blob: 5e74923584065469a41d6ce5c00c2cf770afb0a7 [file] [log] [blame]
// RTL SSA utilities relating to instruction movement -*- C++ -*-
// Copyright (C) 2020-2021 Free Software Foundation, Inc.
//
// This file is part of GCC.
//
// GCC is free software; you can redistribute it and/or modify it under
// the terms of the GNU General Public License as published by the Free
// Software Foundation; either version 3, or (at your option) any later
// version.
//
// GCC is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
// for more details.
//
// You should have received a copy of the GNU General Public License
// along with GCC; see the file COPYING3. If not see
// <http://www.gnu.org/licenses/>.
namespace rtl_ssa {
// Restrict movement range RANGE so that the instruction is placed later
// than INSN. (The movement range is the range of instructions after which
// an instruction can be placed.)
inline insn_range_info
move_later_than (insn_range_info range, insn_info *insn)
{
return { later_insn (range.first, insn), range.last };
}
// Restrict movement range RANGE so that the instruction is placed no earlier
// than INSN. (The movement range is the range of instructions after which
// an instruction can be placed.)
inline insn_range_info
move_no_earlier_than (insn_range_info range, insn_info *insn)
{
insn_info *first = later_insn (range.first, insn->prev_nondebug_insn ());
return { first, range.last };
}
// Restrict movement range RANGE so that the instruction is placed no later
// than INSN. (The movement range is the range of instructions after which
// an instruction can be placed.)
inline insn_range_info
move_no_later_than (insn_range_info range, insn_info *insn)
{
return { range.first, earlier_insn (range.last, insn) };
}
// Restrict movement range RANGE so that the instruction is placed earlier
// than INSN. (The movement range is the range of instructions after which
// an instruction can be placed.)
inline insn_range_info
move_earlier_than (insn_range_info range, insn_info *insn)
{
insn_info *last = earlier_insn (range.last, insn->prev_nondebug_insn ());
return { range.first, last };
}
// Return true if it is possible to insert a new instruction after INSN.
inline bool
can_insert_after (insn_info *insn)
{
return insn->is_bb_head () || (insn->is_real () && !insn->is_jump ());
}
// Try to restrict move range MOVE_RANGE so that it is possible to
// insert INSN after both of the end points. Return true on success,
// otherwise leave MOVE_RANGE in an invalid state.
inline bool
canonicalize_move_range (insn_range_info &move_range, insn_info *insn)
{
while (move_range.first != insn && !can_insert_after (move_range.first))
move_range.first = move_range.first->next_nondebug_insn ();
while (move_range.last != insn && !can_insert_after (move_range.last))
move_range.last = move_range.last->prev_nondebug_insn ();
return bool (move_range);
}
// Try to restrict movement range MOVE_RANGE of INSN so that it can set
// or clobber REGNO. Assume that if:
//
// - an instruction I2 contains another access A to REGNO; and
// - IGNORE (I2) is true
//
// then either:
//
// - A will be removed; or
// - something will ensure that the new definition of REGNO does not
// interfere with A, without this having to be enforced by I1's move range.
//
// Return true on success, otherwise leave MOVE_RANGE in an invalid state.
//
// This function only works correctly for instructions that remain within
// the same extended basic block.
template<typename IgnorePredicate>
bool
restrict_movement_for_dead_range (insn_range_info &move_range,
unsigned int regno, insn_info *insn,
IgnorePredicate ignore)
{
// Find a definition at or neighboring INSN.
resource_info resource = full_register (regno);
def_lookup dl = crtl->ssa->find_def (resource, insn);
def_info *prev = dl.prev_def ();
ebb_info *ebb = insn->ebb ();
if (!prev || prev->ebb () != ebb)
{
// REGNO is not defined or used in EBB before INSN, but it
// might be live on entry. To keep complexity under control,
// handle only these cases:
//
// - If the register is not live on entry to EBB, the register is
// free from the start of EBB to the first definition in EBB.
//
// - Otherwise, if the register is live on entry to BB, refuse
// to allocate the register. We could in principle try to move
// the instruction to later blocks in the EBB, but it's rarely
// worth the effort, and could lead to linear complexity.
//
// - Otherwise, don't allow INSN to move earlier than its current
// block. Again, we could in principle look backwards to find where
// REGNO dies, but it's rarely worth the effort.
bb_info *bb = insn->bb ();
insn_info *limit;
if (!bitmap_bit_p (DF_LR_IN (ebb->first_bb ()->cfg_bb ()), regno))
limit = ebb->phi_insn ();
else if (bitmap_bit_p (DF_LR_IN (bb->cfg_bb ()), regno))
return false;
else
limit = bb->head_insn ();
move_range = move_later_than (move_range, limit);
}
else
{
// Stop the instruction moving beyond the previous relevant access
// to REGNO.
access_info *prev_access
= last_access_ignoring (prev, ignore_clobbers::YES, ignore);
if (prev_access)
move_range = move_later_than (move_range, access_insn (prev_access));
}
// Stop the instruction moving beyond the next relevant definition of REGNO.
def_info *next = first_def_ignoring (dl.matching_or_next_def (),
ignore_clobbers::YES, ignore);
if (next)
move_range = move_earlier_than (move_range, next->insn ());
return canonicalize_move_range (move_range, insn);
}
// Try to restrict movement range MOVE_RANGE so that it is possible for the
// instruction being moved ("instruction I1") to perform all the definitions
// in DEFS while still preserving dependencies between those definitions
// and surrounding instructions. Assume that if:
//
// - DEFS contains a definition D of resource R;
// - an instruction I2 contains another access A to R; and
// - IGNORE (I2) is true
//
// then either:
//
// - A will be removed; or
// - something will ensure that D and A maintain their current order,
// without this having to be enforced by I1's move range.
//
// Return true on success, otherwise leave MOVE_RANGE in an invalid state.
//
// This function only works correctly for instructions that remain within
// the same extended basic block.
template<typename IgnorePredicate>
bool
restrict_movement_for_defs_ignoring (insn_range_info &move_range,
def_array defs, IgnorePredicate ignore)
{
for (def_info *def : defs)
{
// If the definition is a clobber, we can move it with respect
// to other clobbers.
//
// ??? We could also do this if a definition and all its uses
// are being moved at once.
bool is_clobber = is_a<clobber_info *> (def);
// Search back for the first unfiltered use or definition of the
// same resource.
access_info *access;
access = prev_access_ignoring (def, ignore_clobbers (is_clobber),
ignore);
if (access)
move_range = move_later_than (move_range, access_insn (access));
// Search forward for the first unfiltered use of DEF,
// or the first unfiltered definition that follows DEF.
//
// We don't need to consider uses of following definitions, since
// if IGNORE (D->insn ()) is true for some definition D, the caller
// is guarantees that either
//
// - D will be removed, and thus its uses will be removed; or
// - D will occur after DEF, and thus D's uses will also occur
// after DEF.
//
// This is purely a simplification: we could also process D's uses,
// but we don't need to.
access = next_access_ignoring (def, ignore_clobbers (is_clobber),
ignore);
if (access)
move_range = move_earlier_than (move_range, access_insn (access));
// If DEF sets a hard register, take any call clobbers
// into account.
unsigned int regno = def->regno ();
if (!HARD_REGISTER_NUM_P (regno) || is_clobber)
continue;
ebb_info *ebb = def->ebb ();
for (ebb_call_clobbers_info *call_group : ebb->call_clobbers ())
{
if (!call_group->clobbers (def->resource ()))
continue;
// Exit now if we've already failed, and if the splay accesses
// below would be wasted work.
if (!move_range)
return false;
insn_info *insn;
insn = prev_call_clobbers_ignoring (*call_group, def->insn (),
ignore);
if (insn)
move_range = move_later_than (move_range, insn);
insn = next_call_clobbers_ignoring (*call_group, def->insn (),
ignore);
if (insn)
move_range = move_earlier_than (move_range, insn);
}
}
// Make sure that we don't move stores between basic blocks, since we
// don't have enough information to tell whether it's safe.
if (def_info *def = memory_access (defs))
{
move_range = move_later_than (move_range, def->bb ()->head_insn ());
move_range = move_earlier_than (move_range, def->bb ()->end_insn ());
}
return bool (move_range);
}
// Like restrict_movement_for_defs_ignoring, but for the uses in USES.
template<typename IgnorePredicate>
bool
restrict_movement_for_uses_ignoring (insn_range_info &move_range,
use_array uses, IgnorePredicate ignore)
{
for (const use_info *use : uses)
{
// Ignore uses of undefined values.
set_info *set = use->def ();
if (!set)
continue;
// Ignore uses by debug instructions. Debug instructions are
// never supposed to move, and uses by debug instructions are
// never supposed to be transferred elsewhere, so we know that
// the caller must be changing the uses on the debug instruction
// and checking whether all new uses are available at the debug
// instruction's original location.
if (use->is_in_debug_insn ())
continue;
// If the used value is defined by an instruction I2 for which
// IGNORE (I2) is true, the caller guarantees that I2 will occur
// before change.insn (). Otherwise, make sure that the use occurs
// after the definition.
insn_info *insn = set->insn ();
if (!ignore (insn))
move_range = move_later_than (move_range, insn);
// Search forward for the first unfiltered definition that follows SET.
//
// We don't need to consider the uses of these definitions, since
// if IGNORE (D->insn ()) is true for some definition D, the caller
// is guarantees that either
//
// - D will be removed, and thus its uses will be removed; or
// - D will occur after USE, and thus D's uses will also occur
// after USE.
//
// This is purely a simplification: we could also process D's uses,
// but we don't need to.
def_info *def;
def = first_def_ignoring (set->next_def (), ignore_clobbers::NO,
ignore);
if (def)
move_range = move_earlier_than (move_range, def->insn ());
// If USE uses a hard register, take any call clobbers into account too.
// SET will necessarily occur after any previous call clobber, so we
// only need to check for later clobbers.
unsigned int regno = use->regno ();
if (!HARD_REGISTER_NUM_P (regno))
continue;
ebb_info *ebb = use->ebb ();
for (ebb_call_clobbers_info *call_group : ebb->call_clobbers ())
{
if (!call_group->clobbers (use->resource ()))
continue;
if (!move_range)
return false;
insn_info *insn = next_call_clobbers_ignoring (*call_group,
use->insn (), ignore);
if (insn)
move_range = move_earlier_than (move_range, insn);
}
}
// Make sure that we don't move loads into an earlier basic block.
//
// ??? It would be good to relax this for loads that can be safely
// speculated.
if (use_info *use = memory_access (uses))
move_range = move_later_than (move_range, use->bb ()->head_insn ());
return bool (move_range);
}
}