blob: ee50bc6b45904ff54c4aae651309f7984d2e0a96 [file] [log] [blame]
c { dg-do compile }
C To: egcs-bugs@cygnus.com
C Subject: -fPIC problem showing up with fortran on x86
C From: Dave Love <d.love@dl.ac.uk>
C Date: 19 Dec 1997 19:31:41 +0000
C
C
C This illustrates a long-standing problem noted at the end of the g77
C `Actual Bugs' info node and thought to be in the back end. Although
C the report is against gcc 2.7 I can reproduce it (specifically on
C redhat 4.2) with the 971216 egcs snapshot.
C
C g77 version 0.5.21
C gcc -v -fnull-version -o /tmp/gfa00415 -xf77-cpp-input /tmp/gfa00415.f -xnone
C -lf2c -lm
C
C ------------
subroutine dqage(f,a,b,epsabs,epsrel,limit,result,abserr,
* neval,ier,alist,blist,rlist,elist,iord,last)
C --------------------------------------------------
C
C Modified Feb 1989 by Barry W. Brown to eliminate key
C as argument (use key=1) and to eliminate all Fortran
C output.
C
C Purpose: to make this routine usable from within S.
C
C --------------------------------------------------
c***begin prologue dqage
c***date written 800101 (yymmdd)
c***revision date 830518 (yymmdd)
c***category no. h2a1a1
c***keywords automatic integrator, general-purpose,
c integrand examinator, globally adaptive,
c gauss-kronrod
c***author piessens,robert,appl. math. & progr. div. - k.u.leuven
c de doncker,elise,appl. math. & progr. div. - k.u.leuven
c***purpose the routine calculates an approximation result to a given
c definite integral i = integral of f over (a,b),
c hopefully satisfying following claim for accuracy
c abs(i-reslt).le.max(epsabs,epsrel*abs(i)).
c***description
c
c computation of a definite integral
c standard fortran subroutine
c double precision version
c
c parameters
c on entry
c f - double precision
c function subprogram defining the integrand
c function f(x). the actual name for f needs to be
c declared e x t e r n a l in the driver program.
c
c a - double precision
c lower limit of integration
c
c b - double precision
c upper limit of integration
c
c epsabs - double precision
c absolute accuracy requested
c epsrel - double precision
c relative accuracy requested
c if epsabs.le.0
c and epsrel.lt.max(50*rel.mach.acc.,0.5d-28),
c the routine will end with ier = 6.
c
c key - integer
c key for choice of local integration rule
c a gauss-kronrod pair is used with
c 7 - 15 points if key.lt.2,
c 10 - 21 points if key = 2,
c 15 - 31 points if key = 3,
c 20 - 41 points if key = 4,
c 25 - 51 points if key = 5,
c 30 - 61 points if key.gt.5.
c
c limit - integer
c gives an upperbound on the number of subintervals
c in the partition of (a,b), limit.ge.1.
c
c on return
c result - double precision
c approximation to the integral
c
c abserr - double precision
c estimate of the modulus of the absolute error,
c which should equal or exceed abs(i-result)
c
c neval - integer
c number of integrand evaluations
c
c ier - integer
c ier = 0 normal and reliable termination of the
c routine. it is assumed that the requested
c accuracy has been achieved.
c ier.gt.0 abnormal termination of the routine
c the estimates for result and error are
c less reliable. it is assumed that the
c requested accuracy has not been achieved.
c error messages
c ier = 1 maximum number of subdivisions allowed
c has been achieved. one can allow more
c subdivisions by increasing the value
c of limit.
c however, if this yields no improvement it
c is rather advised to analyze the integrand
c in order to determine the integration
c difficulties. if the position of a local
c difficulty can be determined(e.g.
c singularity, discontinuity within the
c interval) one will probably gain from
c splitting up the interval at this point
c and calling the integrator on the
c subranges. if possible, an appropriate
c special-purpose integrator should be used
c which is designed for handling the type of
c difficulty involved.
c = 2 the occurrence of roundoff error is
c detected, which prevents the requested
c tolerance from being achieved.
c = 3 extremely bad integrand behavior occurs
c at some points of the integration
c interval.
c = 6 the input is invalid, because
c (epsabs.le.0 and
c epsrel.lt.max(50*rel.mach.acc.,0.5d-28),
c result, abserr, neval, last, rlist(1) ,
c elist(1) and iord(1) are set to zero.
c alist(1) and blist(1) are set to a and b
c respectively.
c
c alist - double precision
c vector of dimension at least limit, the first
c last elements of which are the left
c end points of the subintervals in the partition
c of the given integration range (a,b)
c
c blist - double precision
c vector of dimension at least limit, the first
c last elements of which are the right
c end points of the subintervals in the partition
c of the given integration range (a,b)
c
c rlist - double precision
c vector of dimension at least limit, the first
c last elements of which are the
c integral approximations on the subintervals
c
c elist - double precision
c vector of dimension at least limit, the first
c last elements of which are the moduli of the
c absolute error estimates on the subintervals
c
c iord - integer
c vector of dimension at least limit, the first k
c elements of which are pointers to the
c error estimates over the subintervals,
c such that elist(iord(1)), ...,
c elist(iord(k)) form a decreasing sequence,
c with k = last if last.le.(limit/2+2), and
c k = limit+1-last otherwise
c
c last - integer
c number of subintervals actually produced in the
c subdivision process
c
c***references (none)
c***routines called d1mach,dqk15,dqk21,dqk31,
c dqk41,dqk51,dqk61,dqpsrt
c***end prologue dqage
c
double precision a,abserr,alist,area,area1,area12,area2,a1,a2,b,
* blist,b1,b2,dabs,defabs,defab1,defab2,dmax1,d1mach,elist,epmach,
* epsabs,epsrel,errbnd,errmax,error1,error2,erro12,errsum,f,
* resabs,result,rlist,uflow
integer ier,iord,iroff1,iroff2,k,last,limit,maxerr,neval,
* nrmax
c
dimension alist(limit),blist(limit),elist(limit),iord(limit),
* rlist(limit)
c
external f
c
c list of major variables
c -----------------------
c
c alist - list of left end points of all subintervals
c considered up to now
c blist - list of right end points of all subintervals
c considered up to now
c rlist(i) - approximation to the integral over
c (alist(i),blist(i))
c elist(i) - error estimate applying to rlist(i)
c maxerr - pointer to the interval with largest
c error estimate
c errmax - elist(maxerr)
c area - sum of the integrals over the subintervals
c errsum - sum of the errors over the subintervals
c errbnd - requested accuracy max(epsabs,epsrel*
c abs(result))
c *****1 - variable for the left subinterval
c *****2 - variable for the right subinterval
c last - index for subdivision
c
c
c machine dependent constants
c ---------------------------
c
c epmach is the largest relative spacing.
c uflow is the smallest positive magnitude.
c
c***first executable statement dqage
epmach = d1mach(4)
uflow = d1mach(1)
c
c test on validity of parameters
c ------------------------------
c
ier = 0
neval = 0
last = 0
result = 0.0d+00
abserr = 0.0d+00
alist(1) = a
blist(1) = b
rlist(1) = 0.0d+00
elist(1) = 0.0d+00
iord(1) = 0
if(epsabs.le.0.0d+00.and.
* epsrel.lt.dmax1(0.5d+02*epmach,0.5d-28)) ier = 6
if(ier.eq.6) go to 999
c
c first approximation to the integral
c -----------------------------------
c
neval = 0
call dqk15(f,a,b,result,abserr,defabs,resabs)
last = 1
rlist(1) = result
elist(1) = abserr
iord(1) = 1
c
c test on accuracy.
c
errbnd = dmax1(epsabs,epsrel*dabs(result))
if(abserr.le.0.5d+02*epmach*defabs.and.abserr.gt.errbnd) ier = 2
if(limit.eq.1) ier = 1
if(ier.ne.0.or.(abserr.le.errbnd.and.abserr.ne.resabs)
* .or.abserr.eq.0.0d+00) go to 60
c
c initialization
c --------------
c
c
errmax = abserr
maxerr = 1
area = result
errsum = abserr
nrmax = 1
iroff1 = 0
iroff2 = 0
c
c main do-loop
c ------------
c
do 30 last = 2,limit
c
c bisect the subinterval with the largest error estimate.
c
a1 = alist(maxerr)
b1 = 0.5d+00*(alist(maxerr)+blist(maxerr))
a2 = b1
b2 = blist(maxerr)
call dqk15(f,a1,b1,area1,error1,resabs,defab1)
call dqk15(f,a2,b2,area2,error2,resabs,defab2)
c
c improve previous approximations to integral
c and error and test for accuracy.
c
neval = neval+1
area12 = area1+area2
erro12 = error1+error2
errsum = errsum+erro12-errmax
area = area+area12-rlist(maxerr)
if(defab1.eq.error1.or.defab2.eq.error2) go to 5
if(dabs(rlist(maxerr)-area12).le.0.1d-04*dabs(area12)
* .and.erro12.ge.0.99d+00*errmax) iroff1 = iroff1+1
if(last.gt.10.and.erro12.gt.errmax) iroff2 = iroff2+1
5 rlist(maxerr) = area1
rlist(last) = area2
errbnd = dmax1(epsabs,epsrel*dabs(area))
if(errsum.le.errbnd) go to 8
c
c test for roundoff error and eventually set error flag.
c
if(iroff1.ge.6.or.iroff2.ge.20) ier = 2
c
c set error flag in the case that the number of subintervals
c equals limit.
c
if(last.eq.limit) ier = 1
c
c set error flag in the case of bad integrand behavior
c at a point of the integration range.
c
if(dmax1(dabs(a1),dabs(b2)).le.(0.1d+01+0.1d+03*
* epmach)*(dabs(a2)+0.1d+04*uflow)) ier = 3
c
c append the newly-created intervals to the list.
c
8 if(error2.gt.error1) go to 10
alist(last) = a2
blist(maxerr) = b1
blist(last) = b2
elist(maxerr) = error1
elist(last) = error2
go to 20
10 alist(maxerr) = a2
alist(last) = a1
blist(last) = b1
rlist(maxerr) = area2
rlist(last) = area1
elist(maxerr) = error2
elist(last) = error1
c
c call subroutine dqpsrt to maintain the descending ordering
c in the list of error estimates and select the subinterval
c with the largest error estimate (to be bisected next).
c
20 call dqpsrt(limit,last,maxerr,errmax,elist,iord,nrmax)
c ***jump out of do-loop
if(ier.ne.0.or.errsum.le.errbnd) go to 40
30 continue
c
c compute final result.
c ---------------------
c
40 result = 0.0d+00
do 50 k=1,last
result = result+rlist(k)
50 continue
abserr = errsum
60 neval = 30*neval+15
999 return
end