blob: 02415cb1b5c3a0b9001fd6571a525cfc813ba6a4 [file] [log] [blame]
/* Tree lowering pass. This pass converts the GENERIC functions-as-trees
tree representation into the GIMPLE form.
Copyright (C) 2002-2022 Free Software Foundation, Inc.
Major work done by Sebastian Pop <s.pop@laposte.net>,
Diego Novillo <dnovillo@redhat.com> and Jason Merrill <jason@redhat.com>.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "target.h"
#include "rtl.h"
#include "tree.h"
#include "memmodel.h"
#include "tm_p.h"
#include "gimple.h"
#include "gimple-predict.h"
#include "tree-pass.h" /* FIXME: only for PROP_gimple_any */
#include "ssa.h"
#include "cgraph.h"
#include "tree-pretty-print.h"
#include "diagnostic-core.h"
#include "alias.h"
#include "fold-const.h"
#include "calls.h"
#include "varasm.h"
#include "stmt.h"
#include "expr.h"
#include "gimple-iterator.h"
#include "gimple-fold.h"
#include "tree-eh.h"
#include "gimplify.h"
#include "stor-layout.h"
#include "print-tree.h"
#include "tree-iterator.h"
#include "tree-inline.h"
#include "langhooks.h"
#include "tree-cfg.h"
#include "tree-ssa.h"
#include "tree-hash-traits.h"
#include "omp-general.h"
#include "omp-low.h"
#include "gimple-low.h"
#include "gomp-constants.h"
#include "splay-tree.h"
#include "gimple-walk.h"
#include "langhooks-def.h" /* FIXME: for lhd_set_decl_assembler_name */
#include "builtins.h"
#include "stringpool.h"
#include "attribs.h"
#include "asan.h"
#include "dbgcnt.h"
#include "omp-offload.h"
#include "context.h"
#include "tree-nested.h"
/* Hash set of poisoned variables in a bind expr. */
static hash_set<tree> *asan_poisoned_variables = NULL;
enum gimplify_omp_var_data
{
GOVD_SEEN = 0x000001,
GOVD_EXPLICIT = 0x000002,
GOVD_SHARED = 0x000004,
GOVD_PRIVATE = 0x000008,
GOVD_FIRSTPRIVATE = 0x000010,
GOVD_LASTPRIVATE = 0x000020,
GOVD_REDUCTION = 0x000040,
GOVD_LOCAL = 0x00080,
GOVD_MAP = 0x000100,
GOVD_DEBUG_PRIVATE = 0x000200,
GOVD_PRIVATE_OUTER_REF = 0x000400,
GOVD_LINEAR = 0x000800,
GOVD_ALIGNED = 0x001000,
/* Flag for GOVD_MAP: don't copy back. */
GOVD_MAP_TO_ONLY = 0x002000,
/* Flag for GOVD_LINEAR or GOVD_LASTPRIVATE: no outer reference. */
GOVD_LINEAR_LASTPRIVATE_NO_OUTER = 0x004000,
GOVD_MAP_0LEN_ARRAY = 0x008000,
/* Flag for GOVD_MAP, if it is always, to or always, tofrom mapping. */
GOVD_MAP_ALWAYS_TO = 0x010000,
/* Flag for shared vars that are or might be stored to in the region. */
GOVD_WRITTEN = 0x020000,
/* Flag for GOVD_MAP, if it is a forced mapping. */
GOVD_MAP_FORCE = 0x040000,
/* Flag for GOVD_MAP: must be present already. */
GOVD_MAP_FORCE_PRESENT = 0x080000,
/* Flag for GOVD_MAP: only allocate. */
GOVD_MAP_ALLOC_ONLY = 0x100000,
/* Flag for GOVD_MAP: only copy back. */
GOVD_MAP_FROM_ONLY = 0x200000,
GOVD_NONTEMPORAL = 0x400000,
/* Flag for GOVD_LASTPRIVATE: conditional modifier. */
GOVD_LASTPRIVATE_CONDITIONAL = 0x800000,
GOVD_CONDTEMP = 0x1000000,
/* Flag for GOVD_REDUCTION: inscan seen in {in,ex}clusive clause. */
GOVD_REDUCTION_INSCAN = 0x2000000,
/* Flag for GOVD_FIRSTPRIVATE: OMP_CLAUSE_FIRSTPRIVATE_IMPLICIT. */
GOVD_FIRSTPRIVATE_IMPLICIT = 0x4000000,
GOVD_DATA_SHARE_CLASS = (GOVD_SHARED | GOVD_PRIVATE | GOVD_FIRSTPRIVATE
| GOVD_LASTPRIVATE | GOVD_REDUCTION | GOVD_LINEAR
| GOVD_LOCAL)
};
enum omp_region_type
{
ORT_WORKSHARE = 0x00,
ORT_TASKGROUP = 0x01,
ORT_SIMD = 0x04,
ORT_PARALLEL = 0x08,
ORT_COMBINED_PARALLEL = ORT_PARALLEL | 1,
ORT_TASK = 0x10,
ORT_UNTIED_TASK = ORT_TASK | 1,
ORT_TASKLOOP = ORT_TASK | 2,
ORT_UNTIED_TASKLOOP = ORT_UNTIED_TASK | 2,
ORT_TEAMS = 0x20,
ORT_COMBINED_TEAMS = ORT_TEAMS | 1,
ORT_HOST_TEAMS = ORT_TEAMS | 2,
ORT_COMBINED_HOST_TEAMS = ORT_COMBINED_TEAMS | 2,
/* Data region. */
ORT_TARGET_DATA = 0x40,
/* Data region with offloading. */
ORT_TARGET = 0x80,
ORT_COMBINED_TARGET = ORT_TARGET | 1,
ORT_IMPLICIT_TARGET = ORT_TARGET | 2,
/* OpenACC variants. */
ORT_ACC = 0x100, /* A generic OpenACC region. */
ORT_ACC_DATA = ORT_ACC | ORT_TARGET_DATA, /* Data construct. */
ORT_ACC_PARALLEL = ORT_ACC | ORT_TARGET, /* Parallel construct */
ORT_ACC_KERNELS = ORT_ACC | ORT_TARGET | 2, /* Kernels construct. */
ORT_ACC_SERIAL = ORT_ACC | ORT_TARGET | 4, /* Serial construct. */
ORT_ACC_HOST_DATA = ORT_ACC | ORT_TARGET_DATA | 2, /* Host data. */
/* Dummy OpenMP region, used to disable expansion of
DECL_VALUE_EXPRs in taskloop pre body. */
ORT_NONE = 0x200
};
/* Gimplify hashtable helper. */
struct gimplify_hasher : free_ptr_hash <elt_t>
{
static inline hashval_t hash (const elt_t *);
static inline bool equal (const elt_t *, const elt_t *);
};
struct gimplify_ctx
{
struct gimplify_ctx *prev_context;
vec<gbind *> bind_expr_stack;
tree temps;
gimple_seq conditional_cleanups;
tree exit_label;
tree return_temp;
vec<tree> case_labels;
hash_set<tree> *live_switch_vars;
/* The formal temporary table. Should this be persistent? */
hash_table<gimplify_hasher> *temp_htab;
int conditions;
unsigned into_ssa : 1;
unsigned allow_rhs_cond_expr : 1;
unsigned in_cleanup_point_expr : 1;
unsigned keep_stack : 1;
unsigned save_stack : 1;
unsigned in_switch_expr : 1;
};
enum gimplify_defaultmap_kind
{
GDMK_SCALAR,
GDMK_SCALAR_TARGET, /* w/ Fortran's target attr, implicit mapping, only. */
GDMK_AGGREGATE,
GDMK_ALLOCATABLE,
GDMK_POINTER
};
struct gimplify_omp_ctx
{
struct gimplify_omp_ctx *outer_context;
splay_tree variables;
hash_set<tree> *privatized_types;
tree clauses;
/* Iteration variables in an OMP_FOR. */
vec<tree> loop_iter_var;
location_t location;
enum omp_clause_default_kind default_kind;
enum omp_region_type region_type;
enum tree_code code;
bool combined_loop;
bool distribute;
bool target_firstprivatize_array_bases;
bool add_safelen1;
bool order_concurrent;
bool has_depend;
bool in_for_exprs;
int defaultmap[5];
};
static struct gimplify_ctx *gimplify_ctxp;
static struct gimplify_omp_ctx *gimplify_omp_ctxp;
static bool in_omp_construct;
/* Forward declaration. */
static enum gimplify_status gimplify_compound_expr (tree *, gimple_seq *, bool);
static hash_map<tree, tree> *oacc_declare_returns;
static enum gimplify_status gimplify_expr (tree *, gimple_seq *, gimple_seq *,
bool (*) (tree), fallback_t, bool);
static void prepare_gimple_addressable (tree *, gimple_seq *);
/* Shorter alias name for the above function for use in gimplify.cc
only. */
static inline void
gimplify_seq_add_stmt (gimple_seq *seq_p, gimple *gs)
{
gimple_seq_add_stmt_without_update (seq_p, gs);
}
/* Append sequence SRC to the end of sequence *DST_P. If *DST_P is
NULL, a new sequence is allocated. This function is
similar to gimple_seq_add_seq, but does not scan the operands.
During gimplification, we need to manipulate statement sequences
before the def/use vectors have been constructed. */
static void
gimplify_seq_add_seq (gimple_seq *dst_p, gimple_seq src)
{
gimple_stmt_iterator si;
if (src == NULL)
return;
si = gsi_last (*dst_p);
gsi_insert_seq_after_without_update (&si, src, GSI_NEW_STMT);
}
/* Pointer to a list of allocated gimplify_ctx structs to be used for pushing
and popping gimplify contexts. */
static struct gimplify_ctx *ctx_pool = NULL;
/* Return a gimplify context struct from the pool. */
static inline struct gimplify_ctx *
ctx_alloc (void)
{
struct gimplify_ctx * c = ctx_pool;
if (c)
ctx_pool = c->prev_context;
else
c = XNEW (struct gimplify_ctx);
memset (c, '\0', sizeof (*c));
return c;
}
/* Put gimplify context C back into the pool. */
static inline void
ctx_free (struct gimplify_ctx *c)
{
c->prev_context = ctx_pool;
ctx_pool = c;
}
/* Free allocated ctx stack memory. */
void
free_gimplify_stack (void)
{
struct gimplify_ctx *c;
while ((c = ctx_pool))
{
ctx_pool = c->prev_context;
free (c);
}
}
/* Set up a context for the gimplifier. */
void
push_gimplify_context (bool in_ssa, bool rhs_cond_ok)
{
struct gimplify_ctx *c = ctx_alloc ();
c->prev_context = gimplify_ctxp;
gimplify_ctxp = c;
gimplify_ctxp->into_ssa = in_ssa;
gimplify_ctxp->allow_rhs_cond_expr = rhs_cond_ok;
}
/* Tear down a context for the gimplifier. If BODY is non-null, then
put the temporaries into the outer BIND_EXPR. Otherwise, put them
in the local_decls.
BODY is not a sequence, but the first tuple in a sequence. */
void
pop_gimplify_context (gimple *body)
{
struct gimplify_ctx *c = gimplify_ctxp;
gcc_assert (c
&& (!c->bind_expr_stack.exists ()
|| c->bind_expr_stack.is_empty ()));
c->bind_expr_stack.release ();
gimplify_ctxp = c->prev_context;
if (body)
declare_vars (c->temps, body, false);
else
record_vars (c->temps);
delete c->temp_htab;
c->temp_htab = NULL;
ctx_free (c);
}
/* Push a GIMPLE_BIND tuple onto the stack of bindings. */
static void
gimple_push_bind_expr (gbind *bind_stmt)
{
gimplify_ctxp->bind_expr_stack.reserve (8);
gimplify_ctxp->bind_expr_stack.safe_push (bind_stmt);
}
/* Pop the first element off the stack of bindings. */
static void
gimple_pop_bind_expr (void)
{
gimplify_ctxp->bind_expr_stack.pop ();
}
/* Return the first element of the stack of bindings. */
gbind *
gimple_current_bind_expr (void)
{
return gimplify_ctxp->bind_expr_stack.last ();
}
/* Return the stack of bindings created during gimplification. */
vec<gbind *>
gimple_bind_expr_stack (void)
{
return gimplify_ctxp->bind_expr_stack;
}
/* Return true iff there is a COND_EXPR between us and the innermost
CLEANUP_POINT_EXPR. This info is used by gimple_push_cleanup. */
static bool
gimple_conditional_context (void)
{
return gimplify_ctxp->conditions > 0;
}
/* Note that we've entered a COND_EXPR. */
static void
gimple_push_condition (void)
{
#ifdef ENABLE_GIMPLE_CHECKING
if (gimplify_ctxp->conditions == 0)
gcc_assert (gimple_seq_empty_p (gimplify_ctxp->conditional_cleanups));
#endif
++(gimplify_ctxp->conditions);
}
/* Note that we've left a COND_EXPR. If we're back at unconditional scope
now, add any conditional cleanups we've seen to the prequeue. */
static void
gimple_pop_condition (gimple_seq *pre_p)
{
int conds = --(gimplify_ctxp->conditions);
gcc_assert (conds >= 0);
if (conds == 0)
{
gimplify_seq_add_seq (pre_p, gimplify_ctxp->conditional_cleanups);
gimplify_ctxp->conditional_cleanups = NULL;
}
}
/* A stable comparison routine for use with splay trees and DECLs. */
static int
splay_tree_compare_decl_uid (splay_tree_key xa, splay_tree_key xb)
{
tree a = (tree) xa;
tree b = (tree) xb;
return DECL_UID (a) - DECL_UID (b);
}
/* Create a new omp construct that deals with variable remapping. */
static struct gimplify_omp_ctx *
new_omp_context (enum omp_region_type region_type)
{
struct gimplify_omp_ctx *c;
c = XCNEW (struct gimplify_omp_ctx);
c->outer_context = gimplify_omp_ctxp;
c->variables = splay_tree_new (splay_tree_compare_decl_uid, 0, 0);
c->privatized_types = new hash_set<tree>;
c->location = input_location;
c->region_type = region_type;
if ((region_type & ORT_TASK) == 0)
c->default_kind = OMP_CLAUSE_DEFAULT_SHARED;
else
c->default_kind = OMP_CLAUSE_DEFAULT_UNSPECIFIED;
c->defaultmap[GDMK_SCALAR] = GOVD_MAP;
c->defaultmap[GDMK_SCALAR_TARGET] = GOVD_MAP;
c->defaultmap[GDMK_AGGREGATE] = GOVD_MAP;
c->defaultmap[GDMK_ALLOCATABLE] = GOVD_MAP;
c->defaultmap[GDMK_POINTER] = GOVD_MAP;
return c;
}
/* Destroy an omp construct that deals with variable remapping. */
static void
delete_omp_context (struct gimplify_omp_ctx *c)
{
splay_tree_delete (c->variables);
delete c->privatized_types;
c->loop_iter_var.release ();
XDELETE (c);
}
static void omp_add_variable (struct gimplify_omp_ctx *, tree, unsigned int);
static bool omp_notice_variable (struct gimplify_omp_ctx *, tree, bool);
/* Both gimplify the statement T and append it to *SEQ_P. This function
behaves exactly as gimplify_stmt, but you don't have to pass T as a
reference. */
void
gimplify_and_add (tree t, gimple_seq *seq_p)
{
gimplify_stmt (&t, seq_p);
}
/* Gimplify statement T into sequence *SEQ_P, and return the first
tuple in the sequence of generated tuples for this statement.
Return NULL if gimplifying T produced no tuples. */
static gimple *
gimplify_and_return_first (tree t, gimple_seq *seq_p)
{
gimple_stmt_iterator last = gsi_last (*seq_p);
gimplify_and_add (t, seq_p);
if (!gsi_end_p (last))
{
gsi_next (&last);
return gsi_stmt (last);
}
else
return gimple_seq_first_stmt (*seq_p);
}
/* Returns true iff T is a valid RHS for an assignment to an un-renamed
LHS, or for a call argument. */
static bool
is_gimple_mem_rhs (tree t)
{
/* If we're dealing with a renamable type, either source or dest must be
a renamed variable. */
if (is_gimple_reg_type (TREE_TYPE (t)))
return is_gimple_val (t);
else
return is_gimple_val (t) || is_gimple_lvalue (t);
}
/* Return true if T is a CALL_EXPR or an expression that can be
assigned to a temporary. Note that this predicate should only be
used during gimplification. See the rationale for this in
gimplify_modify_expr. */
static bool
is_gimple_reg_rhs_or_call (tree t)
{
return (get_gimple_rhs_class (TREE_CODE (t)) != GIMPLE_INVALID_RHS
|| TREE_CODE (t) == CALL_EXPR);
}
/* Return true if T is a valid memory RHS or a CALL_EXPR. Note that
this predicate should only be used during gimplification. See the
rationale for this in gimplify_modify_expr. */
static bool
is_gimple_mem_rhs_or_call (tree t)
{
/* If we're dealing with a renamable type, either source or dest must be
a renamed variable. */
if (is_gimple_reg_type (TREE_TYPE (t)))
return is_gimple_val (t);
else
return (is_gimple_val (t)
|| is_gimple_lvalue (t)
|| TREE_CLOBBER_P (t)
|| TREE_CODE (t) == CALL_EXPR);
}
/* Create a temporary with a name derived from VAL. Subroutine of
lookup_tmp_var; nobody else should call this function. */
static inline tree
create_tmp_from_val (tree val)
{
/* Drop all qualifiers and address-space information from the value type. */
tree type = TYPE_MAIN_VARIANT (TREE_TYPE (val));
tree var = create_tmp_var (type, get_name (val));
return var;
}
/* Create a temporary to hold the value of VAL. If IS_FORMAL, try to reuse
an existing expression temporary. If NOT_GIMPLE_REG, mark it as such. */
static tree
lookup_tmp_var (tree val, bool is_formal, bool not_gimple_reg)
{
tree ret;
/* We cannot mark a formal temporary with DECL_NOT_GIMPLE_REG_P. */
gcc_assert (!is_formal || !not_gimple_reg);
/* If not optimizing, never really reuse a temporary. local-alloc
won't allocate any variable that is used in more than one basic
block, which means it will go into memory, causing much extra
work in reload and final and poorer code generation, outweighing
the extra memory allocation here. */
if (!optimize || !is_formal || TREE_SIDE_EFFECTS (val))
{
ret = create_tmp_from_val (val);
DECL_NOT_GIMPLE_REG_P (ret) = not_gimple_reg;
}
else
{
elt_t elt, *elt_p;
elt_t **slot;
elt.val = val;
if (!gimplify_ctxp->temp_htab)
gimplify_ctxp->temp_htab = new hash_table<gimplify_hasher> (1000);
slot = gimplify_ctxp->temp_htab->find_slot (&elt, INSERT);
if (*slot == NULL)
{
elt_p = XNEW (elt_t);
elt_p->val = val;
elt_p->temp = ret = create_tmp_from_val (val);
*slot = elt_p;
}
else
{
elt_p = *slot;
ret = elt_p->temp;
}
}
return ret;
}
/* Helper for get_formal_tmp_var and get_initialized_tmp_var. */
static tree
internal_get_tmp_var (tree val, gimple_seq *pre_p, gimple_seq *post_p,
bool is_formal, bool allow_ssa, bool not_gimple_reg)
{
tree t, mod;
/* Notice that we explicitly allow VAL to be a CALL_EXPR so that we
can create an INIT_EXPR and convert it into a GIMPLE_CALL below. */
gimplify_expr (&val, pre_p, post_p, is_gimple_reg_rhs_or_call,
fb_rvalue);
if (allow_ssa
&& gimplify_ctxp->into_ssa
&& is_gimple_reg_type (TREE_TYPE (val)))
{
t = make_ssa_name (TYPE_MAIN_VARIANT (TREE_TYPE (val)));
if (! gimple_in_ssa_p (cfun))
{
const char *name = get_name (val);
if (name)
SET_SSA_NAME_VAR_OR_IDENTIFIER (t, create_tmp_var_name (name));
}
}
else
t = lookup_tmp_var (val, is_formal, not_gimple_reg);
mod = build2 (INIT_EXPR, TREE_TYPE (t), t, unshare_expr (val));
SET_EXPR_LOCATION (mod, EXPR_LOC_OR_LOC (val, input_location));
/* gimplify_modify_expr might want to reduce this further. */
gimplify_and_add (mod, pre_p);
ggc_free (mod);
return t;
}
/* Return a formal temporary variable initialized with VAL. PRE_P is as
in gimplify_expr. Only use this function if:
1) The value of the unfactored expression represented by VAL will not
change between the initialization and use of the temporary, and
2) The temporary will not be otherwise modified.
For instance, #1 means that this is inappropriate for SAVE_EXPR temps,
and #2 means it is inappropriate for && temps.
For other cases, use get_initialized_tmp_var instead. */
tree
get_formal_tmp_var (tree val, gimple_seq *pre_p)
{
return internal_get_tmp_var (val, pre_p, NULL, true, true, false);
}
/* Return a temporary variable initialized with VAL. PRE_P and POST_P
are as in gimplify_expr. */
tree
get_initialized_tmp_var (tree val, gimple_seq *pre_p,
gimple_seq *post_p /* = NULL */,
bool allow_ssa /* = true */)
{
return internal_get_tmp_var (val, pre_p, post_p, false, allow_ssa, false);
}
/* Declare all the variables in VARS in SCOPE. If DEBUG_INFO is true,
generate debug info for them; otherwise don't. */
void
declare_vars (tree vars, gimple *gs, bool debug_info)
{
tree last = vars;
if (last)
{
tree temps, block;
gbind *scope = as_a <gbind *> (gs);
temps = nreverse (last);
block = gimple_bind_block (scope);
gcc_assert (!block || TREE_CODE (block) == BLOCK);
if (!block || !debug_info)
{
DECL_CHAIN (last) = gimple_bind_vars (scope);
gimple_bind_set_vars (scope, temps);
}
else
{
/* We need to attach the nodes both to the BIND_EXPR and to its
associated BLOCK for debugging purposes. The key point here
is that the BLOCK_VARS of the BIND_EXPR_BLOCK of a BIND_EXPR
is a subchain of the BIND_EXPR_VARS of the BIND_EXPR. */
if (BLOCK_VARS (block))
BLOCK_VARS (block) = chainon (BLOCK_VARS (block), temps);
else
{
gimple_bind_set_vars (scope,
chainon (gimple_bind_vars (scope), temps));
BLOCK_VARS (block) = temps;
}
}
}
}
/* For VAR a VAR_DECL of variable size, try to find a constant upper bound
for the size and adjust DECL_SIZE/DECL_SIZE_UNIT accordingly. Abort if
no such upper bound can be obtained. */
static void
force_constant_size (tree var)
{
/* The only attempt we make is by querying the maximum size of objects
of the variable's type. */
HOST_WIDE_INT max_size;
gcc_assert (VAR_P (var));
max_size = max_int_size_in_bytes (TREE_TYPE (var));
gcc_assert (max_size >= 0);
DECL_SIZE_UNIT (var)
= build_int_cst (TREE_TYPE (DECL_SIZE_UNIT (var)), max_size);
DECL_SIZE (var)
= build_int_cst (TREE_TYPE (DECL_SIZE (var)), max_size * BITS_PER_UNIT);
}
/* Push the temporary variable TMP into the current binding. */
void
gimple_add_tmp_var_fn (struct function *fn, tree tmp)
{
gcc_assert (!DECL_CHAIN (tmp) && !DECL_SEEN_IN_BIND_EXPR_P (tmp));
/* Later processing assumes that the object size is constant, which might
not be true at this point. Force the use of a constant upper bound in
this case. */
if (!tree_fits_poly_uint64_p (DECL_SIZE_UNIT (tmp)))
force_constant_size (tmp);
DECL_CONTEXT (tmp) = fn->decl;
DECL_SEEN_IN_BIND_EXPR_P (tmp) = 1;
record_vars_into (tmp, fn->decl);
}
/* Push the temporary variable TMP into the current binding. */
void
gimple_add_tmp_var (tree tmp)
{
gcc_assert (!DECL_CHAIN (tmp) && !DECL_SEEN_IN_BIND_EXPR_P (tmp));
/* Later processing assumes that the object size is constant, which might
not be true at this point. Force the use of a constant upper bound in
this case. */
if (!tree_fits_poly_uint64_p (DECL_SIZE_UNIT (tmp)))
force_constant_size (tmp);
DECL_CONTEXT (tmp) = current_function_decl;
DECL_SEEN_IN_BIND_EXPR_P (tmp) = 1;
if (gimplify_ctxp)
{
DECL_CHAIN (tmp) = gimplify_ctxp->temps;
gimplify_ctxp->temps = tmp;
/* Mark temporaries local within the nearest enclosing parallel. */
if (gimplify_omp_ctxp)
{
struct gimplify_omp_ctx *ctx = gimplify_omp_ctxp;
int flag = GOVD_LOCAL | GOVD_SEEN;
while (ctx
&& (ctx->region_type == ORT_WORKSHARE
|| ctx->region_type == ORT_TASKGROUP
|| ctx->region_type == ORT_SIMD
|| ctx->region_type == ORT_ACC))
{
if (ctx->region_type == ORT_SIMD
&& TREE_ADDRESSABLE (tmp)
&& !TREE_STATIC (tmp))
{
if (TREE_CODE (DECL_SIZE_UNIT (tmp)) != INTEGER_CST)
ctx->add_safelen1 = true;
else if (ctx->in_for_exprs)
flag = GOVD_PRIVATE;
else
flag = GOVD_PRIVATE | GOVD_SEEN;
break;
}
ctx = ctx->outer_context;
}
if (ctx)
omp_add_variable (ctx, tmp, flag);
}
}
else if (cfun)
record_vars (tmp);
else
{
gimple_seq body_seq;
/* This case is for nested functions. We need to expose the locals
they create. */
body_seq = gimple_body (current_function_decl);
declare_vars (tmp, gimple_seq_first_stmt (body_seq), false);
}
}
/* This page contains routines to unshare tree nodes, i.e. to duplicate tree
nodes that are referenced more than once in GENERIC functions. This is
necessary because gimplification (translation into GIMPLE) is performed
by modifying tree nodes in-place, so gimplication of a shared node in a
first context could generate an invalid GIMPLE form in a second context.
This is achieved with a simple mark/copy/unmark algorithm that walks the
GENERIC representation top-down, marks nodes with TREE_VISITED the first
time it encounters them, duplicates them if they already have TREE_VISITED
set, and finally removes the TREE_VISITED marks it has set.
The algorithm works only at the function level, i.e. it generates a GENERIC
representation of a function with no nodes shared within the function when
passed a GENERIC function (except for nodes that are allowed to be shared).
At the global level, it is also necessary to unshare tree nodes that are
referenced in more than one function, for the same aforementioned reason.
This requires some cooperation from the front-end. There are 2 strategies:
1. Manual unsharing. The front-end needs to call unshare_expr on every
expression that might end up being shared across functions.
2. Deep unsharing. This is an extension of regular unsharing. Instead
of calling unshare_expr on expressions that might be shared across
functions, the front-end pre-marks them with TREE_VISITED. This will
ensure that they are unshared on the first reference within functions
when the regular unsharing algorithm runs. The counterpart is that
this algorithm must look deeper than for manual unsharing, which is
specified by LANG_HOOKS_DEEP_UNSHARING.
If there are only few specific cases of node sharing across functions, it is
probably easier for a front-end to unshare the expressions manually. On the
contrary, if the expressions generated at the global level are as widespread
as expressions generated within functions, deep unsharing is very likely the
way to go. */
/* Similar to copy_tree_r but do not copy SAVE_EXPR or TARGET_EXPR nodes.
These nodes model computations that must be done once. If we were to
unshare something like SAVE_EXPR(i++), the gimplification process would
create wrong code. However, if DATA is non-null, it must hold a pointer
set that is used to unshare the subtrees of these nodes. */
static tree
mostly_copy_tree_r (tree *tp, int *walk_subtrees, void *data)
{
tree t = *tp;
enum tree_code code = TREE_CODE (t);
/* Do not copy SAVE_EXPR, TARGET_EXPR or BIND_EXPR nodes themselves, but
copy their subtrees if we can make sure to do it only once. */
if (code == SAVE_EXPR || code == TARGET_EXPR || code == BIND_EXPR)
{
if (data && !((hash_set<tree> *)data)->add (t))
;
else
*walk_subtrees = 0;
}
/* Stop at types, decls, constants like copy_tree_r. */
else if (TREE_CODE_CLASS (code) == tcc_type
|| TREE_CODE_CLASS (code) == tcc_declaration
|| TREE_CODE_CLASS (code) == tcc_constant)
*walk_subtrees = 0;
/* Cope with the statement expression extension. */
else if (code == STATEMENT_LIST)
;
/* Leave the bulk of the work to copy_tree_r itself. */
else
copy_tree_r (tp, walk_subtrees, NULL);
return NULL_TREE;
}
/* Callback for walk_tree to unshare most of the shared trees rooted at *TP.
If *TP has been visited already, then *TP is deeply copied by calling
mostly_copy_tree_r. DATA is passed to mostly_copy_tree_r unmodified. */
static tree
copy_if_shared_r (tree *tp, int *walk_subtrees, void *data)
{
tree t = *tp;
enum tree_code code = TREE_CODE (t);
/* Skip types, decls, and constants. But we do want to look at their
types and the bounds of types. Mark them as visited so we properly
unmark their subtrees on the unmark pass. If we've already seen them,
don't look down further. */
if (TREE_CODE_CLASS (code) == tcc_type
|| TREE_CODE_CLASS (code) == tcc_declaration
|| TREE_CODE_CLASS (code) == tcc_constant)
{
if (TREE_VISITED (t))
*walk_subtrees = 0;
else
TREE_VISITED (t) = 1;
}
/* If this node has been visited already, unshare it and don't look
any deeper. */
else if (TREE_VISITED (t))
{
walk_tree (tp, mostly_copy_tree_r, data, NULL);
*walk_subtrees = 0;
}
/* Otherwise, mark the node as visited and keep looking. */
else
TREE_VISITED (t) = 1;
return NULL_TREE;
}
/* Unshare most of the shared trees rooted at *TP. DATA is passed to the
copy_if_shared_r callback unmodified. */
void
copy_if_shared (tree *tp, void *data)
{
walk_tree (tp, copy_if_shared_r, data, NULL);
}
/* Unshare all the trees in the body of FNDECL, as well as in the bodies of
any nested functions. */
static void
unshare_body (tree fndecl)
{
struct cgraph_node *cgn = cgraph_node::get (fndecl);
/* If the language requires deep unsharing, we need a pointer set to make
sure we don't repeatedly unshare subtrees of unshareable nodes. */
hash_set<tree> *visited
= lang_hooks.deep_unsharing ? new hash_set<tree> : NULL;
copy_if_shared (&DECL_SAVED_TREE (fndecl), visited);
copy_if_shared (&DECL_SIZE (DECL_RESULT (fndecl)), visited);
copy_if_shared (&DECL_SIZE_UNIT (DECL_RESULT (fndecl)), visited);
delete visited;
if (cgn)
for (cgn = first_nested_function (cgn); cgn;
cgn = next_nested_function (cgn))
unshare_body (cgn->decl);
}
/* Callback for walk_tree to unmark the visited trees rooted at *TP.
Subtrees are walked until the first unvisited node is encountered. */
static tree
unmark_visited_r (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
{
tree t = *tp;
/* If this node has been visited, unmark it and keep looking. */
if (TREE_VISITED (t))
TREE_VISITED (t) = 0;
/* Otherwise, don't look any deeper. */
else
*walk_subtrees = 0;
return NULL_TREE;
}
/* Unmark the visited trees rooted at *TP. */
static inline void
unmark_visited (tree *tp)
{
walk_tree (tp, unmark_visited_r, NULL, NULL);
}
/* Likewise, but mark all trees as not visited. */
static void
unvisit_body (tree fndecl)
{
struct cgraph_node *cgn = cgraph_node::get (fndecl);
unmark_visited (&DECL_SAVED_TREE (fndecl));
unmark_visited (&DECL_SIZE (DECL_RESULT (fndecl)));
unmark_visited (&DECL_SIZE_UNIT (DECL_RESULT (fndecl)));
if (cgn)
for (cgn = first_nested_function (cgn);
cgn; cgn = next_nested_function (cgn))
unvisit_body (cgn->decl);
}
/* Unconditionally make an unshared copy of EXPR. This is used when using
stored expressions which span multiple functions, such as BINFO_VTABLE,
as the normal unsharing process can't tell that they're shared. */
tree
unshare_expr (tree expr)
{
walk_tree (&expr, mostly_copy_tree_r, NULL, NULL);
return expr;
}
/* Worker for unshare_expr_without_location. */
static tree
prune_expr_location (tree *tp, int *walk_subtrees, void *)
{
if (EXPR_P (*tp))
SET_EXPR_LOCATION (*tp, UNKNOWN_LOCATION);
else
*walk_subtrees = 0;
return NULL_TREE;
}
/* Similar to unshare_expr but also prune all expression locations
from EXPR. */
tree
unshare_expr_without_location (tree expr)
{
walk_tree (&expr, mostly_copy_tree_r, NULL, NULL);
if (EXPR_P (expr))
walk_tree (&expr, prune_expr_location, NULL, NULL);
return expr;
}
/* Return the EXPR_LOCATION of EXPR, if it (maybe recursively) has
one, OR_ELSE otherwise. The location of a STATEMENT_LISTs
comprising at least one DEBUG_BEGIN_STMT followed by exactly one
EXPR is the location of the EXPR. */
static location_t
rexpr_location (tree expr, location_t or_else = UNKNOWN_LOCATION)
{
if (!expr)
return or_else;
if (EXPR_HAS_LOCATION (expr))
return EXPR_LOCATION (expr);
if (TREE_CODE (expr) != STATEMENT_LIST)
return or_else;
tree_stmt_iterator i = tsi_start (expr);
bool found = false;
while (!tsi_end_p (i) && TREE_CODE (tsi_stmt (i)) == DEBUG_BEGIN_STMT)
{
found = true;
tsi_next (&i);
}
if (!found || !tsi_one_before_end_p (i))
return or_else;
return rexpr_location (tsi_stmt (i), or_else);
}
/* Return TRUE iff EXPR (maybe recursively) has a location; see
rexpr_location for the potential recursion. */
static inline bool
rexpr_has_location (tree expr)
{
return rexpr_location (expr) != UNKNOWN_LOCATION;
}
/* WRAPPER is a code such as BIND_EXPR or CLEANUP_POINT_EXPR which can both
contain statements and have a value. Assign its value to a temporary
and give it void_type_node. Return the temporary, or NULL_TREE if
WRAPPER was already void. */
tree
voidify_wrapper_expr (tree wrapper, tree temp)
{
tree type = TREE_TYPE (wrapper);
if (type && !VOID_TYPE_P (type))
{
tree *p;
/* Set p to point to the body of the wrapper. Loop until we find
something that isn't a wrapper. */
for (p = &wrapper; p && *p; )
{
switch (TREE_CODE (*p))
{
case BIND_EXPR:
TREE_SIDE_EFFECTS (*p) = 1;
TREE_TYPE (*p) = void_type_node;
/* For a BIND_EXPR, the body is operand 1. */
p = &BIND_EXPR_BODY (*p);
break;
case CLEANUP_POINT_EXPR:
case TRY_FINALLY_EXPR:
case TRY_CATCH_EXPR:
TREE_SIDE_EFFECTS (*p) = 1;
TREE_TYPE (*p) = void_type_node;
p = &TREE_OPERAND (*p, 0);
break;
case STATEMENT_LIST:
{
tree_stmt_iterator i = tsi_last (*p);
TREE_SIDE_EFFECTS (*p) = 1;
TREE_TYPE (*p) = void_type_node;
p = tsi_end_p (i) ? NULL : tsi_stmt_ptr (i);
}
break;
case COMPOUND_EXPR:
/* Advance to the last statement. Set all container types to
void. */
for (; TREE_CODE (*p) == COMPOUND_EXPR; p = &TREE_OPERAND (*p, 1))
{
TREE_SIDE_EFFECTS (*p) = 1;
TREE_TYPE (*p) = void_type_node;
}
break;
case TRANSACTION_EXPR:
TREE_SIDE_EFFECTS (*p) = 1;
TREE_TYPE (*p) = void_type_node;
p = &TRANSACTION_EXPR_BODY (*p);
break;
default:
/* Assume that any tree upon which voidify_wrapper_expr is
directly called is a wrapper, and that its body is op0. */
if (p == &wrapper)
{
TREE_SIDE_EFFECTS (*p) = 1;
TREE_TYPE (*p) = void_type_node;
p = &TREE_OPERAND (*p, 0);
break;
}
goto out;
}
}
out:
if (p == NULL || IS_EMPTY_STMT (*p))
temp = NULL_TREE;
else if (temp)
{
/* The wrapper is on the RHS of an assignment that we're pushing
down. */
gcc_assert (TREE_CODE (temp) == INIT_EXPR
|| TREE_CODE (temp) == MODIFY_EXPR);
TREE_OPERAND (temp, 1) = *p;
*p = temp;
}
else
{
temp = create_tmp_var (type, "retval");
*p = build2 (INIT_EXPR, type, temp, *p);
}
return temp;
}
return NULL_TREE;
}
/* Prepare calls to builtins to SAVE and RESTORE the stack as well as
a temporary through which they communicate. */
static void
build_stack_save_restore (gcall **save, gcall **restore)
{
tree tmp_var;
*save = gimple_build_call (builtin_decl_implicit (BUILT_IN_STACK_SAVE), 0);
tmp_var = create_tmp_var (ptr_type_node, "saved_stack");
gimple_call_set_lhs (*save, tmp_var);
*restore
= gimple_build_call (builtin_decl_implicit (BUILT_IN_STACK_RESTORE),
1, tmp_var);
}
/* Generate IFN_ASAN_MARK call that poisons shadow of a for DECL variable. */
static tree
build_asan_poison_call_expr (tree decl)
{
/* Do not poison variables that have size equal to zero. */
tree unit_size = DECL_SIZE_UNIT (decl);
if (zerop (unit_size))
return NULL_TREE;
tree base = build_fold_addr_expr (decl);
return build_call_expr_internal_loc (UNKNOWN_LOCATION, IFN_ASAN_MARK,
void_type_node, 3,
build_int_cst (integer_type_node,
ASAN_MARK_POISON),
base, unit_size);
}
/* Generate IFN_ASAN_MARK call that would poison or unpoison, depending
on POISON flag, shadow memory of a DECL variable. The call will be
put on location identified by IT iterator, where BEFORE flag drives
position where the stmt will be put. */
static void
asan_poison_variable (tree decl, bool poison, gimple_stmt_iterator *it,
bool before)
{
tree unit_size = DECL_SIZE_UNIT (decl);
tree base = build_fold_addr_expr (decl);
/* Do not poison variables that have size equal to zero. */
if (zerop (unit_size))
return;
/* It's necessary to have all stack variables aligned to ASAN granularity
bytes. */
gcc_assert (!hwasan_sanitize_p () || hwasan_sanitize_stack_p ());
unsigned shadow_granularity
= hwasan_sanitize_p () ? HWASAN_TAG_GRANULE_SIZE : ASAN_SHADOW_GRANULARITY;
if (DECL_ALIGN_UNIT (decl) <= shadow_granularity)
SET_DECL_ALIGN (decl, BITS_PER_UNIT * shadow_granularity);
HOST_WIDE_INT flags = poison ? ASAN_MARK_POISON : ASAN_MARK_UNPOISON;
gimple *g
= gimple_build_call_internal (IFN_ASAN_MARK, 3,
build_int_cst (integer_type_node, flags),
base, unit_size);
if (before)
gsi_insert_before (it, g, GSI_NEW_STMT);
else
gsi_insert_after (it, g, GSI_NEW_STMT);
}
/* Generate IFN_ASAN_MARK internal call that depending on POISON flag
either poisons or unpoisons a DECL. Created statement is appended
to SEQ_P gimple sequence. */
static void
asan_poison_variable (tree decl, bool poison, gimple_seq *seq_p)
{
gimple_stmt_iterator it = gsi_last (*seq_p);
bool before = false;
if (gsi_end_p (it))
before = true;
asan_poison_variable (decl, poison, &it, before);
}
/* Sort pair of VAR_DECLs A and B by DECL_UID. */
static int
sort_by_decl_uid (const void *a, const void *b)
{
const tree *t1 = (const tree *)a;
const tree *t2 = (const tree *)b;
int uid1 = DECL_UID (*t1);
int uid2 = DECL_UID (*t2);
if (uid1 < uid2)
return -1;
else if (uid1 > uid2)
return 1;
else
return 0;
}
/* Generate IFN_ASAN_MARK internal call for all VARIABLES
depending on POISON flag. Created statement is appended
to SEQ_P gimple sequence. */
static void
asan_poison_variables (hash_set<tree> *variables, bool poison, gimple_seq *seq_p)
{
unsigned c = variables->elements ();
if (c == 0)
return;
auto_vec<tree> sorted_variables (c);
for (hash_set<tree>::iterator it = variables->begin ();
it != variables->end (); ++it)
sorted_variables.safe_push (*it);
sorted_variables.qsort (sort_by_decl_uid);
unsigned i;
tree var;
FOR_EACH_VEC_ELT (sorted_variables, i, var)
{
asan_poison_variable (var, poison, seq_p);
/* Add use_after_scope_memory attribute for the variable in order
to prevent re-written into SSA. */
if (!lookup_attribute (ASAN_USE_AFTER_SCOPE_ATTRIBUTE,
DECL_ATTRIBUTES (var)))
DECL_ATTRIBUTES (var)
= tree_cons (get_identifier (ASAN_USE_AFTER_SCOPE_ATTRIBUTE),
integer_one_node,
DECL_ATTRIBUTES (var));
}
}
/* Gimplify a BIND_EXPR. Just voidify and recurse. */
static enum gimplify_status
gimplify_bind_expr (tree *expr_p, gimple_seq *pre_p)
{
tree bind_expr = *expr_p;
bool old_keep_stack = gimplify_ctxp->keep_stack;
bool old_save_stack = gimplify_ctxp->save_stack;
tree t;
gbind *bind_stmt;
gimple_seq body, cleanup;
gcall *stack_save;
location_t start_locus = 0, end_locus = 0;
tree ret_clauses = NULL;
tree temp = voidify_wrapper_expr (bind_expr, NULL);
/* Mark variables seen in this bind expr. */
for (t = BIND_EXPR_VARS (bind_expr); t ; t = DECL_CHAIN (t))
{
if (VAR_P (t))
{
struct gimplify_omp_ctx *ctx = gimplify_omp_ctxp;
/* Mark variable as local. */
if (ctx && ctx->region_type != ORT_NONE && !DECL_EXTERNAL (t))
{
if (! DECL_SEEN_IN_BIND_EXPR_P (t)
|| splay_tree_lookup (ctx->variables,
(splay_tree_key) t) == NULL)
{
int flag = GOVD_LOCAL;
if (ctx->region_type == ORT_SIMD
&& TREE_ADDRESSABLE (t)
&& !TREE_STATIC (t))
{
if (TREE_CODE (DECL_SIZE_UNIT (t)) != INTEGER_CST)
ctx->add_safelen1 = true;
else
flag = GOVD_PRIVATE;
}
omp_add_variable (ctx, t, flag | GOVD_SEEN);
}
/* Static locals inside of target construct or offloaded
routines need to be "omp declare target". */
if (TREE_STATIC (t))
for (; ctx; ctx = ctx->outer_context)
if ((ctx->region_type & ORT_TARGET) != 0)
{
if (!lookup_attribute ("omp declare target",
DECL_ATTRIBUTES (t)))
{
tree id = get_identifier ("omp declare target");
DECL_ATTRIBUTES (t)
= tree_cons (id, NULL_TREE, DECL_ATTRIBUTES (t));
varpool_node *node = varpool_node::get (t);
if (node)
{
node->offloadable = 1;
if (ENABLE_OFFLOADING && !DECL_EXTERNAL (t))
{
g->have_offload = true;
if (!in_lto_p)
vec_safe_push (offload_vars, t);
}
}
}
break;
}
}
DECL_SEEN_IN_BIND_EXPR_P (t) = 1;
if (DECL_HARD_REGISTER (t) && !is_global_var (t) && cfun)
cfun->has_local_explicit_reg_vars = true;
}
}
bind_stmt = gimple_build_bind (BIND_EXPR_VARS (bind_expr), NULL,
BIND_EXPR_BLOCK (bind_expr));
gimple_push_bind_expr (bind_stmt);
gimplify_ctxp->keep_stack = false;
gimplify_ctxp->save_stack = false;
/* Gimplify the body into the GIMPLE_BIND tuple's body. */
body = NULL;
gimplify_stmt (&BIND_EXPR_BODY (bind_expr), &body);
gimple_bind_set_body (bind_stmt, body);
/* Source location wise, the cleanup code (stack_restore and clobbers)
belongs to the end of the block, so propagate what we have. The
stack_save operation belongs to the beginning of block, which we can
infer from the bind_expr directly if the block has no explicit
assignment. */
if (BIND_EXPR_BLOCK (bind_expr))
{
end_locus = BLOCK_SOURCE_END_LOCATION (BIND_EXPR_BLOCK (bind_expr));
start_locus = BLOCK_SOURCE_LOCATION (BIND_EXPR_BLOCK (bind_expr));
}
if (start_locus == 0)
start_locus = EXPR_LOCATION (bind_expr);
cleanup = NULL;
stack_save = NULL;
/* If the code both contains VLAs and calls alloca, then we cannot reclaim
the stack space allocated to the VLAs. */
if (gimplify_ctxp->save_stack && !gimplify_ctxp->keep_stack)
{
gcall *stack_restore;
/* Save stack on entry and restore it on exit. Add a try_finally
block to achieve this. */
build_stack_save_restore (&stack_save, &stack_restore);
gimple_set_location (stack_save, start_locus);
gimple_set_location (stack_restore, end_locus);
gimplify_seq_add_stmt (&cleanup, stack_restore);
}
/* Add clobbers for all variables that go out of scope. */
for (t = BIND_EXPR_VARS (bind_expr); t ; t = DECL_CHAIN (t))
{
if (VAR_P (t)
&& !is_global_var (t)
&& DECL_CONTEXT (t) == current_function_decl)
{
if (!DECL_HARD_REGISTER (t)
&& !TREE_THIS_VOLATILE (t)
&& !DECL_HAS_VALUE_EXPR_P (t)
/* Only care for variables that have to be in memory. Others
will be rewritten into SSA names, hence moved to the
top-level. */
&& !is_gimple_reg (t)
&& flag_stack_reuse != SR_NONE)
{
tree clobber = build_clobber (TREE_TYPE (t), CLOBBER_EOL);
gimple *clobber_stmt;
clobber_stmt = gimple_build_assign (t, clobber);
gimple_set_location (clobber_stmt, end_locus);
gimplify_seq_add_stmt (&cleanup, clobber_stmt);
}
if (flag_openacc && oacc_declare_returns != NULL)
{
tree key = t;
if (DECL_HAS_VALUE_EXPR_P (key))
{
key = DECL_VALUE_EXPR (key);
if (TREE_CODE (key) == INDIRECT_REF)
key = TREE_OPERAND (key, 0);
}
tree *c = oacc_declare_returns->get (key);
if (c != NULL)
{
if (ret_clauses)
OMP_CLAUSE_CHAIN (*c) = ret_clauses;
ret_clauses = unshare_expr (*c);
oacc_declare_returns->remove (key);
if (oacc_declare_returns->is_empty ())
{
delete oacc_declare_returns;
oacc_declare_returns = NULL;
}
}
}
}
if (asan_poisoned_variables != NULL
&& asan_poisoned_variables->contains (t))
{
asan_poisoned_variables->remove (t);
asan_poison_variable (t, true, &cleanup);
}
if (gimplify_ctxp->live_switch_vars != NULL
&& gimplify_ctxp->live_switch_vars->contains (t))
gimplify_ctxp->live_switch_vars->remove (t);
}
if (ret_clauses)
{
gomp_target *stmt;
gimple_stmt_iterator si = gsi_start (cleanup);
stmt = gimple_build_omp_target (NULL, GF_OMP_TARGET_KIND_OACC_DECLARE,
ret_clauses);
gsi_insert_seq_before_without_update (&si, stmt, GSI_NEW_STMT);
}
if (cleanup)
{
gtry *gs;
gimple_seq new_body;
new_body = NULL;
gs = gimple_build_try (gimple_bind_body (bind_stmt), cleanup,
GIMPLE_TRY_FINALLY);
if (stack_save)
gimplify_seq_add_stmt (&new_body, stack_save);
gimplify_seq_add_stmt (&new_body, gs);
gimple_bind_set_body (bind_stmt, new_body);
}
/* keep_stack propagates all the way up to the outermost BIND_EXPR. */
if (!gimplify_ctxp->keep_stack)
gimplify_ctxp->keep_stack = old_keep_stack;
gimplify_ctxp->save_stack = old_save_stack;
gimple_pop_bind_expr ();
gimplify_seq_add_stmt (pre_p, bind_stmt);
if (temp)
{
*expr_p = temp;
return GS_OK;
}
*expr_p = NULL_TREE;
return GS_ALL_DONE;
}
/* Maybe add early return predict statement to PRE_P sequence. */
static void
maybe_add_early_return_predict_stmt (gimple_seq *pre_p)
{
/* If we are not in a conditional context, add PREDICT statement. */
if (gimple_conditional_context ())
{
gimple *predict = gimple_build_predict (PRED_TREE_EARLY_RETURN,
NOT_TAKEN);
gimplify_seq_add_stmt (pre_p, predict);
}
}
/* Gimplify a RETURN_EXPR. If the expression to be returned is not a
GIMPLE value, it is assigned to a new temporary and the statement is
re-written to return the temporary.
PRE_P points to the sequence where side effects that must happen before
STMT should be stored. */
static enum gimplify_status
gimplify_return_expr (tree stmt, gimple_seq *pre_p)
{
greturn *ret;
tree ret_expr = TREE_OPERAND (stmt, 0);
tree result_decl, result;
if (ret_expr == error_mark_node)
return GS_ERROR;
if (!ret_expr
|| TREE_CODE (ret_expr) == RESULT_DECL)
{
maybe_add_early_return_predict_stmt (pre_p);
greturn *ret = gimple_build_return (ret_expr);
copy_warning (ret, stmt);
gimplify_seq_add_stmt (pre_p, ret);
return GS_ALL_DONE;
}
if (VOID_TYPE_P (TREE_TYPE (TREE_TYPE (current_function_decl))))
result_decl = NULL_TREE;
else if (TREE_CODE (ret_expr) == COMPOUND_EXPR)
{
/* Used in C++ for handling EH cleanup of the return value if a local
cleanup throws. Assume the front-end knows what it's doing. */
result_decl = DECL_RESULT (current_function_decl);
/* But crash if we end up trying to modify ret_expr below. */
ret_expr = NULL_TREE;
}
else
{
result_decl = TREE_OPERAND (ret_expr, 0);
/* See through a return by reference. */
if (TREE_CODE (result_decl) == INDIRECT_REF)
result_decl = TREE_OPERAND (result_decl, 0);
gcc_assert ((TREE_CODE (ret_expr) == MODIFY_EXPR
|| TREE_CODE (ret_expr) == INIT_EXPR)
&& TREE_CODE (result_decl) == RESULT_DECL);
}
/* If aggregate_value_p is true, then we can return the bare RESULT_DECL.
Recall that aggregate_value_p is FALSE for any aggregate type that is
returned in registers. If we're returning values in registers, then
we don't want to extend the lifetime of the RESULT_DECL, particularly
across another call. In addition, for those aggregates for which
hard_function_value generates a PARALLEL, we'll die during normal
expansion of structure assignments; there's special code in expand_return
to handle this case that does not exist in expand_expr. */
if (!result_decl)
result = NULL_TREE;
else if (aggregate_value_p (result_decl, TREE_TYPE (current_function_decl)))
{
if (!poly_int_tree_p (DECL_SIZE (result_decl)))
{
if (!TYPE_SIZES_GIMPLIFIED (TREE_TYPE (result_decl)))
gimplify_type_sizes (TREE_TYPE (result_decl), pre_p);
/* Note that we don't use gimplify_vla_decl because the RESULT_DECL
should be effectively allocated by the caller, i.e. all calls to
this function must be subject to the Return Slot Optimization. */
gimplify_one_sizepos (&DECL_SIZE (result_decl), pre_p);
gimplify_one_sizepos (&DECL_SIZE_UNIT (result_decl), pre_p);
}
result = result_decl;
}
else if (gimplify_ctxp->return_temp)
result = gimplify_ctxp->return_temp;
else
{
result = create_tmp_reg (TREE_TYPE (result_decl));
/* ??? With complex control flow (usually involving abnormal edges),
we can wind up warning about an uninitialized value for this. Due
to how this variable is constructed and initialized, this is never
true. Give up and never warn. */
suppress_warning (result, OPT_Wuninitialized);
gimplify_ctxp->return_temp = result;
}
/* Smash the lhs of the MODIFY_EXPR to the temporary we plan to use.
Then gimplify the whole thing. */
if (result != result_decl)
TREE_OPERAND (ret_expr, 0) = result;
gimplify_and_add (TREE_OPERAND (stmt, 0), pre_p);
maybe_add_early_return_predict_stmt (pre_p);
ret = gimple_build_return (result);
copy_warning (ret, stmt);
gimplify_seq_add_stmt (pre_p, ret);
return GS_ALL_DONE;
}
/* Gimplify a variable-length array DECL. */
static void
gimplify_vla_decl (tree decl, gimple_seq *seq_p)
{
/* This is a variable-sized decl. Simplify its size and mark it
for deferred expansion. */
tree t, addr, ptr_type;
gimplify_one_sizepos (&DECL_SIZE (decl), seq_p);
gimplify_one_sizepos (&DECL_SIZE_UNIT (decl), seq_p);
/* Don't mess with a DECL_VALUE_EXPR set by the front-end. */
if (DECL_HAS_VALUE_EXPR_P (decl))
return;
/* All occurrences of this decl in final gimplified code will be
replaced by indirection. Setting DECL_VALUE_EXPR does two
things: First, it lets the rest of the gimplifier know what
replacement to use. Second, it lets the debug info know
where to find the value. */
ptr_type = build_pointer_type (TREE_TYPE (decl));
addr = create_tmp_var (ptr_type, get_name (decl));
DECL_IGNORED_P (addr) = 0;
t = build_fold_indirect_ref (addr);
TREE_THIS_NOTRAP (t) = 1;
SET_DECL_VALUE_EXPR (decl, t);
DECL_HAS_VALUE_EXPR_P (decl) = 1;
t = build_alloca_call_expr (DECL_SIZE_UNIT (decl), DECL_ALIGN (decl),
max_int_size_in_bytes (TREE_TYPE (decl)));
/* The call has been built for a variable-sized object. */
CALL_ALLOCA_FOR_VAR_P (t) = 1;
t = fold_convert (ptr_type, t);
t = build2 (MODIFY_EXPR, TREE_TYPE (addr), addr, t);
gimplify_and_add (t, seq_p);
/* Record the dynamic allocation associated with DECL if requested. */
if (flag_callgraph_info & CALLGRAPH_INFO_DYNAMIC_ALLOC)
record_dynamic_alloc (decl);
}
/* A helper function to be called via walk_tree. Mark all labels under *TP
as being forced. To be called for DECL_INITIAL of static variables. */
static tree
force_labels_r (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
{
if (TYPE_P (*tp))
*walk_subtrees = 0;
if (TREE_CODE (*tp) == LABEL_DECL)
{
FORCED_LABEL (*tp) = 1;
cfun->has_forced_label_in_static = 1;
}
return NULL_TREE;
}
/* Generate an initialization to automatic variable DECL based on INIT_TYPE.
Build a call to internal const function DEFERRED_INIT:
1st argument: SIZE of the DECL;
2nd argument: INIT_TYPE;
3rd argument: NAME of the DECL;
as LHS = DEFERRED_INIT (SIZE of the DECL, INIT_TYPE, NAME of the DECL). */
static void
gimple_add_init_for_auto_var (tree decl,
enum auto_init_type init_type,
gimple_seq *seq_p)
{
gcc_assert (auto_var_p (decl));
gcc_assert (init_type > AUTO_INIT_UNINITIALIZED);
location_t loc = EXPR_LOCATION (decl);
tree decl_size = TYPE_SIZE_UNIT (TREE_TYPE (decl));
tree init_type_node
= build_int_cst (integer_type_node, (int) init_type);
tree decl_name = NULL_TREE;
if (DECL_NAME (decl))
decl_name = build_string_literal (DECL_NAME (decl));
else
{
char *decl_name_anonymous = xasprintf ("D.%u", DECL_UID (decl));
decl_name = build_string_literal (decl_name_anonymous);
free (decl_name_anonymous);
}
tree call = build_call_expr_internal_loc (loc, IFN_DEFERRED_INIT,
TREE_TYPE (decl), 3,
decl_size, init_type_node,
decl_name);
gimplify_assign (decl, call, seq_p);
}
/* Generate padding initialization for automatic vairable DECL.
C guarantees that brace-init with fewer initializers than members
aggregate will initialize the rest of the aggregate as-if it were
static initialization. In turn static initialization guarantees
that padding is initialized to zero. So, we always initialize paddings
to zeroes regardless INIT_TYPE.
To do the padding initialization, we insert a call to
__builtin_clear_padding (&decl, 0, for_auto_init = true).
Note, we add an additional dummy argument for __builtin_clear_padding,
'for_auto_init' to distinguish whether this call is for automatic
variable initialization or not.
*/
static void
gimple_add_padding_init_for_auto_var (tree decl, bool is_vla,
gimple_seq *seq_p)
{
tree addr_of_decl = NULL_TREE;
tree fn = builtin_decl_explicit (BUILT_IN_CLEAR_PADDING);
if (is_vla)
{
/* The temporary address variable for this vla should be
created in gimplify_vla_decl. */
gcc_assert (DECL_HAS_VALUE_EXPR_P (decl));
gcc_assert (TREE_CODE (DECL_VALUE_EXPR (decl)) == INDIRECT_REF);
addr_of_decl = TREE_OPERAND (DECL_VALUE_EXPR (decl), 0);
}
else
{
mark_addressable (decl);
addr_of_decl = build_fold_addr_expr (decl);
}
gimple *call = gimple_build_call (fn, 2, addr_of_decl,
build_one_cst (TREE_TYPE (addr_of_decl)));
gimplify_seq_add_stmt (seq_p, call);
}
/* Return true if the DECL need to be automaticly initialized by the
compiler. */
static bool
is_var_need_auto_init (tree decl)
{
if (auto_var_p (decl)
&& (TREE_CODE (decl) != VAR_DECL
|| !DECL_HARD_REGISTER (decl))
&& (flag_auto_var_init > AUTO_INIT_UNINITIALIZED)
&& (!lookup_attribute ("uninitialized", DECL_ATTRIBUTES (decl)))
&& !OPAQUE_TYPE_P (TREE_TYPE (decl))
&& !is_empty_type (TREE_TYPE (decl)))
return true;
return false;
}
/* Gimplify a DECL_EXPR node *STMT_P by making any necessary allocation
and initialization explicit. */
static enum gimplify_status
gimplify_decl_expr (tree *stmt_p, gimple_seq *seq_p)
{
tree stmt = *stmt_p;
tree decl = DECL_EXPR_DECL (stmt);
*stmt_p = NULL_TREE;
if (TREE_TYPE (decl) == error_mark_node)
return GS_ERROR;
if ((TREE_CODE (decl) == TYPE_DECL
|| VAR_P (decl))
&& !TYPE_SIZES_GIMPLIFIED (TREE_TYPE (decl)))
{
gimplify_type_sizes (TREE_TYPE (decl), seq_p);
if (TREE_CODE (TREE_TYPE (decl)) == REFERENCE_TYPE)
gimplify_type_sizes (TREE_TYPE (TREE_TYPE (decl)), seq_p);
}
/* ??? DECL_ORIGINAL_TYPE is streamed for LTO so it needs to be gimplified
in case its size expressions contain problematic nodes like CALL_EXPR. */
if (TREE_CODE (decl) == TYPE_DECL
&& DECL_ORIGINAL_TYPE (decl)
&& !TYPE_SIZES_GIMPLIFIED (DECL_ORIGINAL_TYPE (decl)))
{
gimplify_type_sizes (DECL_ORIGINAL_TYPE (decl), seq_p);
if (TREE_CODE (DECL_ORIGINAL_TYPE (decl)) == REFERENCE_TYPE)
gimplify_type_sizes (TREE_TYPE (DECL_ORIGINAL_TYPE (decl)), seq_p);
}
if (VAR_P (decl) && !DECL_EXTERNAL (decl))
{
tree init = DECL_INITIAL (decl);
bool is_vla = false;
/* Check whether a decl has FE created VALUE_EXPR here BEFORE
gimplify_vla_decl creates VALUE_EXPR for a vla decl.
If the decl has VALUE_EXPR that was created by FE (usually
C++FE), it's a proxy varaible, and FE already initialized
the VALUE_EXPR of it, we should not initialize it anymore. */
bool decl_had_value_expr_p = DECL_HAS_VALUE_EXPR_P (decl);
poly_uint64 size;
if (!poly_int_tree_p (DECL_SIZE_UNIT (decl), &size)
|| (!TREE_STATIC (decl)
&& flag_stack_check == GENERIC_STACK_CHECK
&& maybe_gt (size,
(unsigned HOST_WIDE_INT) STACK_CHECK_MAX_VAR_SIZE)))
{
gimplify_vla_decl (decl, seq_p);
is_vla = true;
}
if (asan_poisoned_variables
&& !is_vla
&& TREE_ADDRESSABLE (decl)
&& !TREE_STATIC (decl)
&& !DECL_HAS_VALUE_EXPR_P (decl)
&& DECL_ALIGN (decl) <= MAX_SUPPORTED_STACK_ALIGNMENT
&& dbg_cnt (asan_use_after_scope)
&& !gimplify_omp_ctxp
/* GNAT introduces temporaries to hold return values of calls in
initializers of variables defined in other units, so the
declaration of the variable is discarded completely. We do not
want to issue poison calls for such dropped variables. */
&& (DECL_SEEN_IN_BIND_EXPR_P (decl)
|| (DECL_ARTIFICIAL (decl) && DECL_NAME (decl) == NULL_TREE)))
{
asan_poisoned_variables->add (decl);
asan_poison_variable (decl, false, seq_p);
if (!DECL_ARTIFICIAL (decl) && gimplify_ctxp->live_switch_vars)
gimplify_ctxp->live_switch_vars->add (decl);
}
/* Some front ends do not explicitly declare all anonymous
artificial variables. We compensate here by declaring the
variables, though it would be better if the front ends would
explicitly declare them. */
if (!DECL_SEEN_IN_BIND_EXPR_P (decl)
&& DECL_ARTIFICIAL (decl) && DECL_NAME (decl) == NULL_TREE)
gimple_add_tmp_var (decl);
if (init && init != error_mark_node)
{
if (!TREE_STATIC (decl))
{
DECL_INITIAL (decl) = NULL_TREE;
init = build2 (INIT_EXPR, void_type_node, decl, init);
gimplify_and_add (init, seq_p);
ggc_free (init);
/* Clear TREE_READONLY if we really have an initialization. */
if (!DECL_INITIAL (decl)
&& !omp_privatize_by_reference (decl))
TREE_READONLY (decl) = 0;
}
else
/* We must still examine initializers for static variables
as they may contain a label address. */
walk_tree (&init, force_labels_r, NULL, NULL);
}
/* When there is no explicit initializer, if the user requested,
We should insert an artifical initializer for this automatic
variable. */
else if (is_var_need_auto_init (decl)
&& !decl_had_value_expr_p)
{
gimple_add_init_for_auto_var (decl,
flag_auto_var_init,
seq_p);
/* The expanding of a call to the above .DEFERRED_INIT will apply
block initialization to the whole space covered by this variable.
As a result, all the paddings will be initialized to zeroes
for zero initialization and 0xFE byte-repeatable patterns for
pattern initialization.
In order to make the paddings as zeroes for pattern init, We
should add a call to __builtin_clear_padding to clear the
paddings to zero in compatiple with CLANG.
We cannot insert this call if the variable is a gimple register
since __builtin_clear_padding will take the address of the
variable. As a result, if a long double/_Complex long double
variable will spilled into stack later, its padding is 0XFE. */
if (flag_auto_var_init == AUTO_INIT_PATTERN
&& !is_gimple_reg (decl)
&& clear_padding_type_may_have_padding_p (TREE_TYPE (decl)))
gimple_add_padding_init_for_auto_var (decl, is_vla, seq_p);
}
}
return GS_ALL_DONE;
}
/* Gimplify a LOOP_EXPR. Normally this just involves gimplifying the body
and replacing the LOOP_EXPR with goto, but if the loop contains an
EXIT_EXPR, we need to append a label for it to jump to. */
static enum gimplify_status
gimplify_loop_expr (tree *expr_p, gimple_seq *pre_p)
{
tree saved_label = gimplify_ctxp->exit_label;
tree start_label = create_artificial_label (UNKNOWN_LOCATION);
gimplify_seq_add_stmt (pre_p, gimple_build_label (start_label));
gimplify_ctxp->exit_label = NULL_TREE;
gimplify_and_add (LOOP_EXPR_BODY (*expr_p), pre_p);
gimplify_seq_add_stmt (pre_p, gimple_build_goto (start_label));
if (gimplify_ctxp->exit_label)
gimplify_seq_add_stmt (pre_p,
gimple_build_label (gimplify_ctxp->exit_label));
gimplify_ctxp->exit_label = saved_label;
*expr_p = NULL;
return GS_ALL_DONE;
}
/* Gimplify a statement list onto a sequence. These may be created either
by an enlightened front-end, or by shortcut_cond_expr. */
static enum gimplify_status
gimplify_statement_list (tree *expr_p, gimple_seq *pre_p)
{
tree temp = voidify_wrapper_expr (*expr_p, NULL);
tree_stmt_iterator i = tsi_start (*expr_p);
while (!tsi_end_p (i))
{
gimplify_stmt (tsi_stmt_ptr (i), pre_p);
tsi_delink (&i);
}
if (temp)
{
*expr_p = temp;
return GS_OK;
}
return GS_ALL_DONE;
}
/* Emit warning for the unreachable statment STMT if needed.
Return the gimple itself when the warning is emitted, otherwise
return NULL. */
static gimple *
emit_warn_switch_unreachable (gimple *stmt)
{
if (gimple_code (stmt) == GIMPLE_GOTO
&& TREE_CODE (gimple_goto_dest (stmt)) == LABEL_DECL
&& DECL_ARTIFICIAL (gimple_goto_dest (stmt)))
/* Don't warn for compiler-generated gotos. These occur
in Duff's devices, for example. */
return NULL;
else if ((flag_auto_var_init > AUTO_INIT_UNINITIALIZED)
&& ((gimple_call_internal_p (stmt, IFN_DEFERRED_INIT))
|| (gimple_call_builtin_p (stmt, BUILT_IN_CLEAR_PADDING)
&& (bool) TREE_INT_CST_LOW (gimple_call_arg (stmt, 1)))
|| (is_gimple_assign (stmt)
&& gimple_assign_single_p (stmt)
&& (TREE_CODE (gimple_assign_rhs1 (stmt)) == SSA_NAME)
&& gimple_call_internal_p (
SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt)),
IFN_DEFERRED_INIT))))
/* Don't warn for compiler-generated initializations for
-ftrivial-auto-var-init.
There are 3 cases:
case 1: a call to .DEFERRED_INIT;
case 2: a call to __builtin_clear_padding with the 2nd argument is
present and non-zero;
case 3: a gimple assign store right after the call to .DEFERRED_INIT
that has the LHS of .DEFERRED_INIT as the RHS as following:
_1 = .DEFERRED_INIT (4, 2, &"i1"[0]);
i1 = _1. */
return NULL;
else
warning_at (gimple_location (stmt), OPT_Wswitch_unreachable,
"statement will never be executed");
return stmt;
}
/* Callback for walk_gimple_seq. */
static tree
warn_switch_unreachable_and_auto_init_r (gimple_stmt_iterator *gsi_p,
bool *handled_ops_p,
struct walk_stmt_info *wi)
{
gimple *stmt = gsi_stmt (*gsi_p);
bool unreachable_issued = wi->info != NULL;
*handled_ops_p = true;
switch (gimple_code (stmt))
{
case GIMPLE_TRY:
/* A compiler-generated cleanup or a user-written try block.
If it's empty, don't dive into it--that would result in
worse location info. */
if (gimple_try_eval (stmt) == NULL)
{
if (warn_switch_unreachable && !unreachable_issued)
wi->info = emit_warn_switch_unreachable (stmt);
/* Stop when auto var init warning is not on. */
if (!warn_trivial_auto_var_init)
return integer_zero_node;
}
/* Fall through. */
case GIMPLE_BIND:
case GIMPLE_CATCH:
case GIMPLE_EH_FILTER:
case GIMPLE_TRANSACTION:
/* Walk the sub-statements. */
*handled_ops_p = false;
break;
case GIMPLE_DEBUG:
/* Ignore these. We may generate them before declarations that
are never executed. If there's something to warn about,
there will be non-debug stmts too, and we'll catch those. */
break;
case GIMPLE_LABEL:
/* Stop till the first Label. */
return integer_zero_node;
case GIMPLE_CALL:
if (gimple_call_internal_p (stmt, IFN_ASAN_MARK))
{
*handled_ops_p = false;
break;
}
if (warn_trivial_auto_var_init
&& flag_auto_var_init > AUTO_INIT_UNINITIALIZED
&& gimple_call_internal_p (stmt, IFN_DEFERRED_INIT))
{
/* Get the variable name from the 3rd argument of call. */
tree var_name = gimple_call_arg (stmt, 2);
var_name = TREE_OPERAND (TREE_OPERAND (var_name, 0), 0);
const char *var_name_str = TREE_STRING_POINTER (var_name);
warning_at (gimple_location (stmt), OPT_Wtrivial_auto_var_init,
"%qs cannot be initialized with"
"%<-ftrivial-auto-var_init%>",
var_name_str);
break;
}
/* Fall through. */
default:
/* check the first "real" statement (not a decl/lexical scope/...), issue
warning if needed. */
if (warn_switch_unreachable && !unreachable_issued)
wi->info = emit_warn_switch_unreachable (stmt);
/* Stop when auto var init warning is not on. */
if (!warn_trivial_auto_var_init)
return integer_zero_node;
break;
}
return NULL_TREE;
}
/* Possibly warn about unreachable statements between switch's controlling
expression and the first case. Also warn about -ftrivial-auto-var-init
cannot initialize the auto variable under such situation.
SEQ is the body of a switch expression. */
static void
maybe_warn_switch_unreachable_and_auto_init (gimple_seq seq)
{
if ((!warn_switch_unreachable && !warn_trivial_auto_var_init)
/* This warning doesn't play well with Fortran when optimizations
are on. */
|| lang_GNU_Fortran ()
|| seq == NULL)
return;
struct walk_stmt_info wi;
memset (&wi, 0, sizeof (wi));
walk_gimple_seq (seq, warn_switch_unreachable_and_auto_init_r, NULL, &wi);
}
/* A label entry that pairs label and a location. */
struct label_entry
{
tree label;
location_t loc;
};
/* Find LABEL in vector of label entries VEC. */
static struct label_entry *
find_label_entry (const auto_vec<struct label_entry> *vec, tree label)
{
unsigned int i;
struct label_entry *l;
FOR_EACH_VEC_ELT (*vec, i, l)
if (l->label == label)
return l;
return NULL;
}
/* Return true if LABEL, a LABEL_DECL, represents a case label
in a vector of labels CASES. */
static bool
case_label_p (const vec<tree> *cases, tree label)
{
unsigned int i;
tree l;
FOR_EACH_VEC_ELT (*cases, i, l)
if (CASE_LABEL (l) == label)
return true;
return false;
}
/* Find the last nondebug statement in a scope STMT. */
static gimple *
last_stmt_in_scope (gimple *stmt)
{
if (!stmt)
return NULL;
switch (gimple_code (stmt))
{
case GIMPLE_BIND:
{
gbind *bind = as_a <gbind *> (stmt);
stmt = gimple_seq_last_nondebug_stmt (gimple_bind_body (bind));
return last_stmt_in_scope (stmt);
}
case GIMPLE_TRY:
{
gtry *try_stmt = as_a <gtry *> (stmt);
stmt = gimple_seq_last_nondebug_stmt (gimple_try_eval (try_stmt));
gimple *last_eval = last_stmt_in_scope (stmt);
if (gimple_stmt_may_fallthru (last_eval)
&& (last_eval == NULL
|| !gimple_call_internal_p (last_eval, IFN_FALLTHROUGH))
&& gimple_try_kind (try_stmt) == GIMPLE_TRY_FINALLY)
{
stmt = gimple_seq_last_nondebug_stmt (gimple_try_cleanup (try_stmt));
return last_stmt_in_scope (stmt);
}
else
return last_eval;
}
case GIMPLE_DEBUG:
gcc_unreachable ();
default:
return stmt;
}
}
/* Collect labels that may fall through into LABELS and return the statement
preceding another case label, or a user-defined label. Store a location
useful to give warnings at *PREVLOC (usually the location of the returned
statement or of its surrounding scope). */
static gimple *
collect_fallthrough_labels (gimple_stmt_iterator *gsi_p,
auto_vec <struct label_entry> *labels,
location_t *prevloc)
{
gimple *prev = NULL;
*prevloc = UNKNOWN_LOCATION;
do
{
if (gimple_code (gsi_stmt (*gsi_p)) == GIMPLE_BIND)
{
/* Recognize the special GIMPLE_BIND added by gimplify_switch_expr,
which starts on a GIMPLE_SWITCH and ends with a break label.
Handle that as a single statement that can fall through. */
gbind *bind = as_a <gbind *> (gsi_stmt (*gsi_p));
gimple *first = gimple_seq_first_stmt (gimple_bind_body (bind));
gimple *last = gimple_seq_last_stmt (gimple_bind_body (bind));
if (last
&& gimple_code (first) == GIMPLE_SWITCH
&& gimple_code (last) == GIMPLE_LABEL)
{
tree label = gimple_label_label (as_a <glabel *> (last));
if (SWITCH_BREAK_LABEL_P (label))
{
prev = bind;
gsi_next (gsi_p);
continue;
}
}
}
if (gimple_code (gsi_stmt (*gsi_p)) == GIMPLE_BIND
|| gimple_code (gsi_stmt (*gsi_p)) == GIMPLE_TRY)
{
/* Nested scope. Only look at the last statement of
the innermost scope. */
location_t bind_loc = gimple_location (gsi_stmt (*gsi_p));
gimple *last = last_stmt_in_scope (gsi_stmt (*gsi_p));
if (last)
{
prev = last;
/* It might be a label without a location. Use the
location of the scope then. */
if (!gimple_has_location (prev))
*prevloc = bind_loc;
}
gsi_next (gsi_p);
continue;
}
/* Ifs are tricky. */
if (gimple_code (gsi_stmt (*gsi_p)) == GIMPLE_COND)
{
gcond *cond_stmt = as_a <gcond *> (gsi_stmt (*gsi_p));
tree false_lab = gimple_cond_false_label (cond_stmt);
location_t if_loc = gimple_location (cond_stmt);
/* If we have e.g.
if (i > 1) goto <D.2259>; else goto D;
we can't do much with the else-branch. */
if (!DECL_ARTIFICIAL (false_lab))
break;
/* Go on until the false label, then one step back. */
for (; !gsi_end_p (*gsi_p); gsi_next (gsi_p))
{
gimple *stmt = gsi_stmt (*gsi_p);
if (gimple_code (stmt) == GIMPLE_LABEL
&& gimple_label_label (as_a <glabel *> (stmt)) == false_lab)
break;
}
/* Not found? Oops. */
if (gsi_end_p (*gsi_p))
break;
/* A dead label can't fall through. */
if (!UNUSED_LABEL_P (false_lab))
{
struct label_entry l = { false_lab, if_loc };
labels->safe_push (l);
}
/* Go to the last statement of the then branch. */
gsi_prev (gsi_p);
/* if (i != 0) goto <D.1759>; else goto <D.1760>;
<D.1759>:
<stmt>;
goto <D.1761>;
<D.1760>:
*/
if (gimple_code (gsi_stmt (*gsi_p)) == GIMPLE_GOTO
&& !gimple_has_location (gsi_stmt (*gsi_p)))
{
/* Look at the statement before, it might be
attribute fallthrough, in which case don't warn. */
gsi_prev (gsi_p);
bool fallthru_before_dest
= gimple_call_internal_p (gsi_stmt (*gsi_p), IFN_FALLTHROUGH);
gsi_next (gsi_p);
tree goto_dest = gimple_goto_dest (gsi_stmt (*gsi_p));
if (!fallthru_before_dest)
{
struct label_entry l = { goto_dest, if_loc };
labels->safe_push (l);
}
}
/* This case is about
if (1 != 0) goto <D.2022>; else goto <D.2023>;
<D.2022>:
n = n + 1; // #1
<D.2023>: // #2
<D.1988>: // #3
where #2 is UNUSED_LABEL_P and we want to warn about #1 falling
through to #3. So set PREV to #1. */
else if (UNUSED_LABEL_P (false_lab))
prev = gsi_stmt (*gsi_p);
/* And move back. */
gsi_next (gsi_p);
}
/* Remember the last statement. Skip labels that are of no interest
to us. */
if (gimple_code (gsi_stmt (*gsi_p)) == GIMPLE_LABEL)
{
tree label = gimple_label_label (as_a <glabel *> (gsi_stmt (*gsi_p)));
if (find_label_entry (labels, label))
prev = gsi_stmt (*gsi_p);
}
else if (gimple_call_internal_p (gsi_stmt (*gsi_p), IFN_ASAN_MARK))
;
else if (gimple_code (gsi_stmt (*gsi_p)) == GIMPLE_PREDICT)
;
else if (!is_gimple_debug (gsi_stmt (*gsi_p)))
prev = gsi_stmt (*gsi_p);
gsi_next (gsi_p);
}
while (!gsi_end_p (*gsi_p)
/* Stop if we find a case or a user-defined label. */
&& (gimple_code (gsi_stmt (*gsi_p)) != GIMPLE_LABEL
|| !gimple_has_location (gsi_stmt (*gsi_p))));
if (prev && gimple_has_location (prev))
*prevloc = gimple_location (prev);
return prev;
}
/* Return true if the switch fallthough warning should occur. LABEL is
the label statement that we're falling through to. */
static bool
should_warn_for_implicit_fallthrough (gimple_stmt_iterator *gsi_p, tree label)
{
gimple_stmt_iterator gsi = *gsi_p;
/* Don't warn if the label is marked with a "falls through" comment. */
if (FALLTHROUGH_LABEL_P (label))
return false;
/* Don't warn for non-case labels followed by a statement:
case 0:
foo ();
label:
bar ();
as these are likely intentional. */
if (!case_label_p (&gimplify_ctxp->case_labels, label))
{
tree l;
while (!gsi_end_p (gsi)
&& gimple_code (gsi_stmt (gsi)) == GIMPLE_LABEL
&& (l = gimple_label_label (as_a <glabel *> (gsi_stmt (gsi))))
&& !case_label_p (&gimplify_ctxp->case_labels, l))
gsi_next_nondebug (&gsi);
if (gsi_end_p (gsi) || gimple_code (gsi_stmt (gsi)) != GIMPLE_LABEL)
return false;
}
/* Don't warn for terminated branches, i.e. when the subsequent case labels
immediately breaks. */
gsi = *gsi_p;
/* Skip all immediately following labels. */
while (!gsi_end_p (gsi)
&& (gimple_code (gsi_stmt (gsi)) == GIMPLE_LABEL
|| gimple_code (gsi_stmt (gsi)) == GIMPLE_PREDICT))
gsi_next_nondebug (&gsi);
/* { ... something; default:; } */
if (gsi_end_p (gsi)
/* { ... something; default: break; } or
{ ... something; default: goto L; } */
|| gimple_code (gsi_stmt (gsi)) == GIMPLE_GOTO
/* { ... something; default: return; } */
|| gimple_code (gsi_stmt (gsi)) == GIMPLE_RETURN)
return false;
return true;
}
/* Callback for walk_gimple_seq. */
static tree
warn_implicit_fallthrough_r (gimple_stmt_iterator *gsi_p, bool *handled_ops_p,
struct walk_stmt_info *)
{
gimple *stmt = gsi_stmt (*gsi_p);
*handled_ops_p = true;
switch (gimple_code (stmt))
{
case GIMPLE_TRY:
case GIMPLE_BIND:
case GIMPLE_CATCH:
case GIMPLE_EH_FILTER:
case GIMPLE_TRANSACTION:
/* Walk the sub-statements. */
*handled_ops_p = false;
break;
/* Find a sequence of form:
GIMPLE_LABEL
[...]
<may fallthru stmt>
GIMPLE_LABEL
and possibly warn. */
case GIMPLE_LABEL:
{
/* Found a label. Skip all immediately following labels. */
while (!gsi_end_p (*gsi_p)
&& gimple_code (gsi_stmt (*gsi_p)) == GIMPLE_LABEL)
gsi_next_nondebug (gsi_p);
/* There might be no more statements. */
if (gsi_end_p (*gsi_p))
return integer_zero_node;
/* Vector of labels that fall through. */
auto_vec <struct label_entry> labels;
location_t prevloc;
gimple *prev = collect_fallthrough_labels (gsi_p, &labels, &prevloc);
/* There might be no more statements. */
if (gsi_end_p (*gsi_p))
return integer_zero_node;
gimple *next = gsi_stmt (*gsi_p);
tree label;
/* If what follows is a label, then we may have a fallthrough. */
if (gimple_code (next) == GIMPLE_LABEL
&& gimple_has_location (next)
&& (label = gimple_label_label (as_a <glabel *> (next)))
&& prev != NULL)
{
struct label_entry *l;
bool warned_p = false;
auto_diagnostic_group d;
if (!should_warn_for_implicit_fallthrough (gsi_p, label))
/* Quiet. */;
else if (gimple_code (prev) == GIMPLE_LABEL
&& (label = gimple_label_label (as_a <glabel *> (prev)))
&& (l = find_label_entry (&labels, label)))
warned_p = warning_at (l->loc, OPT_Wimplicit_fallthrough_,
"this statement may fall through");
else if (!gimple_call_internal_p (prev, IFN_FALLTHROUGH)
/* Try to be clever and don't warn when the statement
can't actually fall through. */
&& gimple_stmt_may_fallthru (prev)
&& prevloc != UNKNOWN_LOCATION)
warned_p = warning_at (prevloc,
OPT_Wimplicit_fallthrough_,
"this statement may fall through");
if (warned_p)
inform (gimple_location (next), "here");
/* Mark this label as processed so as to prevent multiple
warnings in nested switches. */
FALLTHROUGH_LABEL_P (label) = true;
/* So that next warn_implicit_fallthrough_r will start looking for
a new sequence starting with this label. */
gsi_prev (gsi_p);
}
}
break;
default:
break;
}
return NULL_TREE;
}
/* Warn when a switch case falls through. */
static void
maybe_warn_implicit_fallthrough (gimple_seq seq)
{
if (!warn_implicit_fallthrough)
return;
/* This warning is meant for C/C++/ObjC/ObjC++ only. */
if (!(lang_GNU_C ()
|| lang_GNU_CXX ()
|| lang_GNU_OBJC ()))
return;
struct walk_stmt_info wi;
memset (&wi, 0, sizeof (wi));
walk_gimple_seq (seq, warn_implicit_fallthrough_r, NULL, &wi);
}
/* Callback for walk_gimple_seq. */
static tree
expand_FALLTHROUGH_r (gimple_stmt_iterator *gsi_p, bool *handled_ops_p,
struct walk_stmt_info *wi)
{
gimple *stmt = gsi_stmt (*gsi_p);
*handled_ops_p = true;
switch (gimple_code (stmt))
{
case GIMPLE_TRY:
case GIMPLE_BIND:
case GIMPLE_CATCH:
case GIMPLE_EH_FILTER:
case GIMPLE_TRANSACTION:
/* Walk the sub-statements. */
*handled_ops_p = false;
break;
case GIMPLE_CALL:
if (gimple_call_internal_p (stmt, IFN_FALLTHROUGH))
{
gsi_remove (gsi_p, true);
if (gsi_end_p (*gsi_p))
{
*static_cast<location_t *>(wi->info) = gimple_location (stmt);
return integer_zero_node;
}
bool found = false;
location_t loc = gimple_location (stmt);
gimple_stmt_iterator gsi2 = *gsi_p;
stmt = gsi_stmt (gsi2);
if (gimple_code (stmt) == GIMPLE_GOTO && !gimple_has_location (stmt))
{
/* Go on until the artificial label. */
tree goto_dest = gimple_goto_dest (stmt);
for (; !gsi_end_p (gsi2); gsi_next (&gsi2))
{
if (gimple_code (gsi_stmt (gsi2)) == GIMPLE_LABEL
&& gimple_label_label (as_a <glabel *> (gsi_stmt (gsi2)))
== goto_dest)
break;
}
/* Not found? Stop. */
if (gsi_end_p (gsi2))
break;
/* Look one past it. */
gsi_next (&gsi2);
}
/* We're looking for a case label or default label here. */
while (!gsi_end_p (gsi2))
{
stmt = gsi_stmt (gsi2);
if (gimple_code (stmt) == GIMPLE_LABEL)
{
tree label = gimple_label_label (as_a <glabel *> (stmt));
if (gimple_has_location (stmt) && DECL_ARTIFICIAL (label))
{
found = true;
break;
}
}
else if (gimple_call_internal_p (stmt, IFN_ASAN_MARK))
;
else if (!is_gimple_debug (stmt))
/* Anything else is not expected. */
break;
gsi_next (&gsi2);
}
if (!found)
pedwarn (loc, 0, "attribute %<fallthrough%> not preceding "
"a case label or default label");
}
break;
default:
break;
}
return NULL_TREE;
}
/* Expand all FALLTHROUGH () calls in SEQ. */
static void
expand_FALLTHROUGH (gimple_seq *seq_p)
{
struct walk_stmt_info wi;
location_t loc;
memset (&wi, 0, sizeof (wi));
wi.info = (void *) &loc;
walk_gimple_seq_mod (seq_p, expand_FALLTHROUGH_r, NULL, &wi);
if (wi.callback_result == integer_zero_node)
/* We've found [[fallthrough]]; at the end of a switch, which the C++
standard says is ill-formed; see [dcl.attr.fallthrough]. */
pedwarn (loc, 0, "attribute %<fallthrough%> not preceding "
"a case label or default label");
}
/* Gimplify a SWITCH_EXPR, and collect the vector of labels it can
branch to. */
static enum gimplify_status
gimplify_switch_expr (tree *expr_p, gimple_seq *pre_p)
{
tree switch_expr = *expr_p;
gimple_seq switch_body_seq = NULL;
enum gimplify_status ret;
tree index_type = TREE_TYPE (switch_expr);
if (index_type == NULL_TREE)
index_type = TREE_TYPE (SWITCH_COND (switch_expr));
ret = gimplify_expr (&SWITCH_COND (switch_expr), pre_p, NULL, is_gimple_val,
fb_rvalue);
if (ret == GS_ERROR || ret == GS_UNHANDLED)
return ret;
if (SWITCH_BODY (switch_expr))
{
vec<tree> labels;
vec<tree> saved_labels;
hash_set<tree> *saved_live_switch_vars = NULL;
tree default_case = NULL_TREE;
gswitch *switch_stmt;
/* Save old labels, get new ones from body, then restore the old
labels. Save all the things from the switch body to append after. */
saved_labels = gimplify_ctxp->case_labels;
gimplify_ctxp->case_labels.create (8);
/* Do not create live_switch_vars if SWITCH_BODY is not a BIND_EXPR. */
saved_live_switch_vars = gimplify_ctxp->live_switch_vars;
tree_code body_type = TREE_CODE (SWITCH_BODY (switch_expr));
if (body_type == BIND_EXPR || body_type == STATEMENT_LIST)
gimplify_ctxp->live_switch_vars = new hash_set<tree> (4);
else
gimplify_ctxp->live_switch_vars = NULL;
bool old_in_switch_expr = gimplify_ctxp->in_switch_expr;
gimplify_ctxp->in_switch_expr = true;
gimplify_stmt (&SWITCH_BODY (switch_expr), &switch_body_seq);
gimplify_ctxp->in_switch_expr = old_in_switch_expr;
maybe_warn_switch_unreachable_and_auto_init (switch_body_seq);
maybe_warn_implicit_fallthrough (switch_body_seq);
/* Only do this for the outermost GIMPLE_SWITCH. */
if (!gimplify_ctxp->in_switch_expr)
expand_FALLTHROUGH (&switch_body_seq);
labels = gimplify_ctxp->case_labels;
gimplify_ctxp->case_labels = saved_labels;
if (gimplify_ctxp->live_switch_vars)
{
gcc_assert (gimplify_ctxp->live_switch_vars->is_empty ());
delete gimplify_ctxp->live_switch_vars;
}
gimplify_ctxp->live_switch_vars = saved_live_switch_vars;
preprocess_case_label_vec_for_gimple (labels, index_type,
&default_case);
bool add_bind = false;
if (!default_case)
{
glabel *new_default;
default_case
= build_case_label (NULL_TREE, NULL_TREE,
create_artificial_label (UNKNOWN_LOCATION));
if (old_in_switch_expr)
{
SWITCH_BREAK_LABEL_P (CASE_LABEL (default_case)) = 1;
add_bind = true;
}
new_default = gimple_build_label (CASE_LABEL (default_case));
gimplify_seq_add_stmt (&switch_body_seq, new_default);
}
else if (old_in_switch_expr)
{
gimple *last = gimple_seq_last_stmt (switch_body_seq);
if (last && gimple_code (last) == GIMPLE_LABEL)
{
tree label = gimple_label_label (as_a <glabel *> (last));
if (SWITCH_BREAK_LABEL_P (label))
add_bind = true;
}
}
switch_stmt = gimple_build_switch (SWITCH_COND (switch_expr),
default_case, labels);
/* For the benefit of -Wimplicit-fallthrough, if switch_body_seq
ends with a GIMPLE_LABEL holding SWITCH_BREAK_LABEL_P LABEL_DECL,
wrap the GIMPLE_SWITCH up to that GIMPLE_LABEL into a GIMPLE_BIND,
so that we can easily find the start and end of the switch
statement. */
if (add_bind)
{
gimple_seq bind_body = NULL;
gimplify_seq_add_stmt (&bind_body, switch_stmt);
gimple_seq_add_seq (&bind_body, switch_body_seq);
gbind *bind = gimple_build_bind (NULL_TREE, bind_body, NULL_TREE);
gimple_set_location (bind, EXPR_LOCATION (switch_expr));
gimplify_seq_add_stmt (pre_p, bind);
}
else
{
gimplify_seq_add_stmt (pre_p, switch_stmt);
gimplify_seq_add_seq (pre_p, switch_body_seq);
}
labels.release ();
}
else
gcc_unreachable ();
return GS_ALL_DONE;
}
/* Gimplify the LABEL_EXPR pointed to by EXPR_P. */
static enum gimplify_status
gimplify_label_expr (tree *expr_p, gimple_seq *pre_p)
{
gcc_assert (decl_function_context (LABEL_EXPR_LABEL (*expr_p))
== current_function_decl);
tree label = LABEL_EXPR_LABEL (*expr_p);
glabel *label_stmt = gimple_build_label (label);
gimple_set_location (label_stmt, EXPR_LOCATION (*expr_p));
gimplify_seq_add_stmt (pre_p, label_stmt);
if (lookup_attribute ("cold", DECL_ATTRIBUTES (label)))
gimple_seq_add_stmt (pre_p, gimple_build_predict (PRED_COLD_LABEL,
NOT_TAKEN));
else if (lookup_attribute ("hot", DECL_ATTRIBUTES (label)))
gimple_seq_add_stmt (pre_p, gimple_build_predict (PRED_HOT_LABEL,
TAKEN));
return GS_ALL_DONE;
}
/* Gimplify the CASE_LABEL_EXPR pointed to by EXPR_P. */
static enum gimplify_status
gimplify_case_label_expr (tree *expr_p, gimple_seq *pre_p)
{
struct gimplify_ctx *ctxp;
glabel *label_stmt;
/* Invalid programs can play Duff's Device type games with, for example,
#pragma omp parallel. At least in the C front end, we don't
detect such invalid branches until after gimplification, in the
diagnose_omp_blocks pass. */
for (ctxp = gimplify_ctxp; ; ctxp = ctxp->prev_context)
if (ctxp->case_labels.exists ())
break;
tree label = CASE_LABEL (*expr_p);
label_stmt = gimple_build_label (label);
gimple_set_location (label_stmt, EXPR_LOCATION (*expr_p));
ctxp->case_labels.safe_push (*expr_p);
gimplify_seq_add_stmt (pre_p, label_stmt);
if (lookup_attribute ("cold", DECL_ATTRIBUTES (label)))
gimple_seq_add_stmt (pre_p, gimple_build_predict (PRED_COLD_LABEL,
NOT_TAKEN));
else if (lookup_attribute ("hot", DECL_ATTRIBUTES (label)))
gimple_seq_add_stmt (pre_p, gimple_build_predict (PRED_HOT_LABEL,
TAKEN));
return GS_ALL_DONE;
}
/* Build a GOTO to the LABEL_DECL pointed to by LABEL_P, building it first
if necessary. */
tree
build_and_jump (tree *label_p)
{
if (label_p == NULL)
/* If there's nowhere to jump, just fall through. */
return NULL_TREE;
if (*label_p == NULL_TREE)
{
tree label = create_artificial_label (UNKNOWN_LOCATION);
*label_p = label;
}
return build1 (GOTO_EXPR, void_type_node, *label_p);
}
/* Gimplify an EXIT_EXPR by converting to a GOTO_EXPR inside a COND_EXPR.
This also involves building a label to jump to and communicating it to
gimplify_loop_expr through gimplify_ctxp->exit_label. */
static enum gimplify_status
gimplify_exit_expr (tree *expr_p)
{
tree cond = TREE_OPERAND (*expr_p, 0);
tree expr;
expr = build_and_jump (&gimplify_ctxp->exit_label);
expr = build3 (COND_EXPR, void_type_node, cond, expr, NULL_TREE);
*expr_p = expr;
return GS_OK;
}
/* *EXPR_P is a COMPONENT_REF being used as an rvalue. If its type is
different from its canonical type, wrap the whole thing inside a
NOP_EXPR and force the type of the COMPONENT_REF to be the canonical
type.
The canonical type of a COMPONENT_REF is the type of the field being
referenced--unless the field is a bit-field which can be read directly
in a smaller mode, in which case the canonical type is the
sign-appropriate type corresponding to that mode. */
static void
canonicalize_component_ref (tree *expr_p)
{
tree expr = *expr_p;
tree type;
gcc_assert (TREE_CODE (expr) == COMPONENT_REF);
if (INTEGRAL_TYPE_P (TREE_TYPE (expr)))
type = TREE_TYPE (get_unwidened (expr, NULL_TREE));
else
type = TREE_TYPE (TREE_OPERAND (expr, 1));
/* One could argue that all the stuff below is not necessary for
the non-bitfield case and declare it a FE error if type
adjustment would be needed. */
if (TREE_TYPE (expr) != type)
{
#ifdef ENABLE_TYPES_CHECKING
tree old_type = TREE_TYPE (expr);
#endif
int type_quals;
/* We need to preserve qualifiers and propagate them from
operand 0. */
type_quals = TYPE_QUALS (type)
| TYPE_QUALS (TREE_TYPE (TREE_OPERAND (expr, 0)));
if (TYPE_QUALS (type) != type_quals)
type = build_qualified_type (TYPE_MAIN_VARIANT (type), type_quals);
/* Set the type of the COMPONENT_REF to the underlying type. */
TREE_TYPE (expr) = type;
#ifdef ENABLE_TYPES_CHECKING
/* It is now a FE error, if the conversion from the canonical
type to the original expression type is not useless. */
gcc_assert (useless_type_conversion_p (old_type, type));
#endif
}
}
/* If a NOP conversion is changing a pointer to array of foo to a pointer
to foo, embed that change in the ADDR_EXPR by converting
T array[U];
(T *)&array
==>
&array[L]
where L is the lower bound. For simplicity, only do this for constant
lower bound.
The constraint is that the type of &array[L] is trivially convertible
to T *. */
static void
canonicalize_addr_expr (tree *expr_p)
{
tree expr = *expr_p;
tree addr_expr = TREE_OPERAND (expr, 0);
tree datype, ddatype, pddatype;
/* We simplify only conversions from an ADDR_EXPR to a pointer type. */
if (!POINTER_TYPE_P (TREE_TYPE (expr))
|| TREE_CODE (addr_expr) != ADDR_EXPR)
return;
/* The addr_expr type should be a pointer to an array. */
datype = TREE_TYPE (TREE_TYPE (addr_expr));
if (TREE_CODE (datype) != ARRAY_TYPE)
return;
/* The pointer to element type shall be trivially convertible to
the expression pointer type. */
ddatype = TREE_TYPE (datype);
pddatype = build_pointer_type (ddatype);
if (!useless_type_conversion_p (TYPE_MAIN_VARIANT (TREE_TYPE (expr)),
pddatype))
return;
/* The lower bound and element sizes must be constant. */
if (!TYPE_SIZE_UNIT (ddatype)
|| TREE_CODE (TYPE_SIZE_UNIT (ddatype)) != INTEGER_CST
|| !TYPE_DOMAIN (datype) || !TYPE_MIN_VALUE (TYPE_DOMAIN (datype))
|| TREE_CODE (TYPE_MIN_VALUE (TYPE_DOMAIN (datype))) != INTEGER_CST)
return;
/* All checks succeeded. Build a new node to merge the cast. */
*expr_p = build4 (ARRAY_REF, ddatype, TREE_OPERAND (addr_expr, 0),
TYPE_MIN_VALUE (TYPE_DOMAIN (datype)),
NULL_TREE, NULL_TREE);
*expr_p = build1 (ADDR_EXPR, pddatype, *expr_p);
/* We can have stripped a required restrict qualifier above. */
if (!useless_type_conversion_p (TREE_TYPE (expr), TREE_TYPE (*expr_p)))
*expr_p = fold_convert (TREE_TYPE (expr), *expr_p);
}
/* *EXPR_P is a NOP_EXPR or CONVERT_EXPR. Remove it and/or other conversions
underneath as appropriate. */
static enum gimplify_status
gimplify_conversion (tree *expr_p)
{
location_t loc = EXPR_LOCATION (*expr_p);
gcc_assert (CONVERT_EXPR_P (*expr_p));
/* Then strip away all but the outermost conversion. */
STRIP_SIGN_NOPS (TREE_OPERAND (*expr_p, 0));
/* And remove the outermost conversion if it's useless. */
if (tree_ssa_useless_type_conversion (*expr_p))
*expr_p = TREE_OPERAND (*expr_p, 0);
/* If we still have a conversion at the toplevel,
then canonicalize some constructs. */
if (CONVERT_EXPR_P (*expr_p))
{
tree sub = TREE_OPERAND (*expr_p, 0);
/* If a NOP conversion is changing the type of a COMPONENT_REF
expression, then canonicalize its type now in order to expose more
redundant conversions. */
if (TREE_CODE (sub) == COMPONENT_REF)
canonicalize_component_ref (&TREE_OPERAND (*expr_p, 0));
/* If a NOP conversion is changing a pointer to array of foo
to a pointer to foo, embed that change in the ADDR_EXPR. */
else if (TREE_CODE (sub) == ADDR_EXPR)
canonicalize_addr_expr (expr_p);
}
/* If we have a conversion to a non-register type force the
use of a VIEW_CONVERT_EXPR instead. */
if (CONVERT_EXPR_P (*expr_p) && !is_gimple_reg_type (TREE_TYPE (*expr_p)))
*expr_p = fold_build1_loc (loc, VIEW_CONVERT_EXPR, TREE_TYPE (*expr_p),
TREE_OPERAND (*expr_p, 0));
/* Canonicalize CONVERT_EXPR to NOP_EXPR. */
if (TREE_CODE (*expr_p) == CONVERT_EXPR)
TREE_SET_CODE (*expr_p, NOP_EXPR);
return GS_OK;
}
/* Gimplify a VAR_DECL or PARM_DECL. Return GS_OK if we expanded a
DECL_VALUE_EXPR, and it's worth re-examining things. */
static enum gimplify_status
gimplify_var_or_parm_decl (tree *expr_p)
{
tree decl = *expr_p;
/* ??? If this is a local variable, and it has not been seen in any
outer BIND_EXPR, then it's probably the result of a duplicate
declaration, for which we've already issued an error. It would
be really nice if the front end wouldn't leak these at all.
Currently the only known culprit is C++ destructors, as seen
in g++.old-deja/g++.jason/binding.C.
Another possible culpit are size expressions for variably modified
types which are lost in the FE or not gimplified correctly. */
if (VAR_P (decl)
&& !DECL_SEEN_IN_BIND_EXPR_P (decl)
&& !TREE_STATIC (decl) && !DECL_EXTERNAL (decl)
&& decl_function_context (decl) == current_function_decl)
{
gcc_assert (seen_error ());
return GS_ERROR;
}
/* When within an OMP context, notice uses of variables. */
if (gimplify_omp_ctxp && omp_notice_variable (gimplify_omp_ctxp, decl, true))
return GS_ALL_DONE;
/* If the decl is an alias for another expression, substitute it now. */
if (DECL_HAS_VALUE_EXPR_P (decl))
{
*expr_p = unshare_expr (DECL_VALUE_EXPR (decl));
return GS_OK;
}
return GS_ALL_DONE;
}
/* Recalculate the value of the TREE_SIDE_EFFECTS flag for T. */
static void
recalculate_side_effects (tree t)
{
enum tree_code code = TREE_CODE (t);
int len = TREE_OPERAND_LENGTH (t);
int i;
switch (TREE_CODE_CLASS (code))
{
case tcc_expression:
switch (code)
{
case INIT_EXPR:
case MODIFY_EXPR:
case VA_ARG_EXPR:
case PREDECREMENT_EXPR:
case PREINCREMENT_EXPR:
case POSTDECREMENT_EXPR:
case POSTINCREMENT_EXPR:
/* All of these have side-effects, no matter what their
operands are. */
return;
default:
break;
}
/* Fall through. */
case tcc_comparison: /* a comparison expression */
case tcc_unary: /* a unary arithmetic expression */
case tcc_binary: /* a binary arithmetic expression */
case tcc_reference: /* a reference */
case tcc_vl_exp: /* a function call */
TREE_SIDE_EFFECTS (t) = TREE_THIS_VOLATILE (t);
for (i = 0; i < len; ++i)
{
tree op = TREE_OPERAND (t, i);
if (op && TREE_SIDE_EFFECTS (op))
TREE_SIDE_EFFECTS (t) = 1;
}
break;
case tcc_constant:
/* No side-effects. */
return;
default:
gcc_unreachable ();
}
}
/* Gimplify the COMPONENT_REF, ARRAY_REF, REALPART_EXPR or IMAGPART_EXPR
node *EXPR_P.
compound_lval
: min_lval '[' val ']'
| min_lval '.' ID
| compound_lval '[' val ']'
| compound_lval '.' ID
This is not part of the original SIMPLE definition, which separates
array and member references, but it seems reasonable to handle them
together. Also, this way we don't run into problems with union
aliasing; gcc requires that for accesses through a union to alias, the
union reference must be explicit, which was not always the case when we
were splitting up array and member refs.
PRE_P points to the sequence where side effects that must happen before
*EXPR_P should be stored.
POST_P points to the sequence where side effects that must happen after
*EXPR_P should be stored. */
static enum gimplify_status
gimplify_compound_lval (tree *expr_p, gimple_seq *pre_p, gimple_seq *post_p,
fallback_t fallback)
{
tree *p;
enum gimplify_status ret = GS_ALL_DONE, tret;
int i;
location_t loc = EXPR_LOCATION (*expr_p);
tree expr = *expr_p;
/* Create a stack of the subexpressions so later we can walk them in
order from inner to outer. */
auto_vec<tree, 10> expr_stack;
/* We can handle anything that get_inner_reference can deal with. */
for (p = expr_p; ; p = &TREE_OPERAND (*p, 0))
{
restart:
/* Fold INDIRECT_REFs now to turn them into ARRAY_REFs. */
if (TREE_CODE (*p) == INDIRECT_REF)
*p = fold_indirect_ref_loc (loc, *p);
if (handled_component_p (*p))
;
/* Expand DECL_VALUE_EXPR now. In some cases that may expose
additional COMPONENT_REFs. */
else if ((VAR_P (*p) || TREE_CODE (*p) == PARM_DECL)
&& gimplify_var_or_parm_decl (p) == GS_OK)
goto restart;
else
break;
expr_stack.safe_push (*p);
}
gcc_assert (expr_stack.length ());
/* Now EXPR_STACK is a stack of pointers to all the refs we've
walked through and P points to the innermost expression.
Java requires that we elaborated nodes in source order. That
means we must gimplify the inner expression followed by each of
the indices, in order. But we can't gimplify the inner
expression until we deal with any variable bounds, sizes, or
positions in order to deal with PLACEHOLDER_EXPRs.
The base expression may contain a statement expression that
has declarations used in size expressions, so has to be
gimplified before gimplifying the size expressions.
So we do this in three steps. First we deal with variable
bounds, sizes, and positions, then we gimplify the base and
ensure it is memory if needed, then we deal with the annotations
for any variables in the components and any indices, from left
to right. */
bool need_non_reg = false;
for (i = expr_stack.length () - 1; i >= 0; i--)
{
tree t = expr_stack[i];
if (TREE_CODE (t) == ARRAY_REF || TREE_CODE (t) == ARRAY_RANGE_REF)
{
/* Deal with the low bound and element type size and put them into
the ARRAY_REF. If these values are set, they have already been
gimplified. */
if (TREE_OPERAND (t, 2) == NULL_TREE)
{
tree low = unshare_expr (array_ref_low_bound (t));
if (!is_gimple_min_invariant (low))
{
TREE_OPERAND (t, 2) = low;
}
}
if (TREE_OPERAND (t, 3) == NULL_TREE)
{
tree elmt_size = array_ref_element_size (t);
if (!is_gimple_min_invariant (elmt_size))
{
elmt_size = unshare_expr (elmt_size);
tree elmt_type = TREE_TYPE (TREE_TYPE (TREE_OPERAND (t, 0)));
tree factor = size_int (TYPE_ALIGN_UNIT (elmt_type));
/* Divide the element size by the alignment of the element
type (above). */
elmt_size = size_binop_loc (loc, EXACT_DIV_EXPR,
elmt_size, factor);
TREE_OPERAND (t, 3) = elmt_size;
}
}
need_non_reg = true;
}
else if (TREE_CODE (t) == COMPONENT_REF)
{
/* Set the field offset into T and gimplify it. */
if (TREE_OPERAND (t, 2) == NULL_TREE)
{
tree offset = component_ref_field_offset (t);
if (!is_gimple_min_invariant (offset))
{
offset = unshare_expr (offset);
tree field = TREE_OPERAND (t, 1);
tree factor
= size_int (DECL_OFFSET_ALIGN (field) / BITS_PER_UNIT);
/* Divide the offset by its alignment. */
offset = size_binop_loc (loc, EXACT_DIV_EXPR,
offset, factor);
TREE_OPERAND (t, 2) = offset;
}
}
need_non_reg = true;
}
}
/* Step 2 is to gimplify the base expression. Make sure lvalue is set
so as to match the min_lval predicate. Failure to do so may result
in the creation of large aggregate temporaries. */
tret = gimplify_expr (p, pre_p, post_p, is_gimple_min_lval,
fallback | fb_lvalue);
ret = MIN (ret, tret);
if (ret == GS_ERROR)
return GS_ERROR;
/* Step 2a: if we have component references we do not support on
registers then make sure the base isn't a register. Of course
we can only do so if an rvalue is OK. */
if (need_non_reg && (fallback & fb_rvalue))
prepare_gimple_addressable (p, pre_p);
/* Step 3: gimplify size expressions and the indices and operands of
ARRAY_REF. During this loop we also remove any useless conversions. */
for (; expr_stack.length () > 0; )
{
tree t = expr_stack.pop ();
if (TREE_CODE (t) == ARRAY_REF || TREE_CODE (t) == ARRAY_RANGE_REF)
{
/* Gimplify the low bound and element type size. */
tret = gimplify_expr (&TREE_OPERAND (t, 2), pre_p, post_p,
is_gimple_reg, fb_rvalue);
ret = MIN (ret, tret);
tret = gimplify_expr (&TREE_OPERAND (t, 3), pre_p, post_p,
is_gimple_reg, fb_rv