| /* Copyright (C) 2009-2017 Free Software Foundation, Inc. |
| Contributed by Thomas Koenig |
| |
| This file is part of the GNU Fortran runtime library (libgfortran). |
| |
| Libgfortran is free software; you can redistribute it and/or modify |
| it under the terms of the GNU General Public License as published by |
| the Free Software Foundation; either version 3, or (at your option) |
| any later version. |
| |
| Libgfortran is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| GNU General Public License for more details. |
| |
| Under Section 7 of GPL version 3, you are granted additional |
| permissions described in the GCC Runtime Library Exception, version |
| 3.1, as published by the Free Software Foundation. |
| |
| You should have received a copy of the GNU General Public License and |
| a copy of the GCC Runtime Library Exception along with this program; |
| see the files COPYING3 and COPYING.RUNTIME respectively. If not, see |
| <http://www.gnu.org/licenses/>. */ |
| |
| #include "libgfortran.h" |
| #include <assert.h> |
| |
| /* Auxiliary functions for bounds checking, mostly to reduce library size. */ |
| |
| /* Bounds checking for the return values of the iforeach functions (such |
| as maxloc and minloc). The extent of ret_array must |
| must match the rank of array. */ |
| |
| void |
| bounds_iforeach_return (array_t *retarray, array_t *array, const char *name) |
| { |
| index_type rank; |
| index_type ret_rank; |
| index_type ret_extent; |
| |
| ret_rank = GFC_DESCRIPTOR_RANK (retarray); |
| |
| /* ret_rank should always be 1, otherwise there is an internal error */ |
| GFC_ASSERT(ret_rank == 1); |
| |
| rank = GFC_DESCRIPTOR_RANK (array); |
| ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0); |
| if (ret_extent != rank) |
| runtime_error ("Incorrect extent in return value of" |
| " %s intrinsic: is %ld, should be %ld", |
| name, (long int) ret_extent, (long int) rank); |
| |
| } |
| |
| /* Check the return of functions generated from ifunction.m4. |
| We check the array descriptor "a" against the extents precomputed |
| from ifunction.m4, and complain about the argument a_name in the |
| intrinsic function. */ |
| |
| void |
| bounds_ifunction_return (array_t * a, const index_type * extent, |
| const char * a_name, const char * intrinsic) |
| { |
| int empty; |
| int n; |
| int rank; |
| index_type a_size; |
| |
| rank = GFC_DESCRIPTOR_RANK (a); |
| a_size = size0 (a); |
| |
| empty = 0; |
| for (n = 0; n < rank; n++) |
| { |
| if (extent[n] == 0) |
| empty = 1; |
| } |
| if (empty) |
| { |
| if (a_size != 0) |
| runtime_error ("Incorrect size in %s of %s" |
| " intrinsic: should be zero-sized", |
| a_name, intrinsic); |
| } |
| else |
| { |
| if (a_size == 0) |
| runtime_error ("Incorrect size of %s in %s" |
| " intrinsic: should not be zero-sized", |
| a_name, intrinsic); |
| |
| for (n = 0; n < rank; n++) |
| { |
| index_type a_extent; |
| a_extent = GFC_DESCRIPTOR_EXTENT(a, n); |
| if (a_extent != extent[n]) |
| runtime_error("Incorrect extent in %s of %s" |
| " intrinsic in dimension %ld: is %ld," |
| " should be %ld", a_name, intrinsic, (long int) n + 1, |
| (long int) a_extent, (long int) extent[n]); |
| |
| } |
| } |
| } |
| |
| /* Check that two arrays have equal extents, or are both zero-sized. Abort |
| with a runtime error if this is not the case. Complain that a has the |
| wrong size. */ |
| |
| void |
| bounds_equal_extents (array_t *a, array_t *b, const char *a_name, |
| const char *intrinsic) |
| { |
| index_type a_size, b_size, n; |
| |
| assert (GFC_DESCRIPTOR_RANK(a) == GFC_DESCRIPTOR_RANK(b)); |
| |
| a_size = size0 (a); |
| b_size = size0 (b); |
| |
| if (b_size == 0) |
| { |
| if (a_size != 0) |
| runtime_error ("Incorrect size of %s in %s" |
| " intrinsic: should be zero-sized", |
| a_name, intrinsic); |
| } |
| else |
| { |
| if (a_size == 0) |
| runtime_error ("Incorrect size of %s of %s" |
| " intrinsic: Should not be zero-sized", |
| a_name, intrinsic); |
| |
| for (n = 0; n < GFC_DESCRIPTOR_RANK (b); n++) |
| { |
| index_type a_extent, b_extent; |
| |
| a_extent = GFC_DESCRIPTOR_EXTENT(a, n); |
| b_extent = GFC_DESCRIPTOR_EXTENT(b, n); |
| if (a_extent != b_extent) |
| runtime_error("Incorrect extent in %s of %s" |
| " intrinsic in dimension %ld: is %ld," |
| " should be %ld", a_name, intrinsic, (long int) n + 1, |
| (long int) a_extent, (long int) b_extent); |
| } |
| } |
| } |
| |
| /* Check that the extents of a and b agree, except that a has a missing |
| dimension in argument which. Complain about a if anything is wrong. */ |
| |
| void |
| bounds_reduced_extents (array_t *a, array_t *b, int which, const char *a_name, |
| const char *intrinsic) |
| { |
| |
| index_type i, n, a_size, b_size; |
| |
| assert (GFC_DESCRIPTOR_RANK(a) == GFC_DESCRIPTOR_RANK(b) - 1); |
| |
| a_size = size0 (a); |
| b_size = size0 (b); |
| |
| if (b_size == 0) |
| { |
| if (a_size != 0) |
| runtime_error ("Incorrect size in %s of %s" |
| " intrinsic: should not be zero-sized", |
| a_name, intrinsic); |
| } |
| else |
| { |
| if (a_size == 0) |
| runtime_error ("Incorrect size of %s of %s" |
| " intrinsic: should be zero-sized", |
| a_name, intrinsic); |
| |
| i = 0; |
| for (n = 0; n < GFC_DESCRIPTOR_RANK (b); n++) |
| { |
| index_type a_extent, b_extent; |
| |
| if (n != which) |
| { |
| a_extent = GFC_DESCRIPTOR_EXTENT(a, i); |
| b_extent = GFC_DESCRIPTOR_EXTENT(b, n); |
| if (a_extent != b_extent) |
| runtime_error("Incorrect extent in %s of %s" |
| " intrinsic in dimension %ld: is %ld," |
| " should be %ld", a_name, intrinsic, (long int) i + 1, |
| (long int) a_extent, (long int) b_extent); |
| i++; |
| } |
| } |
| } |
| } |
| |
| /* count_0 - count all the true elements in an array. The front |
| end usually inlines this, we need this for bounds checking |
| for unpack. */ |
| |
| index_type count_0 (const gfc_array_l1 * array) |
| { |
| const GFC_LOGICAL_1 * restrict base; |
| index_type rank; |
| int kind; |
| int continue_loop; |
| index_type count[GFC_MAX_DIMENSIONS]; |
| index_type extent[GFC_MAX_DIMENSIONS]; |
| index_type sstride[GFC_MAX_DIMENSIONS]; |
| index_type result; |
| index_type n; |
| |
| rank = GFC_DESCRIPTOR_RANK (array); |
| kind = GFC_DESCRIPTOR_SIZE (array); |
| |
| base = array->base_addr; |
| |
| if (kind == 1 || kind == 2 || kind == 4 || kind == 8 |
| #ifdef HAVE_GFC_LOGICAL_16 |
| || kind == 16 |
| #endif |
| ) |
| { |
| if (base) |
| base = GFOR_POINTER_TO_L1 (base, kind); |
| } |
| else |
| internal_error (NULL, "Funny sized logical array in count_0"); |
| |
| for (n = 0; n < rank; n++) |
| { |
| sstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(array,n); |
| extent[n] = GFC_DESCRIPTOR_EXTENT(array,n); |
| count[n] = 0; |
| |
| if (extent[n] <= 0) |
| return 0; |
| } |
| |
| result = 0; |
| continue_loop = 1; |
| while (continue_loop) |
| { |
| if (*base) |
| result ++; |
| |
| count[0]++; |
| base += sstride[0]; |
| n = 0; |
| while (count[n] == extent[n]) |
| { |
| count[n] = 0; |
| base -= sstride[n] * extent[n]; |
| n++; |
| if (n == rank) |
| { |
| continue_loop = 0; |
| break; |
| } |
| else |
| { |
| count[n]++; |
| base += sstride[n]; |
| } |
| } |
| } |
| return result; |
| } |