blob: c8d7c5695240c77eaeda55ecffc32304300a9c58 [file] [log] [blame]
c { dg-do run }
c f90-intrinsic-numeric.f
c
c Test Fortran 90 intrinsic numeric functions - Section 13.10.2 and 13.13
c David Billinghurst <David.Billinghurst@riotinto.com>
c
c Notes:
c * g77 does not fully comply with F90. Noncompliances noted in comments.
c * Section 13.12: Specific names for intrinsic functions tested in
c intrinsic77.f
logical fail
integer(kind=2) j, j2, ja
integer(kind=1) k, k2, ka
common /flags/ fail
fail = .false.
c ABS - Section 13.13.1
j = -9
ja = 9
k = j
ka = ja
call c_i(ABS(-7),7,'ABS(integer)')
call c_i2(ABS(j),ja,'ABS(integer(2))')
call c_i1(ABS(k),ka,'ABS(integer(1))')
call c_r(ABS(-7.),7.,'ABS(real)')
call c_d(ABS(-7.d0),7.d0,'ABS(double)')
call c_r(ABS((3.,-4.)),5.0,'ABS(complex)')
call c_d(ABS((3.d0,-4.d0)),5.0d0,'ABS(complex(kind=8))')
c AIMAG - Section 13.13.6
call c_r(AIMAG((2.,-7.)),-7.,'AIMAG(complex)')
c g77: AIMAG(complex(kind=8)) does not comply with F90
c call c_d(AIMAG((2.d0,-7.d0)),-7.d0,'AIMAG(complex(kind=8))')
c AINT - Section 13.13.7
call c_r(AINT(2.783),2.0,'AINT(real) 1')
call c_r(AINT(-2.783),-2.0,'AINT(real) 2')
call c_d(AINT(2.783d0),2.0d0,'AINT(double precision) 1')
call c_d(AINT(-2.783d0),-2.0d0,'AINT(double precision) 2')
c Note: g77 does not support optional argument KIND
c ANINT - Section 13.13.10
call c_r(ANINT(2.783),3.0,'ANINT(real) 1')
call c_r(ANINT(-2.783),-3.0,'ANINT(real) 2')
call c_d(ANINT(2.783d0),3.0d0,'ANINT(double precision) 1')
call c_d(ANINT(-2.783d0),-3.0d0,'ANINT(double precision) 2')
c Note: g77 does not support optional argument KIND
c CEILING - Section 13.13.18
c Not implemented
c CMPLX - Section 13.13.20
j = 1
ja = 2
k = 1
ka = 2
call c_c(CMPLX(1),(1.,0.),'CMPLX(integer)')
call c_c(CMPLX(1,2),(1.,2.),'CMPLX(integer, integer)')
call c_c(CMPLX(j),(1.,0.),'CMPLX(integer(2))')
call c_c(CMPLX(j,ja),(1.,2.),'CMPLX(integer(2), integer(2))')
call c_c(CMPLX(k),(1.,0.),'CMPLX(integer(1)')
call c_c(CMPLX(k,ka),(1.,2.),'CMPLX(integer(1), integer(1))')
call c_c(CMPLX(1.),(1.,0.),'CMPLX(real)')
call c_c(CMPLX(1.d0),(1.,0.),'CMPLX(double)')
call c_c(CMPLX(1.d0,2.d0),(1.,2.),'CMPLX(double,double)')
call c_c(CMPLX(1.,2.),(1.,2.),'CMPLX(complex)')
call c_c(CMPLX(1.d0,2.d0),(1.,2.),'CMPLX(complex(kind=8))')
c NOTE: g77 does not support optional argument KIND
c CONJG - Section 13.13.21
call c_c(CONJG((2.,-7.)),(2.,7.),'CONJG(complex)')
call c_z(CONJG((2.d0,-7.d0)),(2.d0,7.d0),'CONJG(complex(kind=8))')
c DBLE - Section 13.13.27
j = 5
k = 5
call c_d(DBLE(5),5.0d0,'DBLE(integer)')
call c_d(DBLE(j),5.0d0,'DBLE(integer(2))')
call c_d(DBLE(k),5.0d0,'DBLE(integer(1))')
call c_d(DBLE(5.),5.0d0,'DBLE(real)')
call c_d(DBLE(5.0d0),5.0d0,'DBLE(double)')
call c_d(DBLE((5.0,0.5)),5.0d0,'DBLE(complex)')
call c_d(DBLE((5.0d0,0.5d0)),5.0d0,'DBLE(complex(kind=8))')
c DIM - Section 13.13.29
j = -8
j2 = -3
ja = 0
k = -8
k2 = -3
ka = 0
call c_i(DIM(-8,-3),0,'DIM(integer)')
call c_i2(DIM(j,j2),ja,'DIM(integer(2))')
call c_i1(DIM(k,k2),ka,'DIM(integer(1)')
call c_r(DIM(-8.,-3.),0.,'DIM(real,real)')
call c_d(DIM(-8.d0,-3.d0),0.d0,'DIM(double,double)')
c DPROD - Section 13.13.31
call c_d(DPROD(-8.,-3.),24.d0,'DPROD(real,real)')
c FLOOR - Section 13.13.36
c Not implemented
c INT - Section 13.13.47
j = 5
k = 5
call c_i(INT(5),5,'INT(integer)')
call c_i(INT(j),5,'INT(integer(2))')
call c_i(INT(k),5,'INT(integer(1))')
call c_i(INT(5.01),5,'INT(real)')
call c_i(INT(5.01d0),5,'INT(double)')
c Note: Does not accept optional second argument KIND
c MAX - Section 13.13.63
j = 1
j2 = 2
ja = 2
k = 1
k2 = 2
ka = 2
call c_i(MAX(1,2,3),3,'MAX(integer,integer,integer)')
call c_i2(MAX(j,j2),ja,'MAX(integer(2),integer(2))')
call c_i1(MAX(k,k2),ka,'MAX(integer(1),integer(1))')
call c_r(MAX(1.,2.,3.),3.,'MAX(real,real,real)')
call c_d(MAX(1.d0,2.d0,3.d0),3.d0,'MAX(double,double,double)')
c MIN - Section 13.13.68
j = 1
j2 = 2
ja = 1
k = 1
k2 = 2
ka = 1
call c_i(MIN(1,2,3),1,'MIN(integer,integer,integer)')
call c_i2(MIN(j,j2),ja,'MIN(integer(2),integer(2))')
call c_i1(MIN(k,k2),ka,'MIN(integer(1),integer(1))')
call c_r(MIN(1.,2.,3.),1.,'MIN(real,real,real)')
call c_d(MIN(1.d0,2.d0,3.d0),1.d0,'MIN(double,double,double)')
c MOD - Section 13.13.72
call c_i(MOD(8,5),3,'MOD(integer,integer) 1')
call c_i(MOD(-8,5),-3,'MOD(integer,integer) 2')
call c_i(MOD(8,-5),3,'MOD(integer,integer) 3')
call c_i(MOD(-8,-5),-3,'MOD(integer,integer) 4')
j = 8
j2 = 5
ja = 3
call c_i2(MOD(j,j2),ja,'MOD(integer(2),integer(2)) 1')
call c_i2(MOD(-j,j2),-ja,'MOD(integer(2),integer(2)) 2')
call c_i2(MOD(j,-j2),ja,'MOD(integer(2),integer(2)) 3')
call c_i2(MOD(-j,-j2),-ja,'MOD(integer(2),integer(2)) 4')
k = 8
k2 = 5
ka = 3
call c_i1(MOD(k,k2),ka,'MOD(integer(1),integer(1)) 1')
call c_i1(MOD(-k,k2),-ka,'MOD(integer(1),integer(1)) 2')
call c_i1(MOD(k,-k2),ka,'MOD(integer(1),integer(1)) 3')
call c_i1(MOD(-k,-k2),-ka,'MOD(integer(1),integer(1)) 4')
call c_r(MOD(8.,5.),3.,'MOD(real,real) 1')
call c_r(MOD(-8.,5.),-3.,'MOD(real,real) 2')
call c_r(MOD(8.,-5.),3.,'MOD(real,real) 3')
call c_r(MOD(-8.,-5.),-3.,'MOD(real,real) 4')
call c_d(MOD(8.d0,5.d0),3.d0,'MOD(double,double) 1')
call c_d(MOD(-8.d0,5.d0),-3.d0,'MOD(double,double) 2')
call c_d(MOD(8.d0,-5.d0),3.d0,'MOD(double,double) 3')
call c_d(MOD(-8.d0,-5.d0),-3.d0,'MOD(double,double) 4')
c MODULO - Section 13.13.73
c Not implemented
c NINT - Section 13.13.76
call c_i(NINT(2.783),3,'NINT(real)')
call c_i(NINT(2.783d0),3,'NINT(double)')
c Optional second argument KIND not implemented
c REAL - Section 13.13.86
j = -2
k = -2
call c_r(REAL(-2),-2.0,'REAL(integer)')
call c_r(REAL(j),-2.0,'REAL(integer(2))')
call c_r(REAL(k),-2.0,'REAL(integer(1))')
call c_r(REAL(-2.0),-2.0,'REAL(real)')
call c_r(REAL(-2.0d0),-2.0,'REAL(double)')
call c_r(REAL((-2.,9.)),-2.0,'REAL(complex)')
c REAL(complex(kind=8)) not implemented
c call c_r(REAL((-2.d0,9.d0)),-2.0,'REAL(complex(kind=8))')
c SIGN - Section 13.13.96
j = -3
j2 = 2
ja = 3
k = -3
k2 = 2
ka = 3
call c_i(SIGN(-3,2),3,'SIGN(integer)')
call c_i2(SIGN(j,j2),ja,'SIGN(integer(2))')
call c_i1(SIGN(k,k2),ka,'SIGN(integer(1))')
call c_r(SIGN(-3.0,2.),3.,'SIGN(real,real)')
call c_d(SIGN(-3.d0,2.d0),3.d0,'SIGN(double,double)')
if ( fail ) STOP 1
end
subroutine failure(label)
c Report failure and set flag
character*(*) label
logical fail
common /flags/ fail
write(6,'(a,a,a)') 'Test ',label,' FAILED'
fail = .true.
end
subroutine c_i(i,j,label)
c Check if INTEGER i equals j, and fail otherwise
integer i,j
character*(*) label
if ( i .ne. j ) then
call failure(label)
write(6,*) 'Got ',i,' expected ', j
end if
end
subroutine c_i2(i,j,label)
c Check if INTEGER(kind=2) i equals j, and fail otherwise
integer(kind=2) i,j
character*(*) label
if ( i .ne. j ) then
call failure(label)
write(6,*) 'Got ',i,' expected ', j
end if
end
subroutine c_i1(i,j,label)
c Check if INTEGER(kind=1) i equals j, and fail otherwise
integer(kind=1) i,j
character*(*) label
if ( i .ne. j ) then
call failure(label)
write(6,*) 'Got ',i,' expected ', j
end if
end
subroutine c_r(a,b,label)
c Check if REAL a equals b, and fail otherwise
real a, b
character*(*) label
if ( abs(a-b) .gt. 1.0e-5 ) then
call failure(label)
write(6,*) 'Got ',a,' expected ', b
end if
end
subroutine c_d(a,b,label)
c Check if DOUBLE PRECISION a equals b, and fail otherwise
double precision a, b
character*(*) label
if ( abs(a-b) .gt. 1.0d-5 ) then
call failure(label)
write(6,*) 'Got ',a,' expected ', b
end if
end
subroutine c_c(a,b,label)
c Check if COMPLEX a equals b, and fail otherwise
complex a, b
character*(*) label
if ( abs(a-b) .gt. 1.0e-5 ) then
call failure(label)
write(6,*) 'Got ',a,' expected ', b
end if
end
subroutine c_z(a,b,label)
c Check if COMPLEX a equals b, and fail otherwise
complex(kind=8) a, b
character*(*) label
if ( abs(a-b) .gt. 1.0d-5 ) then
call failure(label)
write(6,*) 'Got ',a,' expected ', b
end if
end