV_BTI_JC)] "" “hint\t38 // bti jc” [(set_attr “type” “no_insn”)] )

;; Hard speculation barrier. (define_insn “speculation_barrier” [(unspec_volatile [(const_int 0)] UNSPECV_SPECULATION_BARRIER)] "" “isb;dsb\tsy” [(set_attr “length” “8”) (set_attr “type” “block”) (set_attr “speculation_barrier” “true”)] )

;; Support for __builtin_speculation_safe_value when we have speculation ;; tracking enabled. Use the speculation tracker to decide whether to ;; copy operand 1 to the target, or to copy the fail value (operand 2). (define_expand “@despeculate_copy<ALLI_TI:mode>” [(set (match_operand:ALLI_TI 0 “register_operand”) (unspec_volatile:ALLI_TI [(match_operand:ALLI_TI 1 “register_operand”) (match_operand:ALLI_TI 2 “aarch64_reg_or_zero”) (use (reg:DI SPECULATION_TRACKER_REGNUM)) (clobber (reg:CC CC_REGNUM))] UNSPECV_SPECULATION_BARRIER))] "" " { if (operands[2] == const0_rtx) { rtx tracker; if (mode == TImode) tracker = gen_rtx_REG (DImode, SPECULATION_TRACKER_REGNUM); else tracker = gen_rtx_REG (mode, SPECULATION_TRACKER_REGNUM);

emit_insn (gen_despeculate_simple<mode> (operands[0], operands[1],
					 tracker));
DONE;
  }

} " )

;; Patterns to match despeculate_copy. Note that “hint 0x14” is the ;; encoding for CSDB, but will work in older versions of the assembler. (define_insn “*despeculate_copyALLI:mode_insn” [(set (match_operand:ALLI 0 “register_operand” “=r”) (unspec_volatile:ALLI [(match_operand:ALLI 1 “register_operand” “r”) (match_operand:ALLI 2 “aarch64_reg_or_zero” “rZ”) (use (reg:DI SPECULATION_TRACKER_REGNUM)) (clobber (reg:CC CC_REGNUM))] UNSPECV_SPECULATION_BARRIER))] "" { operands[3] = gen_rtx_REG (DImode, SPECULATION_TRACKER_REGNUM); output_asm_insn (“cmp\t%3, #0;csel\t%0, %1, %2, ne;hint\t0x14 // csdb”, operands); return ""; } [(set_attr “length” “12”) (set_attr “type” “block”) (set_attr “speculation_barrier” “true”)] )

;; Pattern to match despeculate_copyti (define_insn “*despeculate_copyti_insn” [(set (match_operand:TI 0 “register_operand” “=r”) (unspec_volatile:TI [(match_operand:TI 1 “register_operand” “r”) (match_operand:TI 2 “aarch64_reg_or_zero” “rZ”) (use (reg:DI SPECULATION_TRACKER_REGNUM)) (clobber (reg:CC CC_REGNUM))] UNSPECV_SPECULATION_BARRIER))] "" { operands[3] = gen_rtx_REG (DImode, SPECULATION_TRACKER_REGNUM); output_asm_insn (“cmp\t%3, #0;csel\t%0, %1, %2, ne;csel\t%H0, %H1, %H2, ne;hint\t0x14 // csdb”, operands); return ""; } [(set_attr “length” “16”) (set_attr “type” “block”) (set_attr “speculation_barrier” “true”)] )

(define_insn “despeculate_simpleALLI:mode” [(set (match_operand:ALLI 0 “register_operand” “=r”) (unspec_volatile:ALLI [(match_operand:ALLI 1 “register_operand” “r”) (use (match_operand:ALLI 2 “register_operand” ""))] UNSPECV_SPECULATION_BARRIER))] "" “and\t%0, %1, %2;hint\t0x14 // csdb” [(set_attr “type” “block”) (set_attr “length” “8”) (set_attr “speculation_barrier” “true”)] )

(define_insn “despeculate_simpleti” [(set (match_operand:TI 0 “register_operand” “=r”) (unspec_volatile:TI [(match_operand:TI 1 “register_operand” “r”) (use (match_operand:DI 2 “register_operand” ""))] UNSPECV_SPECULATION_BARRIER))] "" “and\t%0, %1, %2;and\t%H0, %H1, %2;hint\t0x14 // csdb” [(set_attr “type” “block”) (set_attr “length” “12”) (set_attr “speculation_barrier” “true”)] )

(define_insn “aarch64_<frintnzs_op>” [(set (match_operand:VSFDF 0 “register_operand” “=w”) (unspec:VSFDF [(match_operand:VSFDF 1 “register_operand” “w”)] FRINTNZX))] “TARGET_FRINT && TARGET_FLOAT && !(VECTOR_MODE_P (mode) && !TARGET_SIMD)” “<frintnzs_op>\t%0, %1” [(set_attr “type” “f_rint”)] )

;; Transactional Memory Extension (TME) instructions.

(define_insn “tstart” [(set (match_operand:DI 0 “register_operand” “=r”) (unspec_volatile:DI [(const_int 0)] UNSPECV_TSTART)) (clobber (mem:BLK (scratch)))] “TARGET_TME” “tstart\t%0” [(set_attr “type” “tme”)] )

(define_insn “ttest” [(set (match_operand:DI 0 “register_operand” “=r”) (unspec_volatile:DI [(const_int 0)] UNSPEC_TTEST)) (clobber (mem:BLK (scratch)))] “TARGET_TME” “ttest\t%0” [(set_attr “type” “tme”)] )

(define_insn “tcommit” [(unspec_volatile:BLK [(const_int 0)] UNSPECV_TCOMMIT) (clobber (mem:BLK (scratch)))] “TARGET_TME” “tcommit” [(set_attr “type” “tme”)] )

(define_insn “tcancel” [(unspec_volatile:BLK [(match_operand 0 “const_int_operand” “n”)] UNSPECV_TCANCEL) (clobber (mem:BLK (scratch)))] “TARGET_TME && (UINTVAL (operands[0]) <= 65535)” “tcancel\t#%0” [(set_attr “type” “tme”)] )

(define_insn “aarch64_rndr” [(set (match_operand:DI 0 “register_operand” “=r”) (unspec_volatile:DI [(const_int 0)] UNSPEC_RNDR)) (set (reg:CC_Z CC_REGNUM) (unspec_volatile:CC_Z [(const_int 0)] UNSPEC_RNDR))] “TARGET_RNG” “mrs\t%0, RNDR” [(set_attr “type” “mrs”)] )

(define_insn “aarch64_rndrrs” [(set (match_operand:DI 0 “register_operand” “=r”) (unspec_volatile:DI [(const_int 0)] UNSPEC_RNDRRS)) (set (reg:CC_Z CC_REGNUM) (unspec_volatile:CC_Z [(const_int 0)] UNSPEC_RNDRRS))] “TARGET_RNG” “mrs\t%0, RNDRRS” [(set_attr “type” “mrs”)] )

;; Memory Tagging Extension (MTE) instructions.

(define_insn “irg” [(set (match_operand:DI 0 “register_operand” “=rk”) (ior:DI (and:DI (match_operand:DI 1 “register_operand” “rk”) (const_int -1080863910568919041)) ;; 0xf0ff... (ashift:DI (unspec:QI [(match_operand:DI 2 “register_operand” “r”)] UNSPEC_GEN_TAG_RND) (const_int 56))))] “TARGET_MEMTAG” “irg\t%0, %1, %2” [(set_attr “type” “memtag”)] )

(define_insn “gmi” [(set (match_operand:DI 0 “register_operand” “=r”) (ior:DI (ashift:DI (const_int 1) (and:QI (lshiftrt:DI (match_operand:DI 1 “register_operand” “rk”) (const_int 56)) (const_int 15))) (match_operand:DI 2 “register_operand” “r”)))] “TARGET_MEMTAG” “gmi\t%0, %1, %2” [(set_attr “type” “memtag”)] )

(define_insn “addg” [(set (match_operand:DI 0 “register_operand” “=rk”) (ior:DI (and:DI (plus:DI (match_operand:DI 1 “register_operand” “rk”) (match_operand:DI 2 “aarch64_granule16_uimm6” “i”)) (const_int -1080863910568919041)) ;; 0xf0ff... (ashift:DI (unspec:QI [(and:QI (lshiftrt:DI (match_dup 1) (const_int 56)) (const_int 15)) (match_operand:QI 3 “aarch64_memtag_tag_offset” “i”)] UNSPEC_GEN_TAG) (const_int 56))))] “TARGET_MEMTAG” “addg\t%0, %1, #%2, #%3” [(set_attr “type” “memtag”)] )

(define_insn “subp” [(set (match_operand:DI 0 “register_operand” “=r”) (minus:DI (and:DI (match_operand:DI 1 “register_operand” “rk”) (const_int 72057594037927935)) ;; 0x00ff... (and:DI (match_operand:DI 2 “register_operand” “rk”) (const_int 72057594037927935))))] ;; 0x00ff... “TARGET_MEMTAG” “subp\t%0, %1, %2” [(set_attr “type” “memtag”)] )

;; LDG will use the 16-byte aligned value of the address. (define_insn “ldg” [(set (match_operand:DI 0 “register_operand” “+r”) (ior:DI (and:DI (match_dup 0) (const_int -1080863910568919041)) ;; 0xf0ff... (ashift:DI (mem:QI (unspec:DI [(and:DI (plus:DI (match_operand:DI 1 “register_operand” “rk”) (match_operand:DI 2 “aarch64_granule16_simm9” “i”)) (const_int -16))] UNSPEC_TAG_SPACE)) (const_int 56))))] “TARGET_MEMTAG” “ldg\t%0, [%1, #%2]” [(set_attr “type” “memtag”)] )

;; STG doesn't align the address but aborts with alignment fault ;; when the address is not 16-byte aligned. (define_insn “stg” [(set (mem:QI (unspec:DI [(plus:DI (match_operand:DI 1 “register_operand” “rk”) (match_operand:DI 2 “aarch64_granule16_simm9” “i”))] UNSPEC_TAG_SPACE)) (and:QI (lshiftrt:DI (match_operand:DI 0 “register_operand” “rk”) (const_int 56)) (const_int 15)))] “TARGET_MEMTAG” “stg\t%0, [%1, #%2]” [(set_attr “type” “memtag”)] )

;; AdvSIMD Stuff (include “aarch64-simd.md”)

;; Atomic Operations (include “atomics.md”)

;; ldp/stp peephole patterns (include “aarch64-ldpstp.md”)

;; SVE. (include “aarch64-sve.md”)

;; SVE2. (include “aarch64-sve2.md”)