| /* Building internal representation for IRA. |
| Copyright (C) 2006-2022 Free Software Foundation, Inc. |
| Contributed by Vladimir Makarov <vmakarov@redhat.com>. |
| |
| This file is part of GCC. |
| |
| GCC is free software; you can redistribute it and/or modify it under |
| the terms of the GNU General Public License as published by the Free |
| Software Foundation; either version 3, or (at your option) any later |
| version. |
| |
| GCC is distributed in the hope that it will be useful, but WITHOUT ANY |
| WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with GCC; see the file COPYING3. If not see |
| <http://www.gnu.org/licenses/>. */ |
| |
| #include "config.h" |
| #include "system.h" |
| #include "coretypes.h" |
| #include "backend.h" |
| #include "target.h" |
| #include "rtl.h" |
| #include "predict.h" |
| #include "df.h" |
| #include "insn-config.h" |
| #include "regs.h" |
| #include "memmodel.h" |
| #include "ira.h" |
| #include "ira-int.h" |
| #include "sparseset.h" |
| #include "cfgloop.h" |
| |
| static ira_copy_t find_allocno_copy (ira_allocno_t, ira_allocno_t, rtx_insn *, |
| ira_loop_tree_node_t); |
| |
| /* The root of the loop tree corresponding to the all function. */ |
| ira_loop_tree_node_t ira_loop_tree_root; |
| |
| /* Height of the loop tree. */ |
| int ira_loop_tree_height; |
| |
| /* All nodes representing basic blocks are referred through the |
| following array. We cannot use basic block member `aux' for this |
| because it is used for insertion of insns on edges. */ |
| ira_loop_tree_node_t ira_bb_nodes; |
| |
| /* All nodes representing loops are referred through the following |
| array. */ |
| ira_loop_tree_node_t ira_loop_nodes; |
| |
| /* And size of the ira_loop_nodes array. */ |
| unsigned int ira_loop_nodes_count; |
| |
| /* Map regno -> allocnos with given regno (see comments for |
| allocno member `next_regno_allocno'). */ |
| ira_allocno_t *ira_regno_allocno_map; |
| |
| /* Array of references to all allocnos. The order number of the |
| allocno corresponds to the index in the array. Removed allocnos |
| have NULL element value. */ |
| ira_allocno_t *ira_allocnos; |
| |
| /* Sizes of the previous array. */ |
| int ira_allocnos_num; |
| |
| /* Count of conflict record structures we've created, used when creating |
| a new conflict id. */ |
| int ira_objects_num; |
| |
| /* Map a conflict id to its conflict record. */ |
| ira_object_t *ira_object_id_map; |
| |
| /* Array of references to all allocno preferences. The order number |
| of the preference corresponds to the index in the array. */ |
| ira_pref_t *ira_prefs; |
| |
| /* Size of the previous array. */ |
| int ira_prefs_num; |
| |
| /* Array of references to all copies. The order number of the copy |
| corresponds to the index in the array. Removed copies have NULL |
| element value. */ |
| ira_copy_t *ira_copies; |
| |
| /* Size of the previous array. */ |
| int ira_copies_num; |
| |
| |
| |
| /* LAST_BASIC_BLOCK before generating additional insns because of live |
| range splitting. Emitting insns on a critical edge creates a new |
| basic block. */ |
| static int last_basic_block_before_change; |
| |
| /* Initialize some members in loop tree node NODE. Use LOOP_NUM for |
| the member loop_num. */ |
| static void |
| init_loop_tree_node (struct ira_loop_tree_node *node, int loop_num) |
| { |
| int max_regno = max_reg_num (); |
| |
| node->regno_allocno_map |
| = (ira_allocno_t *) ira_allocate (sizeof (ira_allocno_t) * max_regno); |
| memset (node->regno_allocno_map, 0, sizeof (ira_allocno_t) * max_regno); |
| memset (node->reg_pressure, 0, sizeof (node->reg_pressure)); |
| node->all_allocnos = ira_allocate_bitmap (); |
| node->modified_regnos = ira_allocate_bitmap (); |
| node->border_allocnos = ira_allocate_bitmap (); |
| node->local_copies = ira_allocate_bitmap (); |
| node->loop_num = loop_num; |
| node->children = NULL; |
| node->subloops = NULL; |
| } |
| |
| |
| /* The following function allocates the loop tree nodes. If |
| CURRENT_LOOPS is NULL, the nodes corresponding to the loops (except |
| the root which corresponds the all function) will be not allocated |
| but nodes will still be allocated for basic blocks. */ |
| static void |
| create_loop_tree_nodes (void) |
| { |
| unsigned int i, j; |
| bool skip_p; |
| edge_iterator ei; |
| edge e; |
| loop_p loop; |
| |
| ira_bb_nodes |
| = ((struct ira_loop_tree_node *) |
| ira_allocate (sizeof (struct ira_loop_tree_node) |
| * last_basic_block_for_fn (cfun))); |
| last_basic_block_before_change = last_basic_block_for_fn (cfun); |
| for (i = 0; i < (unsigned int) last_basic_block_for_fn (cfun); i++) |
| { |
| ira_bb_nodes[i].regno_allocno_map = NULL; |
| memset (ira_bb_nodes[i].reg_pressure, 0, |
| sizeof (ira_bb_nodes[i].reg_pressure)); |
| ira_bb_nodes[i].all_allocnos = NULL; |
| ira_bb_nodes[i].modified_regnos = NULL; |
| ira_bb_nodes[i].border_allocnos = NULL; |
| ira_bb_nodes[i].local_copies = NULL; |
| } |
| if (current_loops == NULL) |
| { |
| ira_loop_nodes_count = 1; |
| ira_loop_nodes = ((struct ira_loop_tree_node *) |
| ira_allocate (sizeof (struct ira_loop_tree_node))); |
| init_loop_tree_node (ira_loop_nodes, 0); |
| return; |
| } |
| ira_loop_nodes_count = number_of_loops (cfun); |
| ira_loop_nodes = ((struct ira_loop_tree_node *) |
| ira_allocate (sizeof (struct ira_loop_tree_node) |
| * ira_loop_nodes_count)); |
| FOR_EACH_VEC_SAFE_ELT (get_loops (cfun), i, loop) |
| { |
| if (loop_outer (loop) != NULL) |
| { |
| ira_loop_nodes[i].regno_allocno_map = NULL; |
| skip_p = false; |
| FOR_EACH_EDGE (e, ei, loop->header->preds) |
| if (e->src != loop->latch |
| && (e->flags & EDGE_ABNORMAL) && EDGE_CRITICAL_P (e)) |
| { |
| skip_p = true; |
| break; |
| } |
| if (skip_p) |
| continue; |
| auto_vec<edge> edges = get_loop_exit_edges (loop); |
| FOR_EACH_VEC_ELT (edges, j, e) |
| if ((e->flags & EDGE_ABNORMAL) && EDGE_CRITICAL_P (e)) |
| { |
| skip_p = true; |
| break; |
| } |
| if (skip_p) |
| continue; |
| } |
| init_loop_tree_node (&ira_loop_nodes[i], loop->num); |
| } |
| } |
| |
| /* The function returns TRUE if there are more one allocation |
| region. */ |
| static bool |
| more_one_region_p (void) |
| { |
| unsigned int i; |
| loop_p loop; |
| |
| if (current_loops != NULL) |
| FOR_EACH_VEC_SAFE_ELT (get_loops (cfun), i, loop) |
| if (ira_loop_nodes[i].regno_allocno_map != NULL |
| && ira_loop_tree_root != &ira_loop_nodes[i]) |
| return true; |
| return false; |
| } |
| |
| /* Free the loop tree node of a loop. */ |
| static void |
| finish_loop_tree_node (ira_loop_tree_node_t loop) |
| { |
| if (loop->regno_allocno_map != NULL) |
| { |
| ira_assert (loop->bb == NULL); |
| ira_free_bitmap (loop->local_copies); |
| ira_free_bitmap (loop->border_allocnos); |
| ira_free_bitmap (loop->modified_regnos); |
| ira_free_bitmap (loop->all_allocnos); |
| ira_free (loop->regno_allocno_map); |
| loop->regno_allocno_map = NULL; |
| } |
| } |
| |
| /* Free the loop tree nodes. */ |
| static void |
| finish_loop_tree_nodes (void) |
| { |
| unsigned int i; |
| |
| for (i = 0; i < ira_loop_nodes_count; i++) |
| finish_loop_tree_node (&ira_loop_nodes[i]); |
| ira_free (ira_loop_nodes); |
| for (i = 0; i < (unsigned int) last_basic_block_before_change; i++) |
| { |
| if (ira_bb_nodes[i].local_copies != NULL) |
| ira_free_bitmap (ira_bb_nodes[i].local_copies); |
| if (ira_bb_nodes[i].border_allocnos != NULL) |
| ira_free_bitmap (ira_bb_nodes[i].border_allocnos); |
| if (ira_bb_nodes[i].modified_regnos != NULL) |
| ira_free_bitmap (ira_bb_nodes[i].modified_regnos); |
| if (ira_bb_nodes[i].all_allocnos != NULL) |
| ira_free_bitmap (ira_bb_nodes[i].all_allocnos); |
| if (ira_bb_nodes[i].regno_allocno_map != NULL) |
| ira_free (ira_bb_nodes[i].regno_allocno_map); |
| } |
| ira_free (ira_bb_nodes); |
| } |
| |
| |
| |
| /* The following recursive function adds LOOP to the loop tree |
| hierarchy. LOOP is added only once. If LOOP is NULL we adding |
| loop designating the whole function when CFG loops are not |
| built. */ |
| static void |
| add_loop_to_tree (class loop *loop) |
| { |
| int loop_num; |
| class loop *parent; |
| ira_loop_tree_node_t loop_node, parent_node; |
| |
| /* We cannot use loop node access macros here because of potential |
| checking and because the nodes are not initialized enough |
| yet. */ |
| if (loop != NULL && loop_outer (loop) != NULL) |
| add_loop_to_tree (loop_outer (loop)); |
| loop_num = loop != NULL ? loop->num : 0; |
| if (ira_loop_nodes[loop_num].regno_allocno_map != NULL |
| && ira_loop_nodes[loop_num].children == NULL) |
| { |
| /* We have not added loop node to the tree yet. */ |
| loop_node = &ira_loop_nodes[loop_num]; |
| loop_node->loop = loop; |
| loop_node->bb = NULL; |
| if (loop == NULL) |
| parent = NULL; |
| else |
| { |
| for (parent = loop_outer (loop); |
| parent != NULL; |
| parent = loop_outer (parent)) |
| if (ira_loop_nodes[parent->num].regno_allocno_map != NULL) |
| break; |
| } |
| if (parent == NULL) |
| { |
| loop_node->next = NULL; |
| loop_node->subloop_next = NULL; |
| loop_node->parent = NULL; |
| } |
| else |
| { |
| parent_node = &ira_loop_nodes[parent->num]; |
| loop_node->next = parent_node->children; |
| parent_node->children = loop_node; |
| loop_node->subloop_next = parent_node->subloops; |
| parent_node->subloops = loop_node; |
| loop_node->parent = parent_node; |
| } |
| } |
| } |
| |
| /* The following recursive function sets up levels of nodes of the |
| tree given its root LOOP_NODE. The enumeration starts with LEVEL. |
| The function returns maximal value of level in the tree + 1. */ |
| static int |
| setup_loop_tree_level (ira_loop_tree_node_t loop_node, int level) |
| { |
| int height, max_height; |
| ira_loop_tree_node_t subloop_node; |
| |
| ira_assert (loop_node->bb == NULL); |
| loop_node->level = level; |
| max_height = level + 1; |
| for (subloop_node = loop_node->subloops; |
| subloop_node != NULL; |
| subloop_node = subloop_node->subloop_next) |
| { |
| ira_assert (subloop_node->bb == NULL); |
| height = setup_loop_tree_level (subloop_node, level + 1); |
| if (height > max_height) |
| max_height = height; |
| } |
| return max_height; |
| } |
| |
| /* Create the loop tree. The algorithm is designed to provide correct |
| order of loops (they are ordered by their last loop BB) and basic |
| blocks in the chain formed by member next. */ |
| static void |
| form_loop_tree (void) |
| { |
| basic_block bb; |
| class loop *parent; |
| ira_loop_tree_node_t bb_node, loop_node; |
| |
| /* We cannot use loop/bb node access macros because of potential |
| checking and because the nodes are not initialized enough |
| yet. */ |
| FOR_EACH_BB_FN (bb, cfun) |
| { |
| bb_node = &ira_bb_nodes[bb->index]; |
| bb_node->bb = bb; |
| bb_node->loop = NULL; |
| bb_node->subloops = NULL; |
| bb_node->children = NULL; |
| bb_node->subloop_next = NULL; |
| bb_node->next = NULL; |
| if (current_loops == NULL) |
| parent = NULL; |
| else |
| { |
| for (parent = bb->loop_father; |
| parent != NULL; |
| parent = loop_outer (parent)) |
| if (ira_loop_nodes[parent->num].regno_allocno_map != NULL) |
| break; |
| } |
| add_loop_to_tree (parent); |
| loop_node = &ira_loop_nodes[parent == NULL ? 0 : parent->num]; |
| bb_node->next = loop_node->children; |
| bb_node->parent = loop_node; |
| loop_node->children = bb_node; |
| } |
| ira_loop_tree_root = IRA_LOOP_NODE_BY_INDEX (0); |
| ira_loop_tree_height = setup_loop_tree_level (ira_loop_tree_root, 0); |
| ira_assert (ira_loop_tree_root->regno_allocno_map != NULL); |
| } |
| |
| |
| |
| /* Rebuild IRA_REGNO_ALLOCNO_MAP and REGNO_ALLOCNO_MAPs of the loop |
| tree nodes. */ |
| static void |
| rebuild_regno_allocno_maps (void) |
| { |
| unsigned int l; |
| int max_regno, regno; |
| ira_allocno_t a; |
| ira_loop_tree_node_t loop_tree_node; |
| loop_p loop; |
| ira_allocno_iterator ai; |
| |
| ira_assert (current_loops != NULL); |
| max_regno = max_reg_num (); |
| FOR_EACH_VEC_SAFE_ELT (get_loops (cfun), l, loop) |
| if (ira_loop_nodes[l].regno_allocno_map != NULL) |
| { |
| ira_free (ira_loop_nodes[l].regno_allocno_map); |
| ira_loop_nodes[l].regno_allocno_map |
| = (ira_allocno_t *) ira_allocate (sizeof (ira_allocno_t) |
| * max_regno); |
| memset (ira_loop_nodes[l].regno_allocno_map, 0, |
| sizeof (ira_allocno_t) * max_regno); |
| } |
| ira_free (ira_regno_allocno_map); |
| ira_regno_allocno_map |
| = (ira_allocno_t *) ira_allocate (max_regno * sizeof (ira_allocno_t)); |
| memset (ira_regno_allocno_map, 0, max_regno * sizeof (ira_allocno_t)); |
| FOR_EACH_ALLOCNO (a, ai) |
| { |
| if (ALLOCNO_CAP_MEMBER (a) != NULL) |
| /* Caps are not in the regno allocno maps. */ |
| continue; |
| regno = ALLOCNO_REGNO (a); |
| loop_tree_node = ALLOCNO_LOOP_TREE_NODE (a); |
| ALLOCNO_NEXT_REGNO_ALLOCNO (a) = ira_regno_allocno_map[regno]; |
| ira_regno_allocno_map[regno] = a; |
| if (loop_tree_node->regno_allocno_map[regno] == NULL) |
| /* Remember that we can create temporary allocnos to break |
| cycles in register shuffle. */ |
| loop_tree_node->regno_allocno_map[regno] = a; |
| } |
| } |
| |
| |
| /* Pools for allocnos, allocno live ranges and objects. */ |
| static object_allocator<live_range> live_range_pool ("live ranges"); |
| static object_allocator<ira_allocno> allocno_pool ("allocnos"); |
| static object_allocator<ira_object> object_pool ("objects"); |
| |
| /* Vec containing references to all created allocnos. It is a |
| container of array allocnos. */ |
| static vec<ira_allocno_t> allocno_vec; |
| |
| /* Vec containing references to all created ira_objects. It is a |
| container of ira_object_id_map. */ |
| static vec<ira_object_t> ira_object_id_map_vec; |
| |
| /* Initialize data concerning allocnos. */ |
| static void |
| initiate_allocnos (void) |
| { |
| allocno_vec.create (max_reg_num () * 2); |
| ira_allocnos = NULL; |
| ira_allocnos_num = 0; |
| ira_objects_num = 0; |
| ira_object_id_map_vec.create (max_reg_num () * 2); |
| ira_object_id_map = NULL; |
| ira_regno_allocno_map |
| = (ira_allocno_t *) ira_allocate (max_reg_num () |
| * sizeof (ira_allocno_t)); |
| memset (ira_regno_allocno_map, 0, max_reg_num () * sizeof (ira_allocno_t)); |
| } |
| |
| /* Create and return an object corresponding to a new allocno A. */ |
| static ira_object_t |
| ira_create_object (ira_allocno_t a, int subword) |
| { |
| enum reg_class aclass = ALLOCNO_CLASS (a); |
| ira_object_t obj = object_pool.allocate (); |
| |
| OBJECT_ALLOCNO (obj) = a; |
| OBJECT_SUBWORD (obj) = subword; |
| OBJECT_CONFLICT_ID (obj) = ira_objects_num; |
| OBJECT_CONFLICT_VEC_P (obj) = false; |
| OBJECT_CONFLICT_ARRAY (obj) = NULL; |
| OBJECT_NUM_CONFLICTS (obj) = 0; |
| OBJECT_CONFLICT_HARD_REGS (obj) = ira_no_alloc_regs; |
| OBJECT_TOTAL_CONFLICT_HARD_REGS (obj) = ira_no_alloc_regs; |
| OBJECT_CONFLICT_HARD_REGS (obj) |= ~reg_class_contents[aclass]; |
| OBJECT_TOTAL_CONFLICT_HARD_REGS (obj) |= ~reg_class_contents[aclass]; |
| OBJECT_MIN (obj) = INT_MAX; |
| OBJECT_MAX (obj) = -1; |
| OBJECT_LIVE_RANGES (obj) = NULL; |
| |
| ira_object_id_map_vec.safe_push (obj); |
| ira_object_id_map |
| = ira_object_id_map_vec.address (); |
| ira_objects_num = ira_object_id_map_vec.length (); |
| |
| return obj; |
| } |
| |
| /* Create and return the allocno corresponding to REGNO in |
| LOOP_TREE_NODE. Add the allocno to the list of allocnos with the |
| same regno if CAP_P is FALSE. */ |
| ira_allocno_t |
| ira_create_allocno (int regno, bool cap_p, |
| ira_loop_tree_node_t loop_tree_node) |
| { |
| ira_allocno_t a; |
| |
| a = allocno_pool.allocate (); |
| ALLOCNO_REGNO (a) = regno; |
| ALLOCNO_LOOP_TREE_NODE (a) = loop_tree_node; |
| if (! cap_p) |
| { |
| ALLOCNO_NEXT_REGNO_ALLOCNO (a) = ira_regno_allocno_map[regno]; |
| ira_regno_allocno_map[regno] = a; |
| if (loop_tree_node->regno_allocno_map[regno] == NULL) |
| /* Remember that we can create temporary allocnos to break |
| cycles in register shuffle on region borders (see |
| ira-emit.cc). */ |
| loop_tree_node->regno_allocno_map[regno] = a; |
| } |
| ALLOCNO_CAP (a) = NULL; |
| ALLOCNO_CAP_MEMBER (a) = NULL; |
| ALLOCNO_NUM (a) = ira_allocnos_num; |
| bitmap_set_bit (loop_tree_node->all_allocnos, ALLOCNO_NUM (a)); |
| ALLOCNO_NREFS (a) = 0; |
| ALLOCNO_FREQ (a) = 0; |
| ALLOCNO_MIGHT_CONFLICT_WITH_PARENT_P (a) = false; |
| ALLOCNO_HARD_REGNO (a) = -1; |
| ALLOCNO_CALL_FREQ (a) = 0; |
| ALLOCNO_CALLS_CROSSED_NUM (a) = 0; |
| ALLOCNO_CHEAP_CALLS_CROSSED_NUM (a) = 0; |
| ALLOCNO_CROSSED_CALLS_ABIS (a) = 0; |
| CLEAR_HARD_REG_SET (ALLOCNO_CROSSED_CALLS_CLOBBERED_REGS (a)); |
| #ifdef STACK_REGS |
| ALLOCNO_NO_STACK_REG_P (a) = false; |
| ALLOCNO_TOTAL_NO_STACK_REG_P (a) = false; |
| #endif |
| ALLOCNO_DONT_REASSIGN_P (a) = false; |
| ALLOCNO_BAD_SPILL_P (a) = false; |
| ALLOCNO_ASSIGNED_P (a) = false; |
| ALLOCNO_MODE (a) = (regno < 0 ? VOIDmode : PSEUDO_REGNO_MODE (regno)); |
| ALLOCNO_WMODE (a) = ALLOCNO_MODE (a); |
| ALLOCNO_PREFS (a) = NULL; |
| ALLOCNO_COPIES (a) = NULL; |
| ALLOCNO_HARD_REG_COSTS (a) = NULL; |
| ALLOCNO_CONFLICT_HARD_REG_COSTS (a) = NULL; |
| ALLOCNO_UPDATED_HARD_REG_COSTS (a) = NULL; |
| ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (a) = NULL; |
| ALLOCNO_CLASS (a) = NO_REGS; |
| ALLOCNO_UPDATED_CLASS_COST (a) = 0; |
| ALLOCNO_CLASS_COST (a) = 0; |
| ALLOCNO_MEMORY_COST (a) = 0; |
| ALLOCNO_UPDATED_MEMORY_COST (a) = 0; |
| ALLOCNO_EXCESS_PRESSURE_POINTS_NUM (a) = 0; |
| ALLOCNO_NUM_OBJECTS (a) = 0; |
| |
| ALLOCNO_ADD_DATA (a) = NULL; |
| allocno_vec.safe_push (a); |
| ira_allocnos = allocno_vec.address (); |
| ira_allocnos_num = allocno_vec.length (); |
| |
| return a; |
| } |
| |
| /* Set up register class for A and update its conflict hard |
| registers. */ |
| void |
| ira_set_allocno_class (ira_allocno_t a, enum reg_class aclass) |
| { |
| ira_allocno_object_iterator oi; |
| ira_object_t obj; |
| |
| ALLOCNO_CLASS (a) = aclass; |
| FOR_EACH_ALLOCNO_OBJECT (a, obj, oi) |
| { |
| OBJECT_CONFLICT_HARD_REGS (obj) |= ~reg_class_contents[aclass]; |
| OBJECT_TOTAL_CONFLICT_HARD_REGS (obj) |= ~reg_class_contents[aclass]; |
| } |
| } |
| |
| /* Determine the number of objects we should associate with allocno A |
| and allocate them. */ |
| void |
| ira_create_allocno_objects (ira_allocno_t a) |
| { |
| machine_mode mode = ALLOCNO_MODE (a); |
| enum reg_class aclass = ALLOCNO_CLASS (a); |
| int n = ira_reg_class_max_nregs[aclass][mode]; |
| int i; |
| |
| if (n != 2 || maybe_ne (GET_MODE_SIZE (mode), n * UNITS_PER_WORD)) |
| n = 1; |
| |
| ALLOCNO_NUM_OBJECTS (a) = n; |
| for (i = 0; i < n; i++) |
| ALLOCNO_OBJECT (a, i) = ira_create_object (a, i); |
| } |
| |
| /* For each allocno, set ALLOCNO_NUM_OBJECTS and create the |
| ALLOCNO_OBJECT structures. This must be called after the allocno |
| classes are known. */ |
| static void |
| create_allocno_objects (void) |
| { |
| ira_allocno_t a; |
| ira_allocno_iterator ai; |
| |
| FOR_EACH_ALLOCNO (a, ai) |
| ira_create_allocno_objects (a); |
| } |
| |
| /* Merge hard register conflict information for all objects associated with |
| allocno TO into the corresponding objects associated with FROM. |
| If TOTAL_ONLY is true, we only merge OBJECT_TOTAL_CONFLICT_HARD_REGS. */ |
| static void |
| merge_hard_reg_conflicts (ira_allocno_t from, ira_allocno_t to, |
| bool total_only) |
| { |
| int i; |
| gcc_assert (ALLOCNO_NUM_OBJECTS (to) == ALLOCNO_NUM_OBJECTS (from)); |
| for (i = 0; i < ALLOCNO_NUM_OBJECTS (to); i++) |
| { |
| ira_object_t from_obj = ALLOCNO_OBJECT (from, i); |
| ira_object_t to_obj = ALLOCNO_OBJECT (to, i); |
| |
| if (!total_only) |
| OBJECT_CONFLICT_HARD_REGS (to_obj) |
| |= OBJECT_CONFLICT_HARD_REGS (from_obj); |
| OBJECT_TOTAL_CONFLICT_HARD_REGS (to_obj) |
| |= OBJECT_TOTAL_CONFLICT_HARD_REGS (from_obj); |
| } |
| #ifdef STACK_REGS |
| if (!total_only && ALLOCNO_NO_STACK_REG_P (from)) |
| ALLOCNO_NO_STACK_REG_P (to) = true; |
| if (ALLOCNO_TOTAL_NO_STACK_REG_P (from)) |
| ALLOCNO_TOTAL_NO_STACK_REG_P (to) = true; |
| #endif |
| } |
| |
| /* Update hard register conflict information for all objects associated with |
| A to include the regs in SET. */ |
| void |
| ior_hard_reg_conflicts (ira_allocno_t a, const_hard_reg_set set) |
| { |
| ira_allocno_object_iterator i; |
| ira_object_t obj; |
| |
| FOR_EACH_ALLOCNO_OBJECT (a, obj, i) |
| { |
| OBJECT_CONFLICT_HARD_REGS (obj) |= set; |
| OBJECT_TOTAL_CONFLICT_HARD_REGS (obj) |= set; |
| } |
| } |
| |
| /* Return TRUE if a conflict vector with NUM elements is more |
| profitable than a conflict bit vector for OBJ. */ |
| bool |
| ira_conflict_vector_profitable_p (ira_object_t obj, int num) |
| { |
| int nbytes; |
| int max = OBJECT_MAX (obj); |
| int min = OBJECT_MIN (obj); |
| |
| if (max < min) |
| /* We prefer a bit vector in such case because it does not result |
| in allocation. */ |
| return false; |
| |
| nbytes = (max - min) / 8 + 1; |
| STATIC_ASSERT (sizeof (ira_object_t) <= 8); |
| /* Don't use sizeof (ira_object_t), use constant 8. Size of ira_object_t (a |
| pointer) is different on 32-bit and 64-bit targets. Usage sizeof |
| (ira_object_t) can result in different code generation by GCC built as 32- |
| and 64-bit program. In any case the profitability is just an estimation |
| and border cases are rare. */ |
| return (2 * 8 /* sizeof (ira_object_t) */ * (num + 1) < 3 * nbytes); |
| } |
| |
| /* Allocates and initialize the conflict vector of OBJ for NUM |
| conflicting objects. */ |
| void |
| ira_allocate_conflict_vec (ira_object_t obj, int num) |
| { |
| int size; |
| ira_object_t *vec; |
| |
| ira_assert (OBJECT_CONFLICT_ARRAY (obj) == NULL); |
| num++; /* for NULL end marker */ |
| size = sizeof (ira_object_t) * num; |
| OBJECT_CONFLICT_ARRAY (obj) = ira_allocate (size); |
| vec = (ira_object_t *) OBJECT_CONFLICT_ARRAY (obj); |
| vec[0] = NULL; |
| OBJECT_NUM_CONFLICTS (obj) = 0; |
| OBJECT_CONFLICT_ARRAY_SIZE (obj) = size; |
| OBJECT_CONFLICT_VEC_P (obj) = true; |
| } |
| |
| /* Allocate and initialize the conflict bit vector of OBJ. */ |
| static void |
| allocate_conflict_bit_vec (ira_object_t obj) |
| { |
| unsigned int size; |
| |
| ira_assert (OBJECT_CONFLICT_ARRAY (obj) == NULL); |
| size = ((OBJECT_MAX (obj) - OBJECT_MIN (obj) + IRA_INT_BITS) |
| / IRA_INT_BITS * sizeof (IRA_INT_TYPE)); |
| OBJECT_CONFLICT_ARRAY (obj) = ira_allocate (size); |
| memset (OBJECT_CONFLICT_ARRAY (obj), 0, size); |
| OBJECT_CONFLICT_ARRAY_SIZE (obj) = size; |
| OBJECT_CONFLICT_VEC_P (obj) = false; |
| } |
| |
| /* Allocate and initialize the conflict vector or conflict bit vector |
| of OBJ for NUM conflicting allocnos whatever is more profitable. */ |
| void |
| ira_allocate_object_conflicts (ira_object_t obj, int num) |
| { |
| if (ira_conflict_vector_profitable_p (obj, num)) |
| ira_allocate_conflict_vec (obj, num); |
| else |
| allocate_conflict_bit_vec (obj); |
| } |
| |
| /* Add OBJ2 to the conflicts of OBJ1. */ |
| static void |
| add_to_conflicts (ira_object_t obj1, ira_object_t obj2) |
| { |
| int num; |
| unsigned int size; |
| |
| if (OBJECT_CONFLICT_VEC_P (obj1)) |
| { |
| ira_object_t *vec = OBJECT_CONFLICT_VEC (obj1); |
| int curr_num = OBJECT_NUM_CONFLICTS (obj1); |
| num = curr_num + 2; |
| if (OBJECT_CONFLICT_ARRAY_SIZE (obj1) < num * sizeof (ira_object_t)) |
| { |
| ira_object_t *newvec; |
| size = (3 * num / 2 + 1) * sizeof (ira_allocno_t); |
| newvec = (ira_object_t *) ira_allocate (size); |
| memcpy (newvec, vec, curr_num * sizeof (ira_object_t)); |
| ira_free (vec); |
| vec = newvec; |
| OBJECT_CONFLICT_ARRAY (obj1) = vec; |
| OBJECT_CONFLICT_ARRAY_SIZE (obj1) = size; |
| } |
| vec[num - 2] = obj2; |
| vec[num - 1] = NULL; |
| OBJECT_NUM_CONFLICTS (obj1)++; |
| } |
| else |
| { |
| int nw, added_head_nw, id; |
| IRA_INT_TYPE *vec = OBJECT_CONFLICT_BITVEC (obj1); |
| |
| id = OBJECT_CONFLICT_ID (obj2); |
| if (OBJECT_MIN (obj1) > id) |
| { |
| /* Expand head of the bit vector. */ |
| added_head_nw = (OBJECT_MIN (obj1) - id - 1) / IRA_INT_BITS + 1; |
| nw = (OBJECT_MAX (obj1) - OBJECT_MIN (obj1)) / IRA_INT_BITS + 1; |
| size = (nw + added_head_nw) * sizeof (IRA_INT_TYPE); |
| if (OBJECT_CONFLICT_ARRAY_SIZE (obj1) >= size) |
| { |
| memmove ((char *) vec + added_head_nw * sizeof (IRA_INT_TYPE), |
| vec, nw * sizeof (IRA_INT_TYPE)); |
| memset (vec, 0, added_head_nw * sizeof (IRA_INT_TYPE)); |
| } |
| else |
| { |
| size |
| = (3 * (nw + added_head_nw) / 2 + 1) * sizeof (IRA_INT_TYPE); |
| vec = (IRA_INT_TYPE *) ira_allocate (size); |
| memcpy ((char *) vec + added_head_nw * sizeof (IRA_INT_TYPE), |
| OBJECT_CONFLICT_ARRAY (obj1), nw * sizeof (IRA_INT_TYPE)); |
| memset (vec, 0, added_head_nw * sizeof (IRA_INT_TYPE)); |
| memset ((char *) vec |
| + (nw + added_head_nw) * sizeof (IRA_INT_TYPE), |
| 0, size - (nw + added_head_nw) * sizeof (IRA_INT_TYPE)); |
| ira_free (OBJECT_CONFLICT_ARRAY (obj1)); |
| OBJECT_CONFLICT_ARRAY (obj1) = vec; |
| OBJECT_CONFLICT_ARRAY_SIZE (obj1) = size; |
| } |
| OBJECT_MIN (obj1) -= added_head_nw * IRA_INT_BITS; |
| } |
| else if (OBJECT_MAX (obj1) < id) |
| { |
| nw = (id - OBJECT_MIN (obj1)) / IRA_INT_BITS + 1; |
| size = nw * sizeof (IRA_INT_TYPE); |
| if (OBJECT_CONFLICT_ARRAY_SIZE (obj1) < size) |
| { |
| /* Expand tail of the bit vector. */ |
| size = (3 * nw / 2 + 1) * sizeof (IRA_INT_TYPE); |
| vec = (IRA_INT_TYPE *) ira_allocate (size); |
| memcpy (vec, OBJECT_CONFLICT_ARRAY (obj1), OBJECT_CONFLICT_ARRAY_SIZE (obj1)); |
| memset ((char *) vec + OBJECT_CONFLICT_ARRAY_SIZE (obj1), |
| 0, size - OBJECT_CONFLICT_ARRAY_SIZE (obj1)); |
| ira_free (OBJECT_CONFLICT_ARRAY (obj1)); |
| OBJECT_CONFLICT_ARRAY (obj1) = vec; |
| OBJECT_CONFLICT_ARRAY_SIZE (obj1) = size; |
| } |
| OBJECT_MAX (obj1) = id; |
| } |
| SET_MINMAX_SET_BIT (vec, id, OBJECT_MIN (obj1), OBJECT_MAX (obj1)); |
| } |
| } |
| |
| /* Add OBJ1 to the conflicts of OBJ2 and vice versa. */ |
| static void |
| ira_add_conflict (ira_object_t obj1, ira_object_t obj2) |
| { |
| add_to_conflicts (obj1, obj2); |
| add_to_conflicts (obj2, obj1); |
| } |
| |
| /* Clear all conflicts of OBJ. */ |
| static void |
| clear_conflicts (ira_object_t obj) |
| { |
| if (OBJECT_CONFLICT_VEC_P (obj)) |
| { |
| OBJECT_NUM_CONFLICTS (obj) = 0; |
| OBJECT_CONFLICT_VEC (obj)[0] = NULL; |
| } |
| else if (OBJECT_CONFLICT_ARRAY_SIZE (obj) != 0) |
| { |
| int nw; |
| |
| nw = (OBJECT_MAX (obj) - OBJECT_MIN (obj)) / IRA_INT_BITS + 1; |
| memset (OBJECT_CONFLICT_BITVEC (obj), 0, nw * sizeof (IRA_INT_TYPE)); |
| } |
| } |
| |
| /* The array used to find duplications in conflict vectors of |
| allocnos. */ |
| static int *conflict_check; |
| |
| /* The value used to mark allocation presence in conflict vector of |
| the current allocno. */ |
| static int curr_conflict_check_tick; |
| |
| /* Remove duplications in conflict vector of OBJ. */ |
| static void |
| compress_conflict_vec (ira_object_t obj) |
| { |
| ira_object_t *vec, conflict_obj; |
| int i, j; |
| |
| ira_assert (OBJECT_CONFLICT_VEC_P (obj)); |
| vec = OBJECT_CONFLICT_VEC (obj); |
| curr_conflict_check_tick++; |
| for (i = j = 0; (conflict_obj = vec[i]) != NULL; i++) |
| { |
| int id = OBJECT_CONFLICT_ID (conflict_obj); |
| if (conflict_check[id] != curr_conflict_check_tick) |
| { |
| conflict_check[id] = curr_conflict_check_tick; |
| vec[j++] = conflict_obj; |
| } |
| } |
| OBJECT_NUM_CONFLICTS (obj) = j; |
| vec[j] = NULL; |
| } |
| |
| /* Remove duplications in conflict vectors of all allocnos. */ |
| static void |
| compress_conflict_vecs (void) |
| { |
| ira_object_t obj; |
| ira_object_iterator oi; |
| |
| conflict_check = (int *) ira_allocate (sizeof (int) * ira_objects_num); |
| memset (conflict_check, 0, sizeof (int) * ira_objects_num); |
| curr_conflict_check_tick = 0; |
| FOR_EACH_OBJECT (obj, oi) |
| { |
| if (OBJECT_CONFLICT_VEC_P (obj)) |
| compress_conflict_vec (obj); |
| } |
| ira_free (conflict_check); |
| } |
| |
| /* This recursive function outputs allocno A and if it is a cap the |
| function outputs its members. */ |
| void |
| ira_print_expanded_allocno (ira_allocno_t a) |
| { |
| basic_block bb; |
| |
| fprintf (ira_dump_file, " a%d(r%d", ALLOCNO_NUM (a), ALLOCNO_REGNO (a)); |
| if ((bb = ALLOCNO_LOOP_TREE_NODE (a)->bb) != NULL) |
| fprintf (ira_dump_file, ",b%d", bb->index); |
| else |
| fprintf (ira_dump_file, ",l%d", ALLOCNO_LOOP_TREE_NODE (a)->loop_num); |
| if (ALLOCNO_CAP_MEMBER (a) != NULL) |
| { |
| fprintf (ira_dump_file, ":"); |
| ira_print_expanded_allocno (ALLOCNO_CAP_MEMBER (a)); |
| } |
| fprintf (ira_dump_file, ")"); |
| } |
| |
| /* Create and return the cap representing allocno A in the |
| parent loop. */ |
| static ira_allocno_t |
| create_cap_allocno (ira_allocno_t a) |
| { |
| ira_allocno_t cap; |
| ira_loop_tree_node_t parent; |
| enum reg_class aclass; |
| |
| parent = ALLOCNO_LOOP_TREE_NODE (a)->parent; |
| cap = ira_create_allocno (ALLOCNO_REGNO (a), true, parent); |
| ALLOCNO_MODE (cap) = ALLOCNO_MODE (a); |
| ALLOCNO_WMODE (cap) = ALLOCNO_WMODE (a); |
| aclass = ALLOCNO_CLASS (a); |
| ira_set_allocno_class (cap, aclass); |
| ira_create_allocno_objects (cap); |
| ALLOCNO_CAP_MEMBER (cap) = a; |
| ALLOCNO_CAP (a) = cap; |
| ALLOCNO_CLASS_COST (cap) = ALLOCNO_CLASS_COST (a); |
| ALLOCNO_MEMORY_COST (cap) = ALLOCNO_MEMORY_COST (a); |
| ira_allocate_and_copy_costs |
| (&ALLOCNO_HARD_REG_COSTS (cap), aclass, ALLOCNO_HARD_REG_COSTS (a)); |
| ira_allocate_and_copy_costs |
| (&ALLOCNO_CONFLICT_HARD_REG_COSTS (cap), aclass, |
| ALLOCNO_CONFLICT_HARD_REG_COSTS (a)); |
| ALLOCNO_BAD_SPILL_P (cap) = ALLOCNO_BAD_SPILL_P (a); |
| ALLOCNO_NREFS (cap) = ALLOCNO_NREFS (a); |
| ALLOCNO_FREQ (cap) = ALLOCNO_FREQ (a); |
| ALLOCNO_CALL_FREQ (cap) = ALLOCNO_CALL_FREQ (a); |
| |
| merge_hard_reg_conflicts (a, cap, false); |
| |
| ALLOCNO_CALLS_CROSSED_NUM (cap) = ALLOCNO_CALLS_CROSSED_NUM (a); |
| ALLOCNO_CHEAP_CALLS_CROSSED_NUM (cap) = ALLOCNO_CHEAP_CALLS_CROSSED_NUM (a); |
| ALLOCNO_CROSSED_CALLS_ABIS (cap) = ALLOCNO_CROSSED_CALLS_ABIS (a); |
| ALLOCNO_CROSSED_CALLS_CLOBBERED_REGS (cap) |
| = ALLOCNO_CROSSED_CALLS_CLOBBERED_REGS (a); |
| if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL) |
| { |
| fprintf (ira_dump_file, " Creating cap "); |
| ira_print_expanded_allocno (cap); |
| fprintf (ira_dump_file, "\n"); |
| } |
| return cap; |
| } |
| |
| /* Create and return a live range for OBJECT with given attributes. */ |
| live_range_t |
| ira_create_live_range (ira_object_t obj, int start, int finish, |
| live_range_t next) |
| { |
| live_range_t p; |
| |
| p = live_range_pool.allocate (); |
| p->object = obj; |
| p->start = start; |
| p->finish = finish; |
| p->next = next; |
| return p; |
| } |
| |
| /* Create a new live range for OBJECT and queue it at the head of its |
| live range list. */ |
| void |
| ira_add_live_range_to_object (ira_object_t object, int start, int finish) |
| { |
| live_range_t p; |
| p = ira_create_live_range (object, start, finish, |
| OBJECT_LIVE_RANGES (object)); |
| OBJECT_LIVE_RANGES (object) = p; |
| } |
| |
| /* Copy allocno live range R and return the result. */ |
| static live_range_t |
| copy_live_range (live_range_t r) |
| { |
| live_range_t p; |
| |
| p = live_range_pool.allocate (); |
| *p = *r; |
| return p; |
| } |
| |
| /* Copy allocno live range list given by its head R and return the |
| result. */ |
| live_range_t |
| ira_copy_live_range_list (live_range_t r) |
| { |
| live_range_t p, first, last; |
| |
| if (r == NULL) |
| return NULL; |
| for (first = last = NULL; r != NULL; r = r->next) |
| { |
| p = copy_live_range (r); |
| if (first == NULL) |
| first = p; |
| else |
| last->next = p; |
| last = p; |
| } |
| return first; |
| } |
| |
| /* Merge ranges R1 and R2 and returns the result. The function |
| maintains the order of ranges and tries to minimize number of the |
| result ranges. */ |
| live_range_t |
| ira_merge_live_ranges (live_range_t r1, live_range_t r2) |
| { |
| live_range_t first, last; |
| |
| if (r1 == NULL) |
| return r2; |
| if (r2 == NULL) |
| return r1; |
| for (first = last = NULL; r1 != NULL && r2 != NULL;) |
| { |
| if (r1->start < r2->start) |
| std::swap (r1, r2); |
| if (r1->start <= r2->finish + 1) |
| { |
| /* Intersected ranges: merge r1 and r2 into r1. */ |
| r1->start = r2->start; |
| if (r1->finish < r2->finish) |
| r1->finish = r2->finish; |
| live_range_t temp = r2; |
| r2 = r2->next; |
| ira_finish_live_range (temp); |
| if (r2 == NULL) |
| { |
| /* To try to merge with subsequent ranges in r1. */ |
| r2 = r1->next; |
| r1->next = NULL; |
| } |
| } |
| else |
| { |
| /* Add r1 to the result. */ |
| if (first == NULL) |
| first = last = r1; |
| else |
| { |
| last->next = r1; |
| last = r1; |
| } |
| r1 = r1->next; |
| if (r1 == NULL) |
| { |
| /* To try to merge with subsequent ranges in r2. */ |
| r1 = r2->next; |
| r2->next = NULL; |
| } |
| } |
| } |
| if (r1 != NULL) |
| { |
| if (first == NULL) |
| first = r1; |
| else |
| last->next = r1; |
| ira_assert (r1->next == NULL); |
| } |
| else if (r2 != NULL) |
| { |
| if (first == NULL) |
| first = r2; |
| else |
| last->next = r2; |
| ira_assert (r2->next == NULL); |
| } |
| else |
| { |
| ira_assert (last->next == NULL); |
| } |
| return first; |
| } |
| |
| /* Return TRUE if live ranges R1 and R2 intersect. */ |
| bool |
| ira_live_ranges_intersect_p (live_range_t r1, live_range_t r2) |
| { |
| /* Remember the live ranges are always kept ordered. */ |
| while (r1 != NULL && r2 != NULL) |
| { |
| if (r1->start > r2->finish) |
| r1 = r1->next; |
| else if (r2->start > r1->finish) |
| r2 = r2->next; |
| else |
| return true; |
| } |
| return false; |
| } |
| |
| /* Free allocno live range R. */ |
| void |
| ira_finish_live_range (live_range_t r) |
| { |
| live_range_pool.remove (r); |
| } |
| |
| /* Free list of allocno live ranges starting with R. */ |
| void |
| ira_finish_live_range_list (live_range_t r) |
| { |
| live_range_t next_r; |
| |
| for (; r != NULL; r = next_r) |
| { |
| next_r = r->next; |
| ira_finish_live_range (r); |
| } |
| } |
| |
| /* Free updated register costs of allocno A. */ |
| void |
| ira_free_allocno_updated_costs (ira_allocno_t a) |
| { |
| enum reg_class aclass; |
| |
| aclass = ALLOCNO_CLASS (a); |
| if (ALLOCNO_UPDATED_HARD_REG_COSTS (a) != NULL) |
| ira_free_cost_vector (ALLOCNO_UPDATED_HARD_REG_COSTS (a), aclass); |
| ALLOCNO_UPDATED_HARD_REG_COSTS (a) = NULL; |
| if (ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (a) != NULL) |
| ira_free_cost_vector (ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (a), |
| aclass); |
| ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (a) = NULL; |
| } |
| |
| /* Free and nullify all cost vectors allocated earlier for allocno |
| A. */ |
| static void |
| ira_free_allocno_costs (ira_allocno_t a) |
| { |
| enum reg_class aclass = ALLOCNO_CLASS (a); |
| ira_object_t obj; |
| ira_allocno_object_iterator oi; |
| |
| FOR_EACH_ALLOCNO_OBJECT (a, obj, oi) |
| { |
| ira_finish_live_range_list (OBJECT_LIVE_RANGES (obj)); |
| ira_object_id_map[OBJECT_CONFLICT_ID (obj)] = NULL; |
| if (OBJECT_CONFLICT_ARRAY (obj) != NULL) |
| ira_free (OBJECT_CONFLICT_ARRAY (obj)); |
| object_pool.remove (obj); |
| } |
| |
| ira_allocnos[ALLOCNO_NUM (a)] = NULL; |
| if (ALLOCNO_HARD_REG_COSTS (a) != NULL) |
| ira_free_cost_vector (ALLOCNO_HARD_REG_COSTS (a), aclass); |
| if (ALLOCNO_CONFLICT_HARD_REG_COSTS (a) != NULL) |
| ira_free_cost_vector (ALLOCNO_CONFLICT_HARD_REG_COSTS (a), aclass); |
| if (ALLOCNO_UPDATED_HARD_REG_COSTS (a) != NULL) |
| ira_free_cost_vector (ALLOCNO_UPDATED_HARD_REG_COSTS (a), aclass); |
| if (ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (a) != NULL) |
| ira_free_cost_vector (ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (a), |
| aclass); |
| ALLOCNO_HARD_REG_COSTS (a) = NULL; |
| ALLOCNO_CONFLICT_HARD_REG_COSTS (a) = NULL; |
| ALLOCNO_UPDATED_HARD_REG_COSTS (a) = NULL; |
| ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (a) = NULL; |
| } |
| |
| /* Free the memory allocated for allocno A. */ |
| static void |
| finish_allocno (ira_allocno_t a) |
| { |
| ira_free_allocno_costs (a); |
| allocno_pool.remove (a); |
| } |
| |
| /* Free the memory allocated for all allocnos. */ |
| static void |
| finish_allocnos (void) |
| { |
| ira_allocno_t a; |
| ira_allocno_iterator ai; |
| |
| FOR_EACH_ALLOCNO (a, ai) |
| finish_allocno (a); |
| ira_free (ira_regno_allocno_map); |
| ira_object_id_map_vec.release (); |
| allocno_vec.release (); |
| allocno_pool.release (); |
| object_pool.release (); |
| live_range_pool.release (); |
| } |
| |
| |
| |
| /* Pools for allocno preferences. */ |
| static object_allocator <ira_allocno_pref> pref_pool ("prefs"); |
| |
| /* Vec containing references to all created preferences. It is a |
| container of array ira_prefs. */ |
| static vec<ira_pref_t> pref_vec; |
| |
| /* The function initializes data concerning allocno prefs. */ |
| static void |
| initiate_prefs (void) |
| { |
| pref_vec.create (get_max_uid ()); |
| ira_prefs = NULL; |
| ira_prefs_num = 0; |
| } |
| |
| /* Return pref for A and HARD_REGNO if any. */ |
| static ira_pref_t |
| find_allocno_pref (ira_allocno_t a, int hard_regno) |
| { |
| ira_pref_t pref; |
| |
| for (pref = ALLOCNO_PREFS (a); pref != NULL; pref = pref->next_pref) |
| if (pref->allocno == a && pref->hard_regno == hard_regno) |
| return pref; |
| return NULL; |
| } |
| |
| /* Create and return pref with given attributes A, HARD_REGNO, and FREQ. */ |
| ira_pref_t |
| ira_create_pref (ira_allocno_t a, int hard_regno, int freq) |
| { |
| ira_pref_t pref; |
| |
| pref = pref_pool.allocate (); |
| pref->num = ira_prefs_num; |
| pref->allocno = a; |
| pref->hard_regno = hard_regno; |
| pref->freq = freq; |
| pref_vec.safe_push (pref); |
| ira_prefs = pref_vec.address (); |
| ira_prefs_num = pref_vec.length (); |
| return pref; |
| } |
| |
| /* Attach a pref PREF to the corresponding allocno. */ |
| static void |
| add_allocno_pref_to_list (ira_pref_t pref) |
| { |
| ira_allocno_t a = pref->allocno; |
| |
| pref->next_pref = ALLOCNO_PREFS (a); |
| ALLOCNO_PREFS (a) = pref; |
| } |
| |
| /* Create (or update frequency if the pref already exists) the pref of |
| allocnos A preferring HARD_REGNO with frequency FREQ. */ |
| void |
| ira_add_allocno_pref (ira_allocno_t a, int hard_regno, int freq) |
| { |
| ira_pref_t pref; |
| |
| if (freq <= 0) |
| return; |
| if ((pref = find_allocno_pref (a, hard_regno)) != NULL) |
| { |
| pref->freq += freq; |
| return; |
| } |
| pref = ira_create_pref (a, hard_regno, freq); |
| ira_assert (a != NULL); |
| add_allocno_pref_to_list (pref); |
| } |
| |
| /* Print info about PREF into file F. */ |
| static void |
| print_pref (FILE *f, ira_pref_t pref) |
| { |
| fprintf (f, " pref%d:a%d(r%d)<-hr%d@%d\n", pref->num, |
| ALLOCNO_NUM (pref->allocno), ALLOCNO_REGNO (pref->allocno), |
| pref->hard_regno, pref->freq); |
| } |
| |
| /* Print info about PREF into stderr. */ |
| void |
| ira_debug_pref (ira_pref_t pref) |
| { |
| print_pref (stderr, pref); |
| } |
| |
| /* Print info about all prefs into file F. */ |
| static void |
| print_prefs (FILE *f) |
| { |
| ira_pref_t pref; |
| ira_pref_iterator pi; |
| |
| FOR_EACH_PREF (pref, pi) |
| print_pref (f, pref); |
| } |
| |
| /* Print info about all prefs into stderr. */ |
| void |
| ira_debug_prefs (void) |
| { |
| print_prefs (stderr); |
| } |
| |
| /* Print info about prefs involving allocno A into file F. */ |
| static void |
| print_allocno_prefs (FILE *f, ira_allocno_t a) |
| { |
| ira_pref_t pref; |
| |
| fprintf (f, " a%d(r%d):", ALLOCNO_NUM (a), ALLOCNO_REGNO (a)); |
| for (pref = ALLOCNO_PREFS (a); pref != NULL; pref = pref->next_pref) |
| fprintf (f, " pref%d:hr%d@%d", pref->num, pref->hard_regno, pref->freq); |
| fprintf (f, "\n"); |
| } |
| |
| /* Print info about prefs involving allocno A into stderr. */ |
| void |
| ira_debug_allocno_prefs (ira_allocno_t a) |
| { |
| print_allocno_prefs (stderr, a); |
| } |
| |
| /* The function frees memory allocated for PREF. */ |
| static void |
| finish_pref (ira_pref_t pref) |
| { |
| ira_prefs[pref->num] = NULL; |
| pref_pool.remove (pref); |
| } |
| |
| /* Remove PREF from the list of allocno prefs and free memory for |
| it. */ |
| void |
| ira_remove_pref (ira_pref_t pref) |
| { |
| ira_pref_t cpref, prev; |
| |
| if (internal_flag_ira_verbose > 1 && ira_dump_file != NULL) |
| fprintf (ira_dump_file, " Removing pref%d:hr%d@%d\n", |
| pref->num, pref->hard_regno, pref->freq); |
| for (prev = NULL, cpref = ALLOCNO_PREFS (pref->allocno); |
| cpref != NULL; |
| prev = cpref, cpref = cpref->next_pref) |
| if (cpref == pref) |
| break; |
| ira_assert (cpref != NULL); |
| if (prev == NULL) |
| ALLOCNO_PREFS (pref->allocno) = pref->next_pref; |
| else |
| prev->next_pref = pref->next_pref; |
| finish_pref (pref); |
| } |
| |
| /* Remove all prefs of allocno A. */ |
| void |
| ira_remove_allocno_prefs (ira_allocno_t a) |
| { |
| ira_pref_t pref, next_pref; |
| |
| for (pref = ALLOCNO_PREFS (a); pref != NULL; pref = next_pref) |
| { |
| next_pref = pref->next_pref; |
| finish_pref (pref); |
| } |
| ALLOCNO_PREFS (a) = NULL; |
| } |
| |
| /* Free memory allocated for all prefs. */ |
| static void |
| finish_prefs (void) |
| { |
| ira_pref_t pref; |
| ira_pref_iterator pi; |
| |
| FOR_EACH_PREF (pref, pi) |
| finish_pref (pref); |
| pref_vec.release (); |
| pref_pool.release (); |
| } |
| |
| |
| |
| /* Pools for copies. */ |
| static object_allocator<ira_allocno_copy> copy_pool ("copies"); |
| |
| /* Vec containing references to all created copies. It is a |
| container of array ira_copies. */ |
| static vec<ira_copy_t> copy_vec; |
| |
| /* The function initializes data concerning allocno copies. */ |
| static void |
| initiate_copies (void) |
| { |
| copy_vec.create (get_max_uid ()); |
| ira_copies = NULL; |
| ira_copies_num = 0; |
| } |
| |
| /* Return copy connecting A1 and A2 and originated from INSN of |
| LOOP_TREE_NODE if any. */ |
| static ira_copy_t |
| find_allocno_copy (ira_allocno_t a1, ira_allocno_t a2, rtx_insn *insn, |
| ira_loop_tree_node_t loop_tree_node) |
| { |
| ira_copy_t cp, next_cp; |
| ira_allocno_t another_a; |
| |
| for (cp = ALLOCNO_COPIES (a1); cp != NULL; cp = next_cp) |
| { |
| if (cp->first == a1) |
| { |
| next_cp = cp->next_first_allocno_copy; |
| another_a = cp->second; |
| } |
| else if (cp->second == a1) |
| { |
| next_cp = cp->next_second_allocno_copy; |
| another_a = cp->first; |
| } |
| else |
| gcc_unreachable (); |
| if (another_a == a2 && cp->insn == insn |
| && cp->loop_tree_node == loop_tree_node) |
| return cp; |
| } |
| return NULL; |
| } |
| |
| /* Create and return copy with given attributes LOOP_TREE_NODE, FIRST, |
| SECOND, FREQ, CONSTRAINT_P, and INSN. */ |
| ira_copy_t |
| ira_create_copy (ira_allocno_t first, ira_allocno_t second, int freq, |
| bool constraint_p, rtx_insn *insn, |
| ira_loop_tree_node_t loop_tree_node) |
| { |
| ira_copy_t cp; |
| |
| cp = copy_pool.allocate (); |
| cp->num = ira_copies_num; |
| cp->first = first; |
| cp->second = second; |
| cp->freq = freq; |
| cp->constraint_p = constraint_p; |
| cp->insn = insn; |
| cp->loop_tree_node = loop_tree_node; |
| copy_vec.safe_push (cp); |
| ira_copies = copy_vec.address (); |
| ira_copies_num = copy_vec.length (); |
| return cp; |
| } |
| |
| /* Attach a copy CP to allocnos involved into the copy. */ |
| static void |
| add_allocno_copy_to_list (ira_copy_t cp) |
| { |
| ira_allocno_t first = cp->first, second = cp->second; |
| |
| cp->prev_first_allocno_copy = NULL; |
| cp->prev_second_allocno_copy = NULL; |
| cp->next_first_allocno_copy = ALLOCNO_COPIES (first); |
| if (cp->next_first_allocno_copy != NULL) |
| { |
| if (cp->next_first_allocno_copy->first == first) |
| cp->next_first_allocno_copy->prev_first_allocno_copy = cp; |
| else |
| cp->next_first_allocno_copy->prev_second_allocno_copy = cp; |
| } |
| cp->next_second_allocno_copy = ALLOCNO_COPIES (second); |
| if (cp->next_second_allocno_copy != NULL) |
| { |
| if (cp->next_second_allocno_copy->second == second) |
| cp->next_second_allocno_copy->prev_second_allocno_copy = cp; |
| else |
| cp->next_second_allocno_copy->prev_first_allocno_copy = cp; |
| } |
| ALLOCNO_COPIES (first) = cp; |
| ALLOCNO_COPIES (second) = cp; |
| } |
| |
| /* Make a copy CP a canonical copy where number of the |
| first allocno is less than the second one. */ |
| static void |
| swap_allocno_copy_ends_if_necessary (ira_copy_t cp) |
| { |
| if (ALLOCNO_NUM (cp->first) <= ALLOCNO_NUM (cp->second)) |
| return; |
| |
| std::swap (cp->first, cp->second); |
| std::swap (cp->prev_first_allocno_copy, cp->prev_second_allocno_copy); |
| std::swap (cp->next_first_allocno_copy, cp->next_second_allocno_copy); |
| } |
| |
| /* Create (or update frequency if the copy already exists) and return |
| the copy of allocnos FIRST and SECOND with frequency FREQ |
| corresponding to move insn INSN (if any) and originated from |
| LOOP_TREE_NODE. */ |
| ira_copy_t |
| ira_add_allocno_copy (ira_allocno_t first, ira_allocno_t second, int freq, |
| bool constraint_p, rtx_insn *insn, |
| ira_loop_tree_node_t loop_tree_node) |
| { |
| ira_copy_t cp; |
| |
| if ((cp = find_allocno_copy (first, second, insn, loop_tree_node)) != NULL) |
| { |
| cp->freq += freq; |
| return cp; |
| } |
| cp = ira_create_copy (first, second, freq, constraint_p, insn, |
| loop_tree_node); |
| ira_assert (first != NULL && second != NULL); |
| add_allocno_copy_to_list (cp); |
| swap_allocno_copy_ends_if_necessary (cp); |
| return cp; |
| } |
| |
| /* Print info about copy CP into file F. */ |
| static void |
| print_copy (FILE *f, ira_copy_t cp) |
| { |
| fprintf (f, " cp%d:a%d(r%d)<->a%d(r%d)@%d:%s\n", cp->num, |
| ALLOCNO_NUM (cp->first), ALLOCNO_REGNO (cp->first), |
| ALLOCNO_NUM (cp->second), ALLOCNO_REGNO (cp->second), cp->freq, |
| cp->insn != NULL |
| ? "move" : cp->constraint_p ? "constraint" : "shuffle"); |
| } |
| |
| DEBUG_FUNCTION void |
| debug (ira_allocno_copy &ref) |
| { |
| print_copy (stderr, &ref); |
| } |
| |
| DEBUG_FUNCTION void |
| debug (ira_allocno_copy *ptr) |
| { |
| if (ptr) |
| debug (*ptr); |
| else |
| fprintf (stderr, "<nil>\n"); |
| } |
| |
| /* Print info about copy CP into stderr. */ |
| void |
| ira_debug_copy (ira_copy_t cp) |
| { |
| print_copy (stderr, cp); |
| } |
| |
| /* Print info about all copies into file F. */ |
| static void |
| print_copies (FILE *f) |
| { |
| ira_copy_t cp; |
| ira_copy_iterator ci; |
| |
| FOR_EACH_COPY (cp, ci) |
| print_copy (f, cp); |
| } |
| |
| /* Print info about all copies into stderr. */ |
| void |
| ira_debug_copies (void) |
| { |
| print_copies (stderr); |
| } |
| |
| /* Print info about copies involving allocno A into file F. */ |
| static void |
| print_allocno_copies (FILE *f, ira_allocno_t a) |
| { |
| ira_allocno_t another_a; |
| ira_copy_t cp, next_cp; |
| |
| fprintf (f, " a%d(r%d):", ALLOCNO_NUM (a), ALLOCNO_REGNO (a)); |
| for (cp = ALLOCNO_COPIES (a); cp != NULL; cp = next_cp) |
| { |
| if (cp->first == a) |
| { |
| next_cp = cp->next_first_allocno_copy; |
| another_a = cp->second; |
| } |
| else if (cp->second == a) |
| { |
| next_cp = cp->next_second_allocno_copy; |
| another_a = cp->first; |
| } |
| else |
| gcc_unreachable (); |
| fprintf (f, " cp%d:a%d(r%d)@%d", cp->num, |
| ALLOCNO_NUM (another_a), ALLOCNO_REGNO (another_a), cp->freq); |
| } |
| fprintf (f, "\n"); |
| } |
| |
| DEBUG_FUNCTION void |
| debug (ira_allocno &ref) |
| { |
| print_allocno_copies (stderr, &ref); |
| } |
| |
| DEBUG_FUNCTION void |
| debug (ira_allocno *ptr) |
| { |
| if (ptr) |
| debug (*ptr); |
| else |
| fprintf (stderr, "<nil>\n"); |
| } |
| |
| |
| /* Print info about copies involving allocno A into stderr. */ |
| void |
| ira_debug_allocno_copies (ira_allocno_t a) |
| { |
| print_allocno_copies (stderr, a); |
| } |
| |
| /* The function frees memory allocated for copy CP. */ |
| static void |
| finish_copy (ira_copy_t cp) |
| { |
| copy_pool.remove (cp); |
| } |
| |
| |
| /* Free memory allocated for all copies. */ |
| static void |
| finish_copies (void) |
| { |
| ira_copy_t cp; |
| ira_copy_iterator ci; |
| |
| FOR_EACH_COPY (cp, ci) |
| finish_copy (cp); |
| copy_vec.release (); |
| copy_pool.release (); |
| } |
| |
| |
| |
| /* Pools for cost vectors. It is defined only for allocno classes. */ |
| static pool_allocator *cost_vector_pool[N_REG_CLASSES]; |
| |
| /* The function initiates work with hard register cost vectors. It |
| creates allocation pool for each allocno class. */ |
| static void |
| initiate_cost_vectors (void) |
| { |
| int i; |
| enum reg_class aclass; |
| |
| for (i = 0; i < ira_allocno_classes_num; i++) |
| { |
| aclass = ira_allocno_classes[i]; |
| cost_vector_pool[aclass] = new pool_allocator |
| ("cost vectors", sizeof (int) * (ira_class_hard_regs_num[aclass])); |
| } |
| } |
| |
| /* Allocate and return a cost vector VEC for ACLASS. */ |
| int * |
| ira_allocate_cost_vector (reg_class_t aclass) |
| { |
| return (int*) cost_vector_pool[(int) aclass]->allocate (); |
| } |
| |
| /* Free a cost vector VEC for ACLASS. */ |
| void |
| ira_free_cost_vector (int *vec, reg_class_t aclass) |
| { |
| ira_assert (vec != NULL); |
| cost_vector_pool[(int) aclass]->remove (vec); |
| } |
| |
| /* Finish work with hard register cost vectors. Release allocation |
| pool for each allocno class. */ |
| static void |
| finish_cost_vectors (void) |
| { |
| int i; |
| enum reg_class aclass; |
| |
| for (i = 0; i < ira_allocno_classes_num; i++) |
| { |
| aclass = ira_allocno_classes[i]; |
| delete cost_vector_pool[aclass]; |
| } |
| } |
| |
| |
| |
| /* Compute a post-ordering of the reverse control flow of the loop body |
| designated by the children nodes of LOOP_NODE, whose body nodes in |
| pre-order are input as LOOP_PREORDER. Return a VEC with a post-order |
| of the reverse loop body. |
| |
| For the post-order of the reverse CFG, we visit the basic blocks in |
| LOOP_PREORDER array in the reverse order of where they appear. |
| This is important: We do not just want to compute a post-order of |
| the reverse CFG, we want to make a best-guess for a visiting order that |
| minimizes the number of chain elements per allocno live range. If the |
| blocks would be visited in a different order, we would still compute a |
| correct post-ordering but it would be less likely that two nodes |
| connected by an edge in the CFG are neighbors in the topsort. */ |
| |
| static vec<ira_loop_tree_node_t> |
| ira_loop_tree_body_rev_postorder (ira_loop_tree_node_t loop_node ATTRIBUTE_UNUSED, |
| const vec<ira_loop_tree_node_t> &loop_preorder) |
| { |
| vec<ira_loop_tree_node_t> topsort_nodes = vNULL; |
| unsigned int n_loop_preorder; |
| |
| n_loop_preorder = loop_preorder.length (); |
| if (n_loop_preorder != 0) |
| { |
| ira_loop_tree_node_t subloop_node; |
| unsigned int i; |
| auto_vec<ira_loop_tree_node_t> dfs_stack; |
| |
| /* This is a bit of strange abuse of the BB_VISITED flag: We use |
| the flag to mark blocks we still have to visit to add them to |
| our post-order. Define an alias to avoid confusion. */ |
| #define BB_TO_VISIT BB_VISITED |
| |
| FOR_EACH_VEC_ELT (loop_preorder, i, subloop_node) |
| { |
| gcc_checking_assert (! (subloop_node->bb->flags & BB_TO_VISIT)); |
| subloop_node->bb->flags |= BB_TO_VISIT; |
| } |
| |
| topsort_nodes.create (n_loop_preorder); |
| dfs_stack.create (n_loop_preorder); |
| |
| FOR_EACH_VEC_ELT_REVERSE (loop_preorder, i, subloop_node) |
| { |
| if (! (subloop_node->bb->flags & BB_TO_VISIT)) |
| continue; |
| |
| subloop_node->bb->flags &= ~BB_TO_VISIT; |
| dfs_stack.quick_push (subloop_node); |
| while (! dfs_stack.is_empty ()) |
| { |
| edge e; |
| edge_iterator ei; |
| |
| ira_loop_tree_node_t n = dfs_stack.last (); |
| FOR_EACH_EDGE (e, ei, n->bb->preds) |
| { |
| ira_loop_tree_node_t pred_node; |
| basic_block pred_bb = e->src; |
| |
| if (e->src == ENTRY_BLOCK_PTR_FOR_FN (cfun)) |
| continue; |
| |
| pred_node = IRA_BB_NODE_BY_INDEX (pred_bb->index); |
| if (pred_node != n |
| && (pred_node->bb->flags & BB_TO_VISIT)) |
| { |
| pred_node->bb->flags &= ~BB_TO_VISIT; |
| dfs_stack.quick_push (pred_node); |
| } |
| } |
| if (n == dfs_stack.last ()) |
| { |
| dfs_stack.pop (); |
| topsort_nodes.quick_push (n); |
| } |
| } |
| } |
| |
| #undef BB_TO_VISIT |
| } |
| |
| gcc_assert (topsort_nodes.length () == n_loop_preorder); |
| return topsort_nodes; |
| } |
| |
| /* The current loop tree node and its regno allocno map. */ |
| ira_loop_tree_node_t ira_curr_loop_tree_node; |
| ira_allocno_t *ira_curr_regno_allocno_map; |
| |
| /* This recursive function traverses loop tree with root LOOP_NODE |
| calling non-null functions PREORDER_FUNC and POSTORDER_FUNC |
| correspondingly in preorder and postorder. The function sets up |
| IRA_CURR_LOOP_TREE_NODE and IRA_CURR_REGNO_ALLOCNO_MAP. If BB_P, |
| basic block nodes of LOOP_NODE is also processed (before its |
| subloop nodes). |
| |
| If BB_P is set and POSTORDER_FUNC is given, the basic blocks in |
| the loop are passed in the *reverse* post-order of the *reverse* |
| CFG. This is only used by ira_create_allocno_live_ranges, which |
| wants to visit basic blocks in this order to minimize the number |
| of elements per live range chain. |
| Note that the loop tree nodes are still visited in the normal, |
| forward post-order of the loop tree. */ |
| |
| void |
| ira_traverse_loop_tree (bool bb_p, ira_loop_tree_node_t loop_node, |
| void (*preorder_func) (ira_loop_tree_node_t), |
| void (*postorder_func) (ira_loop_tree_node_t)) |
| { |
| ira_loop_tree_node_t subloop_node; |
| |
| ira_assert (loop_node->bb == NULL); |
| ira_curr_loop_tree_node = loop_node; |
| ira_curr_regno_allocno_map = ira_curr_loop_tree_node->regno_allocno_map; |
| |
| if (preorder_func != NULL) |
| (*preorder_func) (loop_node); |
| |
| if (bb_p) |
| { |
| auto_vec<ira_loop_tree_node_t> loop_preorder; |
| unsigned int i; |
| |
| /* Add all nodes to the set of nodes to visit. The IRA loop tree |
| is set up such that nodes in the loop body appear in a pre-order |
| of their place in the CFG. */ |
| for (subloop_node = loop_node->children; |
| subloop_node != NULL; |
| subloop_node = subloop_node->next) |
| if (subloop_node->bb != NULL) |
| loop_preorder.safe_push (subloop_node); |
| |
| if (preorder_func != NULL) |
| FOR_EACH_VEC_ELT (loop_preorder, i, subloop_node) |
| (*preorder_func) (subloop_node); |
| |
| if (postorder_func != NULL) |
| { |
| vec<ira_loop_tree_node_t> loop_rev_postorder = |
| ira_loop_tree_body_rev_postorder (loop_node, loop_preorder); |
| FOR_EACH_VEC_ELT_REVERSE (loop_rev_postorder, i, subloop_node) |
| (*postorder_func) (subloop_node); |
| loop_rev_postorder.release (); |
| } |
| } |
| |
| for (subloop_node = loop_node->subloops; |
| subloop_node != NULL; |
| subloop_node = subloop_node->subloop_next) |
| { |
| ira_assert (subloop_node->bb == NULL); |
| ira_traverse_loop_tree (bb_p, subloop_node, |
| preorder_func, postorder_func); |
| } |
| |
| ira_curr_loop_tree_node = loop_node; |
| ira_curr_regno_allocno_map = ira_curr_loop_tree_node->regno_allocno_map; |
| |
| if (postorder_func != NULL) |
| (*postorder_func) (loop_node); |
| } |
| |
| |
| |
| /* The basic block currently being processed. */ |
| static basic_block curr_bb; |
| |
| /* This recursive function creates allocnos corresponding to |
| pseudo-registers containing in X. True OUTPUT_P means that X is |
| an lvalue. OUTER corresponds to the parent expression of X. */ |
| static void |
| create_insn_allocnos (rtx x, rtx outer, bool output_p) |
| { |
| int i, j; |
| const char *fmt; |
| enum rtx_code code = GET_CODE (x); |
| |
| if (code == REG) |
| { |
| int regno; |
| |
| if ((regno = REGNO (x)) >= FIRST_PSEUDO_REGISTER) |
| { |
| ira_allocno_t a; |
| |
| if ((a = ira_curr_regno_allocno_map[regno]) == NULL) |
| { |
| a = ira_create_allocno (regno, false, ira_curr_loop_tree_node); |
| if (outer != NULL && GET_CODE (outer) == SUBREG) |
| { |
| machine_mode wmode = GET_MODE (outer); |
| if (partial_subreg_p (ALLOCNO_WMODE (a), wmode)) |
| ALLOCNO_WMODE (a) = wmode; |
| } |
| } |
| |
| ALLOCNO_NREFS (a)++; |
| ALLOCNO_FREQ (a) += REG_FREQ_FROM_BB (curr_bb); |
| if (output_p) |
| bitmap_set_bit (ira_curr_loop_tree_node->modified_regnos, regno); |
| } |
| return; |
| } |
| else if (code == SET) |
| { |
| create_insn_allocnos (SET_DEST (x), NULL, true); |
| create_insn_allocnos (SET_SRC (x), NULL, false); |
| return; |
| } |
| else if (code == CLOBBER) |
| { |
| create_insn_allocnos (XEXP (x, 0), NULL, true); |
| return; |
| } |
| else if (code == MEM) |
| { |
| create_insn_allocnos (XEXP (x, 0), NULL, false); |
| return; |
| } |
| else if (code == PRE_DEC || code == POST_DEC || code == PRE_INC || |
| code == POST_INC || code == POST_MODIFY || code == PRE_MODIFY) |
| { |
| create_insn_allocnos (XEXP (x, 0), NULL, true); |
| create_insn_allocnos (XEXP (x, 0), NULL, false); |
| return; |
| } |
| |
| fmt = GET_RTX_FORMAT (code); |
| for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) |
| { |
| if (fmt[i] == 'e') |
| create_insn_allocnos (XEXP (x, i), x, output_p); |
| else if (fmt[i] == 'E') |
| for (j = 0; j < XVECLEN (x, i); j++) |
| create_insn_allocnos (XVECEXP (x, i, j), x, output_p); |
| } |
| } |
| |
| /* Create allocnos corresponding to pseudo-registers living in the |
| basic block represented by the corresponding loop tree node |
| BB_NODE. */ |
| static void |
| create_bb_allocnos (ira_loop_tree_node_t bb_node) |
| { |
| basic_block bb; |
| rtx_insn *insn; |
| unsigned int i; |
| bitmap_iterator bi; |
| |
| curr_bb = bb = bb_node->bb; |
| ira_assert (bb != NULL); |
| FOR_BB_INSNS_REVERSE (bb, insn) |
| if (NONDEBUG_INSN_P (insn)) |
| create_insn_allocnos (PATTERN (insn), NULL, false); |
| /* It might be a allocno living through from one subloop to |
| another. */ |
| EXECUTE_IF_SET_IN_REG_SET (df_get_live_in (bb), FIRST_PSEUDO_REGISTER, i, bi) |
| if (ira_curr_regno_allocno_map[i] == NULL) |
| ira_create_allocno (i, false, ira_curr_loop_tree_node); |
| } |
| |
| /* Create allocnos corresponding to pseudo-registers living on edge E |
| (a loop entry or exit). Also mark the allocnos as living on the |
| loop border. */ |
| static void |
| create_loop_allocnos (edge e) |
| { |
| unsigned int i; |
| bitmap live_in_regs, border_allocnos; |
| bitmap_iterator bi; |
| ira_loop_tree_node_t parent; |
| |
| live_in_regs = df_get_live_in (e->dest); |
| border_allocnos = ira_curr_loop_tree_node->border_allocnos; |
| EXECUTE_IF_SET_IN_REG_SET (df_get_live_out (e->src), |
| FIRST_PSEUDO_REGISTER, i, bi) |
| if (bitmap_bit_p (live_in_regs, i)) |
| { |
| if (ira_curr_regno_allocno_map[i] == NULL) |
| { |
| /* The order of creations is important for right |
| ira_regno_allocno_map. */ |
| if ((parent = ira_curr_loop_tree_node->parent) != NULL |
| && parent->regno_allocno_map[i] == NULL) |
| ira_create_allocno (i, false, parent); |
| ira_create_allocno (i, false, ira_curr_loop_tree_node); |
| } |
| bitmap_set_bit (border_allocnos, |
| ALLOCNO_NUM (ira_curr_regno_allocno_map[i])); |
| } |
| } |
| |
| /* Create allocnos corresponding to pseudo-registers living in loop |
| represented by the corresponding loop tree node LOOP_NODE. This |
| function is called by ira_traverse_loop_tree. */ |
| static void |
| create_loop_tree_node_allocnos (ira_loop_tree_node_t loop_node) |
| { |
| if (loop_node->bb != NULL) |
| create_bb_allocnos (loop_node); |
| else if (loop_node != ira_loop_tree_root) |
| { |
| int i; |
| edge_iterator ei; |
| edge e; |
| |
| ira_assert (current_loops != NULL); |
| FOR_EACH_EDGE (e, ei, loop_node->loop->header->preds) |
| if (e->src != loop_node->loop->latch) |
| create_loop_allocnos (e); |
| |
| auto_vec<edge> edges = get_loop_exit_edges (loop_node->loop); |
| FOR_EACH_VEC_ELT (edges, i, e) |
| create_loop_allocnos (e); |
| } |
| } |
| |
| /* Propagate information about allocnos modified inside the loop given |
| by its LOOP_TREE_NODE to its parent. */ |
| static void |
| propagate_modified_regnos (ira_loop_tree_node_t loop_tree_node) |
| { |
| if (loop_tree_node == ira_loop_tree_root) |
| return; |
| ira_assert (loop_tree_node->bb == NULL); |
| bitmap_ior_into (loop_tree_node->parent->modified_regnos, |
| loop_tree_node->modified_regnos); |
| } |
| |
| /* Propagate ALLOCNO_HARD_REG_COSTS from A to PARENT_A. Use SPILL_COST |
| as the cost of spilling a register throughout A (which we have to do |
| for PARENT_A allocations that conflict with A). */ |
| static void |
| ira_propagate_hard_reg_costs (ira_allocno_t parent_a, ira_allocno_t a, |
| int spill_cost) |
| { |
| HARD_REG_SET conflicts = ira_total_conflict_hard_regs (a); |
| if (ira_caller_save_loop_spill_p (parent_a, a, spill_cost)) |
| conflicts |= ira_need_caller_save_regs (a); |
| conflicts &= ~ira_total_conflict_hard_regs (parent_a); |
| |
| auto costs = ALLOCNO_HARD_REG_COSTS (a); |
| if (!hard_reg_set_empty_p (conflicts)) |
| ALLOCNO_MIGHT_CONFLICT_WITH_PARENT_P (a) = true; |
| else if (!costs) |
| return; |
| |
| auto aclass = ALLOCNO_CLASS (a); |
| ira_allocate_and_set_costs (&ALLOCNO_HARD_REG_COSTS (parent_a), |
| aclass, ALLOCNO_CLASS_COST (parent_a)); |
| auto parent_costs = ALLOCNO_HARD_REG_COSTS (parent_a); |
| for (int i = 0; i < ira_class_hard_regs_num[aclass]; ++i) |
| if (TEST_HARD_REG_BIT (conflicts, ira_class_hard_regs[aclass][i])) |
| parent_costs[i] += spill_cost; |
| else if (costs) |
| /* The cost to A of allocating this register to PARENT_A can't |
| be more than the cost of spilling the register throughout A. */ |
| parent_costs[i] += MIN (costs[i], spill_cost); |
| } |
| |
| /* Propagate new info about allocno A (see comments about accumulated |
| info in allocno definition) to the corresponding allocno on upper |
| loop tree level. So allocnos on upper levels accumulate |
| information about the corresponding allocnos in nested regions. |
| The new info means allocno info finally calculated in this |
| file. */ |
| static void |
| propagate_allocno_info (void) |
| { |
| int i; |
| ira_allocno_t a, parent_a; |
| ira_loop_tree_node_t parent; |
| enum reg_class aclass; |
| |
| if (flag_ira_region != IRA_REGION_ALL |
| && flag_ira_region != IRA_REGION_MIXED) |
| return; |
| for (i = max_reg_num () - 1; i >= FIRST_PSEUDO_REGISTER; i--) |
| for (a = ira_regno_allocno_map[i]; |
| a != NULL; |
| a = ALLOCNO_NEXT_REGNO_ALLOCNO (a)) |
| if ((parent = ALLOCNO_LOOP_TREE_NODE (a)->parent) != NULL |
| && (parent_a = parent->regno_allocno_map[i]) != NULL |
| /* There are no caps yet at this point. So use |
| border_allocnos to find allocnos for the propagation. */ |
| && bitmap_bit_p (ALLOCNO_LOOP_TREE_NODE (a)->border_allocnos, |
| ALLOCNO_NUM (a))) |
| { |
| /* Calculate the cost of storing to memory on entry to A's loop, |
| referencing as memory within A's loop, and restoring from |
| memory on exit from A's loop. */ |
| ira_loop_border_costs border_costs (a); |
| int spill_cost = INT_MAX; |
| if (ira_subloop_allocnos_can_differ_p (parent_a)) |
| spill_cost = (border_costs.spill_inside_loop_cost () |
| + ALLOCNO_MEMORY_COST (a)); |
| |
| if (! ALLOCNO_BAD_SPILL_P (a)) |
| ALLOCNO_BAD_SPILL_P (parent_a) = false; |
| ALLOCNO_NREFS (parent_a) += ALLOCNO_NREFS (a); |
| ALLOCNO_FREQ (parent_a) += ALLOCNO_FREQ (a); |
| |
| /* If A's allocation can differ from PARENT_A's, we can if necessary |
| spill PARENT_A on entry to A's loop and restore it afterwards. |
| Doing that has cost SPILL_COST. */ |
| if (!ira_subloop_allocnos_can_differ_p (parent_a)) |
| merge_hard_reg_conflicts (a, parent_a, true); |
| |
| if (!ira_caller_save_loop_spill_p (parent_a, a, spill_cost)) |
| { |
| ALLOCNO_CALL_FREQ (parent_a) += ALLOCNO_CALL_FREQ (a); |
| ALLOCNO_CALLS_CROSSED_NUM (parent_a) |
| += ALLOCNO_CALLS_CROSSED_NUM (a); |
| ALLOCNO_CHEAP_CALLS_CROSSED_NUM (parent_a) |
| += ALLOCNO_CHEAP_CALLS_CROSSED_NUM (a); |
| ALLOCNO_CROSSED_CALLS_ABIS (parent_a) |
| |= ALLOCNO_CROSSED_CALLS_ABIS (a); |
| ALLOCNO_CROSSED_CALLS_CLOBBERED_REGS (parent_a) |
| |= ALLOCNO_CROSSED_CALLS_CLOBBERED_REGS (a); |
| } |
| ALLOCNO_EXCESS_PRESSURE_POINTS_NUM (parent_a) |
| += ALLOCNO_EXCESS_PRESSURE_POINTS_NUM (a); |
| aclass = ALLOCNO_CLASS (a); |
| ira_assert (aclass == ALLOCNO_CLASS (parent_a)); |
| ira_propagate_hard_reg_costs (parent_a, a, spill_cost); |
| ira_allocate_and_accumulate_costs |
| (&ALLOCNO_CONFLICT_HARD_REG_COSTS (parent_a), |
| aclass, |
| ALLOCNO_CONFLICT_HARD_REG_COSTS (a)); |
| /* The cost to A of allocating a register to PARENT_A can't be |
| more than the cost of spilling the register throughout A. */ |
| ALLOCNO_CLASS_COST (parent_a) |
| += MIN (ALLOCNO_CLASS_COST (a), spill_cost); |
| ALLOCNO_MEMORY_COST (parent_a) += ALLOCNO_MEMORY_COST (a); |
| } |
| } |
| |
| /* Create allocnos corresponding to pseudo-registers in the current |
| function. Traverse the loop tree for this. */ |
| static void |
| create_allocnos (void) |
| { |
| /* We need to process BB first to correctly link allocnos by member |
| next_regno_allocno. */ |
| ira_traverse_loop_tree (true, ira_loop_tree_root, |
| create_loop_tree_node_allocnos, NULL); |
| if (optimize) |
| ira_traverse_loop_tree (false, ira_loop_tree_root, NULL, |
| propagate_modified_regnos); |
| } |
| |
| |
| |
| /* The page contains function to remove some regions from a separate |
| register allocation. We remove regions whose separate allocation |
| will hardly improve the result. As a result we speed up regional |
| register allocation. */ |
| |
| /* The function changes the object in range list given by R to OBJ. */ |
| static void |
| change_object_in_range_list (live_range_t r, ira_object_t obj) |
| { |
| for (; r != NULL; r = r->next) |
| r->object = obj; |
| } |
| |
| /* Move all live ranges associated with allocno FROM to allocno TO. */ |
| static void |
| move_allocno_live_ranges (ira_allocno_t from, ira_allocno_t to) |
| { |
| int i; |
| int n = ALLOCNO_NUM_OBJECTS (from); |
| |
| gcc_assert (n == ALLOCNO_NUM_OBJECTS (to)); |
| |
| for (i = 0; i < n; i++) |
| { |
| ira_object_t from_obj = ALLOCNO_OBJECT (from, i); |
| ira_object_t to_obj = ALLOCNO_OBJECT (to, i); |
| live_range_t lr = OBJECT_LIVE_RANGES (from_obj); |
| |
| if (internal_flag_ira_verbose > 4 && ira_dump_file != NULL) |
| { |
| fprintf (ira_dump_file, |
| " Moving ranges of a%dr%d to a%dr%d: ", |
| ALLOCNO_NUM (from), ALLOCNO_REGNO (from), |
| ALLOCNO_NUM (to), ALLOCNO_REGNO (to)); |
| ira_print_live_range_list (ira_dump_file, lr); |
| } |
| change_object_in_range_list (lr, to_obj); |
| OBJECT_LIVE_RANGES (to_obj) |
| = ira_merge_live_ranges (lr, OBJECT_LIVE_RANGES (to_obj)); |
| OBJECT_LIVE_RANGES (from_obj) = NULL; |
| } |
| } |
| |
| static void |
| copy_allocno_live_ranges (ira_allocno_t from, ira_allocno_t to) |
| { |
| int i; |
| int n = ALLOCNO_NUM_OBJECTS (from); |
| |
| gcc_assert (n == ALLOCNO_NUM_OBJECTS (to)); |
| |
| for (i = 0; i < n; i++) |
| { |
| ira_object_t from_obj = ALLOCNO_OBJECT (from, i); |
| ira_object_t to_obj = ALLOCNO_OBJECT (to, i); |
| live_range_t lr = OBJECT_LIVE_RANGES (from_obj); |
| |
| if (internal_flag_ira_verbose > 4 && ira_dump_file != NULL) |
| { |
| fprintf (ira_dump_file, " Copying ranges of a%dr%d to a%dr%d: ", |
| ALLOCNO_NUM (from), ALLOCNO_REGNO (from), |
| ALLOCNO_NUM (to), ALLOCNO_REGNO (to)); |
| ira_print_live_range_list (ira_dump_file, lr); |
| } |
| lr = ira_copy_live_range_list (lr); |
| change_object_in_range_list (lr, to_obj); |
| OBJECT_LIVE_RANGES (to_obj) |
| = ira_merge_live_ranges (lr, OBJECT_LIVE_RANGES (to_obj)); |
| } |
| } |
| |
| /* Return TRUE if NODE represents a loop with low register |
| pressure. */ |
| static bool |
| low_pressure_loop_node_p (ira_loop_tree_node_t node) |
| { |
| int i; |
| enum reg_class pclass; |
| |
| if (node->bb != NULL) |
| return false; |
| |
| for (i = 0; i < ira_pressure_classes_num; i++) |
| { |
| pclass = ira_pressure_classes[i]; |
| if (node->reg_pressure[pclass] > ira_class_hard_regs_num[pclass] |
| && ira_class_hard_regs_num[pclass] > 1) |
| return false; |
| } |
| return true; |
| } |
| |
| #ifdef STACK_REGS |
| /* Return TRUE if LOOP has a complex enter or exit edge. We don't |
| form a region from such loop if the target use stack register |
| because reg-stack.cc cannot deal with such edges. */ |
| static bool |
| loop_with_complex_edge_p (class loop *loop) |
| { |
| int i; |
| edge_iterator ei; |
| edge e; |
| bool res; |
| |
| FOR_EACH_EDGE (e, ei, loop->header->preds) |
| if (e->flags & EDGE_EH) |
| return true; |
| auto_vec<edge> edges = get_loop_exit_edges (loop); |
| res = false; |
| FOR_EACH_VEC_ELT (edges, i, e) |
| if (e->flags & EDGE_COMPLEX) |
| { |
| res = true; |
| break; |
| } |
| return res; |
| } |
| #endif |
| |
| /* Sort loops for marking them for removal. We put already marked |
| loops first, then less frequent loops next, and then outer loops |
| next. */ |
| static int |
| loop_compare_func (const void *v1p, const void *v2p) |
| { |
| int diff; |
| ira_loop_tree_node_t l1 = *(const ira_loop_tree_node_t *) v1p; |
| ira_loop_tree_node_t l2 = *(const ira_loop_tree_node_t *) v2p; |
| |
| ira_assert (l1->parent != NULL && l2->parent != NULL); |
| if (l1->to_remove_p && ! l2->to_remove_p) |
| return -1; |
| if (! l1->to_remove_p && l2->to_remove_p) |
| return 1; |
| if ((diff = l1->loop->header->count.to_frequency (cfun) |
| - l2->loop->header->count.to_frequency (cfun)) != 0) |
| return diff; |
| if ((diff = (int) loop_depth (l1->loop) - (int) loop_depth (l2->loop)) != 0) |
| return diff; |
| /* Make sorting stable. */ |
| return l1->loop_num - l2->loop_num; |
| } |
| |
| /* Mark loops which should be removed from regional allocation. We |
| remove a loop with low register pressure inside another loop with |
| register pressure. In this case a separate allocation of the loop |
| hardly helps (for irregular register file architecture it could |
| help by choosing a better hard register in the loop but we prefer |
| faster allocation even in this case). We also remove cheap loops |
| if there are more than param_ira_max_loops_num of them. Loop with EH |
| exit or enter edges are removed too because the allocation might |
| require put pseudo moves on the EH edges (we could still do this |
| for pseudos with caller saved hard registers in some cases but it |
| is impossible to say here or during top-down allocation pass what |
| hard register the pseudos get finally). */ |
| static void |
| mark_loops_for_removal (void) |
| { |
| int i, n; |
| ira_loop_tree_node_t *sorted_loops; |
| loop_p loop; |
| |
| ira_assert (current_loops != NULL); |
| sorted_loops |
| = (ira_loop_tree_node_t *) ira_allocate (sizeof (ira_loop_tree_node_t) |
| * number_of_loops (cfun)); |
| for (n = i = 0; vec_safe_iterate (get_loops (cfun), i, &loop); i++) |
| if (ira_loop_nodes[i].regno_allocno_map != NULL) |
| { |
| if (ira_loop_nodes[i].parent == NULL) |
| { |
| /* Don't remove the root. */ |
| ira_loop_nodes[i].to_remove_p = false; |
| continue; |
| } |
| sorted_loops[n++] = &ira_loop_nodes[i]; |
| ira_loop_nodes[i].to_remove_p |
| = ((low_pressure_loop_node_p (ira_loop_nodes[i].parent) |
| && low_pressure_loop_node_p (&ira_loop_nodes[i])) |
| #ifdef STACK_REGS |
| || loop_with_complex_edge_p (ira_loop_nodes[i].loop) |
| #endif |
| ); |
| } |
| qsort (sorted_loops, n, sizeof (ira_loop_tree_node_t), loop_compare_func); |
| for (i = 0; i < n - param_ira_max_loops_num; i++) |
| { |
| sorted_loops[i]->to_remove_p = true; |
| if (internal_flag_ira_verbose > 1 && ira_dump_file != NULL) |
| fprintf |
| (ira_dump_file, |
| " Mark loop %d (header %d, freq %d, depth %d) for removal (%s)\n", |
| sorted_loops[i]->loop_num, sorted_loops[i]->loop->header->index, |
| sorted_loops[i]->loop->header->count.to_frequency (cfun), |
| loop_depth (sorted_loops[i]->loop), |
| low_pressure_loop_node_p (sorted_loops[i]->parent) |
| && low_pressure_loop_node_p (sorted_loops[i]) |
| ? "low pressure" : "cheap loop"); |
| } |
| ira_free (sorted_loops); |
| } |
| |
| /* Mark all loops but root for removing. */ |
| static void |
| mark_all_loops_for_removal (void) |
| { |
| int i; |
| loop_p loop; |
| |
| ira_assert (current_loops != NULL); |
| FOR_EACH_VEC_SAFE_ELT (get_loops (cfun), i, loop) |
| if (ira_loop_nodes[i].regno_allocno_map != NULL) |
| { |
| if (ira_loop_nodes[i].parent == NULL) |
| { |
| /* Don't remove the root. */ |
| ira_loop_nodes[i].to_remove_p = false; |
| continue; |
| } |
| ira_loop_nodes[i].to_remove_p = true; |
| if (internal_flag_ira_verbose > 1 && ira_dump_file != NULL) |
| fprintf |
| (ira_dump_file, |
| " Mark loop %d (header %d, freq %d, depth %d) for removal\n", |
| ira_loop_nodes[i].loop_num, |
| ira_loop_nodes[i].loop->header->index, |
| ira_loop_nodes[i].loop->header->count.to_frequency (cfun), |
| loop_depth (ira_loop_nodes[i].loop)); |
| } |
| } |
| |
| /* Definition of vector of loop tree nodes. */ |
| |
| /* Vec containing references to all removed loop tree nodes. */ |
| static vec<ira_loop_tree_node_t> removed_loop_vec; |
| |
| /* Vec containing references to all children of loop tree nodes. */ |
| static vec<ira_loop_tree_node_t> children_vec; |
| |
| /* Remove subregions of NODE if their separate allocation will not |
| improve the result. */ |
| static void |
| remove_uneccesary_loop_nodes_from_loop_tree (ira_loop_tree_node_t node) |
| { |
| unsigned int start; |
| bool remove_p; |
| ira_loop_tree_node_t subnode; |
| |
| remove_p = node->to_remove_p; |
| if (! remove_p) |
| children_vec.safe_push (node); |
| start = children_vec.length (); |
| for (subnode = node->children; subnode != NULL; subnode = subnode->next) |
| if (subnode->bb == NULL) |
| remove_uneccesary_loop_nodes_from_loop_tree (subnode); |
| else |
| children_vec.safe_push (subnode); |
| node->children = node->subloops = NULL; |
| if (remove_p) |
| { |
| removed_loop_vec.safe_push (node); |
| return; |
| } |
| while (children_vec.length () > start) |
| { |
| subnode = children_vec.pop (); |
| subnode->parent = node; |
| subnode->next = node->children; |
| node->children = subnode; |
| if (subnode->bb == NULL) |
| { |
| subnode->subloop_next = node->subloops; |
| node->subloops = subnode; |
| } |
| } |
| } |
| |
| /* Return TRUE if NODE is inside PARENT. */ |
| static bool |
| loop_is_inside_p (ira_loop_tree_node_t node, ira_loop_tree_node_t parent) |
| { |
| for (node = node->parent; node != NULL; node = node->parent) |
| if (node == parent) |
| return true; |
| return false; |
| } |
| |
| /* Sort allocnos according to their order in regno allocno list. */ |
| static int |
| regno_allocno_order_compare_func (const void *v1p, const void *v2p) |
| { |
| ira_allocno_t a1 = *(const ira_allocno_t *) v1p; |
| ira_allocno_t a2 = *(const ira_allocno_t *) v2p; |
| ira_loop_tree_node_t n1 = ALLOCNO_LOOP_TREE_NODE (a1); |
| ira_loop_tree_node_t n2 = ALLOCNO_LOOP_TREE_NODE (a2); |
| |
| if (loop_is_inside_p (n1, n2)) |
| return -1; |
| else if (loop_is_inside_p (n2, n1)) |
| return 1; |
| /* If allocnos are equally good, sort by allocno numbers, so that |
| the results of qsort leave nothing to chance. We put allocnos |
| with higher number first in the list because it is the original |
| order for allocnos from loops on the same levels. */ |
| return ALLOCNO_NUM (a2) - ALLOCNO_NUM (a1); |
| } |
| |
| /* This array is used to sort allocnos to restore allocno order in |
| the regno allocno list. */ |
| static ira_allocno_t *regno_allocnos; |
| |
| /* Restore allocno order for REGNO in the regno allocno list. */ |
| static void |
| ira_rebuild_regno_allocno_list (int regno) |
| { |
| int i, n; |
| ira_allocno_t a; |
| |
| for (n = 0, a = ira_regno_allocno_map[regno]; |
| a != NULL; |
| a = ALLOCNO_NEXT_REGNO_ALLOCNO (a)) |
| regno_allocnos[n++] = a; |
| ira_assert (n > 0); |
| qsort (regno_allocnos, n, sizeof (ira_allocno_t), |
| regno_allocno_order_compare_func); |
| for (i = 1; i < n; i++) |
| ALLOCNO_NEXT_REGNO_ALLOCNO (regno_allocnos[i - 1]) = regno_allocnos[i]; |
| ALLOCNO_NEXT_REGNO_ALLOCNO (regno_allocnos[n - 1]) = NULL; |
| ira_regno_allocno_map[regno] = regno_allocnos[0]; |
| if (internal_flag_ira_verbose > 1 && ira_dump_file != NULL) |
| fprintf (ira_dump_file, " Rebuilding regno allocno list for %d\n", regno); |
| } |
| |
| /* Propagate info from allocno FROM_A to allocno A. */ |
| static void |
| propagate_some_info_from_allocno (ira_allocno_t a, ira_allocno_t from_a) |
| { |
| enum reg_class aclass; |
| |
| merge_hard_reg_conflicts (from_a, a, false); |
| ALLOCNO_NREFS (a) += ALLOCNO_NREFS (from_a); |
| ALLOCNO_FREQ (a) += ALLOCNO_FREQ (from_a); |
| ALLOCNO_CALL_FREQ (a) += ALLOCNO_CALL_FREQ (from_a); |
| ALLOCNO_CALLS_CROSSED_NUM (a) += ALLOCNO_CALLS_CROSSED_NUM (from_a); |
| ALLOCNO_CHEAP_CALLS_CROSSED_NUM (a) |
| += ALLOCNO_CHEAP_CALLS_CROSSED_NUM (from_a); |
| ALLOCNO_CROSSED_CALLS_ABIS (a) |= ALLOCNO_CROSSED_CALLS_ABIS (from_a); |
| ALLOCNO_CROSSED_CALLS_CLOBBERED_REGS (a) |
| |= ALLOCNO_CROSSED_CALLS_CLOBBERED_REGS (from_a); |
| |
| ALLOCNO_EXCESS_PRESSURE_POINTS_NUM (a) |
| += ALLOCNO_EXCESS_PRESSURE_POINTS_NUM (from_a); |
| if (! ALLOCNO_BAD_SPILL_P (from_a)) |
| ALLOCNO_BAD_SPILL_P (a) = false; |
| aclass = ALLOCNO_CLASS (from_a); |
| ira_assert (aclass == ALLOCNO_CLASS (a)); |
| ira_allocate_and_accumulate_costs (&ALLOCNO_HARD_REG_COSTS (a), aclass, |
| ALLOCNO_HARD_REG_COSTS (from_a)); |
| ira_allocate_and_accumulate_costs (&ALLOCNO_CONFLICT_HARD_REG_COSTS (a), |
| aclass, |
| ALLOCNO_CONFLICT_HARD_REG_COSTS (from_a)); |
| ALLOCNO_CLASS_COST (a) += ALLOCNO_CLASS_COST (from_a); |
| ALLOCNO_MEMORY_COST (a) += ALLOCNO_MEMORY_COST (from_a); |
| } |
| |
| /* Remove allocnos from loops removed from the allocation |
| consideration. */ |
| static void |
| remove_unnecessary_allocnos (void) |
| { |
| int regno; |
| bool merged_p, rebuild_p; |
| ira_allocno_t a, prev_a, next_a, parent_a; |
| ira_loop_tree_node_t a_node, parent; |
| |
| merged_p = false; |
| regno_allocnos = NULL; |
| for (regno = max_reg_num () - 1; regno >= FIRST_PSEUDO_REGISTER; regno--) |
| { |
| rebuild_p = false; |
| for (prev_a = NULL, a = ira_regno_allocno_map[regno]; |
| a != NULL; |
| a = next_a) |
| { |
| next_a = ALLOCNO_NEXT_REGNO_ALLOCNO (a); |
| a_node = ALLOCNO_LOOP_TREE_NODE (a); |
| if (! a_node->to_remove_p) |
| prev_a = a; |
| else |
| { |
| for (parent = a_node->parent; |
| (parent_a = parent->regno_allocno_map[regno]) == NULL |
| && parent->to_remove_p; |
| parent = parent->parent) |
| ; |
| if (parent_a == NULL) |
| { |
| /* There are no allocnos with the same regno in |
| upper region -- just move the allocno to the |
| upper region. */ |
| prev_a = a; |
| ALLOCNO_LOOP_TREE_NODE (a) = parent; |
| parent->regno_allocno_map[regno] = a; |
| bitmap_set_bit (parent->all_allocnos, ALLOCNO_NUM (a)); |
| rebuild_p = true; |
| } |
| else |
| { |
| /* Remove the allocno and update info of allocno in |
| the upper region. */ |
| if (prev_a == NULL) |
| ira_regno_allocno_map[regno] = next_a; |
| else |
| ALLOCNO_NEXT_REGNO_ALLOCNO (prev_a) = next_a; |
| move_allocno_live_ranges (a, parent_a); |
| merged_p = true; |
| propagate_some_info_from_allocno (parent_a, a); |
| /* Remove it from the corresponding regno allocno |
| map to avoid info propagation of subsequent |
| allocno into this already removed allocno. */ |
| a_node->regno_allocno_map[regno] = NULL; |
| ira_remove_allocno_prefs (a); |
| finish_allocno (a); |
| } |
| } |
| } |
| if (rebuild_p) |
| /* We need to restore the order in regno allocno list. */ |
| { |
| if (regno_allocnos == NULL) |
| regno_allocnos |
| = (ira_allocno_t *) ira_allocate (sizeof (ira_allocno_t) |
| * ira_allocnos_num); |
| ira_rebuild_regno_allocno_list (regno); |
| } |
| } |
| if (merged_p) |
| ira_rebuild_start_finish_chains (); |
| if (regno_allocnos != NULL) |
| ira_free (regno_allocnos); |
| } |
| |
| /* Remove allocnos from all loops but the root. */ |
| static void |
| remove_low_level_allocnos (void) |
| { |
| int regno; |
| bool merged_p, propagate_p; |
| ira_allocno_t a, top_a; |
| ira_loop_tree_node_t a_node, parent; |
| ira_allocno_iterator ai; |
| |
| merged_p = false; |
| FOR_EACH_ALLOCNO (a, ai) |
| { |
| a_node = ALLOCNO_LOOP_TREE_NODE (a); |
| if (a_node == ira_loop_tree_root || ALLOCNO_CAP_MEMBER (a) != NULL) |
| continue; |
| regno = ALLOCNO_REGNO (a); |
| if ((top_a = ira_loop_tree_root->regno_allocno_map[regno]) == NULL) |
| { |
| ALLOCNO_LOOP_TREE_NODE (a) = ira_loop_tree_root; |
| ira_loop_tree_root->regno_allocno_map[regno] = a; |
| continue; |
| } |
| propagate_p = a_node->parent->regno_allocno_map[regno] == NULL; |
| /* Remove the allocno and update info of allocno in the upper |
| region. */ |
| move_allocno_live_ranges (a, top_a); |
| merged_p = true; |
| if (propagate_p) |
| propagate_some_info_from_allocno (top_a, a); |
| } |
| FOR_EACH_ALLOCNO (a, ai) |
| { |
| a_node = ALLOCNO_LOOP_TREE_NODE (a); |
| if (a_node == ira_loop_tree_root) |
| continue; |
| parent = a_node->parent; |
| regno = ALLOCNO_REGNO (a); |
| if (ALLOCNO_CAP_MEMBER (a) != NULL) |
| ira_assert (ALLOCNO_CAP (a) != NULL); |
| else if (ALLOCNO_CAP (a) == NULL) |
| ira_assert (parent->regno_allocno_map[regno] != NULL); |
| } |
| FOR_EACH_ALLOCNO (a, ai) |
| { |
| regno = ALLOCNO_REGNO (a); |
| if (ira_loop_tree_root->regno_allocno_map[regno] == a) |
| { |
| ira_object_t obj; |
| ira_allocno_object_iterator oi; |
| |
| ira_regno_allocno_map[regno] = a; |
| ALLOCNO_NEXT_REGNO_ALLOCNO (a) = NULL; |
| ALLOCNO_CAP_MEMBER (a) = NULL; |
| FOR_EACH_ALLOCNO_OBJECT (a, obj, oi) |
| OBJECT_CONFLICT_HARD_REGS (obj) |
| = OBJECT_TOTAL_CONFLICT_HARD_REGS (obj); |
| #ifdef STACK_REGS |
| if (ALLOCNO_TOTAL_NO_STACK_REG_P (a)) |
| ALLOCNO_NO_STACK_REG_P (a) = true; |
| #endif |
| } |
| else |
| { |
| ira_remove_allocno_prefs (a); |
| finish_allocno (a); |
| } |
| } |
| if (merged_p) |
| ira_rebuild_start_finish_chains (); |
| } |
| |
| /* Remove loops from consideration. We remove all loops except for |
| root if ALL_P or loops for which a separate allocation will not |
| improve the result. We have to do this after allocno creation and |
| their costs and allocno class evaluation because only after that |
| the register pressure can be known and is calculated. */ |
| static void |
| remove_unnecessary_regions (bool all_p) |
| { |
| if (current_loops == NULL) |
| return; |
| if (all_p) |
| mark_all_loops_for_removal (); |
| else |
| mark_loops_for_removal (); |
| children_vec.create (last_basic_block_for_fn (cfun) |
| + number_of_loops (cfun)); |
| removed_loop_vec.create (last_basic_block_for_fn (cfun) |
| + number_of_loops (cfun)); |
| remove_uneccesary_loop_nodes_from_loop_tree (ira_loop_tree_root); |
| children_vec.release (); |
| if (all_p) |
| remove_low_level_allocnos (); |
| else |
| remove_unnecessary_allocnos (); |
| while (removed_loop_vec.length () > 0) |
| finish_loop_tree_node (removed_loop_vec.pop ()); |
| removed_loop_vec.release (); |
| } |
| |
| |
| |
| /* At this point true value of allocno attribute bad_spill_p means |
| that there is an insn where allocno occurs and where the allocno |
| cannot be used as memory. The function updates the attribute, now |
| it can be true only for allocnos which cannot be used as memory in |
| an insn and in whose live ranges there is other allocno deaths. |
| Spilling allocnos with true value will not improve the code because |
| it will not make other allocnos colorable and additional reloads |
| for the corresponding pseudo will be generated in reload pass for |
| each insn it occurs. |
| |
| This is a trick mentioned in one classic article of Chaitin etc |
| which is frequently omitted in other implementations of RA based on |
| graph coloring. */ |
| static void |
| update_bad_spill_attribute (void) |
| { |
| int i; |
| ira_allocno_t a; |
| ira_allocno_iterator ai; |
| ira_allocno_object_iterator aoi; |
| ira_object_t obj; |
| live_range_t r; |
| enum reg_class aclass; |
| bitmap_head dead_points[N_REG_CLASSES]; |
| |
| for (i = 0; i < ira_allocno_classes_num; i++) |
| { |
| aclass = ira_allocno_classes[i]; |
| bitmap_initialize (&dead_points[aclass], ®_obstack); |
| } |
| FOR_EACH_ALLOCNO (a, ai) |
| { |
| aclass = ALLOCNO_CLASS (a); |
| if (aclass == NO_REGS) |
| continue; |
| FOR_EACH_ALLOCNO_OBJECT (a, obj, aoi) |
| for (r = OBJECT_LIVE_RANGES (obj); r != NULL; r = r->next) |
| bitmap_set_bit (&dead_points[aclass], r->finish); |
| } |
| FOR_EACH_ALLOCNO (a, ai) |
| { |
| aclass = ALLOCNO_CLASS (a); |
| if (aclass == NO_REGS) |
| continue; |
| if (! ALLOCNO_BAD_SPILL_P (a)) |
| continue; |
| FOR_EACH_ALLOCNO_OBJECT (a, obj, aoi) |
| { |
| for (r = OBJECT_LIVE_RANGES (obj); r != NULL; r = r->next) |
| { |
| for (i = r->start + 1; i < r->finish; i++) |
| if (bitmap_bit_p (&dead_points[aclass], i)) |
| break; |
| if (i < r->finish) |
| break; |
| } |
| if (r != NULL) |
| { |
| ALLOCNO_BAD_SPILL_P (a) = false; |
| break; |
| } |
| } |
| } |
| for (i = 0; i < ira_allocno_classes_num; i++) |
| { |
| aclass = ira_allocno_classes[i]; |
| bitmap_clear (&dead_points[aclass]); |
| } |
| } |
| |
| |
| |
| /* Set up minimal and maximal live range points for allocnos. */ |
| static void |
| setup_min_max_allocno_live_range_point (void) |
| { |
| int i; |
| ira_allocno_t a, parent_a, cap; |
| ira_allocno_iterator ai; |
| #ifdef ENABLE_IRA_CHECKING |
| ira_object_iterator oi; |
| ira_object_t obj; |
| #endif |
| live_range_t r; |
| ira_loop_tree_node_t parent; |
| |
| FOR_EACH_ALLOCNO (a, ai) |
| { |
| int n = ALLOCNO_NUM_OBJECTS (a); |
| |
| for (i = 0; i < n; i++) |
| { |
| ira_object_t obj = ALLOCNO_OBJECT (a, i); |
| r = OBJECT_LIVE_RANGES (obj); |
| if (r == NULL) |
| continue; |
| OBJECT_MAX (obj) = r->finish; |
| for (; r->next != NULL; r = r->next) |
| ; |
| OBJECT_MIN (obj) = r->start; |
| } |
| } |
| for (i = max_reg_num () - 1; i >= FIRST_PSEUDO_REGISTER; i--) |
| for (a = ira_regno_allocno_map[i]; |
| a != NULL; |
| a = ALLOCNO_NEXT_REGNO_ALLOCNO (a)) |
| { |
| int j; |
| int n = ALLOCNO_NUM_OBJECTS (a); |
| |
| for (j = 0; j < n; j++) |
| { |
| ira_object_t obj = ALLOCNO_OBJECT (a, j); |
| ira_object_t parent_obj; |
| |
| if (OBJECT_MAX (obj) < 0) |
| { |
| /* The object is not used and hence does not live. */ |
| ira_assert (OBJECT_LIVE_RANGES (obj) == NULL); |
| OBJECT_MAX (obj) = 0; |
| OBJECT_MIN (obj) = 1; |
| continue; |
| } |
| ira_assert (ALLOCNO_CAP_MEMBER (a) == NULL); |
| /* Accumulation of range info. */ |
| if (ALLOCNO_CAP (a) != NULL) |
| { |
| for (cap = ALLOCNO_CAP (a); cap != NULL; cap = ALLOCNO_CAP (cap)) |
| { |
| ira_object_t cap_obj = ALLOCNO_OBJECT (cap, j); |
| if (OBJECT_MAX (cap_obj) < OBJECT_MAX (obj)) |
| OBJECT_MAX (cap_obj) = OBJECT_MAX (obj); |
| if (OBJECT_MIN (cap_obj) > OBJECT_MIN (obj)) |
| OBJECT_MIN (cap_obj) = OBJECT_MIN (obj); |
| } |
| continue; |
| } |
| if ((parent = ALLOCNO_LOOP_TREE_NODE (a)->parent) == NULL) |
| continue; |
| parent_a = parent->regno_allocno_map[i]; |
| parent_obj = ALLOCNO_OBJECT (parent_a, j); |
| if (OBJECT_MAX (parent_obj) < OBJECT_MAX (obj)) |
| OBJECT_MAX (parent_obj) = OBJECT_MAX (obj); |
| if (OBJECT_MIN (parent_obj) > OBJECT_MIN (obj)) |
| OBJECT_MIN (parent_obj) = OBJECT_MIN (obj); |
| } |
| } |
| #ifdef ENABLE_IRA_CHECKING |
| FOR_EACH_OBJECT (obj, oi) |
| { |
| if ((OBJECT_MIN (obj) >= 0 && OBJECT_MIN (obj) <= ira_max_point) |
| && (OBJECT_MAX (obj) >= 0 && OBJECT_MAX (obj) <= ira_max_point)) |
| continue; |
| gcc_unreachable (); |
| } |
| #endif |
| } |
| |
| /* Sort allocnos according to their live ranges. Allocnos with |
| smaller allocno class are put first unless we use priority |
| coloring. Allocnos with the same class are ordered according |
| their start (min). Allocnos with the same start are ordered |
| according their finish (max). */ |
| static int |
| object_range_compare_func (const void *v1p, const void *v2p) |
| { |
| int diff; |
| ira_object_t obj1 = *(const ira_object_t *) v1p; |
| ira_object_t obj2 = *(const ira_object_t *) v2p; |
| ira_allocno_t a1 = OBJECT_ALLOCNO (obj1); |
| ira_allocno_t a2 = OBJECT_ALLOCNO (obj2); |
| |
| if ((diff = OBJECT_MIN (obj1) - OBJECT_MIN (obj2)) != 0) |
| return diff; |
| if ((diff = OBJECT_MAX (obj1) - OBJECT_MAX (obj2)) != 0) |
| return diff; |
| return ALLOCNO_NUM (a1) - ALLOCNO_NUM (a2); |
| } |
| |
| /* Sort ira_object_id_map and set up conflict id of allocnos. */ |
| static void |
| sort_conflict_id_map (void) |
| { |
| int i, num; |
| ira_allocno_t a; |
| ira_allocno_iterator ai; |
| |
| num = 0; |
| FOR_EACH_ALLOCNO (a, ai) |
| { |
| ira_allocno_object_iterator oi; |
| ira_object_t obj; |
| |
| FOR_EACH_ALLOCNO_OBJECT (a, obj, oi) |
| ira_object_id_map[num++] = obj; |
| } |
| if (num > 1) |
| qsort (ira_object_id_map, num, sizeof (ira_object_t), |
| object_range_compare_func); |
| for (i = 0; i < num; i++) |
| { |
| ira_object_t obj = ira_object_id_map[i]; |
| |
| gcc_assert (obj != NULL); |
| OBJECT_CONFLICT_ID (obj) = i; |
| } |
| for (i = num; i < ira_objects_num; i++) |
| ira_object_id_map[i] = NULL; |
| } |
| |
| /* Set up minimal and maximal conflict ids of allocnos with which |
| given allocno can conflict. */ |
| static void |
| setup_min_max_conflict_allocno_ids (void) |
| { |
| int aclass; |
| int i, j, min, max, start, finish, first_not_finished, filled_area_start; |
| int *live_range_min, *last_lived; |
| int word0_min, word0_max; |
| ira_allocno_t a; |
| ira_allocno_iterator ai; |
| |
| live_range_min = (int *) ira_allocate (sizeof (int) * ira_objects_num); |
| aclass = -1; |
| first_not_finished = -1; |
| for (i = 0; i < ira_objects_num; i++) |
| { |
| ira_object_t obj = ira_object_id_map[i]; |
| |
| if (obj == NULL) |
| continue; |
| |
| a = OBJECT_ALLOCNO (obj); |
| |
| if (aclass < 0) |
| { |
| aclass = ALLOCNO_CLASS (a); |
| min = i; |
| first_not_finished = i; |
| } |
| else |
| { |
| start = OBJECT_MIN (obj); |
| /* If we skip an allocno, the allocno with smaller ids will |
| be also skipped because of the secondary sorting the |
| range finishes (see function |
| object_range_compare_func). */ |
| while (first_not_finished < i |
| && start > OBJECT_MAX (ira_object_id_map |
| [first_not_finished])) |
| first_not_finished++; |
| min = first_not_finished; |
| } |
| if (min == i) |
| /* We could increase min further in this case but it is good |
| enough. */ |
| min++; |
| live_range_min[i] = OBJECT_MIN (obj); |
| OBJECT_MIN (obj) = min; |
| } |
| last_lived = (int *) ira_allocate (sizeof (int) * ira_max_point); |
| aclass = -1; |
| filled_area_start = -1; |
| for (i = ira_objects_num - 1; i >= 0; i--) |
| { |
| ira_object_t obj = ira_object_id_map[i]; |
| |
| if (obj == NULL) |
| continue; |
| |
| a = OBJECT_ALLOCNO (obj); |
| if (aclass < 0) |
| { |
| aclass = ALLOCNO_CLASS (a); |
| for (j = 0; j < ira_max_point; j++) |
| last_lived[j] = -1; |
| filled_area_start = ira_max_point; |
| } |
| min = live_range_min[i]; |
| finish = OBJECT_MAX (obj); |
| max = last_lived[finish]; |
| if (max < 0) |
| /* We could decrease max further in this case but it is good |
| enough. */ |
| max = OBJECT_CONFLICT_ID (obj) - 1; |
| OBJECT_MAX (obj) = max; |
| /* In filling, we can go further A range finish to recognize |
| intersection quickly because if the finish of subsequently |
| processed allocno (it has smaller conflict id) range is |
| further A range finish than they are definitely intersected |
| (the reason for this is the allocnos with bigger conflict id |
| have their range starts not smaller than allocnos with |
| smaller ids. */ |
| for (j = min; j < filled_area_start; j++) |
| last_lived[j] = i; |
| filled_area_start = min; |
| } |
| ira_free (last_lived); |
| ira_free (live_range_min); |
| |
| /* For allocnos with more than one object, we may later record extra conflicts in |
| subobject 0 that we cannot really know about here. |
| For now, simply widen the min/max range of these subobjects. */ |
| |
| word0_min = INT_MAX; |
| word0_max = INT_MIN; |
| |
| FOR_EACH_ALLOCNO (a, ai) |
| { |
| int n = ALLOCNO_NUM_OBJECTS (a); |
| ira_object_t obj0; |
| |
| if (n < 2) |
| continue; |
| obj0 = ALLOCNO_OBJECT (a, 0); |
| if (OBJECT_CONFLICT_ID (obj0) < word0_min) |
| word0_min = OBJECT_CONFLICT_ID (obj0); |
| if (OBJECT_CONFLICT_ID (obj0) > word0_max) |
| word0_max = OBJECT_CONFLICT_ID (obj0); |
| } |
| FOR_EACH_ALLOCNO (a, ai) |
| { |
| int n = ALLOCNO_NUM_OBJECTS (a); |
| ira_object_t obj0; |
| |
| if (n < 2) |
| continue; |
| obj0 = ALLOCNO_OBJECT (a, 0); |
| if (OBJECT_MIN (obj0) > word0_min) |
| OBJECT_MIN (obj0) = word0_min; |
| if (OBJECT_MAX (obj0) < word0_max) |
| OBJECT_MAX (obj0) = word0_max; |
| } |
| } |
| |
| |
| |
| static void |
| create_caps (void) |
| { |
| ira_allocno_t a; |
| ira_allocno_iterator ai; |
| ira_loop_tree_node_t loop_tree_node; |
| |
| FOR_EACH_ALLOCNO (a, ai) |
| { |
| if (ALLOCNO_LOOP_TREE_NODE (a) == ira_loop_tree_root) |
| continue; |
| if (ALLOCNO_CAP_MEMBER (a) != NULL) |
| create_cap_allocno (a); |
| else if (ALLOCNO_CAP (a) == NULL) |
| { |
| loop_tree_node = ALLOCNO_LOOP_TREE_NODE (a); |
| if (!bitmap_bit_p (loop_tree_node->border_allocnos, ALLOCNO_NUM (a))) |
| create_cap_allocno (a); |
| } |
| } |
| } |
| |
| |
| |
| /* The page contains code transforming more one region internal |
| representation (IR) to one region IR which is necessary for reload. |
| This transformation is called IR flattening. We might just rebuild |
| the IR for one region but we don't do it because it takes a lot of |
| time. */ |
| |
| /* Map: regno -> allocnos which will finally represent the regno for |
| IR with one region. */ |
| static ira_allocno_t *regno_top_level_allocno_map; |
| |
| /* Find the allocno that corresponds to A at a level one higher up in the |
| loop tree. Returns NULL if A is a cap, or if it has no parent. */ |
| ira_allocno_t |
| ira_parent_allocno (ira_allocno_t a) |
| { |
| ira_loop_tree_node_t parent; |
| |
| if (ALLOCNO_CAP (a) != NULL) |
| return NULL; |
| |
| parent = ALLOCNO_LOOP_TREE_NODE (a)->parent; |
| if (parent == NULL) |
| return NULL; |
| |
| return parent->regno_allocno_map[ALLOCNO_REGNO (a)]; |
| } |
| |
| /* Find the allocno that corresponds to A at a level one higher up in the |
| loop tree. If ALLOCNO_CAP is set for A, return that. */ |
| ira_allocno_t |
| ira_parent_or_cap_allocno (ira_allocno_t a) |
| { |
| if (ALLOCNO_CAP (a) != NULL) |
| return ALLOCNO_CAP (a); |
| |
| return ira_parent_allocno (a); |
| } |
| |
| /* Process all allocnos originated from pseudo REGNO and copy live |
| ranges, hard reg conflicts, and allocno stack reg attributes from |
| low level allocnos to final allocnos which are destinations of |
| removed stores at a loop exit. Return true if we copied live |
| ranges. */ |
| static bool |
| copy_info_to_removed_store_destinations (int regno) |
| { |
| ira_allocno_t a; |
| ira_allocno_t parent_a = NULL; |
| ira_loop_tree_node_t parent; |
| bool merged_p; |
| |
| merged_p = false; |
| for (a = ira_regno_allocno_map[regno]; |
| a != NULL; |
| a = ALLOCNO_NEXT_REGNO_ALLOCNO (a)) |
| { |
| if (a != regno_top_level_allocno_map[REGNO (allocno_emit_reg (a))]) |
| /* This allocno will be removed. */ |
| continue; |
| |
| /* Caps will be removed. */ |
| ira_assert (ALLOCNO_CAP_MEMBER (a) == NULL); |
| for (parent = ALLOCNO_LOOP_TREE_NODE (a)->parent; |
| parent != NULL; |
| parent = parent->parent) |
| if ((parent_a = parent->regno_allocno_map[regno]) == NULL |
| || (parent_a |
| == regno_top_level_allocno_map[REGNO |
| (allocno_emit_reg (parent_a))] |
| && ALLOCNO_EMIT_DATA (parent_a)->mem_optimized_dest_p)) |
| break; |
| if (parent == NULL || parent_a == NULL) |
| continue; |
| |
| copy_allocno_live_ranges (a, parent_a); |
| merge_hard_reg_conflicts (a, parent_a, true); |
| |
| ALLOCNO_CALL_FREQ (parent_a) += ALLOCNO_CALL_FREQ (a); |
| ALLOCNO_CALLS_CROSSED_NUM (parent_a) |
| += ALLOCNO_CALLS_CROSSED_NUM (a); |
| ALLOCNO_CHEAP_CALLS_CROSSED_NUM (parent_a) |
| += ALLOCNO_CHEAP_CALLS_CROSSED_NUM (a); |
| ALLOCNO_CROSSED_CALLS_ABIS (parent_a) |
| |= ALLOCNO_CROSSED_CALLS_ABIS (a); |
| ALLOCNO_CROSSED_CALLS_CLOBBERED_REGS (parent_a) |
| |= ALLOCNO_CROSSED_CALLS_CLOBBERED_REGS (a); |
| ALLOCNO_EXCESS_PRESSURE_POINTS_NUM (parent_a) |
| += ALLOCNO_EXCESS_PRESSURE_POINTS_NUM (a); |
| merged_p = true; |
| } |
| return merged_p; |
|