;; Predicate definitions for NEC V850. ;; Copyright (C) 2005-2020 Free Software Foundation, Inc. ;; ;; This file is part of GCC. ;; ;; GCC is free software; you can redistribute it and/or modify ;; it under the terms of the GNU General Public License as published by ;; the Free Software Foundation; either version 3, or (at your option) ;; any later version. ;; ;; GCC is distributed in the hope that it will be useful, ;; but WITHOUT ANY WARRANTY; without even the implied warranty of ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ;; GNU General Public License for more details. ;; ;; You should have received a copy of the GNU General Public License ;; along with GCC; see the file COPYING3. If not see ;; http://www.gnu.org/licenses/.

;; Return true if OP is either a register or 0.

(define_predicate “reg_or_0_operand” (match_code “reg,subreg,const_int,const_double”) { if (GET_CODE (op) == CONST_INT) return INTVAL (op) == 0;

else if (GET_CODE (op) == CONST_DOUBLE) return satisfies_constraint_G (op);

else return register_operand (op, mode); })

;; Return true if OP is either a register or a signed five bit ;; integer.

(define_predicate “reg_or_int5_operand” (match_code “reg,subreg,const_int”) { if (GET_CODE (op) == CONST_INT) return CONST_OK_FOR_J (INTVAL (op));

else return register_operand (op, mode); })

;; Return true if OP is either a register or a signed nine bit ;; integer.

(define_predicate “reg_or_int9_operand” (match_code “reg,subreg,const_int”) { if (GET_CODE (op) == CONST_INT) return CONST_OK_FOR_O (INTVAL (op));

return register_operand (op, mode); })

;; Return true if OP is either a register or a const integer.

(define_predicate “reg_or_const_operand” (match_code “reg,const_int”) { if (GET_CODE (op) == CONST_INT) return TRUE;

return register_operand (op, mode); })

;; Return true if OP is a even number register.

(define_predicate “even_reg_operand” (match_code “reg”) { return (GET_CODE (op) == REG && (REGNO (op) >= FIRST_PSEUDO_REGISTER || ((REGNO (op) > 0) && (REGNO (op) < 32) && ((REGNO (op) & 1)==0)))); })

;; Return true if OP is a valid call operand.

(define_predicate “call_address_operand” (match_code “reg,symbol_ref”) { /* Only registers are valid call operands if TARGET_LONG_CALLS. */ if (TARGET_LONG_CALLS) return GET_CODE (op) == REG; return (GET_CODE (op) == SYMBOL_REF || GET_CODE (op) == REG); })

;; Return true if OP is a valid source operand for SImode move.

(define_predicate “movsi_source_operand” (match_code “label_ref,symbol_ref,const_int,const_double,const,high,mem,reg,subreg”) { /* Some constants, as well as symbolic operands must be done with HIGH & LO_SUM patterns. */ if (CONSTANT_P (op) && GET_CODE (op) != HIGH && !(GET_CODE (op) == CONST_INT && (CONST_OK_FOR_J (INTVAL (op)) || CONST_OK_FOR_K (INTVAL (op)) || CONST_OK_FOR_L (INTVAL (op))))) return special_symbolref_operand (op, mode); else return general_operand (op, mode); })

;; Return true if OP is a valid operand for 23 bit displacement ;; operations.

(define_predicate “disp23_operand” (match_code “const_int”) { if (GET_CODE (op) == CONST_INT && ((unsigned)(INTVAL (op)) >= 0x8000) && ((unsigned)(INTVAL (op)) < 0x400000)) return 1; else return 0; })

;; Return true if OP is a symbol ref with 16-bit signed value.

(define_predicate “special_symbolref_operand” (match_code “symbol_ref”) { if (GET_CODE (op) == CONST && GET_CODE (XEXP (op, 0)) == PLUS && satisfies_constraint_K (XEXP (XEXP (op, 0), 1))) op = XEXP (XEXP (op, 0), 0);

if (GET_CODE (op) == SYMBOL_REF) return (SYMBOL_REF_FLAGS (op) & (SYMBOL_FLAG_ZDA | SYMBOL_FLAG_TDA | SYMBOL_FLAG_SDA)) != 0;

return FALSE; })

;; Return true if OP is a valid operand for bit related operations ;; containing only single 1 in its binary representation.

(define_predicate “power_of_two_operand” (match_code “const_int”) { if (GET_CODE (op) != CONST_INT) return 0;

if (exact_log2 (INTVAL (op)) == -1) return 0; return 1; })

;; Return nonzero if the given RTX is suitable for collapsing into a ;; jump to a function prologue.

(define_predicate “pattern_is_ok_for_prologue” (match_code “parallel”) { int count = XVECLEN (op, 0); int i; rtx vector_element;

/* If there are no registers to save then the function prologue is not suitable. */ if (count <= (TARGET_LONG_CALLS ? 3 : 2)) return 0;

/* The pattern matching has already established that we are adjusting the stack and pushing at least one register. We must now check that the remaining entries in the vector to make sure that they are also register pushes, except for the last entry which should be a CLOBBER of r10.

 The test below performs the C equivalent of this machine description
 pattern match:

 (set (mem:SI (plus:SI (reg:SI 3)
  (match_operand:SI 2 "immediate_operand" "i")))
  (match_operand:SI 3 "register_is_ok_for_epilogue" "r"))

 */

for (i = 2; i < count - (TARGET_LONG_CALLS ? 2: 1); i++) { rtx dest; rtx src; rtx plus;

  vector_element = XVECEXP (op, 0, i);

  if (GET_CODE (vector_element) != SET)
return 0;

  dest = SET_DEST (vector_element);
  src = SET_SRC (vector_element);

  if (GET_CODE (dest) != MEM
  || GET_MODE (dest) != SImode
  || GET_CODE (src) != REG
  || GET_MODE (src) != SImode
  || ! register_is_ok_for_epilogue (src, SImode))
return 0;

  plus = XEXP (dest, 0);

  if ( GET_CODE (plus) != PLUS
  || GET_CODE (XEXP (plus, 0)) != REG
  || GET_MODE (XEXP (plus, 0)) != SImode
  || REGNO (XEXP (plus, 0)) != STACK_POINTER_REGNUM
  || GET_CODE (XEXP (plus, 1)) != CONST_INT)
return 0;

  /* If the register is being pushed somewhere other than the stack
 space just acquired by the first operand then abandon this quest.
 Note: the test is <= because both values are negative.	 */
  if (INTVAL (XEXP (plus, 1))
  <= INTVAL (XEXP (SET_SRC (XVECEXP (op, 0, 0)), 1)))
{
  return 0;
}
}

/* Make sure that the last entries in the vector are clobbers. */ vector_element = XVECEXP (op, 0, i++);

if (GET_CODE (vector_element) != CLOBBER || GET_CODE (XEXP (vector_element, 0)) != REG || REGNO (XEXP (vector_element, 0)) != 10) return 0;

if (TARGET_LONG_CALLS) { vector_element = XVECEXP (op, 0, i++);

  if (GET_CODE (vector_element) != CLOBBER
  || GET_CODE (XEXP (vector_element, 0)) != REG
  || REGNO (XEXP (vector_element, 0)) != 11)
return 0;
}

return i == count; })

;; Return nonzero if the given RTX is suitable for collapsing into ;; jump to a function epilogue.

(define_predicate “pattern_is_ok_for_epilogue” (match_code “parallel”) { int count = XVECLEN (op, 0); int i;

/* If there are no registers to restore then the function epilogue is not suitable. */ if (count <= 2) return 0;

/* The pattern matching has already established that we are performing a function epilogue and that we are popping at least one register. We must now check the remaining entries in the vector to make sure that they are also register pops. There is no good reason why there should ever be anything else in this vector, but being paranoid always helps...

 The test below performs the C equivalent of this machine description
 pattern match:

    (set (match_operand:SI n "register_is_ok_for_epilogue" "r")
  (mem:SI (plus:SI (reg:SI 3) (match_operand:SI n "immediate_operand" "i"))))
 */

for (i = 2; i < count; i++) { rtx vector_element = XVECEXP (op, 0, i); rtx dest; rtx src; rtx plus;

  if (GET_CODE (vector_element) != SET)
return 0;

  dest = SET_DEST (vector_element);
  src = SET_SRC (vector_element);

  if (GET_CODE (dest) != REG
  || GET_MODE (dest) != SImode
  || ! register_is_ok_for_epilogue (dest, SImode)
  || GET_CODE (src) != MEM
  || GET_MODE (src) != SImode)
return 0;

  plus = XEXP (src, 0);

  if (GET_CODE (plus) != PLUS
  || GET_CODE (XEXP (plus, 0)) != REG
  || GET_MODE (XEXP (plus, 0)) != SImode
  || REGNO (XEXP (plus, 0)) != STACK_POINTER_REGNUM
  || GET_CODE (XEXP (plus, 1)) != CONST_INT)
return 0;
}

return 1; })

;; Return true if the given RTX is a register which can be restored by ;; a function epilogue.

(define_predicate “register_is_ok_for_epilogue” (match_code “reg”) { /* The save/restore routines can only cope with registers 20 - 31. */ return ((GET_CODE (op) == REG) && (((REGNO (op) >= 20) && REGNO (op) <= 31))); })

;; Return nonzero if the given RTX is suitable for collapsing into a ;; DISPOSE instruction.

(define_predicate “pattern_is_ok_for_dispose” (match_code “parallel”) { int count = XVECLEN (op, 0); int i;

/* If there are no registers to restore then the dispose instruction is not suitable. */ if (count <= 2) return 0;

/* The pattern matching has already established that we are performing a function epilogue and that we are popping at least one register. We must now check the remaining entries in the vector to make sure that they are also register pops. There is no good reason why there should ever be anything else in this vector, but being paranoid always helps...

 The test below performs the C equivalent of this machine description
 pattern match:

    (set (match_operand:SI n "register_is_ok_for_epilogue" "r")
  (mem:SI (plus:SI (reg:SI 3)
    (match_operand:SI n "immediate_operand" "i"))))
 */

for (i = 3; i < count; i++) { rtx vector_element = XVECEXP (op, 0, i); rtx dest; rtx src; rtx plus;

  if (GET_CODE (vector_element) != SET)
return 0;

  dest = SET_DEST (vector_element);
  src  = SET_SRC (vector_element);

  if (   GET_CODE (dest) != REG
  || GET_MODE (dest) != SImode
  || ! register_is_ok_for_epilogue (dest, SImode)
  || GET_CODE (src) != MEM
  || GET_MODE (src) != SImode)
return 0;

  plus = XEXP (src, 0);

  if (   GET_CODE (plus) != PLUS
  || GET_CODE (XEXP (plus, 0)) != REG
  || GET_MODE (XEXP (plus, 0)) != SImode
  || REGNO    (XEXP (plus, 0)) != STACK_POINTER_REGNUM
  || GET_CODE (XEXP (plus, 1)) != CONST_INT)
return 0;
}

return 1; })

;; Return nonzero if the given RTX is suitable for collapsing into a ;; PREPARE instruction.

(define_predicate “pattern_is_ok_for_prepare” (match_code “parallel”) { int count = XVECLEN (op, 0); int i;

/* If there are no registers to restore then the prepare instruction is not suitable. */ if (count <= 1) return 0;

/* The pattern matching has already established that we are adjusting the stack and pushing at least one register. We must now check that the remaining entries in the vector to make sure that they are also register pushes.

 The test below performs the C equivalent of this machine description
 pattern match:

 (set (mem:SI (plus:SI (reg:SI 3)
   (match_operand:SI 2 "immediate_operand" "i")))
     (match_operand:SI 3 "register_is_ok_for_epilogue" "r"))

 */

for (i = 1; i < count; i++) { rtx vector_element = XVECEXP (op, 0, i); rtx dest; rtx src; rtx plus;

  if (GET_CODE (vector_element) == CLOBBER)
continue;

  if (GET_CODE (vector_element) != SET)
return 0;

  dest = SET_DEST (vector_element);
  src  = SET_SRC (vector_element);

  if (   GET_CODE (dest) != MEM
  || GET_MODE (dest) != SImode
  || GET_CODE (src) != REG
  || GET_MODE (src) != SImode
  || ! register_is_ok_for_epilogue (src, SImode)
     )
return 0;

  plus = XEXP (dest, 0);

  if (   GET_CODE (plus) != PLUS
  || GET_CODE (XEXP (plus, 0)) != REG
  || GET_MODE (XEXP (plus, 0)) != SImode
  || REGNO    (XEXP (plus, 0)) != STACK_POINTER_REGNUM
  || GET_CODE (XEXP (plus, 1)) != CONST_INT)
return 0;

  /* If the register is being pushed somewhere other than the stack
 space just acquired by the first operand then abandon this quest.
 Note: the test is <= because both values are negative.	 */
  if (INTVAL (XEXP (plus, 1))
  < INTVAL (XEXP (SET_SRC (XVECEXP (op, 0, 0)), 1)))
return 0;
}

return 1; })

;; Return true if OP is a valid operand for bit related operations ;; containing only single 0 in its binary representation.

(define_predicate “not_power_of_two_operand” (match_code “const_int”) { unsigned int mask;

if (mode == QImode) mask = 0xff; else if (mode == HImode) mask = 0xffff; else if (mode == SImode) mask = 0xffffffff; else return 0;

if (GET_CODE (op) != CONST_INT) return 0;

if (exact_log2 (~INTVAL (op) & mask) == -1) return 0; return 1; })

;; Return true if OP is a float value operand with value as 1.

(define_predicate “const_float_1_operand” (match_code “const_double”) { if (GET_CODE (op) != CONST_DOUBLE || mode != GET_MODE (op) || (mode != DFmode && mode != SFmode)) return 0;

return op == CONST1_RTX(mode); })

(define_predicate “label_ref_operand” (match_code “label_ref”) )

(define_predicate “e3v5_shift_operand” (match_code “const_int,reg”) { if (CONST_INT_P (op)) return IN_RANGE (INTVAL (op), 0, 31); return true; } )

(define_predicate “ior_operator” (match_code “ior”) { return (GET_CODE (op) == IOR); })

;; Return true if the floating point comparison operation ;; given produces a canonical answer. (define_predicate “v850_float_z_comparison_operator” (match_code “lt,le,eq,gt,ge”) { enum rtx_code code = GET_CODE (op);

if (GET_RTX_CLASS (code) != RTX_COMPARE && GET_RTX_CLASS (code) != RTX_COMM_COMPARE) return 0;

if (mode != GET_MODE (op) && mode != VOIDmode) return 0;

if ((GET_CODE (XEXP (op, 0)) != REG || REGNO (XEXP (op, 0)) != CC_REGNUM) || XEXP (op, 1) != const0_rtx) return 0;

if (GET_MODE (XEXP (op, 0)) == CC_FPU_LTmode) return code == LT; if (GET_MODE (XEXP (op, 0)) == CC_FPU_LEmode) return code == LE; if (GET_MODE (XEXP (op, 0)) == CC_FPU_EQmode) return code == EQ; if (GET_MODE (XEXP (op, 0)) == CC_FPU_GTmode) return code == GT; if (GET_MODE (XEXP (op, 0)) == CC_FPU_GEmode) return code == GE;

/* Note we do not accept CC_FPU_NEmode here. See v850_float_nz_comparison for the reason why. */ return 0; })

;; Return true if the floating point comparison operation ;; given produces an inverted answer. (define_predicate “v850_float_nz_comparison_operator” (match_code “ne”) { enum rtx_code code = GET_CODE (op);

/* The V850E2V3 does not have a floating point NZ comparison operator. Instead it is implemented as an EQ comparison and this function ensures that the branch_nz_normal and set_nz_insn patterns are used to examine (and invert) the result of the floating point comparison. */

if (GET_RTX_CLASS (code) != RTX_COMPARE && GET_RTX_CLASS (code) != RTX_COMM_COMPARE) return 0;

if (mode != GET_MODE (op) && mode != VOIDmode) return 0;

if ((GET_CODE (XEXP (op, 0)) != REG || REGNO (XEXP (op, 0)) != CC_REGNUM) || XEXP (op, 1) != const0_rtx) return 0;

if (GET_MODE (XEXP (op, 0)) == CC_FPU_NEmode) return code == NE;

return 0; })