;; ARM Cortex-A7 pipeline description ;; Copyright (C) 2012-2021 Free Software Foundation, Inc. ;; ;; Contributed by ARM Ltd. ;; Based on cortex-a5.md which was originally contributed by CodeSourcery. ;; ;; This file is part of GCC. ;; ;; GCC is free software; you can redistribute it and/or modify it ;; under the terms of the GNU General Public License as published by ;; the Free Software Foundation; either version 3, or (at your option) ;; any later version. ;; ;; GCC is distributed in the hope that it will be useful, but ;; WITHOUT ANY WARRANTY; without even the implied warranty of ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ;; General Public License for more details. ;; ;; You should have received a copy of the GNU General Public License ;; along with GCC; see the file COPYING3. If not see ;; http://www.gnu.org/licenses/.

(define_attr “cortex_a7_neon_type” “neon_mul, neon_mla, neon_other” (cond [ (eq_attr “type” “neon_mul_b, neon_mul_b_q,
neon_mul_h, neon_mul_h_q,
neon_mul_s, neon_mul_s_q,
neon_mul_b_long, neon_mul_h_long,
neon_mul_s_long, neon_mul_h_scalar,
neon_mul_h_scalar_q, neon_mul_s_scalar,
neon_mul_s_scalar_q, neon_mul_h_scalar_long,
neon_mul_s_scalar_long,
neon_sat_mul_b, neon_sat_mul_b_q,
neon_sat_mul_h, neon_sat_mul_h_q,
neon_sat_mul_s, neon_sat_mul_s_q,
neon_sat_mul_b_long, neon_sat_mul_h_long,
neon_sat_mul_s_long,
neon_sat_mul_h_scalar, neon_sat_mul_h_scalar_q,
neon_sat_mul_s_scalar, neon_sat_mul_s_scalar_q,
neon_sat_mul_h_scalar_long,
neon_sat_mul_s_scalar_long,
neon_fp_mul_s, neon_fp_mul_s_q,
neon_fp_mul_s_scalar, neon_fp_mul_s_scalar_q”) (const_string “neon_mul”) (eq_attr “type” “neon_mla_b, neon_mla_b_q, neon_mla_h,
neon_mla_h_q, neon_mla_s, neon_mla_s_q,
neon_mla_b_long, neon_mla_h_long,
neon_mla_s_long,
neon_mla_h_scalar, neon_mla_h_scalar_q,
neon_mla_s_scalar, neon_mla_s_scalar_q,
neon_mla_h_scalar_long, neon_mla_s_scalar_long,
neon_sat_mla_b_long, neon_sat_mla_h_long,
neon_sat_mla_s_long,
neon_sat_mla_h_scalar_long,
neon_sat_mla_s_scalar_long,
neon_fp_mla_s, neon_fp_mla_s_q,
neon_fp_mla_s_scalar, neon_fp_mla_s_scalar_q”) (const_string “neon_mla”)] (const_string “neon_other”)))

(define_automaton “cortex_a7”)

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; Functional units. ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; The Cortex-A7 pipeline integer and vfp pipeline.
;; The decode is the same for all instructions, so do not model it. ;; We only model the first execution stage because ;; instructions always advance one stage per cycle in order. ;; We model all of the LS, Branch, ALU, MAC and FPU pipelines together.

(define_cpu_unit “cortex_a7_ex1, cortex_a7_ex2” “cortex_a7”)

(define_reservation “cortex_a7_both” “cortex_a7_ex1+cortex_a7_ex2”)

(define_cpu_unit “cortex_a7_branch” “cortex_a7”)

;; Cortex-A7 is in order and can dual-issue under limited circumstances. ;; ex2 can be reserved only after ex1 is reserved.

(final_presence_set “cortex_a7_ex2” “cortex_a7_ex1”)

;; Pseudo-unit for blocking the multiply pipeline when a double-precision ;; multiply is in progress.

(define_cpu_unit “cortex_a7_fpmul_pipe” “cortex_a7”)

;; The floating-point add pipeline (ex1/f1 stage), used to model the usage ;; of the add pipeline by fmac instructions, etc.

(define_cpu_unit “cortex_a7_fpadd_pipe” “cortex_a7”)

;; Floating-point div/sqrt (long latency, out-of-order completion).

(define_cpu_unit “cortex_a7_fp_div_sqrt” “cortex_a7”)

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; Branches. ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; A direct branch can dual issue either as younger or older instruction, ;; but branches cannot dual issue with branches. ;; No latency as there is no result.

(define_insn_reservation “cortex_a7_branch” 0 (and (eq_attr “tune” “cortexa7”) (eq_attr “type” “branch”)) “(cortex_a7_ex2|cortex_a7_ex1)+cortex_a7_branch”)

;; Call cannot dual-issue as an older instruction. It can dual-issue ;; as a younger instruction, or single-issue. Call cannot dual-issue ;; with another branch instruction. The result is available the next ;; cycle. (define_insn_reservation “cortex_a7_call” 1 (and (eq_attr “tune” “cortexa7”) (eq_attr “type” “call”)) “(cortex_a7_ex2|cortex_a7_both)+cortex_a7_branch”)

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; ALU instructions. ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; ALU instruction with an immediate operand can dual-issue. (define_insn_reservation “cortex_a7_alu_imm” 2 (and (eq_attr “tune” “cortexa7”) (ior (eq_attr “type” “adr,alu_imm,alus_imm,logic_imm,logics_imm,
mov_imm,mvn_imm,extend”) (and (eq_attr “type” “mov_reg,mov_shift,mov_shift_reg”) (not (eq_attr “length” “8”))))) “cortex_a7_ex2|cortex_a7_ex1”)

;; ALU instruction with register operands can dual-issue ;; with a younger immediate-based instruction. (define_insn_reservation “cortex_a7_alu_sreg” 2 (and (eq_attr “tune” “cortexa7”) (eq_attr “type” “alu_sreg,alus_sreg,logic_reg,logics_reg,
adc_imm,adcs_imm,adc_reg,adcs_reg,
bfm,clz,rbit,rev,alu_dsp_reg,
shift_imm,shift_reg,mov_reg,mvn_reg”)) “cortex_a7_ex1”)

(define_insn_reservation “cortex_a7_alu_shift” 2 (and (eq_attr “tune” “cortexa7”) (eq_attr “type” “alu_shift_imm_lsl_1to4,alu_shift_imm_other,alus_shift_imm,
logic_shift_imm,logics_shift_imm,
alu_shift_reg,alus_shift_reg,
logic_shift_reg,logics_shift_reg,
mov_shift,mov_shift_reg,
mvn_shift,mvn_shift_reg,
mrs,multiple”)) “cortex_a7_ex1”)

;; Forwarding path for unshifted operands. (define_bypass 1 “cortex_a7_alu_imm,cortex_a7_alu_sreg,cortex_a7_alu_shift” “cortex_a7_alu_imm,cortex_a7_alu_sreg,cortex_a7_mul”)

(define_bypass 1 “cortex_a7_alu_imm,cortex_a7_alu_sreg,cortex_a7_alu_shift” “cortex_a7_store*” “arm_no_early_store_addr_dep”)

(define_bypass 1 “cortex_a7_alu_imm,cortex_a7_alu_sreg,cortex_a7_alu_shift” “cortex_a7_alu_shift” “arm_no_early_alu_shift_dep”)

;; The multiplier pipeline can forward results from wr stage only so ;; there's no need to specify bypasses. ;; Multiply instructions cannot dual-issue.

(define_insn_reservation “cortex_a7_mul” 2 (and (eq_attr “tune” “cortexa7”) (ior (eq_attr “mul32” “yes”) (eq_attr “widen_mul64” “yes”))) “cortex_a7_both”)

;; Forward the result of a multiply operation to the accumulator ;; of the following multiply and accumulate instruction. (define_bypass 1 “cortex_a7_mul” “cortex_a7_mul” “arm_mac_accumulator_is_result”)

;; The latency depends on the operands, so we use an estimate here. (define_insn_reservation “cortex_a7_idiv” 5 (and (eq_attr “tune” “cortexa7”) (eq_attr “type” “udiv,sdiv”)) “cortex_a7_both*5”)

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; Load/store instructions. ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; Address-generation happens in the issue stage. ;; Double-word accesses can be issued in a single cycle, ;; and occupy only one pipeline stage.

(define_insn_reservation “cortex_a7_load1” 2 (and (eq_attr “tune” “cortexa7”) (eq_attr “type” “load_byte,load_4”)) “cortex_a7_ex1”)

(define_insn_reservation “cortex_a7_store1” 0 (and (eq_attr “tune” “cortexa7”) (eq_attr “type” “store_4”)) “cortex_a7_ex1”)

(define_insn_reservation “cortex_a7_load2” 2 (and (eq_attr “tune” “cortexa7”) (eq_attr “type” “load_8”)) “cortex_a7_both”)

(define_insn_reservation “cortex_a7_store2” 0 (and (eq_attr “tune” “cortexa7”) (eq_attr “type” “store_8”)) “cortex_a7_both”)

(define_insn_reservation “cortex_a7_load3” 3 (and (eq_attr “tune” “cortexa7”) (eq_attr “type” “load_12”)) “cortex_a7_both, cortex_a7_ex1”)

(define_insn_reservation “cortex_a7_store3” 0 (and (eq_attr “tune” “cortexa7”) (eq_attr “type” “store_16”)) “cortex_a7_both, cortex_a7_ex1”)

(define_insn_reservation “cortex_a7_load4” 3 (and (eq_attr “tune” “cortexa7”) (eq_attr “type” “load_16”)) “cortex_a7_both, cortex_a7_both”)

(define_insn_reservation “cortex_a7_store4” 0 (and (eq_attr “tune” “cortexa7”) (eq_attr “type” “store_12”)) “cortex_a7_both, cortex_a7_both”)

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; Floating-point arithmetic. ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; Neon integer, neon floating point, and single-precision floating ;; point instructions of the same type have the same timing ;; characteristics, but neon instructions cannot dual-issue.

(define_insn_reservation “cortex_a7_fpalu” 4 (and (eq_attr “tune” “cortexa7”) (eq_attr “type” “ffariths, fadds, ffarithd, faddd, fmov,
f_cvt, f_cvtf2i, f_cvti2f, fcmps, fcmpd”)) “cortex_a7_ex1+cortex_a7_fpadd_pipe”)

;; For fconsts and fconstd, 8-bit immediate data is passed directly from ;; f1 to f3 (which I think reduces the latency by one cycle).

(define_insn_reservation “cortex_a7_fconst” 3 (and (eq_attr “tune” “cortexa7”) (eq_attr “type” “fconsts,fconstd”)) “cortex_a7_ex1+cortex_a7_fpadd_pipe”)

;; We should try not to attempt to issue a single-precision multiplication in ;; the middle of a double-precision multiplication operation (the usage of ;; cortex_a7_fpmul_pipe).

(define_insn_reservation “cortex_a7_fpmuls” 4 (and (eq_attr “tune” “cortexa7”) (eq_attr “type” “fmuls”)) “cortex_a7_ex1+cortex_a7_fpmul_pipe”)

(define_insn_reservation “cortex_a7_neon_mul” 4 (and (eq_attr “tune” “cortexa7”) (eq_attr “cortex_a7_neon_type” “neon_mul”)) “(cortex_a7_both+cortex_a7_fpmul_pipe)*2”)

(define_insn_reservation “cortex_a7_fpmacs” 8 (and (eq_attr “tune” “cortexa7”) (eq_attr “type” “fmacs,ffmas”)) “cortex_a7_ex1+cortex_a7_fpmul_pipe”)

(define_insn_reservation “cortex_a7_neon_mla” 8 (and (eq_attr “tune” “cortexa7”) (eq_attr “cortex_a7_neon_type” “neon_mla”)) “cortex_a7_both+cortex_a7_fpmul_pipe”)

(define_bypass 4 “cortex_a7_fpmacs,cortex_a7_neon_mla” “cortex_a7_fpmacs,cortex_a7_neon_mla” “arm_mac_accumulator_is_result”)

;; Non-multiply instructions can issue between two cycles of a ;; double-precision multiply.

(define_insn_reservation “cortex_a7_fpmuld” 7 (and (eq_attr “tune” “cortexa7”) (eq_attr “type” “fmuld”)) “cortex_a7_ex1+cortex_a7_fpmul_pipe, cortex_a7_fpmul_pipe*3”)

(define_insn_reservation “cortex_a7_fpmacd” 11 (and (eq_attr “tune” “cortexa7”) (eq_attr “type” “fmacd”)) “cortex_a7_ex1+cortex_a7_fpmul_pipe, cortex_a7_fpmul_pipe*3”)

(define_insn_reservation “cortex_a7_fpfmad” 8 (and (eq_attr “tune” “cortexa7”) (eq_attr “type” “ffmad”)) “cortex_a7_ex1+cortex_a7_fpmul_pipe, cortex_a7_fpmul_pipe*4”)

(define_bypass 7 “cortex_a7_fpmacd” “cortex_a7_fpmacd,cortex_a7_fpfmad” “arm_mac_accumulator_is_result”)

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; Floating-point divide/square root instructions. ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(define_insn_reservation “cortex_a7_fdivs” 16 (and (eq_attr “tune” “cortexa7”) (eq_attr “type” “fdivs, fsqrts”)) “cortex_a7_ex1+cortex_a7_fp_div_sqrt, cortex_a7_fp_div_sqrt * 13”)

(define_insn_reservation “cortex_a7_fdivd” 31 (and (eq_attr “tune” “cortexa7”) (eq_attr “type” “fdivd, fsqrtd”)) “cortex_a7_ex1+cortex_a7_fp_div_sqrt, cortex_a7_fp_div_sqrt * 28”)

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; VFP to/from core transfers. ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; Core-to-VFP transfers.

(define_insn_reservation “cortex_a7_r2f” 4 (and (eq_attr “tune” “cortexa7”) (eq_attr “type” “f_mcr,f_mcrr”)) “cortex_a7_both”)

(define_insn_reservation “cortex_a7_f2r” 2 (and (eq_attr “tune” “cortexa7”) (eq_attr “type” “f_mrc,f_mrrc”)) “cortex_a7_ex1”)

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; VFP flag transfer. ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; Fuxne: The flag forwarding from fmstat to the second instruction is ;; not modeled at present.

(define_insn_reservation “cortex_a7_f_flags” 4 (and (eq_attr “tune” “cortexa7”) (eq_attr “type” “f_flag”)) “cortex_a7_ex1”)

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; VFP load/store. ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(define_insn_reservation “cortex_a7_f_loads” 4 (and (eq_attr “tune” “cortexa7”) (eq_attr “type” “f_loads”)) “cortex_a7_ex1”)

(define_insn_reservation “cortex_a7_f_loadd” 4 (and (eq_attr “tune” “cortexa7”) (eq_attr “type” “f_loadd”)) “cortex_a7_both”)

(define_insn_reservation “cortex_a7_f_stores” 0 (and (eq_attr “tune” “cortexa7”) (eq_attr “type” “f_stores”)) “cortex_a7_ex1”)

(define_insn_reservation “cortex_a7_f_stored” 0 (and (eq_attr “tune” “cortexa7”) (eq_attr “type” “f_stored”)) “cortex_a7_both”)

;; Load-to-use for floating-point values has a penalty of one cycle, ;; i.e. a latency of two.

(define_bypass 2 “cortex_a7_f_loads, cortex_a7_f_loadd” “cortex_a7_fpalu,
cortex_a7_fpmuls,cortex_a7_fpmacs,
cortex_a7_fpmuld,cortex_a7_fpmacd, cortex_a7_fpfmad,
cortex_a7_fdivs, cortex_a7_fdivd,
cortex_a7_f2r”)

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; NEON ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; Simple modeling for all neon instructions not covered earlier.

(define_insn_reservation “cortex_a7_neon” 4 (and (eq_attr “tune” “cortexa7”) (and (eq_attr “is_neon_type” “yes”) (eq_attr “cortex_a7_neon_type” “neon_other”))) “cortex_a7_both*2”)