| /* Gimple ranger SSA cache implementation. |
| Copyright (C) 2017-2022 Free Software Foundation, Inc. |
| Contributed by Andrew MacLeod <amacleod@redhat.com>. |
| |
| This file is part of GCC. |
| |
| GCC is free software; you can redistribute it and/or modify |
| it under the terms of the GNU General Public License as published by |
| the Free Software Foundation; either version 3, or (at your option) |
| any later version. |
| |
| GCC is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| GNU General Public License for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with GCC; see the file COPYING3. If not see |
| <http://www.gnu.org/licenses/>. */ |
| |
| #include "config.h" |
| #include "system.h" |
| #include "coretypes.h" |
| #include "backend.h" |
| #include "insn-codes.h" |
| #include "tree.h" |
| #include "gimple.h" |
| #include "ssa.h" |
| #include "gimple-pretty-print.h" |
| #include "gimple-range.h" |
| #include "value-range-storage.h" |
| #include "tree-cfg.h" |
| #include "target.h" |
| #include "attribs.h" |
| #include "gimple-iterator.h" |
| #include "gimple-walk.h" |
| #include "cfganal.h" |
| |
| #define DEBUG_RANGE_CACHE (dump_file \ |
| && (param_ranger_debug & RANGER_DEBUG_CACHE)) |
| |
| // This class represents the API into a cache of ranges for an SSA_NAME. |
| // Routines must be implemented to set, get, and query if a value is set. |
| |
| class ssa_block_ranges |
| { |
| public: |
| ssa_block_ranges (tree t) : m_type (t) { } |
| virtual bool set_bb_range (const_basic_block bb, const vrange &r) = 0; |
| virtual bool get_bb_range (vrange &r, const_basic_block bb) = 0; |
| virtual bool bb_range_p (const_basic_block bb) = 0; |
| |
| void dump(FILE *f); |
| private: |
| tree m_type; |
| }; |
| |
| // Print the list of known ranges for file F in a nice format. |
| |
| void |
| ssa_block_ranges::dump (FILE *f) |
| { |
| basic_block bb; |
| Value_Range r (m_type); |
| |
| FOR_EACH_BB_FN (bb, cfun) |
| if (get_bb_range (r, bb)) |
| { |
| fprintf (f, "BB%d -> ", bb->index); |
| r.dump (f); |
| fprintf (f, "\n"); |
| } |
| } |
| |
| // This class implements the range cache as a linear vector, indexed by BB. |
| // It caches a varying and undefined range which are used instead of |
| // allocating new ones each time. |
| |
| class sbr_vector : public ssa_block_ranges |
| { |
| public: |
| sbr_vector (tree t, vrange_allocator *allocator); |
| |
| virtual bool set_bb_range (const_basic_block bb, const vrange &r) override; |
| virtual bool get_bb_range (vrange &r, const_basic_block bb) override; |
| virtual bool bb_range_p (const_basic_block bb) override; |
| protected: |
| vrange **m_tab; // Non growing vector. |
| int m_tab_size; |
| vrange *m_varying; |
| vrange *m_undefined; |
| tree m_type; |
| vrange_allocator *m_range_allocator; |
| void grow (); |
| }; |
| |
| |
| // Initialize a block cache for an ssa_name of type T. |
| |
| sbr_vector::sbr_vector (tree t, vrange_allocator *allocator) |
| : ssa_block_ranges (t) |
| { |
| gcc_checking_assert (TYPE_P (t)); |
| m_type = t; |
| m_range_allocator = allocator; |
| m_tab_size = last_basic_block_for_fn (cfun) + 1; |
| m_tab = static_cast <vrange **> |
| (allocator->alloc (m_tab_size * sizeof (vrange *))); |
| memset (m_tab, 0, m_tab_size * sizeof (vrange *)); |
| |
| // Create the cached type range. |
| m_varying = m_range_allocator->alloc_vrange (t); |
| m_undefined = m_range_allocator->alloc_vrange (t); |
| m_varying->set_varying (t); |
| m_undefined->set_undefined (); |
| } |
| |
| // Grow the vector when the CFG has increased in size. |
| |
| void |
| sbr_vector::grow () |
| { |
| int curr_bb_size = last_basic_block_for_fn (cfun); |
| gcc_checking_assert (curr_bb_size > m_tab_size); |
| |
| // Increase the max of a)128, b)needed increase * 2, c)10% of current_size. |
| int inc = MAX ((curr_bb_size - m_tab_size) * 2, 128); |
| inc = MAX (inc, curr_bb_size / 10); |
| int new_size = inc + curr_bb_size; |
| |
| // Allocate new memory, copy the old vector and clear the new space. |
| vrange **t = static_cast <vrange **> |
| (m_range_allocator->alloc (new_size * sizeof (vrange *))); |
| memcpy (t, m_tab, m_tab_size * sizeof (vrange *)); |
| memset (t + m_tab_size, 0, (new_size - m_tab_size) * sizeof (vrange *)); |
| |
| m_tab = t; |
| m_tab_size = new_size; |
| } |
| |
| // Set the range for block BB to be R. |
| |
| bool |
| sbr_vector::set_bb_range (const_basic_block bb, const vrange &r) |
| { |
| vrange *m; |
| if (bb->index >= m_tab_size) |
| grow (); |
| if (r.varying_p ()) |
| m = m_varying; |
| else if (r.undefined_p ()) |
| m = m_undefined; |
| else |
| m = m_range_allocator->clone (r); |
| m_tab[bb->index] = m; |
| return true; |
| } |
| |
| // Return the range associated with block BB in R. Return false if |
| // there is no range. |
| |
| bool |
| sbr_vector::get_bb_range (vrange &r, const_basic_block bb) |
| { |
| if (bb->index >= m_tab_size) |
| return false; |
| vrange *m = m_tab[bb->index]; |
| if (m) |
| { |
| r = *m; |
| return true; |
| } |
| return false; |
| } |
| |
| // Return true if a range is present. |
| |
| bool |
| sbr_vector::bb_range_p (const_basic_block bb) |
| { |
| if (bb->index < m_tab_size) |
| return m_tab[bb->index] != NULL; |
| return false; |
| } |
| |
| // This class implements the on entry cache via a sparse bitmap. |
| // It uses the quad bit routines to access 4 bits at a time. |
| // A value of 0 (the default) means there is no entry, and a value of |
| // 1 thru SBR_NUM represents an element in the m_range vector. |
| // Varying is given the first value (1) and pre-cached. |
| // SBR_NUM + 1 represents the value of UNDEFINED, and is never stored. |
| // SBR_NUM is the number of values that can be cached. |
| // Indexes are 1..SBR_NUM and are stored locally at m_range[0..SBR_NUM-1] |
| |
| #define SBR_NUM 14 |
| #define SBR_UNDEF SBR_NUM + 1 |
| #define SBR_VARYING 1 |
| |
| class sbr_sparse_bitmap : public ssa_block_ranges |
| { |
| public: |
| sbr_sparse_bitmap (tree t, vrange_allocator *allocator, bitmap_obstack *bm); |
| virtual bool set_bb_range (const_basic_block bb, const vrange &r) override; |
| virtual bool get_bb_range (vrange &r, const_basic_block bb) override; |
| virtual bool bb_range_p (const_basic_block bb) override; |
| private: |
| void bitmap_set_quad (bitmap head, int quad, int quad_value); |
| int bitmap_get_quad (const_bitmap head, int quad); |
| vrange_allocator *m_range_allocator; |
| vrange *m_range[SBR_NUM]; |
| bitmap_head bitvec; |
| tree m_type; |
| }; |
| |
| // Initialize a block cache for an ssa_name of type T. |
| |
| sbr_sparse_bitmap::sbr_sparse_bitmap (tree t, vrange_allocator *allocator, |
| bitmap_obstack *bm) |
| : ssa_block_ranges (t) |
| { |
| gcc_checking_assert (TYPE_P (t)); |
| m_type = t; |
| bitmap_initialize (&bitvec, bm); |
| bitmap_tree_view (&bitvec); |
| m_range_allocator = allocator; |
| // Pre-cache varying. |
| m_range[0] = m_range_allocator->alloc_vrange (t); |
| m_range[0]->set_varying (t); |
| // Pre-cache zero and non-zero values for pointers. |
| if (POINTER_TYPE_P (t)) |
| { |
| m_range[1] = m_range_allocator->alloc_vrange (t); |
| m_range[1]->set_nonzero (t); |
| m_range[2] = m_range_allocator->alloc_vrange (t); |
| m_range[2]->set_zero (t); |
| } |
| else |
| m_range[1] = m_range[2] = NULL; |
| // Clear SBR_NUM entries. |
| for (int x = 3; x < SBR_NUM; x++) |
| m_range[x] = 0; |
| } |
| |
| // Set 4 bit values in a sparse bitmap. This allows a bitmap to |
| // function as a sparse array of 4 bit values. |
| // QUAD is the index, QUAD_VALUE is the 4 bit value to set. |
| |
| inline void |
| sbr_sparse_bitmap::bitmap_set_quad (bitmap head, int quad, int quad_value) |
| { |
| bitmap_set_aligned_chunk (head, quad, 4, (BITMAP_WORD) quad_value); |
| } |
| |
| // Get a 4 bit value from a sparse bitmap. This allows a bitmap to |
| // function as a sparse array of 4 bit values. |
| // QUAD is the index. |
| inline int |
| sbr_sparse_bitmap::bitmap_get_quad (const_bitmap head, int quad) |
| { |
| return (int) bitmap_get_aligned_chunk (head, quad, 4); |
| } |
| |
| // Set the range on entry to basic block BB to R. |
| |
| bool |
| sbr_sparse_bitmap::set_bb_range (const_basic_block bb, const vrange &r) |
| { |
| if (r.undefined_p ()) |
| { |
| bitmap_set_quad (&bitvec, bb->index, SBR_UNDEF); |
| return true; |
| } |
| |
| // Loop thru the values to see if R is already present. |
| for (int x = 0; x < SBR_NUM; x++) |
| if (!m_range[x] || r == *(m_range[x])) |
| { |
| if (!m_range[x]) |
| m_range[x] = m_range_allocator->clone (r); |
| bitmap_set_quad (&bitvec, bb->index, x + 1); |
| return true; |
| } |
| // All values are taken, default to VARYING. |
| bitmap_set_quad (&bitvec, bb->index, SBR_VARYING); |
| return false; |
| } |
| |
| // Return the range associated with block BB in R. Return false if |
| // there is no range. |
| |
| bool |
| sbr_sparse_bitmap::get_bb_range (vrange &r, const_basic_block bb) |
| { |
| int value = bitmap_get_quad (&bitvec, bb->index); |
| |
| if (!value) |
| return false; |
| |
| gcc_checking_assert (value <= SBR_UNDEF); |
| if (value == SBR_UNDEF) |
| r.set_undefined (); |
| else |
| r = *(m_range[value - 1]); |
| return true; |
| } |
| |
| // Return true if a range is present. |
| |
| bool |
| sbr_sparse_bitmap::bb_range_p (const_basic_block bb) |
| { |
| return (bitmap_get_quad (&bitvec, bb->index) != 0); |
| } |
| |
| // ------------------------------------------------------------------------- |
| |
| // Initialize the block cache. |
| |
| block_range_cache::block_range_cache () |
| { |
| bitmap_obstack_initialize (&m_bitmaps); |
| m_ssa_ranges.create (0); |
| m_ssa_ranges.safe_grow_cleared (num_ssa_names); |
| m_range_allocator = new obstack_vrange_allocator; |
| } |
| |
| // Remove any m_block_caches which have been created. |
| |
| block_range_cache::~block_range_cache () |
| { |
| delete m_range_allocator; |
| // Release the vector itself. |
| m_ssa_ranges.release (); |
| bitmap_obstack_release (&m_bitmaps); |
| } |
| |
| // Set the range for NAME on entry to block BB to R. |
| // If it has not been accessed yet, allocate it first. |
| |
| bool |
| block_range_cache::set_bb_range (tree name, const_basic_block bb, |
| const vrange &r) |
| { |
| unsigned v = SSA_NAME_VERSION (name); |
| if (v >= m_ssa_ranges.length ()) |
| m_ssa_ranges.safe_grow_cleared (num_ssa_names + 1); |
| |
| if (!m_ssa_ranges[v]) |
| { |
| // Use sparse representation if there are too many basic blocks. |
| if (last_basic_block_for_fn (cfun) > param_evrp_sparse_threshold) |
| { |
| void *r = m_range_allocator->alloc (sizeof (sbr_sparse_bitmap)); |
| m_ssa_ranges[v] = new (r) sbr_sparse_bitmap (TREE_TYPE (name), |
| m_range_allocator, |
| &m_bitmaps); |
| } |
| else |
| { |
| // Otherwise use the default vector implemntation. |
| void *r = m_range_allocator->alloc (sizeof (sbr_vector)); |
| m_ssa_ranges[v] = new (r) sbr_vector (TREE_TYPE (name), |
| m_range_allocator); |
| } |
| } |
| return m_ssa_ranges[v]->set_bb_range (bb, r); |
| } |
| |
| |
| // Return a pointer to the ssa_block_cache for NAME. If it has not been |
| // accessed yet, return NULL. |
| |
| inline ssa_block_ranges * |
| block_range_cache::query_block_ranges (tree name) |
| { |
| unsigned v = SSA_NAME_VERSION (name); |
| if (v >= m_ssa_ranges.length () || !m_ssa_ranges[v]) |
| return NULL; |
| return m_ssa_ranges[v]; |
| } |
| |
| |
| |
| // Return the range for NAME on entry to BB in R. Return true if there |
| // is one. |
| |
| bool |
| block_range_cache::get_bb_range (vrange &r, tree name, const_basic_block bb) |
| { |
| ssa_block_ranges *ptr = query_block_ranges (name); |
| if (ptr) |
| return ptr->get_bb_range (r, bb); |
| return false; |
| } |
| |
| // Return true if NAME has a range set in block BB. |
| |
| bool |
| block_range_cache::bb_range_p (tree name, const_basic_block bb) |
| { |
| ssa_block_ranges *ptr = query_block_ranges (name); |
| if (ptr) |
| return ptr->bb_range_p (bb); |
| return false; |
| } |
| |
| // Print all known block caches to file F. |
| |
| void |
| block_range_cache::dump (FILE *f) |
| { |
| unsigned x; |
| for (x = 0; x < m_ssa_ranges.length (); ++x) |
| { |
| if (m_ssa_ranges[x]) |
| { |
| fprintf (f, " Ranges for "); |
| print_generic_expr (f, ssa_name (x), TDF_NONE); |
| fprintf (f, ":\n"); |
| m_ssa_ranges[x]->dump (f); |
| fprintf (f, "\n"); |
| } |
| } |
| } |
| |
| // Print all known ranges on entry to blobk BB to file F. |
| |
| void |
| block_range_cache::dump (FILE *f, basic_block bb, bool print_varying) |
| { |
| unsigned x; |
| bool summarize_varying = false; |
| for (x = 1; x < m_ssa_ranges.length (); ++x) |
| { |
| if (!gimple_range_ssa_p (ssa_name (x))) |
| continue; |
| |
| Value_Range r (TREE_TYPE (ssa_name (x))); |
| if (m_ssa_ranges[x] && m_ssa_ranges[x]->get_bb_range (r, bb)) |
| { |
| if (!print_varying && r.varying_p ()) |
| { |
| summarize_varying = true; |
| continue; |
| } |
| print_generic_expr (f, ssa_name (x), TDF_NONE); |
| fprintf (f, "\t"); |
| r.dump(f); |
| fprintf (f, "\n"); |
| } |
| } |
| // If there were any varying entries, lump them all together. |
| if (summarize_varying) |
| { |
| fprintf (f, "VARYING_P on entry : "); |
| for (x = 1; x < num_ssa_names; ++x) |
| { |
| if (!gimple_range_ssa_p (ssa_name (x))) |
| continue; |
| |
| Value_Range r (TREE_TYPE (ssa_name (x))); |
| if (m_ssa_ranges[x] && m_ssa_ranges[x]->get_bb_range (r, bb)) |
| { |
| if (r.varying_p ()) |
| { |
| print_generic_expr (f, ssa_name (x), TDF_NONE); |
| fprintf (f, " "); |
| } |
| } |
| } |
| fprintf (f, "\n"); |
| } |
| } |
| |
| // ------------------------------------------------------------------------- |
| |
| // Initialize a global cache. |
| |
| ssa_global_cache::ssa_global_cache () |
| { |
| m_tab.create (0); |
| m_range_allocator = new obstack_vrange_allocator; |
| } |
| |
| // Deconstruct a global cache. |
| |
| ssa_global_cache::~ssa_global_cache () |
| { |
| m_tab.release (); |
| delete m_range_allocator; |
| } |
| |
| // Retrieve the global range of NAME from cache memory if it exists. |
| // Return the value in R. |
| |
| bool |
| ssa_global_cache::get_global_range (vrange &r, tree name) const |
| { |
| unsigned v = SSA_NAME_VERSION (name); |
| if (v >= m_tab.length ()) |
| return false; |
| |
| vrange *stow = m_tab[v]; |
| if (!stow) |
| return false; |
| r = *stow; |
| return true; |
| } |
| |
| // Set the range for NAME to R in the global cache. |
| // Return TRUE if there was already a range set, otherwise false. |
| |
| bool |
| ssa_global_cache::set_global_range (tree name, const vrange &r) |
| { |
| unsigned v = SSA_NAME_VERSION (name); |
| if (v >= m_tab.length ()) |
| m_tab.safe_grow_cleared (num_ssa_names + 1); |
| |
| vrange *m = m_tab[v]; |
| if (m && m->fits_p (r)) |
| *m = r; |
| else |
| m_tab[v] = m_range_allocator->clone (r); |
| return m != NULL; |
| } |
| |
| // Set the range for NAME to R in the glonbal cache. |
| |
| void |
| ssa_global_cache::clear_global_range (tree name) |
| { |
| unsigned v = SSA_NAME_VERSION (name); |
| if (v >= m_tab.length ()) |
| m_tab.safe_grow_cleared (num_ssa_names + 1); |
| m_tab[v] = NULL; |
| } |
| |
| // Clear the global cache. |
| |
| void |
| ssa_global_cache::clear () |
| { |
| if (m_tab.address ()) |
| memset (m_tab.address(), 0, m_tab.length () * sizeof (vrange *)); |
| } |
| |
| // Dump the contents of the global cache to F. |
| |
| void |
| ssa_global_cache::dump (FILE *f) |
| { |
| /* Cleared after the table header has been printed. */ |
| bool print_header = true; |
| for (unsigned x = 1; x < num_ssa_names; x++) |
| { |
| if (!gimple_range_ssa_p (ssa_name (x))) |
| continue; |
| Value_Range r (TREE_TYPE (ssa_name (x))); |
| if (get_global_range (r, ssa_name (x)) && !r.varying_p ()) |
| { |
| if (print_header) |
| { |
| /* Print the header only when there's something else |
| to print below. */ |
| fprintf (f, "Non-varying global ranges:\n"); |
| fprintf (f, "=========================:\n"); |
| print_header = false; |
| } |
| |
| print_generic_expr (f, ssa_name (x), TDF_NONE); |
| fprintf (f, " : "); |
| r.dump (f); |
| fprintf (f, "\n"); |
| } |
| } |
| |
| if (!print_header) |
| fputc ('\n', f); |
| } |
| |
| // -------------------------------------------------------------------------- |
| |
| |
| // This class will manage the timestamps for each ssa_name. |
| // When a value is calculated, the timestamp is set to the current time. |
| // Current time is then incremented. Any dependencies will already have |
| // been calculated, and will thus have older timestamps. |
| // If one of those values is ever calculated again, it will get a newer |
| // timestamp, and the "current_p" check will fail. |
| |
| class temporal_cache |
| { |
| public: |
| temporal_cache (); |
| ~temporal_cache (); |
| bool current_p (tree name, tree dep1, tree dep2) const; |
| void set_timestamp (tree name); |
| void set_always_current (tree name); |
| private: |
| unsigned temporal_value (unsigned ssa) const; |
| |
| unsigned m_current_time; |
| vec <unsigned> m_timestamp; |
| }; |
| |
| inline |
| temporal_cache::temporal_cache () |
| { |
| m_current_time = 1; |
| m_timestamp.create (0); |
| m_timestamp.safe_grow_cleared (num_ssa_names); |
| } |
| |
| inline |
| temporal_cache::~temporal_cache () |
| { |
| m_timestamp.release (); |
| } |
| |
| // Return the timestamp value for SSA, or 0 if there isnt one. |
| |
| inline unsigned |
| temporal_cache::temporal_value (unsigned ssa) const |
| { |
| if (ssa >= m_timestamp.length ()) |
| return 0; |
| return m_timestamp[ssa]; |
| } |
| |
| // Return TRUE if the timestampe for NAME is newer than any of its dependents. |
| // Up to 2 dependencies can be checked. |
| |
| bool |
| temporal_cache::current_p (tree name, tree dep1, tree dep2) const |
| { |
| unsigned ts = temporal_value (SSA_NAME_VERSION (name)); |
| if (ts == 0) |
| return true; |
| |
| // Any non-registered dependencies will have a value of 0 and thus be older. |
| // Return true if time is newer than either dependent. |
| |
| if (dep1 && ts < temporal_value (SSA_NAME_VERSION (dep1))) |
| return false; |
| if (dep2 && ts < temporal_value (SSA_NAME_VERSION (dep2))) |
| return false; |
| |
| return true; |
| } |
| |
| // This increments the global timer and sets the timestamp for NAME. |
| |
| inline void |
| temporal_cache::set_timestamp (tree name) |
| { |
| unsigned v = SSA_NAME_VERSION (name); |
| if (v >= m_timestamp.length ()) |
| m_timestamp.safe_grow_cleared (num_ssa_names + 20); |
| m_timestamp[v] = ++m_current_time; |
| } |
| |
| // Set the timestamp to 0, marking it as "always up to date". |
| |
| inline void |
| temporal_cache::set_always_current (tree name) |
| { |
| unsigned v = SSA_NAME_VERSION (name); |
| if (v >= m_timestamp.length ()) |
| m_timestamp.safe_grow_cleared (num_ssa_names + 20); |
| m_timestamp[v] = 0; |
| } |
| |
| // -------------------------------------------------------------------------- |
| |
| // This class provides an abstraction of a list of blocks to be updated |
| // by the cache. It is currently a stack but could be changed. It also |
| // maintains a list of blocks which have failed propagation, and does not |
| // enter any of those blocks into the list. |
| |
| // A vector over the BBs is maintained, and an entry of 0 means it is not in |
| // a list. Otherwise, the entry is the next block in the list. -1 terminates |
| // the list. m_head points to the top of the list, -1 if the list is empty. |
| |
| class update_list |
| { |
| public: |
| update_list (); |
| ~update_list (); |
| void add (basic_block bb); |
| basic_block pop (); |
| inline bool empty_p () { return m_update_head == -1; } |
| inline void clear_failures () { bitmap_clear (m_propfail); } |
| inline void propagation_failed (basic_block bb) |
| { bitmap_set_bit (m_propfail, bb->index); } |
| private: |
| vec<int> m_update_list; |
| int m_update_head; |
| bitmap m_propfail; |
| }; |
| |
| // Create an update list. |
| |
| update_list::update_list () |
| { |
| m_update_list.create (0); |
| m_update_list.safe_grow_cleared (last_basic_block_for_fn (cfun) + 64); |
| m_update_head = -1; |
| m_propfail = BITMAP_ALLOC (NULL); |
| } |
| |
| // Destroy an update list. |
| |
| update_list::~update_list () |
| { |
| m_update_list.release (); |
| BITMAP_FREE (m_propfail); |
| } |
| |
| // Add BB to the list of blocks to update, unless it's already in the list. |
| |
| void |
| update_list::add (basic_block bb) |
| { |
| int i = bb->index; |
| // If propagation has failed for BB, or its already in the list, don't |
| // add it again. |
| if ((unsigned)i >= m_update_list.length ()) |
| m_update_list.safe_grow_cleared (i + 64); |
| if (!m_update_list[i] && !bitmap_bit_p (m_propfail, i)) |
| { |
| if (empty_p ()) |
| { |
| m_update_head = i; |
| m_update_list[i] = -1; |
| } |
| else |
| { |
| gcc_checking_assert (m_update_head > 0); |
| m_update_list[i] = m_update_head; |
| m_update_head = i; |
| } |
| } |
| } |
| |
| // Remove a block from the list. |
| |
| basic_block |
| update_list::pop () |
| { |
| gcc_checking_assert (!empty_p ()); |
| basic_block bb = BASIC_BLOCK_FOR_FN (cfun, m_update_head); |
| int pop = m_update_head; |
| m_update_head = m_update_list[pop]; |
| m_update_list[pop] = 0; |
| return bb; |
| } |
| |
| // -------------------------------------------------------------------------- |
| |
| ranger_cache::ranger_cache (int not_executable_flag, bool use_imm_uses) |
| : m_gori (not_executable_flag), |
| m_exit (use_imm_uses) |
| { |
| m_workback.create (0); |
| m_workback.safe_grow_cleared (last_basic_block_for_fn (cfun)); |
| m_workback.truncate (0); |
| m_temporal = new temporal_cache; |
| // If DOM info is available, spawn an oracle as well. |
| if (dom_info_available_p (CDI_DOMINATORS)) |
| m_oracle = new dom_oracle (); |
| else |
| m_oracle = NULL; |
| |
| unsigned x, lim = last_basic_block_for_fn (cfun); |
| // Calculate outgoing range info upfront. This will fully populate the |
| // m_maybe_variant bitmap which will help eliminate processing of names |
| // which never have their ranges adjusted. |
| for (x = 0; x < lim ; x++) |
| { |
| basic_block bb = BASIC_BLOCK_FOR_FN (cfun, x); |
| if (bb) |
| m_gori.exports (bb); |
| } |
| m_update = new update_list (); |
| } |
| |
| ranger_cache::~ranger_cache () |
| { |
| delete m_update; |
| if (m_oracle) |
| delete m_oracle; |
| delete m_temporal; |
| m_workback.release (); |
| } |
| |
| // Dump the global caches to file F. if GORI_DUMP is true, dump the |
| // gori map as well. |
| |
| void |
| ranger_cache::dump (FILE *f) |
| { |
| m_globals.dump (f); |
| fprintf (f, "\n"); |
| } |
| |
| // Dump the caches for basic block BB to file F. |
| |
| void |
| ranger_cache::dump_bb (FILE *f, basic_block bb) |
| { |
| m_gori.gori_map::dump (f, bb, false); |
| m_on_entry.dump (f, bb); |
| if (m_oracle) |
| m_oracle->dump (f, bb); |
| } |
| |
| // Get the global range for NAME, and return in R. Return false if the |
| // global range is not set, and return the legacy global value in R. |
| |
| bool |
| ranger_cache::get_global_range (vrange &r, tree name) const |
| { |
| if (m_globals.get_global_range (r, name)) |
| return true; |
| gimple_range_global (r, name); |
| return false; |
| } |
| |
| // Get the global range for NAME, and return in R. Return false if the |
| // global range is not set, and R will contain the legacy global value. |
| // CURRENT_P is set to true if the value was in cache and not stale. |
| // Otherwise, set CURRENT_P to false and mark as it always current. |
| // If the global cache did not have a value, initialize it as well. |
| // After this call, the global cache will have a value. |
| |
| bool |
| ranger_cache::get_global_range (vrange &r, tree name, bool ¤t_p) |
| { |
| bool had_global = get_global_range (r, name); |
| |
| // If there was a global value, set current flag, otherwise set a value. |
| current_p = false; |
| if (had_global) |
| current_p = r.singleton_p () |
| || m_temporal->current_p (name, m_gori.depend1 (name), |
| m_gori.depend2 (name)); |
| else |
| m_globals.set_global_range (name, r); |
| |
| // If the existing value was not current, mark it as always current. |
| if (!current_p) |
| m_temporal->set_always_current (name); |
| return had_global; |
| } |
| |
| // Set the global range of NAME to R and give it a timestamp. |
| |
| void |
| ranger_cache::set_global_range (tree name, const vrange &r) |
| { |
| if (m_globals.set_global_range (name, r)) |
| { |
| // If there was already a range set, propagate the new value. |
| basic_block bb = gimple_bb (SSA_NAME_DEF_STMT (name)); |
| if (!bb) |
| bb = ENTRY_BLOCK_PTR_FOR_FN (cfun); |
| |
| if (DEBUG_RANGE_CACHE) |
| fprintf (dump_file, " GLOBAL :"); |
| |
| propagate_updated_value (name, bb); |
| } |
| // Constants no longer need to tracked. Any further refinement has to be |
| // undefined. Propagation works better with constants. PR 100512. |
| // Pointers which resolve to non-zero also do not need |
| // tracking in the cache as they will never change. See PR 98866. |
| // Timestamp must always be updated, or dependent calculations may |
| // not include this latest value. PR 100774. |
| |
| if (r.singleton_p () |
| || (POINTER_TYPE_P (TREE_TYPE (name)) && r.nonzero_p ())) |
| m_gori.set_range_invariant (name); |
| m_temporal->set_timestamp (name); |
| } |
| |
| // Provide lookup for the gori-computes class to access the best known range |
| // of an ssa_name in any given basic block. Note, this does no additonal |
| // lookups, just accesses the data that is already known. |
| |
| // Get the range of NAME when the def occurs in block BB. If BB is NULL |
| // get the best global value available. |
| |
| void |
| ranger_cache::range_of_def (vrange &r, tree name, basic_block bb) |
| { |
| gcc_checking_assert (gimple_range_ssa_p (name)); |
| gcc_checking_assert (!bb || bb == gimple_bb (SSA_NAME_DEF_STMT (name))); |
| |
| // Pick up the best global range available. |
| if (!m_globals.get_global_range (r, name)) |
| { |
| // If that fails, try to calculate the range using just global values. |
| gimple *s = SSA_NAME_DEF_STMT (name); |
| if (gimple_get_lhs (s) == name) |
| fold_range (r, s, get_global_range_query ()); |
| else |
| gimple_range_global (r, name); |
| } |
| } |
| |
| // Get the range of NAME as it occurs on entry to block BB. Use MODE for |
| // lookups. |
| |
| void |
| ranger_cache::entry_range (vrange &r, tree name, basic_block bb, |
| enum rfd_mode mode) |
| { |
| if (bb == ENTRY_BLOCK_PTR_FOR_FN (cfun)) |
| { |
| gimple_range_global (r, name); |
| return; |
| } |
| |
| // Look for the on-entry value of name in BB from the cache. |
| // Otherwise pick up the best available global value. |
| if (!m_on_entry.get_bb_range (r, name, bb)) |
| if (!range_from_dom (r, name, bb, mode)) |
| range_of_def (r, name); |
| } |
| |
| // Get the range of NAME as it occurs on exit from block BB. Use MODE for |
| // lookups. |
| |
| void |
| ranger_cache::exit_range (vrange &r, tree name, basic_block bb, |
| enum rfd_mode mode) |
| { |
| if (bb == ENTRY_BLOCK_PTR_FOR_FN (cfun)) |
| { |
| gimple_range_global (r, name); |
| return; |
| } |
| |
| gimple *s = SSA_NAME_DEF_STMT (name); |
| basic_block def_bb = gimple_bb (s); |
| if (def_bb == bb) |
| range_of_def (r, name, bb); |
| else |
| entry_range (r, name, bb, mode); |
| } |
| |
| // Get the range of NAME on edge E using MODE, return the result in R. |
| // Always returns a range and true. |
| |
| bool |
| ranger_cache::edge_range (vrange &r, edge e, tree name, enum rfd_mode mode) |
| { |
| exit_range (r, name, e->src, mode); |
| // If this is not an abnormal edge, check for inferred ranges on exit. |
| if ((e->flags & (EDGE_EH | EDGE_ABNORMAL)) == 0) |
| m_exit.maybe_adjust_range (r, name, e->src); |
| Value_Range er (TREE_TYPE (name)); |
| if (m_gori.outgoing_edge_range_p (er, e, name, *this)) |
| r.intersect (er); |
| return true; |
| } |
| |
| |
| |
| // Implement range_of_expr. |
| |
| bool |
| ranger_cache::range_of_expr (vrange &r, tree name, gimple *stmt) |
| { |
| if (!gimple_range_ssa_p (name)) |
| { |
| get_tree_range (r, name, stmt); |
| return true; |
| } |
| |
| basic_block bb = gimple_bb (stmt); |
| gimple *def_stmt = SSA_NAME_DEF_STMT (name); |
| basic_block def_bb = gimple_bb (def_stmt); |
| |
| if (bb == def_bb) |
| range_of_def (r, name, bb); |
| else |
| entry_range (r, name, bb, RFD_NONE); |
| return true; |
| } |
| |
| |
| // Implement range_on_edge. Always return the best available range using |
| // the current cache values. |
| |
| bool |
| ranger_cache::range_on_edge (vrange &r, edge e, tree expr) |
| { |
| if (gimple_range_ssa_p (expr)) |
| return edge_range (r, e, expr, RFD_NONE); |
| return get_tree_range (r, expr, NULL); |
| } |
| |
| // Return a static range for NAME on entry to basic block BB in R. If |
| // calc is true, fill any cache entries required between BB and the |
| // def block for NAME. Otherwise, return false if the cache is empty. |
| |
| bool |
| ranger_cache::block_range (vrange &r, basic_block bb, tree name, bool calc) |
| { |
| gcc_checking_assert (gimple_range_ssa_p (name)); |
| |
| // If there are no range calculations anywhere in the IL, global range |
| // applies everywhere, so don't bother caching it. |
| if (!m_gori.has_edge_range_p (name)) |
| return false; |
| |
| if (calc) |
| { |
| gimple *def_stmt = SSA_NAME_DEF_STMT (name); |
| basic_block def_bb = NULL; |
| if (def_stmt) |
| def_bb = gimple_bb (def_stmt);; |
| if (!def_bb) |
| { |
| // If we get to the entry block, this better be a default def |
| // or range_on_entry was called for a block not dominated by |
| // the def. |
| gcc_checking_assert (SSA_NAME_IS_DEFAULT_DEF (name)); |
| def_bb = ENTRY_BLOCK_PTR_FOR_FN (cfun); |
| } |
| |
| // There is no range on entry for the definition block. |
| if (def_bb == bb) |
| return false; |
| |
| // Otherwise, go figure out what is known in predecessor blocks. |
| fill_block_cache (name, bb, def_bb); |
| gcc_checking_assert (m_on_entry.bb_range_p (name, bb)); |
| } |
| return m_on_entry.get_bb_range (r, name, bb); |
| } |
| |
| // If there is anything in the propagation update_list, continue |
| // processing NAME until the list of blocks is empty. |
| |
| void |
| ranger_cache::propagate_cache (tree name) |
| { |
| basic_block bb; |
| edge_iterator ei; |
| edge e; |
| tree type = TREE_TYPE (name); |
| Value_Range new_range (type); |
| Value_Range current_range (type); |
| Value_Range e_range (type); |
| |
| // Process each block by seeing if its calculated range on entry is |
| // the same as its cached value. If there is a difference, update |
| // the cache to reflect the new value, and check to see if any |
| // successors have cache entries which may need to be checked for |
| // updates. |
| |
| while (!m_update->empty_p ()) |
| { |
| bb = m_update->pop (); |
| gcc_checking_assert (m_on_entry.bb_range_p (name, bb)); |
| m_on_entry.get_bb_range (current_range, name, bb); |
| |
| if (DEBUG_RANGE_CACHE) |
| { |
| fprintf (dump_file, "FWD visiting block %d for ", bb->index); |
| print_generic_expr (dump_file, name, TDF_SLIM); |
| fprintf (dump_file, " starting range : "); |
| current_range.dump (dump_file); |
| fprintf (dump_file, "\n"); |
| } |
| |
| // Calculate the "new" range on entry by unioning the pred edges. |
| new_range.set_undefined (); |
| FOR_EACH_EDGE (e, ei, bb->preds) |
| { |
| range_on_edge (e_range, e, name); |
| if (DEBUG_RANGE_CACHE) |
| { |
| fprintf (dump_file, " edge %d->%d :", e->src->index, bb->index); |
| e_range.dump (dump_file); |
| fprintf (dump_file, "\n"); |
| } |
| new_range.union_ (e_range); |
| if (new_range.varying_p ()) |
| break; |
| } |
| |
| // If the range on entry has changed, update it. |
| if (new_range != current_range) |
| { |
| bool ok_p = m_on_entry.set_bb_range (name, bb, new_range); |
| // If the cache couldn't set the value, mark it as failed. |
| if (!ok_p) |
| m_update->propagation_failed (bb); |
| if (DEBUG_RANGE_CACHE) |
| { |
| if (!ok_p) |
| { |
| fprintf (dump_file, " Cache failure to store value:"); |
| print_generic_expr (dump_file, name, TDF_SLIM); |
| fprintf (dump_file, " "); |
| } |
| else |
| { |
| fprintf (dump_file, " Updating range to "); |
| new_range.dump (dump_file); |
| } |
| fprintf (dump_file, "\n Updating blocks :"); |
| } |
| // Mark each successor that has a range to re-check its range |
| FOR_EACH_EDGE (e, ei, bb->succs) |
| if (m_on_entry.bb_range_p (name, e->dest)) |
| { |
| if (DEBUG_RANGE_CACHE) |
| fprintf (dump_file, " bb%d",e->dest->index); |
| m_update->add (e->dest); |
| } |
| if (DEBUG_RANGE_CACHE) |
| fprintf (dump_file, "\n"); |
| } |
| } |
| if (DEBUG_RANGE_CACHE) |
| { |
| fprintf (dump_file, "DONE visiting blocks for "); |
| print_generic_expr (dump_file, name, TDF_SLIM); |
| fprintf (dump_file, "\n"); |
| } |
| m_update->clear_failures (); |
| } |
| |
| // Check to see if an update to the value for NAME in BB has any effect |
| // on values already in the on-entry cache for successor blocks. |
| // If it does, update them. Don't visit any blocks which dont have a cache |
| // entry. |
| |
| void |
| ranger_cache::propagate_updated_value (tree name, basic_block bb) |
| { |
| edge e; |
| edge_iterator ei; |
| |
| // The update work list should be empty at this point. |
| gcc_checking_assert (m_update->empty_p ()); |
| gcc_checking_assert (bb); |
| |
| if (DEBUG_RANGE_CACHE) |
| { |
| fprintf (dump_file, " UPDATE cache for "); |
| print_generic_expr (dump_file, name, TDF_SLIM); |
| fprintf (dump_file, " in BB %d : successors : ", bb->index); |
| } |
| FOR_EACH_EDGE (e, ei, bb->succs) |
| { |
| // Only update active cache entries. |
| if (m_on_entry.bb_range_p (name, e->dest)) |
| { |
| m_update->add (e->dest); |
| if (DEBUG_RANGE_CACHE) |
| fprintf (dump_file, " UPDATE: bb%d", e->dest->index); |
| } |
| } |
| if (!m_update->empty_p ()) |
| { |
| if (DEBUG_RANGE_CACHE) |
| fprintf (dump_file, "\n"); |
| propagate_cache (name); |
| } |
| else |
| { |
| if (DEBUG_RANGE_CACHE) |
| fprintf (dump_file, " : No updates!\n"); |
| } |
| } |
| |
| // Make sure that the range-on-entry cache for NAME is set for block BB. |
| // Work back through the CFG to DEF_BB ensuring the range is calculated |
| // on the block/edges leading back to that point. |
| |
| void |
| ranger_cache::fill_block_cache (tree name, basic_block bb, basic_block def_bb) |
| { |
| edge_iterator ei; |
| edge e; |
| tree type = TREE_TYPE (name); |
| Value_Range block_result (type); |
| Value_Range undefined (type); |
| |
| // At this point we shouldn't be looking at the def, entry block. |
| gcc_checking_assert (bb != def_bb && bb != ENTRY_BLOCK_PTR_FOR_FN (cfun)); |
| gcc_checking_assert (m_workback.length () == 0); |
| |
| // If the block cache is set, then we've already visited this block. |
| if (m_on_entry.bb_range_p (name, bb)) |
| return; |
| |
| if (DEBUG_RANGE_CACHE) |
| { |
| fprintf (dump_file, "\n"); |
| print_generic_expr (dump_file, name, TDF_SLIM); |
| fprintf (dump_file, " : "); |
| } |
| |
| // Check if a dominators can supply the range. |
| if (range_from_dom (block_result, name, bb, RFD_FILL)) |
| { |
| if (DEBUG_RANGE_CACHE) |
| { |
| fprintf (dump_file, "Filled from dominator! : "); |
| block_result.dump (dump_file); |
| fprintf (dump_file, "\n"); |
| } |
| // See if any equivalences can refine it. |
| if (m_oracle) |
| { |
| tree equiv_name; |
| relation_kind rel; |
| int prec = TYPE_PRECISION (type); |
| FOR_EACH_PARTIAL_AND_FULL_EQUIV (m_oracle, bb, name, equiv_name, rel) |
| { |
| basic_block equiv_bb = gimple_bb (SSA_NAME_DEF_STMT (equiv_name)); |
| |
| // Ignore partial equivs that are smaller than this object. |
| if (rel != VREL_EQ && prec > pe_to_bits (rel)) |
| continue; |
| |
| // Check if the equiv has any ranges calculated. |
| if (!m_gori.has_edge_range_p (equiv_name)) |
| continue; |
| |
| // Check if the equiv definition dominates this block |
| if (equiv_bb == bb || |
| (equiv_bb && !dominated_by_p (CDI_DOMINATORS, bb, equiv_bb))) |
| continue; |
| |
| if (DEBUG_RANGE_CACHE) |
| { |
| if (rel == VREL_EQ) |
| fprintf (dump_file, "Checking Equivalence ("); |
| else |
| fprintf (dump_file, "Checking Partial equiv ("); |
| print_relation (dump_file, rel); |
| fprintf (dump_file, ") "); |
| print_generic_expr (dump_file, equiv_name, TDF_SLIM); |
| fprintf (dump_file, "\n"); |
| } |
| Value_Range equiv_range (TREE_TYPE (equiv_name)); |
| if (range_from_dom (equiv_range, equiv_name, bb, RFD_READ_ONLY)) |
| { |
| if (rel != VREL_EQ) |
| range_cast (equiv_range, type); |
| if (block_result.intersect (equiv_range)) |
| { |
| if (DEBUG_RANGE_CACHE) |
| { |
| if (rel == VREL_EQ) |
| fprintf (dump_file, "Equivalence update! : "); |
| else |
| fprintf (dump_file, "Partial equiv update! : "); |
| print_generic_expr (dump_file, equiv_name, TDF_SLIM); |
| fprintf (dump_file, " has range : "); |
| equiv_range.dump (dump_file); |
| fprintf (dump_file, " refining range to :"); |
| block_result.dump (dump_file); |
| fprintf (dump_file, "\n"); |
| } |
| } |
| } |
| } |
| } |
| |
| m_on_entry.set_bb_range (name, bb, block_result); |
| gcc_checking_assert (m_workback.length () == 0); |
| return; |
| } |
| |
| // Visit each block back to the DEF. Initialize each one to UNDEFINED. |
| // m_visited at the end will contain all the blocks that we needed to set |
| // the range_on_entry cache for. |
| m_workback.quick_push (bb); |
| undefined.set_undefined (); |
| m_on_entry.set_bb_range (name, bb, undefined); |
| gcc_checking_assert (m_update->empty_p ()); |
| |
| while (m_workback.length () > 0) |
| { |
| basic_block node = m_workback.pop (); |
| if (DEBUG_RANGE_CACHE) |
| { |
| fprintf (dump_file, "BACK visiting block %d for ", node->index); |
| print_generic_expr (dump_file, name, TDF_SLIM); |
| fprintf (dump_file, "\n"); |
| } |
| |
| FOR_EACH_EDGE (e, ei, node->preds) |
| { |
| basic_block pred = e->src; |
| Value_Range r (TREE_TYPE (name)); |
| |
| if (DEBUG_RANGE_CACHE) |
| fprintf (dump_file, " %d->%d ",e->src->index, e->dest->index); |
| |
| // If the pred block is the def block add this BB to update list. |
| if (pred == def_bb) |
| { |
| m_update->add (node); |
| continue; |
| } |
| |
| // If the pred is entry but NOT def, then it is used before |
| // defined, it'll get set to [] and no need to update it. |
| if (pred == ENTRY_BLOCK_PTR_FOR_FN (cfun)) |
| { |
| if (DEBUG_RANGE_CACHE) |
| fprintf (dump_file, "entry: bail."); |
| continue; |
| } |
| |
| // Regardless of whether we have visited pred or not, if the |
| // pred has inferred ranges, revisit this block. |
| // Don't search the DOM tree. |
| if (m_exit.has_range_p (name, pred)) |
| { |
| if (DEBUG_RANGE_CACHE) |
| fprintf (dump_file, "Inferred range: update "); |
| m_update->add (node); |
| } |
| |
| // If the pred block already has a range, or if it can contribute |
| // something new. Ie, the edge generates a range of some sort. |
| if (m_on_entry.get_bb_range (r, name, pred)) |
| { |
| if (DEBUG_RANGE_CACHE) |
| { |
| fprintf (dump_file, "has cache, "); |
| r.dump (dump_file); |
| fprintf (dump_file, ", "); |
| } |
| if (!r.undefined_p () || m_gori.has_edge_range_p (name, e)) |
| { |
| m_update->add (node); |
| if (DEBUG_RANGE_CACHE) |
| fprintf (dump_file, "update. "); |
| } |
| continue; |
| } |
| |
| if (DEBUG_RANGE_CACHE) |
| fprintf (dump_file, "pushing undefined pred block.\n"); |
| // If the pred hasn't been visited (has no range), add it to |
| // the list. |
| gcc_checking_assert (!m_on_entry.bb_range_p (name, pred)); |
| m_on_entry.set_bb_range (name, pred, undefined); |
| m_workback.quick_push (pred); |
| } |
| } |
| |
| if (DEBUG_RANGE_CACHE) |
| fprintf (dump_file, "\n"); |
| |
| // Now fill in the marked blocks with values. |
| propagate_cache (name); |
| if (DEBUG_RANGE_CACHE) |
| fprintf (dump_file, " Propagation update done.\n"); |
| } |
| |
| // Resolve the range of BB if the dominators range is R by calculating incoming |
| // edges to this block. All lead back to the dominator so should be cheap. |
| // The range for BB is set and returned in R. |
| |
| void |
| ranger_cache::resolve_dom (vrange &r, tree name, basic_block bb) |
| { |
| basic_block def_bb = gimple_bb (SSA_NAME_DEF_STMT (name)); |
| basic_block dom_bb = get_immediate_dominator (CDI_DOMINATORS, bb); |
| |
| // if it doesn't already have a value, store the incoming range. |
| if (!m_on_entry.bb_range_p (name, dom_bb) && def_bb != dom_bb) |
| { |
| // If the range can't be store, don't try to accumulate |
| // the range in PREV_BB due to excessive recalculations. |
| if (!m_on_entry.set_bb_range (name, dom_bb, r)) |
| return; |
| } |
| // With the dominator set, we should be able to cheaply query |
| // each incoming edge now and accumulate the results. |
| r.set_undefined (); |
| edge e; |
| edge_iterator ei; |
| Value_Range er (TREE_TYPE (name)); |
| FOR_EACH_EDGE (e, ei, bb->preds) |
| { |
| edge_range (er, e, name, RFD_READ_ONLY); |
| r.union_ (er); |
| } |
| // Set the cache in PREV_BB so it is not calculated again. |
| m_on_entry.set_bb_range (name, bb, r); |
| } |
| |
| // Get the range of NAME from dominators of BB and return it in R. Search the |
| // dominator tree based on MODE. |
| |
| bool |
| ranger_cache::range_from_dom (vrange &r, tree name, basic_block start_bb, |
| enum rfd_mode mode) |
| { |
| if (mode == RFD_NONE || !dom_info_available_p (CDI_DOMINATORS)) |
| return false; |
| |
| // Search back to the definition block or entry block. |
| basic_block def_bb = gimple_bb (SSA_NAME_DEF_STMT (name)); |
| if (def_bb == NULL) |
| def_bb = ENTRY_BLOCK_PTR_FOR_FN (cfun); |
| |
| basic_block bb; |
| basic_block prev_bb = start_bb; |
| |
| // Track any inferred ranges seen. |
| Value_Range infer (TREE_TYPE (name)); |
| infer.set_varying (TREE_TYPE (name)); |
| |
| // Range on entry to the DEF block should not be queried. |
| gcc_checking_assert (start_bb != def_bb); |
| unsigned start_limit = m_workback.length (); |
| |
| // Default value is global range. |
| get_global_range (r, name); |
| |
| // The dominator of EXIT_BLOCK doesn't seem to be set, so at least handle |
| // the common single exit cases. |
| if (start_bb == EXIT_BLOCK_PTR_FOR_FN (cfun) && single_pred_p (start_bb)) |
| bb = single_pred_edge (start_bb)->src; |
| else |
| bb = get_immediate_dominator (CDI_DOMINATORS, start_bb); |
| |
| // Search until a value is found, pushing blocks which may need calculating. |
| for ( ; bb; prev_bb = bb, bb = get_immediate_dominator (CDI_DOMINATORS, bb)) |
| { |
| // Accumulate any block exit inferred ranges. |
| m_exit.maybe_adjust_range (infer, name, bb); |
| |
| // This block has an outgoing range. |
| if (m_gori.has_edge_range_p (name, bb)) |
| m_workback.quick_push (prev_bb); |
| else |
| { |
| // Normally join blocks don't carry any new range information on |
| // incoming edges. If the first incoming edge to this block does |
| // generate a range, calculate the ranges if all incoming edges |
| // are also dominated by the dominator. (Avoids backedges which |
| // will break the rule of moving only upward in the domniator tree). |
| // If the first pred does not generate a range, then we will be |
| // using the dominator range anyway, so thats all the check needed. |
| if (EDGE_COUNT (prev_bb->preds) > 1 |
| && m_gori.has_edge_range_p (name, EDGE_PRED (prev_bb, 0)->src)) |
| { |
| edge e; |
| edge_iterator ei; |
| bool all_dom = true; |
| FOR_EACH_EDGE (e, ei, prev_bb->preds) |
| if (e->src != bb |
| && !dominated_by_p (CDI_DOMINATORS, e->src, bb)) |
| { |
| all_dom = false; |
| break; |
| } |
| if (all_dom) |
| m_workback.quick_push (prev_bb); |
| } |
| } |
| |
| if (def_bb == bb) |
| break; |
| |
| if (m_on_entry.get_bb_range (r, name, bb)) |
| break; |
| } |
| |
| if (DEBUG_RANGE_CACHE) |
| { |
| fprintf (dump_file, "CACHE: BB %d DOM query for ", start_bb->index); |
| print_generic_expr (dump_file, name, TDF_SLIM); |
| fprintf (dump_file, ", found "); |
| r.dump (dump_file); |
| if (bb) |
| fprintf (dump_file, " at BB%d\n", bb->index); |
| else |
| fprintf (dump_file, " at function top\n"); |
| } |
| |
| // Now process any blocks wit incoming edges that nay have adjustemnts. |
| while (m_workback.length () > start_limit) |
| { |
| Value_Range er (TREE_TYPE (name)); |
| prev_bb = m_workback.pop (); |
| if (!single_pred_p (prev_bb)) |
| { |
| // Non single pred means we need to cache a vsalue in the dominator |
| // so we can cheaply calculate incoming edges to this block, and |
| // then store the resulting value. If processing mode is not |
| // RFD_FILL, then the cache cant be stored to, so don't try. |
| // Otherwise this becomes a quadratic timed calculation. |
| if (mode == RFD_FILL) |
| resolve_dom (r, name, prev_bb); |
| continue; |
| } |
| |
| edge e = single_pred_edge (prev_bb); |
| bb = e->src; |
| if (m_gori.outgoing_edge_range_p (er, e, name, *this)) |
| { |
| r.intersect (er); |
| // If this is a normal edge, apply any inferred ranges. |
| if ((e->flags & (EDGE_EH | EDGE_ABNORMAL)) == 0) |
| m_exit.maybe_adjust_range (r, name, bb); |
| |
| if (DEBUG_RANGE_CACHE) |
| { |
| fprintf (dump_file, "CACHE: Adjusted edge range for %d->%d : ", |
| bb->index, prev_bb->index); |
| r.dump (dump_file); |
| fprintf (dump_file, "\n"); |
| } |
| } |
| } |
| |
| // Apply non-null if appropriate. |
| if (!has_abnormal_call_or_eh_pred_edge_p (start_bb)) |
| r.intersect (infer); |
| |
| if (DEBUG_RANGE_CACHE) |
| { |
| fprintf (dump_file, "CACHE: Range for DOM returns : "); |
| r.dump (dump_file); |
| fprintf (dump_file, "\n"); |
| } |
| return true; |
| } |
| |
| // This routine will register an inferred value in block BB, and possibly |
| // update the on-entry cache if appropriate. |
| |
| void |
| ranger_cache::register_inferred_value (const vrange &ir, tree name, |
| basic_block bb) |
| { |
| Value_Range r (TREE_TYPE (name)); |
| if (!m_on_entry.get_bb_range (r, name, bb)) |
| exit_range (r, name, bb, RFD_READ_ONLY); |
| if (r.intersect (ir)) |
| { |
| m_on_entry.set_bb_range (name, bb, r); |
| // If this range was invariant before, remove invariance. |
| if (!m_gori.has_edge_range_p (name)) |
| m_gori.set_range_invariant (name, false); |
| } |
| } |
| |
| // This routine is used during a block walk to adjust any inferred ranges |
| // of operands on stmt S. |
| |
| void |
| ranger_cache::apply_inferred_ranges (gimple *s) |
| { |
| bool update = true; |
| |
| basic_block bb = gimple_bb (s); |
| gimple_infer_range infer(s); |
| if (infer.num () == 0) |
| return; |
| |
| // Do not update the on-entry cache for block ending stmts. |
| if (stmt_ends_bb_p (s)) |
| { |
| edge_iterator ei; |
| edge e; |
| FOR_EACH_EDGE (e, ei, gimple_bb (s)->succs) |
| if (!(e->flags & (EDGE_ABNORMAL|EDGE_EH))) |
| break; |
| if (e == NULL) |
| update = false; |
| } |
| |
| for (unsigned x = 0; x < infer.num (); x++) |
| { |
| tree name = infer.name (x); |
| m_exit.add_range (name, bb, infer.range (x)); |
| if (update) |
| register_inferred_value (infer.range (x), name, bb); |
| } |
| } |