;; Pipeline descriptions of Andes NDS32 cpu for GNU compiler ;; Copyright (C) 2012-2021 Free Software Foundation, Inc. ;; Contributed by Andes Technology Corporation. ;; ;; This file is part of GCC. ;; ;; GCC is free software; you can redistribute it and/or modify it ;; under the terms of the GNU General Public License as published ;; by the Free Software Foundation; either version 3, or (at your ;; option) any later version. ;; ;; GCC is distributed in the hope that it will be useful, but WITHOUT ;; ANY WARRANTY; without even the implied warranty of MERCHANTABILITY ;; or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public ;; License for more details. ;; ;; You should have received a copy of the GNU General Public License ;; along with GCC; see the file COPYING3. If not see ;; http://www.gnu.org/licenses/.
;; ------------------------------------------------------------------------ ;; Define N8 pipeline settings. ;; ------------------------------------------------------------------------
(define_automaton “nds32_n7_machine”)
;; ------------------------------------------------------------------------ ;; Pipeline Stages ;; ------------------------------------------------------------------------ ;; IF - Instruction Fetch ;; Instruction Alignment ;; Instruction Pre-decode ;; II - Instruction Issue ;; Instruction Decode ;; Register File Access ;; Instruction Execution ;; Interrupt Handling ;; EXD - Psuedo Stage ;; Load Data Completion
(define_cpu_unit “n7_ii” “nds32_n7_machine”)
(define_insn_reservation “nds_n7_unknown” 1 (and (eq_attr “type” “unknown”) (eq_attr “pipeline_model” “n7”)) “n7_ii”)
(define_insn_reservation “nds_n7_misc” 1 (and (eq_attr “type” “misc”) (eq_attr “pipeline_model” “n7”)) “n7_ii”)
(define_insn_reservation “nds_n7_alu” 1 (and (eq_attr “type” “alu”) (eq_attr “pipeline_model” “n7”)) “n7_ii”)
(define_insn_reservation “nds_n7_load” 1 (and (match_test “nds32::load_single_p (insn)”) (eq_attr “pipeline_model” “n7”)) “n7_ii”)
(define_insn_reservation “nds_n7_store” 1 (and (match_test “nds32::store_single_p (insn)”) (eq_attr “pipeline_model” “n7”)) “n7_ii”)
(define_insn_reservation “nds_n7_load_multiple_1” 1 (and (and (eq_attr “type” “load_multiple”) (eq_attr “combo” “1”)) (eq_attr “pipeline_model” “n7”)) “n7_ii”)
(define_insn_reservation “nds_n7_load_multiple_2” 1 (and (ior (and (eq_attr “type” “load_multiple”) (eq_attr “combo” “2”)) (match_test “nds32::load_double_p (insn)”)) (eq_attr “pipeline_model” “n7”)) “n7_ii*2”)
(define_insn_reservation “nds_n7_load_multiple_3” 1 (and (and (eq_attr “type” “load_multiple”) (eq_attr “combo” “3”)) (eq_attr “pipeline_model” “n7”)) “n7_ii*3”)
(define_insn_reservation “nds_n7_load_multiple_4” 1 (and (and (eq_attr “type” “load_multiple”) (eq_attr “combo” “4”)) (eq_attr “pipeline_model” “n7”)) “n7_ii*4”)
(define_insn_reservation “nds_n7_load_multiple_5” 1 (and (and (eq_attr “type” “load_multiple”) (eq_attr “combo” “5”)) (eq_attr “pipeline_model” “n7”)) “n7_ii*5”)
(define_insn_reservation “nds_n7_load_multiple_6” 1 (and (and (eq_attr “type” “load_multiple”) (eq_attr “combo” “6”)) (eq_attr “pipeline_model” “n7”)) “n7_ii*6”)
(define_insn_reservation “nds_n7_load_multiple_7” 1 (and (and (eq_attr “type” “load_multiple”) (eq_attr “combo” “7”)) (eq_attr “pipeline_model” “n7”)) “n7_ii*7”)
(define_insn_reservation “nds_n7_load_multiple_8” 1 (and (and (eq_attr “type” “load_multiple”) (eq_attr “combo” “8”)) (eq_attr “pipeline_model” “n7”)) “n7_ii*8”)
(define_insn_reservation “nds_n7_load_multiple_12” 1 (and (and (eq_attr “type” “load_multiple”) (eq_attr “combo” “12”)) (eq_attr “pipeline_model” “n7”)) “n7_ii*12”)
(define_insn_reservation “nds_n7_store_multiple_1” 1 (and (and (eq_attr “type” “store_multiple”) (eq_attr “combo” “1”)) (eq_attr “pipeline_model” “n7”)) “n7_ii”)
(define_insn_reservation “nds_n7_store_multiple_2” 1 (and (ior (and (eq_attr “type” “store_multiple”) (eq_attr “combo” “2”)) (match_test “nds32::store_double_p (insn)”)) (eq_attr “pipeline_model” “n7”)) “n7_ii*2”)
(define_insn_reservation “nds_n7_store_multiple_3” 1 (and (and (eq_attr “type” “store_multiple”) (eq_attr “combo” “3”)) (eq_attr “pipeline_model” “n7”)) “n7_ii*3”)
(define_insn_reservation “nds_n7_store_multiple_4” 1 (and (and (eq_attr “type” “store_multiple”) (eq_attr “combo” “4”)) (eq_attr “pipeline_model” “n7”)) “n7_ii*4”)
(define_insn_reservation “nds_n7_store_multiple_5” 1 (and (and (eq_attr “type” “store_multiple”) (eq_attr “combo” “5”)) (eq_attr “pipeline_model” “n7”)) “n7_ii*5”)
(define_insn_reservation “nds_n7_store_multiple_6” 1 (and (and (eq_attr “type” “store_multiple”) (eq_attr “combo” “6”)) (eq_attr “pipeline_model” “n7”)) “n7_ii*6”)
(define_insn_reservation “nds_n7_store_multiple_7” 1 (and (and (eq_attr “type” “store_multiple”) (eq_attr “combo” “7”)) (eq_attr “pipeline_model” “n7”)) “n7_ii*7”)
(define_insn_reservation “nds_n7_store_multiple_8” 1 (and (and (eq_attr “type” “store_multiple”) (eq_attr “combo” “8”)) (eq_attr “pipeline_model” “n7”)) “n7_ii*8”)
(define_insn_reservation “nds_n7_store_multiple_12” 1 (and (and (eq_attr “type” “store_multiple”) (eq_attr “combo” “12”)) (eq_attr “pipeline_model” “n7”)) “n7_ii*12”)
(define_insn_reservation “nds_n7_mul_fast” 1 (and (match_test “nds32_mul_config != MUL_TYPE_SLOW”) (and (eq_attr “type” “mul”) (eq_attr “pipeline_model” “n7”))) “n7_ii”)
(define_insn_reservation “nds_n7_mul_slow” 1 (and (match_test “nds32_mul_config == MUL_TYPE_SLOW”) (and (eq_attr “type” “mul”) (eq_attr “pipeline_model” “n7”))) “n7_ii*17”)
(define_insn_reservation “nds_n7_mac_fast” 1 (and (match_test “nds32_mul_config != MUL_TYPE_SLOW”) (and (eq_attr “type” “mac”) (eq_attr “pipeline_model” “n7”))) “n7_ii*2”)
(define_insn_reservation “nds_n7_mac_slow” 1 (and (match_test “nds32_mul_config == MUL_TYPE_SLOW”) (and (eq_attr “type” “mac”) (eq_attr “pipeline_model” “n7”))) “n7_ii*18”)
(define_insn_reservation “nds_n7_div” 1 (and (eq_attr “type” “div”) (eq_attr “pipeline_model” “n7”)) “n7_ii*37”)
(define_insn_reservation “nds_n7_branch” 1 (and (eq_attr “type” “branch”) (eq_attr “pipeline_model” “n7”)) “n7_ii”)
;; ------------------------------------------------------------------------ ;; Comment Notations and Bypass Rules ;; ------------------------------------------------------------------------ ;; Producers (LHS) ;; LD_!bi ;; Load data from the memory (without updating the base register) and ;; produce the loaded data. The result is ready at EXD. ;; LMW(N, M) ;; There are N micro-operations within an instruction that loads multiple ;; words. The result produced by the M-th micro-operation is sent to ;; consumers. The result is ready at EXD. If the base register should be ;; updated, an extra micro-operation is inserted to the sequence, and the ;; result is ready at II. ;; ;; Consumers (RHS) ;; ALU, MUL, DIV ;; Require operands at II. ;; MOVD44_E ;; A double-word move instruction needs two micro-operations because the ;; reigster ports is 2R1W. The first micro-operation writes an even number ;; register, and the second micro-operation writes an odd number register. ;; Each input operand is required at II for each micro-operation. The letter ;; ‘E’ stands for even. ;; MAC_RaRb ;; A MAC instruction is separated into two micro-operations. The first ;; micro-operation does the multiplication, which requires operands Ra ;; and Rb at II. The second micro-options does the accumulation, which ;; requires the operand Rt at II. ;; ADDR_IN_MOP(N) ;; Because the reigster port is 2R1W, some load/store instructions are ;; separated into many micro-operations. N denotes the address input is ;; required by the N-th micro-operation. Such operand is required at II. ;; ST_bi ;; A post-increment store instruction requires its data at II. ;; ST_!bi_RI ;; A store instruction with an immediate offset requires its data at II. ;; If the offset field is a register (ST_!bi_RR), the instruction will be ;; separated into two micro-operations, and the second one requires the ;; input operand at II in order to store it to the memory. ;; SMW(N, M) ;; There are N micro-operations within an instruction that stores multiple ;; words. Each M-th micro-operation requires its data at II. If the base ;; register should be updated, an extra micro-operation is inserted to the ;; sequence. ;; BR_COND ;; If a branch instruction is conditional, its input data is required at II.
;; LD_!bi ;; -> ALU, MOVD44_E, MUL, MAC_RaRb, DIV, BR, ADDR_IN_MOP(1), ST_bi, ST_!bi_RI, SMW(N, 1) (define_bypass 2 “nds_n7_load” “nds_n7_alu,
nds_n7_mul_fast, nds_n7_mul_slow,
nds_n7_mac_fast, nds_n7_mac_slow,
nds_n7_div,
nds_n7_branch,
nds_n7_load, nds_n7_store,
nds_n7_load_multiple_1,nds_n7_load_multiple_2, nds_n7_load_multiple_3,
nds_n7_load_multiple_4,nds_n7_load_multiple_5, nds_n7_load_multiple_6,
nds_n7_load_multiple_7,nds_n7_load_multiple_8, nds_n7_load_multiple_12,
nds_n7_store_multiple_1,nds_n7_store_multiple_2, nds_n7_store_multiple_3,
nds_n7_store_multiple_4,nds_n7_store_multiple_5, nds_n7_store_multiple_6,
nds_n7_store_multiple_7,nds_n7_store_multiple_8, nds_n7_store_multiple_12” “nds32_n7_load_to_ii_p” )
;; LMW(N, N) ;; -> ALU, MOVD44_E, MUL, MAC_RaRb, DIV, BR, AADR_IN_MOP(1), ST_bi, ST_!bi_RI, SMW(N, 1) (define_bypass 2 “nds_n7_load_multiple_1,nds_n7_load_multiple_2, nds_n7_load_multiple_3,
nds_n7_load_multiple_4,nds_n7_load_multiple_5, nds_n7_load_multiple_6,
nds_n7_load_multiple_7,nds_n7_load_multiple_8, nds_n7_load_multiple_12” “nds_n7_alu,
nds_n7_mul_fast, nds_n7_mul_slow,
nds_n7_mac_fast, nds_n7_mac_slow,
nds_n7_div,
nds_n7_branch,
nds_n7_load, nds_n7_store,
nds_n7_load_multiple_1,nds_n7_load_multiple_2, nds_n7_load_multiple_3,
nds_n7_load_multiple_4,nds_n7_load_multiple_5, nds_n7_load_multiple_6,
nds_n7_load_multiple_7,nds_n7_load_multiple_8, nds_n7_load_multiple_12,
nds_n7_store_multiple_1,nds_n7_store_multiple_2, nds_n7_store_multiple_3,
nds_n7_store_multiple_4,nds_n7_store_multiple_5, nds_n7_store_multiple_6,
nds_n7_store_multiple_7,nds_n7_store_multiple_8, nds_n7_store_multiple_12” “nds32_n7_last_load_to_ii_p” )