blob: 5114884634507e9c14c288a7394fd36bc95ed6f3 [file] [log] [blame]
/* Machine description for AArch64 architecture.
Copyright (C) 2009-2020 Free Software Foundation, Inc.
Contributed by ARM Ltd.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
GCC is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#ifndef GCC_AARCH64_H
#define GCC_AARCH64_H
/* Target CPU builtins. */
#define TARGET_CPU_CPP_BUILTINS() \
aarch64_cpu_cpp_builtins (pfile)
/* Target CPU versions for D. */
#define TARGET_D_CPU_VERSIONS aarch64_d_target_versions
#define REGISTER_TARGET_PRAGMAS() aarch64_register_pragmas ()
/* Target machine storage layout. */
#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
if (GET_MODE_CLASS (MODE) == MODE_INT \
&& GET_MODE_SIZE (MODE) < 4) \
{ \
if (MODE == QImode || MODE == HImode) \
{ \
MODE = SImode; \
} \
}
/* Bits are always numbered from the LSBit. */
#define BITS_BIG_ENDIAN 0
/* Big/little-endian flavour. */
#define BYTES_BIG_ENDIAN (TARGET_BIG_END != 0)
#define WORDS_BIG_ENDIAN (BYTES_BIG_ENDIAN)
/* AdvSIMD is supported in the default configuration, unless disabled by
-mgeneral-regs-only or by the +nosimd extension. */
#define TARGET_SIMD (!TARGET_GENERAL_REGS_ONLY && AARCH64_ISA_SIMD)
#define TARGET_FLOAT (!TARGET_GENERAL_REGS_ONLY && AARCH64_ISA_FP)
#define UNITS_PER_WORD 8
#define UNITS_PER_VREG 16
#define PARM_BOUNDARY 64
#define STACK_BOUNDARY 128
#define FUNCTION_BOUNDARY 32
#define EMPTY_FIELD_BOUNDARY 32
#define BIGGEST_ALIGNMENT 128
#define SHORT_TYPE_SIZE 16
#define INT_TYPE_SIZE 32
#define LONG_TYPE_SIZE (TARGET_ILP32 ? 32 : 64)
#define POINTER_SIZE (TARGET_ILP32 ? 32 : 64)
#define LONG_LONG_TYPE_SIZE 64
#define FLOAT_TYPE_SIZE 32
#define DOUBLE_TYPE_SIZE 64
#define LONG_DOUBLE_TYPE_SIZE 128
/* This value is the amount of bytes a caller is allowed to drop the stack
before probing has to be done for stack clash protection. */
#define STACK_CLASH_CALLER_GUARD 1024
/* This value represents the minimum amount of bytes we expect the function's
outgoing arguments to be when stack-clash is enabled. */
#define STACK_CLASH_MIN_BYTES_OUTGOING_ARGS 8
/* This value controls how many pages we manually unroll the loop for when
generating stack clash probes. */
#define STACK_CLASH_MAX_UNROLL_PAGES 4
/* The architecture reserves all bits of the address for hardware use,
so the vbit must go into the delta field of pointers to member
functions. This is the same config as that in the AArch32
port. */
#define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_delta
/* Emit calls to libgcc helpers for atomic operations for runtime detection
of LSE instructions. */
#define TARGET_OUTLINE_ATOMICS (aarch64_flag_outline_atomics)
/* Align definitions of arrays, unions and structures so that
initializations and copies can be made more efficient. This is not
ABI-changing, so it only affects places where we can see the
definition. Increasing the alignment tends to introduce padding,
so don't do this when optimizing for size/conserving stack space. */
#define AARCH64_EXPAND_ALIGNMENT(COND, EXP, ALIGN) \
(((COND) && ((ALIGN) < BITS_PER_WORD) \
&& (TREE_CODE (EXP) == ARRAY_TYPE \
|| TREE_CODE (EXP) == UNION_TYPE \
|| TREE_CODE (EXP) == RECORD_TYPE)) ? BITS_PER_WORD : (ALIGN))
/* Align global data. */
#define DATA_ALIGNMENT(EXP, ALIGN) \
AARCH64_EXPAND_ALIGNMENT (!optimize_size, EXP, ALIGN)
/* Similarly, make sure that objects on the stack are sensibly aligned. */
#define LOCAL_ALIGNMENT(EXP, ALIGN) \
AARCH64_EXPAND_ALIGNMENT (!flag_conserve_stack, EXP, ALIGN)
#define STRUCTURE_SIZE_BOUNDARY 8
/* Heap alignment (same as BIGGEST_ALIGNMENT and STACK_BOUNDARY). */
#define MALLOC_ABI_ALIGNMENT 128
/* Defined by the ABI */
#define WCHAR_TYPE "unsigned int"
#define WCHAR_TYPE_SIZE 32
/* Using long long breaks -ansi and -std=c90, so these will need to be
made conditional for an LLP64 ABI. */
#define SIZE_TYPE "long unsigned int"
#define PTRDIFF_TYPE "long int"
#define PCC_BITFIELD_TYPE_MATTERS 1
/* Major revision number of the ARM Architecture implemented by the target. */
extern unsigned aarch64_architecture_version;
/* Instruction tuning/selection flags. */
/* Bit values used to identify processor capabilities. */
#define AARCH64_FL_SIMD (1 << 0) /* Has SIMD instructions. */
#define AARCH64_FL_FP (1 << 1) /* Has FP. */
#define AARCH64_FL_CRYPTO (1 << 2) /* Has crypto. */
#define AARCH64_FL_CRC (1 << 3) /* Has CRC. */
/* ARMv8.1-A architecture extensions. */
#define AARCH64_FL_LSE (1 << 4) /* Has Large System Extensions. */
#define AARCH64_FL_RDMA (1 << 5) /* Has Round Double Multiply Add. */
#define AARCH64_FL_V8_1 (1 << 6) /* Has ARMv8.1-A extensions. */
/* ARMv8.2-A architecture extensions. */
#define AARCH64_FL_V8_2 (1 << 8) /* Has ARMv8.2-A features. */
#define AARCH64_FL_F16 (1 << 9) /* Has ARMv8.2-A FP16 extensions. */
#define AARCH64_FL_SVE (1 << 10) /* Has Scalable Vector Extensions. */
/* ARMv8.3-A architecture extensions. */
#define AARCH64_FL_V8_3 (1 << 11) /* Has ARMv8.3-A features. */
#define AARCH64_FL_RCPC (1 << 12) /* Has support for RCpc model. */
#define AARCH64_FL_DOTPROD (1 << 13) /* Has ARMv8.2-A Dot Product ins. */
/* New flags to split crypto into aes and sha2. */
#define AARCH64_FL_AES (1 << 14) /* Has Crypto AES. */
#define AARCH64_FL_SHA2 (1 << 15) /* Has Crypto SHA2. */
/* ARMv8.4-A architecture extensions. */
#define AARCH64_FL_V8_4 (1 << 16) /* Has ARMv8.4-A features. */
#define AARCH64_FL_SM4 (1 << 17) /* Has ARMv8.4-A SM3 and SM4. */
#define AARCH64_FL_SHA3 (1 << 18) /* Has ARMv8.4-a SHA3 and SHA512. */
#define AARCH64_FL_F16FML (1 << 19) /* Has ARMv8.4-a FP16 extensions. */
#define AARCH64_FL_RCPC8_4 (1 << 20) /* Has ARMv8.4-a RCPC extensions. */
/* Statistical Profiling extensions. */
#define AARCH64_FL_PROFILE (1 << 21)
/* ARMv8.5-A architecture extensions. */
#define AARCH64_FL_V8_5 (1 << 22) /* Has ARMv8.5-A features. */
#define AARCH64_FL_RNG (1 << 23) /* ARMv8.5-A Random Number Insns. */
#define AARCH64_FL_MEMTAG (1 << 24) /* ARMv8.5-A Memory Tagging
Extensions. */
/* Speculation Barrier instruction supported. */
#define AARCH64_FL_SB (1 << 25)
/* Speculative Store Bypass Safe instruction supported. */
#define AARCH64_FL_SSBS (1 << 26)
/* Execution and Data Prediction Restriction instructions supported. */
#define AARCH64_FL_PREDRES (1 << 27)
/* SVE2 instruction supported. */
#define AARCH64_FL_SVE2 (1 << 28)
#define AARCH64_FL_SVE2_AES (1 << 29)
#define AARCH64_FL_SVE2_SM4 (1 << 30)
#define AARCH64_FL_SVE2_SHA3 (1ULL << 31)
#define AARCH64_FL_SVE2_BITPERM (1ULL << 32)
/* Transactional Memory Extension. */
#define AARCH64_FL_TME (1ULL << 33) /* Has TME instructions. */
/* Armv8.6-A architecture extensions. */
#define AARCH64_FL_V8_6 (1ULL << 34)
/* 8-bit Integer Matrix Multiply (I8MM) extensions. */
#define AARCH64_FL_I8MM (1ULL << 35)
/* Brain half-precision floating-point (BFloat16) Extension. */
#define AARCH64_FL_BF16 (1ULL << 36)
/* 32-bit Floating-point Matrix Multiply (F32MM) extensions. */
#define AARCH64_FL_F32MM (1ULL << 37)
/* 64-bit Floating-point Matrix Multiply (F64MM) extensions. */
#define AARCH64_FL_F64MM (1ULL << 38)
/* Has FP and SIMD. */
#define AARCH64_FL_FPSIMD (AARCH64_FL_FP | AARCH64_FL_SIMD)
/* Has FP without SIMD. */
#define AARCH64_FL_FPQ16 (AARCH64_FL_FP & ~AARCH64_FL_SIMD)
/* Architecture flags that effect instruction selection. */
#define AARCH64_FL_FOR_ARCH8 (AARCH64_FL_FPSIMD)
#define AARCH64_FL_FOR_ARCH8_1 \
(AARCH64_FL_FOR_ARCH8 | AARCH64_FL_LSE | AARCH64_FL_CRC \
| AARCH64_FL_RDMA | AARCH64_FL_V8_1)
#define AARCH64_FL_FOR_ARCH8_2 \
(AARCH64_FL_FOR_ARCH8_1 | AARCH64_FL_V8_2)
#define AARCH64_FL_FOR_ARCH8_3 \
(AARCH64_FL_FOR_ARCH8_2 | AARCH64_FL_V8_3)
#define AARCH64_FL_FOR_ARCH8_4 \
(AARCH64_FL_FOR_ARCH8_3 | AARCH64_FL_V8_4 | AARCH64_FL_F16FML \
| AARCH64_FL_DOTPROD | AARCH64_FL_RCPC8_4)
#define AARCH64_FL_FOR_ARCH8_5 \
(AARCH64_FL_FOR_ARCH8_4 | AARCH64_FL_V8_5 \
| AARCH64_FL_SB | AARCH64_FL_SSBS | AARCH64_FL_PREDRES)
#define AARCH64_FL_FOR_ARCH8_6 \
(AARCH64_FL_FOR_ARCH8_5 | AARCH64_FL_V8_6 | AARCH64_FL_FPSIMD \
| AARCH64_FL_I8MM | AARCH64_FL_BF16)
/* Macros to test ISA flags. */
#define AARCH64_ISA_CRC (aarch64_isa_flags & AARCH64_FL_CRC)
#define AARCH64_ISA_CRYPTO (aarch64_isa_flags & AARCH64_FL_CRYPTO)
#define AARCH64_ISA_FP (aarch64_isa_flags & AARCH64_FL_FP)
#define AARCH64_ISA_SIMD (aarch64_isa_flags & AARCH64_FL_SIMD)
#define AARCH64_ISA_LSE (aarch64_isa_flags & AARCH64_FL_LSE)
#define AARCH64_ISA_RDMA (aarch64_isa_flags & AARCH64_FL_RDMA)
#define AARCH64_ISA_V8_2 (aarch64_isa_flags & AARCH64_FL_V8_2)
#define AARCH64_ISA_F16 (aarch64_isa_flags & AARCH64_FL_F16)
#define AARCH64_ISA_SVE (aarch64_isa_flags & AARCH64_FL_SVE)
#define AARCH64_ISA_SVE2 (aarch64_isa_flags & AARCH64_FL_SVE2)
#define AARCH64_ISA_SVE2_AES (aarch64_isa_flags & AARCH64_FL_SVE2_AES)
#define AARCH64_ISA_SVE2_BITPERM (aarch64_isa_flags & AARCH64_FL_SVE2_BITPERM)
#define AARCH64_ISA_SVE2_SHA3 (aarch64_isa_flags & AARCH64_FL_SVE2_SHA3)
#define AARCH64_ISA_SVE2_SM4 (aarch64_isa_flags & AARCH64_FL_SVE2_SM4)
#define AARCH64_ISA_V8_3 (aarch64_isa_flags & AARCH64_FL_V8_3)
#define AARCH64_ISA_DOTPROD (aarch64_isa_flags & AARCH64_FL_DOTPROD)
#define AARCH64_ISA_AES (aarch64_isa_flags & AARCH64_FL_AES)
#define AARCH64_ISA_SHA2 (aarch64_isa_flags & AARCH64_FL_SHA2)
#define AARCH64_ISA_V8_4 (aarch64_isa_flags & AARCH64_FL_V8_4)
#define AARCH64_ISA_SM4 (aarch64_isa_flags & AARCH64_FL_SM4)
#define AARCH64_ISA_SHA3 (aarch64_isa_flags & AARCH64_FL_SHA3)
#define AARCH64_ISA_F16FML (aarch64_isa_flags & AARCH64_FL_F16FML)
#define AARCH64_ISA_RCPC8_4 (aarch64_isa_flags & AARCH64_FL_RCPC8_4)
#define AARCH64_ISA_RNG (aarch64_isa_flags & AARCH64_FL_RNG)
#define AARCH64_ISA_V8_5 (aarch64_isa_flags & AARCH64_FL_V8_5)
#define AARCH64_ISA_TME (aarch64_isa_flags & AARCH64_FL_TME)
#define AARCH64_ISA_MEMTAG (aarch64_isa_flags & AARCH64_FL_MEMTAG)
#define AARCH64_ISA_V8_6 (aarch64_isa_flags & AARCH64_FL_V8_6)
#define AARCH64_ISA_I8MM (aarch64_isa_flags & AARCH64_FL_I8MM)
#define AARCH64_ISA_F32MM (aarch64_isa_flags & AARCH64_FL_F32MM)
#define AARCH64_ISA_F64MM (aarch64_isa_flags & AARCH64_FL_F64MM)
#define AARCH64_ISA_BF16 (aarch64_isa_flags & AARCH64_FL_BF16)
#define AARCH64_ISA_SB (aarch64_isa_flags & AARCH64_FL_SB)
/* Crypto is an optional extension to AdvSIMD. */
#define TARGET_CRYPTO (TARGET_SIMD && AARCH64_ISA_CRYPTO)
/* SHA2 is an optional extension to AdvSIMD. */
#define TARGET_SHA2 ((TARGET_SIMD && AARCH64_ISA_SHA2) || TARGET_CRYPTO)
/* SHA3 is an optional extension to AdvSIMD. */
#define TARGET_SHA3 (TARGET_SIMD && AARCH64_ISA_SHA3)
/* AES is an optional extension to AdvSIMD. */
#define TARGET_AES ((TARGET_SIMD && AARCH64_ISA_AES) || TARGET_CRYPTO)
/* SM is an optional extension to AdvSIMD. */
#define TARGET_SM4 (TARGET_SIMD && AARCH64_ISA_SM4)
/* FP16FML is an optional extension to AdvSIMD. */
#define TARGET_F16FML (TARGET_SIMD && AARCH64_ISA_F16FML && TARGET_FP_F16INST)
/* CRC instructions that can be enabled through +crc arch extension. */
#define TARGET_CRC32 (AARCH64_ISA_CRC)
/* Atomic instructions that can be enabled through the +lse extension. */
#define TARGET_LSE (AARCH64_ISA_LSE)
/* ARMv8.2-A FP16 support that can be enabled through the +fp16 extension. */
#define TARGET_FP_F16INST (TARGET_FLOAT && AARCH64_ISA_F16)
#define TARGET_SIMD_F16INST (TARGET_SIMD && AARCH64_ISA_F16)
/* Dot Product is an optional extension to AdvSIMD enabled through +dotprod. */
#define TARGET_DOTPROD (TARGET_SIMD && AARCH64_ISA_DOTPROD)
/* SVE instructions, enabled through +sve. */
#define TARGET_SVE (!TARGET_GENERAL_REGS_ONLY && AARCH64_ISA_SVE)
/* SVE2 instructions, enabled through +sve2. */
#define TARGET_SVE2 (TARGET_SVE && AARCH64_ISA_SVE2)
/* SVE2 AES instructions, enabled through +sve2-aes. */
#define TARGET_SVE2_AES (TARGET_SVE2 && AARCH64_ISA_SVE2_AES)
/* SVE2 BITPERM instructions, enabled through +sve2-bitperm. */
#define TARGET_SVE2_BITPERM (TARGET_SVE2 && AARCH64_ISA_SVE2_BITPERM)
/* SVE2 SHA3 instructions, enabled through +sve2-sha3. */
#define TARGET_SVE2_SHA3 (TARGET_SVE2 && AARCH64_ISA_SVE2_SHA3)
/* SVE2 SM4 instructions, enabled through +sve2-sm4. */
#define TARGET_SVE2_SM4 (TARGET_SVE2 && AARCH64_ISA_SVE2_SM4)
/* ARMv8.3-A features. */
#define TARGET_ARMV8_3 (AARCH64_ISA_V8_3)
/* Javascript conversion instruction from Armv8.3-a. */
#define TARGET_JSCVT (TARGET_FLOAT && AARCH64_ISA_V8_3)
/* Armv8.3-a Complex number extension to AdvSIMD extensions. */
#define TARGET_COMPLEX (TARGET_SIMD && TARGET_ARMV8_3)
/* Floating-point rounding instructions from Armv8.5-a. */
#define TARGET_FRINT (AARCH64_ISA_V8_5 && TARGET_FLOAT)
/* TME instructions are enabled. */
#define TARGET_TME (AARCH64_ISA_TME)
/* Random number instructions from Armv8.5-a. */
#define TARGET_RNG (AARCH64_ISA_RNG)
/* Memory Tagging instructions optional to Armv8.5 enabled through +memtag. */
#define TARGET_MEMTAG (AARCH64_ISA_V8_5 && AARCH64_ISA_MEMTAG)
/* I8MM instructions are enabled through +i8mm. */
#define TARGET_I8MM (AARCH64_ISA_I8MM)
#define TARGET_SVE_I8MM (TARGET_SVE && AARCH64_ISA_I8MM)
/* F32MM instructions are enabled through +f32mm. */
#define TARGET_F32MM (AARCH64_ISA_F32MM)
#define TARGET_SVE_F32MM (TARGET_SVE && AARCH64_ISA_F32MM)
/* F64MM instructions are enabled through +f64mm. */
#define TARGET_F64MM (AARCH64_ISA_F64MM)
#define TARGET_SVE_F64MM (TARGET_SVE && AARCH64_ISA_F64MM)
/* BF16 instructions are enabled through +bf16. */
#define TARGET_BF16_FP (AARCH64_ISA_BF16)
#define TARGET_BF16_SIMD (AARCH64_ISA_BF16 && TARGET_SIMD)
#define TARGET_SVE_BF16 (TARGET_SVE && AARCH64_ISA_BF16)
/* Make sure this is always defined so we don't have to check for ifdefs
but rather use normal ifs. */
#ifndef TARGET_FIX_ERR_A53_835769_DEFAULT
#define TARGET_FIX_ERR_A53_835769_DEFAULT 0
#else
#undef TARGET_FIX_ERR_A53_835769_DEFAULT
#define TARGET_FIX_ERR_A53_835769_DEFAULT 1
#endif
/* SB instruction is enabled through +sb. */
#define TARGET_SB (AARCH64_ISA_SB)
/* Apply the workaround for Cortex-A53 erratum 835769. */
#define TARGET_FIX_ERR_A53_835769 \
((aarch64_fix_a53_err835769 == 2) \
? TARGET_FIX_ERR_A53_835769_DEFAULT : aarch64_fix_a53_err835769)
/* Make sure this is always defined so we don't have to check for ifdefs
but rather use normal ifs. */
#ifndef TARGET_FIX_ERR_A53_843419_DEFAULT
#define TARGET_FIX_ERR_A53_843419_DEFAULT 0
#else
#undef TARGET_FIX_ERR_A53_843419_DEFAULT
#define TARGET_FIX_ERR_A53_843419_DEFAULT 1
#endif
/* Apply the workaround for Cortex-A53 erratum 843419. */
#define TARGET_FIX_ERR_A53_843419 \
((aarch64_fix_a53_err843419 == 2) \
? TARGET_FIX_ERR_A53_843419_DEFAULT : aarch64_fix_a53_err843419)
/* ARMv8.1-A Adv.SIMD support. */
#define TARGET_SIMD_RDMA (TARGET_SIMD && AARCH64_ISA_RDMA)
/* Standard register usage. */
/* 31 64-bit general purpose registers R0-R30:
R30 LR (link register)
R29 FP (frame pointer)
R19-R28 Callee-saved registers
R18 The platform register; use as temporary register.
R17 IP1 The second intra-procedure-call temporary register
(can be used by call veneers and PLT code); otherwise use
as a temporary register
R16 IP0 The first intra-procedure-call temporary register (can
be used by call veneers and PLT code); otherwise use as a
temporary register
R9-R15 Temporary registers
R8 Structure value parameter / temporary register
R0-R7 Parameter/result registers
SP stack pointer, encoded as X/R31 where permitted.
ZR zero register, encoded as X/R31 elsewhere
32 x 128-bit floating-point/vector registers
V16-V31 Caller-saved (temporary) registers
V8-V15 Callee-saved registers
V0-V7 Parameter/result registers
The vector register V0 holds scalar B0, H0, S0 and D0 in its least
significant bits. Unlike AArch32 S1 is not packed into D0, etc.
P0-P7 Predicate low registers: valid in all predicate contexts
P8-P15 Predicate high registers: used as scratch space
FFR First Fault Register, a fixed-use SVE predicate register
FFRT FFR token: a fake register used for modelling dependencies
VG Pseudo "vector granules" register
VG is the number of 64-bit elements in an SVE vector. We define
it as a hard register so that we can easily map it to the DWARF VG
register. GCC internally uses the poly_int variable aarch64_sve_vg
instead. */
#define FIXED_REGISTERS \
{ \
0, 0, 0, 0, 0, 0, 0, 0, /* R0 - R7 */ \
0, 0, 0, 0, 0, 0, 0, 0, /* R8 - R15 */ \
0, 0, 0, 0, 0, 0, 0, 0, /* R16 - R23 */ \
0, 0, 0, 0, 0, 1, 0, 1, /* R24 - R30, SP */ \
0, 0, 0, 0, 0, 0, 0, 0, /* V0 - V7 */ \
0, 0, 0, 0, 0, 0, 0, 0, /* V8 - V15 */ \
0, 0, 0, 0, 0, 0, 0, 0, /* V16 - V23 */ \
0, 0, 0, 0, 0, 0, 0, 0, /* V24 - V31 */ \
1, 1, 1, 1, /* SFP, AP, CC, VG */ \
0, 0, 0, 0, 0, 0, 0, 0, /* P0 - P7 */ \
0, 0, 0, 0, 0, 0, 0, 0, /* P8 - P15 */ \
1, 1 /* FFR and FFRT */ \
}
/* X30 is marked as caller-saved which is in line with regular function call
behavior since the call instructions clobber it; AARCH64_EXPAND_CALL does
that for regular function calls and avoids it for sibcalls. X30 is
considered live for sibcalls; EPILOGUE_USES helps achieve that by returning
true but not until function epilogues have been generated. This ensures
that X30 is available for use in leaf functions if needed. */
#define CALL_USED_REGISTERS \
{ \
1, 1, 1, 1, 1, 1, 1, 1, /* R0 - R7 */ \
1, 1, 1, 1, 1, 1, 1, 1, /* R8 - R15 */ \
1, 1, 1, 0, 0, 0, 0, 0, /* R16 - R23 */ \
0, 0, 0, 0, 0, 1, 1, 1, /* R24 - R30, SP */ \
1, 1, 1, 1, 1, 1, 1, 1, /* V0 - V7 */ \
0, 0, 0, 0, 0, 0, 0, 0, /* V8 - V15 */ \
1, 1, 1, 1, 1, 1, 1, 1, /* V16 - V23 */ \
1, 1, 1, 1, 1, 1, 1, 1, /* V24 - V31 */ \
1, 1, 1, 1, /* SFP, AP, CC, VG */ \
1, 1, 1, 1, 1, 1, 1, 1, /* P0 - P7 */ \
1, 1, 1, 1, 1, 1, 1, 1, /* P8 - P15 */ \
1, 1 /* FFR and FFRT */ \
}
#define REGISTER_NAMES \
{ \
"x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7", \
"x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15", \
"x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23", \
"x24", "x25", "x26", "x27", "x28", "x29", "x30", "sp", \
"v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7", \
"v8", "v9", "v10", "v11", "v12", "v13", "v14", "v15", \
"v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23", \
"v24", "v25", "v26", "v27", "v28", "v29", "v30", "v31", \
"sfp", "ap", "cc", "vg", \
"p0", "p1", "p2", "p3", "p4", "p5", "p6", "p7", \
"p8", "p9", "p10", "p11", "p12", "p13", "p14", "p15", \
"ffr", "ffrt" \
}
/* Generate the register aliases for core register N */
#define R_ALIASES(N) {"r" # N, R0_REGNUM + (N)}, \
{"w" # N, R0_REGNUM + (N)}
#define V_ALIASES(N) {"q" # N, V0_REGNUM + (N)}, \
{"d" # N, V0_REGNUM + (N)}, \
{"s" # N, V0_REGNUM + (N)}, \
{"h" # N, V0_REGNUM + (N)}, \
{"b" # N, V0_REGNUM + (N)}, \
{"z" # N, V0_REGNUM + (N)}
/* Provide aliases for all of the ISA defined register name forms.
These aliases are convenient for use in the clobber lists of inline
asm statements. */
#define ADDITIONAL_REGISTER_NAMES \
{ R_ALIASES(0), R_ALIASES(1), R_ALIASES(2), R_ALIASES(3), \
R_ALIASES(4), R_ALIASES(5), R_ALIASES(6), R_ALIASES(7), \
R_ALIASES(8), R_ALIASES(9), R_ALIASES(10), R_ALIASES(11), \
R_ALIASES(12), R_ALIASES(13), R_ALIASES(14), R_ALIASES(15), \
R_ALIASES(16), R_ALIASES(17), R_ALIASES(18), R_ALIASES(19), \
R_ALIASES(20), R_ALIASES(21), R_ALIASES(22), R_ALIASES(23), \
R_ALIASES(24), R_ALIASES(25), R_ALIASES(26), R_ALIASES(27), \
R_ALIASES(28), R_ALIASES(29), R_ALIASES(30), {"wsp", R0_REGNUM + 31}, \
V_ALIASES(0), V_ALIASES(1), V_ALIASES(2), V_ALIASES(3), \
V_ALIASES(4), V_ALIASES(5), V_ALIASES(6), V_ALIASES(7), \
V_ALIASES(8), V_ALIASES(9), V_ALIASES(10), V_ALIASES(11), \
V_ALIASES(12), V_ALIASES(13), V_ALIASES(14), V_ALIASES(15), \
V_ALIASES(16), V_ALIASES(17), V_ALIASES(18), V_ALIASES(19), \
V_ALIASES(20), V_ALIASES(21), V_ALIASES(22), V_ALIASES(23), \
V_ALIASES(24), V_ALIASES(25), V_ALIASES(26), V_ALIASES(27), \
V_ALIASES(28), V_ALIASES(29), V_ALIASES(30), V_ALIASES(31) \
}
#define EPILOGUE_USES(REGNO) (aarch64_epilogue_uses (REGNO))
/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
the stack pointer does not matter. This is only true if the function
uses alloca. */
#define EXIT_IGNORE_STACK (cfun->calls_alloca)
#define STATIC_CHAIN_REGNUM R18_REGNUM
#define HARD_FRAME_POINTER_REGNUM R29_REGNUM
#define FRAME_POINTER_REGNUM SFP_REGNUM
#define STACK_POINTER_REGNUM SP_REGNUM
#define ARG_POINTER_REGNUM AP_REGNUM
#define FIRST_PSEUDO_REGISTER (FFRT_REGNUM + 1)
/* The number of argument registers available for each class. */
#define NUM_ARG_REGS 8
#define NUM_FP_ARG_REGS 8
#define NUM_PR_ARG_REGS 4
/* A Homogeneous Floating-Point or Short-Vector Aggregate may have at most
four members. */
#define HA_MAX_NUM_FLDS 4
/* External dwarf register number scheme. These number are used to
identify registers in dwarf debug information, the values are
defined by the AArch64 ABI. The numbering scheme is independent of
GCC's internal register numbering scheme. */
#define AARCH64_DWARF_R0 0
/* The number of R registers, note 31! not 32. */
#define AARCH64_DWARF_NUMBER_R 31
#define AARCH64_DWARF_SP 31
#define AARCH64_DWARF_VG 46
#define AARCH64_DWARF_P0 48
#define AARCH64_DWARF_V0 64
/* The number of V registers. */
#define AARCH64_DWARF_NUMBER_V 32
/* For signal frames we need to use an alternative return column. This
value must not correspond to a hard register and must be out of the
range of DWARF_FRAME_REGNUM(). */
#define DWARF_ALT_FRAME_RETURN_COLUMN \
(AARCH64_DWARF_V0 + AARCH64_DWARF_NUMBER_V)
/* We add 1 extra frame register for use as the
DWARF_ALT_FRAME_RETURN_COLUMN. */
#define DWARF_FRAME_REGISTERS (DWARF_ALT_FRAME_RETURN_COLUMN + 1)
#define DBX_REGISTER_NUMBER(REGNO) aarch64_dbx_register_number (REGNO)
/* Provide a definition of DWARF_FRAME_REGNUM here so that fallback unwinders
can use DWARF_ALT_FRAME_RETURN_COLUMN defined below. This is just the same
as the default definition in dwarf2out.c. */
#undef DWARF_FRAME_REGNUM
#define DWARF_FRAME_REGNUM(REGNO) DBX_REGISTER_NUMBER (REGNO)
#define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (LR_REGNUM)
#define DWARF2_UNWIND_INFO 1
/* Use R0 through R3 to pass exception handling information. */
#define EH_RETURN_DATA_REGNO(N) \
((N) < 4 ? ((unsigned int) R0_REGNUM + (N)) : INVALID_REGNUM)
/* Select a format to encode pointers in exception handling data. */
#define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
aarch64_asm_preferred_eh_data_format ((CODE), (GLOBAL))
/* Output the assembly strings we want to add to a function definition. */
#define ASM_DECLARE_FUNCTION_NAME(STR, NAME, DECL) \
aarch64_declare_function_name (STR, NAME, DECL)
/* Output assembly strings for alias definition. */
#define ASM_OUTPUT_DEF_FROM_DECLS(STR, DECL, TARGET) \
aarch64_asm_output_alias (STR, DECL, TARGET)
/* Output assembly strings for undefined extern symbols. */
#undef ASM_OUTPUT_EXTERNAL
#define ASM_OUTPUT_EXTERNAL(STR, DECL, NAME) \
aarch64_asm_output_external (STR, DECL, NAME)
/* Output assembly strings after .cfi_startproc is emitted. */
#define ASM_POST_CFI_STARTPROC aarch64_post_cfi_startproc
/* For EH returns X4 contains the stack adjustment. */
#define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, R4_REGNUM)
#define EH_RETURN_HANDLER_RTX aarch64_eh_return_handler_rtx ()
/* Don't use __builtin_setjmp until we've defined it. */
#undef DONT_USE_BUILTIN_SETJMP
#define DONT_USE_BUILTIN_SETJMP 1
#undef TARGET_COMPUTE_FRAME_LAYOUT
#define TARGET_COMPUTE_FRAME_LAYOUT aarch64_layout_frame
/* Register in which the structure value is to be returned. */
#define AARCH64_STRUCT_VALUE_REGNUM R8_REGNUM
/* Non-zero if REGNO is part of the Core register set.
The rather unusual way of expressing this check is to avoid
warnings when building the compiler when R0_REGNUM is 0 and REGNO
is unsigned. */
#define GP_REGNUM_P(REGNO) \
(((unsigned) (REGNO - R0_REGNUM)) <= (R30_REGNUM - R0_REGNUM))
/* Registers known to be preserved over a BL instruction. This consists of the
GENERAL_REGS without x16, x17, and x30. The x30 register is changed by the
BL instruction itself, while the x16 and x17 registers may be used by
veneers which can be inserted by the linker. */
#define STUB_REGNUM_P(REGNO) \
(GP_REGNUM_P (REGNO) \
&& (REGNO) != R16_REGNUM \
&& (REGNO) != R17_REGNUM \
&& (REGNO) != R30_REGNUM) \
#define FP_REGNUM_P(REGNO) \
(((unsigned) (REGNO - V0_REGNUM)) <= (V31_REGNUM - V0_REGNUM))
#define FP_LO_REGNUM_P(REGNO) \
(((unsigned) (REGNO - V0_REGNUM)) <= (V15_REGNUM - V0_REGNUM))
#define FP_LO8_REGNUM_P(REGNO) \
(((unsigned) (REGNO - V0_REGNUM)) <= (V7_REGNUM - V0_REGNUM))
#define PR_REGNUM_P(REGNO)\
(((unsigned) (REGNO - P0_REGNUM)) <= (P15_REGNUM - P0_REGNUM))
#define PR_LO_REGNUM_P(REGNO)\
(((unsigned) (REGNO - P0_REGNUM)) <= (P7_REGNUM - P0_REGNUM))
#define FP_SIMD_SAVED_REGNUM_P(REGNO) \
(((unsigned) (REGNO - V8_REGNUM)) <= (V23_REGNUM - V8_REGNUM))
/* Register and constant classes. */
enum reg_class
{
NO_REGS,
TAILCALL_ADDR_REGS,
STUB_REGS,
GENERAL_REGS,
STACK_REG,
POINTER_REGS,
FP_LO8_REGS,
FP_LO_REGS,
FP_REGS,
POINTER_AND_FP_REGS,
PR_LO_REGS,
PR_HI_REGS,
PR_REGS,
FFR_REGS,
PR_AND_FFR_REGS,
ALL_REGS,
LIM_REG_CLASSES /* Last */
};
#define N_REG_CLASSES ((int) LIM_REG_CLASSES)
#define REG_CLASS_NAMES \
{ \
"NO_REGS", \
"TAILCALL_ADDR_REGS", \
"STUB_REGS", \
"GENERAL_REGS", \
"STACK_REG", \
"POINTER_REGS", \
"FP_LO8_REGS", \
"FP_LO_REGS", \
"FP_REGS", \
"POINTER_AND_FP_REGS", \
"PR_LO_REGS", \
"PR_HI_REGS", \
"PR_REGS", \
"FFR_REGS", \
"PR_AND_FFR_REGS", \
"ALL_REGS" \
}
#define REG_CLASS_CONTENTS \
{ \
{ 0x00000000, 0x00000000, 0x00000000 }, /* NO_REGS */ \
{ 0x00030000, 0x00000000, 0x00000000 }, /* TAILCALL_ADDR_REGS */\
{ 0x3ffcffff, 0x00000000, 0x00000000 }, /* STUB_REGS */ \
{ 0x7fffffff, 0x00000000, 0x00000003 }, /* GENERAL_REGS */ \
{ 0x80000000, 0x00000000, 0x00000000 }, /* STACK_REG */ \
{ 0xffffffff, 0x00000000, 0x00000003 }, /* POINTER_REGS */ \
{ 0x00000000, 0x000000ff, 0x00000000 }, /* FP_LO8_REGS */ \
{ 0x00000000, 0x0000ffff, 0x00000000 }, /* FP_LO_REGS */ \
{ 0x00000000, 0xffffffff, 0x00000000 }, /* FP_REGS */ \
{ 0xffffffff, 0xffffffff, 0x00000003 }, /* POINTER_AND_FP_REGS */\
{ 0x00000000, 0x00000000, 0x00000ff0 }, /* PR_LO_REGS */ \
{ 0x00000000, 0x00000000, 0x000ff000 }, /* PR_HI_REGS */ \
{ 0x00000000, 0x00000000, 0x000ffff0 }, /* PR_REGS */ \
{ 0x00000000, 0x00000000, 0x00300000 }, /* FFR_REGS */ \
{ 0x00000000, 0x00000000, 0x003ffff0 }, /* PR_AND_FFR_REGS */ \
{ 0xffffffff, 0xffffffff, 0x000fffff } /* ALL_REGS */ \
}
#define REGNO_REG_CLASS(REGNO) aarch64_regno_regclass (REGNO)
#define INDEX_REG_CLASS GENERAL_REGS
#define BASE_REG_CLASS POINTER_REGS
/* Register pairs used to eliminate unneeded registers that point into
the stack frame. */
#define ELIMINABLE_REGS \
{ \
{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM }, \
{ ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM }, \
{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM }, \
{ FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM }, \
}
#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
(OFFSET) = aarch64_initial_elimination_offset (FROM, TO)
/* CPU/ARCH option handling. */
#include "config/aarch64/aarch64-opts.h"
enum target_cpus
{
#define AARCH64_CORE(NAME, INTERNAL_IDENT, SCHED, ARCH, FLAGS, COSTS, IMP, PART, VARIANT) \
TARGET_CPU_##INTERNAL_IDENT,
#include "aarch64-cores.def"
TARGET_CPU_generic
};
/* If there is no CPU defined at configure, use generic as default. */
#ifndef TARGET_CPU_DEFAULT
#define TARGET_CPU_DEFAULT \
(TARGET_CPU_generic | (AARCH64_CPU_DEFAULT_FLAGS << 6))
#endif
/* If inserting NOP before a mult-accumulate insn remember to adjust the
length so that conditional branching code is updated appropriately. */
#define ADJUST_INSN_LENGTH(insn, length) \
do \
{ \
if (aarch64_madd_needs_nop (insn)) \
length += 4; \
} while (0)
#define FINAL_PRESCAN_INSN(INSN, OPVEC, NOPERANDS) \
aarch64_final_prescan_insn (INSN); \
/* The processor for which instructions should be scheduled. */
extern enum aarch64_processor aarch64_tune;
/* RTL generation support. */
#define INIT_EXPANDERS aarch64_init_expanders ()
/* Stack layout; function entry, exit and calling. */
#define STACK_GROWS_DOWNWARD 1
#define FRAME_GROWS_DOWNWARD 1
#define ACCUMULATE_OUTGOING_ARGS 1
#define FIRST_PARM_OFFSET(FNDECL) 0
/* Fix for VFP */
#define LIBCALL_VALUE(MODE) \
gen_rtx_REG (MODE, FLOAT_MODE_P (MODE) ? V0_REGNUM : R0_REGNUM)
#define DEFAULT_PCC_STRUCT_RETURN 0
#ifdef HAVE_POLY_INT_H
struct GTY (()) aarch64_frame
{
poly_int64 reg_offset[LAST_SAVED_REGNUM + 1];
/* The number of extra stack bytes taken up by register varargs.
This area is allocated by the callee at the very top of the
frame. This value is rounded up to a multiple of
STACK_BOUNDARY. */
HOST_WIDE_INT saved_varargs_size;
/* The size of the callee-save registers with a slot in REG_OFFSET. */
poly_int64 saved_regs_size;
/* The size of the callee-save registers with a slot in REG_OFFSET that
are saved below the hard frame pointer. */
poly_int64 below_hard_fp_saved_regs_size;
/* Offset from the base of the frame (incomming SP) to the
top of the locals area. This value is always a multiple of
STACK_BOUNDARY. */
poly_int64 locals_offset;
/* Offset from the base of the frame (incomming SP) to the
hard_frame_pointer. This value is always a multiple of
STACK_BOUNDARY. */
poly_int64 hard_fp_offset;
/* The size of the frame. This value is the offset from base of the
frame (incomming SP) to the stack_pointer. This value is always
a multiple of STACK_BOUNDARY. */
poly_int64 frame_size;
/* The size of the initial stack adjustment before saving callee-saves. */
poly_int64 initial_adjust;
/* The writeback value when pushing callee-save registers.
It is zero when no push is used. */
HOST_WIDE_INT callee_adjust;
/* The offset from SP to the callee-save registers after initial_adjust.
It may be non-zero if no push is used (ie. callee_adjust == 0). */
poly_int64 callee_offset;
/* The size of the stack adjustment before saving or after restoring
SVE registers. */
poly_int64 sve_callee_adjust;
/* The size of the stack adjustment after saving callee-saves. */
poly_int64 final_adjust;
/* Store FP,LR and setup a frame pointer. */
bool emit_frame_chain;
unsigned wb_candidate1;
unsigned wb_candidate2;
/* Big-endian SVE frames need a spare predicate register in order
to save vector registers in the correct layout for unwinding.
This is the register they should use. */
unsigned spare_pred_reg;
bool laid_out;
};
typedef struct GTY (()) machine_function
{
struct aarch64_frame frame;
/* One entry for each hard register. */
bool reg_is_wrapped_separately[LAST_SAVED_REGNUM];
/* One entry for each general purpose register. */
rtx call_via[SP_REGNUM];
bool label_is_assembled;
} machine_function;
#endif
/* Which ABI to use. */
enum aarch64_abi_type
{
AARCH64_ABI_LP64 = 0,
AARCH64_ABI_ILP32 = 1
};
#ifndef AARCH64_ABI_DEFAULT
#define AARCH64_ABI_DEFAULT AARCH64_ABI_LP64
#endif
#define TARGET_ILP32 (aarch64_abi & AARCH64_ABI_ILP32)
enum arm_pcs
{
ARM_PCS_AAPCS64, /* Base standard AAPCS for 64 bit. */
ARM_PCS_SIMD, /* For aarch64_vector_pcs functions. */
ARM_PCS_SVE, /* For functions that pass or return
values in SVE registers. */
ARM_PCS_TLSDESC, /* For targets of tlsdesc calls. */
ARM_PCS_UNKNOWN
};
/* We can't use machine_mode inside a generator file because it
hasn't been created yet; we shouldn't be using any code that
needs the real definition though, so this ought to be safe. */
#ifdef GENERATOR_FILE
#define MACHMODE int
#else
#include "insn-modes.h"
#define MACHMODE machine_mode
#endif
#ifndef USED_FOR_TARGET
/* AAPCS related state tracking. */
typedef struct
{
enum arm_pcs pcs_variant;
int aapcs_arg_processed; /* No need to lay out this argument again. */
int aapcs_ncrn; /* Next Core register number. */
int aapcs_nextncrn; /* Next next core register number. */
int aapcs_nvrn; /* Next Vector register number. */
int aapcs_nextnvrn; /* Next Next Vector register number. */
int aapcs_nprn; /* Next Predicate register number. */
int aapcs_nextnprn; /* Next Next Predicate register number. */
rtx aapcs_reg; /* Register assigned to this argument. This
is NULL_RTX if this parameter goes on
the stack. */
MACHMODE aapcs_vfp_rmode;
int aapcs_stack_words; /* If the argument is passed on the stack, this
is the number of words needed, after rounding
up. Only meaningful when
aapcs_reg == NULL_RTX. */
int aapcs_stack_size; /* The total size (in words, per 8 byte) of the
stack arg area so far. */
bool silent_p; /* True if we should act silently, rather than
raise an error for invalid calls. */
} CUMULATIVE_ARGS;
#endif
#define BLOCK_REG_PADDING(MODE, TYPE, FIRST) \
(aarch64_pad_reg_upward (MODE, TYPE, FIRST) ? PAD_UPWARD : PAD_DOWNWARD)
#define PAD_VARARGS_DOWN 0
#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
aarch64_init_cumulative_args (&(CUM), FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS)
#define FUNCTION_ARG_REGNO_P(REGNO) \
aarch64_function_arg_regno_p(REGNO)
/* ISA Features. */
/* Addressing modes, etc. */
#define HAVE_POST_INCREMENT 1
#define HAVE_PRE_INCREMENT 1
#define HAVE_POST_DECREMENT 1
#define HAVE_PRE_DECREMENT 1
#define HAVE_POST_MODIFY_DISP 1
#define HAVE_PRE_MODIFY_DISP 1
#define MAX_REGS_PER_ADDRESS 2
#define CONSTANT_ADDRESS_P(X) aarch64_constant_address_p(X)
#define REGNO_OK_FOR_BASE_P(REGNO) \
aarch64_regno_ok_for_base_p (REGNO, true)
#define REGNO_OK_FOR_INDEX_P(REGNO) \
aarch64_regno_ok_for_index_p (REGNO, true)
#define LEGITIMATE_PIC_OPERAND_P(X) \
aarch64_legitimate_pic_operand_p (X)
#define CASE_VECTOR_MODE Pmode
#define DEFAULT_SIGNED_CHAR 0
/* An integer expression for the size in bits of the largest integer machine
mode that should actually be used. We allow pairs of registers. */
#define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TImode)
/* Maximum bytes moved by a single instruction (load/store pair). */
#define MOVE_MAX (UNITS_PER_WORD * 2)
/* The base cost overhead of a memcpy call, for MOVE_RATIO and friends. */
#define AARCH64_CALL_RATIO 8
/* MOVE_RATIO dictates when we will use the move_by_pieces infrastructure.
move_by_pieces will continually copy the largest safe chunks. So a
7-byte copy is a 4-byte + 2-byte + byte copy. This proves inefficient
for both size and speed of copy, so we will instead use the "cpymem"
standard name to implement the copy. This logic does not apply when
targeting -mstrict-align, so keep a sensible default in that case. */
#define MOVE_RATIO(speed) \
(!STRICT_ALIGNMENT ? 2 : (((speed) ? 15 : AARCH64_CALL_RATIO) / 2))
/* For CLEAR_RATIO, when optimizing for size, give a better estimate
of the length of a memset call, but use the default otherwise. */
#define CLEAR_RATIO(speed) \
((speed) ? 15 : AARCH64_CALL_RATIO)
/* SET_RATIO is similar to CLEAR_RATIO, but for a non-zero constant, so when
optimizing for size adjust the ratio to account for the overhead of loading
the constant. */
#define SET_RATIO(speed) \
((speed) ? 15 : AARCH64_CALL_RATIO - 2)
/* Disable auto-increment in move_by_pieces et al. Use of auto-increment is
rarely a good idea in straight-line code since it adds an extra address
dependency between each instruction. Better to use incrementing offsets. */
#define USE_LOAD_POST_INCREMENT(MODE) 0
#define USE_LOAD_POST_DECREMENT(MODE) 0
#define USE_LOAD_PRE_INCREMENT(MODE) 0
#define USE_LOAD_PRE_DECREMENT(MODE) 0
#define USE_STORE_POST_INCREMENT(MODE) 0
#define USE_STORE_POST_DECREMENT(MODE) 0
#define USE_STORE_PRE_INCREMENT(MODE) 0
#define USE_STORE_PRE_DECREMENT(MODE) 0
/* WORD_REGISTER_OPERATIONS does not hold for AArch64.
The assigned word_mode is DImode but operations narrower than SImode
behave as 32-bit operations if using the W-form of the registers rather
than as word_mode (64-bit) operations as WORD_REGISTER_OPERATIONS
expects. */
#define WORD_REGISTER_OPERATIONS 0
/* Define if loading from memory in MODE, an integral mode narrower than
BITS_PER_WORD will either zero-extend or sign-extend. The value of this
macro should be the code that says which one of the two operations is
implicitly done, or UNKNOWN if none. */
#define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
/* Define this macro to be non-zero if instructions will fail to work
if given data not on the nominal alignment. */
#define STRICT_ALIGNMENT TARGET_STRICT_ALIGN
/* Enable wide bitfield accesses for more efficient bitfield code. */
#define SLOW_BYTE_ACCESS 1
#define NO_FUNCTION_CSE 1
/* Specify the machine mode that the hardware addresses have.
After generation of rtl, the compiler makes no further distinction
between pointers and any other objects of this machine mode. */
#define Pmode DImode
/* A C expression whose value is zero if pointers that need to be extended
from being `POINTER_SIZE' bits wide to `Pmode' are sign-extended and
greater then zero if they are zero-extended and less then zero if the
ptr_extend instruction should be used. */
#define POINTERS_EXTEND_UNSIGNED 1
/* Mode of a function address in a call instruction (for indexing purposes). */
#define FUNCTION_MODE Pmode
#define SELECT_CC_MODE(OP, X, Y) aarch64_select_cc_mode (OP, X, Y)
/* Having an integer comparison mode guarantees that we can use
reverse_condition, but the usual restrictions apply to floating-point
comparisons. */
#define REVERSIBLE_CC_MODE(MODE) ((MODE) != CCFPmode && (MODE) != CCFPEmode)
#define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
((VALUE) = GET_MODE_UNIT_BITSIZE (MODE), 2)
#define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
((VALUE) = GET_MODE_UNIT_BITSIZE (MODE), 2)
#define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, LR_REGNUM)
#define RETURN_ADDR_RTX aarch64_return_addr
/* BTI c + 3 insns
+ sls barrier of DSB + ISB.
+ 2 pointer-sized entries. */
#define TRAMPOLINE_SIZE (24 + (TARGET_ILP32 ? 8 : 16))
/* Trampolines contain dwords, so must be dword aligned. */
#define TRAMPOLINE_ALIGNMENT 64
/* Put trampolines in the text section so that mapping symbols work
correctly. */
#define TRAMPOLINE_SECTION text_section
/* To start with. */
#define BRANCH_COST(SPEED_P, PREDICTABLE_P) \
(aarch64_branch_cost (SPEED_P, PREDICTABLE_P))
/* Assembly output. */
/* For now we'll make all jump tables pc-relative. */
#define CASE_VECTOR_PC_RELATIVE 1
#define CASE_VECTOR_SHORTEN_MODE(min, max, body) \
((min < -0x1fff0 || max > 0x1fff0) ? SImode \
: (min < -0x1f0 || max > 0x1f0) ? HImode \
: QImode)
/* Jump table alignment is explicit in ASM_OUTPUT_CASE_LABEL. */
#define ADDR_VEC_ALIGN(JUMPTABLE) 0
#define MCOUNT_NAME "_mcount"
#define NO_PROFILE_COUNTERS 1
/* Emit rtl for profiling. Output assembler code to FILE
to call "_mcount" for profiling a function entry. */
#define PROFILE_HOOK(LABEL) \
{ \
rtx fun, lr; \
lr = aarch64_return_addr_rtx (); \
fun = gen_rtx_SYMBOL_REF (Pmode, MCOUNT_NAME); \
emit_library_call (fun, LCT_NORMAL, VOIDmode, lr, Pmode); \
}
/* All the work done in PROFILE_HOOK, but still required. */
#define FUNCTION_PROFILER(STREAM, LABELNO) do { } while (0)
/* For some reason, the Linux headers think they know how to define
these macros. They don't!!! */
#undef ASM_APP_ON
#undef ASM_APP_OFF
#define ASM_APP_ON "\t" ASM_COMMENT_START " Start of user assembly\n"
#define ASM_APP_OFF "\t" ASM_COMMENT_START " End of user assembly\n"
#define CONSTANT_POOL_BEFORE_FUNCTION 0
/* This definition should be relocated to aarch64-elf-raw.h. This macro
should be undefined in aarch64-linux.h and a clear_cache pattern
implmented to emit either the call to __aarch64_sync_cache_range()
directly or preferably the appropriate sycall or cache clear
instructions inline. */
#define CLEAR_INSN_CACHE(beg, end) \
extern void __aarch64_sync_cache_range (void *, void *); \
__aarch64_sync_cache_range (beg, end)
#define SHIFT_COUNT_TRUNCATED (!TARGET_SIMD)
/* Choose appropriate mode for caller saves, so we do the minimum
required size of load/store. */
#define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
aarch64_hard_regno_caller_save_mode ((REGNO), (NREGS), (MODE))
#undef SWITCHABLE_TARGET
#define SWITCHABLE_TARGET 1
/* Check TLS Descriptors mechanism is selected. */
#define TARGET_TLS_DESC (aarch64_tls_dialect == TLS_DESCRIPTORS)
extern enum aarch64_code_model aarch64_cmodel;
/* When using the tiny addressing model conditional and unconditional branches
can span the whole of the available address space (1MB). */
#define HAS_LONG_COND_BRANCH \
(aarch64_cmodel == AARCH64_CMODEL_TINY \
|| aarch64_cmodel == AARCH64_CMODEL_TINY_PIC)
#define HAS_LONG_UNCOND_BRANCH \
(aarch64_cmodel == AARCH64_CMODEL_TINY \
|| aarch64_cmodel == AARCH64_CMODEL_TINY_PIC)
#define TARGET_SUPPORTS_WIDE_INT 1
/* Modes valid for AdvSIMD D registers, i.e. that fit in half a Q register. */
#define AARCH64_VALID_SIMD_DREG_MODE(MODE) \
((MODE) == V2SImode || (MODE) == V4HImode || (MODE) == V8QImode \
|| (MODE) == V2SFmode || (MODE) == V4HFmode || (MODE) == DImode \
|| (MODE) == DFmode || (MODE) == V4BFmode)
/* Modes valid for AdvSIMD Q registers. */
#define AARCH64_VALID_SIMD_QREG_MODE(MODE) \
((MODE) == V4SImode || (MODE) == V8HImode || (MODE) == V16QImode \
|| (MODE) == V4SFmode || (MODE) == V8HFmode || (MODE) == V2DImode \
|| (MODE) == V2DFmode || (MODE) == V8BFmode)
#define ENDIAN_LANE_N(NUNITS, N) \
(BYTES_BIG_ENDIAN ? NUNITS - 1 - N : N)
/* Support for configure-time --with-arch, --with-cpu and --with-tune.
--with-arch and --with-cpu are ignored if either -mcpu or -march is used.
--with-tune is ignored if either -mtune or -mcpu is used (but is not
affected by -march). */
#define OPTION_DEFAULT_SPECS \
{"arch", "%{!march=*:%{!mcpu=*:-march=%(VALUE)}}" }, \
{"cpu", "%{!march=*:%{!mcpu=*:-mcpu=%(VALUE)}}" }, \
{"tune", "%{!mcpu=*:%{!mtune=*:-mtune=%(VALUE)}}"},
#define MCPU_TO_MARCH_SPEC \
" %{mcpu=*:-march=%:rewrite_mcpu(%{mcpu=*:%*})}"
extern const char *aarch64_rewrite_mcpu (int argc, const char **argv);
#define MCPU_TO_MARCH_SPEC_FUNCTIONS \
{ "rewrite_mcpu", aarch64_rewrite_mcpu },
#if defined(__aarch64__)
extern const char *host_detect_local_cpu (int argc, const char **argv);
#define HAVE_LOCAL_CPU_DETECT
# define EXTRA_SPEC_FUNCTIONS \
{ "local_cpu_detect", host_detect_local_cpu }, \
MCPU_TO_MARCH_SPEC_FUNCTIONS
# define MCPU_MTUNE_NATIVE_SPECS \
" %{march=native:%<march=native %:local_cpu_detect(arch)}" \
" %{mcpu=native:%<mcpu=native %:local_cpu_detect(cpu)}" \
" %{mtune=native:%<mtune=native %:local_cpu_detect(tune)}"
#else
# define MCPU_MTUNE_NATIVE_SPECS ""
# define EXTRA_SPEC_FUNCTIONS MCPU_TO_MARCH_SPEC_FUNCTIONS
#endif
#define ASM_CPU_SPEC \
MCPU_TO_MARCH_SPEC
#define EXTRA_SPECS \
{ "asm_cpu_spec", ASM_CPU_SPEC }
#define ASM_OUTPUT_POOL_EPILOGUE aarch64_asm_output_pool_epilogue
/* This type is the user-visible __fp16, and a pointer to that type. We
need it in many places in the backend. Defined in aarch64-builtins.c. */
extern tree aarch64_fp16_type_node;
extern tree aarch64_fp16_ptr_type_node;
/* This type is the user-visible __bf16, and a pointer to that type. Defined
in aarch64-builtins.c. */
extern tree aarch64_bf16_type_node;
extern tree aarch64_bf16_ptr_type_node;
/* The generic unwind code in libgcc does not initialize the frame pointer.
So in order to unwind a function using a frame pointer, the very first
function that is unwound must save the frame pointer. That way the frame
pointer is restored and its value is now valid - otherwise _Unwind_GetGR
crashes. Libgcc can now be safely built with -fomit-frame-pointer. */
#define LIBGCC2_UNWIND_ATTRIBUTE \
__attribute__((optimize ("no-omit-frame-pointer")))
#ifndef USED_FOR_TARGET
extern poly_uint16 aarch64_sve_vg;
/* The number of bits and bytes in an SVE vector. */
#define BITS_PER_SVE_VECTOR (poly_uint16 (aarch64_sve_vg * 64))
#define BYTES_PER_SVE_VECTOR (poly_uint16 (aarch64_sve_vg * 8))
/* The number of bits and bytes in an SVE predicate. */
#define BITS_PER_SVE_PRED BYTES_PER_SVE_VECTOR
#define BYTES_PER_SVE_PRED aarch64_sve_vg
/* The SVE mode for a vector of bytes. */
#define SVE_BYTE_MODE VNx16QImode
/* The maximum number of bytes in a fixed-size vector. This is 256 bytes
(for -msve-vector-bits=2048) multiplied by the maximum number of
vectors in a structure mode (4).
This limit must not be used for variable-size vectors, since
VL-agnostic code must work with arbitary vector lengths. */
#define MAX_COMPILE_TIME_VEC_BYTES (256 * 4)
#endif
#define REGMODE_NATURAL_SIZE(MODE) aarch64_regmode_natural_size (MODE)
/* Allocate a minimum of STACK_CLASH_MIN_BYTES_OUTGOING_ARGS bytes for the
outgoing arguments if stack clash protection is enabled. This is essential
as the extra arg space allows us to skip a check in alloca. */
#undef STACK_DYNAMIC_OFFSET
#define STACK_DYNAMIC_OFFSET(FUNDECL) \
((flag_stack_clash_protection \
&& cfun->calls_alloca \
&& known_lt (crtl->outgoing_args_size, \
STACK_CLASH_MIN_BYTES_OUTGOING_ARGS)) \
? ROUND_UP (STACK_CLASH_MIN_BYTES_OUTGOING_ARGS, \
STACK_BOUNDARY / BITS_PER_UNIT) \
: (crtl->outgoing_args_size + STACK_POINTER_OFFSET))
#endif /* GCC_AARCH64_H */