| ------------------------------------------------------------------------------ |
| -- -- |
| -- GNU ADA RUN-TIME LIBRARY (GNARL) COMPONENTS -- |
| -- -- |
| -- S Y S T E M . T A S K _ P R I M I T I V E S . O P E R A T I O N S -- |
| -- -- |
| -- B o d y -- |
| -- -- |
| -- Copyright (C) 1992-2022, Free Software Foundation, Inc. -- |
| -- -- |
| -- GNARL is free software; you can redistribute it and/or modify it under -- |
| -- terms of the GNU General Public License as published by the Free Soft- -- |
| -- ware Foundation; either version 3, or (at your option) any later ver- -- |
| -- sion. GNAT is distributed in the hope that it will be useful, but WITH- -- |
| -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY -- |
| -- or FITNESS FOR A PARTICULAR PURPOSE. -- |
| -- -- |
| -- As a special exception under Section 7 of GPL version 3, you are granted -- |
| -- additional permissions described in the GCC Runtime Library Exception, -- |
| -- version 3.1, as published by the Free Software Foundation. -- |
| -- -- |
| -- You should have received a copy of the GNU General Public License and -- |
| -- a copy of the GCC Runtime Library Exception along with this program; -- |
| -- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see -- |
| -- <http://www.gnu.org/licenses/>. -- |
| -- -- |
| -- GNARL was developed by the GNARL team at Florida State University. -- |
| -- Extensive contributions were provided by Ada Core Technologies, Inc. -- |
| -- -- |
| ------------------------------------------------------------------------------ |
| |
| -- This is a GNU/Linux (GNU/LinuxThreads) version of this package |
| |
| -- This package contains all the GNULL primitives that interface directly with |
| -- the underlying OS. |
| |
| with Interfaces.C; use Interfaces; use type Interfaces.C.int; |
| |
| with System.Task_Info; |
| with System.Tasking.Debug; |
| with System.Interrupt_Management; |
| with System.OS_Constants; |
| with System.OS_Primitives; |
| with System.Multiprocessors; |
| |
| with System.Soft_Links; |
| -- We use System.Soft_Links instead of System.Tasking.Initialization |
| -- because the later is a higher level package that we shouldn't depend on. |
| -- For example when using the restricted run time, it is replaced by |
| -- System.Tasking.Restricted.Stages. |
| |
| package body System.Task_Primitives.Operations is |
| |
| package OSC renames System.OS_Constants; |
| package SSL renames System.Soft_Links; |
| |
| use System.Tasking.Debug; |
| use System.Tasking; |
| use System.OS_Interface; |
| use System.Parameters; |
| use System.OS_Primitives; |
| use System.Task_Info; |
| |
| ---------------- |
| -- Local Data -- |
| ---------------- |
| |
| -- The followings are logically constants, but need to be initialized |
| -- at run time. |
| |
| Single_RTS_Lock : aliased RTS_Lock; |
| -- This is a lock to allow only one thread of control in the RTS at |
| -- a time; it is used to execute in mutual exclusion from all other tasks. |
| -- Used to protect All_Tasks_List |
| |
| Environment_Task_Id : Task_Id; |
| -- A variable to hold Task_Id for the environment task |
| |
| Unblocked_Signal_Mask : aliased sigset_t; |
| -- The set of signals that should be unblocked in all tasks |
| |
| -- The followings are internal configuration constants needed |
| |
| Next_Serial_Number : Task_Serial_Number := 100; |
| -- We start at 100 (reserve some special values for using in error checks) |
| |
| Time_Slice_Val : constant Integer; |
| pragma Import (C, Time_Slice_Val, "__gl_time_slice_val"); |
| |
| Dispatching_Policy : constant Character; |
| pragma Import (C, Dispatching_Policy, "__gl_task_dispatching_policy"); |
| |
| Locking_Policy : constant Character; |
| pragma Import (C, Locking_Policy, "__gl_locking_policy"); |
| |
| Foreign_Task_Elaborated : aliased Boolean := True; |
| -- Used to identified fake tasks (i.e., non-Ada Threads) |
| |
| Use_Alternate_Stack : Boolean := Alternate_Stack_Size /= 0; |
| -- Whether to use an alternate signal stack for stack overflows |
| |
| Abort_Handler_Installed : Boolean := False; |
| -- True if a handler for the abort signal is installed |
| |
| Null_Thread_Id : constant pthread_t := pthread_t'Last; |
| -- Constant to indicate that the thread identifier has not yet been |
| -- initialized. |
| |
| -------------------- |
| -- Local Packages -- |
| -------------------- |
| |
| package Specific is |
| |
| procedure Initialize (Environment_Task : Task_Id); |
| pragma Inline (Initialize); |
| -- Initialize various data needed by this package |
| |
| function Is_Valid_Task return Boolean; |
| pragma Inline (Is_Valid_Task); |
| -- Does executing thread have a TCB? |
| |
| procedure Set (Self_Id : Task_Id); |
| pragma Inline (Set); |
| -- Set the self id for the current task |
| |
| function Self return Task_Id; |
| pragma Inline (Self); |
| -- Return a pointer to the Ada Task Control Block of the calling task |
| |
| end Specific; |
| |
| package body Specific is separate; |
| -- The body of this package is target specific |
| |
| package Monotonic is |
| |
| function Monotonic_Clock return Duration; |
| pragma Inline (Monotonic_Clock); |
| -- Returns an absolute time, represented as an offset relative to some |
| -- unspecified starting point, typically system boot time. This clock is |
| -- not affected by discontinuous jumps in the system time. |
| |
| function RT_Resolution return Duration; |
| pragma Inline (RT_Resolution); |
| -- Returns resolution of the underlying clock used to implement RT_Clock |
| |
| procedure Timed_Sleep |
| (Self_ID : ST.Task_Id; |
| Time : Duration; |
| Mode : ST.Delay_Modes; |
| Reason : System.Tasking.Task_States; |
| Timedout : out Boolean; |
| Yielded : out Boolean); |
| -- Combination of Sleep (above) and Timed_Delay |
| |
| procedure Timed_Delay |
| (Self_ID : ST.Task_Id; |
| Time : Duration; |
| Mode : ST.Delay_Modes); |
| -- Implement the semantics of the delay statement. |
| -- The caller should be abort-deferred and should not hold any locks. |
| |
| end Monotonic; |
| |
| package body Monotonic is separate; |
| |
| ---------------------------------- |
| -- ATCB allocation/deallocation -- |
| ---------------------------------- |
| |
| package body ATCB_Allocation is separate; |
| -- The body of this package is shared across several targets |
| |
| --------------------------------- |
| -- Support for foreign threads -- |
| --------------------------------- |
| |
| function Register_Foreign_Thread |
| (Thread : Thread_Id; |
| Sec_Stack_Size : Size_Type := Unspecified_Size) return Task_Id; |
| -- Allocate and initialize a new ATCB for the current Thread. The size of |
| -- the secondary stack can be optionally specified. |
| |
| function Register_Foreign_Thread |
| (Thread : Thread_Id; |
| Sec_Stack_Size : Size_Type := Unspecified_Size) |
| return Task_Id is separate; |
| |
| ----------------------- |
| -- Local Subprograms -- |
| ----------------------- |
| |
| procedure Abort_Handler (signo : Signal); |
| |
| function GNAT_pthread_condattr_setup |
| (attr : access pthread_condattr_t) return C.int; |
| pragma Import |
| (C, GNAT_pthread_condattr_setup, "__gnat_pthread_condattr_setup"); |
| |
| function GNAT_has_cap_sys_nice return C.int; |
| pragma Import |
| (C, GNAT_has_cap_sys_nice, "__gnat_has_cap_sys_nice"); |
| -- We do not have pragma Linker_Options ("-lcap"); here, because this |
| -- library is not present on many Linux systems. 'libcap' is the Linux |
| -- "capabilities" library, called by __gnat_has_cap_sys_nice. |
| |
| function Prio_To_Linux_Prio (Prio : Any_Priority) return C.int is |
| (C.int (Prio) + 1); |
| -- Convert Ada priority to Linux priority. Priorities are 1 .. 99 on |
| -- GNU/Linux, so we map 0 .. 98 to 1 .. 99. |
| |
| function Get_Ceiling_Support return Boolean; |
| -- Get the value of the Ceiling_Support constant (see below). |
| -- Note well: If this function or related code is modified, it should be |
| -- tested by hand, because automated testing doesn't exercise it. |
| |
| ------------------------- |
| -- Get_Ceiling_Support -- |
| ------------------------- |
| |
| function Get_Ceiling_Support return Boolean is |
| Ceiling_Support : Boolean := False; |
| begin |
| if Locking_Policy /= 'C' then |
| return False; |
| end if; |
| |
| declare |
| function geteuid return Integer; |
| pragma Import (C, geteuid, "geteuid"); |
| Superuser : constant Boolean := geteuid = 0; |
| Has_Cap : constant C.int := GNAT_has_cap_sys_nice; |
| pragma Assert (Has_Cap in 0 | 1); |
| begin |
| Ceiling_Support := Superuser or else Has_Cap = 1; |
| end; |
| |
| return Ceiling_Support; |
| end Get_Ceiling_Support; |
| |
| pragma Warnings (Off, "non-preelaborable call not allowed*"); |
| Ceiling_Support : constant Boolean := Get_Ceiling_Support; |
| pragma Warnings (On, "non-preelaborable call not allowed*"); |
| -- True if the locking policy is Ceiling_Locking, and the current process |
| -- has permission to use this policy. The process has permission if it is |
| -- running as 'root', or if the capability was set by the setcap command, |
| -- as in "sudo /sbin/setcap cap_sys_nice=ep exe_file". If it doesn't have |
| -- permission, then a request for Ceiling_Locking is ignored. |
| |
| type RTS_Lock_Ptr is not null access all RTS_Lock; |
| |
| function Init_Mutex (L : RTS_Lock_Ptr; Prio : Any_Priority) return C.int; |
| -- Initialize the mutex L. If Ceiling_Support is True, then set the ceiling |
| -- to Prio. Returns 0 for success, or ENOMEM for out-of-memory. |
| |
| ------------------- |
| -- Abort_Handler -- |
| ------------------- |
| |
| procedure Abort_Handler (signo : Signal) is |
| pragma Unreferenced (signo); |
| |
| Self_Id : constant Task_Id := Self; |
| Result : C.int; |
| Old_Set : aliased sigset_t; |
| |
| begin |
| -- It's not safe to raise an exception when using GCC ZCX mechanism. |
| -- Note that we still need to install a signal handler, since in some |
| -- cases (e.g. shutdown of the Server_Task in System.Interrupts) we |
| -- need to send the Abort signal to a task. |
| |
| if ZCX_By_Default then |
| return; |
| end if; |
| |
| if Self_Id.Deferral_Level = 0 |
| and then Self_Id.Pending_ATC_Level < Self_Id.ATC_Nesting_Level |
| and then not Self_Id.Aborting |
| then |
| Self_Id.Aborting := True; |
| |
| -- Make sure signals used for RTS internal purpose are unmasked |
| |
| Result := |
| pthread_sigmask |
| (SIG_UNBLOCK, |
| Unblocked_Signal_Mask'Access, |
| Old_Set'Access); |
| pragma Assert (Result = 0); |
| |
| raise Standard'Abort_Signal; |
| end if; |
| end Abort_Handler; |
| |
| -------------- |
| -- Lock_RTS -- |
| -------------- |
| |
| procedure Lock_RTS is |
| begin |
| Write_Lock (Single_RTS_Lock'Access); |
| end Lock_RTS; |
| |
| ---------------- |
| -- Unlock_RTS -- |
| ---------------- |
| |
| procedure Unlock_RTS is |
| begin |
| Unlock (Single_RTS_Lock'Access); |
| end Unlock_RTS; |
| |
| ----------------- |
| -- Stack_Guard -- |
| ----------------- |
| |
| -- The underlying thread system extends the memory (up to 2MB) when needed |
| |
| procedure Stack_Guard (T : ST.Task_Id; On : Boolean) is |
| pragma Unreferenced (T); |
| pragma Unreferenced (On); |
| begin |
| null; |
| end Stack_Guard; |
| |
| -------------------- |
| -- Get_Thread_Id -- |
| -------------------- |
| |
| function Get_Thread_Id (T : ST.Task_Id) return OSI.Thread_Id is |
| begin |
| return T.Common.LL.Thread; |
| end Get_Thread_Id; |
| |
| ---------- |
| -- Self -- |
| ---------- |
| |
| function Self return Task_Id renames Specific.Self; |
| |
| ---------------- |
| -- Init_Mutex -- |
| ---------------- |
| |
| function Init_Mutex (L : RTS_Lock_Ptr; Prio : Any_Priority) return C.int is |
| Mutex_Attr : aliased pthread_mutexattr_t; |
| Result, Result_2 : C.int; |
| |
| begin |
| Result := pthread_mutexattr_init (Mutex_Attr'Access); |
| pragma Assert (Result in 0 | ENOMEM); |
| |
| if Result = ENOMEM then |
| return Result; |
| end if; |
| |
| if Ceiling_Support then |
| Result := pthread_mutexattr_setprotocol |
| (Mutex_Attr'Access, PTHREAD_PRIO_PROTECT); |
| pragma Assert (Result = 0); |
| |
| Result := pthread_mutexattr_setprioceiling |
| (Mutex_Attr'Access, Prio_To_Linux_Prio (Prio)); |
| pragma Assert (Result = 0); |
| |
| elsif Locking_Policy = 'I' then |
| Result := pthread_mutexattr_setprotocol |
| (Mutex_Attr'Access, PTHREAD_PRIO_INHERIT); |
| pragma Assert (Result = 0); |
| end if; |
| |
| Result := pthread_mutex_init (L, Mutex_Attr'Access); |
| pragma Assert (Result in 0 | ENOMEM); |
| |
| Result_2 := pthread_mutexattr_destroy (Mutex_Attr'Access); |
| pragma Assert (Result_2 = 0); |
| return Result; -- of pthread_mutex_init, not pthread_mutexattr_destroy |
| end Init_Mutex; |
| |
| --------------------- |
| -- Initialize_Lock -- |
| --------------------- |
| |
| -- Note: mutexes and cond_variables needed per-task basis are initialized |
| -- in Initialize_TCB and the Storage_Error is handled. Other mutexes (such |
| -- as RTS_Lock, Memory_Lock...) used in RTS is initialized before any |
| -- status change of RTS. Therefore raising Storage_Error in the following |
| -- routines should be able to be handled safely. |
| |
| procedure Initialize_Lock |
| (Prio : Any_Priority; |
| L : not null access Lock) |
| is |
| begin |
| if Locking_Policy = 'R' then |
| declare |
| RWlock_Attr : aliased pthread_rwlockattr_t; |
| Result : C.int; |
| |
| begin |
| -- Set the rwlock to prefer writer to avoid writers starvation |
| |
| Result := pthread_rwlockattr_init (RWlock_Attr'Access); |
| pragma Assert (Result = 0); |
| |
| Result := pthread_rwlockattr_setkind_np |
| (RWlock_Attr'Access, |
| PTHREAD_RWLOCK_PREFER_WRITER_NONRECURSIVE_NP); |
| pragma Assert (Result = 0); |
| |
| Result := pthread_rwlock_init (L.RW'Access, RWlock_Attr'Access); |
| |
| pragma Assert (Result in 0 | ENOMEM); |
| |
| if Result = ENOMEM then |
| raise Storage_Error with "Failed to allocate a lock"; |
| end if; |
| end; |
| |
| else |
| if Init_Mutex (L.WO'Access, Prio) = ENOMEM then |
| raise Storage_Error with "Failed to allocate a lock"; |
| end if; |
| end if; |
| end Initialize_Lock; |
| |
| procedure Initialize_Lock |
| (L : not null access RTS_Lock; Level : Lock_Level) |
| is |
| pragma Unreferenced (Level); |
| begin |
| if Init_Mutex (L.all'Access, Any_Priority'Last) = ENOMEM then |
| raise Storage_Error with "Failed to allocate a lock"; |
| end if; |
| end Initialize_Lock; |
| |
| ------------------- |
| -- Finalize_Lock -- |
| ------------------- |
| |
| procedure Finalize_Lock (L : not null access Lock) is |
| Result : C.int; |
| begin |
| if Locking_Policy = 'R' then |
| Result := pthread_rwlock_destroy (L.RW'Access); |
| else |
| Result := pthread_mutex_destroy (L.WO'Access); |
| end if; |
| pragma Assert (Result = 0); |
| end Finalize_Lock; |
| |
| procedure Finalize_Lock (L : not null access RTS_Lock) is |
| Result : C.int; |
| begin |
| Result := pthread_mutex_destroy (L); |
| pragma Assert (Result = 0); |
| end Finalize_Lock; |
| |
| ---------------- |
| -- Write_Lock -- |
| ---------------- |
| |
| procedure Write_Lock |
| (L : not null access Lock; |
| Ceiling_Violation : out Boolean) |
| is |
| Result : C.int; |
| begin |
| if Locking_Policy = 'R' then |
| Result := pthread_rwlock_wrlock (L.RW'Access); |
| else |
| Result := pthread_mutex_lock (L.WO'Access); |
| end if; |
| |
| -- The cause of EINVAL is a priority ceiling violation |
| |
| pragma Assert (Result in 0 | EINVAL); |
| Ceiling_Violation := Result = EINVAL; |
| end Write_Lock; |
| |
| procedure Write_Lock (L : not null access RTS_Lock) is |
| Result : C.int; |
| begin |
| Result := pthread_mutex_lock (L); |
| pragma Assert (Result = 0); |
| end Write_Lock; |
| |
| procedure Write_Lock (T : Task_Id) is |
| Result : C.int; |
| begin |
| Result := pthread_mutex_lock (T.Common.LL.L'Access); |
| pragma Assert (Result = 0); |
| end Write_Lock; |
| |
| --------------- |
| -- Read_Lock -- |
| --------------- |
| |
| procedure Read_Lock |
| (L : not null access Lock; |
| Ceiling_Violation : out Boolean) |
| is |
| Result : C.int; |
| begin |
| if Locking_Policy = 'R' then |
| Result := pthread_rwlock_rdlock (L.RW'Access); |
| else |
| Result := pthread_mutex_lock (L.WO'Access); |
| end if; |
| |
| -- The cause of EINVAL is a priority ceiling violation |
| |
| pragma Assert (Result in 0 | EINVAL); |
| Ceiling_Violation := Result = EINVAL; |
| end Read_Lock; |
| |
| ------------ |
| -- Unlock -- |
| ------------ |
| |
| procedure Unlock (L : not null access Lock) is |
| Result : C.int; |
| begin |
| if Locking_Policy = 'R' then |
| Result := pthread_rwlock_unlock (L.RW'Access); |
| else |
| Result := pthread_mutex_unlock (L.WO'Access); |
| end if; |
| pragma Assert (Result = 0); |
| end Unlock; |
| |
| procedure Unlock (L : not null access RTS_Lock) is |
| Result : C.int; |
| begin |
| Result := pthread_mutex_unlock (L); |
| pragma Assert (Result = 0); |
| end Unlock; |
| |
| procedure Unlock (T : Task_Id) is |
| Result : C.int; |
| begin |
| Result := pthread_mutex_unlock (T.Common.LL.L'Access); |
| pragma Assert (Result = 0); |
| end Unlock; |
| |
| ----------------- |
| -- Set_Ceiling -- |
| ----------------- |
| |
| -- Dynamic priority ceilings are not supported by the underlying system |
| |
| procedure Set_Ceiling |
| (L : not null access Lock; |
| Prio : Any_Priority) |
| is |
| pragma Unreferenced (L, Prio); |
| begin |
| null; |
| end Set_Ceiling; |
| |
| ----------- |
| -- Sleep -- |
| ----------- |
| |
| procedure Sleep |
| (Self_ID : Task_Id; |
| Reason : System.Tasking.Task_States) |
| is |
| pragma Unreferenced (Reason); |
| |
| Result : C.int; |
| |
| begin |
| pragma Assert (Self_ID = Self); |
| |
| Result := |
| pthread_cond_wait |
| (cond => Self_ID.Common.LL.CV'Access, |
| mutex => Self_ID.Common.LL.L'Access); |
| |
| -- EINTR is not considered a failure |
| |
| pragma Assert (Result in 0 | EINTR); |
| end Sleep; |
| |
| ----------------- |
| -- Timed_Sleep -- |
| ----------------- |
| |
| -- This is for use within the run-time system, so abort is |
| -- assumed to be already deferred, and the caller should be |
| -- holding its own ATCB lock. |
| |
| procedure Timed_Sleep |
| (Self_ID : Task_Id; |
| Time : Duration; |
| Mode : ST.Delay_Modes; |
| Reason : System.Tasking.Task_States; |
| Timedout : out Boolean; |
| Yielded : out Boolean) renames Monotonic.Timed_Sleep; |
| |
| ----------------- |
| -- Timed_Delay -- |
| ----------------- |
| |
| -- This is for use in implementing delay statements, so we assume the |
| -- caller is abort-deferred but is holding no locks. |
| |
| procedure Timed_Delay |
| (Self_ID : Task_Id; |
| Time : Duration; |
| Mode : ST.Delay_Modes) renames Monotonic.Timed_Delay; |
| |
| --------------------- |
| -- Monotonic_Clock -- |
| --------------------- |
| |
| function Monotonic_Clock return Duration renames Monotonic.Monotonic_Clock; |
| |
| ------------------- |
| -- RT_Resolution -- |
| ------------------- |
| |
| function RT_Resolution return Duration renames Monotonic.RT_Resolution; |
| |
| ------------ |
| -- Wakeup -- |
| ------------ |
| |
| procedure Wakeup (T : Task_Id; Reason : System.Tasking.Task_States) is |
| pragma Unreferenced (Reason); |
| Result : C.int; |
| begin |
| Result := pthread_cond_signal (T.Common.LL.CV'Access); |
| pragma Assert (Result = 0); |
| end Wakeup; |
| |
| ----------- |
| -- Yield -- |
| ----------- |
| |
| procedure Yield (Do_Yield : Boolean := True) is |
| Result : C.int; |
| pragma Unreferenced (Result); |
| begin |
| if Do_Yield then |
| Result := sched_yield; |
| end if; |
| end Yield; |
| |
| ------------------ |
| -- Set_Priority -- |
| ------------------ |
| |
| procedure Set_Priority |
| (T : Task_Id; |
| Prio : Any_Priority; |
| Loss_Of_Inheritance : Boolean := False) |
| is |
| pragma Unreferenced (Loss_Of_Inheritance); |
| |
| Result : C.int; |
| Param : aliased struct_sched_param; |
| |
| function Get_Policy (Prio : Any_Priority) return Character; |
| pragma Import (C, Get_Policy, "__gnat_get_specific_dispatching"); |
| -- Get priority specific dispatching policy |
| |
| Priority_Specific_Policy : constant Character := Get_Policy (Prio); |
| -- Upper case first character of the policy name corresponding to the |
| -- task as set by a Priority_Specific_Dispatching pragma. |
| |
| begin |
| T.Common.Current_Priority := Prio; |
| |
| Param.sched_priority := Prio_To_Linux_Prio (Prio); |
| |
| if Dispatching_Policy = 'R' |
| or else Priority_Specific_Policy = 'R' |
| or else Time_Slice_Val > 0 |
| then |
| Result := |
| pthread_setschedparam |
| (T.Common.LL.Thread, SCHED_RR, Param'Access); |
| |
| elsif Dispatching_Policy = 'F' |
| or else Priority_Specific_Policy = 'F' |
| or else Time_Slice_Val = 0 |
| then |
| Result := |
| pthread_setschedparam |
| (T.Common.LL.Thread, SCHED_FIFO, Param'Access); |
| |
| else |
| Param.sched_priority := 0; |
| Result := |
| pthread_setschedparam |
| (T.Common.LL.Thread, |
| SCHED_OTHER, Param'Access); |
| end if; |
| |
| pragma Assert (Result in 0 | EPERM | EINVAL); |
| end Set_Priority; |
| |
| ------------------ |
| -- Get_Priority -- |
| ------------------ |
| |
| function Get_Priority (T : Task_Id) return Any_Priority is |
| begin |
| return T.Common.Current_Priority; |
| end Get_Priority; |
| |
| ---------------- |
| -- Enter_Task -- |
| ---------------- |
| |
| procedure Enter_Task (Self_ID : Task_Id) is |
| begin |
| if Self_ID.Common.Task_Info /= null |
| and then Self_ID.Common.Task_Info.CPU_Affinity = No_CPU |
| then |
| raise Invalid_CPU_Number; |
| end if; |
| |
| Self_ID.Common.LL.Thread := pthread_self; |
| Self_ID.Common.LL.LWP := lwp_self; |
| |
| -- Set thread name to ease debugging. If the name of the task is |
| -- "foreign thread" (as set by Register_Foreign_Thread) retrieve |
| -- the name of the thread and update the name of the task instead. |
| |
| if Self_ID.Common.Task_Image_Len = 14 |
| and then Self_ID.Common.Task_Image (1 .. 14) = "foreign thread" |
| then |
| declare |
| Thread_Name : String (1 .. 16); |
| -- PR_GET_NAME returns a string of up to 16 bytes |
| |
| Len : Natural := 0; |
| -- Length of the task name contained in Task_Name |
| |
| Result : C.int; |
| -- Result from the prctl call |
| begin |
| Result := prctl (PR_GET_NAME, unsigned_long (Thread_Name'Address)); |
| pragma Assert (Result = 0); |
| |
| -- Find the length of the given name |
| |
| for J in Thread_Name'Range loop |
| if Thread_Name (J) /= ASCII.NUL then |
| Len := Len + 1; |
| else |
| exit; |
| end if; |
| end loop; |
| |
| -- Cover the odd situation where someone decides to change |
| -- Parameters.Max_Task_Image_Length to less than 16 characters. |
| |
| if Len > Parameters.Max_Task_Image_Length then |
| Len := Parameters.Max_Task_Image_Length; |
| end if; |
| |
| -- Copy the name of the thread to the task's ATCB |
| |
| Self_ID.Common.Task_Image (1 .. Len) := Thread_Name (1 .. Len); |
| Self_ID.Common.Task_Image_Len := Len; |
| end; |
| |
| elsif Self_ID.Common.Task_Image_Len > 0 then |
| declare |
| Task_Name : String (1 .. Parameters.Max_Task_Image_Length + 1); |
| Result : C.int; |
| |
| begin |
| Task_Name (1 .. Self_ID.Common.Task_Image_Len) := |
| Self_ID.Common.Task_Image (1 .. Self_ID.Common.Task_Image_Len); |
| Task_Name (Self_ID.Common.Task_Image_Len + 1) := ASCII.NUL; |
| |
| Result := prctl (PR_SET_NAME, unsigned_long (Task_Name'Address)); |
| pragma Assert (Result = 0); |
| end; |
| end if; |
| |
| Specific.Set (Self_ID); |
| |
| if Use_Alternate_Stack |
| and then Self_ID.Common.Task_Alternate_Stack /= Null_Address |
| then |
| declare |
| Stack : aliased stack_t; |
| Result : C.int; |
| begin |
| Stack.ss_sp := Self_ID.Common.Task_Alternate_Stack; |
| Stack.ss_size := Alternate_Stack_Size; |
| Stack.ss_flags := 0; |
| Result := sigaltstack (Stack'Access, null); |
| pragma Assert (Result = 0); |
| end; |
| end if; |
| end Enter_Task; |
| |
| ------------------- |
| -- Is_Valid_Task -- |
| ------------------- |
| |
| function Is_Valid_Task return Boolean renames Specific.Is_Valid_Task; |
| |
| ----------------------------- |
| -- Register_Foreign_Thread -- |
| ----------------------------- |
| |
| function Register_Foreign_Thread return Task_Id is |
| begin |
| if Is_Valid_Task then |
| return Self; |
| else |
| return Register_Foreign_Thread (pthread_self); |
| end if; |
| end Register_Foreign_Thread; |
| |
| -------------------- |
| -- Initialize_TCB -- |
| -------------------- |
| |
| procedure Initialize_TCB (Self_ID : Task_Id; Succeeded : out Boolean) is |
| Result : C.int; |
| Cond_Attr : aliased pthread_condattr_t; |
| |
| begin |
| -- Give the task a unique serial number |
| |
| Self_ID.Serial_Number := Next_Serial_Number; |
| Next_Serial_Number := Next_Serial_Number + 1; |
| pragma Assert (Next_Serial_Number /= 0); |
| |
| Self_ID.Common.LL.Thread := Null_Thread_Id; |
| |
| if Init_Mutex (Self_ID.Common.LL.L'Access, Any_Priority'Last) /= 0 then |
| Succeeded := False; |
| return; |
| end if; |
| |
| Result := pthread_condattr_init (Cond_Attr'Access); |
| pragma Assert (Result in 0 | ENOMEM); |
| |
| if Result = 0 then |
| Result := GNAT_pthread_condattr_setup (Cond_Attr'Access); |
| pragma Assert (Result = 0); |
| |
| Result := |
| pthread_cond_init |
| (Self_ID.Common.LL.CV'Access, Cond_Attr'Access); |
| pragma Assert (Result in 0 | ENOMEM); |
| end if; |
| |
| if Result = 0 then |
| Succeeded := True; |
| else |
| Result := pthread_mutex_destroy (Self_ID.Common.LL.L'Access); |
| pragma Assert (Result = 0); |
| |
| Succeeded := False; |
| end if; |
| |
| Result := pthread_condattr_destroy (Cond_Attr'Access); |
| pragma Assert (Result = 0); |
| end Initialize_TCB; |
| |
| ----------------- |
| -- Create_Task -- |
| ----------------- |
| |
| procedure Create_Task |
| (T : Task_Id; |
| Wrapper : System.Address; |
| Stack_Size : System.Parameters.Size_Type; |
| Priority : Any_Priority; |
| Succeeded : out Boolean) |
| is |
| Thread_Attr : aliased pthread_attr_t; |
| Adjusted_Stack_Size : C.size_t; |
| Result : C.int; |
| |
| use type Multiprocessors.CPU_Range, Interfaces.C.size_t; |
| |
| begin |
| -- Check whether both Dispatching_Domain and CPU are specified for |
| -- the task, and the CPU value is not contained within the range of |
| -- processors for the domain. |
| |
| if T.Common.Domain /= null |
| and then T.Common.Base_CPU /= Multiprocessors.Not_A_Specific_CPU |
| and then |
| (T.Common.Base_CPU not in T.Common.Domain'Range |
| or else not T.Common.Domain (T.Common.Base_CPU)) |
| then |
| Succeeded := False; |
| return; |
| end if; |
| |
| Adjusted_Stack_Size := C.size_t (Stack_Size + Alternate_Stack_Size); |
| |
| Result := pthread_attr_init (Thread_Attr'Access); |
| pragma Assert (Result in 0 | ENOMEM); |
| |
| if Result /= 0 then |
| Succeeded := False; |
| return; |
| end if; |
| |
| Result := |
| pthread_attr_setstacksize (Thread_Attr'Access, Adjusted_Stack_Size); |
| pragma Assert (Result = 0); |
| |
| Result := |
| pthread_attr_setdetachstate |
| (Thread_Attr'Access, PTHREAD_CREATE_DETACHED); |
| pragma Assert (Result = 0); |
| |
| -- Set the required attributes for the creation of the thread |
| |
| -- Note: Previously, we called pthread_setaffinity_np (after thread |
| -- creation but before thread activation) to set the affinity but it was |
| -- not behaving as expected. Setting the required attributes for the |
| -- creation of the thread works correctly and it is more appropriate. |
| |
| -- Do nothing if required support not provided by the operating system |
| |
| if pthread_attr_setaffinity_np'Address = Null_Address then |
| null; |
| |
| -- Support is available |
| |
| elsif T.Common.Base_CPU /= Multiprocessors.Not_A_Specific_CPU then |
| declare |
| CPUs : constant size_t := |
| C.size_t (Multiprocessors.Number_Of_CPUs); |
| CPU_Set : constant cpu_set_t_ptr := CPU_ALLOC (CPUs); |
| Size : constant size_t := CPU_ALLOC_SIZE (CPUs); |
| |
| begin |
| CPU_ZERO (Size, CPU_Set); |
| System.OS_Interface.CPU_SET |
| (int (T.Common.Base_CPU), Size, CPU_Set); |
| Result := |
| pthread_attr_setaffinity_np (Thread_Attr'Access, Size, CPU_Set); |
| pragma Assert (Result = 0); |
| |
| CPU_FREE (CPU_Set); |
| end; |
| |
| -- Handle Task_Info |
| |
| elsif T.Common.Task_Info /= null then |
| Result := |
| pthread_attr_setaffinity_np |
| (Thread_Attr'Access, |
| CPU_SETSIZE / 8, |
| T.Common.Task_Info.CPU_Affinity'Access); |
| pragma Assert (Result = 0); |
| |
| -- Handle dispatching domains |
| |
| -- To avoid changing CPU affinities when not needed, we set the |
| -- affinity only when assigning to a domain other than the default |
| -- one, or when the default one has been modified. |
| |
| elsif T.Common.Domain /= null and then |
| (T.Common.Domain /= ST.System_Domain |
| or else T.Common.Domain.all /= |
| [Multiprocessors.CPU'First .. |
| Multiprocessors.Number_Of_CPUs => True]) |
| then |
| declare |
| CPUs : constant size_t := |
| C.size_t (Multiprocessors.Number_Of_CPUs); |
| CPU_Set : constant cpu_set_t_ptr := CPU_ALLOC (CPUs); |
| Size : constant size_t := CPU_ALLOC_SIZE (CPUs); |
| |
| begin |
| CPU_ZERO (Size, CPU_Set); |
| |
| -- Set the affinity to all the processors belonging to the |
| -- dispatching domain. |
| |
| for Proc in T.Common.Domain'Range loop |
| if T.Common.Domain (Proc) then |
| System.OS_Interface.CPU_SET (int (Proc), Size, CPU_Set); |
| end if; |
| end loop; |
| |
| Result := |
| pthread_attr_setaffinity_np (Thread_Attr'Access, Size, CPU_Set); |
| pragma Assert (Result = 0); |
| |
| CPU_FREE (CPU_Set); |
| end; |
| end if; |
| |
| -- Since the initial signal mask of a thread is inherited from the |
| -- creator, and the Environment task has all its signals masked, we |
| -- do not need to manipulate caller's signal mask at this point. |
| -- All tasks in RTS will have All_Tasks_Mask initially. |
| |
| -- Note: the use of Unrestricted_Access in the following call is needed |
| -- because otherwise we have an error of getting a access-to-volatile |
| -- value which points to a non-volatile object. But in this case it is |
| -- safe to do this, since we know we have no problems with aliasing and |
| -- Unrestricted_Access bypasses this check. |
| |
| Result := pthread_create |
| (T.Common.LL.Thread'Unrestricted_Access, |
| Thread_Attr'Access, |
| Thread_Body_Access (Wrapper), |
| To_Address (T)); |
| |
| pragma Assert (Result in 0 | EAGAIN | ENOMEM); |
| |
| if Result /= 0 then |
| Succeeded := False; |
| Result := pthread_attr_destroy (Thread_Attr'Access); |
| pragma Assert (Result = 0); |
| return; |
| end if; |
| |
| Succeeded := True; |
| |
| Result := pthread_attr_destroy (Thread_Attr'Access); |
| pragma Assert (Result = 0); |
| |
| Set_Priority (T, Priority); |
| end Create_Task; |
| |
| ------------------ |
| -- Finalize_TCB -- |
| ------------------ |
| |
| procedure Finalize_TCB (T : Task_Id) is |
| Result : C.int; |
| |
| begin |
| Result := pthread_mutex_destroy (T.Common.LL.L'Access); |
| pragma Assert (Result = 0); |
| |
| Result := pthread_cond_destroy (T.Common.LL.CV'Access); |
| pragma Assert (Result = 0); |
| |
| if T.Known_Tasks_Index /= -1 then |
| Known_Tasks (T.Known_Tasks_Index) := null; |
| end if; |
| |
| ATCB_Allocation.Free_ATCB (T); |
| end Finalize_TCB; |
| |
| --------------- |
| -- Exit_Task -- |
| --------------- |
| |
| procedure Exit_Task is |
| begin |
| Specific.Set (null); |
| end Exit_Task; |
| |
| ---------------- |
| -- Abort_Task -- |
| ---------------- |
| |
| procedure Abort_Task (T : Task_Id) is |
| Result : C.int; |
| |
| ESRCH : constant := 3; -- No such process |
| -- It can happen that T has already vanished, in which case pthread_kill |
| -- returns ESRCH, so we don't consider that to be an error. |
| |
| begin |
| if Abort_Handler_Installed then |
| Result := |
| pthread_kill |
| (T.Common.LL.Thread, |
| Signal (System.Interrupt_Management.Abort_Task_Interrupt)); |
| pragma Assert (Result in 0 | ESRCH); |
| end if; |
| end Abort_Task; |
| |
| ---------------- |
| -- Initialize -- |
| ---------------- |
| |
| procedure Initialize (S : in out Suspension_Object) is |
| Result : C.int; |
| |
| begin |
| -- Initialize internal state (always to False (RM D.10(6))) |
| |
| S.State := False; |
| S.Waiting := False; |
| |
| -- Initialize internal mutex |
| |
| Result := pthread_mutex_init (S.L'Access, null); |
| |
| pragma Assert (Result in 0 | ENOMEM); |
| |
| if Result = ENOMEM then |
| raise Storage_Error; |
| end if; |
| |
| -- Initialize internal condition variable |
| |
| Result := pthread_cond_init (S.CV'Access, null); |
| |
| pragma Assert (Result in 0 | ENOMEM); |
| |
| if Result /= 0 then |
| Result := pthread_mutex_destroy (S.L'Access); |
| pragma Assert (Result = 0); |
| |
| if Result = ENOMEM then |
| raise Storage_Error; |
| end if; |
| end if; |
| end Initialize; |
| |
| -------------- |
| -- Finalize -- |
| -------------- |
| |
| procedure Finalize (S : in out Suspension_Object) is |
| Result : C.int; |
| |
| begin |
| -- Destroy internal mutex |
| |
| Result := pthread_mutex_destroy (S.L'Access); |
| pragma Assert (Result = 0); |
| |
| -- Destroy internal condition variable |
| |
| Result := pthread_cond_destroy (S.CV'Access); |
| pragma Assert (Result = 0); |
| end Finalize; |
| |
| ------------------- |
| -- Current_State -- |
| ------------------- |
| |
| function Current_State (S : Suspension_Object) return Boolean is |
| begin |
| -- We do not want to use lock on this read operation. State is marked |
| -- as Atomic so that we ensure that the value retrieved is correct. |
| |
| return S.State; |
| end Current_State; |
| |
| --------------- |
| -- Set_False -- |
| --------------- |
| |
| procedure Set_False (S : in out Suspension_Object) is |
| Result : C.int; |
| |
| begin |
| SSL.Abort_Defer.all; |
| |
| Result := pthread_mutex_lock (S.L'Access); |
| pragma Assert (Result = 0); |
| |
| S.State := False; |
| |
| Result := pthread_mutex_unlock (S.L'Access); |
| pragma Assert (Result = 0); |
| |
| SSL.Abort_Undefer.all; |
| end Set_False; |
| |
| -------------- |
| -- Set_True -- |
| -------------- |
| |
| procedure Set_True (S : in out Suspension_Object) is |
| Result : C.int; |
| |
| begin |
| SSL.Abort_Defer.all; |
| |
| Result := pthread_mutex_lock (S.L'Access); |
| pragma Assert (Result = 0); |
| |
| -- If there is already a task waiting on this suspension object then |
| -- we resume it, leaving the state of the suspension object to False, |
| -- as it is specified in ARM D.10 par. 9. Otherwise, it just leaves |
| -- the state to True. |
| |
| if S.Waiting then |
| S.Waiting := False; |
| S.State := False; |
| |
| Result := pthread_cond_signal (S.CV'Access); |
| pragma Assert (Result = 0); |
| |
| else |
| S.State := True; |
| end if; |
| |
| Result := pthread_mutex_unlock (S.L'Access); |
| pragma Assert (Result = 0); |
| |
| SSL.Abort_Undefer.all; |
| end Set_True; |
| |
| ------------------------ |
| -- Suspend_Until_True -- |
| ------------------------ |
| |
| procedure Suspend_Until_True (S : in out Suspension_Object) is |
| Result : C.int; |
| |
| begin |
| SSL.Abort_Defer.all; |
| |
| Result := pthread_mutex_lock (S.L'Access); |
| pragma Assert (Result = 0); |
| |
| if S.Waiting then |
| |
| -- Program_Error must be raised upon calling Suspend_Until_True |
| -- if another task is already waiting on that suspension object |
| -- (RM D.10(10)). |
| |
| Result := pthread_mutex_unlock (S.L'Access); |
| pragma Assert (Result = 0); |
| |
| SSL.Abort_Undefer.all; |
| |
| raise Program_Error; |
| |
| else |
| -- Suspend the task if the state is False. Otherwise, the task |
| -- continues its execution, and the state of the suspension object |
| -- is set to False (ARM D.10 par. 9). |
| |
| if S.State then |
| S.State := False; |
| else |
| S.Waiting := True; |
| |
| loop |
| -- Loop in case pthread_cond_wait returns earlier than expected |
| -- (e.g. in case of EINTR caused by a signal). This should not |
| -- happen with the current Linux implementation of pthread, but |
| -- POSIX does not guarantee it so this may change in future. |
| |
| Result := pthread_cond_wait (S.CV'Access, S.L'Access); |
| pragma Assert (Result in 0 | EINTR); |
| |
| exit when not S.Waiting; |
| end loop; |
| end if; |
| |
| Result := pthread_mutex_unlock (S.L'Access); |
| pragma Assert (Result = 0); |
| |
| SSL.Abort_Undefer.all; |
| end if; |
| end Suspend_Until_True; |
| |
| ---------------- |
| -- Check_Exit -- |
| ---------------- |
| |
| -- Dummy version |
| |
| function Check_Exit (Self_ID : ST.Task_Id) return Boolean is |
| pragma Unreferenced (Self_ID); |
| begin |
| return True; |
| end Check_Exit; |
| |
| -------------------- |
| -- Check_No_Locks -- |
| -------------------- |
| |
| function Check_No_Locks (Self_ID : ST.Task_Id) return Boolean is |
| pragma Unreferenced (Self_ID); |
| begin |
| return True; |
| end Check_No_Locks; |
| |
| ---------------------- |
| -- Environment_Task -- |
| ---------------------- |
| |
| function Environment_Task return Task_Id is |
| begin |
| return Environment_Task_Id; |
| end Environment_Task; |
| |
| ------------------ |
| -- Suspend_Task -- |
| ------------------ |
| |
| function Suspend_Task |
| (T : ST.Task_Id; |
| Thread_Self : Thread_Id) return Boolean |
| is |
| begin |
| if T.Common.LL.Thread /= Thread_Self then |
| return pthread_kill (T.Common.LL.Thread, SIGSTOP) = 0; |
| else |
| return True; |
| end if; |
| end Suspend_Task; |
| |
| ----------------- |
| -- Resume_Task -- |
| ----------------- |
| |
| function Resume_Task |
| (T : ST.Task_Id; |
| Thread_Self : Thread_Id) return Boolean |
| is |
| begin |
| if T.Common.LL.Thread /= Thread_Self then |
| return pthread_kill (T.Common.LL.Thread, SIGCONT) = 0; |
| else |
| return True; |
| end if; |
| end Resume_Task; |
| |
| -------------------- |
| -- Stop_All_Tasks -- |
| -------------------- |
| |
| procedure Stop_All_Tasks is |
| begin |
| null; |
| end Stop_All_Tasks; |
| |
| --------------- |
| -- Stop_Task -- |
| --------------- |
| |
| function Stop_Task (T : ST.Task_Id) return Boolean is |
| pragma Unreferenced (T); |
| begin |
| return False; |
| end Stop_Task; |
| |
| ------------------- |
| -- Continue_Task -- |
| ------------------- |
| |
| function Continue_Task (T : ST.Task_Id) return Boolean is |
| pragma Unreferenced (T); |
| begin |
| return False; |
| end Continue_Task; |
| |
| ---------------- |
| -- Initialize -- |
| ---------------- |
| |
| procedure Initialize (Environment_Task : Task_Id) is |
| act : aliased struct_sigaction; |
| old_act : aliased struct_sigaction; |
| Tmp_Set : aliased sigset_t; |
| Result : C.int; |
| -- Whether to use an alternate signal stack for stack overflows |
| |
| function State |
| (Int : System.Interrupt_Management.Interrupt_ID) return Character; |
| pragma Import (C, State, "__gnat_get_interrupt_state"); |
| -- Get interrupt state. Defined in init.c. |
| -- The input argument is the interrupt number, and the result is one of |
| -- the following: |
| |
| Default : constant Character := 's'; |
| -- 'n' this interrupt not set by any Interrupt_State pragma |
| -- 'u' Interrupt_State pragma set state to User |
| -- 'r' Interrupt_State pragma set state to Runtime |
| -- 's' Interrupt_State pragma set state to System (use "default" |
| -- system handler) |
| |
| begin |
| Environment_Task_Id := Environment_Task; |
| |
| Interrupt_Management.Initialize; |
| |
| -- Prepare the set of signals that should be unblocked in all tasks |
| |
| Result := sigemptyset (Unblocked_Signal_Mask'Access); |
| pragma Assert (Result = 0); |
| |
| for J in Interrupt_Management.Interrupt_ID loop |
| if System.Interrupt_Management.Keep_Unmasked (J) then |
| Result := sigaddset (Unblocked_Signal_Mask'Access, Signal (J)); |
| pragma Assert (Result = 0); |
| end if; |
| end loop; |
| |
| Initialize_Lock (Single_RTS_Lock'Access, RTS_Lock_Level); |
| |
| -- Initialize the global RTS lock |
| |
| Specific.Initialize (Environment_Task); |
| |
| -- Do not use an alternate stack if no handler for SEGV is installed |
| |
| if State (SIGSEGV) = Default then |
| Use_Alternate_Stack := False; |
| end if; |
| |
| if Use_Alternate_Stack then |
| Environment_Task.Common.Task_Alternate_Stack := |
| Alternate_Stack'Address; |
| end if; |
| |
| -- Make environment task known here because it doesn't go through |
| -- Activate_Tasks, which does it for all other tasks. |
| |
| Known_Tasks (Known_Tasks'First) := Environment_Task; |
| Environment_Task.Known_Tasks_Index := Known_Tasks'First; |
| |
| Enter_Task (Environment_Task); |
| |
| if State |
| (System.Interrupt_Management.Abort_Task_Interrupt) /= Default |
| then |
| act.sa_flags := 0; |
| act.sa_handler := Abort_Handler'Address; |
| |
| Result := sigemptyset (Tmp_Set'Access); |
| pragma Assert (Result = 0); |
| act.sa_mask := Tmp_Set; |
| |
| Result := |
| sigaction |
| (Signal (Interrupt_Management.Abort_Task_Interrupt), |
| act'Unchecked_Access, |
| old_act'Unchecked_Access); |
| pragma Assert (Result = 0); |
| Abort_Handler_Installed := True; |
| end if; |
| |
| -- pragma CPU and dispatching domains for the environment task |
| |
| Set_Task_Affinity (Environment_Task); |
| end Initialize; |
| |
| ----------------------- |
| -- Set_Task_Affinity -- |
| ----------------------- |
| |
| procedure Set_Task_Affinity (T : ST.Task_Id) is |
| use type Multiprocessors.CPU_Range; |
| |
| begin |
| -- Do nothing if there is no support for setting affinities or the |
| -- underlying thread has not yet been created. If the thread has not |
| -- yet been created then the proper affinity will be set during its |
| -- creation. |
| |
| if pthread_setaffinity_np'Address /= Null_Address |
| and then T.Common.LL.Thread /= Null_Thread_Id |
| then |
| declare |
| CPUs : constant size_t := |
| C.size_t (Multiprocessors.Number_Of_CPUs); |
| CPU_Set : cpu_set_t_ptr := null; |
| Size : constant size_t := CPU_ALLOC_SIZE (CPUs); |
| |
| Result : C.int; |
| |
| begin |
| -- We look at the specific CPU (Base_CPU) first, then at the |
| -- Task_Info field, and finally at the assigned dispatching |
| -- domain, if any. |
| |
| if T.Common.Base_CPU /= Multiprocessors.Not_A_Specific_CPU then |
| |
| -- Set the affinity to an unique CPU |
| |
| CPU_Set := CPU_ALLOC (CPUs); |
| System.OS_Interface.CPU_ZERO (Size, CPU_Set); |
| System.OS_Interface.CPU_SET |
| (int (T.Common.Base_CPU), Size, CPU_Set); |
| |
| -- Handle Task_Info |
| |
| elsif T.Common.Task_Info /= null then |
| CPU_Set := T.Common.Task_Info.CPU_Affinity'Access; |
| |
| -- Handle dispatching domains |
| |
| elsif T.Common.Domain /= null and then |
| (T.Common.Domain /= ST.System_Domain |
| or else T.Common.Domain.all /= |
| [Multiprocessors.CPU'First .. |
| Multiprocessors.Number_Of_CPUs => True]) |
| then |
| -- Set the affinity to all the processors belonging to the |
| -- dispatching domain. To avoid changing CPU affinities when |
| -- not needed, we set the affinity only when assigning to a |
| -- domain other than the default one, or when the default one |
| -- has been modified. |
| |
| CPU_Set := CPU_ALLOC (CPUs); |
| System.OS_Interface.CPU_ZERO (Size, CPU_Set); |
| |
| for Proc in T.Common.Domain'Range loop |
| if T.Common.Domain (Proc) then |
| System.OS_Interface.CPU_SET (int (Proc), Size, CPU_Set); |
| end if; |
| end loop; |
| end if; |
| |
| -- We set the new affinity if needed. Otherwise, the new task |
| -- will inherit its creator's CPU affinity mask (according to |
| -- the documentation of pthread_setaffinity_np), which is |
| -- consistent with Ada's required semantics. |
| |
| if CPU_Set /= null then |
| Result := |
| pthread_setaffinity_np (T.Common.LL.Thread, Size, CPU_Set); |
| pragma Assert (Result = 0); |
| |
| CPU_FREE (CPU_Set); |
| end if; |
| end; |
| end if; |
| end Set_Task_Affinity; |
| |
| end System.Task_Primitives.Operations; |