blob: 034645a119273d3a4b206da85016b41859b73b6e [file] [log] [blame]
#include <string.h>
#include <stdlib.h>
#include <float.h>
#define fpsizeoff sizeof(float)
#define fpsizeof sizeof(double)
#define fpsizeofl sizeof(long double)
/* Work around the fact that with the Intel double-extended precision,
we've got a 10 byte type stuffed into some amount of padding. And
the fact that -ffloat-store is going to stuff this value temporarily
into some bit of stack frame that we've no control over and can't zero. */
#if LDBL_MANT_DIG == 64
# if defined(__i386__) || defined(__x86_64__) || defined (__ia64__)
# undef fpsizeofl
# define fpsizeofl 10
# endif
#endif
/* Work around the fact that the sign of the second double in the IBM
double-double format is not strictly specified when it contains a zero.
For instance, -0.0L can be represented with either (-0.0, +0.0) or
(-0.0, -0.0). The former is what we'll get from the compiler when it
builds constants; the later is what we'll get from the negation operator
at runtime. */
/* ??? This hack only works for big-endian, which is fortunately true for
AIX and, Darwin. */
#if LDBL_MANT_DIG == 106
# undef fpsizeofl
# define fpsizeofl sizeof(double)
#endif
#define TEST(TYPE, EXT) \
TYPE c##EXT (TYPE x, TYPE y) \
{ \
return __builtin_copysign##EXT (x, y); \
} \
\
struct D##EXT { TYPE x, y, z; }; \
\
static const struct D##EXT T##EXT[] = { \
{ 1.0, 2.0, 1.0 }, \
{ 1.0, -2.0, -1.0 }, \
{ -1.0, -2.0, -1.0 }, \
{ 0.0, -2.0, -0.0 }, \
{ -0.0, -2.0, -0.0 }, \
{ -0.0, 2.0, 0.0 }, \
{ __builtin_inf##EXT (), -0.0, -__builtin_inf##EXT () }, \
{ -__builtin_nan##EXT (""), __builtin_inf##EXT (), \
__builtin_nan##EXT ("") } \
}; \
\
void test##EXT (void) \
{ \
int i, n = sizeof (T##EXT) / sizeof (T##EXT[0]); \
TYPE r; \
for (i = 0; i < n; ++i) \
{ \
r = c##EXT (T##EXT[i].x, T##EXT[i].y); \
if (memcmp (&r, &T##EXT[i].z, fpsizeof##EXT) != 0) \
abort (); \
} \
}
TEST(float, f)
TEST(double, )
TEST(long double, l)
int main()
{
testf();
test();
testl();
return 0;
}