blob: 1abe777baebb50b8f1caaae42a71ecc1f4953577 [file] [log] [blame]
/* Vector API for GNU compiler.
Copyright (C) 2004-2022 Free Software Foundation, Inc.
Contributed by Nathan Sidwell <nathan@codesourcery.com>
Re-implemented in C++ by Diego Novillo <dnovillo@google.com>
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#ifndef GCC_VEC_H
#define GCC_VEC_H
/* Some gen* file have no ggc support as the header file gtype-desc.h is
missing. Provide these definitions in case ggc.h has not been included.
This is not a problem because any code that runs before gengtype is built
will never need to use GC vectors.*/
extern void ggc_free (void *);
extern size_t ggc_round_alloc_size (size_t requested_size);
extern void *ggc_realloc (void *, size_t MEM_STAT_DECL);
/* Templated vector type and associated interfaces.
The interface functions are typesafe and use inline functions,
sometimes backed by out-of-line generic functions. The vectors are
designed to interoperate with the GTY machinery.
There are both 'index' and 'iterate' accessors. The index accessor
is implemented by operator[]. The iterator returns a boolean
iteration condition and updates the iteration variable passed by
reference. Because the iterator will be inlined, the address-of
can be optimized away.
Each operation that increases the number of active elements is
available in 'quick' and 'safe' variants. The former presumes that
there is sufficient allocated space for the operation to succeed
(it dies if there is not). The latter will reallocate the
vector, if needed. Reallocation causes an exponential increase in
vector size. If you know you will be adding N elements, it would
be more efficient to use the reserve operation before adding the
elements with the 'quick' operation. This will ensure there are at
least as many elements as you ask for, it will exponentially
increase if there are too few spare slots. If you want reserve a
specific number of slots, but do not want the exponential increase
(for instance, you know this is the last allocation), use the
reserve_exact operation. You can also create a vector of a
specific size from the get go.
You should prefer the push and pop operations, as they append and
remove from the end of the vector. If you need to remove several
items in one go, use the truncate operation. The insert and remove
operations allow you to change elements in the middle of the
vector. There are two remove operations, one which preserves the
element ordering 'ordered_remove', and one which does not
'unordered_remove'. The latter function copies the end element
into the removed slot, rather than invoke a memmove operation. The
'lower_bound' function will determine where to place an item in the
array using insert that will maintain sorted order.
Vectors are template types with three arguments: the type of the
elements in the vector, the allocation strategy, and the physical
layout to use
Four allocation strategies are supported:
- Heap: allocation is done using malloc/free. This is the
default allocation strategy.
- GC: allocation is done using ggc_alloc/ggc_free.
- GC atomic: same as GC with the exception that the elements
themselves are assumed to be of an atomic type that does
not need to be garbage collected. This means that marking
routines do not need to traverse the array marking the
individual elements. This increases the performance of
GC activities.
Two physical layouts are supported:
- Embedded: The vector is structured using the trailing array
idiom. The last member of the structure is an array of size
1. When the vector is initially allocated, a single memory
block is created to hold the vector's control data and the
array of elements. These vectors cannot grow without
reallocation (see discussion on embeddable vectors below).
- Space efficient: The vector is structured as a pointer to an
embedded vector. This is the default layout. It means that
vectors occupy a single word of storage before initial
allocation. Vectors are allowed to grow (the internal
pointer is reallocated but the main vector instance does not
need to relocate).
The type, allocation and layout are specified when the vector is
declared.
If you need to directly manipulate a vector, then the 'address'
accessor will return the address of the start of the vector. Also
the 'space' predicate will tell you whether there is spare capacity
in the vector. You will not normally need to use these two functions.
Notes on the different layout strategies
* Embeddable vectors (vec<T, A, vl_embed>)
These vectors are suitable to be embedded in other data
structures so that they can be pre-allocated in a contiguous
memory block.
Embeddable vectors are implemented using the trailing array
idiom, thus they are not resizeable without changing the address
of the vector object itself. This means you cannot have
variables or fields of embeddable vector type -- always use a
pointer to a vector. The one exception is the final field of a
structure, which could be a vector type.
You will have to use the embedded_size & embedded_init calls to
create such objects, and they will not be resizeable (so the
'safe' allocation variants are not available).
Properties of embeddable vectors:
- The whole vector and control data are allocated in a single
contiguous block. It uses the trailing-vector idiom, so
allocation must reserve enough space for all the elements
in the vector plus its control data.
- The vector cannot be re-allocated.
- The vector cannot grow nor shrink.
- No indirections needed for access/manipulation.
- It requires 2 words of storage (prior to vector allocation).
* Space efficient vector (vec<T, A, vl_ptr>)
These vectors can grow dynamically and are allocated together
with their control data. They are suited to be included in data
structures. Prior to initial allocation, they only take a single
word of storage.
These vectors are implemented as a pointer to embeddable vectors.
The semantics allow for this pointer to be NULL to represent
empty vectors. This way, empty vectors occupy minimal space in
the structure containing them.
Properties:
- The whole vector and control data are allocated in a single
contiguous block.
- The whole vector may be re-allocated.
- Vector data may grow and shrink.
- Access and manipulation requires a pointer test and
indirection.
- It requires 1 word of storage (prior to vector allocation).
An example of their use would be,
struct my_struct {
// A space-efficient vector of tree pointers in GC memory.
vec<tree, va_gc, vl_ptr> v;
};
struct my_struct *s;
if (s->v.length ()) { we have some contents }
s->v.safe_push (decl); // append some decl onto the end
for (ix = 0; s->v.iterate (ix, &elt); ix++)
{ do something with elt }
*/
/* Support function for statistics. */
extern void dump_vec_loc_statistics (void);
/* Hashtable mapping vec addresses to descriptors. */
extern htab_t vec_mem_usage_hash;
/* Control data for vectors. This contains the number of allocated
and used slots inside a vector. */
struct vec_prefix
{
/* FIXME - These fields should be private, but we need to cater to
compilers that have stricter notions of PODness for types. */
/* Memory allocation support routines in vec.cc. */
void register_overhead (void *, size_t, size_t CXX_MEM_STAT_INFO);
void release_overhead (void *, size_t, size_t, bool CXX_MEM_STAT_INFO);
static unsigned calculate_allocation (vec_prefix *, unsigned, bool);
static unsigned calculate_allocation_1 (unsigned, unsigned);
/* Note that vec_prefix should be a base class for vec, but we use
offsetof() on vector fields of tree structures (e.g.,
tree_binfo::base_binfos), and offsetof only supports base types.
To compensate, we make vec_prefix a field inside vec and make
vec a friend class of vec_prefix so it can access its fields. */
template <typename, typename, typename> friend struct vec;
/* The allocator types also need access to our internals. */
friend struct va_gc;
friend struct va_gc_atomic;
friend struct va_heap;
unsigned m_alloc : 31;
unsigned m_using_auto_storage : 1;
unsigned m_num;
};
/* Calculate the number of slots to reserve a vector, making sure that
RESERVE slots are free. If EXACT grow exactly, otherwise grow
exponentially. PFX is the control data for the vector. */
inline unsigned
vec_prefix::calculate_allocation (vec_prefix *pfx, unsigned reserve,
bool exact)
{
if (exact)
return (pfx ? pfx->m_num : 0) + reserve;
else if (!pfx)
return MAX (4, reserve);
return calculate_allocation_1 (pfx->m_alloc, pfx->m_num + reserve);
}
template<typename, typename, typename> struct vec;
/* Valid vector layouts
vl_embed - Embeddable vector that uses the trailing array idiom.
vl_ptr - Space efficient vector that uses a pointer to an
embeddable vector. */
struct vl_embed { };
struct vl_ptr { };
/* Types of supported allocations
va_heap - Allocation uses malloc/free.
va_gc - Allocation uses ggc_alloc.
va_gc_atomic - Same as GC, but individual elements of the array
do not need to be marked during collection. */
/* Allocator type for heap vectors. */
struct va_heap
{
/* Heap vectors are frequently regular instances, so use the vl_ptr
layout for them. */
typedef vl_ptr default_layout;
template<typename T>
static void reserve (vec<T, va_heap, vl_embed> *&, unsigned, bool
CXX_MEM_STAT_INFO);
template<typename T>
static void release (vec<T, va_heap, vl_embed> *&);
};
/* Allocator for heap memory. Ensure there are at least RESERVE free
slots in V. If EXACT is true, grow exactly, else grow
exponentially. As a special case, if the vector had not been
allocated and RESERVE is 0, no vector will be created. */
template<typename T>
inline void
va_heap::reserve (vec<T, va_heap, vl_embed> *&v, unsigned reserve, bool exact
MEM_STAT_DECL)
{
size_t elt_size = sizeof (T);
unsigned alloc
= vec_prefix::calculate_allocation (v ? &v->m_vecpfx : 0, reserve, exact);
gcc_checking_assert (alloc);
if (GATHER_STATISTICS && v)
v->m_vecpfx.release_overhead (v, elt_size * v->allocated (),
v->allocated (), false);
size_t size = vec<T, va_heap, vl_embed>::embedded_size (alloc);
unsigned nelem = v ? v->length () : 0;
v = static_cast <vec<T, va_heap, vl_embed> *> (xrealloc (v, size));
v->embedded_init (alloc, nelem);
if (GATHER_STATISTICS)
v->m_vecpfx.register_overhead (v, alloc, elt_size PASS_MEM_STAT);
}
#if GCC_VERSION >= 4007
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wfree-nonheap-object"
#endif
/* Free the heap space allocated for vector V. */
template<typename T>
void
va_heap::release (vec<T, va_heap, vl_embed> *&v)
{
size_t elt_size = sizeof (T);
if (v == NULL)
return;
if (GATHER_STATISTICS)
v->m_vecpfx.release_overhead (v, elt_size * v->allocated (),
v->allocated (), true);
::free (v);
v = NULL;
}
#if GCC_VERSION >= 4007
#pragma GCC diagnostic pop
#endif
/* Allocator type for GC vectors. Notice that we need the structure
declaration even if GC is not enabled. */
struct va_gc
{
/* Use vl_embed as the default layout for GC vectors. Due to GTY
limitations, GC vectors must always be pointers, so it is more
efficient to use a pointer to the vl_embed layout, rather than
using a pointer to a pointer as would be the case with vl_ptr. */
typedef vl_embed default_layout;
template<typename T, typename A>
static void reserve (vec<T, A, vl_embed> *&, unsigned, bool
CXX_MEM_STAT_INFO);
template<typename T, typename A>
static void release (vec<T, A, vl_embed> *&v);
};
/* Free GC memory used by V and reset V to NULL. */
template<typename T, typename A>
inline void
va_gc::release (vec<T, A, vl_embed> *&v)
{
if (v)
::ggc_free (v);
v = NULL;
}
/* Allocator for GC memory. Ensure there are at least RESERVE free
slots in V. If EXACT is true, grow exactly, else grow
exponentially. As a special case, if the vector had not been
allocated and RESERVE is 0, no vector will be created. */
template<typename T, typename A>
void
va_gc::reserve (vec<T, A, vl_embed> *&v, unsigned reserve, bool exact
MEM_STAT_DECL)
{
unsigned alloc
= vec_prefix::calculate_allocation (v ? &v->m_vecpfx : 0, reserve, exact);
if (!alloc)
{
::ggc_free (v);
v = NULL;
return;
}
/* Calculate the amount of space we want. */
size_t size = vec<T, A, vl_embed>::embedded_size (alloc);
/* Ask the allocator how much space it will really give us. */
size = ::ggc_round_alloc_size (size);
/* Adjust the number of slots accordingly. */
size_t vec_offset = sizeof (vec_prefix);
size_t elt_size = sizeof (T);
alloc = (size - vec_offset) / elt_size;
/* And finally, recalculate the amount of space we ask for. */
size = vec_offset + alloc * elt_size;
unsigned nelem = v ? v->length () : 0;
v = static_cast <vec<T, A, vl_embed> *> (::ggc_realloc (v, size
PASS_MEM_STAT));
v->embedded_init (alloc, nelem);
}
/* Allocator type for GC vectors. This is for vectors of types
atomics w.r.t. collection, so allocation and deallocation is
completely inherited from va_gc. */
struct va_gc_atomic : va_gc
{
};
/* Generic vector template. Default values for A and L indicate the
most commonly used strategies.
FIXME - Ideally, they would all be vl_ptr to encourage using regular
instances for vectors, but the existing GTY machinery is limited
in that it can only deal with GC objects that are pointers
themselves.
This means that vector operations that need to deal with
potentially NULL pointers, must be provided as free
functions (see the vec_safe_* functions above). */
template<typename T,
typename A = va_heap,
typename L = typename A::default_layout>
struct GTY((user)) vec
{
};
/* Allow C++11 range-based 'for' to work directly on vec<T>*. */
template<typename T, typename A, typename L>
T* begin (vec<T,A,L> *v) { return v ? v->begin () : nullptr; }
template<typename T, typename A, typename L>
T* end (vec<T,A,L> *v) { return v ? v->end () : nullptr; }
template<typename T, typename A, typename L>
const T* begin (const vec<T,A,L> *v) { return v ? v->begin () : nullptr; }
template<typename T, typename A, typename L>
const T* end (const vec<T,A,L> *v) { return v ? v->end () : nullptr; }
/* Generic vec<> debug helpers.
These need to be instantiated for each vec<TYPE> used throughout
the compiler like this:
DEFINE_DEBUG_VEC (TYPE)
The reason we have a debug_helper() is because GDB can't
disambiguate a plain call to debug(some_vec), and it must be called
like debug<TYPE>(some_vec). */
template<typename T>
void
debug_helper (vec<T> &ref)
{
unsigned i;
for (i = 0; i < ref.length (); ++i)
{
fprintf (stderr, "[%d] = ", i);
debug_slim (ref[i]);
fputc ('\n', stderr);
}
}
/* We need a separate va_gc variant here because default template
argument for functions cannot be used in c++-98. Once this
restriction is removed, those variant should be folded with the
above debug_helper. */
template<typename T>
void
debug_helper (vec<T, va_gc> &ref)
{
unsigned i;
for (i = 0; i < ref.length (); ++i)
{
fprintf (stderr, "[%d] = ", i);
debug_slim (ref[i]);
fputc ('\n', stderr);
}
}
/* Macro to define debug(vec<T>) and debug(vec<T, va_gc>) helper
functions for a type T. */
#define DEFINE_DEBUG_VEC(T) \
template void debug_helper (vec<T> &); \
template void debug_helper (vec<T, va_gc> &); \
/* Define the vec<T> debug functions. */ \
DEBUG_FUNCTION void \
debug (vec<T> &ref) \
{ \
debug_helper <T> (ref); \
} \
DEBUG_FUNCTION void \
debug (vec<T> *ptr) \
{ \
if (ptr) \
debug (*ptr); \
else \
fprintf (stderr, "<nil>\n"); \
} \
/* Define the vec<T, va_gc> debug functions. */ \
DEBUG_FUNCTION void \
debug (vec<T, va_gc> &ref) \
{ \
debug_helper <T> (ref); \
} \
DEBUG_FUNCTION void \
debug (vec<T, va_gc> *ptr) \
{ \
if (ptr) \
debug (*ptr); \
else \
fprintf (stderr, "<nil>\n"); \
}
/* Default-construct N elements in DST. */
template <typename T>
inline void
vec_default_construct (T *dst, unsigned n)
{
#ifdef BROKEN_VALUE_INITIALIZATION
/* Versions of GCC before 4.4 sometimes leave certain objects
uninitialized when value initialized, though if the type has
user defined default ctor, that ctor is invoked. As a workaround
perform clearing first and then the value initialization, which
fixes the case when value initialization doesn't initialize due to
the bugs and should initialize to all zeros, but still allows
vectors for types with user defined default ctor that initializes
some or all elements to non-zero. If T has no user defined
default ctor and some non-static data members have user defined
default ctors that initialize to non-zero the workaround will
still not work properly; in that case we just need to provide
user defined default ctor. */
memset (dst, '\0', sizeof (T) * n);
#endif
for ( ; n; ++dst, --n)
::new (static_cast<void*>(dst)) T ();
}
/* Copy-construct N elements in DST from *SRC. */
template <typename T>
inline void
vec_copy_construct (T *dst, const T *src, unsigned n)
{
for ( ; n; ++dst, ++src, --n)
::new (static_cast<void*>(dst)) T (*src);
}
/* Type to provide zero-initialized values for vec<T, A, L>. This is
used to provide nil initializers for vec instances. Since vec must
be a trivially copyable type that can be copied by memcpy and zeroed
out by memset, it must have defaulted default and copy ctor and copy
assignment. To initialize a vec either use value initialization
(e.g., vec() or vec v{ };) or assign it the value vNULL. This isn't
needed for file-scope and function-local static vectors, which are
zero-initialized by default. */
struct vnull { };
constexpr vnull vNULL{ };
/* Embeddable vector. These vectors are suitable to be embedded
in other data structures so that they can be pre-allocated in a
contiguous memory block.
Embeddable vectors are implemented using the trailing array idiom,
thus they are not resizeable without changing the address of the
vector object itself. This means you cannot have variables or
fields of embeddable vector type -- always use a pointer to a
vector. The one exception is the final field of a structure, which
could be a vector type.
You will have to use the embedded_size & embedded_init calls to
create such objects, and they will not be resizeable (so the 'safe'
allocation variants are not available).
Properties:
- The whole vector and control data are allocated in a single
contiguous block. It uses the trailing-vector idiom, so
allocation must reserve enough space for all the elements
in the vector plus its control data.
- The vector cannot be re-allocated.
- The vector cannot grow nor shrink.
- No indirections needed for access/manipulation.
- It requires 2 words of storage (prior to vector allocation). */
template<typename T, typename A>
struct GTY((user)) vec<T, A, vl_embed>
{
public:
unsigned allocated (void) const { return m_vecpfx.m_alloc; }
unsigned length (void) const { return m_vecpfx.m_num; }
bool is_empty (void) const { return m_vecpfx.m_num == 0; }
T *address (void) { return m_vecdata; }
const T *address (void) const { return m_vecdata; }
T *begin () { return address (); }
const T *begin () const { return address (); }
T *end () { return address () + length (); }
const T *end () const { return address () + length (); }
const T &operator[] (unsigned) const;
T &operator[] (unsigned);
T &last (void);
bool space (unsigned) const;
bool iterate (unsigned, T *) const;
bool iterate (unsigned, T **) const;
vec *copy (ALONE_CXX_MEM_STAT_INFO) const;
void splice (const vec &);
void splice (const vec *src);
T *quick_push (const T &);
T &pop (void);
void truncate (unsigned);
void quick_insert (unsigned, const T &);
void ordered_remove (unsigned);
void unordered_remove (unsigned);
void block_remove (unsigned, unsigned);
void qsort (int (*) (const void *, const void *));
void sort (int (*) (const void *, const void *, void *), void *);
void stablesort (int (*) (const void *, const void *, void *), void *);
T *bsearch (const void *key, int (*compar)(const void *, const void *));
T *bsearch (const void *key,
int (*compar)(const void *, const void *, void *), void *);
unsigned lower_bound (T, bool (*)(const T &, const T &)) const;
bool contains (const T &search) const;
static size_t embedded_size (unsigned);
void embedded_init (unsigned, unsigned = 0, unsigned = 0);
void quick_grow (unsigned len);
void quick_grow_cleared (unsigned len);
/* vec class can access our internal data and functions. */
template <typename, typename, typename> friend struct vec;
/* The allocator types also need access to our internals. */
friend struct va_gc;
friend struct va_gc_atomic;
friend struct va_heap;
/* FIXME - These fields should be private, but we need to cater to
compilers that have stricter notions of PODness for types. */
vec_prefix m_vecpfx;
T m_vecdata[1];
};
/* Convenience wrapper functions to use when dealing with pointers to
embedded vectors. Some functionality for these vectors must be
provided via free functions for these reasons:
1- The pointer may be NULL (e.g., before initial allocation).
2- When the vector needs to grow, it must be reallocated, so
the pointer will change its value.
Because of limitations with the current GC machinery, all vectors
in GC memory *must* be pointers. */
/* If V contains no room for NELEMS elements, return false. Otherwise,
return true. */
template<typename T, typename A>
inline bool
vec_safe_space (const vec<T, A, vl_embed> *v, unsigned nelems)
{
return v ? v->space (nelems) : nelems == 0;
}
/* If V is NULL, return 0. Otherwise, return V->length(). */
template<typename T, typename A>
inline unsigned
vec_safe_length (const vec<T, A, vl_embed> *v)
{
return v ? v->length () : 0;
}
/* If V is NULL, return NULL. Otherwise, return V->address(). */
template<typename T, typename A>
inline T *
vec_safe_address (vec<T, A, vl_embed> *v)
{
return v ? v->address () : NULL;
}
/* If V is NULL, return true. Otherwise, return V->is_empty(). */
template<typename T, typename A>
inline bool
vec_safe_is_empty (vec<T, A, vl_embed> *v)
{
return v ? v->is_empty () : true;
}
/* If V does not have space for NELEMS elements, call
V->reserve(NELEMS, EXACT). */
template<typename T, typename A>
inline bool
vec_safe_reserve (vec<T, A, vl_embed> *&v, unsigned nelems, bool exact = false
CXX_MEM_STAT_INFO)
{
bool extend = nelems ? !vec_safe_space (v, nelems) : false;
if (extend)
A::reserve (v, nelems, exact PASS_MEM_STAT);
return extend;
}
template<typename T, typename A>
inline bool
vec_safe_reserve_exact (vec<T, A, vl_embed> *&v, unsigned nelems
CXX_MEM_STAT_INFO)
{
return vec_safe_reserve (v, nelems, true PASS_MEM_STAT);
}
/* Allocate GC memory for V with space for NELEMS slots. If NELEMS
is 0, V is initialized to NULL. */
template<typename T, typename A>
inline void
vec_alloc (vec<T, A, vl_embed> *&v, unsigned nelems CXX_MEM_STAT_INFO)
{
v = NULL;
vec_safe_reserve (v, nelems, false PASS_MEM_STAT);
}
/* Free the GC memory allocated by vector V and set it to NULL. */
template<typename T, typename A>
inline void
vec_free (vec<T, A, vl_embed> *&v)
{
A::release (v);
}
/* Grow V to length LEN. Allocate it, if necessary. */
template<typename T, typename A>
inline void
vec_safe_grow (vec<T, A, vl_embed> *&v, unsigned len,
bool exact = false CXX_MEM_STAT_INFO)
{
unsigned oldlen = vec_safe_length (v);
gcc_checking_assert (len >= oldlen);
vec_safe_reserve (v, len - oldlen, exact PASS_MEM_STAT);
v->quick_grow (len);
}
/* If V is NULL, allocate it. Call V->safe_grow_cleared(LEN). */
template<typename T, typename A>
inline void
vec_safe_grow_cleared (vec<T, A, vl_embed> *&v, unsigned len,
bool exact = false CXX_MEM_STAT_INFO)
{
unsigned oldlen = vec_safe_length (v);
vec_safe_grow (v, len, exact PASS_MEM_STAT);
vec_default_construct (v->address () + oldlen, len - oldlen);
}
/* Assume V is not NULL. */
template<typename T>
inline void
vec_safe_grow_cleared (vec<T, va_heap, vl_ptr> *&v,
unsigned len, bool exact = false CXX_MEM_STAT_INFO)
{
v->safe_grow_cleared (len, exact PASS_MEM_STAT);
}
/* If V does not have space for NELEMS elements, call
V->reserve(NELEMS, EXACT). */
template<typename T>
inline bool
vec_safe_reserve (vec<T, va_heap, vl_ptr> *&v, unsigned nelems, bool exact = false
CXX_MEM_STAT_INFO)
{
return v->reserve (nelems, exact);
}
/* If V is NULL return false, otherwise return V->iterate(IX, PTR). */
template<typename T, typename A>
inline bool
vec_safe_iterate (const vec<T, A, vl_embed> *v, unsigned ix, T **ptr)
{
if (v)
return v->iterate (ix, ptr);
else
{
*ptr = 0;
return false;
}
}
template<typename T, typename A>
inline bool
vec_safe_iterate (const vec<T, A, vl_embed> *v, unsigned ix, T *ptr)
{
if (v)
return v->iterate (ix, ptr);
else
{
*ptr = 0;
return false;
}
}
/* If V has no room for one more element, reallocate it. Then call
V->quick_push(OBJ). */
template<typename T, typename A>
inline T *
vec_safe_push (vec<T, A, vl_embed> *&v, const T &obj CXX_MEM_STAT_INFO)
{
vec_safe_reserve (v, 1, false PASS_MEM_STAT);
return v->quick_push (obj);
}
/* if V has no room for one more element, reallocate it. Then call
V->quick_insert(IX, OBJ). */
template<typename T, typename A>
inline void
vec_safe_insert (vec<T, A, vl_embed> *&v, unsigned ix, const T &obj
CXX_MEM_STAT_INFO)
{
vec_safe_reserve (v, 1, false PASS_MEM_STAT);
v->quick_insert (ix, obj);
}
/* If V is NULL, do nothing. Otherwise, call V->truncate(SIZE). */
template<typename T, typename A>
inline void
vec_safe_truncate (vec<T, A, vl_embed> *v, unsigned size)
{
if (v)
v->truncate (size);
}
/* If SRC is not NULL, return a pointer to a copy of it. */
template<typename T, typename A>
inline vec<T, A, vl_embed> *
vec_safe_copy (vec<T, A, vl_embed> *src CXX_MEM_STAT_INFO)
{
return src ? src->copy (ALONE_PASS_MEM_STAT) : NULL;
}
/* Copy the elements from SRC to the end of DST as if by memcpy.
Reallocate DST, if necessary. */
template<typename T, typename A>
inline void
vec_safe_splice (vec<T, A, vl_embed> *&dst, const vec<T, A, vl_embed> *src
CXX_MEM_STAT_INFO)
{
unsigned src_len = vec_safe_length (src);
if (src_len)
{
vec_safe_reserve_exact (dst, vec_safe_length (dst) + src_len
PASS_MEM_STAT);
dst->splice (*src);
}
}
/* Return true if SEARCH is an element of V. Note that this is O(N) in the
size of the vector and so should be used with care. */
template<typename T, typename A>
inline bool
vec_safe_contains (vec<T, A, vl_embed> *v, const T &search)
{
return v ? v->contains (search) : false;
}
/* Index into vector. Return the IX'th element. IX must be in the
domain of the vector. */
template<typename T, typename A>
inline const T &
vec<T, A, vl_embed>::operator[] (unsigned ix) const
{
gcc_checking_assert (ix < m_vecpfx.m_num);
return m_vecdata[ix];
}
template<typename T, typename A>
inline T &
vec<T, A, vl_embed>::operator[] (unsigned ix)
{
gcc_checking_assert (ix < m_vecpfx.m_num);
return m_vecdata[ix];
}
/* Get the final element of the vector, which must not be empty. */
template<typename T, typename A>
inline T &
vec<T, A, vl_embed>::last (void)
{
gcc_checking_assert (m_vecpfx.m_num > 0);
return (*this)[m_vecpfx.m_num - 1];
}
/* If this vector has space for NELEMS additional entries, return
true. You usually only need to use this if you are doing your
own vector reallocation, for instance on an embedded vector. This
returns true in exactly the same circumstances that vec::reserve
will. */
template<typename T, typename A>
inline bool
vec<T, A, vl_embed>::space (unsigned nelems) const
{
return m_vecpfx.m_alloc - m_vecpfx.m_num >= nelems;
}
/* Return iteration condition and update *PTR to (a copy of) the IX'th
element of this vector. Use this to iterate over the elements of a
vector as follows,
for (ix = 0; v->iterate (ix, &val); ix++)
continue; */
template<typename T, typename A>
inline bool
vec<T, A, vl_embed>::iterate (unsigned ix, T *ptr) const
{
if (ix < m_vecpfx.m_num)
{
*ptr = m_vecdata[ix];
return true;
}
else
{
*ptr = 0;
return false;
}
}
/* Return iteration condition and update *PTR to point to the
IX'th element of this vector. Use this to iterate over the
elements of a vector as follows,
for (ix = 0; v->iterate (ix, &ptr); ix++)
continue;
This variant is for vectors of objects. */
template<typename T, typename A>
inline bool
vec<T, A, vl_embed>::iterate (unsigned ix, T **ptr) const
{
if (ix < m_vecpfx.m_num)
{
*ptr = CONST_CAST (T *, &m_vecdata[ix]);
return true;
}
else
{
*ptr = 0;
return false;
}
}
/* Return a pointer to a copy of this vector. */
template<typename T, typename A>
inline vec<T, A, vl_embed> *
vec<T, A, vl_embed>::copy (ALONE_MEM_STAT_DECL) const
{
vec<T, A, vl_embed> *new_vec = NULL;
unsigned len = length ();
if (len)
{
vec_alloc (new_vec, len PASS_MEM_STAT);
new_vec->embedded_init (len, len);
vec_copy_construct (new_vec->address (), m_vecdata, len);
}
return new_vec;
}
/* Copy the elements from SRC to the end of this vector as if by memcpy.
The vector must have sufficient headroom available. */
template<typename T, typename A>
inline void
vec<T, A, vl_embed>::splice (const vec<T, A, vl_embed> &src)
{
unsigned len = src.length ();
if (len)
{
gcc_checking_assert (space (len));
vec_copy_construct (end (), src.address (), len);
m_vecpfx.m_num += len;
}
}
template<typename T, typename A>
inline void
vec<T, A, vl_embed>::splice (const vec<T, A, vl_embed> *src)
{
if (src)
splice (*src);
}
/* Push OBJ (a new element) onto the end of the vector. There must be
sufficient space in the vector. Return a pointer to the slot
where OBJ was inserted. */
template<typename T, typename A>
inline T *
vec<T, A, vl_embed>::quick_push (const T &obj)
{
gcc_checking_assert (space (1));
T *slot = &m_vecdata[m_vecpfx.m_num++];
*slot = obj;
return slot;
}
/* Pop and return the last element off the end of the vector. */
template<typename T, typename A>
inline T &
vec<T, A, vl_embed>::pop (void)
{
gcc_checking_assert (length () > 0);
return m_vecdata[--m_vecpfx.m_num];
}
/* Set the length of the vector to SIZE. The new length must be less
than or equal to the current length. This is an O(1) operation. */
template<typename T, typename A>
inline void
vec<T, A, vl_embed>::truncate (unsigned size)
{
gcc_checking_assert (length () >= size);
m_vecpfx.m_num = size;
}
/* Insert an element, OBJ, at the IXth position of this vector. There
must be sufficient space. */
template<typename T, typename A>
inline void
vec<T, A, vl_embed>::quick_insert (unsigned ix, const T &obj)
{
gcc_checking_assert (length () < allocated ());
gcc_checking_assert (ix <= length ());
T *slot = &m_vecdata[ix];
memmove (slot + 1, slot, (m_vecpfx.m_num++ - ix) * sizeof (T));
*slot = obj;
}
/* Remove an element from the IXth position of this vector. Ordering of
remaining elements is preserved. This is an O(N) operation due to
memmove. */
template<typename T, typename A>
inline void
vec<T, A, vl_embed>::ordered_remove (unsigned ix)
{
gcc_checking_assert (ix < length ());
T *slot = &m_vecdata[ix];
memmove (slot, slot + 1, (--m_vecpfx.m_num - ix) * sizeof (T));
}
/* Remove elements in [START, END) from VEC for which COND holds. Ordering of
remaining elements is preserved. This is an O(N) operation. */
#define VEC_ORDERED_REMOVE_IF_FROM_TO(vec, read_index, write_index, \
elem_ptr, start, end, cond) \
{ \
gcc_assert ((end) <= (vec).length ()); \
for (read_index = write_index = (start); read_index < (end); \
++read_index) \
{ \
elem_ptr = &(vec)[read_index]; \
bool remove_p = (cond); \
if (remove_p) \
continue; \
\
if (read_index != write_index) \
(vec)[write_index] = (vec)[read_index]; \
\
write_index++; \
} \
\
if (read_index - write_index > 0) \
(vec).block_remove (write_index, read_index - write_index); \
}
/* Remove elements from VEC for which COND holds. Ordering of remaining
elements is preserved. This is an O(N) operation. */
#define VEC_ORDERED_REMOVE_IF(vec, read_index, write_index, elem_ptr, \
cond) \
VEC_ORDERED_REMOVE_IF_FROM_TO ((vec), read_index, write_index, \
elem_ptr, 0, (vec).length (), (cond))
/* Remove an element from the IXth position of this vector. Ordering of
remaining elements is destroyed. This is an O(1) operation. */
template<typename T, typename A>
inline void
vec<T, A, vl_embed>::unordered_remove (unsigned ix)
{
gcc_checking_assert (ix < length ());
m_vecdata[ix] = m_vecdata[--m_vecpfx.m_num];
}
/* Remove LEN elements starting at the IXth. Ordering is retained.
This is an O(N) operation due to memmove. */
template<typename T, typename A>
inline void
vec<T, A, vl_embed>::block_remove (unsigned ix, unsigned len)
{
gcc_checking_assert (ix + len <= length ());
T *slot = &m_vecdata[ix];
m_vecpfx.m_num -= len;
memmove (slot, slot + len, (m_vecpfx.m_num - ix) * sizeof (T));
}
/* Sort the contents of this vector with qsort. CMP is the comparison
function to pass to qsort. */
template<typename T, typename A>
inline void
vec<T, A, vl_embed>::qsort (int (*cmp) (const void *, const void *))
{
if (length () > 1)
gcc_qsort (address (), length (), sizeof (T), cmp);
}
/* Sort the contents of this vector with qsort. CMP is the comparison
function to pass to qsort. */
template<typename T, typename A>
inline void
vec<T, A, vl_embed>::sort (int (*cmp) (const void *, const void *, void *),
void *data)
{
if (length () > 1)
gcc_sort_r (address (), length (), sizeof (T), cmp, data);
}
/* Sort the contents of this vector with gcc_stablesort_r. CMP is the
comparison function to pass to qsort. */
template<typename T, typename A>
inline void
vec<T, A, vl_embed>::stablesort (int (*cmp) (const void *, const void *,
void *), void *data)
{
if (length () > 1)
gcc_stablesort_r (address (), length (), sizeof (T), cmp, data);
}
/* Search the contents of the sorted vector with a binary search.
CMP is the comparison function to pass to bsearch. */
template<typename T, typename A>
inline T *
vec<T, A, vl_embed>::bsearch (const void *key,
int (*compar) (const void *, const void *))
{
const void *base = this->address ();
size_t nmemb = this->length ();
size_t size = sizeof (T);
/* The following is a copy of glibc stdlib-bsearch.h. */
size_t l, u, idx;
const void *p;
int comparison;
l = 0;
u = nmemb;
while (l < u)
{
idx = (l + u) / 2;
p = (const void *) (((const char *) base) + (idx * size));
comparison = (*compar) (key, p);
if (comparison < 0)
u = idx;
else if (comparison > 0)
l = idx + 1;
else
return (T *)const_cast<void *>(p);
}
return NULL;
}
/* Search the contents of the sorted vector with a binary search.
CMP is the comparison function to pass to bsearch. */
template<typename T, typename A>
inline T *
vec<T, A, vl_embed>::bsearch (const void *key,
int (*compar) (const void *, const void *,
void *), void *data)
{
const void *base = this->address ();
size_t nmemb = this->length ();
size_t size = sizeof (T);
/* The following is a copy of glibc stdlib-bsearch.h. */
size_t l, u, idx;
const void *p;
int comparison;
l = 0;
u = nmemb;
while (l < u)
{
idx = (l + u) / 2;
p = (const void *) (((const char *) base) + (idx * size));
comparison = (*compar) (key, p, data);
if (comparison < 0)
u = idx;
else if (comparison > 0)
l = idx + 1;
else
return (T *)const_cast<void *>(p);
}
return NULL;
}
/* Return true if SEARCH is an element of V. Note that this is O(N) in the
size of the vector and so should be used with care. */
template<typename T, typename A>
inline bool
vec<T, A, vl_embed>::contains (const T &search) const
{
unsigned int len = length ();
for (unsigned int i = 0; i < len; i++)
if ((*this)[i] == search)
return true;
return false;
}
/* Find and return the first position in which OBJ could be inserted
without changing the ordering of this vector. LESSTHAN is a
function that returns true if the first argument is strictly less
than the second. */
template<typename T, typename A>
unsigned
vec<T, A, vl_embed>::lower_bound (T obj, bool (*lessthan)(const T &, const T &))
const
{
unsigned int len = length ();
unsigned int half, middle;
unsigned int first = 0;
while (len > 0)
{
half = len / 2;
middle = first;
middle += half;
T middle_elem = (*this)[middle];
if (lessthan (middle_elem, obj))
{
first = middle;
++first;
len = len - half - 1;
}
else
len = half;
}
return first;
}
/* Return the number of bytes needed to embed an instance of an
embeddable vec inside another data structure.
Use these methods to determine the required size and initialization
of a vector V of type T embedded within another structure (as the
final member):
size_t vec<T, A, vl_embed>::embedded_size (unsigned alloc);
void v->embedded_init (unsigned alloc, unsigned num);
These allow the caller to perform the memory allocation. */
template<typename T, typename A>
inline size_t
vec<T, A, vl_embed>::embedded_size (unsigned alloc)
{
struct alignas (T) U { char data[sizeof (T)]; };
typedef vec<U, A, vl_embed> vec_embedded;
typedef typename std::conditional<std::is_standard_layout<T>::value,
vec, vec_embedded>::type vec_stdlayout;
static_assert (sizeof (vec_stdlayout) == sizeof (vec), "");
static_assert (alignof (vec_stdlayout) == alignof (vec), "");
return offsetof (vec_stdlayout, m_vecdata) + alloc * sizeof (T);
}
/* Initialize the vector to contain room for ALLOC elements and
NUM active elements. */
template<typename T, typename A>
inline void
vec<T, A, vl_embed>::embedded_init (unsigned alloc, unsigned num, unsigned aut)
{
m_vecpfx.m_alloc = alloc;
m_vecpfx.m_using_auto_storage = aut;
m_vecpfx.m_num = num;
}
/* Grow the vector to a specific length. LEN must be as long or longer than
the current length. The new elements are uninitialized. */
template<typename T, typename A>
inline void
vec<T, A, vl_embed>::quick_grow (unsigned len)
{
gcc_checking_assert (length () <= len && len <= m_vecpfx.m_alloc);
m_vecpfx.m_num = len;
}
/* Grow the vector to a specific length. LEN must be as long or longer than
the current length. The new elements are initialized to zero. */
template<typename T, typename A>
inline void
vec<T, A, vl_embed>::quick_grow_cleared (unsigned len)
{
unsigned oldlen = length ();
size_t growby = len - oldlen;
quick_grow (len);
if (growby != 0)
vec_default_construct (address () + oldlen, growby);
}
/* Garbage collection support for vec<T, A, vl_embed>. */
template<typename T>
void
gt_ggc_mx (vec<T, va_gc> *v)
{
extern void gt_ggc_mx (T &);
for (unsigned i = 0; i < v->length (); i++)
gt_ggc_mx ((*v)[i]);
}
template<typename T>
void
gt_ggc_mx (vec<T, va_gc_atomic, vl_embed> *v ATTRIBUTE_UNUSED)
{
/* Nothing to do. Vectors of atomic types wrt GC do not need to
be traversed. */
}
/* PCH support for vec<T, A, vl_embed>. */
template<typename T, typename A>
void
gt_pch_nx (vec<T, A, vl_embed> *v)
{
extern void gt_pch_nx (T &);
for (unsigned i = 0; i < v->length (); i++)
gt_pch_nx ((*v)[i]);
}
template<typename T, typename A>
void
gt_pch_nx (vec<T *, A, vl_embed> *v, gt_pointer_operator op, void *cookie)
{
for (unsigned i = 0; i < v->length (); i++)
op (&((*v)[i]), NULL, cookie);
}
template<typename T, typename A>
void
gt_pch_nx (vec<T, A, vl_embed> *v, gt_pointer_operator op, void *cookie)
{
extern void gt_pch_nx (T *, gt_pointer_operator, void *);
for (unsigned i = 0; i < v->length (); i++)
gt_pch_nx (&((*v)[i]), op, cookie);
}
/* Space efficient vector. These vectors can grow dynamically and are
allocated together with their control data. They are suited to be
included in data structures. Prior to initial allocation, they
only take a single word of storage.
These vectors are implemented as a pointer to an embeddable vector.
The semantics allow for this pointer to be NULL to represent empty
vectors. This way, empty vectors occupy minimal space in the
structure containing them.
Properties:
- The whole vector and control data are allocated in a single
contiguous block.
- The whole vector may be re-allocated.
- Vector data may grow and shrink.
- Access and manipulation requires a pointer test and
indirection.
- It requires 1 word of storage (prior to vector allocation).
Limitations:
These vectors must be PODs because they are stored in unions.
(http://en.wikipedia.org/wiki/Plain_old_data_structures).
As long as we use C++03, we cannot have constructors nor
destructors in classes that are stored in unions. */
template<typename T, size_t N = 0>
class auto_vec;
template<typename T>
struct vec<T, va_heap, vl_ptr>
{
public:
/* Default ctors to ensure triviality. Use value-initialization
(e.g., vec() or vec v{ };) or vNULL to create a zero-initialized
instance. */
vec () = default;
vec (const vec &) = default;
/* Initialization from the generic vNULL. */
vec (vnull): m_vec () { }
/* Same as default ctor: vec storage must be released manually. */
~vec () = default;
/* Defaulted same as copy ctor. */
vec& operator= (const vec &) = default;
/* Prevent implicit conversion from auto_vec. Use auto_vec::to_vec()
instead. */
template <size_t N>
vec (auto_vec<T, N> &) = delete;
template <size_t N>
void operator= (auto_vec<T, N> &) = delete;
/* Memory allocation and deallocation for the embedded vector.
Needed because we cannot have proper ctors/dtors defined. */
void create (unsigned nelems CXX_MEM_STAT_INFO);
void release (void);
/* Vector operations. */
bool exists (void) const
{ return m_vec != NULL; }
bool is_empty (void) const
{ return m_vec ? m_vec->is_empty () : true; }
unsigned allocated (void) const
{ return m_vec ? m_vec->allocated () : 0; }
unsigned length (void) const
{ return m_vec ? m_vec->length () : 0; }
T *address (void)
{ return m_vec ? m_vec->m_vecdata : NULL; }
const T *address (void) const
{ return m_vec ? m_vec->m_vecdata : NULL; }
T *begin () { return address (); }
const T *begin () const { return address (); }
T *end () { return begin () + length (); }
const T *end () const { return begin () + length (); }
const T &operator[] (unsigned ix) const
{ return (*m_vec)[ix]; }
bool operator!=(const vec &other) const
{ return !(*this == other); }
bool operator==(const vec &other) const
{ return address () == other.address (); }
T &operator[] (unsigned ix)
{ return (*m_vec)[ix]; }
T &last (void)
{ return m_vec->last (); }
bool space (int nelems) const
{ return m_vec ? m_vec->space (nelems) : nelems == 0; }
bool iterate (unsigned ix, T *p) const;
bool iterate (unsigned ix, T **p) const;
vec copy (ALONE_CXX_MEM_STAT_INFO) const;
bool reserve (unsigned, bool = false CXX_MEM_STAT_INFO);
bool reserve_exact (unsigned CXX_MEM_STAT_INFO);
void splice (const vec &);
void safe_splice (const vec & CXX_MEM_STAT_INFO);
T *quick_push (const T &);
T *safe_push (const T &CXX_MEM_STAT_INFO);
T &pop (void);
void truncate (unsigned);
void safe_grow (unsigned, bool = false CXX_MEM_STAT_INFO);
void safe_grow_cleared (unsigned, bool = false CXX_MEM_STAT_INFO);
void quick_grow (unsigned);
void quick_grow_cleared (unsigned);
void quick_insert (unsigned, const T &);
void safe_insert (unsigned, const T & CXX_MEM_STAT_INFO);
void ordered_remove (unsigned);
void unordered_remove (unsigned);
void block_remove (unsigned, unsigned);
void qsort (int (*) (const void *, const void *));
void sort (int (*) (const void *, const void *, void *), void *);
void stablesort (int (*) (const void *, const void *, void *), void *);
T *bsearch (const void *key, int (*compar)(const void *, const void *));
T *bsearch (const void *key,
int (*compar)(const void *, const void *, void *), void *);
unsigned lower_bound (T, bool (*)(const T &, const T &)) const;
bool contains (const T &search) const;
void reverse (void);
bool using_auto_storage () const;
/* FIXME - This field should be private, but we need to cater to
compilers that have stricter notions of PODness for types. */
vec<T, va_heap, vl_embed> *m_vec;
};
/* auto_vec is a subclass of vec that automatically manages creating and
releasing the internal vector. If N is non zero then it has N elements of
internal storage. The default is no internal storage, and you probably only
want to ask for internal storage for vectors on the stack because if the
size of the vector is larger than the internal storage that space is wasted.
*/
template<typename T, size_t N /* = 0 */>
class auto_vec : public vec<T, va_heap>
{
public:
auto_vec ()
{
m_auto.embedded_init (MAX (N, 2), 0, 1);
this->m_vec = &m_auto;
}
auto_vec (size_t s CXX_MEM_STAT_INFO)
{
if (s > N)
{
this->create (s PASS_MEM_STAT);
return;
}
m_auto.embedded_init (MAX (N, 2), 0, 1);
this->m_vec = &m_auto;
}
~auto_vec ()
{
this->release ();
}
/* Explicitly convert to the base class. There is no conversion
from a const auto_vec because a copy of the returned vec can
be used to modify *THIS.
This is a legacy function not to be used in new code. */
vec<T, va_heap> to_vec_legacy () {
return *static_cast<vec<T, va_heap> *>(this);
}
private:
vec<T, va_heap, vl_embed> m_auto;
T m_data[MAX (N - 1, 1)];
};
/* auto_vec is a sub class of vec whose storage is released when it is
destroyed. */
template<typename T>
class auto_vec<T, 0> : public vec<T, va_heap>
{
public:
auto_vec () { this->m_vec = NULL; }
auto_vec (size_t n CXX_MEM_STAT_INFO) { this->create (n PASS_MEM_STAT); }
~auto_vec () { this->release (); }
auto_vec (vec<T, va_heap>&& r)
{
gcc_assert (!r.using_auto_storage ());
this->m_vec = r.m_vec;
r.m_vec = NULL;
}
auto_vec (auto_vec<T> &&r)
{
gcc_assert (!r.using_auto_storage ());
this->m_vec = r.m_vec;
r.m_vec = NULL;
}
auto_vec& operator= (vec<T, va_heap>&& r)
{
if (this == &r)
return *this;
gcc_assert (!r.using_auto_storage ());
this->release ();
this->m_vec = r.m_vec;
r.m_vec = NULL;
return *this;
}
auto_vec& operator= (auto_vec<T> &&r)
{
if (this == &r)
return *this;
gcc_assert (!r.using_auto_storage ());
this->release ();
this->m_vec = r.m_vec;
r.m_vec = NULL;
return *this;
}
/* Explicitly convert to the base class. There is no conversion
from a const auto_vec because a copy of the returned vec can
be used to modify *THIS.
This is a legacy function not to be used in new code. */
vec<T, va_heap> to_vec_legacy () {
return *static_cast<vec<T, va_heap> *>(this);
}
// You probably don't want to copy a vector, so these are deleted to prevent
// unintentional use. If you really need a copy of the vectors contents you
// can use copy ().
auto_vec(const auto_vec &) = delete;
auto_vec &operator= (const auto_vec &) = delete;
};
/* Allocate heap memory for pointer V and create the internal vector
with space for NELEMS elements. If NELEMS is 0, the internal
vector is initialized to empty. */
template<typename T>
inline void
vec_alloc (vec<T> *&v, unsigned nelems CXX_MEM_STAT_INFO)
{
v = new vec<T>;
v->create (nelems PASS_MEM_STAT);
}
/* A subclass of auto_vec <char *> that frees all of its elements on
deletion. */
class auto_string_vec : public auto_vec <char *>
{
public:
~auto_string_vec ();
};
/* A subclass of auto_vec <T *> that deletes all of its elements on
destruction.
This is a crude way for a vec to "own" the objects it points to
and clean up automatically.
For example, no attempt is made to delete elements when an item
within the vec is overwritten.
We can't rely on gnu::unique_ptr within a container,
since we can't rely on move semantics in C++98. */
template <typename T>
class auto_delete_vec : public auto_vec <T *>
{
public:
auto_delete_vec () {}
auto_delete_vec (size_t s) : auto_vec <T *> (s) {}
~auto_delete_vec ();
private:
DISABLE_COPY_AND_ASSIGN(auto_delete_vec);
};
/* Conditionally allocate heap memory for VEC and its internal vector. */
template<typename T>
inline void
vec_check_alloc (vec<T, va_heap> *&vec, unsigned nelems CXX_MEM_STAT_INFO)
{
if (!vec)
vec_alloc (vec, nelems PASS_MEM_STAT);
}
/* Free the heap memory allocated by vector V and set it to NULL. */
template<typename T>
inline void
vec_free (vec<T> *&v)
{
if (v == NULL)
return;
v->release ();
delete v;
v = NULL;
}
/* Return iteration condition and update PTR to point to the IX'th
element of this vector. Use this to iterate over the elements of a
vector as follows,
for (ix = 0; v.iterate (ix, &ptr); ix++)
continue; */
template<typename T>
inline bool
vec<T, va_heap, vl_ptr>::iterate (unsigned ix, T *ptr) const
{
if (m_vec)
return m_vec->iterate (ix, ptr);
else
{
*ptr = 0;
return false;
}
}
/* Return iteration condition and update *PTR to point to the
IX'th element of this vector. Use this to iterate over the
elements of a vector as follows,
for (ix = 0; v->iterate (ix, &ptr); ix++)
continue;
This variant is for vectors of objects. */
template<typename T>
inline bool
vec<T, va_heap, vl_ptr>::iterate (unsigned ix, T **ptr) const
{
if (m_vec)
return m_vec->iterate (ix, ptr);
else
{
*ptr = 0;
return false;
}
}
/* Convenience macro for forward iteration. */
#define FOR_EACH_VEC_ELT(V, I, P) \
for (I = 0; (V).iterate ((I), &(P)); ++(I))
#define FOR_EACH_VEC_SAFE_ELT(V, I, P) \
for (I = 0; vec_safe_iterate ((V), (I), &(P)); ++(I))
/* Likewise, but start from FROM rather than 0. */
#define FOR_EACH_VEC_ELT_FROM(V, I, P, FROM) \
for (I = (FROM); (V).iterate ((I), &(P)); ++(I))
/* Convenience macro for reverse iteration. */
#define FOR_EACH_VEC_ELT_REVERSE(V, I, P) \
for (I = (V).length () - 1; \
(V).iterate ((I), &(P)); \
(I)--)
#define FOR_EACH_VEC_SAFE_ELT_REVERSE(V, I, P) \
for (I = vec_safe_length (V) - 1; \
vec_safe_iterate ((V), (I), &(P)); \
(I)--)
/* auto_string_vec's dtor, freeing all contained strings, automatically
chaining up to ~auto_vec <char *>, which frees the internal buffer. */
inline
auto_string_vec::~auto_string_vec ()
{
int i;
char *str;
FOR_EACH_VEC_ELT (*this, i, str)
free (str);
}
/* auto_delete_vec's dtor, deleting all contained items, automatically
chaining up to ~auto_vec <T*>, which frees the internal buffer. */
template <typename T>
inline
auto_delete_vec<T>::~auto_delete_vec ()
{
int i;
T *item;
FOR_EACH_VEC_ELT (*this, i, item)
delete item;
}
/* Return a copy of this vector. */
template<typename T>
inline vec<T, va_heap, vl_ptr>
vec<T, va_heap, vl_ptr>::copy (ALONE_MEM_STAT_DECL) const
{
vec<T, va_heap, vl_ptr> new_vec{ };
if (length ())
new_vec.m_vec = m_vec->copy (ALONE_PASS_MEM_STAT);
return new_vec;
}
/* Ensure that the vector has at least RESERVE slots available (if
EXACT is false), or exactly RESERVE slots available (if EXACT is
true).
This may create additional headroom if EXACT is false.
Note that this can cause the embedded vector to be reallocated.
Returns true iff reallocation actually occurred. */
template<typename T>
inline bool
vec<T, va_heap, vl_ptr>::reserve (unsigned nelems, bool exact MEM_STAT_DECL)
{
if (space (nelems))
return false;
/* For now play a game with va_heap::reserve to hide our auto storage if any,
this is necessary because it doesn't have enough information to know the
embedded vector is in auto storage, and so should not be freed. */
vec<T, va_heap, vl_embed> *oldvec = m_vec;
unsigned int oldsize = 0;
bool handle_auto_vec = m_vec && using_auto_storage ();
if (handle_auto_vec)
{
m_vec = NULL;
oldsize = oldvec->length ();
nelems += oldsize;
}
va_heap::reserve (m_vec, nelems, exact PASS_MEM_STAT);
if (handle_auto_vec)
{
vec_copy_construct (m_vec->address (), oldvec->address (), oldsize);
m_vec->m_vecpfx.m_num = oldsize;
}
return true;
}
/* Ensure that this vector has exactly NELEMS slots available. This
will not create additional headroom. Note this can cause the
embedded vector to be reallocated. Returns true iff reallocation
actually occurred. */
template<typename T>
inline bool
vec<T, va_heap, vl_ptr>::reserve_exact (unsigned nelems MEM_STAT_DECL)
{
return reserve (nelems, true PASS_MEM_STAT);
}
/* Create the internal vector and reserve NELEMS for it. This is
exactly like vec::reserve, but the internal vector is
unconditionally allocated from scratch. The old one, if it
existed, is lost. */
template<typename T>
inline void
vec<T, va_heap, vl_ptr>::create (unsigned nelems MEM_STAT_DECL)
{
m_vec = NULL;
if (nelems > 0)
reserve_exact (nelems PASS_MEM_STAT);
}
/* Free the memory occupied by the embedded vector. */
template<typename T>
inline void
vec<T, va_heap, vl_ptr>::release (void)
{
if (!m_vec)
return;
if (using_auto_storage ())
{
m_vec->m_vecpfx.m_num = 0;
return;
}
va_heap::release (m_vec);
}
/* Copy the elements from SRC to the end of this vector as if by memcpy.
SRC and this vector must be allocated with the same memory
allocation mechanism. This vector is assumed to have sufficient
headroom available. */
template<typename T>
inline void
vec<T, va_heap, vl_ptr>::splice (const vec<T, va_heap, vl_ptr> &src)
{
if (src.length ())
m_vec->splice (*(src.m_vec));
}
/* Copy the elements in SRC to the end of this vector as if by memcpy.
SRC and this vector must be allocated with the same mechanism.
If there is not enough headroom in this vector, it will be reallocated
as needed. */
template<typename T>
inline void
vec<T, va_heap, vl_ptr>::safe_splice (const vec<T, va_heap, vl_ptr> &src
MEM_STAT_DECL)
{
if (src.length ())
{
reserve_exact (src.length ());
splice (src);
}
}
/* Push OBJ (a new element) onto the end of the vector. There must be
sufficient space in the vector. Return a pointer to the slot
where OBJ was inserted. */
template<typename T>
inline T *
vec<T, va_heap, vl_ptr>::quick_push (const T &obj)
{
return m_vec->quick_push (obj);
}
/* Push a new element OBJ onto the end of this vector. Reallocates
the embedded vector, if needed. Return a pointer to the slot where
OBJ was inserted. */
template<typename T>
inline T *
vec<T, va_heap, vl_ptr>::safe_push (const T &obj MEM_STAT_DECL)
{
reserve (1, false PASS_MEM_STAT);
return quick_push (obj);
}
/* Pop and return the last element off the end of the vector. */
template<typename T>
inline T &
vec<T, va_heap, vl_ptr>::pop (void)
{
return m_vec->pop ();
}
/* Set the length of the vector to LEN. The new length must be less
than or equal to the current length. This is an O(1) operation. */
template<typename T>
inline void
vec<T, va_heap, vl_ptr>::truncate (unsigned size)
{
if (m_vec)
m_vec->truncate (size);
else
gcc_checking_assert (size == 0);
}
/* Grow the vector to a specific length. LEN must be as long or
longer than the current length. The new elements are
uninitialized. Reallocate the internal vector, if needed. */
template<typename T>
inline void
vec<T, va_heap, vl_ptr>::safe_grow (unsigned len, bool exact MEM_STAT_DECL)
{
unsigned oldlen = length ();
gcc_checking_assert (oldlen <= len);
reserve (len - oldlen, exact PASS_MEM_STAT);
if (m_vec)
m_vec->quick_grow (len);
else
gcc_checking_assert (len == 0);
}
/* Grow the embedded vector to a specific length. LEN must be as
long or longer than the current length. The new elements are
initialized to zero. Reallocate the internal vector, if needed. */
template<typename T>
inline void
vec<T, va_heap, vl_ptr>::safe_grow_cleared (unsigned len, bool exact
MEM_STAT_DECL)
{
unsigned oldlen = length ();
size_t growby = len - oldlen;
safe_grow (len, exact PASS_MEM_STAT);
if (growby != 0)
vec_default_construct (address () + oldlen, growby);
}
/* Same as vec::safe_grow but without reallocation of the internal vector.
If the vector cannot be extended, a runtime assertion will be triggered. */
template<typename T>
inline void
vec<T, va_heap, vl_ptr>::quick_grow (unsigned len)
{
gcc_checking_assert (m_vec);
m_vec->quick_grow (len);
}
/* Same as vec::quick_grow_cleared but without reallocation of the
internal vector. If the vector cannot be extended, a runtime
assertion will be triggered. */
template<typename T>
inline void
vec<T, va_heap, vl_ptr>::quick_grow_cleared (unsigned len)
{
gcc_checking_assert (m_vec);
m_vec->quick_grow_cleared (len);
}
/* Insert an element, OBJ, at the IXth position of this vector. There
must be sufficient space. */
template<typename T>
inline void
vec<T, va_heap, vl_ptr>::quick_insert (unsigned ix, const T &obj)
{
m_vec->quick_insert (ix, obj);
}
/* Insert an element, OBJ, at the IXth position of the vector.
Reallocate the embedded vector, if necessary. */
template<typename T>
inline void
vec<T, va_heap, vl_ptr>::safe_insert (unsigned ix, const T &obj MEM_STAT_DECL)
{
reserve (1, false PASS_MEM_STAT);
quick_insert (ix, obj);
}
/* Remove an element from the IXth position of this vector. Ordering of
remaining elements is preserved. This is an O(N) operation due to
a memmove. */
template<typename T>
inline void
vec<T, va_heap, vl_ptr>::ordered_remove (unsigned ix)
{
m_vec->ordered_remove (ix);
}
/* Remove an element from the IXth position of this vector. Ordering
of remaining elements is destroyed. This is an O(1) operation. */
template<typename T>
inline void
vec<T, va_heap, vl_ptr>::unordered_remove (unsigned ix)
{
m_vec->unordered_remove (ix);
}
/* Remove LEN elements starting at the IXth. Ordering is retained.
This is an O(N) operation due to memmove. */
template<typename T>
inline void
vec<T, va_heap, vl_ptr>::block_remove (unsigned ix, unsigned len)
{
m_vec->block_remove (ix, len);
}
/* Sort the contents of this vector with qsort. CMP is the comparison
function to pass to qsort. */
template<typename T>
inline void
vec<T, va_heap, vl_ptr>::qsort (int (*cmp) (const void *, const void *))
{
if (m_vec)
m_vec->qsort (cmp);
}
/* Sort the contents of this vector with qsort. CMP is the comparison
function to pass to qsort. */
template<typename T>
inline void
vec<T, va_heap, vl_ptr>::sort (int (*cmp) (const void *, const void *,
void *), void *data)
{
if (m_vec)
m_vec->sort (cmp, data);
}
/* Sort the contents of this vector with gcc_stablesort_r. CMP is the
comparison function to pass to qsort. */
template<typename T>
inline void
vec<T, va_heap, vl_ptr>::stablesort (int (*cmp) (const void *, const void *,
void *), void *data)
{
if (m_vec)
m_vec->stablesort (cmp, data);
}
/* Search the contents of the sorted vector with a binary search.
CMP is the comparison function to pass to bsearch. */
template<typename T>
inline T *
vec<T, va_heap, vl_ptr>::bsearch (const void *key,
int (*cmp) (const void *, const void *))
{
if (m_vec)
return m_vec->bsearch (key, cmp);
return NULL;
}
/* Search the contents of the sorted vector with a binary search.
CMP is the comparison function to pass to bsearch. */
template<typename T>
inline T *
vec<T, va_heap, vl_ptr>::bsearch (const void *key,
int (*cmp) (const void *, const void *,
void *), void *data)
{
if (m_vec)
return m_vec->bsearch (key, cmp, data);
return NULL;
}
/* Find and return the first position in which OBJ could be inserted
without changing the ordering of this vector. LESSTHAN is a
function that returns true if the first argument is strictly less
than the second. */
template<typename T>
inline unsigned
vec<T, va_heap, vl_ptr>::lower_bound (T obj,
bool (*lessthan)(const T &, const T &))
const
{
return m_vec ? m_vec->lower_bound (obj, lessthan) : 0;
}
/* Return true if SEARCH is an element of V. Note that this is O(N) in the
size of the vector and so should be used with care. */
template<typename T>
inline bool
vec<T, va_heap, vl_ptr>::contains (const T &search) const
{
return m_vec ? m_vec->contains (search) : false;
}
/* Reverse content of the vector. */
template<typename T>
inline void
vec<T, va_heap, vl_ptr>::reverse (void)
{
unsigned l = length ();
T *ptr = address ();
for (unsigned i = 0; i < l / 2; i++)
std::swap (ptr[i], ptr[l - i - 1]);
}
template<typename T>
inline bool
vec<T, va_heap, vl_ptr>::using_auto_storage () const
{
return m_vec ? m_vec->m_vecpfx.m_using_auto_storage : false;
}
/* Release VEC and call release of all element vectors. */
template<typename T>
inline void
release_vec_vec (vec<vec<T> > &vec)
{
for (unsigned i = 0; i < vec.length (); i++)
vec[i].release ();
vec.release ();
}
// Provide a subset of the std::span functionality. (We can't use std::span
// itself because it's a C++20 feature.)
//
// In addition, provide an invalid value that is distinct from all valid
// sequences (including the empty sequence). This can be used to return
// failure without having to use std::optional.
//
// There is no operator bool because it would be ambiguous whether it is
// testing for a valid value or an empty sequence.
template<typename T>
class array_slice
{
template<typename OtherT> friend class array_slice;
public:
using value_type = T;
using iterator = T *;
using const_iterator = const T *;
array_slice () : m_base (nullptr), m_size (0) {}
template<typename OtherT>
array_slice (array_slice<OtherT> other)
: m_base (other.m_base), m_size (other.m_size) {}
array_slice (iterator base, unsigned int size)
: m_base (base), m_size (size) {}
template<size_t N>
array_slice (T (&array)[N]) : m_base (array), m_size (N) {}
template<typename OtherT>
array_slice (const vec<OtherT> &v)
: m_base (v.address ()), m_size (v.length ()) {}
template<typename OtherT>
array_slice (vec<OtherT> &v)
: m_base (v.address ()), m_size (v.length ()) {}
template<typename OtherT>
array_slice (const vec<OtherT, va_gc> *v)
: m_base (v ? v->address () : nullptr), m_size (v ? v->length () : 0) {}
template<typename OtherT>
array_slice (vec<OtherT, va_gc> *v)
: m_base (v ? v->address () : nullptr), m_size (v ? v->length () : 0) {}
iterator begin () { return m_base; }
iterator end () { return m_base + m_size; }
const_iterator begin () const { return m_base; }
const_iterator end () const { return m_base + m_size; }
value_type &front ();
value_type &back ();
value_type &operator[] (unsigned int i);
const value_type &front () const;
const value_type &back () const;
const value_type &operator[] (unsigned int i) const;
size_t size () const { return m_size; }
size_t size_bytes () const { return m_size * sizeof (T); }
bool empty () const { return m_size == 0; }
// An invalid array_slice that represents a failed operation. This is
// distinct from an empty slice, which is a valid result in some contexts.
static array_slice invalid () { return { nullptr, ~0U }; }
// True if the array is valid, false if it is an array like INVALID.
bool is_valid () const { return m_base || m_size == 0; }
private:
iterator m_base;
unsigned int m_size;
};
template<typename T>
inline typename array_slice<T>::value_type &
array_slice<T>::front ()
{
gcc_checking_assert (m_size);
return m_base[0];
}
template<typename T>
inline const typename array_slice<T>::value_type &
array_slice<T>::front () const
{
gcc_checking_assert (m_size);
return m_base[0];
}
template<typename T>
inline typename array_slice<T>::value_type &
array_slice<T>::back ()
{
gcc_checking_assert (m_size);
return m_base[m_size - 1];
}
template<typename T>
inline const typename array_slice<T>::value_type &
array_slice<T>::back () const
{
gcc_checking_assert (m_size);
return m_base[m_size - 1];
}
template<typename T>
inline typename array_slice<T>::value_type &
array_slice<T>::operator[] (unsigned int i)
{
gcc_checking_assert (i < m_size);
return m_base[i];
}
template<typename T>
inline const typename array_slice<T>::value_type &
array_slice<T>::operator[] (unsigned int i) const
{
gcc_checking_assert (i < m_size);
return m_base[i];
}
template<typename T>
array_slice<T>
make_array_slice (T *base, unsigned int size)
{
return array_slice<T> (base, size);
}
#if (GCC_VERSION >= 3000)
# pragma GCC poison m_vec m_vecpfx m_vecdata
#endif
#endif // GCC_VEC_H