blob: 39bd86c8036595d0b55b7d62cdf1a711fe0259f0 [file] [log] [blame]
c { dg-do compile }
c { dg-options "-std=legacy" }
c
c This demonstrates a problem with g77 and pic on x86 where
c egcs 1.0.1 and earlier will generate bogus assembler output.
c unfortunately, gas accepts the bogus acssembler output and
c generates code that almost works.
c
C Date: Wed, 17 Dec 1997 23:20:29 +0000
C From: Joao Cardoso <jcardoso@inescn.pt>
C To: egcs-bugs@cygnus.com
C Subject: egcs-1.0 f77 bug on OSR5
C When trying to compile the Fortran file that I enclose bellow,
C I got an assembler error:
C
C ./g77 -B./ -fpic -O -c scaleg.f
C /usr/tmp/cca002D8.s:123:syntax error at (
C
C ./g77 -B./ -fpic -O0 -c scaleg.f
C /usr/tmp/cca002EW.s:246:invalid operand combination: leal
C
C Compiling without the -fpic flag runs OK.
subroutine scaleg (n,ma,a,mb,b,low,igh,cscale,cperm,wk)
c
c *****parameters:
integer igh,low,ma,mb,n
double precision a(ma,n),b(mb,n),cperm(n),cscale(n),wk(n,6)
c
c *****local variables:
integer i,ir,it,j,jc,kount,nr,nrp2
double precision alpha,basl,beta,cmax,coef,coef2,coef5,cor,
* ew,ewc,fi,fj,gamma,pgamma,sum,t,ta,tb,tc
c
c *****fortran functions:
double precision dabs, dlog10, dsign
c float
c
c *****subroutines called:
c none
c
c ---------------------------------------------------------------
c
c *****purpose:
c scales the matrices a and b in the generalized eigenvalue
c problem a*x = (lambda)*b*x such that the magnitudes of the
c elements of the submatrices of a and b (as specified by low
c and igh) are close to unity in the least squares sense.
c ref.: ward, r. c., balancing the generalized eigenvalue
c problem, siam j. sci. stat. comput., vol. 2, no. 2, june 1981,
c 141-152.
c
c *****parameter description:
c
c on input:
c
c ma,mb integer
c row dimensions of the arrays containing matrices
c a and b respectively, as declared in the main calling
c program dimension statement;
c
c n integer
c order of the matrices a and b;
c
c a real(ma,n)
c contains the a matrix of the generalized eigenproblem
c defined above;
c
c b real(mb,n)
c contains the b matrix of the generalized eigenproblem
c defined above;
c
c low integer
c specifies the beginning -1 for the rows and
c columns of a and b to be scaled;
c
c igh integer
c specifies the ending -1 for the rows and columns
c of a and b to be scaled;
c
c cperm real(n)
c work array. only locations low through igh are
c referenced and altered by this subroutine;
c
c wk real(n,6)
c work array that must contain at least 6*n locations.
c only locations low through igh, n+low through n+igh,
c ..., 5*n+low through 5*n+igh are referenced and
c altered by this subroutine.
c
c on output:
c
c a,b contain the scaled a and b matrices;
c
c cscale real(n)
c contains in its low through igh locations the integer
c exponents of 2 used for the column scaling factors.
c the other locations are not referenced;
c
c wk contains in its low through igh locations the integer
c exponents of 2 used for the row scaling factors.
c
c *****algorithm notes:
c none.
c
c *****history:
c written by r. c. ward.......
c modified 8/86 by bobby bodenheimer so that if
c sum = 0 (corresponding to the case where the matrix
c doesn't need to be scaled) the routine returns.
c
c ---------------------------------------------------------------
c
if (low .eq. igh) go to 410
do 210 i = low,igh
wk(i,1) = 0.0d0
wk(i,2) = 0.0d0
wk(i,3) = 0.0d0
wk(i,4) = 0.0d0
wk(i,5) = 0.0d0
wk(i,6) = 0.0d0
cscale(i) = 0.0d0
cperm(i) = 0.0d0
210 continue
c
c compute right side vector in resulting linear equations
c
basl = dlog10(2.0d0)
do 240 i = low,igh
do 240 j = low,igh
tb = b(i,j)
ta = a(i,j)
if (ta .eq. 0.0d0) go to 220
ta = dlog10(dabs(ta)) / basl
220 continue
if (tb .eq. 0.0d0) go to 230
tb = dlog10(dabs(tb)) / basl
230 continue
wk(i,5) = wk(i,5) - ta - tb
wk(j,6) = wk(j,6) - ta - tb
240 continue
nr = igh-low+1
coef = 1.0d0/float(2*nr)
coef2 = coef*coef
coef5 = 0.5d0*coef2
nrp2 = nr+2
beta = 0.0d0
it = 1
c
c start generalized conjugate gradient iteration
c
250 continue
ew = 0.0d0
ewc = 0.0d0
gamma = 0.0d0
do 260 i = low,igh
gamma = gamma + wk(i,5)*wk(i,5) + wk(i,6)*wk(i,6)
ew = ew + wk(i,5)
ewc = ewc + wk(i,6)
260 continue
gamma = coef*gamma - coef2*(ew**2 + ewc**2)
+ - coef5*(ew - ewc)**2
if (it .ne. 1) beta = gamma / pgamma
t = coef5*(ewc - 3.0d0*ew)
tc = coef5*(ew - 3.0d0*ewc)
do 270 i = low,igh
wk(i,2) = beta*wk(i,2) + coef*wk(i,5) + t
cperm(i) = beta*cperm(i) + coef*wk(i,6) + tc
270 continue
c
c apply matrix to vector
c
do 300 i = low,igh
kount = 0
sum = 0.0d0
do 290 j = low,igh
if (a(i,j) .eq. 0.0d0) go to 280
kount = kount+1
sum = sum + cperm(j)
280 continue
if (b(i,j) .eq. 0.0d0) go to 290
kount = kount+1
sum = sum + cperm(j)
290 continue
wk(i,3) = float(kount)*wk(i,2) + sum
300 continue
do 330 j = low,igh
kount = 0
sum = 0.0d0
do 320 i = low,igh
if (a(i,j) .eq. 0.0d0) go to 310
kount = kount+1
sum = sum + wk(i,2)
310 continue
if (b(i,j) .eq. 0.0d0) go to 320
kount = kount+1
sum = sum + wk(i,2)
320 continue
wk(j,4) = float(kount)*cperm(j) + sum
330 continue
sum = 0.0d0
do 340 i = low,igh
sum = sum + wk(i,2)*wk(i,3) + cperm(i)*wk(i,4)
340 continue
if(sum.eq.0.0d0) return
alpha = gamma / sum
c
c determine correction to current iterate
c
cmax = 0.0d0
do 350 i = low,igh
cor = alpha * wk(i,2)
if (dabs(cor) .gt. cmax) cmax = dabs(cor)
wk(i,1) = wk(i,1) + cor
cor = alpha * cperm(i)
if (dabs(cor) .gt. cmax) cmax = dabs(cor)
cscale(i) = cscale(i) + cor
350 continue
if (cmax .lt. 0.5d0) go to 370
do 360 i = low,igh
wk(i,5) = wk(i,5) - alpha*wk(i,3)
wk(i,6) = wk(i,6) - alpha*wk(i,4)
360 continue
pgamma = gamma
it = it+1
if (it .le. nrp2) go to 250
c
c end generalized conjugate gradient iteration
c
370 continue
do 380 i = low,igh
ir = wk(i,1) + dsign(0.5d0,wk(i,1))
wk(i,1) = ir
jc = cscale(i) + dsign(0.5d0,cscale(i))
cscale(i) = jc
380 continue
c
c scale a and b
c
do 400 i = 1,igh
ir = wk(i,1)
fi = 2.0d0**ir
if (i .lt. low) fi = 1.0d0
do 400 j =low,n
jc = cscale(j)
fj = 2.0d0**jc
if (j .le. igh) go to 390
if (i .lt. low) go to 400
fj = 1.0d0
390 continue
a(i,j) = a(i,j)*fi*fj
b(i,j) = b(i,j)*fi*fj
400 continue
410 continue
return
c
c last line of scaleg
c
end