;; Faraday FA526 Pipeline Description ;; Copyright (C) 2010-2021 Free Software Foundation, Inc. ;; Written by I-Jui Sung, based on ARM926EJ-S Pipeline Description.

;; This file is part of GCC. ;; ;; GCC is free software; you can redistribute it and/or modify it under ;; the terms of the GNU General Public License as published by the Free ;; Software Foundation; either version 3, or (at your option) any later ;; version. ;; ;; GCC is distributed in the hope that it will be useful, but WITHOUT ANY ;; WARRANTY; without even the implied warranty of MERCHANTABILITY or ;; FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License ;; for more details. ;; ;; You should have received a copy of the GNU General Public License ;; along with GCC; see the file COPYING3. If not see ;; http://www.gnu.org/licenses/. */

;; These descriptions are based on the information contained in the ;; FA526 Core Design Note, Copyright (c) 2010 Faraday Technology Corp. ;; ;; Modeled pipeline characteristics: ;; LD -> any use: latency = 3 (2 cycle penalty). ;; ALU -> any use: latency = 2 (1 cycle penalty).

;; This automaton provides a pipeline description for the Faraday ;; FA526 core. ;; ;; The model given here assumes that the condition for all conditional ;; instructions is “true”, i.e., that all of the instructions are ;; actually executed.

(define_automaton “fa526”)

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; Pipelines ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; There is a single pipeline ;; ;; The ALU pipeline has fetch, decode, execute, memory, and ;; write stages. We only need to model the execute, memory and write ;; stages.

;; S E M W

(define_cpu_unit “fa526_core” “fa526”)

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; ALU Instructions ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; ALU instructions require two cycles to execute, and use the ALU ;; pipeline in each of the three stages. The results are available ;; after the execute stage has finished. ;; ;; If the destination register is the PC, the pipelines are stalled ;; for several cycles. That case is not modeled here.

;; ALU operations (define_insn_reservation “526_alu_op” 1 (and (eq_attr “tune” “fa526”) (eq_attr “type” “alu_imm,alus_imm,logic_imm,logics_imm,
alu_sreg,alus_sreg,logic_reg,logics_reg,
adc_imm,adcs_imm,adc_reg,adcs_reg,
adr,bfm,rev,
shift_imm,shift_reg,
mov_imm,mov_reg,mvn_imm,mvn_reg,
mrs,multiple”)) “fa526_core”)

(define_insn_reservation “526_alu_shift_op” 2 (and (eq_attr “tune” “fa526”) (eq_attr “type” “extend,
alu_shift_imm_lsl_1to4,alu_shift_imm_other,alus_shift_imm,
logic_shift_imm,logics_shift_imm,
alu_shift_reg,alus_shift_reg,
logic_shift_reg,logics_shift_reg,
mov_shift,mov_shift_reg,
mvn_shift,mvn_shift_reg”)) “fa526_core”)

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; Multiplication Instructions ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(define_insn_reservation “526_mult1” 2 (and (eq_attr “tune” “fa526”) (eq_attr “type” “smlalxy,smulxy,smlaxy,smlalxy”)) “fa526_core”)

(define_insn_reservation “526_mult2” 5 (and (eq_attr “tune” “fa526”) (eq_attr “type” “mul,mla,muls,mlas,umull,umlal,smull,smlal,umulls,
umlals,smulls,smlals,smlawx”)) “fa526_core*4”)

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; Load/Store Instructions ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; The models for load/store instructions do not accurately describe ;; the difference between operations with a base register writeback ;; (such as “ldm!”). These models assume that all memory references ;; hit in dcache.

(define_insn_reservation “526_load1_op” 3 (and (eq_attr “tune” “fa526”) (eq_attr “type” “load_4,load_byte”)) “fa526_core”)

(define_insn_reservation “526_load2_op” 4 (and (eq_attr “tune” “fa526”) (eq_attr “type” “load_8”)) “fa526_core*2”)

(define_insn_reservation “526_load3_op” 5 (and (eq_attr “tune” “fa526”) (eq_attr “type” “load_12”)) “fa526_core*3”)

(define_insn_reservation “526_load4_op” 6 (and (eq_attr “tune” “fa526”) (eq_attr “type” “load_16”)) “fa526_core*4”)

(define_insn_reservation “526_store1_op” 0 (and (eq_attr “tune” “fa526”) (eq_attr “type” “store_4”)) “fa526_core”)

(define_insn_reservation “526_store2_op” 1 (and (eq_attr “tune” “fa526”) (eq_attr “type” “store_8”)) “fa526_core*2”)

(define_insn_reservation “526_store3_op” 2 (and (eq_attr “tune” “fa526”) (eq_attr “type” “store_12”)) “fa526_core*3”)

(define_insn_reservation “526_store4_op” 3 (and (eq_attr “tune” “fa526”) (eq_attr “type” “store_16”)) “fa526_core*4”)

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; Branch and Call Instructions ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; Branch instructions are difficult to model accurately. The FA526 ;; core can predict most branches. If the branch is predicted ;; correctly, and predicted early enough, the branch can be completely ;; eliminated from the instruction stream. Some branches can ;; therefore appear to require zero cycle to execute. We assume that ;; all branches are predicted correctly, and that the latency is ;; therefore the minimum value.

(define_insn_reservation “526_branch_op” 0 (and (eq_attr “tune” “fa526”) (eq_attr “type” “branch”)) “fa526_core”)

;; The latency for a call is actually the latency when the result is available. ;; i.e. R0 ready for int return value. For most cases, the return value is set ;; by a mov instruction, which has 1 cycle latency. (define_insn_reservation “526_call_op” 1 (and (eq_attr “tune” “fa526”) (eq_attr “type” “call”)) “fa526_core”)