;; Scheduling for the Intel P6 family of processors ;; Copyright (C) 2004-2021 Free Software Foundation, Inc. ;; ;; This file is part of GCC. ;; ;; GCC is free software; you can redistribute it and/or modify ;; it under the terms of the GNU General Public License as published by ;; the Free Software Foundation; either version 3, or (at your option) ;; any later version. ;; ;; GCC is distributed in the hope that it will be useful, ;; but WITHOUT ANY WARRANTY; without even the implied warranty of ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ;; GNU General Public License for more details. ;; ;; You should have received a copy of the GNU General Public License ;; along with GCC; see the file COPYING3. If not see ;; http://www.gnu.org/licenses/. */
;; The P6 family includes the Pentium Pro, Pentium II, Pentium III, Celeron ;; and Xeon lines of CPUs. The DFA scheduler description in this file is ;; based on information that can be found in the following three documents: ;; ;; “P6 Family of Processors Hardware Developer's Manual”, ;; Intel, September 1999. ;; ;; “Intel Architecture Optimization Manual”, ;; Intel, 1999 (Order Number: 245127-001). ;; ;; “How to optimize for the Pentium family of microprocessors”, ;; by Agner Fog, PhD. ;; ;; The P6 pipeline has three major components: ;; 1) the FETCH/DECODE unit, an in-order issue front-end ;; 2) the DISPATCH/EXECUTE unit, which is the out-of-order core ;; 3) the RETIRE unit, an in-order retirement unit ;; ;; So, the P6 CPUs have out-of-order cores, but the instruction decoder and ;; retirement unit are naturally in-order. ;; ;; BUS INTERFACE UNIT ;; /
;; L1 ICACHE L1 DCACHE ;; / | \ |
;; DECODER0 DECODER1 DECODER2 DISP/EXEC RETIRE ;; \ | / | | ;; INSTRUCTION POOL ___|/ ;; (inc. reorder buffer) ;; ;; Since the P6 CPUs execute instructions out-of-order, the most important ;; consideration in performance tuning is making sure enough micro-ops are ;; ready for execution in the out-of-order core, while not stalling the ;; decoder. ;; ;; TODO: ;; - Find a less crude way to model complex instructions, in ;; particular how many cycles they take to be decoded. ;; - Include decoder latencies in the total reservation latencies. ;; This isn‘t necessary right now because we assume for every ;; instruction that it never blocks a decoder. ;; - Figure out where the p0 and p1 reservations come from. These ;; appear not to be in the manual ;; - Lots more because I’m sure this is still far from optimal :-)
;; The ppro_idiv and ppro_fdiv automata are used to model issue ;; latencies of idiv and fdiv type insns. (define_automaton “ppro_decoder,ppro_core,ppro_idiv,ppro_fdiv,ppro_load,ppro_store”)
;; Simple instructions of the register-register form have only one uop. ;; Load instructions are also only one uop. Store instructions decode to ;; two uops, and simple read-modify instructions also take two uops. ;; Simple instructions of the register-memory form have two to three uops. ;; Simple read-modify-write instructions have four uops. The rules for ;; the decoder are simple: ;; - an instruction with 1 uop can be decoded by any of the three ;; decoders in one cycle. ;; - an instruction with 1 to 4 uops can be decoded only by decoder 0 ;; but still in only one cycle. ;; - a complex (microcode) instruction can also only be decoded by ;; decoder 0, and this takes an unspecified number of cycles. ;; ;; The goal is to schedule such that we have a few-one-one uops sequence ;; in each cycle, to decode as many instructions per cycle as possible. (define_cpu_unit “decoder0” “ppro_decoder”) (define_cpu_unit “decoder1” “ppro_decoder”) (define_cpu_unit “decoder2” “ppro_decoder”)
;; We first wish to find an instruction for decoder0, so exclude ;; decoder1 and decoder2 from being reserved until decoder 0 is ;; reserved. (presence_set “decoder1” “decoder0”) (presence_set “decoder2” “decoder0”)
;; Most instructions can be decoded on any of the three decoders. (define_reservation “decodern” “(decoder0|decoder1|decoder2)”)
;; The out-of-order core has five pipelines. During each cycle, the core ;; may dispatch zero or one uop on the port of any of the five pipelines ;; so the maximum number of dispatched uops per cycle is 5. In practicer, ;; 3 uops per cycle is more realistic. ;; ;; Two of the five pipelines contain several execution units: ;; ;; Port 0 Port 1 Port 2 Port 3 Port 4 ;; ALU ALU LOAD SAC SDA ;; FPU JUE ;; AGU MMX ;; MMX P3FPU ;; P3FPU ;; ;; (SAC=Store Address Calculation, SDA=Store Data Unit, P3FPU = SSE unit, ;; JUE = Jump Execution Unit, AGU = Address Generation Unit) ;; (define_cpu_unit “p0,p1” “ppro_core”) (define_cpu_unit “p2” “ppro_load”) (define_cpu_unit “p3,p4” “ppro_store”) (define_cpu_unit “idiv” “ppro_idiv”) (define_cpu_unit “fdiv” “ppro_fdiv”)
;; Only the irregular instructions have to be modeled here. A load ;; increases the latency by 2 or 3, or by nothing if the manual gives ;; a latency already. Store latencies are not accounted for. ;; ;; The simple instructions follow a very regular pattern of 1 uop per ;; reg-reg operation, 1 uop per load on port 2. and 2 uops per store ;; on port 4 and port 3. These instructions are modelled at the bottom ;; of this file. ;; ;; For microcoded instructions we don‘t know how many uops are produced. ;; These instructions are the “complex” ones in the Intel manuals. All ;; we do know is that they typically produce four or more uops, so ;; they can only be decoded on decoder0. Modelling their latencies ;; doesn’t make sense because we don't know how these instructions are ;; executed in the core. So we just model that they can only be decoded ;; on decoder 0, and say that it takes a little while before the result ;; is available. (define_insn_reservation “ppro_complex_insn” 6 (and (eq_attr “cpu” “pentiumpro”) (eq_attr “type” “other,multi,call,callv,str”)) “decoder0”)
;; imov with memory operands does not use the integer units. (define_insn_reservation “ppro_imov” 1 (and (eq_attr “cpu” “pentiumpro”) (and (eq_attr “memory” “none”) (eq_attr “type” “imov”))) “decodern,(p0|p1)”)
(define_insn_reservation “ppro_imov_load” 4 (and (eq_attr “cpu” “pentiumpro”) (and (eq_attr “memory” “load”) (eq_attr “type” “imov”))) “decodern,p2”)
(define_insn_reservation “ppro_imov_store” 1 (and (eq_attr “cpu” “pentiumpro”) (and (eq_attr “memory” “store”) (eq_attr “type” “imov”))) “decoder0,p4+p3”)
;; imovx always decodes to one uop, and also doesn't use the integer ;; units if it has memory operands. (define_insn_reservation “ppro_imovx” 1 (and (eq_attr “cpu” “pentiumpro”) (and (eq_attr “memory” “none”) (eq_attr “type” “imovx”))) “decodern,(p0|p1)”)
(define_insn_reservation “ppro_imovx_load” 4 (and (eq_attr “cpu” “pentiumpro”) (and (eq_attr “memory” “load”) (eq_attr “type” “imovx”))) “decodern,p2”)
;; lea executes on port 0 with latency one and throughput 1. (define_insn_reservation “ppro_lea” 1 (and (eq_attr “cpu” “pentiumpro”) (and (eq_attr “memory” “none”) (eq_attr “type” “lea”))) “decodern,p0”)
;; Shift and rotate execute on port 0 with latency and throughput 1. ;; The load and store units need to be reserved when memory operands ;; are involved. (define_insn_reservation “ppro_shift_rotate” 1 (and (eq_attr “cpu” “pentiumpro”) (and (eq_attr “memory” “none”) (eq_attr “type” “ishift,ishift1,rotate,rotate1”))) “decodern,p0”)
(define_insn_reservation “ppro_shift_rotate_mem” 4 (and (eq_attr “cpu” “pentiumpro”) (and (eq_attr “memory” “!none”) (eq_attr “type” “ishift,ishift1,rotate,rotate1”))) “decoder0,p2+p0,p4+p3”)
;; The P6 has a sophisticated branch prediction mechanism to minimize ;; latencies due to branching. In particular, it has a fast way to ;; execute branches that are taken multiple times (such as in loops). ;; Branches not taken suffer no penalty, and correctly predicted ;; branches cost only one fetch cycle. Mispredicted branches are very ;; costly: typically 15 cycles and possibly as many as 26 cycles. ;; ;; Unfortunately all this makes it quite difficult to properly model ;; the latencies for the compiler. Here I've made the choice to be ;; optimistic and assume branches are often predicted correctly, so ;; they have latency 1, and the decoders are not blocked. ;; ;; In addition, the model assumes a branch always decodes to only 1 uop, ;; which is not exactly true because there are a few instructions that ;; decode to 2 uops or microcode. But this probably gives the best ;; results because we can assume these instructions can decode on all ;; decoders. (define_insn_reservation “ppro_branch” 1 (and (eq_attr “cpu” “pentiumpro”) (and (eq_attr “memory” “none”) (eq_attr “type” “ibr”))) “decodern,p1”)
;; ??? Indirect branches probably have worse latency than this. (define_insn_reservation “ppro_indirect_branch” 6 (and (eq_attr “cpu” “pentiumpro”) (and (eq_attr “memory” “!none”) (eq_attr “type” “ibr”))) “decoder0,p2+p1”)
(define_insn_reservation “ppro_leave” 4 (and (eq_attr “cpu” “pentiumpro”) (eq_attr “type” “leave”)) “decoder0,p2+(p0|p1),(p0|p1)”)
;; imul has throughput one, but latency 4, and can only execute on port 0. (define_insn_reservation “ppro_imul” 4 (and (eq_attr “cpu” “pentiumpro”) (and (eq_attr “memory” “none”) (eq_attr “type” “imul”))) “decodern,p0”)
(define_insn_reservation “ppro_imul_mem” 4 (and (eq_attr “cpu” “pentiumpro”) (and (eq_attr “memory” “!none”) (eq_attr “type” “imul”))) “decoder0,p2+p0”)
;; div and idiv are very similar, so we model them the same. ;; QI, HI, and SI have issue latency 12, 21, and 37, respectively. ;; These issue latencies are modelled via the ppro_div automaton. (define_insn_reservation “ppro_idiv_QI” 19 (and (eq_attr “cpu” “pentiumpro”) (and (eq_attr “memory” “none”) (and (eq_attr “mode” “QI”) (eq_attr “type” “idiv”)))) “decoder0,(p0+idiv)2,(p0|p1)+idiv,idiv9”)
(define_insn_reservation “ppro_idiv_QI_load” 19 (and (eq_attr “cpu” “pentiumpro”) (and (eq_attr “memory” “load”) (and (eq_attr “mode” “QI”) (eq_attr “type” “idiv”)))) “decoder0,p2+p0+idiv,p0+idiv,(p0|p1)+idiv,idiv*9”)
(define_insn_reservation “ppro_idiv_HI” 23 (and (eq_attr “cpu” “pentiumpro”) (and (eq_attr “memory” “none”) (and (eq_attr “mode” “HI”) (eq_attr “type” “idiv”)))) “decoder0,(p0+idiv)3,(p0|p1)+idiv,idiv17”)
(define_insn_reservation “ppro_idiv_HI_load” 23 (and (eq_attr “cpu” “pentiumpro”) (and (eq_attr “memory” “load”) (and (eq_attr “mode” “HI”) (eq_attr “type” “idiv”)))) “decoder0,p2+p0+idiv,p0+idiv,(p0|p1)+idiv,idiv*18”)
(define_insn_reservation “ppro_idiv_SI” 39 (and (eq_attr “cpu” “pentiumpro”) (and (eq_attr “memory” “none”) (and (eq_attr “mode” “SI”) (eq_attr “type” “idiv”)))) “decoder0,(p0+idiv)3,(p0|p1)+idiv,idiv33”)
(define_insn_reservation “ppro_idiv_SI_load” 39 (and (eq_attr “cpu” “pentiumpro”) (and (eq_attr “memory” “load”) (and (eq_attr “mode” “SI”) (eq_attr “type” “idiv”)))) “decoder0,p2+p0+idiv,p0+idiv,(p0|p1)+idiv,idiv*34”)
;; Floating point operations always execute on port 0. ;; ??? where do these latencies come from? fadd has latency 3 and ;; has throughput “1/cycle (align with FADD)”. What do they ;; mean and how can we model that? (define_insn_reservation “ppro_fop” 3 (and (eq_attr “cpu” “pentiumpro”) (and (eq_attr “memory” “none,unknown”) (eq_attr “type” “fop”))) “decodern,p0”)
(define_insn_reservation “ppro_fop_load” 5 (and (eq_attr “cpu” “pentiumpro”) (and (eq_attr “memory” “load”) (eq_attr “type” “fop”))) “decoder0,p2+p0,p0”)
(define_insn_reservation “ppro_fop_store” 3 (and (eq_attr “cpu” “pentiumpro”) (and (eq_attr “memory” “store”) (eq_attr “type” “fop”))) “decoder0,p0,p0,p0+p4+p3”)
(define_insn_reservation “ppro_fop_both” 5 (and (eq_attr “cpu” “pentiumpro”) (and (eq_attr “memory” “both”) (eq_attr “type” “fop”))) “decoder0,p2+p0,p0+p4+p3”)
(define_insn_reservation “ppro_fsgn” 1 (and (eq_attr “cpu” “pentiumpro”) (eq_attr “type” “fsgn”)) “decodern,p0”)
(define_insn_reservation “ppro_fistp” 5 (and (eq_attr “cpu” “pentiumpro”) (eq_attr “type” “fistp”)) “decoder0,p0*2,p4+p3”)
(define_insn_reservation “ppro_fcmov” 2 (and (eq_attr “cpu” “pentiumpro”) (eq_attr “type” “fcmov”)) “decoder0,p0*2”)
(define_insn_reservation “ppro_fcmp” 1 (and (eq_attr “cpu” “pentiumpro”) (and (eq_attr “memory” “none”) (eq_attr “type” “fcmp”))) “decodern,p0”)
(define_insn_reservation “ppro_fcmp_load” 4 (and (eq_attr “cpu” “pentiumpro”) (and (eq_attr “memory” “load”) (eq_attr “type” “fcmp”))) “decoder0,p2+p0”)
(define_insn_reservation “ppro_fmov” 1 (and (eq_attr “cpu” “pentiumpro”) (and (eq_attr “memory” “none”) (eq_attr “type” “fmov”))) “decodern,p0”)
(define_insn_reservation “ppro_fmov_load” 1 (and (eq_attr “cpu” “pentiumpro”) (and (eq_attr “memory” “load”) (and (eq_attr “mode” “!XF”) (eq_attr “type” “fmov”)))) “decodern,p2”)
(define_insn_reservation “ppro_fmov_XF_load” 3 (and (eq_attr “cpu” “pentiumpro”) (and (eq_attr “memory” “load”) (and (eq_attr “mode” “XF”) (eq_attr “type” “fmov”)))) “decoder0,(p2+p0)*2”)
(define_insn_reservation “ppro_fmov_store” 1 (and (eq_attr “cpu” “pentiumpro”) (and (eq_attr “memory” “store”) (and (eq_attr “mode” “!XF”) (eq_attr “type” “fmov”)))) “decodern,p0”)
(define_insn_reservation “ppro_fmov_XF_store” 3 (and (eq_attr “cpu” “pentiumpro”) (and (eq_attr “memory” “store”) (and (eq_attr “mode” “XF”) (eq_attr “type” “fmov”)))) “decoder0,(p0+p4),(p0+p3)”)
;; fmul executes on port 0 with latency 5. It has issue latency 2, ;; but we don't model this. (define_insn_reservation “ppro_fmul” 5 (and (eq_attr “cpu” “pentiumpro”) (and (eq_attr “memory” “none”) (eq_attr “type” “fmul”))) “decoder0,p0*2”)
(define_insn_reservation “ppro_fmul_load” 6 (and (eq_attr “cpu” “pentiumpro”) (and (eq_attr “memory” “load”) (eq_attr “type” “fmul”))) “decoder0,p2+p0,p0”)
;; fdiv latencies depend on the mode of the operands. XFmode gives ;; a latency of 38 cycles, DFmode gives 32, and SFmode gives latency 18. ;; Division by a power of 2 takes only 9 cycles, but we cannot model ;; that. Throughput is equal to latency - 1, which we model using the ;; ppro_div automaton. (define_insn_reservation “ppro_fdiv_SF” 18 (and (eq_attr “cpu” “pentiumpro”) (and (eq_attr “memory” “none”) (and (eq_attr “mode” “SF”) (eq_attr “type” “fdiv,fpspc”)))) “decodern,p0+fdiv,fdiv*16”)
(define_insn_reservation “ppro_fdiv_SF_load” 19 (and (eq_attr “cpu” “pentiumpro”) (and (eq_attr “memory” “load”) (and (eq_attr “mode” “SF”) (eq_attr “type” “fdiv,fpspc”)))) “decoder0,p2+p0+fdiv,fdiv*16”)
(define_insn_reservation “ppro_fdiv_DF” 32 (and (eq_attr “cpu” “pentiumpro”) (and (eq_attr “memory” “none”) (and (eq_attr “mode” “DF”) (eq_attr “type” “fdiv,fpspc”)))) “decodern,p0+fdiv,fdiv*30”)
(define_insn_reservation “ppro_fdiv_DF_load” 33 (and (eq_attr “cpu” “pentiumpro”) (and (eq_attr “memory” “load”) (and (eq_attr “mode” “DF”) (eq_attr “type” “fdiv,fpspc”)))) “decoder0,p2+p0+fdiv,fdiv*30”)
(define_insn_reservation “ppro_fdiv_XF” 38 (and (eq_attr “cpu” “pentiumpro”) (and (eq_attr “memory” “none”) (and (eq_attr “mode” “XF”) (eq_attr “type” “fdiv,fpspc”)))) “decodern,p0+fdiv,fdiv*36”)
(define_insn_reservation “ppro_fdiv_XF_load” 39 (and (eq_attr “cpu” “pentiumpro”) (and (eq_attr “memory” “load”) (and (eq_attr “mode” “XF”) (eq_attr “type” “fdiv,fpspc”)))) “decoder0,p2+p0+fdiv,fdiv*36”)
;; MMX instructions can execute on either port 0 or port 1 with a ;; throughput of 1/cycle. ;; on port 0: - ALU (latency 1) ;; - Multiplier Unit (latency 3) ;; on port 1: - ALU (latency 1) ;; - Shift Unit (latency 1) ;; ;; MMX instructions are either of the type reg-reg, or read-modify, and ;; except for mmxshft and mmxmul they can execute on port 0 or port 1, ;; so they behave as “simple” instructions that need no special modelling. ;; We only have to model mmxshft and mmxmul. (define_insn_reservation “ppro_mmx_shft” 1 (and (eq_attr “cpu” “pentiumpro”) (and (eq_attr “memory” “none”) (eq_attr “type” “mmxshft”))) “decodern,p1”)
(define_insn_reservation “ppro_mmx_shft_load” 2 (and (eq_attr “cpu” “pentiumpro”) (and (eq_attr “memory” “none”) (eq_attr “type” “mmxshft”))) “decoder0,p2+p1”)
(define_insn_reservation “ppro_mmx_mul” 3 (and (eq_attr “cpu” “pentiumpro”) (and (eq_attr “memory” “none”) (eq_attr “type” “mmxmul”))) “decodern,p0”)
(define_insn_reservation “ppro_mmx_mul_load” 3 (and (eq_attr “cpu” “pentiumpro”) (and (eq_attr “memory” “none”) (eq_attr “type” “mmxmul”))) “decoder0,p2+p0”)
(define_insn_reservation “ppro_sse_mmxcvt” 4 (and (eq_attr “cpu” “pentiumpro”) (and (eq_attr “mode” “DI”) (eq_attr “type” “mmxcvt”))) “decodern,p1”)
;; FIXME: These are Pentium III only, but we cannot tell here if ;; we're generating code for PentiumPro/Pentium II or Pentium III ;; (define_insn_reservation “ppro_sse_mmxshft” 2 ;; (and (eq_attr “cpu” “pentiumpro”) ;; (and (eq_attr “mode” “DI”) ;; (eq_attr “type” “mmxshft”))) ;; “decodern,p0”)
;; SSE is very complicated, and takes a bit more effort. ;; ??? I assumed that all SSE instructions decode on decoder0, ;; but is this correct?
;; The sfence instruction. (define_insn_reservation “ppro_sse_sfence” 3 (and (eq_attr “cpu” “pentiumpro”) (and (eq_attr “memory” “unknown”) (eq_attr “type” “sse”))) “decoder0,p4+p3”)
;; FIXME: This reservation is all wrong when we're scheduling sqrtss. (define_insn_reservation “ppro_sse_SF” 3 (and (eq_attr “cpu” “pentiumpro”) (and (eq_attr “mode” “SF”) (eq_attr “type” “sse”))) “decodern,p0”)
(define_insn_reservation “ppro_sse_add_SF” 3 (and (eq_attr “cpu” “pentiumpro”) (and (eq_attr “memory” “none”) (and (eq_attr “mode” “SF”) (eq_attr “type” “sseadd,sseadd1”)))) “decodern,p1”)
(define_insn_reservation “ppro_sse_add_SF_load” 3 (and (eq_attr “cpu” “pentiumpro”) (and (eq_attr “memory” “load”) (and (eq_attr “mode” “SF”) (eq_attr “type” “sseadd,sseadd1”)))) “decoder0,p2+p1”)
(define_insn_reservation “ppro_sse_cmp_SF” 3 (and (eq_attr “cpu” “pentiumpro”) (and (eq_attr “memory” “none”) (and (eq_attr “mode” “SF”) (eq_attr “type” “ssecmp”)))) “decoder0,p1”)
(define_insn_reservation “ppro_sse_cmp_SF_load” 3 (and (eq_attr “cpu” “pentiumpro”) (and (eq_attr “memory” “load”) (and (eq_attr “mode” “SF”) (eq_attr “type” “ssecmp”)))) “decoder0,p2+p1”)
(define_insn_reservation “ppro_sse_comi_SF” 1 (and (eq_attr “cpu” “pentiumpro”) (and (eq_attr “memory” “none”) (and (eq_attr “mode” “SF”) (eq_attr “type” “ssecomi”)))) “decodern,p0”)
(define_insn_reservation “ppro_sse_comi_SF_load” 1 (and (eq_attr “cpu” “pentiumpro”) (and (eq_attr “memory” “load”) (and (eq_attr “mode” “SF”) (eq_attr “type” “ssecomi”)))) “decoder0,p2+p0”)
(define_insn_reservation “ppro_sse_mul_SF” 4 (and (eq_attr “cpu” “pentiumpro”) (and (eq_attr “memory” “none”) (and (eq_attr “mode” “SF”) (eq_attr “type” “ssemul”)))) “decodern,p0”)
(define_insn_reservation “ppro_sse_mul_SF_load” 4 (and (eq_attr “cpu” “pentiumpro”) (and (eq_attr “memory” “load”) (and (eq_attr “mode” “SF”) (eq_attr “type” “ssemul”)))) “decoder0,p2+p0”)
;; FIXME: ssediv doesn't close p0 for 17 cycles, surely??? (define_insn_reservation “ppro_sse_div_SF” 18 (and (eq_attr “cpu” “pentiumpro”) (and (eq_attr “memory” “none”) (and (eq_attr “mode” “SF”) (eq_attr “type” “ssediv”)))) “decoder0,p0*17”)
(define_insn_reservation “ppro_sse_div_SF_load” 18 (and (eq_attr “cpu” “pentiumpro”) (and (eq_attr “memory” “none”) (and (eq_attr “mode” “SF”) (eq_attr “type” “ssediv”)))) “decoder0,(p2+p0),p0*16”)
(define_insn_reservation “ppro_sse_icvt_SF” 4 (and (eq_attr “cpu” “pentiumpro”) (and (eq_attr “mode” “SF”) (eq_attr “type” “sseicvt”))) “decoder0,(p2+p1)*2”)
(define_insn_reservation “ppro_sse_icvt_SI” 3 (and (eq_attr “cpu” “pentiumpro”) (and (eq_attr “mode” “SI”) (eq_attr “type” “sseicvt”))) “decoder0,(p2+p1)”)
(define_insn_reservation “ppro_sse_mov_SF” 3 (and (eq_attr “cpu” “pentiumpro”) (and (eq_attr “memory” “none”) (and (eq_attr “mode” “SF”) (eq_attr “type” “ssemov”)))) “decoder0,(p0|p1)”)
(define_insn_reservation “ppro_sse_mov_SF_load” 3 (and (eq_attr “cpu” “pentiumpro”) (and (eq_attr “memory” “load”) (and (eq_attr “mode” “SF”) (eq_attr “type” “ssemov”)))) “decoder0,p2+(p0|p1)”)
(define_insn_reservation “ppro_sse_mov_SF_store” 3 (and (eq_attr “cpu” “pentiumpro”) (and (eq_attr “memory” “store”) (and (eq_attr “mode” “SF”) (eq_attr “type” “ssemov”)))) “decoder0,p4+p3”)
(define_insn_reservation “ppro_sse_V4SF” 4 (and (eq_attr “cpu” “pentiumpro”) (and (eq_attr “mode” “V4SF”) (eq_attr “type” “sse”))) “decoder0,p1*2”)
(define_insn_reservation “ppro_sse_add_V4SF” 3 (and (eq_attr “cpu” “pentiumpro”) (and (eq_attr “memory” “none”) (and (eq_attr “mode” “V4SF”) (eq_attr “type” “sseadd,sseadd1”)))) “decoder0,p1*2”)
(define_insn_reservation “ppro_sse_add_V4SF_load” 3 (and (eq_attr “cpu” “pentiumpro”) (and (eq_attr “memory” “load”) (and (eq_attr “mode” “V4SF”) (eq_attr “type” “sseadd,sseadd1”)))) “decoder0,(p2+p1)*2”)
(define_insn_reservation “ppro_sse_cmp_V4SF” 3 (and (eq_attr “cpu” “pentiumpro”) (and (eq_attr “memory” “none”) (and (eq_attr “mode” “V4SF”) (eq_attr “type” “ssecmp”)))) “decoder0,p1*2”)
(define_insn_reservation “ppro_sse_cmp_V4SF_load” 3 (and (eq_attr “cpu” “pentiumpro”) (and (eq_attr “memory” “load”) (and (eq_attr “mode” “V4SF”) (eq_attr “type” “ssecmp”)))) “decoder0,(p2+p1)*2”)
(define_insn_reservation “ppro_sse_cvt_V4SF” 3 (and (eq_attr “cpu” “pentiumpro”) (and (eq_attr “memory” “none,unknown”) (and (eq_attr “mode” “V4SF”) (eq_attr “type” “ssecvt”)))) “decoder0,p1*2”)
(define_insn_reservation “ppro_sse_cvt_V4SF_other” 4 (and (eq_attr “cpu” “pentiumpro”) (and (eq_attr “memory” “!none,unknown”) (and (eq_attr “mode” “V4SF”) (eq_attr “type” “ssecmp”)))) “decoder0,p1,p4+p3”)
(define_insn_reservation “ppro_sse_mul_V4SF” 5 (and (eq_attr “cpu” “pentiumpro”) (and (eq_attr “memory” “none”) (and (eq_attr “mode” “V4SF”) (eq_attr “type” “ssemul”)))) “decoder0,p0*2”)
(define_insn_reservation “ppro_sse_mul_V4SF_load” 5 (and (eq_attr “cpu” “pentiumpro”) (and (eq_attr “memory” “load”) (and (eq_attr “mode” “V4SF”) (eq_attr “type” “ssemul”)))) “decoder0,(p2+p0)*2”)
;; FIXME: p0 really closed this long??? (define_insn_reservation “ppro_sse_div_V4SF” 48 (and (eq_attr “cpu” “pentiumpro”) (and (eq_attr “memory” “none”) (and (eq_attr “mode” “V4SF”) (eq_attr “type” “ssediv”)))) “decoder0,p0*34”)
(define_insn_reservation “ppro_sse_div_V4SF_load” 48 (and (eq_attr “cpu” “pentiumpro”) (and (eq_attr “memory” “load”) (and (eq_attr “mode” “V4SF”) (eq_attr “type” “ssediv”)))) “decoder0,(p2+p0)2,p032”)
(define_insn_reservation “ppro_sse_log_V4SF” 2 (and (eq_attr “cpu” “pentiumpro”) (and (eq_attr “memory” “none”) (and (eq_attr “mode” “V4SF”) (eq_attr “type” “sselog,sselog1,sseshuf,sseshuf1”)))) “decodern,p1”)
(define_insn_reservation “ppro_sse_log_V4SF_load” 2 (and (eq_attr “cpu” “pentiumpro”) (and (eq_attr “memory” “load”) (and (eq_attr “mode” “V4SF”) (eq_attr “type” “sselog,sselog1,sseshuf,sseshuf1”)))) “decoder0,(p2+p1)”)
(define_insn_reservation “ppro_sse_mov_V4SF” 1 (and (eq_attr “cpu” “pentiumpro”) (and (eq_attr “memory” “none”) (and (eq_attr “mode” “V4SF”) (eq_attr “type” “ssemov”)))) “decoder0,(p0|p1)*2”)
(define_insn_reservation “ppro_sse_mov_V4SF_load” 2 (and (eq_attr “cpu” “pentiumpro”) (and (eq_attr “memory” “load”) (and (eq_attr “mode” “V4SF”) (eq_attr “type” “ssemov”)))) “decoder0,p2*2”)
(define_insn_reservation “ppro_sse_mov_V4SF_store” 3 (and (eq_attr “cpu” “pentiumpro”) (and (eq_attr “memory” “store”) (and (eq_attr “mode” “V4SF”) (eq_attr “type” “ssemov”)))) “decoder0,(p4+p3)*2”)
;; All other instructions are modelled as simple instructions. ;; We have already modelled all i387 floating point instructions, so all ;; other instructions execute on either port 0 or port 1. This includes ;; the ALU units, and the MMX units. ;; ;; reg-reg instructions produce 1 uop so they can be decoded on any of ;; the three decoders. (define_insn_reservation “ppro_insn” 1 (and (eq_attr “cpu” “pentiumpro”) (and (eq_attr “memory” “none,unknown”) (eq_attr “type” “alu,alu1,negnot,incdec,icmp,test,setcc,icmov,push,pop,fxch,sseiadd,sseishft,sseishft1,sseimul,mmx,mmxadd,mmxcmp”))) “decodern,(p0|p1)”)
;; read-modify and register-memory instructions have 2 or three uops, ;; so they have to be decoded on decoder0. (define_insn_reservation “ppro_insn_load” 3 (and (eq_attr “cpu” “pentiumpro”) (and (eq_attr “memory” “load”) (eq_attr “type” “alu,alu1,negnot,incdec,icmp,test,setcc,icmov,push,pop,fxch,sseiadd,sseishft,sseishft1,sseimul,mmx,mmxadd,mmxcmp”))) “decoder0,p2+(p0|p1)”)
(define_insn_reservation “ppro_insn_store” 1 (and (eq_attr “cpu” “pentiumpro”) (and (eq_attr “memory” “store”) (eq_attr “type” “alu,alu1,negnot,incdec,icmp,test,setcc,icmov,push,pop,fxch,sseiadd,sseishft,sseishft1,sseimul,mmx,mmxadd,mmxcmp”))) “decoder0,(p0|p1),p4+p3”)
;; read-modify-store instructions produce 4 uops so they have to be ;; decoded on decoder0 as well. (define_insn_reservation “ppro_insn_both” 4 (and (eq_attr “cpu” “pentiumpro”) (and (eq_attr “memory” “both”) (eq_attr “type” “alu,alu1,negnot,incdec,icmp,test,setcc,icmov,push,pop,fxch,sseiadd,sseishft,sseishft1,sseimul,mmx,mmxadd,mmxcmp”))) “decoder0,p2+(p0|p1),p4+p3”)