blob: a7f7f086d170cf5da80bcc9547725129030304d7 [file] [log] [blame]
/* Copyright (C) 1997-2021 Free Software Foundation, Inc.
Contributed by Red Hat, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#define IN_TARGET_CODE 1
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "target.h"
#include "rtl.h"
#include "tree.h"
#include "df.h"
#include "memmodel.h"
#include "tm_p.h"
#include "stringpool.h"
#include "attribs.h"
#include "optabs.h"
#include "regs.h"
#include "emit-rtl.h"
#include "recog.h"
#include "diagnostic-core.h"
#include "fold-const.h"
#include "varasm.h"
#include "stor-layout.h"
#include "output.h"
#include "insn-attr.h"
#include "explow.h"
#include "expr.h"
#include "cfgrtl.h"
#include "langhooks.h"
#include "dumpfile.h"
#include "builtins.h"
#include "ifcvt.h"
#include "rtl-iter.h"
#include "calls.h"
/* This file should be included last. */
#include "target-def.h"
#ifndef FRV_INLINE
#define FRV_INLINE inline
#endif
/* The maximum number of distinct NOP patterns. There are three:
nop, fnop and mnop. */
#define NUM_NOP_PATTERNS 3
/* Classification of instructions and units: integer, floating-point/media,
branch and control. */
enum frv_insn_group { GROUP_I, GROUP_FM, GROUP_B, GROUP_C, NUM_GROUPS };
/* The DFA names of the units, in packet order. */
static const char *const frv_unit_names[] =
{
"c",
"i0", "f0",
"i1", "f1",
"i2", "f2",
"i3", "f3",
"b0", "b1"
};
/* The classification of each unit in frv_unit_names[]. */
static const enum frv_insn_group frv_unit_groups[ARRAY_SIZE (frv_unit_names)] =
{
GROUP_C,
GROUP_I, GROUP_FM,
GROUP_I, GROUP_FM,
GROUP_I, GROUP_FM,
GROUP_I, GROUP_FM,
GROUP_B, GROUP_B
};
/* Return the DFA unit code associated with the Nth unit of integer
or floating-point group GROUP, */
#define NTH_UNIT(GROUP, N) frv_unit_codes[(GROUP) + (N) * 2 + 1]
/* Return the number of integer or floating-point unit UNIT
(1 for I1, 2 for F2, etc.). */
#define UNIT_NUMBER(UNIT) (((UNIT) - 1) / 2)
/* The DFA unit number for each unit in frv_unit_names[]. */
static int frv_unit_codes[ARRAY_SIZE (frv_unit_names)];
/* FRV_TYPE_TO_UNIT[T] is the last unit in frv_unit_names[] that can issue
an instruction of type T. The value is ARRAY_SIZE (frv_unit_names) if
no instruction of type T has been seen. */
static unsigned int frv_type_to_unit[TYPE_UNKNOWN + 1];
/* An array of dummy nop INSNs, one for each type of nop that the
target supports. */
static GTY(()) rtx_insn *frv_nops[NUM_NOP_PATTERNS];
/* The number of nop instructions in frv_nops[]. */
static unsigned int frv_num_nops;
/* The type of access. FRV_IO_UNKNOWN means the access can be either
a read or a write. */
enum frv_io_type { FRV_IO_UNKNOWN, FRV_IO_READ, FRV_IO_WRITE };
/* Information about one __builtin_read or __builtin_write access, or
the combination of several such accesses. The most general value
is all-zeros (an unknown access to an unknown address). */
struct frv_io {
enum frv_io_type type;
/* The constant address being accessed, or zero if not known. */
HOST_WIDE_INT const_address;
/* The run-time address, as used in operand 0 of the membar pattern. */
rtx var_address;
};
/* Return true if instruction INSN should be packed with the following
instruction. */
#define PACKING_FLAG_P(INSN) (GET_MODE (INSN) == TImode)
/* Set the value of PACKING_FLAG_P(INSN). */
#define SET_PACKING_FLAG(INSN) PUT_MODE (INSN, TImode)
#define CLEAR_PACKING_FLAG(INSN) PUT_MODE (INSN, VOIDmode)
/* Loop with REG set to each hard register in rtx X. */
#define FOR_EACH_REGNO(REG, X) \
for (REG = REGNO (X); REG < END_REGNO (X); REG++)
/* This structure contains machine specific function data. */
struct GTY(()) machine_function
{
/* True if we have created an rtx that relies on the stack frame. */
int frame_needed;
/* True if this function contains at least one __builtin_{read,write}*. */
bool has_membar_p;
};
/* Temporary register allocation support structure. */
typedef struct frv_tmp_reg_struct
{
HARD_REG_SET regs; /* possible registers to allocate */
int next_reg[N_REG_CLASSES]; /* next register to allocate per class */
}
frv_tmp_reg_t;
/* Register state information for VLIW re-packing phase. */
#define REGSTATE_CC_MASK 0x07 /* Mask to isolate CCn for cond exec */
#define REGSTATE_MODIFIED 0x08 /* reg modified in current VLIW insn */
#define REGSTATE_IF_TRUE 0x10 /* reg modified in cond exec true */
#define REGSTATE_IF_FALSE 0x20 /* reg modified in cond exec false */
#define REGSTATE_IF_EITHER (REGSTATE_IF_TRUE | REGSTATE_IF_FALSE)
typedef unsigned char regstate_t;
/* Used in frv_frame_accessor_t to indicate the direction of a register-to-
memory move. */
enum frv_stack_op
{
FRV_LOAD,
FRV_STORE
};
/* Information required by frv_frame_access. */
typedef struct
{
/* This field is FRV_LOAD if registers are to be loaded from the stack and
FRV_STORE if they should be stored onto the stack. FRV_STORE implies
the move is being done by the prologue code while FRV_LOAD implies it
is being done by the epilogue. */
enum frv_stack_op op;
/* The base register to use when accessing the stack. This may be the
frame pointer, stack pointer, or a temporary. The choice of register
depends on which part of the frame is being accessed and how big the
frame is. */
rtx base;
/* The offset of BASE from the bottom of the current frame, in bytes. */
int base_offset;
} frv_frame_accessor_t;
/* Conditional execution support gathered together in one structure. */
typedef struct
{
/* Linked list of insns to add if the conditional execution conversion was
successful. Each link points to an EXPR_LIST which points to the pattern
of the insn to add, and the insn to be inserted before. */
rtx added_insns_list;
/* Identify which registers are safe to allocate for if conversions to
conditional execution. We keep the last allocated register in the
register classes between COND_EXEC statements. This will mean we allocate
different registers for each different COND_EXEC group if we can. This
might allow the scheduler to intermix two different COND_EXEC sections. */
frv_tmp_reg_t tmp_reg;
/* For nested IFs, identify which CC registers are used outside of setting
via a compare isnsn, and using via a check insn. This will allow us to
know if we can rewrite the register to use a different register that will
be paired with the CR register controlling the nested IF-THEN blocks. */
HARD_REG_SET nested_cc_ok_rewrite;
/* Temporary registers allocated to hold constants during conditional
execution. */
rtx scratch_regs[FIRST_PSEUDO_REGISTER];
/* Current number of temp registers available. */
int cur_scratch_regs;
/* Number of nested conditional execution blocks. */
int num_nested_cond_exec;
/* Map of insns that set up constants in scratch registers. */
bitmap scratch_insns_bitmap;
/* Conditional execution test register (CC0..CC7). */
rtx cr_reg;
/* Conditional execution compare register that is paired with cr_reg, so that
nested compares can be done. The csubcc and caddcc instructions don't
have enough bits to specify both a CC register to be set and a CR register
to do the test on, so the same bit number is used for both. Needless to
say, this is rather inconvenient for GCC. */
rtx nested_cc_reg;
/* Extra CR registers used for &&, ||. */
rtx extra_int_cr;
rtx extra_fp_cr;
/* Previous CR used in nested if, to make sure we are dealing with the same
nested if as the previous statement. */
rtx last_nested_if_cr;
}
frv_ifcvt_t;
static /* GTY(()) */ frv_ifcvt_t frv_ifcvt;
/* Map register number to smallest register class. */
enum reg_class regno_reg_class[FIRST_PSEUDO_REGISTER];
/* Cached value of frv_stack_info. */
static frv_stack_t *frv_stack_cache = (frv_stack_t *)0;
/* Forward references */
static void frv_option_override (void);
static bool frv_legitimate_address_p (machine_mode, rtx, bool);
static int frv_default_flags_for_cpu (void);
static FRV_INLINE bool frv_small_data_reloc_p (rtx, int);
static void frv_print_operand (FILE *, rtx, int);
static void frv_print_operand_address (FILE *, machine_mode, rtx);
static bool frv_print_operand_punct_valid_p (unsigned char code);
static void frv_print_operand_memory_reference_reg
(FILE *, rtx);
static void frv_print_operand_memory_reference (FILE *, rtx, int);
static int frv_print_operand_jump_hint (rtx_insn *);
static const char *comparison_string (enum rtx_code, rtx);
static rtx frv_function_value (const_tree, const_tree,
bool);
static rtx frv_libcall_value (machine_mode,
const_rtx);
static FRV_INLINE int frv_regno_ok_for_base_p (int, int);
static rtx single_set_pattern (rtx);
static int frv_function_contains_far_jump (void);
static rtx frv_alloc_temp_reg (frv_tmp_reg_t *,
enum reg_class,
machine_mode,
int, int);
static rtx frv_frame_offset_rtx (int);
static rtx frv_frame_mem (machine_mode, rtx, int);
static rtx frv_dwarf_store (rtx, int);
static void frv_frame_insn (rtx, rtx);
static void frv_frame_access (frv_frame_accessor_t*,
rtx, int);
static void frv_frame_access_multi (frv_frame_accessor_t*,
frv_stack_t *, int);
static void frv_frame_access_standard_regs (enum frv_stack_op,
frv_stack_t *);
static struct machine_function *frv_init_machine_status (void);
static rtx frv_int_to_acc (enum insn_code, int, rtx);
static machine_mode frv_matching_accg_mode (machine_mode);
static rtx frv_read_argument (tree, unsigned int);
static rtx frv_read_iacc_argument (machine_mode, tree, unsigned int);
static int frv_check_constant_argument (enum insn_code, int, rtx);
static rtx frv_legitimize_target (enum insn_code, rtx);
static rtx frv_legitimize_argument (enum insn_code, int, rtx);
static rtx frv_legitimize_tls_address (rtx, enum tls_model);
static rtx frv_legitimize_address (rtx, rtx, machine_mode);
static rtx frv_expand_set_builtin (enum insn_code, tree, rtx);
static rtx frv_expand_unop_builtin (enum insn_code, tree, rtx);
static rtx frv_expand_binop_builtin (enum insn_code, tree, rtx);
static rtx frv_expand_cut_builtin (enum insn_code, tree, rtx);
static rtx frv_expand_binopimm_builtin (enum insn_code, tree, rtx);
static rtx frv_expand_voidbinop_builtin (enum insn_code, tree);
static rtx frv_expand_int_void2arg (enum insn_code, tree);
static rtx frv_expand_prefetches (enum insn_code, tree);
static rtx frv_expand_voidtriop_builtin (enum insn_code, tree);
static rtx frv_expand_voidaccop_builtin (enum insn_code, tree);
static rtx frv_expand_mclracc_builtin (tree);
static rtx frv_expand_mrdacc_builtin (enum insn_code, tree);
static rtx frv_expand_mwtacc_builtin (enum insn_code, tree);
static rtx frv_expand_noargs_builtin (enum insn_code);
static void frv_split_iacc_move (rtx, rtx);
static rtx frv_emit_comparison (enum rtx_code, rtx, rtx);
static void frv_ifcvt_add_insn (rtx, rtx_insn *, int);
static rtx frv_ifcvt_rewrite_mem (rtx, machine_mode, rtx);
static rtx frv_ifcvt_load_value (rtx, rtx);
static unsigned int frv_insn_unit (rtx_insn *);
static bool frv_issues_to_branch_unit_p (rtx_insn *);
static int frv_cond_flags (rtx);
static bool frv_regstate_conflict_p (regstate_t, regstate_t);
static bool frv_registers_conflict_p (rtx);
static void frv_registers_update_1 (rtx, const_rtx, void *);
static void frv_registers_update (rtx);
static void frv_start_packet (void);
static void frv_start_packet_block (void);
static void frv_finish_packet (void (*) (void));
static bool frv_pack_insn_p (rtx_insn *);
static void frv_add_insn_to_packet (rtx_insn *);
static void frv_insert_nop_in_packet (rtx_insn *);
static bool frv_for_each_packet (void (*) (void));
static bool frv_sort_insn_group_1 (enum frv_insn_group,
unsigned int, unsigned int,
unsigned int, unsigned int,
state_t);
static int frv_compare_insns (const void *, const void *);
static void frv_sort_insn_group (enum frv_insn_group);
static void frv_reorder_packet (void);
static void frv_fill_unused_units (enum frv_insn_group);
static void frv_align_label (void);
static void frv_reorg_packet (void);
static void frv_register_nop (rtx);
static void frv_reorg (void);
static void frv_pack_insns (void);
static void frv_function_prologue (FILE *);
static void frv_function_epilogue (FILE *);
static bool frv_assemble_integer (rtx, unsigned, int);
static void frv_init_builtins (void);
static rtx frv_expand_builtin (tree, rtx, rtx, machine_mode, int);
static void frv_init_libfuncs (void);
static bool frv_in_small_data_p (const_tree);
static void frv_asm_output_mi_thunk
(FILE *, tree, HOST_WIDE_INT, HOST_WIDE_INT, tree);
static void frv_setup_incoming_varargs (cumulative_args_t,
const function_arg_info &,
int *, int);
static rtx frv_expand_builtin_saveregs (void);
static void frv_expand_builtin_va_start (tree, rtx);
static bool frv_rtx_costs (rtx, machine_mode, int, int,
int*, bool);
static int frv_register_move_cost (machine_mode,
reg_class_t, reg_class_t);
static int frv_memory_move_cost (machine_mode,
reg_class_t, bool);
static void frv_asm_out_constructor (rtx, int);
static void frv_asm_out_destructor (rtx, int);
static bool frv_function_symbol_referenced_p (rtx);
static bool frv_legitimate_constant_p (machine_mode, rtx);
static bool frv_cannot_force_const_mem (machine_mode, rtx);
static const char *unspec_got_name (int);
static void frv_output_const_unspec (FILE *,
const struct frv_unspec *);
static bool frv_function_ok_for_sibcall (tree, tree);
static rtx frv_struct_value_rtx (tree, int);
static bool frv_must_pass_in_stack (const function_arg_info &);
static int frv_arg_partial_bytes (cumulative_args_t,
const function_arg_info &);
static rtx frv_function_arg (cumulative_args_t, const function_arg_info &);
static rtx frv_function_incoming_arg (cumulative_args_t,
const function_arg_info &);
static void frv_function_arg_advance (cumulative_args_t,
const function_arg_info &);
static unsigned int frv_function_arg_boundary (machine_mode,
const_tree);
static void frv_output_dwarf_dtprel (FILE *, int, rtx)
ATTRIBUTE_UNUSED;
static reg_class_t frv_secondary_reload (bool, rtx, reg_class_t,
machine_mode,
secondary_reload_info *);
static bool frv_frame_pointer_required (void);
static bool frv_can_eliminate (const int, const int);
static void frv_conditional_register_usage (void);
static void frv_trampoline_init (rtx, tree, rtx);
static bool frv_class_likely_spilled_p (reg_class_t);
static unsigned int frv_hard_regno_nregs (unsigned int, machine_mode);
static bool frv_hard_regno_mode_ok (unsigned int, machine_mode);
static bool frv_modes_tieable_p (machine_mode, machine_mode);
/* Initialize the GCC target structure. */
#undef TARGET_PRINT_OPERAND
#define TARGET_PRINT_OPERAND frv_print_operand
#undef TARGET_PRINT_OPERAND_ADDRESS
#define TARGET_PRINT_OPERAND_ADDRESS frv_print_operand_address
#undef TARGET_PRINT_OPERAND_PUNCT_VALID_P
#define TARGET_PRINT_OPERAND_PUNCT_VALID_P frv_print_operand_punct_valid_p
#undef TARGET_ASM_FUNCTION_PROLOGUE
#define TARGET_ASM_FUNCTION_PROLOGUE frv_function_prologue
#undef TARGET_ASM_FUNCTION_EPILOGUE
#define TARGET_ASM_FUNCTION_EPILOGUE frv_function_epilogue
#undef TARGET_ASM_INTEGER
#define TARGET_ASM_INTEGER frv_assemble_integer
#undef TARGET_OPTION_OVERRIDE
#define TARGET_OPTION_OVERRIDE frv_option_override
#undef TARGET_INIT_BUILTINS
#define TARGET_INIT_BUILTINS frv_init_builtins
#undef TARGET_EXPAND_BUILTIN
#define TARGET_EXPAND_BUILTIN frv_expand_builtin
#undef TARGET_INIT_LIBFUNCS
#define TARGET_INIT_LIBFUNCS frv_init_libfuncs
#undef TARGET_IN_SMALL_DATA_P
#define TARGET_IN_SMALL_DATA_P frv_in_small_data_p
#undef TARGET_REGISTER_MOVE_COST
#define TARGET_REGISTER_MOVE_COST frv_register_move_cost
#undef TARGET_MEMORY_MOVE_COST
#define TARGET_MEMORY_MOVE_COST frv_memory_move_cost
#undef TARGET_RTX_COSTS
#define TARGET_RTX_COSTS frv_rtx_costs
#undef TARGET_ASM_CONSTRUCTOR
#define TARGET_ASM_CONSTRUCTOR frv_asm_out_constructor
#undef TARGET_ASM_DESTRUCTOR
#define TARGET_ASM_DESTRUCTOR frv_asm_out_destructor
#undef TARGET_ASM_OUTPUT_MI_THUNK
#define TARGET_ASM_OUTPUT_MI_THUNK frv_asm_output_mi_thunk
#undef TARGET_ASM_CAN_OUTPUT_MI_THUNK
#define TARGET_ASM_CAN_OUTPUT_MI_THUNK default_can_output_mi_thunk_no_vcall
#undef TARGET_SCHED_ISSUE_RATE
#define TARGET_SCHED_ISSUE_RATE frv_issue_rate
#undef TARGET_LEGITIMIZE_ADDRESS
#define TARGET_LEGITIMIZE_ADDRESS frv_legitimize_address
#undef TARGET_FUNCTION_OK_FOR_SIBCALL
#define TARGET_FUNCTION_OK_FOR_SIBCALL frv_function_ok_for_sibcall
#undef TARGET_LEGITIMATE_CONSTANT_P
#define TARGET_LEGITIMATE_CONSTANT_P frv_legitimate_constant_p
#undef TARGET_CANNOT_FORCE_CONST_MEM
#define TARGET_CANNOT_FORCE_CONST_MEM frv_cannot_force_const_mem
#undef TARGET_HAVE_TLS
#define TARGET_HAVE_TLS HAVE_AS_TLS
#undef TARGET_STRUCT_VALUE_RTX
#define TARGET_STRUCT_VALUE_RTX frv_struct_value_rtx
#undef TARGET_MUST_PASS_IN_STACK
#define TARGET_MUST_PASS_IN_STACK frv_must_pass_in_stack
#undef TARGET_PASS_BY_REFERENCE
#define TARGET_PASS_BY_REFERENCE hook_pass_by_reference_must_pass_in_stack
#undef TARGET_ARG_PARTIAL_BYTES
#define TARGET_ARG_PARTIAL_BYTES frv_arg_partial_bytes
#undef TARGET_FUNCTION_ARG
#define TARGET_FUNCTION_ARG frv_function_arg
#undef TARGET_FUNCTION_INCOMING_ARG
#define TARGET_FUNCTION_INCOMING_ARG frv_function_incoming_arg
#undef TARGET_FUNCTION_ARG_ADVANCE
#define TARGET_FUNCTION_ARG_ADVANCE frv_function_arg_advance
#undef TARGET_FUNCTION_ARG_BOUNDARY
#define TARGET_FUNCTION_ARG_BOUNDARY frv_function_arg_boundary
#undef TARGET_EXPAND_BUILTIN_SAVEREGS
#define TARGET_EXPAND_BUILTIN_SAVEREGS frv_expand_builtin_saveregs
#undef TARGET_SETUP_INCOMING_VARARGS
#define TARGET_SETUP_INCOMING_VARARGS frv_setup_incoming_varargs
#undef TARGET_MACHINE_DEPENDENT_REORG
#define TARGET_MACHINE_DEPENDENT_REORG frv_reorg
#undef TARGET_EXPAND_BUILTIN_VA_START
#define TARGET_EXPAND_BUILTIN_VA_START frv_expand_builtin_va_start
#if HAVE_AS_TLS
#undef TARGET_ASM_OUTPUT_DWARF_DTPREL
#define TARGET_ASM_OUTPUT_DWARF_DTPREL frv_output_dwarf_dtprel
#endif
#undef TARGET_CLASS_LIKELY_SPILLED_P
#define TARGET_CLASS_LIKELY_SPILLED_P frv_class_likely_spilled_p
#undef TARGET_SECONDARY_RELOAD
#define TARGET_SECONDARY_RELOAD frv_secondary_reload
#undef TARGET_LRA_P
#define TARGET_LRA_P hook_bool_void_false
#undef TARGET_LEGITIMATE_ADDRESS_P
#define TARGET_LEGITIMATE_ADDRESS_P frv_legitimate_address_p
#undef TARGET_FRAME_POINTER_REQUIRED
#define TARGET_FRAME_POINTER_REQUIRED frv_frame_pointer_required
#undef TARGET_CAN_ELIMINATE
#define TARGET_CAN_ELIMINATE frv_can_eliminate
#undef TARGET_CONDITIONAL_REGISTER_USAGE
#define TARGET_CONDITIONAL_REGISTER_USAGE frv_conditional_register_usage
#undef TARGET_TRAMPOLINE_INIT
#define TARGET_TRAMPOLINE_INIT frv_trampoline_init
#undef TARGET_FUNCTION_VALUE
#define TARGET_FUNCTION_VALUE frv_function_value
#undef TARGET_LIBCALL_VALUE
#define TARGET_LIBCALL_VALUE frv_libcall_value
#undef TARGET_HARD_REGNO_NREGS
#define TARGET_HARD_REGNO_NREGS frv_hard_regno_nregs
#undef TARGET_HARD_REGNO_MODE_OK
#define TARGET_HARD_REGNO_MODE_OK frv_hard_regno_mode_ok
#undef TARGET_MODES_TIEABLE_P
#define TARGET_MODES_TIEABLE_P frv_modes_tieable_p
#undef TARGET_CONSTANT_ALIGNMENT
#define TARGET_CONSTANT_ALIGNMENT constant_alignment_word_strings
#undef TARGET_HAVE_SPECULATION_SAFE_VALUE
#define TARGET_HAVE_SPECULATION_SAFE_VALUE speculation_safe_value_not_needed
struct gcc_target targetm = TARGET_INITIALIZER;
#define FRV_SYMBOL_REF_TLS_P(RTX) \
(GET_CODE (RTX) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (RTX) != 0)
/* Any function call that satisfies the machine-independent
requirements is eligible on FR-V. */
static bool
frv_function_ok_for_sibcall (tree decl ATTRIBUTE_UNUSED,
tree exp ATTRIBUTE_UNUSED)
{
return true;
}
/* Return true if SYMBOL is a small data symbol and relocation RELOC
can be used to access it directly in a load or store. */
static FRV_INLINE bool
frv_small_data_reloc_p (rtx symbol, int reloc)
{
return (GET_CODE (symbol) == SYMBOL_REF
&& SYMBOL_REF_SMALL_P (symbol)
&& (!TARGET_FDPIC || flag_pic == 1)
&& (reloc == R_FRV_GOTOFF12 || reloc == R_FRV_GPREL12));
}
/* Return true if X is a valid relocation unspec. If it is, fill in UNSPEC
appropriately. */
bool
frv_const_unspec_p (rtx x, struct frv_unspec *unspec)
{
if (GET_CODE (x) == CONST)
{
unspec->offset = 0;
x = XEXP (x, 0);
if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 1)) == CONST_INT)
{
unspec->offset += INTVAL (XEXP (x, 1));
x = XEXP (x, 0);
}
if (GET_CODE (x) == UNSPEC && XINT (x, 1) == UNSPEC_GOT)
{
unspec->symbol = XVECEXP (x, 0, 0);
unspec->reloc = INTVAL (XVECEXP (x, 0, 1));
if (unspec->offset == 0)
return true;
if (frv_small_data_reloc_p (unspec->symbol, unspec->reloc)
&& unspec->offset > 0
&& unspec->offset < g_switch_value)
return true;
}
}
return false;
}
/* Decide whether we can force certain constants to memory. If we
decide we can't, the caller should be able to cope with it in
another way.
We never allow constants to be forced into memory for TARGET_FDPIC.
This is necessary for several reasons:
1. Since frv_legitimate_constant_p rejects constant pool addresses, the
target-independent code will try to force them into the constant
pool, thus leading to infinite recursion.
2. We can never introduce new constant pool references during reload.
Any such reference would require use of the pseudo FDPIC register.
3. We can't represent a constant added to a function pointer (which is
not the same as a pointer to a function+constant).
4. In many cases, it's more efficient to calculate the constant in-line. */
static bool
frv_cannot_force_const_mem (machine_mode mode ATTRIBUTE_UNUSED,
rtx x ATTRIBUTE_UNUSED)
{
return TARGET_FDPIC;
}
static int
frv_default_flags_for_cpu (void)
{
switch (frv_cpu_type)
{
case FRV_CPU_GENERIC:
return MASK_DEFAULT_FRV;
case FRV_CPU_FR550:
return MASK_DEFAULT_FR550;
case FRV_CPU_FR500:
case FRV_CPU_TOMCAT:
return MASK_DEFAULT_FR500;
case FRV_CPU_FR450:
return MASK_DEFAULT_FR450;
case FRV_CPU_FR405:
case FRV_CPU_FR400:
return MASK_DEFAULT_FR400;
case FRV_CPU_FR300:
case FRV_CPU_SIMPLE:
return MASK_DEFAULT_SIMPLE;
default:
gcc_unreachable ();
}
}
/* Implement TARGET_OPTION_OVERRIDE. */
static void
frv_option_override (void)
{
int regno;
unsigned int i;
target_flags |= (frv_default_flags_for_cpu () & ~target_flags_explicit);
/* -mlibrary-pic sets -fPIC and -G0 and also suppresses warnings from the
linker about linking pic and non-pic code. */
if (TARGET_LIBPIC)
{
if (!flag_pic) /* -fPIC */
flag_pic = 2;
if (!global_options_set.x_g_switch_value) /* -G0 */
{
g_switch_value = 0;
}
}
/* A C expression whose value is a register class containing hard
register REGNO. In general there is more than one such class;
choose a class which is "minimal", meaning that no smaller class
also contains the register. */
for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
{
enum reg_class rclass;
if (GPR_P (regno))
{
int gpr_reg = regno - GPR_FIRST;
if (gpr_reg == GR8_REG)
rclass = GR8_REGS;
else if (gpr_reg == GR9_REG)
rclass = GR9_REGS;
else if (gpr_reg == GR14_REG)
rclass = FDPIC_FPTR_REGS;
else if (gpr_reg == FDPIC_REGNO)
rclass = FDPIC_REGS;
else if ((gpr_reg & 3) == 0)
rclass = QUAD_REGS;
else if ((gpr_reg & 1) == 0)
rclass = EVEN_REGS;
else
rclass = GPR_REGS;
}
else if (FPR_P (regno))
{
int fpr_reg = regno - GPR_FIRST;
if ((fpr_reg & 3) == 0)
rclass = QUAD_FPR_REGS;
else if ((fpr_reg & 1) == 0)
rclass = FEVEN_REGS;
else
rclass = FPR_REGS;
}
else if (regno == LR_REGNO)
rclass = LR_REG;
else if (regno == LCR_REGNO)
rclass = LCR_REG;
else if (ICC_P (regno))
rclass = ICC_REGS;
else if (FCC_P (regno))
rclass = FCC_REGS;
else if (ICR_P (regno))
rclass = ICR_REGS;
else if (FCR_P (regno))
rclass = FCR_REGS;
else if (ACC_P (regno))
{
int r = regno - ACC_FIRST;
if ((r & 3) == 0)
rclass = QUAD_ACC_REGS;
else if ((r & 1) == 0)
rclass = EVEN_ACC_REGS;
else
rclass = ACC_REGS;
}
else if (ACCG_P (regno))
rclass = ACCG_REGS;
else
rclass = NO_REGS;
regno_reg_class[regno] = rclass;
}
/* Check for small data option */
if (!global_options_set.x_g_switch_value && !TARGET_LIBPIC)
g_switch_value = SDATA_DEFAULT_SIZE;
/* There is no single unaligned SI op for PIC code. Sometimes we
need to use ".4byte" and sometimes we need to use ".picptr".
See frv_assemble_integer for details. */
if (flag_pic || TARGET_FDPIC)
targetm.asm_out.unaligned_op.si = 0;
if ((target_flags_explicit & MASK_LINKED_FP) == 0)
target_flags |= MASK_LINKED_FP;
if ((target_flags_explicit & MASK_OPTIMIZE_MEMBAR) == 0)
target_flags |= MASK_OPTIMIZE_MEMBAR;
for (i = 0; i < ARRAY_SIZE (frv_unit_names); i++)
frv_unit_codes[i] = get_cpu_unit_code (frv_unit_names[i]);
for (i = 0; i < ARRAY_SIZE (frv_type_to_unit); i++)
frv_type_to_unit[i] = ARRAY_SIZE (frv_unit_codes);
init_machine_status = frv_init_machine_status;
}
/* Implement TARGET_CONDITIONAL_REGISTER_USAGE. */
static void
frv_conditional_register_usage (void)
{
int i;
for (i = GPR_FIRST + NUM_GPRS; i <= GPR_LAST; i++)
fixed_regs[i] = call_used_regs[i] = 1;
for (i = FPR_FIRST + NUM_FPRS; i <= FPR_LAST; i++)
fixed_regs[i] = call_used_regs[i] = 1;
/* Reserve the registers used for conditional execution. At present, we need
1 ICC and 1 ICR register. */
fixed_regs[ICC_TEMP] = call_used_regs[ICC_TEMP] = 1;
fixed_regs[ICR_TEMP] = call_used_regs[ICR_TEMP] = 1;
if (TARGET_FIXED_CC)
{
fixed_regs[ICC_FIRST] = call_used_regs[ICC_FIRST] = 1;
fixed_regs[FCC_FIRST] = call_used_regs[FCC_FIRST] = 1;
fixed_regs[ICR_FIRST] = call_used_regs[ICR_FIRST] = 1;
fixed_regs[FCR_FIRST] = call_used_regs[FCR_FIRST] = 1;
}
if (TARGET_FDPIC)
fixed_regs[GPR_FIRST + 16] = fixed_regs[GPR_FIRST + 17] =
call_used_regs[GPR_FIRST + 16] = call_used_regs[GPR_FIRST + 17] = 0;
#if 0
/* If -fpic, SDA_BASE_REG is the PIC register. */
if (g_switch_value == 0 && !flag_pic)
fixed_regs[SDA_BASE_REG] = call_used_regs[SDA_BASE_REG] = 0;
if (!flag_pic)
fixed_regs[PIC_REGNO] = call_used_regs[PIC_REGNO] = 0;
#endif
}
/*
* Compute the stack frame layout
*
* Register setup:
* +---------------+-----------------------+-----------------------+
* |Register |type |caller-save/callee-save|
* +---------------+-----------------------+-----------------------+
* |GR0 |Zero register | - |
* |GR1 |Stack pointer(SP) | - |
* |GR2 |Frame pointer(FP) | - |
* |GR3 |Hidden parameter | caller save |
* |GR4-GR7 | - | caller save |
* |GR8-GR13 |Argument register | caller save |
* |GR14-GR15 | - | caller save |
* |GR16-GR31 | - | callee save |
* |GR32-GR47 | - | caller save |
* |GR48-GR63 | - | callee save |
* |FR0-FR15 | - | caller save |
* |FR16-FR31 | - | callee save |
* |FR32-FR47 | - | caller save |
* |FR48-FR63 | - | callee save |
* +---------------+-----------------------+-----------------------+
*
* Stack frame setup:
* Low
* SP-> |-----------------------------------|
* | Argument area |
* |-----------------------------------|
* | Register save area |
* |-----------------------------------|
* | Local variable save area |
* FP-> |-----------------------------------|
* | Old FP |
* |-----------------------------------|
* | Hidden parameter save area |
* |-----------------------------------|
* | Return address(LR) storage area |
* |-----------------------------------|
* | Padding for alignment |
* |-----------------------------------|
* | Register argument area |
* OLD SP-> |-----------------------------------|
* | Parameter area |
* |-----------------------------------|
* High
*
* Argument area/Parameter area:
*
* When a function is called, this area is used for argument transfer. When
* the argument is set up by the caller function, this area is referred to as
* the argument area. When the argument is referenced by the callee function,
* this area is referred to as the parameter area. The area is allocated when
* all arguments cannot be placed on the argument register at the time of
* argument transfer.
*
* Register save area:
*
* This is a register save area that must be guaranteed for the caller
* function. This area is not secured when the register save operation is not
* needed.
*
* Local variable save area:
*
* This is the area for local variables and temporary variables.
*
* Old FP:
*
* This area stores the FP value of the caller function.
*
* Hidden parameter save area:
*
* This area stores the start address of the return value storage
* area for a struct/union return function.
* When a struct/union is used as the return value, the caller
* function stores the return value storage area start address in
* register GR3 and passes it to the caller function.
* The callee function interprets the address stored in the GR3
* as the return value storage area start address.
* When register GR3 needs to be saved into memory, the callee
* function saves it in the hidden parameter save area. This
* area is not secured when the save operation is not needed.
*
* Return address(LR) storage area:
*
* This area saves the LR. The LR stores the address of a return to the caller
* function for the purpose of function calling.
*
* Argument register area:
*
* This area saves the argument register. This area is not secured when the
* save operation is not needed.
*
* Argument:
*
* Arguments, the count of which equals the count of argument registers (6
* words), are positioned in registers GR8 to GR13 and delivered to the callee
* function. When a struct/union return function is called, the return value
* area address is stored in register GR3. Arguments not placed in the
* argument registers will be stored in the stack argument area for transfer
* purposes. When an 8-byte type argument is to be delivered using registers,
* it is divided into two and placed in two registers for transfer. When
* argument registers must be saved to memory, the callee function secures an
* argument register save area in the stack. In this case, a continuous
* argument register save area must be established in the parameter area. The
* argument register save area must be allocated as needed to cover the size of
* the argument register to be saved. If the function has a variable count of
* arguments, it saves all argument registers in the argument register save
* area.
*
* Argument Extension Format:
*
* When an argument is to be stored in the stack, its type is converted to an
* extended type in accordance with the individual argument type. The argument
* is freed by the caller function after the return from the callee function is
* made.
*
* +-----------------------+---------------+------------------------+
* | Argument Type |Extended Type |Stack Storage Size(byte)|
* +-----------------------+---------------+------------------------+
* |char |int | 4 |
* |signed char |int | 4 |
* |unsigned char |int | 4 |
* |[signed] short int |int | 4 |
* |unsigned short int |int | 4 |
* |[signed] int |No extension | 4 |
* |unsigned int |No extension | 4 |
* |[signed] long int |No extension | 4 |
* |unsigned long int |No extension | 4 |
* |[signed] long long int |No extension | 8 |
* |unsigned long long int |No extension | 8 |
* |float |double | 8 |
* |double |No extension | 8 |
* |long double |No extension | 8 |
* |pointer |No extension | 4 |
* |struct/union |- | 4 (*1) |
* +-----------------------+---------------+------------------------+
*
* When a struct/union is to be delivered as an argument, the caller copies it
* to the local variable area and delivers the address of that area.
*
* Return Value:
*
* +-------------------------------+----------------------+
* |Return Value Type |Return Value Interface|
* +-------------------------------+----------------------+
* |void |None |
* |[signed|unsigned] char |GR8 |
* |[signed|unsigned] short int |GR8 |
* |[signed|unsigned] int |GR8 |
* |[signed|unsigned] long int |GR8 |
* |pointer |GR8 |
* |[signed|unsigned] long long int|GR8 & GR9 |
* |float |GR8 |
* |double |GR8 & GR9 |
* |long double |GR8 & GR9 |
* |struct/union |(*1) |
* +-------------------------------+----------------------+
*
* When a struct/union is used as the return value, the caller function stores
* the start address of the return value storage area into GR3 and then passes
* it to the callee function. The callee function interprets GR3 as the start
* address of the return value storage area. When this address needs to be
* saved in memory, the callee function secures the hidden parameter save area
* and saves the address in that area.
*/
frv_stack_t *
frv_stack_info (void)
{
static frv_stack_t info, zero_info;
frv_stack_t *info_ptr = &info;
tree fndecl = current_function_decl;
int varargs_p = 0;
tree cur_arg;
tree next_arg;
int range;
int alignment;
int offset;
/* If we've already calculated the values and reload is complete,
just return now. */
if (frv_stack_cache)
return frv_stack_cache;
/* Zero all fields. */
info = zero_info;
/* Set up the register range information. */
info_ptr->regs[STACK_REGS_GPR].name = "gpr";
info_ptr->regs[STACK_REGS_GPR].first = LAST_ARG_REGNUM + 1;
info_ptr->regs[STACK_REGS_GPR].last = GPR_LAST;
info_ptr->regs[STACK_REGS_GPR].dword_p = TRUE;
info_ptr->regs[STACK_REGS_FPR].name = "fpr";
info_ptr->regs[STACK_REGS_FPR].first = FPR_FIRST;
info_ptr->regs[STACK_REGS_FPR].last = FPR_LAST;
info_ptr->regs[STACK_REGS_FPR].dword_p = TRUE;
info_ptr->regs[STACK_REGS_LR].name = "lr";
info_ptr->regs[STACK_REGS_LR].first = LR_REGNO;
info_ptr->regs[STACK_REGS_LR].last = LR_REGNO;
info_ptr->regs[STACK_REGS_LR].special_p = 1;
info_ptr->regs[STACK_REGS_CC].name = "cc";
info_ptr->regs[STACK_REGS_CC].first = CC_FIRST;
info_ptr->regs[STACK_REGS_CC].last = CC_LAST;
info_ptr->regs[STACK_REGS_CC].field_p = TRUE;
info_ptr->regs[STACK_REGS_LCR].name = "lcr";
info_ptr->regs[STACK_REGS_LCR].first = LCR_REGNO;
info_ptr->regs[STACK_REGS_LCR].last = LCR_REGNO;
info_ptr->regs[STACK_REGS_STDARG].name = "stdarg";
info_ptr->regs[STACK_REGS_STDARG].first = FIRST_ARG_REGNUM;
info_ptr->regs[STACK_REGS_STDARG].last = LAST_ARG_REGNUM;
info_ptr->regs[STACK_REGS_STDARG].dword_p = 1;
info_ptr->regs[STACK_REGS_STDARG].special_p = 1;
info_ptr->regs[STACK_REGS_STRUCT].name = "struct";
info_ptr->regs[STACK_REGS_STRUCT].first = FRV_STRUCT_VALUE_REGNUM;
info_ptr->regs[STACK_REGS_STRUCT].last = FRV_STRUCT_VALUE_REGNUM;
info_ptr->regs[STACK_REGS_STRUCT].special_p = 1;
info_ptr->regs[STACK_REGS_FP].name = "fp";
info_ptr->regs[STACK_REGS_FP].first = FRAME_POINTER_REGNUM;
info_ptr->regs[STACK_REGS_FP].last = FRAME_POINTER_REGNUM;
info_ptr->regs[STACK_REGS_FP].special_p = 1;
/* Determine if this is a stdarg function. If so, allocate space to store
the 6 arguments. */
if (cfun->stdarg)
varargs_p = 1;
else
{
/* Find the last argument, and see if it is __builtin_va_alist. */
for (cur_arg = DECL_ARGUMENTS (fndecl); cur_arg != (tree)0; cur_arg = next_arg)
{
next_arg = DECL_CHAIN (cur_arg);
if (next_arg == (tree)0)
{
if (DECL_NAME (cur_arg)
&& !strcmp (IDENTIFIER_POINTER (DECL_NAME (cur_arg)), "__builtin_va_alist"))
varargs_p = 1;
break;
}
}
}
/* Iterate over all of the register ranges. */
for (range = 0; range < STACK_REGS_MAX; range++)
{
frv_stack_regs_t *reg_ptr = &(info_ptr->regs[range]);
int first = reg_ptr->first;
int last = reg_ptr->last;
int size_1word = 0;
int size_2words = 0;
int regno;
/* Calculate which registers need to be saved & save area size. */
switch (range)
{
default:
for (regno = first; regno <= last; regno++)
{
if ((df_regs_ever_live_p (regno)
&& !call_used_or_fixed_reg_p (regno))
|| (crtl->calls_eh_return
&& (regno >= FIRST_EH_REGNUM && regno <= LAST_EH_REGNUM))
|| (!TARGET_FDPIC && flag_pic
&& crtl->uses_pic_offset_table && regno == PIC_REGNO))
{
info_ptr->save_p[regno] = REG_SAVE_1WORD;
size_1word += UNITS_PER_WORD;
}
}
break;
/* Calculate whether we need to create a frame after everything else
has been processed. */
case STACK_REGS_FP:
break;
case STACK_REGS_LR:
if (df_regs_ever_live_p (LR_REGNO)
|| profile_flag
/* This is set for __builtin_return_address, etc. */
|| cfun->machine->frame_needed
|| (TARGET_LINKED_FP && frame_pointer_needed)
|| (!TARGET_FDPIC && flag_pic
&& crtl->uses_pic_offset_table))
{
info_ptr->save_p[LR_REGNO] = REG_SAVE_1WORD;
size_1word += UNITS_PER_WORD;
}
break;
case STACK_REGS_STDARG:
if (varargs_p)
{
/* If this is a stdarg function with a non varardic
argument split between registers and the stack,
adjust the saved registers downward. */
last -= (ADDR_ALIGN (crtl->args.pretend_args_size, UNITS_PER_WORD)
/ UNITS_PER_WORD);
for (regno = first; regno <= last; regno++)
{
info_ptr->save_p[regno] = REG_SAVE_1WORD;
size_1word += UNITS_PER_WORD;
}
info_ptr->stdarg_size = size_1word;
}
break;
case STACK_REGS_STRUCT:
if (cfun->returns_struct)
{
info_ptr->save_p[FRV_STRUCT_VALUE_REGNUM] = REG_SAVE_1WORD;
size_1word += UNITS_PER_WORD;
}
break;
}
if (size_1word)
{
/* If this is a field, it only takes one word. */
if (reg_ptr->field_p)
size_1word = UNITS_PER_WORD;
/* Determine which register pairs can be saved together. */
else if (reg_ptr->dword_p && TARGET_DWORD)
{
for (regno = first; regno < last; regno += 2)
{
if (info_ptr->save_p[regno] && info_ptr->save_p[regno+1])
{
size_2words += 2 * UNITS_PER_WORD;
size_1word -= 2 * UNITS_PER_WORD;
info_ptr->save_p[regno] = REG_SAVE_2WORDS;
info_ptr->save_p[regno+1] = REG_SAVE_NO_SAVE;
}
}
}
reg_ptr->size_1word = size_1word;
reg_ptr->size_2words = size_2words;
if (! reg_ptr->special_p)
{
info_ptr->regs_size_1word += size_1word;
info_ptr->regs_size_2words += size_2words;
}
}
}
/* Set up the sizes of each field in the frame body, making the sizes
of each be divisible by the size of a dword if dword operations might
be used, or the size of a word otherwise. */
alignment = (TARGET_DWORD? 2 * UNITS_PER_WORD : UNITS_PER_WORD);
info_ptr->parameter_size = ADDR_ALIGN (crtl->outgoing_args_size, alignment);
info_ptr->regs_size = ADDR_ALIGN (info_ptr->regs_size_2words
+ info_ptr->regs_size_1word,
alignment);
info_ptr->vars_size = ADDR_ALIGN (get_frame_size (), alignment);
info_ptr->pretend_size = crtl->args.pretend_args_size;
/* Work out the size of the frame, excluding the header. Both the frame
body and register parameter area will be dword-aligned. */
info_ptr->total_size
= (ADDR_ALIGN (info_ptr->parameter_size
+ info_ptr->regs_size
+ info_ptr->vars_size,
2 * UNITS_PER_WORD)
+ ADDR_ALIGN (info_ptr->pretend_size
+ info_ptr->stdarg_size,
2 * UNITS_PER_WORD));
/* See if we need to create a frame at all, if so add header area. */
if (info_ptr->total_size > 0
|| frame_pointer_needed
|| info_ptr->regs[STACK_REGS_LR].size_1word > 0
|| info_ptr->regs[STACK_REGS_STRUCT].size_1word > 0)
{
offset = info_ptr->parameter_size;
info_ptr->header_size = 4 * UNITS_PER_WORD;
info_ptr->total_size += 4 * UNITS_PER_WORD;
/* Calculate the offsets to save normal register pairs. */
for (range = 0; range < STACK_REGS_MAX; range++)
{
frv_stack_regs_t *reg_ptr = &(info_ptr->regs[range]);
if (! reg_ptr->special_p)
{
int first = reg_ptr->first;
int last = reg_ptr->last;
int regno;
for (regno = first; regno <= last; regno++)
if (info_ptr->save_p[regno] == REG_SAVE_2WORDS
&& regno != FRAME_POINTER_REGNUM
&& (regno < FIRST_ARG_REGNUM
|| regno > LAST_ARG_REGNUM))
{
info_ptr->reg_offset[regno] = offset;
offset += 2 * UNITS_PER_WORD;
}
}
}
/* Calculate the offsets to save normal single registers. */
for (range = 0; range < STACK_REGS_MAX; range++)
{
frv_stack_regs_t *reg_ptr = &(info_ptr->regs[range]);
if (! reg_ptr->special_p)
{
int first = reg_ptr->first;
int last = reg_ptr->last;
int regno;
for (regno = first; regno <= last; regno++)
if (info_ptr->save_p[regno] == REG_SAVE_1WORD
&& regno != FRAME_POINTER_REGNUM
&& (regno < FIRST_ARG_REGNUM
|| regno > LAST_ARG_REGNUM))
{
info_ptr->reg_offset[regno] = offset;
offset += UNITS_PER_WORD;
}
}
}
/* Calculate the offset to save the local variables at. */
offset = ADDR_ALIGN (offset, alignment);
if (info_ptr->vars_size)
{
info_ptr->vars_offset = offset;
offset += info_ptr->vars_size;
}
/* Align header to a dword-boundary. */
offset = ADDR_ALIGN (offset, 2 * UNITS_PER_WORD);
/* Calculate the offsets in the fixed frame. */
info_ptr->save_p[FRAME_POINTER_REGNUM] = REG_SAVE_1WORD;
info_ptr->reg_offset[FRAME_POINTER_REGNUM] = offset;
info_ptr->regs[STACK_REGS_FP].size_1word = UNITS_PER_WORD;
info_ptr->save_p[LR_REGNO] = REG_SAVE_1WORD;
info_ptr->reg_offset[LR_REGNO] = offset + 2*UNITS_PER_WORD;
info_ptr->regs[STACK_REGS_LR].size_1word = UNITS_PER_WORD;
if (cfun->returns_struct)
{
info_ptr->save_p[FRV_STRUCT_VALUE_REGNUM] = REG_SAVE_1WORD;
info_ptr->reg_offset[FRV_STRUCT_VALUE_REGNUM] = offset + UNITS_PER_WORD;
info_ptr->regs[STACK_REGS_STRUCT].size_1word = UNITS_PER_WORD;
}
/* Calculate the offsets to store the arguments passed in registers
for stdarg functions. The register pairs are first and the single
register if any is last. The register save area starts on a
dword-boundary. */
if (info_ptr->stdarg_size)
{
int first = info_ptr->regs[STACK_REGS_STDARG].first;
int last = info_ptr->regs[STACK_REGS_STDARG].last;
int regno;
/* Skip the header. */
offset += 4 * UNITS_PER_WORD;
for (regno = first; regno <= last; regno++)
{
if (info_ptr->save_p[regno] == REG_SAVE_2WORDS)
{
info_ptr->reg_offset[regno] = offset;
offset += 2 * UNITS_PER_WORD;
}
else if (info_ptr->save_p[regno] == REG_SAVE_1WORD)
{
info_ptr->reg_offset[regno] = offset;
offset += UNITS_PER_WORD;
}
}
}
}
if (reload_completed)
frv_stack_cache = info_ptr;
return info_ptr;
}
/* Print the information about the frv stack offsets, etc. when debugging. */
void
frv_debug_stack (frv_stack_t *info)
{
int range;
if (!info)
info = frv_stack_info ();
fprintf (stderr, "\nStack information for function %s:\n",
((current_function_decl && DECL_NAME (current_function_decl))
? IDENTIFIER_POINTER (DECL_NAME (current_function_decl))
: "<unknown>"));
fprintf (stderr, "\ttotal_size\t= %6d\n", info->total_size);
fprintf (stderr, "\tvars_size\t= %6d\n", info->vars_size);
fprintf (stderr, "\tparam_size\t= %6d\n", info->parameter_size);
fprintf (stderr, "\tregs_size\t= %6d, 1w = %3d, 2w = %3d\n",
info->regs_size, info->regs_size_1word, info->regs_size_2words);
fprintf (stderr, "\theader_size\t= %6d\n", info->header_size);
fprintf (stderr, "\tpretend_size\t= %6d\n", info->pretend_size);
fprintf (stderr, "\tvars_offset\t= %6d\n", info->vars_offset);
fprintf (stderr, "\tregs_offset\t= %6d\n", info->regs_offset);
for (range = 0; range < STACK_REGS_MAX; range++)
{
frv_stack_regs_t *regs = &(info->regs[range]);
if ((regs->size_1word + regs->size_2words) > 0)
{
int first = regs->first;
int last = regs->last;
int regno;
fprintf (stderr, "\t%s\tsize\t= %6d, 1w = %3d, 2w = %3d, save =",
regs->name, regs->size_1word + regs->size_2words,
regs->size_1word, regs->size_2words);
for (regno = first; regno <= last; regno++)
{
if (info->save_p[regno] == REG_SAVE_1WORD)
fprintf (stderr, " %s (%d)", reg_names[regno],
info->reg_offset[regno]);
else if (info->save_p[regno] == REG_SAVE_2WORDS)
fprintf (stderr, " %s-%s (%d)", reg_names[regno],
reg_names[regno+1], info->reg_offset[regno]);
}
fputc ('\n', stderr);
}
}
fflush (stderr);
}
/* Used during final to control the packing of insns. The value is
1 if the current instruction should be packed with the next one,
0 if it shouldn't or -1 if packing is disabled altogether. */
static int frv_insn_packing_flag;
/* True if the current function contains a far jump. */
static int
frv_function_contains_far_jump (void)
{
rtx_insn *insn = get_insns ();
while (insn != NULL
&& !(JUMP_P (insn)
&& get_attr_far_jump (insn) == FAR_JUMP_YES))
insn = NEXT_INSN (insn);
return (insn != NULL);
}
/* For the FRV, this function makes sure that a function with far jumps
will return correctly. It also does the VLIW packing. */
static void
frv_function_prologue (FILE *file)
{
/* If no frame was created, check whether the function uses a call
instruction to implement a far jump. If so, save the link in gr3 and
replace all returns to LR with returns to GR3. GR3 is used because it
is call-clobbered, because is not available to the register allocator,
and because all functions that take a hidden argument pointer will have
a stack frame. */
if (frv_stack_info ()->total_size == 0 && frv_function_contains_far_jump ())
{
rtx_insn *insn;
/* Just to check that the above comment is true. */
gcc_assert (!df_regs_ever_live_p (GPR_FIRST + 3));
/* Generate the instruction that saves the link register. */
fprintf (file, "\tmovsg lr,gr3\n");
/* Replace the LR with GR3 in *return_internal patterns. The insn
will now return using jmpl @(gr3,0) rather than bralr. We cannot
simply emit a different assembly directive because bralr and jmpl
execute in different units. */
for (insn = get_insns(); insn != NULL; insn = NEXT_INSN (insn))
if (JUMP_P (insn))
{
rtx pattern = PATTERN (insn);
if (GET_CODE (pattern) == PARALLEL
&& XVECLEN (pattern, 0) >= 2
&& GET_CODE (XVECEXP (pattern, 0, 0)) == RETURN
&& GET_CODE (XVECEXP (pattern, 0, 1)) == USE)
{
rtx address = XEXP (XVECEXP (pattern, 0, 1), 0);
if (GET_CODE (address) == REG && REGNO (address) == LR_REGNO)
SET_REGNO (address, GPR_FIRST + 3);
}
}
}
frv_pack_insns ();
/* Allow the garbage collector to free the nops created by frv_reorg. */
memset (frv_nops, 0, sizeof (frv_nops));
}
/* Return the next available temporary register in a given class. */
static rtx
frv_alloc_temp_reg (
frv_tmp_reg_t *info, /* which registers are available */
enum reg_class rclass, /* register class desired */
machine_mode mode, /* mode to allocate register with */
int mark_as_used, /* register not available after allocation */
int no_abort) /* return NULL instead of aborting */
{
int regno = info->next_reg[ (int)rclass ];
int orig_regno = regno;
HARD_REG_SET *reg_in_class = &reg_class_contents[ (int)rclass ];
int i, nr;
for (;;)
{
if (TEST_HARD_REG_BIT (*reg_in_class, regno)
&& TEST_HARD_REG_BIT (info->regs, regno))
break;
if (++regno >= FIRST_PSEUDO_REGISTER)
regno = 0;
if (regno == orig_regno)
{
gcc_assert (no_abort);
return NULL_RTX;
}
}
nr = hard_regno_nregs (regno, mode);
info->next_reg[ (int)rclass ] = regno + nr;
if (mark_as_used)
for (i = 0; i < nr; i++)
CLEAR_HARD_REG_BIT (info->regs, regno+i);
return gen_rtx_REG (mode, regno);
}
/* Return an rtx with the value OFFSET, which will either be a register or a
signed 12-bit integer. It can be used as the second operand in an "add"
instruction, or as the index in a load or store.
The function returns a constant rtx if OFFSET is small enough, otherwise
it loads the constant into register OFFSET_REGNO and returns that. */
static rtx
frv_frame_offset_rtx (int offset)
{
rtx offset_rtx = GEN_INT (offset);
if (IN_RANGE (offset, -2048, 2047))
return offset_rtx;
else
{
rtx reg_rtx = gen_rtx_REG (SImode, OFFSET_REGNO);
if (IN_RANGE (offset, -32768, 32767))
emit_insn (gen_movsi (reg_rtx, offset_rtx));
else
{
emit_insn (gen_movsi_high (reg_rtx, offset_rtx));
emit_insn (gen_movsi_lo_sum (reg_rtx, offset_rtx));
}
return reg_rtx;
}
}
/* Generate (mem:MODE (plus:Pmode BASE (frv_frame_offset OFFSET)))). The
prologue and epilogue uses such expressions to access the stack. */
static rtx
frv_frame_mem (machine_mode mode, rtx base, int offset)
{
return gen_rtx_MEM (mode, gen_rtx_PLUS (Pmode,
base,
frv_frame_offset_rtx (offset)));
}
/* Generate a frame-related expression:
(set REG (mem (plus (sp) (const_int OFFSET)))).
Such expressions are used in FRAME_RELATED_EXPR notes for more complex
instructions. Marking the expressions as frame-related is superfluous if
the note contains just a single set. But if the note contains a PARALLEL
or SEQUENCE that has several sets, each set must be individually marked
as frame-related. */
static rtx
frv_dwarf_store (rtx reg, int offset)
{
rtx set = gen_rtx_SET (gen_rtx_MEM (GET_MODE (reg),
plus_constant (Pmode, stack_pointer_rtx,
offset)),
reg);
RTX_FRAME_RELATED_P (set) = 1;
return set;
}
/* Emit a frame-related instruction whose pattern is PATTERN. The
instruction is the last in a sequence that cumulatively performs the
operation described by DWARF_PATTERN. The instruction is marked as
frame-related and has a REG_FRAME_RELATED_EXPR note containing
DWARF_PATTERN. */
static void
frv_frame_insn (rtx pattern, rtx dwarf_pattern)
{
rtx insn = emit_insn (pattern);
RTX_FRAME_RELATED_P (insn) = 1;
REG_NOTES (insn) = alloc_EXPR_LIST (REG_FRAME_RELATED_EXPR,
dwarf_pattern,
REG_NOTES (insn));
}
/* Emit instructions that transfer REG to or from the memory location (sp +
STACK_OFFSET). The register is stored in memory if ACCESSOR->OP is
FRV_STORE and loaded if it is FRV_LOAD. Only the prologue uses this
function to store registers and only the epilogue uses it to load them.
The caller sets up ACCESSOR so that BASE is equal to (sp + BASE_OFFSET).
The generated instruction will use BASE as its base register. BASE may
simply be the stack pointer, but if several accesses are being made to a
region far away from the stack pointer, it may be more efficient to set
up a temporary instead.
Store instructions will be frame-related and will be annotated with the
overall effect of the store. Load instructions will be followed by a
(use) to prevent later optimizations from zapping them.
The function takes care of the moves to and from SPRs, using TEMP_REGNO
as a temporary in such cases. */
static void
frv_frame_access (frv_frame_accessor_t *accessor, rtx reg, int stack_offset)
{
machine_mode mode = GET_MODE (reg);
rtx mem = frv_frame_mem (mode,
accessor->base,
stack_offset - accessor->base_offset);
if (accessor->op == FRV_LOAD)
{
if (SPR_P (REGNO (reg)))
{
rtx temp = gen_rtx_REG (mode, TEMP_REGNO);
emit_insn (gen_rtx_SET (temp, mem));
emit_insn (gen_rtx_SET (reg, temp));
}
else
{
/* We cannot use reg+reg addressing for DImode access. */
if (mode == DImode
&& GET_CODE (XEXP (mem, 0)) == PLUS
&& GET_CODE (XEXP (XEXP (mem, 0), 0)) == REG
&& GET_CODE (XEXP (XEXP (mem, 0), 1)) == REG)
{
rtx temp = gen_rtx_REG (SImode, TEMP_REGNO);
emit_move_insn (temp,
gen_rtx_PLUS (SImode, XEXP (XEXP (mem, 0), 0),
XEXP (XEXP (mem, 0), 1)));
mem = gen_rtx_MEM (DImode, temp);
}
emit_insn (gen_rtx_SET (reg, mem));
}
emit_use (reg);
}
else
{
if (SPR_P (REGNO (reg)))
{
rtx temp = gen_rtx_REG (mode, TEMP_REGNO);
emit_insn (gen_rtx_SET (temp, reg));
frv_frame_insn (gen_rtx_SET (mem, temp),
frv_dwarf_store (reg, stack_offset));
}
else if (mode == DImode)
{
/* For DImode saves, the dwarf2 version needs to be a SEQUENCE
with a separate save for each register. */
rtx reg1 = gen_rtx_REG (SImode, REGNO (reg));
rtx reg2 = gen_rtx_REG (SImode, REGNO (reg) + 1);
rtx set1 = frv_dwarf_store (reg1, stack_offset);
rtx set2 = frv_dwarf_store (reg2, stack_offset + 4);
/* Also we cannot use reg+reg addressing. */
if (GET_CODE (XEXP (mem, 0)) == PLUS
&& GET_CODE (XEXP (XEXP (mem, 0), 0)) == REG
&& GET_CODE (XEXP (XEXP (mem, 0), 1)) == REG)
{
rtx temp = gen_rtx_REG (SImode, TEMP_REGNO);
emit_move_insn (temp,
gen_rtx_PLUS (SImode, XEXP (XEXP (mem, 0), 0),
XEXP (XEXP (mem, 0), 1)));
mem = gen_rtx_MEM (DImode, temp);
}
frv_frame_insn (gen_rtx_SET (mem, reg),
gen_rtx_PARALLEL (VOIDmode,
gen_rtvec (2, set1, set2)));
}
else
frv_frame_insn (gen_rtx_SET (mem, reg),
frv_dwarf_store (reg, stack_offset));
}
}
/* A function that uses frv_frame_access to transfer a group of registers to
or from the stack. ACCESSOR is passed directly to frv_frame_access, INFO
is the stack information generated by frv_stack_info, and REG_SET is the
number of the register set to transfer. */
static void
frv_frame_access_multi (frv_frame_accessor_t *accessor,
frv_stack_t *info,
int reg_set)
{
frv_stack_regs_t *regs_info;
int regno;
regs_info = &info->regs[reg_set];
for (regno = regs_info->first; regno <= regs_info->last; regno++)
if (info->save_p[regno])
frv_frame_access (accessor,
info->save_p[regno] == REG_SAVE_2WORDS
? gen_rtx_REG (DImode, regno)
: gen_rtx_REG (SImode, regno),
info->reg_offset[regno]);
}
/* Save or restore callee-saved registers that are kept outside the frame
header. The function saves the registers if OP is FRV_STORE and restores
them if OP is FRV_LOAD. INFO is the stack information generated by
frv_stack_info. */
static void
frv_frame_access_standard_regs (enum frv_stack_op op, frv_stack_t *info)
{
frv_frame_accessor_t accessor;
accessor.op = op;
accessor.base = stack_pointer_rtx;
accessor.base_offset = 0;
frv_frame_access_multi (&accessor, info, STACK_REGS_GPR);
frv_frame_access_multi (&accessor, info, STACK_REGS_FPR);
frv_frame_access_multi (&accessor, info, STACK_REGS_LCR);
}
/* Called after register allocation to add any instructions needed for the
prologue. Using a prologue insn is favored compared to putting all of the
instructions in the TARGET_ASM_FUNCTION_PROLOGUE target hook, since
it allows the scheduler to intermix instructions with the saves of
the caller saved registers. In some cases, it might be necessary
to emit a barrier instruction as the last insn to prevent such
scheduling.
Also any insns generated here should have RTX_FRAME_RELATED_P(insn) = 1
so that the debug info generation code can handle them properly. */
void
frv_expand_prologue (void)
{
frv_stack_t *info = frv_stack_info ();
rtx sp = stack_pointer_rtx;
rtx fp = frame_pointer_rtx;
frv_frame_accessor_t accessor;
if (TARGET_DEBUG_STACK)
frv_debug_stack (info);
if (flag_stack_usage_info)
current_function_static_stack_size = info->total_size;
if (info->total_size == 0)
return;
/* We're interested in three areas of the frame here:
A: the register save area
B: the old FP
C: the header after B
If the frame pointer isn't used, we'll have to set up A, B and C
using the stack pointer. If the frame pointer is used, we'll access
them as follows:
A: set up using sp
B: set up using sp or a temporary (see below)
C: set up using fp
We set up B using the stack pointer if the frame is small enough.
Otherwise, it's more efficient to copy the old stack pointer into a
temporary and use that.
Note that it's important to make sure the prologue and epilogue use the
same registers to access A and C, since doing otherwise will confuse
the aliasing code. */
/* Set up ACCESSOR for accessing region B above. If the frame pointer
isn't used, the same method will serve for C. */
accessor.op = FRV_STORE;
if (frame_pointer_needed && info->total_size > 2048)
{
accessor.base = gen_rtx_REG (Pmode, OLD_SP_REGNO);
accessor.base_offset = info->total_size;
emit_insn (gen_movsi (accessor.base, sp));
}
else
{
accessor.base = stack_pointer_rtx;
accessor.base_offset = 0;
}
/* Allocate the stack space. */
{
rtx asm_offset = frv_frame_offset_rtx (-info->total_size);
rtx dwarf_offset = GEN_INT (-info->total_size);
frv_frame_insn (gen_stack_adjust (sp, sp, asm_offset),
gen_rtx_SET (sp, gen_rtx_PLUS (Pmode, sp, dwarf_offset)));
}
/* If the frame pointer is needed, store the old one at (sp + FP_OFFSET)
and point the new one to that location. */
if (frame_pointer_needed)
{
int fp_offset = info->reg_offset[FRAME_POINTER_REGNUM];
/* ASM_SRC and DWARF_SRC both point to the frame header. ASM_SRC is
based on ACCESSOR.BASE but DWARF_SRC is always based on the stack
pointer. */
rtx asm_src = plus_constant (Pmode, accessor.base,
fp_offset - accessor.base_offset);
rtx dwarf_src = plus_constant (Pmode, sp, fp_offset);
/* Store the old frame pointer at (sp + FP_OFFSET). */
frv_frame_access (&accessor, fp, fp_offset);
/* Set up the new frame pointer. */
frv_frame_insn (gen_rtx_SET (fp, asm_src),
gen_rtx_SET (fp, dwarf_src));
/* Access region C from the frame pointer. */
accessor.base = fp;
accessor.base_offset = fp_offset;
}
/* Set up region C. */
frv_frame_access_multi (&accessor, info, STACK_REGS_STRUCT);
frv_frame_access_multi (&accessor, info, STACK_REGS_LR);
frv_frame_access_multi (&accessor, info, STACK_REGS_STDARG);
/* Set up region A. */
frv_frame_access_standard_regs (FRV_STORE, info);
/* If this is a varargs/stdarg function, issue a blockage to prevent the
scheduler from moving loads before the stores saving the registers. */
if (info->stdarg_size > 0)
emit_insn (gen_blockage ());
/* Set up pic register/small data register for this function. */
if (!TARGET_FDPIC && flag_pic && crtl->uses_pic_offset_table)
emit_insn (gen_pic_prologue (gen_rtx_REG (Pmode, PIC_REGNO),
gen_rtx_REG (Pmode, LR_REGNO),
gen_rtx_REG (SImode, OFFSET_REGNO)));
}
/* Under frv, all of the work is done via frv_expand_epilogue, but
this function provides a convenient place to do cleanup. */
static void
frv_function_epilogue (FILE *)
{
frv_stack_cache = (frv_stack_t *)0;
/* Zap last used registers for conditional execution. */
memset (&frv_ifcvt.tmp_reg, 0, sizeof (frv_ifcvt.tmp_reg));
/* Release the bitmap of created insns. */
BITMAP_FREE (frv_ifcvt.scratch_insns_bitmap);
}
/* Called after register allocation to add any instructions needed for the
epilogue. Using an epilogue insn is favored compared to putting all of the
instructions in the TARGET_ASM_FUNCTION_PROLOGUE target hook, since
it allows the scheduler to intermix instructions with the saves of
the caller saved registers. In some cases, it might be necessary
to emit a barrier instruction as the last insn to prevent such
scheduling. */
void
frv_expand_epilogue (bool emit_return)
{
frv_stack_t *info = frv_stack_info ();
rtx fp = frame_pointer_rtx;
rtx sp = stack_pointer_rtx;
rtx return_addr;
int fp_offset;
fp_offset = info->reg_offset[FRAME_POINTER_REGNUM];
/* Restore the stack pointer to its original value if alloca or the like
is used. */
if (! crtl->sp_is_unchanging)
emit_insn (gen_addsi3 (sp, fp, frv_frame_offset_rtx (-fp_offset)));
/* Restore the callee-saved registers that were used in this function. */
frv_frame_access_standard_regs (FRV_LOAD, info);
/* Set RETURN_ADDR to the address we should return to. Set it to NULL if
no return instruction should be emitted. */
if (info->save_p[LR_REGNO])
{
int lr_offset;
rtx mem;
/* Use the same method to access the link register's slot as we did in
the prologue. In other words, use the frame pointer if available,
otherwise use the stack pointer.
LR_OFFSET is the offset of the link register's slot from the start
of the frame and MEM is a memory rtx for it. */
lr_offset = info->reg_offset[LR_REGNO];
if (frame_pointer_needed)
mem = frv_frame_mem (Pmode, fp, lr_offset - fp_offset);
else
mem = frv_frame_mem (Pmode, sp, lr_offset);
/* Load the old link register into a GPR. */
return_addr = gen_rtx_REG (Pmode, TEMP_REGNO);
emit_insn (gen_rtx_SET (return_addr, mem));
}
else
return_addr = gen_rtx_REG (Pmode, LR_REGNO);
/* Restore the old frame pointer. Emit a USE afterwards to make sure
the load is preserved. */
if (frame_pointer_needed)
{
emit_insn (gen_rtx_SET (fp, gen_rtx_MEM (Pmode, fp)));
emit_use (fp);
}
/* Deallocate the stack frame. */
if (info->total_size != 0)
{
rtx offset = frv_frame_offset_rtx (info->total_size);
emit_insn (gen_stack_adjust (sp, sp, offset));
}
/* If this function uses eh_return, add the final stack adjustment now. */
if (crtl->calls_eh_return)
emit_insn (gen_stack_adjust (sp, sp, EH_RETURN_STACKADJ_RTX));
if (emit_return)
emit_jump_insn (gen_epilogue_return (return_addr));
else
{
rtx lr = return_addr;
if (REGNO (return_addr) != LR_REGNO)
{
lr = gen_rtx_REG (Pmode, LR_REGNO);
emit_move_insn (lr, return_addr);
}
emit_use (lr);
}
}
/* Worker function for TARGET_ASM_OUTPUT_MI_THUNK. */
static void
frv_asm_output_mi_thunk (FILE *file,
tree thunk_fndecl ATTRIBUTE_UNUSED,
HOST_WIDE_INT delta,
HOST_WIDE_INT vcall_offset ATTRIBUTE_UNUSED,
tree function)
{
const char *fnname = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (thunk_fndecl));
const char *name_func = XSTR (XEXP (DECL_RTL (function), 0), 0);
const char *name_arg0 = reg_names[FIRST_ARG_REGNUM];
const char *name_jmp = reg_names[JUMP_REGNO];
const char *parallel = (frv_issue_rate () > 1 ? ".p" : "");
assemble_start_function (thunk_fndecl, fnname);
/* Do the add using an addi if possible. */
if (IN_RANGE (delta, -2048, 2047))
fprintf (file, "\taddi %s,#%d,%s\n", name_arg0, (int) delta, name_arg0);
else
{
const char *const name_add = reg_names[TEMP_REGNO];
fprintf (file, "\tsethi%s #hi(" HOST_WIDE_INT_PRINT_DEC "),%s\n",
parallel, delta, name_add);
fprintf (file, "\tsetlo #lo(" HOST_WIDE_INT_PRINT_DEC "),%s\n",
delta, name_add);
fprintf (file, "\tadd %s,%s,%s\n", name_add, name_arg0, name_arg0);
}
if (TARGET_FDPIC)
{
const char *name_pic = reg_names[FDPIC_REGNO];
name_jmp = reg_names[FDPIC_FPTR_REGNO];
if (flag_pic != 1)
{
fprintf (file, "\tsethi%s #gotofffuncdeschi(", parallel);
assemble_name (file, name_func);
fprintf (file, "),%s\n", name_jmp);
fprintf (file, "\tsetlo #gotofffuncdesclo(");
assemble_name (file, name_func);
fprintf (file, "),%s\n", name_jmp);
fprintf (file, "\tldd @(%s,%s), %s\n", name_jmp, name_pic, name_jmp);
}
else
{
fprintf (file, "\tlddo @(%s,#gotofffuncdesc12(", name_pic);
assemble_name (file, name_func);
fprintf (file, "\t)), %s\n", name_jmp);
}
}
else if (!flag_pic)
{
fprintf (file, "\tsethi%s #hi(", parallel);
assemble_name (file, name_func);
fprintf (file, "),%s\n", name_jmp);
fprintf (file, "\tsetlo #lo(");
assemble_name (file, name_func);
fprintf (file, "),%s\n", name_jmp);
}
else
{
/* Use JUMP_REGNO as a temporary PIC register. */
const char *name_lr = reg_names[LR_REGNO];
const char *name_gppic = name_jmp;
const char *name_tmp = reg_names[TEMP_REGNO];
fprintf (file, "\tmovsg %s,%s\n", name_lr, name_tmp);
fprintf (file, "\tcall 1f\n");
fprintf (file, "1:\tmovsg %s,%s\n", name_lr, name_gppic);
fprintf (file, "\tmovgs %s,%s\n", name_tmp, name_lr);
fprintf (file, "\tsethi%s #gprelhi(1b),%s\n", parallel, name_tmp);
fprintf (file, "\tsetlo #gprello(1b),%s\n", name_tmp);
fprintf (file, "\tsub %s,%s,%s\n", name_gppic, name_tmp, name_gppic);
fprintf (file, "\tsethi%s #gprelhi(", parallel);
assemble_name (file, name_func);
fprintf (file, "),%s\n", name_tmp);
fprintf (file, "\tsetlo #gprello(");
assemble_name (file, name_func);
fprintf (file, "),%s\n", name_tmp);
fprintf (file, "\tadd %s,%s,%s\n", name_gppic, name_tmp, name_jmp);
}
/* Jump to the function address. */
fprintf (file, "\tjmpl @(%s,%s)\n", name_jmp, reg_names[GPR_FIRST+0]);
assemble_end_function (thunk_fndecl, fnname);
}
/* On frv, create a frame whenever we need to create stack. */
static bool
frv_frame_pointer_required (void)
{
/* If we forgoing the usual linkage requirements, we only need
a frame pointer if the stack pointer might change. */
if (!TARGET_LINKED_FP)
return !crtl->sp_is_unchanging;
if (! crtl->is_leaf)
return true;
if (get_frame_size () != 0)
return true;
if (cfun->stdarg)
return true;
if (!crtl->sp_is_unchanging)
return true;
if (!TARGET_FDPIC && flag_pic && crtl->uses_pic_offset_table)
return true;
if (profile_flag)
return true;
if (cfun->machine->frame_needed)
return true;
return false;
}
/* Worker function for TARGET_CAN_ELIMINATE. */
bool
frv_can_eliminate (const int from, const int to)
{
return (from == ARG_POINTER_REGNUM && to == STACK_POINTER_REGNUM
? ! frame_pointer_needed
: true);
}
/* This function returns the initial difference between the specified
pair of registers. */
/* See frv_stack_info for more details on the frv stack frame. */
int
frv_initial_elimination_offset (int from, int to)
{
frv_stack_t *info = frv_stack_info ();
int ret = 0;
if (to == STACK_POINTER_REGNUM && from == ARG_POINTER_REGNUM)
ret = info->total_size - info->pretend_size;
else if (to == STACK_POINTER_REGNUM && from == FRAME_POINTER_REGNUM)
ret = info->reg_offset[FRAME_POINTER_REGNUM];
else if (to == FRAME_POINTER_REGNUM && from == ARG_POINTER_REGNUM)
ret = (info->total_size
- info->reg_offset[FRAME_POINTER_REGNUM]
- info->pretend_size);
else
gcc_unreachable ();
if (TARGET_DEBUG_STACK)
fprintf (stderr, "Eliminate %s to %s by adding %d\n",
reg_names [from], reg_names[to], ret);
return ret;
}
/* Worker function for TARGET_SETUP_INCOMING_VARARGS. */
static void
frv_setup_incoming_varargs (cumulative_args_t cum_v,
const function_arg_info &arg,
int *pretend_size,
int second_time)
{
CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v);
if (TARGET_DEBUG_ARG)
fprintf (stderr,
"setup_vararg: words = %2d, mode = %4s, pretend_size = %d, second_time = %d\n",
*cum, GET_MODE_NAME (arg.mode), *pretend_size, second_time);
}
/* Worker function for TARGET_EXPAND_BUILTIN_SAVEREGS. */
static rtx
frv_expand_builtin_saveregs (void)
{
int offset = UNITS_PER_WORD * FRV_NUM_ARG_REGS;
if (TARGET_DEBUG_ARG)
fprintf (stderr, "expand_builtin_saveregs: offset from ap = %d\n",
offset);
return gen_rtx_PLUS (Pmode, virtual_incoming_args_rtx, GEN_INT (- offset));
}
/* Expand __builtin_va_start to do the va_start macro. */
static void
frv_expand_builtin_va_start (tree valist, rtx nextarg)
{
tree t;
int num = crtl->args.info - FIRST_ARG_REGNUM - FRV_NUM_ARG_REGS;
nextarg = gen_rtx_PLUS (Pmode, virtual_incoming_args_rtx,
GEN_INT (UNITS_PER_WORD * num));
if (TARGET_DEBUG_ARG)
{
fprintf (stderr, "va_start: args_info = %d, num = %d\n",
crtl->args.info, num);
debug_rtx (nextarg);
}
t = build2 (MODIFY_EXPR, TREE_TYPE (valist), valist,
fold_convert (TREE_TYPE (valist),
make_tree (sizetype, nextarg)));
TREE_SIDE_EFFECTS (t) = 1;
expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
}
/* Expand a block move operation, and return 1 if successful. Return 0
if we should let the compiler generate normal code.
operands[0] is the destination
operands[1] is the source
operands[2] is the length
operands[3] is the alignment */
/* Maximum number of loads to do before doing the stores */
#ifndef MAX_MOVE_REG
#define MAX_MOVE_REG 4
#endif
/* Maximum number of total loads to do. */
#ifndef TOTAL_MOVE_REG
#define TOTAL_MOVE_REG 8
#endif
int
frv_expand_block_move (rtx operands[])
{
rtx orig_dest = operands[0];
rtx orig_src = operands[1];
rtx bytes_rtx = operands[2];
rtx align_rtx = operands[3];
int constp = (GET_CODE (bytes_rtx) == CONST_INT);
int align;
int bytes;
int offset;
int num_reg;
int i;
rtx src_reg;
rtx dest_reg;
rtx src_addr;
rtx dest_addr;
rtx src_mem;
rtx dest_mem;
rtx tmp_reg;
rtx stores[MAX_MOVE_REG];
int move_bytes;
machine_mode mode;
/* If this is not a fixed size move, just call memcpy. */
if (! constp)
return FALSE;
/* This should be a fixed size alignment. */
gcc_assert (GET_CODE (align_rtx) == CONST_INT);
align = INTVAL (align_rtx);
/* Anything to move? */
bytes = INTVAL (bytes_rtx);
if (bytes <= 0)
return TRUE;
/* Don't support real large moves. */
if (bytes > TOTAL_MOVE_REG*align)
return FALSE;
/* Move the address into scratch registers. */
dest_reg = copy_addr_to_reg (XEXP (orig_dest, 0));
src_reg = copy_addr_to_reg (XEXP (orig_src, 0));
num_reg = offset = 0;
for ( ; bytes > 0; (bytes -= move_bytes), (offset += move_bytes))
{
/* Calculate the correct offset for src/dest. */
if (offset == 0)
{
src_addr = src_reg;
dest_addr = dest_reg;
}
else
{
src_addr = plus_constant (Pmode, src_reg, offset);
dest_addr = plus_constant (Pmode, dest_reg, offset);
}
/* Generate the appropriate load and store, saving the stores
for later. */
if (bytes >= 4 && align >= 4)
mode = SImode;
else if (bytes >= 2 && align >= 2)
mode = HImode;
else
mode = QImode;
move_bytes = GET_MODE_SIZE (mode);
tmp_reg = gen_reg_rtx (mode);
src_mem = change_address (orig_src, mode, src_addr);
dest_mem = change_address (orig_dest, mode, dest_addr);
emit_insn (gen_rtx_SET (tmp_reg, src_mem));
stores[num_reg++] = gen_rtx_SET (dest_mem, tmp_reg);
if (num_reg >= MAX_MOVE_REG)
{
for (i = 0; i < num_reg; i++)
emit_insn (stores[i]);
num_reg = 0;
}
}
for (i = 0; i < num_reg; i++)
emit_insn (stores[i]);
return TRUE;
}
/* Expand a block clear operation, and return 1 if successful. Return 0
if we should let the compiler generate normal code.
operands[0] is the destination
operands[1] is the length
operands[3] is the alignment */
int
frv_expand_block_clear (rtx operands[])
{
rtx orig_dest = operands[0];
rtx bytes_rtx = operands[1];
rtx align_rtx = operands[3];
int constp = (GET_CODE (bytes_rtx) == CONST_INT);
int align;
int bytes;
int offset;
rtx dest_reg;
rtx dest_addr;
rtx dest_mem;
int clear_bytes;
machine_mode mode;
/* If this is not a fixed size move, just call memcpy. */
if (! constp)
return FALSE;
/* This should be a fixed size alignment. */
gcc_assert (GET_CODE (align_rtx) == CONST_INT);
align = INTVAL (align_rtx);
/* Anything to move? */
bytes = INTVAL (bytes_rtx);
if (bytes <= 0)
return TRUE;
/* Don't support real large clears. */
if (bytes > TOTAL_MOVE_REG*align)
return FALSE;
/* Move the address into a scratch register. */
dest_reg = copy_addr_to_reg (XEXP (orig_dest, 0));
offset = 0;
for ( ; bytes > 0; (bytes -= clear_bytes), (offset += clear_bytes))
{
/* Calculate the correct offset for src/dest. */
dest_addr = ((offset == 0)
? dest_reg
: plus_constant (Pmode, dest_reg, offset));
/* Generate the appropriate store of gr0. */
if (bytes >= 4 && align >= 4)
mode = SImode;
else if (bytes >= 2 && align >= 2)
mode = HImode;
else
mode = QImode;
clear_bytes = GET_MODE_SIZE (mode);
dest_mem = change_address (orig_dest, mode, dest_addr);
emit_insn (gen_rtx_SET (dest_mem, const0_rtx));
}
return TRUE;
}
/* The following variable is used to output modifiers of assembler
code of the current output insn. */
static rtx *frv_insn_operands;
/* The following function is used to add assembler insn code suffix .p
if it is necessary. */
const char *
frv_asm_output_opcode (FILE *f, const char *ptr)
{
int c;
if (frv_insn_packing_flag <= 0)
return ptr;
for (; *ptr && *ptr != ' ' && *ptr != '\t';)
{
c = *ptr++;
if (c == '%' && ((*ptr >= 'a' && *ptr <= 'z')
|| (*ptr >= 'A' && *ptr <= 'Z')))
{
int letter = *ptr++;
c = atoi (ptr);
frv_print_operand (f, frv_insn_operands [c], letter);
while ((c = *ptr) >= '0' && c <= '9')
ptr++;
}
else
fputc (c, f);
}
fprintf (f, ".p");
return ptr;
}
/* Set up the packing bit for the current output insn. Note that this
function is not called for asm insns. */
void
frv_final_prescan_insn (rtx_insn *insn, rtx *opvec,
int noperands ATTRIBUTE_UNUSED)
{
if (INSN_P (insn))
{
if (frv_insn_packing_flag >= 0)
{
frv_insn_operands = opvec;
frv_insn_packing_flag = PACKING_FLAG_P (insn);
}
else if (recog_memoized (insn) >= 0
&& get_attr_acc_group (insn) == ACC_GROUP_ODD)
/* Packing optimizations have been disabled, but INSN can only
be issued in M1. Insert an mnop in M0. */
fprintf (asm_out_file, "\tmnop.p\n");
}
}
/* A C expression whose value is RTL representing the address in a stack frame
where the pointer to the caller's frame is stored. Assume that FRAMEADDR is
an RTL expression for the address of the stack frame itself.
If you don't define this macro, the default is to return the value of
FRAMEADDR--that is, the stack frame address is also the address of the stack
word that points to the previous frame. */
/* The default is correct, but we need to make sure the frame gets created. */
rtx
frv_dynamic_chain_address (rtx frame)
{
cfun->machine->frame_needed = 1;
return frame;
}
/* A C expression whose value is RTL representing the value of the return
address for the frame COUNT steps up from the current frame, after the
prologue. FRAMEADDR is the frame pointer of the COUNT frame, or the frame
pointer of the COUNT - 1 frame if `RETURN_ADDR_IN_PREVIOUS_FRAME' is
defined.
The value of the expression must always be the correct address when COUNT is
zero, but may be `NULL_RTX' if there is not way to determine the return
address of other frames. */
rtx
frv_return_addr_rtx (int count, rtx frame)
{
if (count != 0)
return const0_rtx;
cfun->machine->frame_needed = 1;
return gen_rtx_MEM (Pmode, plus_constant (Pmode, frame, 8));
}
/* Given a memory reference MEMREF, interpret the referenced memory as
an array of MODE values, and return a reference to the element
specified by INDEX. Assume that any pre-modification implicit in
MEMREF has already happened.
MEMREF must be a legitimate operand for modes larger than SImode.
frv_legitimate_address_p forbids register+register addresses, which
this function cannot handle. */
rtx
frv_index_memory (rtx memref, machine_mode mode, int index)
{
rtx base = XEXP (memref, 0);
if (GET_CODE (base) == PRE_MODIFY)
base = XEXP (base, 0);
return change_address (memref, mode,
plus_constant (Pmode, base,
index * GET_MODE_SIZE (mode)));
}
/* Print a memory address as an operand to reference that memory location. */
static void
frv_print_operand_address (FILE * stream, machine_mode /* mode */, rtx x)
{
if (GET_CODE (x) == MEM)
x = XEXP (x, 0);
switch (GET_CODE (x))
{
case REG:
fputs (reg_names [ REGNO (x)], stream);
return;
case CONST_INT:
fprintf (stream, "%ld", (long) INTVAL (x));
return;
case SYMBOL_REF:
assemble_name (stream, XSTR (x, 0));
return;
case LABEL_REF:
case CONST:
output_addr_const (stream, x);
return;
case PLUS:
/* Poorly constructed asm statements can trigger this alternative.
See gcc/testsuite/gcc.dg/asm-4.c for an example. */
frv_print_operand_memory_reference (stream, x, 0);
return;
default:
break;
}
fatal_insn ("bad insn to frv_print_operand_address:", x);
}
static void
frv_print_operand_memory_reference_reg (FILE * stream, rtx x)
{
int regno = true_regnum (x);
if (GPR_P (regno))
fputs (reg_names[regno], stream);
else
fatal_insn ("bad register to frv_print_operand_memory_reference_reg:", x);
}
/* Print a memory reference suitable for the ld/st instructions. */
static void
frv_print_operand_memory_reference (FILE * stream, rtx x, int addr_offset)
{
struct frv_unspec unspec;
rtx x0 = NULL_RTX;
rtx x1 = NULL_RTX;
switch (GET_CODE (x))
{
case SUBREG:
case REG:
x0 = x;
break;
case PRE_MODIFY: /* (pre_modify (reg) (plus (reg) (reg))) */
x0 = XEXP (x, 0);
x1 = XEXP (XEXP (x, 1), 1);
break;
case CONST_INT:
x1 = x;
break;
case PLUS:
x0 = XEXP (x, 0);
x1 = XEXP (x, 1);
if (GET_CODE (x0) == CONST_INT)
{
x0 = XEXP (x, 1);
x1 = XEXP (x, 0);
}
break;
default:
fatal_insn ("bad insn to frv_print_operand_memory_reference:", x);
break;
}
if (addr_offset)
{
if (!x1)
x1 = const0_rtx;
else if (GET_CODE (x1) != CONST_INT)
fatal_insn ("bad insn to frv_print_operand_memory_reference:", x);
}
fputs ("@(", stream);
if (!x0)
fputs (reg_names[GPR_R0], stream);
else if (GET_CODE (x0) == REG || GET_CODE (x0) == SUBREG)
frv_print_operand_memory_reference_reg (stream, x0);
else
fatal_insn ("bad insn to frv_print_operand_memory_reference:", x);
fputs (",", stream);
if (!x1)
fputs (reg_names [GPR_R0], stream);
else
{
switch (GET_CODE (x1))
{
case SUBREG:
case REG:
frv_print_operand_memory_reference_reg (stream, x1);
break;
case CONST_INT:
fprintf (stream, "%ld", (long) (INTVAL (x1) + addr_offset));
break;
case CONST:
if (!frv_const_unspec_p (x1, &unspec))
fatal_insn ("bad insn to frv_print_operand_memory_reference:", x1);
frv_output_const_unspec (stream, &unspec);
break;
default:
fatal_insn ("bad insn to frv_print_operand_memory_reference:", x);
}
}
fputs (")", stream);
}
/* Return 2 for likely branches and 0 for non-likely branches */
#define FRV_JUMP_LIKELY 2
#define FRV_JUMP_NOT_LIKELY 0
static int
frv_print_operand_jump_hint (rtx_insn *insn)
{
rtx note;
rtx labelref;
int ret;
enum { UNKNOWN, BACKWARD, FORWARD } jump_type = UNKNOWN;
gcc_assert (JUMP_P (insn));
/* Assume any non-conditional jump is likely. */
if (! any_condjump_p (insn))
ret = FRV_JUMP_LIKELY;
else
{
labelref = condjump_label (insn);
if (labelref)
{
rtx label = XEXP (labelref, 0);
jump_type = (insn_current_address > INSN_ADDRESSES (INSN_UID (label))
? BACKWARD
: FORWARD);
}
note = find_reg_note (insn, REG_BR_PROB, 0);
if (!note)
ret = ((jump_type == BACKWARD) ? FRV_JUMP_LIKELY : FRV_JUMP_NOT_LIKELY);
else
{
ret = ((profile_probability::from_reg_br_prob_note (XINT (note, 0))
>= profile_probability::even ())
? FRV_JUMP_LIKELY
: FRV_JUMP_NOT_LIKELY);
}
}
#if 0
if (TARGET_DEBUG)
{
char *direction;
switch (jump_type)
{
default:
case UNKNOWN: direction = "unknown jump direction"; break;
case BACKWARD: direction = "jump backward"; break;
case FORWARD: direction = "jump forward"; break;
}
fprintf (stderr,
"%s: uid %ld, %s, probability = %d, max prob. = %d, hint = %d\n",
IDENTIFIER_POINTER (DECL_NAME (current_function_decl)),
(long)INSN_UID (insn), direction, prob,
REG_BR_PROB_BASE, ret);
}
#endif
return ret;
}
/* Return the comparison operator to use for CODE given that the ICC
register is OP0. */
static const char *
comparison_string (enum rtx_code code, rtx op0)
{
bool is_nz_p = GET_MODE (op0) == CC_NZmode;
switch (code)
{
default: output_operand_lossage ("bad condition code"); return "";
case EQ: return "eq";
case NE: return "ne";
case LT: return is_nz_p ? "n" : "lt";
case LE: return "le";
case GT: return "gt";
case GE: return is_nz_p ? "p" : "ge";
case LTU: return is_nz_p ? "no" : "c";
case LEU: return is_nz_p ? "eq" : "ls";
case GTU: return is_nz_p ? "ne" : "hi";
case GEU: return is_nz_p ? "ra" : "nc";
}
}
/* Print an operand to an assembler instruction.
`%' followed by a letter and a digit says to output an operand in an
alternate fashion. Four letters have standard, built-in meanings
described below. The hook `TARGET_PRINT_OPERAND' can define
additional letters with nonstandard meanings.
`%cDIGIT' can be used to substitute an operand that is a constant value
without the syntax that normally indicates an immediate operand.
`%nDIGIT' is like `%cDIGIT' except that the value of the constant is negated
before printing.
`%aDIGIT' can be used to substitute an operand as if it were a memory
reference, with the actual operand treated as the address. This may be
useful when outputting a "load address" instruction, because often the
assembler syntax for such an instruction requires you to write the operand
as if it were a memory reference.
`%lDIGIT' is used to substitute a `label_ref' into a jump instruction.
`%=' outputs a number which is unique to each instruction in the entire
compilation. This is useful for making local labels to be referred to more
than once in a single template that generates multiple assembler
instructions.
`%' followed by a punctuation character specifies a substitution that
does not use an operand. Only one case is standard: `%%' outputs a
`%' into the assembler code. Other nonstandard cases can be defined
in the `TARGET_PRINT_OPERAND' hook. You must also define which
punctuation characters are valid with the
`TARGET_PRINT_OPERAND_PUNCT_VALID_P' hook. */
static void
frv_print_operand (FILE * file, rtx x, int code)
{
struct frv_unspec unspec;
HOST_WIDE_INT value;
int offset;
if (code != 0 && !ISALPHA (code))
value = 0;
else if (GET_CODE (x) == CONST_INT)
value = INTVAL (x);
else if (GET_CODE (x) == CONST_DOUBLE)
{
if (GET_MODE (x) == SFmode)
{
long l;
REAL_VALUE_TO_TARGET_SINGLE (*CONST_DOUBLE_REAL_VALUE (x), l);
value = l;
}
else if (GET_MODE (x) == VOIDmode)
value = CONST_DOUBLE_LOW (x);
else
fatal_insn ("bad insn in frv_print_operand, bad const_double", x);
}
else
value = 0;
switch (code)
{
case '.':
/* Output r0. */
fputs (reg_names[GPR_R0], file);
break;
case '#':
fprintf (file, "%d", frv_print_operand_jump_hint (current_output_insn));
break;
case '@':
/* Output small data area base register (gr16). */
fputs (reg_names[SDA_BASE_REG], file);
break;
case '~':
/* Output pic register (gr17). */
fputs (reg_names[PIC_REGNO], file);
break;
case '*':
/* Output the temporary integer CCR register. */
fputs (reg_names[ICR_TEMP], file);
break;
case '&':
/* Output the temporary integer CC register. */
fputs (reg_names[ICC_TEMP], file);
break;
/* case 'a': print an address. */
case 'C':
/* Print appropriate test for integer branch false operation. */
fputs (comparison_string (reverse_condition (GET_CODE (x)),
XEXP (x, 0)), file);
break;
case 'c':
/* Print appropriate test for integer branch true operation. */
fputs (comparison_string (GET_CODE (x), XEXP (x, 0)), file);
break;
case 'e':
/* Print 1 for a NE and 0 for an EQ to give the final argument
for a conditional instruction. */
if (GET_CODE (x) == NE)
fputs ("1", file);
else if (GET_CODE (x) == EQ)
fputs ("0", file);
else
fatal_insn ("bad insn to frv_print_operand, 'e' modifier:", x);
break;
case 'F':
/* Print appropriate test for floating point branch false operation. */
switch (GET_CODE (x))
{
default:
fatal_insn ("bad insn to frv_print_operand, 'F' modifier:", x);
case EQ: fputs ("ne", file); break;
case NE: fputs ("eq", file); break;
case LT: fputs ("uge", file); break;
case LE: fputs ("ug", file); break;
case GT: fputs ("ule", file); break;
case GE: fputs ("ul", file); break;
}
break;
case 'f':
/* Print appropriate test for floating point branch true operation. */
switch (GET_CODE (x))
{
default:
fatal_insn ("bad insn to frv_print_operand, 'f' modifier:", x);
case EQ: fputs ("eq", file); break;
case NE: fputs ("ne", file); break;
case LT: fputs ("lt", file); break;
case LE: fputs ("le", file); break;
case GT: fputs ("gt", file); break;
case GE: fputs ("ge", file); break;
}
break;
case 'g':
/* Print appropriate GOT function. */
if (GET_CODE (x) != CONST_INT)
fatal_insn ("bad insn to frv_print_operand, 'g' modifier:", x);
fputs (unspec_got_name (INTVAL (x)), file);
break;
case 'I':
/* Print 'i' if the operand is a constant, or is a memory reference that
adds a constant. */
if (GET_CODE (x) == MEM)
x = ((GET_CODE (XEXP (x, 0)) == PLUS)
? XEXP (XEXP (x, 0), 1)
: XEXP (x, 0));
else if (GET_CODE (x) == PLUS)
x = XEXP (x, 1);
switch (GET_CODE (x))
{
default:
break;
case CONST_INT:
case SYMBOL_REF:
case CONST:
fputs ("i", file);
break;
}
break;
case 'i':
/* For jump instructions, print 'i' if the operand is a constant or
is an expression that adds a constant. */
if (GET_CODE (x) == CONST_INT)
fputs ("i", file);
else
{
if (GET_CODE (x) == CONST_INT
|| (GET_CODE (x) == PLUS
&& (GET_CODE (XEXP (x, 1)) == CONST_INT
|| GET_CODE (XEXP (x, 0)) == CONST_INT)))
fputs ("i", file);
}
break;
case 'L':
/* Print the lower register of a double word register pair */
if (GET_CODE (x) == REG)
fputs (reg_names[ REGNO (x)+1 ], file);
else
fatal_insn ("bad insn to frv_print_operand, 'L' modifier:", x);
break;
/* case 'l': print a LABEL_REF. */
case 'M':
case 'N':
/* Print a memory reference for ld/st/jmp, %N prints a memory reference
for the second word of double memory operations. */
offset = (code == 'M') ? 0 : UNITS_PER_WORD;
switch (GET_CODE (x))
{
default:
fatal_insn ("bad insn to frv_print_operand, 'M/N' modifier:", x);
case MEM:
frv_print_operand_memory_reference (file, XEXP (x, 0), offset);
break;
case REG:
case SUBREG:
case CONST_INT:
case PLUS:
case SYMBOL_REF:
frv_print_operand_memory_reference (file, x, offset);
break;
}
break;
case 'O':
/* Print the opcode of a command. */
switch (GET_CODE (x))
{
default:
fatal_insn ("bad insn to frv_print_operand, 'O' modifier:", x);
case PLUS: fputs ("add", file); break;
case MINUS: fputs ("sub", file); break;
case AND: fputs ("and", file); break;
case IOR: fputs ("or", file); break;
case XOR: fputs ("xor", file); break;
case ASHIFT: fputs ("sll", file); break;
case ASHIFTRT: fputs ("sra", file); break;
case LSHIFTRT: fputs ("srl", file); break;
}
break;
/* case 'n': negate and print a constant int. */
case 'P':
/* Print PIC label using operand as the number. */
if (GET_CODE (x) != CONST_INT)
fatal_insn ("bad insn to frv_print_operand, P modifier:", x);
fprintf (file, ".LCF%ld", (long)INTVAL (x));
break;
case 'U':
/* Print 'u' if the operand is a update load/store. */
if (GET_CODE (x) == MEM && GET_CODE (XEXP (x, 0)) == PRE_MODIFY)
fputs ("u", file);
break;
case 'z':
/* If value is 0, print gr0, otherwise it must be a register. */
if (GET_CODE (x) == CONST_INT && INTVAL (x) == 0)
fputs (reg_names[GPR_R0], file);
else if (GET_CODE (x) == REG)
fputs (reg_names [REGNO (x)], file);
else
fatal_insn ("bad insn in frv_print_operand, z case", x);
break;
case 'x':
/* Print constant in hex. */
if (GET_CODE (x) == CONST_INT || GET_CODE (x) == CONST_DOUBLE)
{
fprintf (file, "%s0x%.4lx", IMMEDIATE_PREFIX, (long) value);
break;
}
/* Fall through. */
case '\0':
if (GET_CODE (x) == REG)
fputs (reg_names [REGNO (x)], file);
else if (GET_CODE (x) == CONST_INT
|| GET_CODE (x) == CONST_DOUBLE)
fprintf (file, "%s%ld", IMMEDIATE_PREFIX, (long) value);
else if (frv_const_unspec_p (x, &unspec))
frv_output_const_unspec (file, &unspec);
else if (GET_CODE (x) == MEM)
frv_print_operand_address (file, GET_MODE (x), XEXP (x, 0));
else if (CONSTANT_ADDRESS_P (x))
frv_print_operand_address (file, VOIDmode, x);
else
fatal_insn ("bad insn in frv_print_operand, 0 case", x);
break;
default:
fatal_insn ("frv_print_operand: unknown code", x);
break;
}
return;
}
static bool
frv_print_operand_punct_valid_p (unsigned char code)
{
return (code == '.' || code == '#' || code == '@' || code == '~'
|| code == '*' || code == '&');
}
/* A C statement (sans semicolon) for initializing the variable CUM for the
state at the beginning of the argument list. The variable has type
`CUMULATIVE_ARGS'. The value of FNTYPE is the tree node for the data type
of the function which will receive the args, or 0 if the args are to a
compiler support library function. The value of INDIRECT is nonzero when
processing an indirect call, for example a call through a function pointer.
The value of INDIRECT is zero for a call to an explicitly named function, a
library function call, or when `INIT_CUMULATIVE_ARGS' is used to find
arguments for the function being compiled.
When processing a call to a compiler support library function, LIBNAME
identifies which one. It is a `symbol_ref' rtx which contains the name of
the function, as a string. LIBNAME is 0 when an ordinary C function call is
being processed. Thus, each time this macro is called, either LIBNAME or
FNTYPE is nonzero, but never both of them at once. */
void
frv_init_cumulative_args (CUMULATIVE_ARGS *cum,
tree fntype,
rtx libname,
tree fndecl,
int incoming)
{
*cum = FIRST_ARG_REGNUM;
if (TARGET_DEBUG_ARG)
{
fprintf (stderr, "\ninit_cumulative_args:");
if (!fndecl && fntype)
fputs (" indirect", stderr);
if (incoming)
fputs (" incoming", stderr);
if (fntype)
{
tree ret_type = TREE_TYPE (fntype);
fprintf (stderr, " return=%s,",
get_tree_code_name (TREE_CODE (ret_type)));
}
if (libname && GET_CODE (libname) == SYMBOL_REF)
fprintf (stderr, " libname=%s", XSTR (libname, 0));
if (cfun->returns_struct)
fprintf (stderr, " return-struct");
putc ('\n', stderr);
}
}
/* Return true if we should pass an argument on the stack rather than
in registers. */
static bool
frv_must_pass_in_stack (const function_arg_info &arg)
{
return arg.mode == BLKmode || arg.aggregate_type_p ();
}
/* If defined, a C expression that gives the alignment boundary, in bits, of an
argument with the specified mode and type. If it is not defined,
`PARM_BOUNDARY' is used for all arguments. */
static unsigned int
frv_function_arg_boundary (machine_mode mode ATTRIBUTE_UNUSED,
const_tree type ATTRIBUTE_UNUSED)
{
return BITS_PER_WORD;
}
static rtx
frv_function_arg_1 (cumulative_args_t cum_v, const function_arg_info &arg,
bool incoming ATTRIBUTE_UNUSED)
{
const CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v);
machine_mode xmode = (arg.mode == BLKmode) ? SImode : arg.mode;
int arg_num = *cum;
rtx ret;
const char *debstr;
/* Return a marker for use in the call instruction. */
if (xmode == VOIDmode)
{
ret = const0_rtx;
debstr = "<0>";
}
else if (arg_num <= LAST_ARG_REGNUM)
{
ret = gen_rtx_REG (xmode, arg_num);
debstr = reg_names[arg_num];
}
else
{
ret = NULL_RTX;
debstr = "memory";
}
if (TARGET_DEBUG_ARG)
fprintf (stderr,
"function_arg: words = %2d, mode = %4s, named = %d, size = %3d, arg = %s\n",
arg_num, GET_MODE_NAME (arg.mode), arg.named,
GET_MODE_SIZE (arg.mode), debstr);
return ret;
}
static rtx
frv_function_arg (cumulative_args_t cum, const function_arg_info &arg)
{
return frv_function_arg_1 (cum, arg, false);
}
static rtx
frv_function_incoming_arg (cumulative_args_t cum, const function_arg_info &arg)
{
return frv_function_arg_1 (cum, arg, true);
}
/* Implement TARGET_FUNCTION_ARG_ADVANCE. */
static void
frv_function_arg_advance (cumulative_args_t cum_v,
const function_arg_info &arg)
{
CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v);
machine_mode xmode = (arg.mode == BLKmode) ? SImode : arg.mode;
int bytes = GET_MODE_SIZE (xmode);
int words = (bytes + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
int arg_num = *cum;
*cum = arg_num + words;
if (TARGET_DEBUG_ARG)
fprintf (stderr,
"function_adv: words = %2d, mode = %4s, named = %d, size = %3d\n",
arg_num, GET_MODE_NAME (arg.mode), arg.named,
words * UNITS_PER_WORD);
}
/* Implement TARGET_ARG_PARTIAL_BYTES. */
static int
frv_arg_partial_bytes (cumulative_args_t cum, const function_arg_info &arg)
{
machine_mode xmode = (arg.mode == BLKmode) ? SImode : arg.mode;
int bytes = GET_MODE_SIZE (xmode);
int words = (bytes + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
int arg_num = *get_cumulative_args (cum);
int ret;
ret = ((arg_num <= LAST_ARG_REGNUM && arg_num + words > LAST_ARG_REGNUM+1)
? LAST_ARG_REGNUM - arg_num + 1
: 0);
ret *= UNITS_PER_WORD;
if (TARGET_DEBUG_ARG && ret)
fprintf (stderr, "frv_arg_partial_bytes: %d\n", ret);
return ret;
}
/* Implements TARGET_FUNCTION_VALUE. */
static rtx
frv_function_value (const_tree valtype,
const_tree fn_decl_or_type ATTRIBUTE_UNUSED,
bool outgoing ATTRIBUTE_UNUSED)
{
return gen_rtx_REG (TYPE_MODE (valtype), RETURN_VALUE_REGNUM);
}
/* Implements TARGET_LIBCALL_VALUE. */
static rtx
frv_libcall_value (machine_mode mode,
const_rtx fun ATTRIBUTE_UNUSED)
{
return gen_rtx_REG (mode, RETURN_VALUE_REGNUM);
}
/* Implements FUNCTION_VALUE_REGNO_P. */
bool
frv_function_value_regno_p (const unsigned int regno)
{
return (regno == RETURN_VALUE_REGNUM);
}
/* Return true if a register is ok to use as a base or index register. */
static FRV_INLINE int
frv_regno_ok_for_base_p (int regno, int strict_p)
{
if (GPR_P (regno))
return TRUE;
if (strict_p)
return (reg_renumber[regno] >= 0 && GPR_P (reg_renumber[regno]));
if (regno == ARG_POINTER_REGNUM)