| ------------------------------------------------------------------------------ |
| -- -- |
| -- GNAT COMPILER COMPONENTS -- |
| -- -- |
| -- S E M _ C H 3 -- |
| -- -- |
| -- B o d y -- |
| -- -- |
| -- Copyright (C) 1992-2022, Free Software Foundation, Inc. -- |
| -- -- |
| -- GNAT is free software; you can redistribute it and/or modify it under -- |
| -- terms of the GNU General Public License as published by the Free Soft- -- |
| -- ware Foundation; either version 3, or (at your option) any later ver- -- |
| -- sion. GNAT is distributed in the hope that it will be useful, but WITH- -- |
| -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY -- |
| -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License -- |
| -- for more details. You should have received a copy of the GNU General -- |
| -- Public License distributed with GNAT; see file COPYING3. If not, go to -- |
| -- http://www.gnu.org/licenses for a complete copy of the license. -- |
| -- -- |
| -- GNAT was originally developed by the GNAT team at New York University. -- |
| -- Extensive contributions were provided by Ada Core Technologies Inc. -- |
| -- -- |
| ------------------------------------------------------------------------------ |
| |
| with Aspects; use Aspects; |
| with Atree; use Atree; |
| with Checks; use Checks; |
| with Contracts; use Contracts; |
| with Debug; use Debug; |
| with Elists; use Elists; |
| with Einfo; use Einfo; |
| with Einfo.Entities; use Einfo.Entities; |
| with Einfo.Utils; use Einfo.Utils; |
| with Errout; use Errout; |
| with Eval_Fat; use Eval_Fat; |
| with Exp_Ch3; use Exp_Ch3; |
| with Exp_Ch9; use Exp_Ch9; |
| with Exp_Disp; use Exp_Disp; |
| with Exp_Dist; use Exp_Dist; |
| with Exp_Tss; use Exp_Tss; |
| with Exp_Util; use Exp_Util; |
| with Expander; use Expander; |
| with Freeze; use Freeze; |
| with Ghost; use Ghost; |
| with Itypes; use Itypes; |
| with Layout; use Layout; |
| with Lib; use Lib; |
| with Lib.Xref; use Lib.Xref; |
| with Namet; use Namet; |
| with Nlists; use Nlists; |
| with Nmake; use Nmake; |
| with Opt; use Opt; |
| with Restrict; use Restrict; |
| with Rident; use Rident; |
| with Rtsfind; use Rtsfind; |
| with Sem; use Sem; |
| with Sem_Aux; use Sem_Aux; |
| with Sem_Case; use Sem_Case; |
| with Sem_Cat; use Sem_Cat; |
| with Sem_Ch6; use Sem_Ch6; |
| with Sem_Ch7; use Sem_Ch7; |
| with Sem_Ch8; use Sem_Ch8; |
| with Sem_Ch10; use Sem_Ch10; |
| with Sem_Ch13; use Sem_Ch13; |
| with Sem_Dim; use Sem_Dim; |
| with Sem_Disp; use Sem_Disp; |
| with Sem_Dist; use Sem_Dist; |
| with Sem_Elab; use Sem_Elab; |
| with Sem_Elim; use Sem_Elim; |
| with Sem_Eval; use Sem_Eval; |
| with Sem_Mech; use Sem_Mech; |
| with Sem_Res; use Sem_Res; |
| with Sem_Smem; use Sem_Smem; |
| with Sem_Type; use Sem_Type; |
| with Sem_Util; use Sem_Util; |
| with Sem_Warn; use Sem_Warn; |
| with Stand; use Stand; |
| with Sinfo; use Sinfo; |
| with Sinfo.Nodes; use Sinfo.Nodes; |
| with Sinfo.Utils; use Sinfo.Utils; |
| with Sinput; use Sinput; |
| with Snames; use Snames; |
| with Strub; use Strub; |
| with Targparm; use Targparm; |
| with Tbuild; use Tbuild; |
| with Ttypes; use Ttypes; |
| with Uintp; use Uintp; |
| with Urealp; use Urealp; |
| with Warnsw; use Warnsw; |
| |
| package body Sem_Ch3 is |
| |
| ----------------------- |
| -- Local Subprograms -- |
| ----------------------- |
| |
| procedure Add_Interface_Tag_Components (N : Node_Id; Typ : Entity_Id); |
| -- Ada 2005 (AI-251): Add the tag components corresponding to all the |
| -- abstract interface types implemented by a record type or a derived |
| -- record type. |
| |
| procedure Build_Access_Subprogram_Wrapper (Decl : Node_Id); |
| -- When an access-to-subprogram type has pre/postconditions, we build a |
| -- subprogram that includes these contracts and is invoked by an indirect |
| -- call through the corresponding access type. |
| |
| procedure Build_Derived_Type |
| (N : Node_Id; |
| Parent_Type : Entity_Id; |
| Derived_Type : Entity_Id; |
| Is_Completion : Boolean; |
| Derive_Subps : Boolean := True); |
| -- Create and decorate a Derived_Type given the Parent_Type entity. N is |
| -- the N_Full_Type_Declaration node containing the derived type definition. |
| -- Parent_Type is the entity for the parent type in the derived type |
| -- definition and Derived_Type the actual derived type. Is_Completion must |
| -- be set to False if Derived_Type is the N_Defining_Identifier node in N |
| -- (i.e. Derived_Type = Defining_Identifier (N)). In this case N is not the |
| -- completion of a private type declaration. If Is_Completion is set to |
| -- True, N is the completion of a private type declaration and Derived_Type |
| -- is different from the defining identifier inside N (i.e. Derived_Type /= |
| -- Defining_Identifier (N)). Derive_Subps indicates whether the parent |
| -- subprograms should be derived. The only case where this parameter is |
| -- False is when Build_Derived_Type is recursively called to process an |
| -- implicit derived full type for a type derived from a private type (in |
| -- that case the subprograms must only be derived for the private view of |
| -- the type). |
| -- |
| -- ??? These flags need a bit of re-examination and re-documentation: |
| -- ??? are they both necessary (both seem related to the recursion)? |
| |
| procedure Build_Derived_Access_Type |
| (N : Node_Id; |
| Parent_Type : Entity_Id; |
| Derived_Type : Entity_Id); |
| -- Subsidiary procedure to Build_Derived_Type. For a derived access type, |
| -- create an implicit base if the parent type is constrained or if the |
| -- subtype indication has a constraint. |
| |
| procedure Build_Derived_Array_Type |
| (N : Node_Id; |
| Parent_Type : Entity_Id; |
| Derived_Type : Entity_Id); |
| -- Subsidiary procedure to Build_Derived_Type. For a derived array type, |
| -- create an implicit base if the parent type is constrained or if the |
| -- subtype indication has a constraint. |
| |
| procedure Build_Derived_Concurrent_Type |
| (N : Node_Id; |
| Parent_Type : Entity_Id; |
| Derived_Type : Entity_Id); |
| -- Subsidiary procedure to Build_Derived_Type. For a derived task or |
| -- protected type, inherit entries and protected subprograms, check |
| -- legality of discriminant constraints if any. |
| |
| procedure Build_Derived_Enumeration_Type |
| (N : Node_Id; |
| Parent_Type : Entity_Id; |
| Derived_Type : Entity_Id); |
| -- Subsidiary procedure to Build_Derived_Type. For a derived enumeration |
| -- type, we must create a new list of literals. Types derived from |
| -- Character and [Wide_]Wide_Character are special-cased. |
| |
| procedure Build_Derived_Numeric_Type |
| (N : Node_Id; |
| Parent_Type : Entity_Id; |
| Derived_Type : Entity_Id); |
| -- Subsidiary procedure to Build_Derived_Type. For numeric types, create |
| -- an anonymous base type, and propagate constraint to subtype if needed. |
| |
| procedure Build_Derived_Private_Type |
| (N : Node_Id; |
| Parent_Type : Entity_Id; |
| Derived_Type : Entity_Id; |
| Is_Completion : Boolean; |
| Derive_Subps : Boolean := True); |
| -- Subsidiary procedure to Build_Derived_Type. This procedure is complex |
| -- because the parent may or may not have a completion, and the derivation |
| -- may itself be a completion. |
| |
| procedure Build_Derived_Record_Type |
| (N : Node_Id; |
| Parent_Type : Entity_Id; |
| Derived_Type : Entity_Id; |
| Derive_Subps : Boolean := True); |
| -- Subsidiary procedure used for tagged and untagged record types |
| -- by Build_Derived_Type and Analyze_Private_Extension_Declaration. |
| -- All parameters are as in Build_Derived_Type except that N, in |
| -- addition to being an N_Full_Type_Declaration node, can also be an |
| -- N_Private_Extension_Declaration node. See the definition of this routine |
| -- for much more info. Derive_Subps indicates whether subprograms should be |
| -- derived from the parent type. The only case where Derive_Subps is False |
| -- is for an implicit derived full type for a type derived from a private |
| -- type (see Build_Derived_Type). |
| |
| procedure Build_Discriminal (Discrim : Entity_Id); |
| -- Create the discriminal corresponding to discriminant Discrim, that is |
| -- the parameter corresponding to Discrim to be used in initialization |
| -- procedures for the type where Discrim is a discriminant. Discriminals |
| -- are not used during semantic analysis, and are not fully defined |
| -- entities until expansion. Thus they are not given a scope until |
| -- initialization procedures are built. |
| |
| function Build_Discriminant_Constraints |
| (T : Entity_Id; |
| Def : Node_Id; |
| Derived_Def : Boolean := False) return Elist_Id; |
| -- Validate discriminant constraints and return the list of the constraints |
| -- in order of discriminant declarations, where T is the discriminated |
| -- unconstrained type. Def is the N_Subtype_Indication node where the |
| -- discriminants constraints for T are specified. Derived_Def is True |
| -- when building the discriminant constraints in a derived type definition |
| -- of the form "type D (...) is new T (xxx)". In this case T is the parent |
| -- type and Def is the constraint "(xxx)" on T and this routine sets the |
| -- Corresponding_Discriminant field of the discriminants in the derived |
| -- type D to point to the corresponding discriminants in the parent type T. |
| |
| procedure Build_Discriminated_Subtype |
| (T : Entity_Id; |
| Def_Id : Entity_Id; |
| Elist : Elist_Id; |
| Related_Nod : Node_Id; |
| For_Access : Boolean := False); |
| -- Subsidiary procedure to Constrain_Discriminated_Type and to |
| -- Process_Incomplete_Dependents. Given |
| -- |
| -- T (a possibly discriminated base type) |
| -- Def_Id (a very partially built subtype for T), |
| -- |
| -- the call completes Def_Id to be the appropriate E_*_Subtype. |
| -- |
| -- The Elist is the list of discriminant constraints if any (it is set |
| -- to No_Elist if T is not a discriminated type, and to an empty list if |
| -- T has discriminants but there are no discriminant constraints). The |
| -- Related_Nod is the same as Decl_Node in Create_Constrained_Components. |
| -- The For_Access says whether or not this subtype is really constraining |
| -- an access type. |
| |
| function Build_Scalar_Bound |
| (Bound : Node_Id; |
| Par_T : Entity_Id; |
| Der_T : Entity_Id) return Node_Id; |
| -- The bounds of a derived scalar type are conversions of the bounds of |
| -- the parent type. Optimize the representation if the bounds are literals. |
| -- Needs a more complete spec--what are the parameters exactly, and what |
| -- exactly is the returned value, and how is Bound affected??? |
| |
| procedure Check_Access_Discriminant_Requires_Limited |
| (D : Node_Id; |
| Loc : Node_Id); |
| -- Check the restriction that the type to which an access discriminant |
| -- belongs must be a concurrent type or a descendant of a type with |
| -- the reserved word 'limited' in its declaration. |
| |
| procedure Check_Anonymous_Access_Component |
| (Typ_Decl : Node_Id; |
| Typ : Entity_Id; |
| Prev : Entity_Id; |
| Comp_Def : Node_Id; |
| Access_Def : Node_Id); |
| -- Ada 2005 AI-382: an access component in a record definition can refer to |
| -- the enclosing record, in which case it denotes the type itself, and not |
| -- the current instance of the type. We create an anonymous access type for |
| -- the component, and flag it as an access to a component, so accessibility |
| -- checks are properly performed on it. The declaration of the access type |
| -- is placed ahead of that of the record to prevent order-of-elaboration |
| -- circularity issues in Gigi. We create an incomplete type for the record |
| -- declaration, which is the designated type of the anonymous access. |
| |
| procedure Check_Anonymous_Access_Components |
| (Typ_Decl : Node_Id; |
| Typ : Entity_Id; |
| Prev : Entity_Id; |
| Comp_List : Node_Id); |
| -- Call Check_Anonymous_Access_Component on Comp_List |
| |
| procedure Check_Constraining_Discriminant (New_Disc, Old_Disc : Entity_Id); |
| -- Check that, if a new discriminant is used in a constraint defining the |
| -- parent subtype of a derivation, its subtype is statically compatible |
| -- with the subtype of the corresponding parent discriminant (RM 3.7(15)). |
| |
| procedure Check_Delta_Expression (E : Node_Id); |
| -- Check that the expression represented by E is suitable for use as a |
| -- delta expression, i.e. it is of real type and is static. |
| |
| procedure Check_Digits_Expression (E : Node_Id); |
| -- Check that the expression represented by E is suitable for use as a |
| -- digits expression, i.e. it is of integer type, positive and static. |
| |
| procedure Check_Initialization (T : Entity_Id; Exp : Node_Id); |
| -- Validate the initialization of an object declaration. T is the required |
| -- type, and Exp is the initialization expression. |
| |
| procedure Check_Interfaces (N : Node_Id; Def : Node_Id); |
| -- Check ARM rules 3.9.4 (15/2), 9.1 (9.d/2) and 9.4 (11.d/2) |
| |
| procedure Check_Or_Process_Discriminants |
| (N : Node_Id; |
| T : Entity_Id; |
| Prev : Entity_Id := Empty); |
| -- If N is the full declaration of the completion T of an incomplete or |
| -- private type, check its discriminants (which are already known to be |
| -- conformant with those of the partial view, see Find_Type_Name), |
| -- otherwise process them. Prev is the entity of the partial declaration, |
| -- if any. |
| |
| procedure Check_Real_Bound (Bound : Node_Id); |
| -- Check given bound for being of real type and static. If not, post an |
| -- appropriate message, and rewrite the bound with the real literal zero. |
| |
| procedure Constant_Redeclaration |
| (Id : Entity_Id; |
| N : Node_Id; |
| T : out Entity_Id); |
| -- Various checks on legality of full declaration of deferred constant. |
| -- Id is the entity for the redeclaration, N is the N_Object_Declaration, |
| -- node. The caller has not yet set any attributes of this entity. |
| |
| function Contain_Interface |
| (Iface : Entity_Id; |
| Ifaces : Elist_Id) return Boolean; |
| -- Ada 2005: Determine whether Iface is present in the list Ifaces |
| |
| procedure Convert_Scalar_Bounds |
| (N : Node_Id; |
| Parent_Type : Entity_Id; |
| Derived_Type : Entity_Id; |
| Loc : Source_Ptr); |
| -- For derived scalar types, convert the bounds in the type definition to |
| -- the derived type, and complete their analysis. Given a constraint of the |
| -- form ".. new T range Lo .. Hi", Lo and Hi are analyzed and resolved with |
| -- T'Base, the parent_type. The bounds of the derived type (the anonymous |
| -- base) are copies of Lo and Hi. Finally, the bounds of the derived |
| -- subtype are conversions of those bounds to the derived_type, so that |
| -- their typing is consistent. |
| |
| procedure Copy_Array_Base_Type_Attributes (T1, T2 : Entity_Id); |
| -- Copies attributes from array base type T2 to array base type T1. Copies |
| -- only attributes that apply to base types, but not subtypes. |
| |
| procedure Copy_Array_Subtype_Attributes (T1, T2 : Entity_Id); |
| -- Copies attributes from array subtype T2 to array subtype T1. Copies |
| -- attributes that apply to both subtypes and base types. |
| |
| procedure Create_Constrained_Components |
| (Subt : Entity_Id; |
| Decl_Node : Node_Id; |
| Typ : Entity_Id; |
| Constraints : Elist_Id); |
| -- Build the list of entities for a constrained discriminated record |
| -- subtype. If a component depends on a discriminant, replace its subtype |
| -- using the discriminant values in the discriminant constraint. Subt |
| -- is the defining identifier for the subtype whose list of constrained |
| -- entities we will create. Decl_Node is the type declaration node where |
| -- we will attach all the itypes created. Typ is the base discriminated |
| -- type for the subtype Subt. Constraints is the list of discriminant |
| -- constraints for Typ. |
| |
| function Constrain_Component_Type |
| (Comp : Entity_Id; |
| Constrained_Typ : Entity_Id; |
| Related_Node : Node_Id; |
| Typ : Entity_Id; |
| Constraints : Elist_Id) return Entity_Id; |
| -- Given a discriminated base type Typ, a list of discriminant constraints, |
| -- Constraints, for Typ and a component Comp of Typ, create and return the |
| -- type corresponding to Etype (Comp) where all discriminant references |
| -- are replaced with the corresponding constraint. If Etype (Comp) contains |
| -- no discriminant references then it is returned as-is. Constrained_Typ |
| -- is the final constrained subtype to which the constrained component |
| -- belongs. Related_Node is the node where we attach all created itypes. |
| |
| procedure Constrain_Access |
| (Def_Id : in out Entity_Id; |
| S : Node_Id; |
| Related_Nod : Node_Id); |
| -- Apply a list of constraints to an access type. If Def_Id is empty, it is |
| -- an anonymous type created for a subtype indication. In that case it is |
| -- created in the procedure and attached to Related_Nod. |
| |
| procedure Constrain_Array |
| (Def_Id : in out Entity_Id; |
| SI : Node_Id; |
| Related_Nod : Node_Id; |
| Related_Id : Entity_Id; |
| Suffix : Character); |
| -- Apply a list of index constraints to an unconstrained array type. The |
| -- first parameter is the entity for the resulting subtype. A value of |
| -- Empty for Def_Id indicates that an implicit type must be created, but |
| -- creation is delayed (and must be done by this procedure) because other |
| -- subsidiary implicit types must be created first (which is why Def_Id |
| -- is an in/out parameter). The second parameter is a subtype indication |
| -- node for the constrained array to be created (e.g. something of the |
| -- form string (1 .. 10)). Related_Nod gives the place where this type |
| -- has to be inserted in the tree. The Related_Id and Suffix parameters |
| -- are used to build the associated Implicit type name. |
| |
| procedure Constrain_Concurrent |
| (Def_Id : in out Entity_Id; |
| SI : Node_Id; |
| Related_Nod : Node_Id; |
| Related_Id : Entity_Id; |
| Suffix : Character); |
| -- Apply list of discriminant constraints to an unconstrained concurrent |
| -- type. |
| -- |
| -- SI is the N_Subtype_Indication node containing the constraint and |
| -- the unconstrained type to constrain. |
| -- |
| -- Def_Id is the entity for the resulting constrained subtype. A value |
| -- of Empty for Def_Id indicates that an implicit type must be created, |
| -- but creation is delayed (and must be done by this procedure) because |
| -- other subsidiary implicit types must be created first (which is why |
| -- Def_Id is an in/out parameter). |
| -- |
| -- Related_Nod gives the place where this type has to be inserted |
| -- in the tree. |
| -- |
| -- The last two arguments are used to create its external name if needed. |
| |
| function Constrain_Corresponding_Record |
| (Prot_Subt : Entity_Id; |
| Corr_Rec : Entity_Id; |
| Related_Nod : Node_Id) return Entity_Id; |
| -- When constraining a protected type or task type with discriminants, |
| -- constrain the corresponding record with the same discriminant values. |
| |
| procedure Constrain_Decimal (Def_Id : Entity_Id; S : Node_Id); |
| -- Constrain a decimal fixed point type with a digits constraint and/or a |
| -- range constraint, and build E_Decimal_Fixed_Point_Subtype entity. |
| |
| procedure Constrain_Discriminated_Type |
| (Def_Id : Entity_Id; |
| S : Node_Id; |
| Related_Nod : Node_Id; |
| For_Access : Boolean := False); |
| -- Process discriminant constraints of composite type. Verify that values |
| -- have been provided for all discriminants, that the original type is |
| -- unconstrained, and that the types of the supplied expressions match |
| -- the discriminant types. The first three parameters are like in routine |
| -- Constrain_Concurrent. See Build_Discriminated_Subtype for an explanation |
| -- of For_Access. |
| |
| procedure Constrain_Enumeration (Def_Id : Entity_Id; S : Node_Id); |
| -- Constrain an enumeration type with a range constraint. This is identical |
| -- to Constrain_Integer, but for the Ekind of the resulting subtype. |
| |
| procedure Constrain_Float (Def_Id : Entity_Id; S : Node_Id); |
| -- Constrain a floating point type with either a digits constraint |
| -- and/or a range constraint, building a E_Floating_Point_Subtype. |
| |
| procedure Constrain_Index |
| (Index : Node_Id; |
| S : Node_Id; |
| Related_Nod : Node_Id; |
| Related_Id : Entity_Id; |
| Suffix : Character; |
| Suffix_Index : Pos); |
| -- Process an index constraint S in a constrained array declaration. The |
| -- constraint can be a subtype name, or a range with or without an explicit |
| -- subtype mark. The index is the corresponding index of the unconstrained |
| -- array. The Related_Id and Suffix parameters are used to build the |
| -- associated Implicit type name. |
| |
| procedure Constrain_Integer (Def_Id : Entity_Id; S : Node_Id); |
| -- Build subtype of a signed or modular integer type |
| |
| procedure Constrain_Ordinary_Fixed (Def_Id : Entity_Id; S : Node_Id); |
| -- Constrain an ordinary fixed point type with a range constraint, and |
| -- build an E_Ordinary_Fixed_Point_Subtype entity. |
| |
| procedure Copy_And_Swap (Priv, Full : Entity_Id); |
| -- Copy the Priv entity into the entity of its full declaration then swap |
| -- the two entities in such a manner that the former private type is now |
| -- seen as a full type. |
| |
| procedure Decimal_Fixed_Point_Type_Declaration |
| (T : Entity_Id; |
| Def : Node_Id); |
| -- Create a new decimal fixed point type, and apply the constraint to |
| -- obtain a subtype of this new type. |
| |
| procedure Complete_Private_Subtype |
| (Priv : Entity_Id; |
| Full : Entity_Id; |
| Full_Base : Entity_Id; |
| Related_Nod : Node_Id); |
| -- Complete the implicit full view of a private subtype by setting the |
| -- appropriate semantic fields. If the full view of the parent is a record |
| -- type, build constrained components of subtype. |
| |
| procedure Derive_Progenitor_Subprograms |
| (Parent_Type : Entity_Id; |
| Tagged_Type : Entity_Id); |
| -- Ada 2005 (AI-251): To complete type derivation, collect the primitive |
| -- operations of progenitors of Tagged_Type, and replace the subsidiary |
| -- subtypes with Tagged_Type, to build the specs of the inherited interface |
| -- primitives. The derived primitives are aliased to those of the |
| -- interface. This routine takes care also of transferring to the full view |
| -- subprograms associated with the partial view of Tagged_Type that cover |
| -- interface primitives. |
| |
| procedure Derived_Standard_Character |
| (N : Node_Id; |
| Parent_Type : Entity_Id; |
| Derived_Type : Entity_Id); |
| -- Subsidiary procedure to Build_Derived_Enumeration_Type which handles |
| -- derivations from types Standard.Character and Standard.Wide_Character. |
| |
| procedure Derived_Type_Declaration |
| (T : Entity_Id; |
| N : Node_Id; |
| Is_Completion : Boolean); |
| -- Process a derived type declaration. Build_Derived_Type is invoked |
| -- to process the actual derived type definition. Parameters N and |
| -- Is_Completion have the same meaning as in Build_Derived_Type. |
| -- T is the N_Defining_Identifier for the entity defined in the |
| -- N_Full_Type_Declaration node N, that is T is the derived type. |
| |
| procedure Enumeration_Type_Declaration (T : Entity_Id; Def : Node_Id); |
| -- Insert each literal in symbol table, as an overloadable identifier. Each |
| -- enumeration type is mapped into a sequence of integers, and each literal |
| -- is defined as a constant with integer value. If any of the literals are |
| -- character literals, the type is a character type, which means that |
| -- strings are legal aggregates for arrays of components of the type. |
| |
| function Expand_To_Stored_Constraint |
| (Typ : Entity_Id; |
| Constraint : Elist_Id) return Elist_Id; |
| -- Given a constraint (i.e. a list of expressions) on the discriminants of |
| -- Typ, expand it into a constraint on the stored discriminants and return |
| -- the new list of expressions constraining the stored discriminants. |
| |
| function Find_Type_Of_Object |
| (Obj_Def : Node_Id; |
| Related_Nod : Node_Id) return Entity_Id; |
| -- Get type entity for object referenced by Obj_Def, attaching the implicit |
| -- types generated to Related_Nod. |
| |
| procedure Floating_Point_Type_Declaration (T : Entity_Id; Def : Node_Id); |
| -- Create a new float and apply the constraint to obtain subtype of it |
| |
| function Has_Range_Constraint (N : Node_Id) return Boolean; |
| -- Given an N_Subtype_Indication node N, return True if a range constraint |
| -- is present, either directly, or as part of a digits or delta constraint. |
| -- In addition, a digits constraint in the decimal case returns True, since |
| -- it establishes a default range if no explicit range is present. |
| |
| function Inherit_Components |
| (N : Node_Id; |
| Parent_Base : Entity_Id; |
| Derived_Base : Entity_Id; |
| Is_Tagged : Boolean; |
| Inherit_Discr : Boolean; |
| Discs : Elist_Id) return Elist_Id; |
| -- Called from Build_Derived_Record_Type to inherit the components of |
| -- Parent_Base (a base type) into the Derived_Base (the derived base type). |
| -- For more information on derived types and component inheritance please |
| -- consult the comment above the body of Build_Derived_Record_Type. |
| -- |
| -- N is the original derived type declaration |
| -- |
| -- Is_Tagged is set if we are dealing with tagged types |
| -- |
| -- If Inherit_Discr is set, Derived_Base inherits its discriminants from |
| -- Parent_Base, otherwise no discriminants are inherited. |
| -- |
| -- Discs gives the list of constraints that apply to Parent_Base in the |
| -- derived type declaration. If Discs is set to No_Elist, then we have |
| -- the following situation: |
| -- |
| -- type Parent (D1..Dn : ..) is [tagged] record ...; |
| -- type Derived is new Parent [with ...]; |
| -- |
| -- which gets treated as |
| -- |
| -- type Derived (D1..Dn : ..) is new Parent (D1,..,Dn) [with ...]; |
| -- |
| -- For untagged types the returned value is an association list. The list |
| -- starts from the association (Parent_Base => Derived_Base), and then it |
| -- contains a sequence of the associations of the form |
| -- |
| -- (Old_Component => New_Component), |
| -- |
| -- where Old_Component is the Entity_Id of a component in Parent_Base and |
| -- New_Component is the Entity_Id of the corresponding component in |
| -- Derived_Base. For untagged records, this association list is needed when |
| -- copying the record declaration for the derived base. In the tagged case |
| -- the value returned is irrelevant. |
| |
| function Is_EVF_Procedure (Subp : Entity_Id) return Boolean; |
| -- Subsidiary to Check_Abstract_Overriding and Derive_Subprogram. |
| -- Determine whether subprogram Subp is a procedure subject to pragma |
| -- Extensions_Visible with value False and has at least one controlling |
| -- parameter of mode OUT. |
| |
| function Is_Private_Primitive (Prim : Entity_Id) return Boolean; |
| -- Subsidiary to Check_Abstract_Overriding and Derive_Subprogram. |
| -- When applied to a primitive subprogram Prim, returns True if Prim is |
| -- declared as a private operation within a package or generic package, |
| -- and returns False otherwise. |
| |
| function Is_Valid_Constraint_Kind |
| (T_Kind : Type_Kind; |
| Constraint_Kind : Node_Kind) return Boolean; |
| -- Returns True if it is legal to apply the given kind of constraint to the |
| -- given kind of type (index constraint to an array type, for example). |
| |
| procedure Modular_Type_Declaration (T : Entity_Id; Def : Node_Id); |
| -- Create new modular type. Verify that modulus is in bounds |
| |
| procedure New_Concatenation_Op (Typ : Entity_Id); |
| -- Create an abbreviated declaration for an operator in order to |
| -- materialize concatenation on array types. |
| |
| procedure Ordinary_Fixed_Point_Type_Declaration |
| (T : Entity_Id; |
| Def : Node_Id); |
| -- Create a new ordinary fixed point type, and apply the constraint to |
| -- obtain subtype of it. |
| |
| procedure Preanalyze_Default_Expression (N : Node_Id; T : Entity_Id); |
| -- Wrapper on Preanalyze_Spec_Expression for default expressions, so that |
| -- In_Default_Expr can be properly adjusted. |
| |
| procedure Prepare_Private_Subtype_Completion |
| (Id : Entity_Id; |
| Related_Nod : Node_Id); |
| -- Id is a subtype of some private type. Creates the full declaration |
| -- associated with Id whenever possible, i.e. when the full declaration |
| -- of the base type is already known. Records each subtype into |
| -- Private_Dependents of the base type. |
| |
| procedure Process_Incomplete_Dependents |
| (N : Node_Id; |
| Full_T : Entity_Id; |
| Inc_T : Entity_Id); |
| -- Process all entities that depend on an incomplete type. There include |
| -- subtypes, subprogram types that mention the incomplete type in their |
| -- profiles, and subprogram with access parameters that designate the |
| -- incomplete type. |
| |
| -- Inc_T is the defining identifier of an incomplete type declaration, its |
| -- Ekind is E_Incomplete_Type. |
| -- |
| -- N is the corresponding N_Full_Type_Declaration for Inc_T. |
| -- |
| -- Full_T is N's defining identifier. |
| -- |
| -- Subtypes of incomplete types with discriminants are completed when the |
| -- parent type is. This is simpler than private subtypes, because they can |
| -- only appear in the same scope, and there is no need to exchange views. |
| -- Similarly, access_to_subprogram types may have a parameter or a return |
| -- type that is an incomplete type, and that must be replaced with the |
| -- full type. |
| -- |
| -- If the full type is tagged, subprogram with access parameters that |
| -- designated the incomplete may be primitive operations of the full type, |
| -- and have to be processed accordingly. |
| |
| procedure Process_Real_Range_Specification (Def : Node_Id); |
| -- Given the type definition for a real type, this procedure processes and |
| -- checks the real range specification of this type definition if one is |
| -- present. If errors are found, error messages are posted, and the |
| -- Real_Range_Specification of Def is reset to Empty. |
| |
| procedure Record_Type_Declaration |
| (T : Entity_Id; |
| N : Node_Id; |
| Prev : Entity_Id); |
| -- Process a record type declaration (for both untagged and tagged |
| -- records). Parameters T and N are exactly like in procedure |
| -- Derived_Type_Declaration, except that no flag Is_Completion is needed |
| -- for this routine. If this is the completion of an incomplete type |
| -- declaration, Prev is the entity of the incomplete declaration, used for |
| -- cross-referencing. Otherwise Prev = T. |
| |
| procedure Record_Type_Definition (Def : Node_Id; Prev_T : Entity_Id); |
| -- This routine is used to process the actual record type definition (both |
| -- for untagged and tagged records). Def is a record type definition node. |
| -- This procedure analyzes the components in this record type definition. |
| -- Prev_T is the entity for the enclosing record type. It is provided so |
| -- that its Has_Task flag can be set if any of the component have Has_Task |
| -- set. If the declaration is the completion of an incomplete type |
| -- declaration, Prev_T is the original incomplete type, whose full view is |
| -- the record type. |
| |
| procedure Replace_Discriminants (Typ : Entity_Id; Decl : Node_Id); |
| -- Subsidiary to Build_Derived_Record_Type. For untagged record types, we |
| -- first create the list of components for the derived type from that of |
| -- the parent by means of Inherit_Components and then build a copy of the |
| -- declaration tree of the parent with the help of the mapping returned by |
| -- Inherit_Components, which will for example be used to validate record |
| -- representation clauses given for the derived type. If the parent type |
| -- is private and has discriminants, the ancestor discriminants used in the |
| -- inheritance are that of the private declaration, whereas the ancestor |
| -- discriminants present in the declaration tree of the parent are that of |
| -- the full declaration; as a consequence, the remapping done during the |
| -- copy will leave the references to the ancestor discriminants unchanged |
| -- in the declaration tree and they need to be fixed up. If the derived |
| -- type has a known discriminant part, then the remapping done during the |
| -- copy will only create references to the stored discriminants and they |
| -- need to be replaced with references to the non-stored discriminants. |
| |
| procedure Set_Fixed_Range |
| (E : Entity_Id; |
| Loc : Source_Ptr; |
| Lo : Ureal; |
| Hi : Ureal); |
| -- Build a range node with the given bounds and set it as the Scalar_Range |
| -- of the given fixed-point type entity. Loc is the source location used |
| -- for the constructed range. See body for further details. |
| |
| procedure Set_Scalar_Range_For_Subtype |
| (Def_Id : Entity_Id; |
| R : Node_Id; |
| Subt : Entity_Id); |
| -- This routine is used to set the scalar range field for a subtype given |
| -- Def_Id, the entity for the subtype, and R, the range expression for the |
| -- scalar range. Subt provides the parent subtype to be used to analyze, |
| -- resolve, and check the given range. |
| |
| procedure Set_Default_SSO (T : Entity_Id); |
| -- T is the entity for an array or record being declared. This procedure |
| -- sets the flags SSO_Set_Low_By_Default/SSO_Set_High_By_Default according |
| -- to the setting of Opt.Default_SSO. |
| |
| procedure Signed_Integer_Type_Declaration (T : Entity_Id; Def : Node_Id); |
| -- Create a new signed integer entity, and apply the constraint to obtain |
| -- the required first named subtype of this type. |
| |
| procedure Set_Stored_Constraint_From_Discriminant_Constraint |
| (E : Entity_Id); |
| -- E is some record type. This routine computes E's Stored_Constraint |
| -- from its Discriminant_Constraint. |
| |
| procedure Diagnose_Interface (N : Node_Id; E : Entity_Id); |
| -- Check that an entity in a list of progenitors is an interface, |
| -- emit error otherwise. |
| |
| ----------------------- |
| -- Access_Definition -- |
| ----------------------- |
| |
| function Access_Definition |
| (Related_Nod : Node_Id; |
| N : Node_Id) return Entity_Id |
| is |
| Anon_Type : Entity_Id; |
| Anon_Scope : Entity_Id; |
| Desig_Type : Entity_Id; |
| Enclosing_Prot_Type : Entity_Id := Empty; |
| |
| begin |
| if Is_Entry (Current_Scope) |
| and then Is_Task_Type (Etype (Scope (Current_Scope))) |
| then |
| Error_Msg_N ("task entries cannot have access parameters", N); |
| return Empty; |
| end if; |
| |
| -- Ada 2005: For an object declaration the corresponding anonymous |
| -- type is declared in the current scope. |
| |
| -- If the access definition is the return type of another access to |
| -- function, scope is the current one, because it is the one of the |
| -- current type declaration, except for the pathological case below. |
| |
| if Nkind (Related_Nod) in |
| N_Object_Declaration | N_Access_Function_Definition |
| then |
| Anon_Scope := Current_Scope; |
| |
| -- A pathological case: function returning access functions that |
| -- return access functions, etc. Each anonymous access type created |
| -- is in the enclosing scope of the outermost function. |
| |
| declare |
| Par : Node_Id; |
| |
| begin |
| Par := Related_Nod; |
| while Nkind (Par) in |
| N_Access_Function_Definition | N_Access_Definition |
| loop |
| Par := Parent (Par); |
| end loop; |
| |
| if Nkind (Par) = N_Function_Specification then |
| Anon_Scope := Scope (Defining_Entity (Par)); |
| end if; |
| end; |
| |
| -- For the anonymous function result case, retrieve the scope of the |
| -- function specification's associated entity rather than using the |
| -- current scope. The current scope will be the function itself if the |
| -- formal part is currently being analyzed, but will be the parent scope |
| -- in the case of a parameterless function, and we always want to use |
| -- the function's parent scope. Finally, if the function is a child |
| -- unit, we must traverse the tree to retrieve the proper entity. |
| |
| elsif Nkind (Related_Nod) = N_Function_Specification |
| and then Nkind (Parent (N)) /= N_Parameter_Specification |
| then |
| -- If the current scope is a protected type, the anonymous access |
| -- is associated with one of the protected operations, and must |
| -- be available in the scope that encloses the protected declaration. |
| -- Otherwise the type is in the scope enclosing the subprogram. |
| |
| -- If the function has formals, the return type of a subprogram |
| -- declaration is analyzed in the scope of the subprogram (see |
| -- Process_Formals) and thus the protected type, if present, is |
| -- the scope of the current function scope. |
| |
| if Ekind (Current_Scope) = E_Protected_Type then |
| Enclosing_Prot_Type := Current_Scope; |
| |
| elsif Ekind (Current_Scope) = E_Function |
| and then Ekind (Scope (Current_Scope)) = E_Protected_Type |
| then |
| Enclosing_Prot_Type := Scope (Current_Scope); |
| end if; |
| |
| if Present (Enclosing_Prot_Type) then |
| Anon_Scope := Scope (Enclosing_Prot_Type); |
| |
| else |
| Anon_Scope := Scope (Defining_Entity (Related_Nod)); |
| end if; |
| |
| -- For an access type definition, if the current scope is a child |
| -- unit it is the scope of the type. |
| |
| elsif Is_Compilation_Unit (Current_Scope) then |
| Anon_Scope := Current_Scope; |
| |
| -- For access formals, access components, and access discriminants, the |
| -- scope is that of the enclosing declaration, |
| |
| else |
| Anon_Scope := Scope (Current_Scope); |
| end if; |
| |
| Anon_Type := |
| Create_Itype |
| (E_Anonymous_Access_Type, Related_Nod, Scope_Id => Anon_Scope); |
| |
| if All_Present (N) |
| and then Ada_Version >= Ada_2005 |
| then |
| Error_Msg_N ("ALL not permitted for anonymous access types", N); |
| end if; |
| |
| -- Ada 2005 (AI-254): In case of anonymous access to subprograms call |
| -- the corresponding semantic routine |
| |
| if Present (Access_To_Subprogram_Definition (N)) then |
| Access_Subprogram_Declaration |
| (T_Name => Anon_Type, |
| T_Def => Access_To_Subprogram_Definition (N)); |
| |
| if Ekind (Anon_Type) = E_Access_Protected_Subprogram_Type then |
| Mutate_Ekind |
| (Anon_Type, E_Anonymous_Access_Protected_Subprogram_Type); |
| else |
| Mutate_Ekind (Anon_Type, E_Anonymous_Access_Subprogram_Type); |
| end if; |
| |
| -- If the anonymous access is associated with a protected operation, |
| -- create a reference to it after the enclosing protected definition |
| -- because the itype will be used in the subsequent bodies. |
| |
| -- If the anonymous access itself is protected, a full type |
| -- declaratiton will be created for it, so that the equivalent |
| -- record type can be constructed. For further details, see |
| -- Replace_Anonymous_Access_To_Protected-Subprogram. |
| |
| if Ekind (Current_Scope) = E_Protected_Type |
| and then not Protected_Present (Access_To_Subprogram_Definition (N)) |
| then |
| Build_Itype_Reference (Anon_Type, Parent (Current_Scope)); |
| end if; |
| |
| return Anon_Type; |
| end if; |
| |
| Find_Type (Subtype_Mark (N)); |
| Desig_Type := Entity (Subtype_Mark (N)); |
| |
| Set_Directly_Designated_Type (Anon_Type, Desig_Type); |
| Set_Etype (Anon_Type, Anon_Type); |
| |
| -- Make sure the anonymous access type has size and alignment fields |
| -- set, as required by gigi. This is necessary in the case of the |
| -- Task_Body_Procedure. |
| |
| if not Has_Private_Component (Desig_Type) then |
| Layout_Type (Anon_Type); |
| end if; |
| |
| -- Ada 2005 (AI-231): Ada 2005 semantics for anonymous access differs |
| -- from Ada 95 semantics. In Ada 2005, anonymous access must specify if |
| -- the null value is allowed. In Ada 95 the null value is never allowed. |
| |
| if Ada_Version >= Ada_2005 then |
| Set_Can_Never_Be_Null (Anon_Type, Null_Exclusion_Present (N)); |
| else |
| Set_Can_Never_Be_Null (Anon_Type, True); |
| end if; |
| |
| -- The anonymous access type is as public as the discriminated type or |
| -- subprogram that defines it. It is imported (for back-end purposes) |
| -- if the designated type is. |
| |
| Set_Is_Public (Anon_Type, Is_Public (Scope (Anon_Type))); |
| |
| -- Ada 2005 (AI-231): Propagate the access-constant attribute |
| |
| Set_Is_Access_Constant (Anon_Type, Constant_Present (N)); |
| |
| -- The context is either a subprogram declaration, object declaration, |
| -- or an access discriminant, in a private or a full type declaration. |
| -- In the case of a subprogram, if the designated type is incomplete, |
| -- the operation will be a primitive operation of the full type, to be |
| -- updated subsequently. If the type is imported through a limited_with |
| -- clause, the subprogram is not a primitive operation of the type |
| -- (which is declared elsewhere in some other scope). |
| |
| if Ekind (Desig_Type) = E_Incomplete_Type |
| and then not From_Limited_With (Desig_Type) |
| and then Is_Overloadable (Current_Scope) |
| then |
| Append_Elmt (Current_Scope, Private_Dependents (Desig_Type)); |
| Set_Has_Delayed_Freeze (Current_Scope); |
| end if; |
| |
| -- If the designated type is limited and class-wide, the object might |
| -- contain tasks, so we create a Master entity for the declaration. This |
| -- must be done before expansion of the full declaration, because the |
| -- declaration may include an expression that is an allocator, whose |
| -- expansion needs the proper Master for the created tasks. |
| |
| if Expander_Active |
| and then Nkind (Related_Nod) = N_Object_Declaration |
| then |
| if Is_Limited_Record (Desig_Type) |
| and then Is_Class_Wide_Type (Desig_Type) |
| then |
| Build_Class_Wide_Master (Anon_Type); |
| |
| -- Similarly, if the type is an anonymous access that designates |
| -- tasks, create a master entity for it in the current context. |
| |
| elsif Has_Task (Desig_Type) |
| and then Comes_From_Source (Related_Nod) |
| then |
| Build_Master_Entity (Defining_Identifier (Related_Nod)); |
| Build_Master_Renaming (Anon_Type); |
| end if; |
| end if; |
| |
| -- For a private component of a protected type, it is imperative that |
| -- the back-end elaborate the type immediately after the protected |
| -- declaration, because this type will be used in the declarations |
| -- created for the component within each protected body, so we must |
| -- create an itype reference for it now. |
| |
| if Nkind (Parent (Related_Nod)) = N_Protected_Definition then |
| Build_Itype_Reference (Anon_Type, Parent (Parent (Related_Nod))); |
| |
| -- Similarly, if the access definition is the return result of a |
| -- function, create an itype reference for it because it will be used |
| -- within the function body. For a regular function that is not a |
| -- compilation unit, insert reference after the declaration. For a |
| -- protected operation, insert it after the enclosing protected type |
| -- declaration. In either case, do not create a reference for a type |
| -- obtained through a limited_with clause, because this would introduce |
| -- semantic dependencies. |
| |
| -- Similarly, do not create a reference if the designated type is a |
| -- generic formal, because no use of it will reach the backend. |
| |
| elsif Nkind (Related_Nod) = N_Function_Specification |
| and then not From_Limited_With (Desig_Type) |
| and then not Is_Generic_Type (Desig_Type) |
| then |
| if Present (Enclosing_Prot_Type) then |
| Build_Itype_Reference (Anon_Type, Parent (Enclosing_Prot_Type)); |
| |
| elsif Is_List_Member (Parent (Related_Nod)) |
| and then Nkind (Parent (N)) /= N_Parameter_Specification |
| then |
| Build_Itype_Reference (Anon_Type, Parent (Related_Nod)); |
| end if; |
| |
| -- Finally, create an itype reference for an object declaration of an |
| -- anonymous access type. This is strictly necessary only for deferred |
| -- constants, but in any case will avoid out-of-scope problems in the |
| -- back-end. |
| |
| elsif Nkind (Related_Nod) = N_Object_Declaration then |
| Build_Itype_Reference (Anon_Type, Related_Nod); |
| end if; |
| |
| return Anon_Type; |
| end Access_Definition; |
| |
| ----------------------------------- |
| -- Access_Subprogram_Declaration -- |
| ----------------------------------- |
| |
| procedure Access_Subprogram_Declaration |
| (T_Name : Entity_Id; |
| T_Def : Node_Id) |
| is |
| procedure Check_For_Premature_Usage (Def : Node_Id); |
| -- Check that type T_Name is not used, directly or recursively, as a |
| -- parameter or a return type in Def. Def is either a subtype, an |
| -- access_definition, or an access_to_subprogram_definition. |
| |
| ------------------------------- |
| -- Check_For_Premature_Usage -- |
| ------------------------------- |
| |
| procedure Check_For_Premature_Usage (Def : Node_Id) is |
| Param : Node_Id; |
| |
| begin |
| -- Check for a subtype mark |
| |
| if Nkind (Def) in N_Has_Etype then |
| if Etype (Def) = T_Name then |
| Error_Msg_N |
| ("type& cannot be used before the end of its declaration", |
| Def); |
| end if; |
| |
| -- If this is not a subtype, then this is an access_definition |
| |
| elsif Nkind (Def) = N_Access_Definition then |
| if Present (Access_To_Subprogram_Definition (Def)) then |
| Check_For_Premature_Usage |
| (Access_To_Subprogram_Definition (Def)); |
| else |
| Check_For_Premature_Usage (Subtype_Mark (Def)); |
| end if; |
| |
| -- The only cases left are N_Access_Function_Definition and |
| -- N_Access_Procedure_Definition. |
| |
| else |
| if Present (Parameter_Specifications (Def)) then |
| Param := First (Parameter_Specifications (Def)); |
| while Present (Param) loop |
| Check_For_Premature_Usage (Parameter_Type (Param)); |
| Next (Param); |
| end loop; |
| end if; |
| |
| if Nkind (Def) = N_Access_Function_Definition then |
| Check_For_Premature_Usage (Result_Definition (Def)); |
| end if; |
| end if; |
| end Check_For_Premature_Usage; |
| |
| -- Local variables |
| |
| Formals : constant List_Id := Parameter_Specifications (T_Def); |
| Formal : Entity_Id; |
| D_Ityp : Node_Id; |
| Desig_Type : constant Entity_Id := |
| Create_Itype (E_Subprogram_Type, Parent (T_Def)); |
| |
| -- Start of processing for Access_Subprogram_Declaration |
| |
| begin |
| -- Associate the Itype node with the inner full-type declaration or |
| -- subprogram spec or entry body. This is required to handle nested |
| -- anonymous declarations. For example: |
| |
| -- procedure P |
| -- (X : access procedure |
| -- (Y : access procedure |
| -- (Z : access T))) |
| |
| D_Ityp := Associated_Node_For_Itype (Desig_Type); |
| while Nkind (D_Ityp) not in N_Full_Type_Declaration |
| | N_Private_Type_Declaration |
| | N_Private_Extension_Declaration |
| | N_Procedure_Specification |
| | N_Function_Specification |
| | N_Entry_Body |
| | N_Object_Declaration |
| | N_Object_Renaming_Declaration |
| | N_Formal_Object_Declaration |
| | N_Formal_Type_Declaration |
| | N_Task_Type_Declaration |
| | N_Protected_Type_Declaration |
| loop |
| D_Ityp := Parent (D_Ityp); |
| pragma Assert (D_Ityp /= Empty); |
| end loop; |
| |
| Set_Associated_Node_For_Itype (Desig_Type, D_Ityp); |
| |
| if Nkind (D_Ityp) in N_Procedure_Specification | N_Function_Specification |
| then |
| Set_Scope (Desig_Type, Scope (Defining_Entity (D_Ityp))); |
| |
| elsif Nkind (D_Ityp) in N_Full_Type_Declaration |
| | N_Object_Declaration |
| | N_Object_Renaming_Declaration |
| | N_Formal_Type_Declaration |
| then |
| Set_Scope (Desig_Type, Scope (Defining_Identifier (D_Ityp))); |
| end if; |
| |
| if Nkind (T_Def) = N_Access_Function_Definition then |
| if Nkind (Result_Definition (T_Def)) = N_Access_Definition then |
| declare |
| Acc : constant Node_Id := Result_Definition (T_Def); |
| |
| begin |
| if Present (Access_To_Subprogram_Definition (Acc)) |
| and then |
| Protected_Present (Access_To_Subprogram_Definition (Acc)) |
| then |
| Set_Etype |
| (Desig_Type, |
| Replace_Anonymous_Access_To_Protected_Subprogram |
| (T_Def)); |
| |
| else |
| Set_Etype |
| (Desig_Type, |
| Access_Definition (T_Def, Result_Definition (T_Def))); |
| end if; |
| end; |
| |
| else |
| Analyze (Result_Definition (T_Def)); |
| |
| declare |
| Typ : constant Entity_Id := Entity (Result_Definition (T_Def)); |
| |
| begin |
| -- If a null exclusion is imposed on the result type, then |
| -- create a null-excluding itype (an access subtype) and use |
| -- it as the function's Etype. |
| |
| if Is_Access_Type (Typ) |
| and then Null_Exclusion_In_Return_Present (T_Def) |
| then |
| Set_Etype (Desig_Type, |
| Create_Null_Excluding_Itype |
| (T => Typ, |
| Related_Nod => T_Def, |
| Scope_Id => Current_Scope)); |
| |
| else |
| if From_Limited_With (Typ) then |
| |
| -- AI05-151: Incomplete types are allowed in all basic |
| -- declarations, including access to subprograms. |
| |
| if Ada_Version >= Ada_2012 then |
| null; |
| |
| else |
| Error_Msg_NE |
| ("illegal use of incomplete type&", |
| Result_Definition (T_Def), Typ); |
| end if; |
| |
| elsif Ekind (Current_Scope) = E_Package |
| and then In_Private_Part (Current_Scope) |
| then |
| if Ekind (Typ) = E_Incomplete_Type then |
| Append_Elmt (Desig_Type, Private_Dependents (Typ)); |
| |
| elsif Is_Class_Wide_Type (Typ) |
| and then Ekind (Etype (Typ)) = E_Incomplete_Type |
| then |
| Append_Elmt |
| (Desig_Type, Private_Dependents (Etype (Typ))); |
| end if; |
| end if; |
| |
| Set_Etype (Desig_Type, Typ); |
| end if; |
| end; |
| end if; |
| |
| if not Is_Type (Etype (Desig_Type)) then |
| Error_Msg_N |
| ("expect type in function specification", |
| Result_Definition (T_Def)); |
| end if; |
| |
| else |
| Set_Etype (Desig_Type, Standard_Void_Type); |
| end if; |
| |
| if Present (Formals) then |
| Push_Scope (Desig_Type); |
| |
| -- Some special tests here. These special tests can be removed |
| -- if and when Itypes always have proper parent pointers to their |
| -- declarations??? |
| |
| -- Special test 1) Link defining_identifier of formals. Required by |
| -- First_Formal to provide its functionality. |
| |
| declare |
| F : Node_Id; |
| |
| begin |
| F := First (Formals); |
| |
| while Present (F) loop |
| if No (Parent (Defining_Identifier (F))) then |
| Set_Parent (Defining_Identifier (F), F); |
| end if; |
| |
| Next (F); |
| end loop; |
| end; |
| |
| Process_Formals (Formals, Parent (T_Def)); |
| |
| -- Special test 2) End_Scope requires that the parent pointer be set |
| -- to something reasonable, but Itypes don't have parent pointers. So |
| -- we set it and then unset it ??? |
| |
| Set_Parent (Desig_Type, T_Name); |
| End_Scope; |
| Set_Parent (Desig_Type, Empty); |
| end if; |
| |
| -- Check for premature usage of the type being defined |
| |
| Check_For_Premature_Usage (T_Def); |
| |
| -- The return type and/or any parameter type may be incomplete. Mark the |
| -- subprogram_type as depending on the incomplete type, so that it can |
| -- be updated when the full type declaration is seen. This only applies |
| -- to incomplete types declared in some enclosing scope, not to limited |
| -- views from other packages. |
| |
| -- Prior to Ada 2012, access to functions can only have in_parameters. |
| |
| if Present (Formals) then |
| Formal := First_Formal (Desig_Type); |
| while Present (Formal) loop |
| if Ekind (Formal) /= E_In_Parameter |
| and then Nkind (T_Def) = N_Access_Function_Definition |
| and then Ada_Version < Ada_2012 |
| then |
| Error_Msg_N ("functions can only have IN parameters", Formal); |
| end if; |
| |
| if Ekind (Etype (Formal)) = E_Incomplete_Type |
| and then In_Open_Scopes (Scope (Etype (Formal))) |
| then |
| Append_Elmt (Desig_Type, Private_Dependents (Etype (Formal))); |
| Set_Has_Delayed_Freeze (Desig_Type); |
| end if; |
| |
| Next_Formal (Formal); |
| end loop; |
| end if; |
| |
| -- Check whether an indirect call without actuals may be possible. This |
| -- is used when resolving calls whose result is then indexed. |
| |
| May_Need_Actuals (Desig_Type); |
| |
| -- If the return type is incomplete, this is legal as long as the type |
| -- is declared in the current scope and will be completed in it (rather |
| -- than being part of limited view). |
| |
| if Ekind (Etype (Desig_Type)) = E_Incomplete_Type |
| and then not Has_Delayed_Freeze (Desig_Type) |
| and then In_Open_Scopes (Scope (Etype (Desig_Type))) |
| then |
| Append_Elmt (Desig_Type, Private_Dependents (Etype (Desig_Type))); |
| Set_Has_Delayed_Freeze (Desig_Type); |
| end if; |
| |
| Check_Delayed_Subprogram (Desig_Type); |
| |
| if Protected_Present (T_Def) then |
| Mutate_Ekind (T_Name, E_Access_Protected_Subprogram_Type); |
| Set_Convention (Desig_Type, Convention_Protected); |
| else |
| Mutate_Ekind (T_Name, E_Access_Subprogram_Type); |
| end if; |
| |
| Set_Can_Use_Internal_Rep (T_Name, |
| not Always_Compatible_Rep_On_Target); |
| Set_Etype (T_Name, T_Name); |
| Reinit_Size_Align (T_Name); |
| Set_Directly_Designated_Type (T_Name, Desig_Type); |
| |
| -- If the access_to_subprogram is not declared at the library level, |
| -- it can only point to subprograms that are at the same or deeper |
| -- accessibility level. The corresponding subprogram type might |
| -- require an activation record when compiling for C. |
| |
| Set_Needs_Activation_Record (Desig_Type, |
| not Is_Library_Level_Entity (T_Name)); |
| |
| Generate_Reference_To_Formals (T_Name); |
| |
| -- Ada 2005 (AI-231): Propagate the null-excluding attribute |
| |
| Set_Can_Never_Be_Null (T_Name, Null_Exclusion_Present (T_Def)); |
| |
| Check_Restriction (No_Access_Subprograms, T_Def); |
| |
| -- Addition of extra formals must be delayed till the freeze point so |
| -- that we know the convention. |
| end Access_Subprogram_Declaration; |
| |
| ---------------------------- |
| -- Access_Type_Declaration -- |
| ---------------------------- |
| |
| procedure Access_Type_Declaration (T : Entity_Id; Def : Node_Id) is |
| |
| procedure Setup_Access_Type (Desig_Typ : Entity_Id); |
| -- After type declaration is analysed with T being an incomplete type, |
| -- this routine will mutate the kind of T to the appropriate access type |
| -- and set its directly designated type to Desig_Typ. |
| |
| ----------------------- |
| -- Setup_Access_Type -- |
| ----------------------- |
| |
| procedure Setup_Access_Type (Desig_Typ : Entity_Id) is |
| begin |
| if All_Present (Def) or else Constant_Present (Def) then |
| Mutate_Ekind (T, E_General_Access_Type); |
| else |
| Mutate_Ekind (T, E_Access_Type); |
| end if; |
| |
| Set_Directly_Designated_Type (T, Desig_Typ); |
| end Setup_Access_Type; |
| |
| -- Local variables |
| |
| P : constant Node_Id := Parent (Def); |
| S : constant Node_Id := Subtype_Indication (Def); |
| |
| Full_Desig : Entity_Id; |
| |
| -- Start of processing for Access_Type_Declaration |
| |
| begin |
| -- Check for permissible use of incomplete type |
| |
| if Nkind (S) /= N_Subtype_Indication then |
| |
| Analyze (S); |
| |
| if Nkind (S) in N_Has_Entity |
| and then Present (Entity (S)) |
| and then Ekind (Root_Type (Entity (S))) = E_Incomplete_Type |
| then |
| Setup_Access_Type (Desig_Typ => Entity (S)); |
| |
| -- If the designated type is a limited view, we cannot tell if |
| -- the full view contains tasks, and there is no way to handle |
| -- that full view in a client. We create a master entity for the |
| -- scope, which will be used when a client determines that one |
| -- is needed. |
| |
| if From_Limited_With (Entity (S)) |
| and then not Is_Class_Wide_Type (Entity (S)) |
| then |
| Build_Master_Entity (T); |
| Build_Master_Renaming (T); |
| end if; |
| |
| else |
| Setup_Access_Type (Desig_Typ => Process_Subtype (S, P, T, 'P')); |
| end if; |
| |
| -- If the access definition is of the form: ACCESS NOT NULL .. |
| -- the subtype indication must be of an access type. Create |
| -- a null-excluding subtype of it. |
| |
| if Null_Excluding_Subtype (Def) then |
| if not Is_Access_Type (Entity (S)) then |
| Error_Msg_N ("null exclusion must apply to access type", Def); |
| |
| else |
| declare |
| Loc : constant Source_Ptr := Sloc (S); |
| Decl : Node_Id; |
| Nam : constant Entity_Id := Make_Temporary (Loc, 'S'); |
| |
| begin |
| Decl := |
| Make_Subtype_Declaration (Loc, |
| Defining_Identifier => Nam, |
| Subtype_Indication => |
| New_Occurrence_Of (Entity (S), Loc)); |
| Set_Null_Exclusion_Present (Decl); |
| Insert_Before (Parent (Def), Decl); |
| Analyze (Decl); |
| Set_Entity (S, Nam); |
| end; |
| end if; |
| end if; |
| |
| else |
| Setup_Access_Type (Desig_Typ => Process_Subtype (S, P, T, 'P')); |
| end if; |
| |
| if not Error_Posted (T) then |
| Full_Desig := Designated_Type (T); |
| |
| if Base_Type (Full_Desig) = T then |
| Error_Msg_N ("access type cannot designate itself", S); |
| |
| -- In Ada 2005, the type may have a limited view through some unit in |
| -- its own context, allowing the following circularity that cannot be |
| -- detected earlier. |
| |
| elsif Is_Class_Wide_Type (Full_Desig) and then Etype (Full_Desig) = T |
| then |
| Error_Msg_N |
| ("access type cannot designate its own class-wide type", S); |
| |
| -- Clean up indication of tagged status to prevent cascaded errors |
| |
| Set_Is_Tagged_Type (T, False); |
| end if; |
| |
| Set_Etype (T, T); |
| |
| -- For SPARK, check that the designated type is compatible with |
| -- respect to volatility with the access type. |
| |
| if SPARK_Mode /= Off |
| and then Comes_From_Source (T) |
| then |
| -- ??? UNIMPLEMENTED |
| -- In the case where the designated type is incomplete at this |
| -- point, performing this check here is harmless but the check |
| -- will need to be repeated when the designated type is complete. |
| |
| -- The preceding call to Comes_From_Source is needed because the |
| -- FE sometimes introduces implicitly declared access types. See, |
| -- for example, the expansion of nested_po.ads in OA28-015. |
| |
| Check_Volatility_Compatibility |
| (Full_Desig, T, "designated type", "access type", |
| Srcpos_Bearer => T); |
| end if; |
| end if; |
| |
| -- If the type has appeared already in a with_type clause, it is frozen |
| -- and the pointer size is already set. Else, initialize. |
| |
| if not From_Limited_With (T) then |
| Reinit_Size_Align (T); |
| end if; |
| |
| -- Note that Has_Task is always false, since the access type itself |
| -- is not a task type. See Einfo for more description on this point. |
| -- Exactly the same consideration applies to Has_Controlled_Component |
| -- and to Has_Protected. |
| |
| Set_Has_Task (T, False); |
| Set_Has_Protected (T, False); |
| Set_Has_Timing_Event (T, False); |
| Set_Has_Controlled_Component (T, False); |
| |
| -- Initialize field Finalization_Master explicitly to Empty, to avoid |
| -- problems where an incomplete view of this entity has been previously |
| -- established by a limited with and an overlaid version of this field |
| -- (Stored_Constraint) was initialized for the incomplete view. |
| |
| -- This reset is performed in most cases except where the access type |
| -- has been created for the purposes of allocating or deallocating a |
| -- build-in-place object. Such access types have explicitly set pools |
| -- and finalization masters. |
| |
| if No (Associated_Storage_Pool (T)) then |
| Set_Finalization_Master (T, Empty); |
| end if; |
| |
| -- Ada 2005 (AI-231): Propagate the null-excluding and access-constant |
| -- attributes |
| |
| Set_Can_Never_Be_Null (T, Null_Exclusion_Present (Def)); |
| Set_Is_Access_Constant (T, Constant_Present (Def)); |
| end Access_Type_Declaration; |
| |
| ---------------------------------- |
| -- Add_Interface_Tag_Components -- |
| ---------------------------------- |
| |
| procedure Add_Interface_Tag_Components (N : Node_Id; Typ : Entity_Id) is |
| Loc : constant Source_Ptr := Sloc (N); |
| L : List_Id; |
| Last_Tag : Node_Id; |
| |
| procedure Add_Tag (Iface : Entity_Id); |
| -- Add tag for one of the progenitor interfaces |
| |
| ------------- |
| -- Add_Tag -- |
| ------------- |
| |
| procedure Add_Tag (Iface : Entity_Id) is |
| Decl : Node_Id; |
| Def : Node_Id; |
| Tag : Entity_Id; |
| Offset : Entity_Id; |
| |
| begin |
| pragma Assert (Is_Tagged_Type (Iface) and then Is_Interface (Iface)); |
| |
| -- This is a reasonable place to propagate predicates |
| |
| if Has_Predicates (Iface) then |
| Set_Has_Predicates (Typ); |
| end if; |
| |
| Def := |
| Make_Component_Definition (Loc, |
| Aliased_Present => True, |
| Subtype_Indication => |
| New_Occurrence_Of (RTE (RE_Interface_Tag), Loc)); |
| |
| Tag := Make_Temporary (Loc, 'V'); |
| |
| Decl := |
| Make_Component_Declaration (Loc, |
| Defining_Identifier => Tag, |
| Component_Definition => Def); |
| |
| Analyze_Component_Declaration (Decl); |
| |
| Set_Analyzed (Decl); |
| Mutate_Ekind (Tag, E_Component); |
| Set_Is_Tag (Tag); |
| Set_Is_Aliased (Tag); |
| Set_Is_Independent (Tag); |
| Set_Related_Type (Tag, Iface); |
| Reinit_Component_Location (Tag); |
| |
| pragma Assert (Is_Frozen (Iface)); |
| |
| Set_DT_Entry_Count (Tag, |
| DT_Entry_Count (First_Entity (Iface))); |
| |
| if No (Last_Tag) then |
| Prepend (Decl, L); |
| else |
| Insert_After (Last_Tag, Decl); |
| end if; |
| |
| Last_Tag := Decl; |
| |
| -- If the ancestor has discriminants we need to give special support |
| -- to store the offset_to_top value of the secondary dispatch tables. |
| -- For this purpose we add a supplementary component just after the |
| -- field that contains the tag associated with each secondary DT. |
| |
| if Typ /= Etype (Typ) and then Has_Discriminants (Etype (Typ)) then |
| Def := |
| Make_Component_Definition (Loc, |
| Subtype_Indication => |
| New_Occurrence_Of (RTE (RE_Storage_Offset), Loc)); |
| |
| Offset := Make_Temporary (Loc, 'V'); |
| |
| Decl := |
| Make_Component_Declaration (Loc, |
| Defining_Identifier => Offset, |
| Component_Definition => Def); |
| |
| Analyze_Component_Declaration (Decl); |
| |
| Set_Analyzed (Decl); |
| Mutate_Ekind (Offset, E_Component); |
| Set_Is_Aliased (Offset); |
| Set_Is_Independent (Offset); |
| Set_Related_Type (Offset, Iface); |
| Reinit_Component_Location (Offset); |
| Insert_After (Last_Tag, Decl); |
| Last_Tag := Decl; |
| end if; |
| end Add_Tag; |
| |
| -- Local variables |
| |
| Elmt : Elmt_Id; |
| Ext : Node_Id; |
| Comp : Node_Id; |
| |
| -- Start of processing for Add_Interface_Tag_Components |
| |
| begin |
| if not RTE_Available (RE_Interface_Tag) then |
| Error_Msg_N |
| ("(Ada 2005) interface types not supported by this run-time!", N); |
| return; |
| end if; |
| |
| if Ekind (Typ) /= E_Record_Type |
| or else (Is_Concurrent_Record_Type (Typ) |
| and then Is_Empty_List (Abstract_Interface_List (Typ))) |
| or else (not Is_Concurrent_Record_Type (Typ) |
| and then No (Interfaces (Typ)) |
| and then Is_Empty_Elmt_List (Interfaces (Typ))) |
| then |
| return; |
| end if; |
| |
| -- Find the current last tag |
| |
| if Nkind (Type_Definition (N)) = N_Derived_Type_Definition then |
| Ext := Record_Extension_Part (Type_Definition (N)); |
| else |
| pragma Assert (Nkind (Type_Definition (N)) = N_Record_Definition); |
| Ext := Type_Definition (N); |
| end if; |
| |
| Last_Tag := Empty; |
| |
| if not (Present (Component_List (Ext))) then |
| Set_Null_Present (Ext, False); |
| L := New_List; |
| Set_Component_List (Ext, |
| Make_Component_List (Loc, |
| Component_Items => L, |
| Null_Present => False)); |
| else |
| if Nkind (Type_Definition (N)) = N_Derived_Type_Definition then |
| L := Component_Items |
| (Component_List |
| (Record_Extension_Part |
| (Type_Definition (N)))); |
| else |
| L := Component_Items |
| (Component_List |
| (Type_Definition (N))); |
| end if; |
| |
| -- Find the last tag component |
| |
| Comp := First (L); |
| while Present (Comp) loop |
| if Nkind (Comp) = N_Component_Declaration |
| and then Is_Tag (Defining_Identifier (Comp)) |
| then |
| Last_Tag := Comp; |
| end if; |
| |
| Next (Comp); |
| end loop; |
| end if; |
| |
| -- At this point L references the list of components and Last_Tag |
| -- references the current last tag (if any). Now we add the tag |
| -- corresponding with all the interfaces that are not implemented |
| -- by the parent. |
| |
| if Present (Interfaces (Typ)) then |
| Elmt := First_Elmt (Interfaces (Typ)); |
| while Present (Elmt) loop |
| Add_Tag (Node (Elmt)); |
| Next_Elmt (Elmt); |
| end loop; |
| end if; |
| end Add_Interface_Tag_Components; |
| |
| ------------------------------------- |
| -- Add_Internal_Interface_Entities -- |
| ------------------------------------- |
| |
| procedure Add_Internal_Interface_Entities (Tagged_Type : Entity_Id) is |
| Elmt : Elmt_Id; |
| Iface : Entity_Id; |
| Iface_Elmt : Elmt_Id; |
| Iface_Prim : Entity_Id; |
| Ifaces_List : Elist_Id; |
| New_Subp : Entity_Id := Empty; |
| Prim : Entity_Id; |
| Restore_Scope : Boolean := False; |
| |
| begin |
| pragma Assert (Ada_Version >= Ada_2005 |
| and then Is_Record_Type (Tagged_Type) |
| and then Is_Tagged_Type (Tagged_Type) |
| and then Has_Interfaces (Tagged_Type) |
| and then not Is_Interface (Tagged_Type)); |
| |
| -- Ensure that the internal entities are added to the scope of the type |
| |
| if Scope (Tagged_Type) /= Current_Scope then |
| Push_Scope (Scope (Tagged_Type)); |
| Restore_Scope := True; |
| end if; |
| |
| Collect_Interfaces (Tagged_Type, Ifaces_List); |
| |
| Iface_Elmt := First_Elmt (Ifaces_List); |
| while Present (Iface_Elmt) loop |
| Iface := Node (Iface_Elmt); |
| |
| -- Originally we excluded here from this processing interfaces that |
| -- are parents of Tagged_Type because their primitives are located |
| -- in the primary dispatch table (and hence no auxiliary internal |
| -- entities are required to handle secondary dispatch tables in such |
| -- case). However, these auxiliary entities are also required to |
| -- handle derivations of interfaces in formals of generics (see |
| -- Derive_Subprograms). |
| |
| Elmt := First_Elmt (Primitive_Operations (Iface)); |
| while Present (Elmt) loop |
| Iface_Prim := Node (Elmt); |
| |
| if not Is_Predefined_Dispatching_Operation (Iface_Prim) then |
| Prim := |
| Find_Primitive_Covering_Interface |
| (Tagged_Type => Tagged_Type, |
| Iface_Prim => Iface_Prim); |
| |
| if No (Prim) and then Serious_Errors_Detected > 0 then |
| goto Continue; |
| end if; |
| |
| pragma Assert (Present (Prim)); |
| |
| -- Ada 2012 (AI05-0197): If the name of the covering primitive |
| -- differs from the name of the interface primitive then it is |
| -- a private primitive inherited from a parent type. In such |
| -- case, given that Tagged_Type covers the interface, the |
| -- inherited private primitive becomes visible. For such |
| -- purpose we add a new entity that renames the inherited |
| -- private primitive. |
| |
| if Chars (Prim) /= Chars (Iface_Prim) then |
| pragma Assert (Has_Suffix (Prim, 'P')); |
| Derive_Subprogram |
| (New_Subp => New_Subp, |
| Parent_Subp => Iface_Prim, |
| Derived_Type => Tagged_Type, |
| Parent_Type => Iface); |
| Set_Alias (New_Subp, Prim); |
| Set_Is_Abstract_Subprogram |
| (New_Subp, Is_Abstract_Subprogram (Prim)); |
| end if; |
| |
| Derive_Subprogram |
| (New_Subp => New_Subp, |
| Parent_Subp => Iface_Prim, |
| Derived_Type => Tagged_Type, |
| Parent_Type => Iface); |
| |
| declare |
| Anc : Entity_Id; |
| begin |
| if Is_Inherited_Operation (Prim) |
| and then Present (Alias (Prim)) |
| then |
| Anc := Alias (Prim); |
| else |
| Anc := Overridden_Operation (Prim); |
| end if; |
| |
| -- Apply legality checks in RM 6.1.1 (10-13) concerning |
| -- nonconforming preconditions in both an ancestor and |
| -- a progenitor operation. |
| |
| -- If the operation is a primitive wrapper it is an explicit |
| -- (overriding) operqtion and all is fine. |
| |
| if Present (Anc) |
| and then Has_Non_Trivial_Precondition (Anc) |
| and then Has_Non_Trivial_Precondition (Iface_Prim) |
| then |
| if Is_Abstract_Subprogram (Prim) |
| or else |
| (Ekind (Prim) = E_Procedure |
| and then Nkind (Parent (Prim)) = |
| N_Procedure_Specification |
| and then Null_Present (Parent (Prim))) |
| or else Is_Primitive_Wrapper (Prim) |
| then |
| null; |
| |
| -- The operation is inherited and must be overridden |
| |
| elsif not Comes_From_Source (Prim) then |
| Error_Msg_NE |
| ("&inherits non-conforming preconditions and must " |
| & "be overridden (RM 6.1.1 (10-16))", |
| Parent (Tagged_Type), Prim); |
| end if; |
| end if; |
| end; |
| |
| -- Ada 2005 (AI-251): Decorate internal entity Iface_Subp |
| -- associated with interface types. These entities are |
| -- only registered in the list of primitives of its |
| -- corresponding tagged type because they are only used |
| -- to fill the contents of the secondary dispatch tables. |
| -- Therefore they are removed from the homonym chains. |
| |
| Set_Is_Hidden (New_Subp); |
| Set_Is_Internal (New_Subp); |
| Set_Alias (New_Subp, Prim); |
| Set_Is_Abstract_Subprogram |
| (New_Subp, Is_Abstract_Subprogram (Prim)); |
| Set_Interface_Alias (New_Subp, Iface_Prim); |
| |
| -- If the returned type is an interface then propagate it to |
| -- the returned type. Needed by the thunk to generate the code |
| -- which displaces "this" to reference the corresponding |
| -- secondary dispatch table in the returned object. |
| |
| if Is_Interface (Etype (Iface_Prim)) then |
| Set_Etype (New_Subp, Etype (Iface_Prim)); |
| end if; |
| |
| -- Internal entities associated with interface types are only |
| -- registered in the list of primitives of the tagged type. |
| -- They are only used to fill the contents of the secondary |
| -- dispatch tables. Therefore they are not needed in the |
| -- homonym chains. |
| |
| Remove_Homonym (New_Subp); |
| |
| -- Hidden entities associated with interfaces must have set |
| -- the Has_Delay_Freeze attribute to ensure that, in case |
| -- of locally defined tagged types (or compiling with static |
| -- dispatch tables generation disabled) the corresponding |
| -- entry of the secondary dispatch table is filled when such |
| -- an entity is frozen. |
| |
| Set_Has_Delayed_Freeze (New_Subp); |
| end if; |
| |
| <<Continue>> |
| Next_Elmt (Elmt); |
| end loop; |
| |
| Next_Elmt (Iface_Elmt); |
| end loop; |
| |
| if Restore_Scope then |
| Pop_Scope; |
| end if; |
| end Add_Internal_Interface_Entities; |
| |
| ----------------------------------- |
| -- Analyze_Component_Declaration -- |
| ----------------------------------- |
| |
| procedure Analyze_Component_Declaration (N : Node_Id) is |
| Loc : constant Source_Ptr := Sloc (Component_Definition (N)); |
| Id : constant Entity_Id := Defining_Identifier (N); |
| E : constant Node_Id := Expression (N); |
| Typ : constant Node_Id := |
| Subtype_Indication (Component_Definition (N)); |
| T : Entity_Id; |
| P : Entity_Id; |
| |
| function Contains_POC (Constr : Node_Id) return Boolean; |
| -- Determines whether a constraint uses the discriminant of a record |
| -- type thus becoming a per-object constraint (POC). |
| |
| function Is_Known_Limited (Typ : Entity_Id) return Boolean; |
| -- Typ is the type of the current component, check whether this type is |
| -- a limited type. Used to validate declaration against that of |
| -- enclosing record. |
| |
| ------------------ |
| -- Contains_POC -- |
| ------------------ |
| |
| function Contains_POC (Constr : Node_Id) return Boolean is |
| begin |
| -- Prevent cascaded errors |
| |
| if Error_Posted (Constr) then |
| return False; |
| end if; |
| |
| case Nkind (Constr) is |
| when N_Attribute_Reference => |
| return Attribute_Name (Constr) = Name_Access |
| and then Prefix (Constr) = Scope (Entity (Prefix (Constr))); |
| |
| when N_Discriminant_Association => |
| return Denotes_Discriminant (Expression (Constr)); |
| |
| when N_Identifier => |
| return Denotes_Discriminant (Constr); |
| |
| when N_Index_Or_Discriminant_Constraint => |
| declare |
| IDC : Node_Id; |
| |
| begin |
| IDC := First (Constraints (Constr)); |
| while Present (IDC) loop |
| |
| -- One per-object constraint is sufficient |
| |
| if Contains_POC (IDC) then |
| return True; |
| end if; |
| |
| Next (IDC); |
| end loop; |
| |
| return False; |
| end; |
| |
| when N_Range => |
| return Denotes_Discriminant (Low_Bound (Constr)) |
| or else |
| Denotes_Discriminant (High_Bound (Constr)); |
| |
| when N_Range_Constraint => |
| return Denotes_Discriminant (Range_Expression (Constr)); |
| |
| when others => |
| return False; |
| end case; |
| end Contains_POC; |
| |
| ---------------------- |
| -- Is_Known_Limited -- |
| ---------------------- |
| |
| function Is_Known_Limited (Typ : Entity_Id) return Boolean is |
| P : constant Entity_Id := Etype (Typ); |
| R : constant Entity_Id := Root_Type (Typ); |
| |
| begin |
| if Is_Limited_Record (Typ) then |
| return True; |
| |
| -- If the root type is limited (and not a limited interface) so is |
| -- the current type. |
| |
| elsif Is_Limited_Record (R) |
| and then (not Is_Interface (R) or else not Is_Limited_Interface (R)) |
| then |
| return True; |
| |
| -- Else the type may have a limited interface progenitor, but a |
| -- limited record parent that is not an interface. |
| |
| elsif R /= P |
| and then Is_Limited_Record (P) |
| and then not Is_Interface (P) |
| then |
| return True; |
| |
| else |
| return False; |
| end if; |
| end Is_Known_Limited; |
| |
| -- Start of processing for Analyze_Component_Declaration |
| |
| begin |
| Generate_Definition (Id); |
| Enter_Name (Id); |
| |
| if Present (Typ) then |
| T := Find_Type_Of_Object |
| (Subtype_Indication (Component_Definition (N)), N); |
| |
| -- Ada 2005 (AI-230): Access Definition case |
| |
| else |
| pragma Assert (Present |
| (Access_Definition (Component_Definition (N)))); |
| |
| T := Access_Definition |
| (Related_Nod => N, |
| N => Access_Definition (Component_Definition (N))); |
| Set_Is_Local_Anonymous_Access (T); |
| |
| -- Ada 2005 (AI-254) |
| |
| if Present (Access_To_Subprogram_Definition |
| (Access_Definition (Component_Definition (N)))) |
| and then Protected_Present (Access_To_Subprogram_Definition |
| (Access_Definition |
| (Component_Definition (N)))) |
| then |
| T := Replace_Anonymous_Access_To_Protected_Subprogram (N); |
| end if; |
| end if; |
| |
| -- If the subtype is a constrained subtype of the enclosing record, |
| -- (which must have a partial view) the back-end does not properly |
| -- handle the recursion. Rewrite the component declaration with an |
| -- explicit subtype indication, which is acceptable to Gigi. We can copy |
| -- the tree directly because side effects have already been removed from |
| -- discriminant constraints. |
| |
| if Ekind (T) = E_Access_Subtype |
| and then Is_Entity_Name (Subtype_Indication (Component_Definition (N))) |
| and then Comes_From_Source (T) |
| and then Nkind (Parent (T)) = N_Subtype_Declaration |
| and then Etype (Directly_Designated_Type (T)) = Current_Scope |
| then |
| Rewrite |
| (Subtype_Indication (Component_Definition (N)), |
| New_Copy_Tree (Subtype_Indication (Parent (T)))); |
| T := Find_Type_Of_Object |
| (Subtype_Indication (Component_Definition (N)), N); |
| end if; |
| |
| -- If the component declaration includes a default expression, then we |
| -- check that the component is not of a limited type (RM 3.7(5)), |
| -- and do the special preanalysis of the expression (see section on |
| -- "Handling of Default and Per-Object Expressions" in the spec of |
| -- package Sem). |
| |
| if Present (E) then |
| Preanalyze_Default_Expression (E, T); |
| Check_Initialization (T, E); |
| |
| if Ada_Version >= Ada_2005 |
| and then Ekind (T) = E_Anonymous_Access_Type |
| and then Etype (E) /= Any_Type |
| then |
| -- Check RM 3.9.2(9): "if the expected type for an expression is |
| -- an anonymous access-to-specific tagged type, then the object |
| -- designated by the expression shall not be dynamically tagged |
| -- unless it is a controlling operand in a call on a dispatching |
| -- operation" |
| |
| if Is_Tagged_Type (Directly_Designated_Type (T)) |
| and then |
| Ekind (Directly_Designated_Type (T)) /= E_Class_Wide_Type |
| and then |
| Ekind (Directly_Designated_Type (Etype (E))) = |
| E_Class_Wide_Type |
| then |
| Error_Msg_N |
| ("access to specific tagged type required (RM 3.9.2(9))", E); |
| end if; |
| |
| -- (Ada 2005: AI-230): Accessibility check for anonymous |
| -- components |
| |
| if Type_Access_Level (Etype (E)) > |
| Deepest_Type_Access_Level (T) |
| then |
| Error_Msg_N |
| ("expression has deeper access level than component " & |
| "(RM 3.10.2 (12.2))", E); |
| end if; |
| |
| -- The initialization expression is a reference to an access |
| -- discriminant. The type of the discriminant is always deeper |
| -- than any access type. |
| |
| if Ekind (Etype (E)) = E_Anonymous_Access_Type |
| and then Is_Entity_Name (E) |
| and then Ekind (Entity (E)) = E_In_Parameter |
| and then Present (Discriminal_Link (Entity (E))) |
| then |
| Error_Msg_N |
| ("discriminant has deeper accessibility level than target", |
| E); |
| end if; |
| end if; |
| end if; |
| |
| -- The parent type may be a private view with unknown discriminants, |
| -- and thus unconstrained. Regular components must be constrained. |
| |
| if not Is_Definite_Subtype (T) |
| and then Chars (Id) /= Name_uParent |
| then |
| if Is_Class_Wide_Type (T) then |
| Error_Msg_N |
| ("class-wide subtype with unknown discriminants" & |
| " in component declaration", |
| Subtype_Indication (Component_Definition (N))); |
| else |
| Error_Msg_N |
| ("unconstrained subtype in component declaration", |
| Subtype_Indication (Component_Definition (N))); |
| end if; |
| |
| -- Components cannot be abstract, except for the special case of |
| -- the _Parent field (case of extending an abstract tagged type) |
| |
| elsif Is_Abstract_Type (T) and then Chars (Id) /= Name_uParent then |
| Error_Msg_N ("type of a component cannot be abstract", N); |
| end if; |
| |
| Set_Etype (Id, T); |
| |
| if Aliased_Present (Component_Definition (N)) then |
| Set_Is_Aliased (Id); |
| |
| -- AI12-001: All aliased objects are considered to be specified as |
| -- independently addressable (RM C.6(8.1/4)). |
| |
| Set_Is_Independent (Id); |
| end if; |
| |
| -- The component declaration may have a per-object constraint, set |
| -- the appropriate flag in the defining identifier of the subtype. |
| |
| if Present (Subtype_Indication (Component_Definition (N))) then |
| declare |
| Sindic : constant Node_Id := |
| Subtype_Indication (Component_Definition (N)); |
| begin |
| if Nkind (Sindic) = N_Subtype_Indication |
| and then Present (Constraint (Sindic)) |
| and then Contains_POC (Constraint (Sindic)) |
| then |
| Set_Has_Per_Object_Constraint (Id); |
| end if; |
| end; |
| end if; |
| |
| -- Ada 2005 (AI-231): Propagate the null-excluding attribute and carry |
| -- out some static checks. |
| |
| if Ada_Version >= Ada_2005 and then Can_Never_Be_Null (T) then |
| Null_Exclusion_Static_Checks (N); |
| end if; |
| |
| -- If this component is private (or depends on a private type), flag the |
| -- record type to indicate that some operations are not available. |
| |
| P := Private_Component (T); |
| |
| if Present (P) then |
| |
| -- Check for circular definitions |
| |
| if P = Any_Type then |
| Set_Etype (Id, Any_Type); |
| |
| -- There is a gap in the visibility of operations only if the |
| -- component type is not defined in the scope of the record type. |
| |
| elsif Scope (P) = Scope (Current_Scope) then |
| null; |
| |
| elsif Is_Limited_Type (P) then |
| Set_Is_Limited_Composite (Current_Scope); |
| |
| else |
| Set_Is_Private_Composite (Current_Scope); |
| end if; |
| end if; |
| |
| if P /= Any_Type |
| and then Is_Limited_Type (T) |
| and then Chars (Id) /= Name_uParent |
| and then Is_Tagged_Type (Current_Scope) |
| then |
| if Is_Derived_Type (Current_Scope) |
| and then not Is_Known_Limited (Current_Scope) |
| then |
| Error_Msg_N |
| ("extension of nonlimited type cannot have limited components", |
| N); |
| |
| if Is_Interface (Root_Type (Current_Scope)) then |
| Error_Msg_N |
| ("\limitedness is not inherited from limited interface", N); |
| Error_Msg_N ("\add LIMITED to type indication", N); |
| end if; |
| |
| Explain_Limited_Type (T, N); |
| Set_Etype (Id, Any_Type); |
| Set_Is_Limited_Composite (Current_Scope, False); |
| |
| elsif not Is_Derived_Type (Current_Scope) |
| and then not Is_Limited_Record (Current_Scope) |
| and then not Is_Concurrent_Type (Current_Scope) |
| then |
| Error_Msg_N |
| ("nonlimited tagged type cannot have limited components", N); |
| Explain_Limited_Type (T, N); |
| Set_Etype (Id, Any_Type); |
| Set_Is_Limited_Composite (Current_Scope, False); |
| end if; |
| end if; |
| |
| -- When possible, build the default subtype |
| |
| if Build_Default_Subtype_OK (T) then |
| declare |
| Act_T : constant Entity_Id := Build_Default_Subtype (T, N); |
| |
| begin |
| Set_Etype (Id, Act_T); |
| |
| -- Rewrite component definition to use the constrained subtype |
| |
| Rewrite (Component_Definition (N), |
| Make_Component_Definition (Loc, |
| Subtype_Indication => New_Occurrence_Of (Act_T, Loc))); |
| end; |
| end if; |
| |
| Set_Original_Record_Component (Id, Id); |
| |
| if Has_Aspects (N) then |
| Analyze_Aspect_Specifications (N, Id); |
| end if; |
| |
| Analyze_Dimension (N); |
| end Analyze_Component_Declaration; |
| |
| -------------------------- |
| -- Analyze_Declarations -- |
| -------------------------- |
| |
| procedure Analyze_Declarations (L : List_Id) is |
| Decl : Node_Id; |
| |
| procedure Adjust_Decl; |
| -- Adjust Decl not to include implicit label declarations, since these |
| -- have strange Sloc values that result in elaboration check problems. |
| -- (They have the sloc of the label as found in the source, and that |
| -- is ahead of the current declarative part). |
| |
| procedure Build_Assertion_Bodies (Decls : List_Id; Context : Node_Id); |
| -- Create the subprogram bodies which verify the run-time semantics of |
| -- the pragmas listed below for each elibigle type found in declarative |
| -- list Decls. The pragmas are: |
| -- |
| -- Default_Initial_Condition |
| -- Invariant |
| -- Type_Invariant |
| -- |
| -- Context denotes the owner of the declarative list. |
| |
| procedure Check_Entry_Contracts; |
| -- Perform a preanalysis of the pre- and postconditions of an entry |
| -- declaration. This must be done before full resolution and creation |
| -- of the parameter block, etc. to catch illegal uses within the |
| -- contract expression. Full analysis of the expression is done when |
| -- the contract is processed. |
| |
| function Contains_Lib_Incomplete_Type (Pkg : Entity_Id) return Boolean; |
| -- Check if a nested package has entities within it that rely on library |
| -- level private types where the full view has not been completed for |
| -- the purposes of checking if it is acceptable to freeze an expression |
| -- function at the point of declaration. |
| |
| procedure Handle_Late_Controlled_Primitive (Body_Decl : Node_Id); |
| -- Determine whether Body_Decl denotes the body of a late controlled |
| -- primitive (either Initialize, Adjust or Finalize). If this is the |
| -- case, add a proper spec if the body lacks one. The spec is inserted |
| -- before Body_Decl and immediately analyzed. |
| |
| procedure Remove_Partial_Visible_Refinements (Spec_Id : Entity_Id); |
| -- Spec_Id is the entity of a package that may define abstract states, |
| -- and in the case of a child unit, whose ancestors may define abstract |
| -- states. If the states have partial visible refinement, remove the |
| -- partial visibility of each constituent at the end of the package |
| -- spec and body declarations. |
| |
| procedure Remove_Visible_Refinements (Spec_Id : Entity_Id); |
| -- Spec_Id is the entity of a package that may define abstract states. |
| -- If the states have visible refinement, remove the visibility of each |
| -- constituent at the end of the package body declaration. |
| |
| procedure Resolve_Aspects; |
| -- Utility to resolve the expressions of aspects at the end of a list of |
| -- declarations, or before a declaration that freezes previous entities, |
| -- such as in a subprogram body. |
| |
| ----------------- |
| -- Adjust_Decl -- |
| ----------------- |
| |
| procedure Adjust_Decl is |
| begin |
| while Present (Prev (Decl)) |
| and then Nkind (Decl) = N_Implicit_Label_Declaration |
| loop |
| Prev (Decl); |
| end loop; |
| end Adjust_Decl; |
| |
| ---------------------------- |
| -- Build_Assertion_Bodies -- |
| ---------------------------- |
| |
| procedure Build_Assertion_Bodies (Decls : List_Id; Context : Node_Id) is |
| procedure Build_Assertion_Bodies_For_Type (Typ : Entity_Id); |
| -- Create the subprogram bodies which verify the run-time semantics |
| -- of the pragmas listed below for type Typ. The pragmas are: |
| -- |
| -- Default_Initial_Condition |
| -- Invariant |
| -- Type_Invariant |
| |
| ------------------------------------- |
| -- Build_Assertion_Bodies_For_Type -- |
| ------------------------------------- |
| |
| procedure Build_Assertion_Bodies_For_Type (Typ : Entity_Id) is |
| begin |
| if Nkind (Context) = N_Package_Specification then |
| |
| -- Preanalyze and resolve the class-wide invariants of an |
| -- interface at the end of whichever declarative part has the |
| -- interface type. Note that an interface may be declared in |
| -- any non-package declarative part, but reaching the end of |
| -- such a declarative part will always freeze the type and |
| -- generate the invariant procedure (see Freeze_Type). |
| |
| if Is_Interface (Typ) then |
| |
| -- Interfaces are treated as the partial view of a private |
| -- type, in order to achieve uniformity with the general |
| -- case. As a result, an interface receives only a "partial" |
| -- invariant procedure, which is never called. |
| |
| if Has_Own_Invariants (Typ) then |
| Build_Invariant_Procedure_Body |
| (Typ => Typ, |
| Partial_Invariant => True); |
| end if; |
| |
| elsif Decls = Visible_Declarations (Context) then |
| -- Preanalyze and resolve the invariants of a private type |
| -- at the end of the visible declarations to catch potential |
| -- errors. Inherited class-wide invariants are not included |
| -- because they have already been resolved. |
| |
| if Ekind (Typ) in E_Limited_Private_Type |
| | E_Private_Type |
| | E_Record_Type_With_Private |
| and then Has_Own_Invariants (Typ) |
| then |
| Build_Invariant_Procedure_Body |
| (Typ => Typ, |
| Partial_Invariant => True); |
| end if; |
| |
| -- Preanalyze and resolve the Default_Initial_Condition |
| -- assertion expression at the end of the declarations to |
| -- catch any errors. |
| |
| if Ekind (Typ) in E_Limited_Private_Type |
| | E_Private_Type |
| | E_Record_Type_With_Private |
| and then Has_Own_DIC (Typ) |
| then |
| Build_DIC_Procedure_Body |
| (Typ => Typ, |
| Partial_DIC => True); |
| end if; |
| |
| elsif Decls = Private_Declarations (Context) then |
| |
| -- Preanalyze and resolve the invariants of a private type's |
| -- full view at the end of the private declarations to catch |
| -- potential errors. |
| |
| if (not Is_Private_Type (Typ) |
| or else Present (Underlying_Full_View (Typ))) |
| and then Has_Private_Declaration (Typ) |
| and then Has_Invariants (Typ) |
| then |
| Build_Invariant_Procedure_Body (Typ); |
| end if; |
| |
| if (not Is_Private_Type (Typ) |
| or else Present (Underlying_Full_View (Typ))) |
| and then Has_Private_Declaration (Typ) |
| and then Has_DIC (Typ) |
| then |
| Build_DIC_Procedure_Body (Typ); |
| end if; |
| end if; |
| end if; |
| end Build_Assertion_Bodies_For_Type; |
| |
| -- Local variables |
| |
| Decl : Node_Id; |
| Decl_Id : Entity_Id; |
| |
| -- Start of processing for Build_Assertion_Bodies |
| |
| begin |
| Decl := First (Decls); |
| while Present (Decl) loop |
| if Is_Declaration (Decl) then |
| Decl_Id := Defining_Entity (Decl); |
| |
| if Is_Type (Decl_Id) then |
| Build_Assertion_Bodies_For_Type (Decl_Id); |
| end if; |
| end if; |
| |
| Next (Decl); |
| end loop; |
| end Build_Assertion_Bodies; |
| |
| --------------------------- |
| -- Check_Entry_Contracts -- |
| --------------------------- |
| |
| procedure Check_Entry_Contracts is |
| ASN : Node_Id; |
| Ent : Entity_Id; |
| Exp : Node_Id; |
| |
| begin |
| Ent := First_Entity (Current_Scope); |
| while Present (Ent) loop |
| |
| -- This only concerns entries with pre/postconditions |
| |
| if Ekind (Ent) = E_Entry |
| and then Present (Contract (Ent)) |
| and then Present (Pre_Post_Conditions (Contract (Ent))) |
| then |
| ASN := Pre_Post_Conditions (Contract (Ent)); |
| Push_Scope (Ent); |
| Install_Formals (Ent); |
| |
| -- Pre/postconditions are rewritten as Check pragmas. Analysis |
| -- is performed on a copy of the pragma expression, to prevent |
| -- modifying the original expression. |
| |
| while Present (ASN) loop |
| if Nkind (ASN) = N_Pragma then |
| Exp := |
| New_Copy_Tree |
| (Expression |
| (First (Pragma_Argument_Associations (ASN)))); |
| Set_Parent (Exp, ASN); |
| |
| Preanalyze_Assert_Expression (Exp, Standard_Boolean); |
| end if; |
| |
| ASN := Next_Pragma (ASN); |
| end loop; |
| |
| End_Scope; |
| end if; |
| |
| Next_Entity (Ent); |
| end loop; |
| end Check_Entry_Contracts; |
| |
| ---------------------------------- |
| -- Contains_Lib_Incomplete_Type -- |
| ---------------------------------- |
| |
| function Contains_Lib_Incomplete_Type (Pkg : Entity_Id) return Boolean is |
| Curr : Entity_Id; |
| |
| begin |
| -- Avoid looking through scopes that do not meet the precondition of |
| -- Pkg not being within a library unit spec. |
| |
| if not Is_Compilation_Unit (Pkg) |
| and then not Is_Generic_Instance (Pkg) |
| and then not In_Package_Body (Enclosing_Lib_Unit_Entity (Pkg)) |
| then |
| -- Loop through all entities in the current scope to identify |
| -- an entity that depends on a private type. |
| |
| Curr := First_Entity (Pkg); |
| loop |
| if Nkind (Curr) in N_Entity |
| and then Depends_On_Private (Curr) |
| then |
| return True; |
| end if; |
| |
| exit when Last_Entity (Current_Scope) = Curr; |
| Next_Entity (Curr); |
| end loop; |
| end if; |
| |
| return False; |
| end Contains_Lib_Incomplete_Type; |
| |
| -------------------------------------- |
| -- Handle_Late_Controlled_Primitive -- |
| -------------------------------------- |
| |
| procedure Handle_Late_Controlled_Primitive (Body_Decl : Node_Id) is |
| Body_Spec : constant Node_Id := Specification (Body_Decl); |
| Body_Id : constant Entity_Id := Defining_Entity (Body_Spec); |
| Loc : constant Source_Ptr := Sloc (Body_Id); |
| Params : constant List_Id := |
| Parameter_Specifications (Body_Spec); |
| Spec : Node_Id; |
| Spec_Id : Entity_Id; |
| Typ : Node_Id; |
| |
| begin |
| -- Consider only procedure bodies whose name matches one of the three |
| -- controlled primitives. |
| |
| if Nkind (Body_Spec) /= N_Procedure_Specification |
| or else Chars (Body_Id) not in Name_Adjust |
| | Name_Finalize |
| | Name_Initialize |
| then |
| return; |
| |
| -- A controlled primitive must have exactly one formal which is not |
| -- an anonymous access type. |
| |
| elsif List_Length (Params) /= 1 then |
| return; |
| end if; |
| |
| Typ := Parameter_Type (First (Params)); |
| |
| if Nkind (Typ) = N_Access_Definition then |
| return; |
| end if; |
| |
| Find_Type (Typ); |
| |
| -- The type of the formal must be derived from [Limited_]Controlled |
| |
| if not Is_Controlled (Entity (Typ)) then |
| return; |
| end if; |
| |
| -- Check whether a specification exists for this body. We do not |
| -- analyze the spec of the body in full, because it will be analyzed |
| -- again when the body is properly analyzed, and we cannot create |
| -- duplicate entries in the formals chain. We look for an explicit |
| -- specification because the body may be an overriding operation and |
| -- an inherited spec may be present. |
| |
| Spec_Id := Current_Entity (Body_Id); |
| |
| while Present (Spec_Id) loop |
| if Ekind (Spec_Id) in E_Procedure | E_Generic_Procedure |
| and then Scope (Spec_Id) = Current_Scope |
| and then Present (First_Formal (Spec_Id)) |
| and then No (Next_Formal (First_Formal (Spec_Id))) |
| and then Etype (First_Formal (Spec_Id)) = Entity (Typ) |
| and then Comes_From_Source (Spec_Id) |
| then |
| return; |
| end if; |
| |
| Spec_Id := Homonym (Spec_Id); |
| end loop; |
| |
| -- At this point the body is known to be a late controlled primitive. |
| -- Generate a matching spec and insert it before the body. Note the |
| -- use of Copy_Separate_Tree - we want an entirely separate semantic |
| -- tree in this case. |
| |
| Spec := Copy_Separate_Tree (Body_Spec); |
| |
| -- Ensure that the subprogram declaration does not inherit the null |
| -- indicator from the body as we now have a proper spec/body pair. |
| |
| Set_Null_Present (Spec, False); |
| |
| -- Ensure that the freeze node is inserted after the declaration of |
| -- the primitive since its expansion will freeze the primitive. |
| |
| Decl := Make_Subprogram_Declaration (Loc, Specification => Spec); |
| |
| Insert_Before_And_Analyze (Body_Decl, Decl); |
| end Handle_Late_Controlled_Primitive; |
| |
| ---------------------------------------- |
| -- Remove_Partial_Visible_Refinements -- |
| ---------------------------------------- |
| |
| procedure Remove_Partial_Visible_Refinements (Spec_Id : Entity_Id) is |
| State_Elmt : Elmt_Id; |
| begin |
| if Present (Abstract_States (Spec_Id)) then |
| State_Elmt := First_Elmt (Abstract_States (Spec_Id)); |
| while Present (State_Elmt) loop |
| Set_Has_Partial_Visible_Refinement (Node (State_Elmt), False); |
| Next_Elmt (State_Elmt); |
| end loop; |
| end if; |
| |
| -- For a child unit, also hide the partial state refinement from |
| -- ancestor packages. |
| |
| if Is_Child_Unit (Spec_Id) then |
| Remove_Partial_Visible_Refinements (Scope (Spec_Id)); |
| end if; |
| end Remove_Partial_Visible_Refinements; |
| |
| -------------------------------- |
| -- Remove_Visible_Refinements -- |
| -------------------------------- |
| |
| procedure Remove_Visible_Refinements (Spec_Id : Entity_Id) is |
| State_Elmt : Elmt_Id; |
| begin |
| if Present (Abstract_States (Spec_Id)) then |
| State_Elmt := First_Elmt (Abstract_States (Spec_Id)); |
| while Present (State_Elmt) loop |
| Set_Has_Visible_Refinement (Node (State_Elmt), False); |
| Next_Elmt (State_Elmt); |
| end loop; |
| end if; |
| end Remove_Visible_Refinements; |
| |
| --------------------- |
| -- Resolve_Aspects -- |
| --------------------- |
| |
| procedure Resolve_Aspects is |
| E : Entity_Id; |
| |
| begin |
| E := First_Entity (Current_Scope); |
| while Present (E) loop |
| Resolve_Aspect_Expressions (E); |
| |
| -- Now that the aspect expressions have been resolved, if this is |
| -- at the end of the visible declarations, we can set the flag |
| -- Known_To_Have_Preelab_Init properly on types declared in the |
| -- visible part, which is needed for checking whether full types |
| -- in the private part satisfy the Preelaborable_Initialization |
| -- aspect of the partial view. We can't wait for the creation of |
| -- the pragma by Analyze_Aspects_At_Freeze_Point, because the |
| -- freeze point may occur after the end of the package declaration |
| -- (in the case of nested packages). |
| |
| if Is_Type (E) |
| and then L = Visible_Declarations (Parent (L)) |
| and then Has_Aspect (E, Aspect_Preelaborable_Initialization) |
| then |
| declare |
| ASN : constant Node_Id := |
| Find_Aspect (E, Aspect_Preelaborable_Initialization); |
| Expr : constant Node_Id := Expression (ASN); |
| begin |
| -- Set Known_To_Have_Preelab_Init to True if aspect has no |
| -- expression, or if the expression is True (or was folded |
| -- to True), or if the expression is a conjunction of one or |
| -- more Preelaborable_Initialization attributes applied to |
| -- formal types and wasn't folded to False. (Note that |
| -- Is_Conjunction_Of_Formal_Preelab_Init_Attributes goes to |
| -- Original_Node if needed, hence test for Standard_False.) |
| |
| if No (Expr) |
| or else (Is_Entity_Name (Expr) |
| and then Entity (Expr) = Standard_True) |
| or else |
| (Is_Conjunction_Of_Formal_Preelab_Init_Attributes (Expr) |
| and then |
| not (Is_Entity_Name (Expr) |
| and then Entity (Expr) = Standard_False)) |
| then |
| Set_Known_To_Have_Preelab_Init (E); |
| end if; |
| end; |
| end if; |
| |
| Next_Entity (E); |
| end loop; |
| end Resolve_Aspects; |
| |
| -- Local variables |
| |
| Context : Node_Id := Empty; |
| Ctrl_Typ : Entity_Id := Empty; |
| Freeze_From : Entity_Id := Empty; |
| Next_Decl : Node_Id; |
| |
| -- Start of processing for Analyze_Declarations |
| |
| begin |
| Decl := First (L); |
| while Present (Decl) loop |
| |
| -- Complete analysis of declaration |
| |
| Analyze (Decl); |
| Next_Decl := Next (Decl); |
| |
| if No (Freeze_From) then |
| Freeze_From := First_Entity (Current_Scope); |
| end if; |
| |
| -- Remember if the declaration we just processed is the full type |
| -- declaration of a controlled type (to handle late overriding of |
| -- initialize, adjust or finalize). |
| |
| if Nkind (Decl) = N_Full_Type_Declaration |
| and then Is_Controlled (Defining_Identifier (Decl)) |
| then |
| Ctrl_Typ := Defining_Identifier (Decl); |
| end if; |
| |
| -- At the end of a declarative part, freeze remaining entities |
| -- declared in it. The end of the visible declarations of package |
| -- specification is not the end of a declarative part if private |
| -- declarations are present. The end of a package declaration is a |
| -- freezing point only if it a library package. A task definition or |
| -- protected type definition is not a freeze point either. Finally, |
| -- we do not freeze entities in generic scopes, because there is no |
| -- code generated for them and freeze nodes will be generated for |
| -- the instance. |
| |
| -- The end of a package instantiation is not a freeze point, but |
| -- for now we make it one, because the generic body is inserted |
| -- (currently) immediately after. Generic instantiations will not |
| -- be a freeze point once delayed freezing of bodies is implemented. |
| -- (This is needed in any case for early instantiations ???). |
| |
| if No (Next_Decl) then |
| if Nkind (Parent (L)) = N_Component_List then |
| null; |
| |
| elsif Nkind (Parent (L)) in |
| N_Protected_Definition | N_Task_Definition |
| then |
| Check_Entry_Contracts; |
| |
| elsif Nkind (Parent (L)) /= N_Package_Specification then |
| if Nkind (Parent (L)) = N_Package_Body then |
| Freeze_From := First_Entity (Current_Scope); |
| end if; |
| |
| -- There may have been several freezing points previously, |
| -- for example object declarations or subprogram bodies, but |
| -- at the end of a declarative part we check freezing from |
| -- the beginning, even though entities may already be frozen, |
| -- in order to perform visibility checks on delayed aspects. |
| |
| Adjust_Decl; |
| |
| -- If the current scope is a generic subprogram body. Skip the |
| -- generic formal parameters that are not frozen here. |
| |
| if Is_Subprogram (Current_Scope) |
| and then Nkind (Unit_Declaration_Node (Current_Scope)) = |
| N_Generic_Subprogram_Declaration |
| and then Present (First_Entity (Current_Scope)) |
| then |
| while Is_Generic_Formal (Freeze_From) loop |
| Next_Entity (Freeze_From); |
| end loop; |
| |
| Freeze_All (Freeze_From, Decl); |
| Freeze_From := Last_Entity (Current_Scope); |
| |
| else |
| -- For declarations in a subprogram body there is no issue |
| -- with name resolution in aspect specifications. |
| |
| Freeze_All (First_Entity (Current_Scope), Decl); |
| Freeze_From := Last_Entity (Current_Scope); |
| end if; |
| |
| -- Current scope is a package specification |
| |
| elsif Scope (Current_Scope) /= Standard_Standard |
| and then not Is_Child_Unit (Current_Scope) |
| and then No (Generic_Parent (Parent (L))) |
| then |
| -- ARM rule 13.1.1(11/3): usage names in aspect definitions are |
| -- resolved at the end of the immediately enclosing declaration |
| -- list (AI05-0183-1). |
| |
| Resolve_Aspects; |
| |
| elsif L /= Visible_Declarations (Parent (L)) |
| or else Is_Empty_List (Private_Declarations (Parent (L))) |
| then |
| Adjust_Decl; |
| |
| -- End of a package declaration |
| |
| -- This is a freeze point because it is the end of a |
| -- compilation unit. |
| |
| Freeze_All (First_Entity (Current_Scope), Decl); |
| Freeze_From := Last_Entity (Current_Scope); |
| |
| -- At the end of the visible declarations the expressions in |
| -- aspects of all entities declared so far must be resolved. |
| -- The entities themselves might be frozen later, and the |
| -- generated pragmas and attribute definition clauses analyzed |
| -- in full at that point, but name resolution must take place |
| -- now. |
| -- In addition to being the proper semantics, this is mandatory |
| -- within generic units, because global name capture requires |
| -- those expressions to be analyzed, given that the generated |
| -- pragmas do not appear in the original generic tree. |
| |
| elsif Serious_Errors_Detected = 0 then |
| Resolve_Aspects; |
| end if; |
| |
| -- If next node is a body then freeze all types before the body. |
| -- An exception occurs for some expander-generated bodies. If these |
| -- are generated at places where in general language rules would not |
| -- allow a freeze point, then we assume that the expander has |
| -- explicitly checked that all required types are properly frozen, |
| -- and we do not cause general freezing here. This special circuit |
| -- is used when the encountered body is marked as having already |
| -- been analyzed. |
| |
| -- In all other cases (bodies that come from source, and expander |
| -- generated bodies that have not been analyzed yet), freeze all |
| -- types now. Note that in the latter case, the expander must take |
| -- care to attach the bodies at a proper place in the tree so as to |
| -- not cause unwanted freezing at that point. |
| |
| -- It is also necessary to check for a case where both an expression |
| -- function is used and the current scope depends on an incomplete |
| -- private type from a library unit, otherwise premature freezing of |
| -- the private type will occur. |
| |
| elsif not Analyzed (Next_Decl) and then Is_Body (Next_Decl) |
| and then ((Nkind (Next_Decl) /= N_Subprogram_Body |
| or else not Was_Expression_Function (Next_Decl)) |
| or else (not Is_Ignored_Ghost_Entity (Current_Scope) |
| and then not Contains_Lib_Incomplete_Type |
| (Current_Scope))) |
| then |
| -- When a controlled type is frozen, the expander generates stream |
| -- and controlled-type support routines. If the freeze is caused |
| -- by the stand-alone body of Initialize, Adjust, or Finalize, the |
| -- expander will end up using the wrong version of these routines, |
| -- as the body has not been processed yet. To remedy this, detect |
| -- a late controlled primitive and create a proper spec for it. |
| -- This ensures that the primitive will override its inherited |
| -- counterpart before the freeze takes place. |
| |
| -- If the declaration we just processed is a body, do not attempt |
| -- to examine Next_Decl as the late primitive idiom can only apply |
| -- to the first encountered body. |
| |
| -- ??? A cleaner approach may be possible and/or this solution |
| -- could be extended to general-purpose late primitives. |
| |
| if Present (Ctrl_Typ) then |
| |
| -- No need to continue searching for late body overriding if |
| -- the controlled type is already frozen. |
| |
| if Is_Frozen (Ctrl_Typ) then |
| Ctrl_Typ := Empty; |
| |
| elsif Nkind (Next_Decl) = N_Subprogram_Body then |
| Handle_Late_Controlled_Primitive (Next_Decl); |
| end if; |
| end if; |
| |
| Adjust_Decl; |
| |
| -- The generated body of an expression function does not freeze, |
| -- unless it is a completion, in which case only the expression |
| -- itself freezes. This is handled when the body itself is |
| -- analyzed (see Freeze_Expr_Types, sem_ch6.adb). |
| |
| Freeze_All (Freeze_From, Decl); |
| Freeze_From := Last_Entity (Current_Scope); |
| end if; |
| |
| Decl := Next_Decl; |
| end loop; |
| |
| -- Post-freezing actions |
| |
| if Present (L) then |
| Context := Parent (L); |
| |
| -- Certain contract annotations have forward visibility semantics and |
| -- must be analyzed after all declarative items have been processed. |
| -- This timing ensures that entities referenced by such contracts are |
| -- visible. |
| |
| -- Analyze the contract of an immediately enclosing package spec or |
| -- body first because other contracts may depend on its information. |
| |
| if Nkind (Context) = N_Package_Body then |
| Analyze_Package_Body_Contract (Defining_Entity (Context)); |
| |
| elsif Nkind (Context) = N_Package_Specification then |
| Analyze_Package_Contract (Defining_Entity (Context)); |
| end if; |
| |
| -- Analyze the contracts of various constructs in the declarative |
| -- list. |
| |
| Analyze_Contracts (L); |
| |
| if Nkind (Context) = N_Package_Body then |
| |
| -- Ensure that all abstract states and objects declared in the |
| -- state space of a package body are utilized as constituents. |
| |
| Check_Unused_Body_States (Defining_Entity (Context)); |
| |
| -- State refinements are visible up to the end of the package body |
| -- declarations. Hide the state refinements from visibility to |
| -- restore the original state conditions. |
| |
| Remove_Visible_Refinements (Corresponding_Spec (Context)); |
| Remove_Partial_Visible_Refinements (Corresponding_Spec (Context)); |
| |
| elsif Nkind (Context) = N_Package_Specification then |
| |
| -- Partial state refinements are visible up to the end of the |
| -- package spec declarations. Hide the partial state refinements |
| -- from visibility to restore the original state conditions. |
| |
| Remove_Partial_Visible_Refinements (Defining_Entity (Context)); |
| end if; |
| |
| -- Verify that all abstract states found in any package declared in |
| -- the input declarative list have proper refinements. The check is |
| -- performed only when the context denotes a block, entry, package, |
| -- protected, subprogram, or task body (SPARK RM 7.2.2(3)). |
| |
| Check_State_Refinements (Context); |
| |
| -- Create the subprogram bodies which verify the run-time semantics |
| -- of pragmas Default_Initial_Condition and [Type_]Invariant for all |
| -- types within the current declarative list. This ensures that all |
| -- assertion expressions are preanalyzed and resolved at the end of |
| -- the declarative part. Note that the resolution happens even when |
| -- freezing does not take place. |
| |
| Build_Assertion_Bodies (L, Context); |
| end if; |
| end Analyze_Declarations; |
| |
| ----------------------------------- |
| -- Analyze_Full_Type_Declaration -- |
| ----------------------------------- |
| |
| procedure Analyze_Full_Type_Declaration (N : Node_Id) is |
| Def : constant Node_Id := Type_Definition (N); |
| Def_Id : constant Entity_Id := Defining_Identifier (N); |
| T : Entity_Id; |
| Prev : Entity_Id; |
| |
| Is_Remote : constant Boolean := |
| (Is_Remote_Types (Current_Scope) |
| or else Is_Remote_Call_Interface (Current_Scope)) |
| and then not (In_Private_Part (Current_Scope) |
| or else In_Package_Body (Current_Scope)); |
| |
| procedure Check_Nonoverridable_Aspects; |
| -- Apply the rule in RM 13.1.1(18.4/4) on iterator aspects that cannot |
| -- be overridden, and can only be confirmed on derivation. |
| |
| procedure Check_Ops_From_Incomplete_Type; |
| -- If there is a tagged incomplete partial view of the type, traverse |
| -- the primitives of the incomplete view and change the type of any |
| -- controlling formals and result to indicate the full view. The |
| -- primitives will be added to the full type's primitive operations |
| -- list later in Sem_Disp.Check_Operation_From_Incomplete_Type (which |
| -- is called from Process_Incomplete_Dependents). |
| |
| ---------------------------------- |
| -- Check_Nonoverridable_Aspects -- |
| ---------------------------------- |
| |
| procedure Check_Nonoverridable_Aspects is |
| function Get_Aspect_Spec |
| (Specs : List_Id; |
| Aspect_Name : Name_Id) return Node_Id; |
| -- Check whether a list of aspect specifications includes an entry |
| -- for a specific aspect. The list is either that of a partial or |
| -- a full view. |
| |
| --------------------- |
| -- Get_Aspect_Spec -- |
| --------------------- |
| |
| function Get_Aspect_Spec |
| (Specs : List_Id; |
| Aspect_Name : Name_Id) return Node_Id |
| is |
| Spec : Node_Id; |
| |
| begin |
| Spec := First (Specs); |
| while Present (Spec) loop |
| if Chars (Identifier (Spec)) = Aspect_Name then |
| return Spec; |
| end if; |
| Next (Spec); |
| end loop; |
| |
| return Empty; |
| end Get_Aspect_Spec; |
| |
| -- Local variables |
| |
| Prev_Aspects : constant List_Id := |
| Aspect_Specifications (Parent (Def_Id)); |
| Par_Type : Entity_Id; |
| Prev_Aspect : Node_Id; |
| |
| -- Start of processing for Check_Nonoverridable_Aspects |
| |
| begin |
| -- Get parent type of derived type. Note that Prev is the entity in |
| -- the partial declaration, but its contents are now those of full |
| -- view, while Def_Id reflects the partial view. |
| |
| if Is_Private_Type (Def_Id) then |
| Par_Type := Etype (Full_View (Def_Id)); |
| else |
| Par_Type := Etype (Def_Id); |
| end if; |
| |
| -- If there is an inherited Implicit_Dereference, verify that it is |
| -- made explicit in the partial view. |
| |
| if Has_Discriminants (Base_Type (Par_Type)) |
| and then Nkind (Parent (Prev)) = N_Full_Type_Declaration |
| and then Present (Discriminant_Specifications (Parent (Prev))) |
| and then Present (Get_Reference_Discriminant (Par_Type)) |
| then |
| Prev_Aspect := |
| Get_Aspect_Spec (Prev_Aspects, Name_Implicit_Dereference); |
| |
| if No (Prev_Aspect) |
| and then Present |
| (Discriminant_Specifications |
| (Original_Node (Parent (Prev)))) |
| then |
| Error_Msg_N |
| ("type does not inherit implicit dereference", Prev); |
| |
| else |
| -- If one of the views has the aspect specified, verify that it |
| -- is consistent with that of the parent. |
| |
| declare |
| Cur_Discr : constant Entity_Id := |
| Get_Reference_Discriminant (Prev); |
| Par_Discr : constant Entity_Id := |
| Get_Reference_Discriminant (Par_Type); |
| |
| begin |
| if Corresponding_Discriminant (Cur_Discr) /= Par_Discr then |
| Error_Msg_N |
| ("aspect inconsistent with that of parent", N); |
| end if; |
| |
| -- Check that specification in partial view matches the |
| -- inherited aspect. Compare names directly because aspect |
| -- expression may not be analyzed. |
| |
| if Present (Prev_Aspect) |
| and then Nkind (Expression (Prev_Aspect)) = N_Identifier |
| and then Chars (Expression (Prev_Aspect)) /= |
| Chars (Cur_Discr) |
| then |
| Error_Msg_N |
| ("aspect inconsistent with that of parent", N); |
| end if; |
| end; |
| end if; |
| end if; |
| |
| -- What about other nonoverridable aspects??? |
| end Check_Nonoverridable_Aspects; |
| |
| ------------------------------------ |
| -- Check_Ops_From_Incomplete_Type -- |
| ------------------------------------ |
| |
| procedure Check_Ops_From_Incomplete_Type is |
| Elmt : Elmt_Id; |
| Formal : Entity_Id; |
| Op : Entity_Id; |
| |
| begin |
| if Prev /= T |
| and then Ekind (Prev) = E_Incomplete_Type |
| and then Is_Tagged_Type (Prev) |
| and then Is_Tagged_Type (T) |
| and then Present (Primitive_Operations (Prev)) |
| then |
| Elmt := First_Elmt (Primitive_Operations (Prev)); |
| while Present (Elmt) loop |
| Op := Node (Elmt); |
| |
| Formal := First_Formal (Op); |
| while Present (Formal) loop |
| if Etype (Formal) = Prev then |
| Set_Etype (Formal, T); |
| end if; |
| |
| Next_Formal (Formal); |
| end loop; |
| |
| if Etype (Op) = Prev then |
| Set_Etype (Op, T); |
| end if; |
| |
| Next_Elmt (Elmt); |
| end loop; |
| end if; |
| end Check_Ops_From_Incomplete_Type; |
| |
| -- Start of processing for Analyze_Full_Type_Declaration |
| |
| begin |
| Prev := Find_Type_Name (N); |
| |
| -- The full view, if present, now points to the current type. If there |
| -- is an incomplete partial view, set a link to it, to simplify the |
| -- retrieval of primitive operations of the type. |
| |
| -- Ada 2005 (AI-50217): If the type was previously decorated when |
| -- imported through a LIMITED WITH clause, it appears as incomplete |
| -- but has no full view. |
| |
| if Ekind (Prev) = E_Incomplete_Type |
| and then Present (Full_View (Prev)) |
| then |
| T := Full_View (Prev); |
| Set_Incomplete_View (N, Prev); |
| else |
| T := Prev; |
| end if; |
| |
| Set_Is_Pure (T, Is_Pure (Current_Scope)); |
| |
| -- We set the flag Is_First_Subtype here. It is needed to set the |
| -- corresponding flag for the Implicit class-wide-type created |
| -- during tagged types processing. |
| |
| Set_Is_First_Subtype (T, True); |
| |
| -- Only composite types other than array types are allowed to have |
| -- discriminants. |
| |
| case Nkind (Def) is |
| |
| -- For derived types, the rule will be checked once we've figured |
| -- out the parent type. |
| |
| when N_Derived_Type_Definition => |
| null; |
| |
| -- For record types, discriminants are allowed. |
| |
| when N_Record_Definition => |
| null; |
| |
| when others => |
| if Present (Discriminant_Specifications (N)) then |
| Error_Msg_N |
| ("elementary or array type cannot have discriminants", |
| Defining_Identifier |
| (First (Discriminant_Specifications (N)))); |
| end if; |
| end case; |
| |
| -- Elaborate the type definition according to kind, and generate |
| -- subsidiary (implicit) subtypes where needed. We skip this if it was |
| -- already done (this happens during the reanalysis that follows a call |
| -- to the high level optimizer). |
| |
| if not Analyzed (T) then |
| Set_Analyzed (T); |
| |
| -- Set the SPARK mode from the current context |
| |
| Set_SPARK_Pragma (T, SPARK_Mode_Pragma); |
| Set_SPARK_Pragma_Inherited (T); |
| |
| case Nkind (Def) is |
| when N_Access_To_Subprogram_Definition => |
| Access_Subprogram_Declaration (T, Def); |
| |
| -- If this is a remote access to subprogram, we must create the |
| -- equivalent fat pointer type, and related subprograms. |
| |
| if Is_Remote then |
| Process_Remote_AST_Declaration (N); |
| end if; |
| |
| -- Validate categorization rule against access type declaration |
| -- usually a violation in Pure unit, Shared_Passive unit. |
| |
| Validate_Access_Type_Declaration (T, N); |
| |
| -- If the type has contracts, we create the corresponding |
| -- wrapper at once, before analyzing the aspect specifications, |
| -- so that pre/postconditions can be handled directly on the |
| -- generated wrapper. |
| |
| if Ada_Version >= Ada_2022 |
| and then Present (Aspect_Specifications (N)) |
| then |
| Build_Access_Subprogram_Wrapper (N); |
| end if; |
| |
| when N_Access_To_Object_Definition => |
| Access_Type_Declaration (T, Def); |
| |
| -- Validate categorization rule against access type declaration |
| -- usually a violation in Pure unit, Shared_Passive unit. |
| |
| Validate_Access_Type_Declaration (T, N); |
| |
| -- If we are in a Remote_Call_Interface package and define a |
| -- RACW, then calling stubs and specific stream attributes |
| -- must be added. |
| |
| if Is_Remote |
| and then Is_Remote_Access_To_Class_Wide_Type (Def_Id) |
| then |
| Add_RACW_Features (Def_Id); |
| end if; |
| |
| when N_Array_Type_Definition => |
| Array_Type_Declaration (T, Def); |
| |
| when N_Derived_Type_Definition => |
| Derived_Type_Declaration (T, N, T /= Def_Id); |
| |
| -- Inherit predicates from parent, and protect against illegal |
| -- derivations. |
| |
| if Is_Type (T) and then Has_Predicates (T) then |
| Set_Has_Predicates (Def_Id); |
| end if; |
| |
| -- Save the scenario for examination by the ABE Processing |
| -- phase. |
| |
| Record_Elaboration_Scenario (N); |
| |
| when N_Enumeration_Type_Definition => |
| Enumeration_Type_Declaration (T, Def); |
| |
| when N_Floating_Point_Definition => |
| Floating_Point_Type_Declaration (T, Def); |
| |
| when N_Decimal_Fixed_Point_Definition => |
| Decimal_Fixed_Point_Type_Declaration (T, Def); |
| |
| when N_Ordinary_Fixed_Point_Definition => |
| Ordinary_Fixed_Point_Type_Declaration (T, Def); |
| |
| when N_Signed_Integer_Type_Definition => |
| Signed_Integer_Type_Declaration (T, Def); |
| |
| when N_Modular_Type_Definition => |
| Modular_Type_Declaration (T, Def); |
| |
| when N_Record_Definition => |
| Record_Type_Declaration (T, N, Prev); |
| |
| -- If declaration has a parse error, nothing to elaborate. |
| |
| when N_Error => |
| null; |
| |
| when others => |
| raise Program_Error; |
| end case; |
| end if; |
| |
| if Etype (T) = Any_Type then |
| return; |
| end if; |
| |
| -- Set the primitives list of the full type and its base type when |
| -- needed. T may be E_Void in cases of earlier errors, and in that |
| -- case we bypass this. |
| |
| if Ekind (T) /= E_Void then |
| if not Present (Direct_Primitive_Operations (T)) then |
| if Etype (T) = T then |
| Set_Direct_Primitive_Operations (T, New_Elmt_List); |
| |
| -- If Etype of T is the base type (as opposed to a parent type) |
| -- and already has an associated list of primitive operations, |
| -- then set T's primitive list to the base type's list. Otherwise, |
| -- create a new empty primitives list and share the list between |
| -- T and its base type. The lists need to be shared in common. |
| |
| elsif Etype (T) = Base_Type (T) then |
| |
| if not Present (Direct_Primitive_Operations (Base_Type (T))) |
| then |
| Set_Direct_Primitive_Operations |
| (Base_Type (T), New_Elmt_List); |
| end if; |
| |
| Set_Direct_Primitive_Operations |
| (T, Direct_Primitive_Operations (Base_Type (T))); |
| |
| -- Case where the Etype is a parent type, so we need a new |
| -- primitives list for T. |
| |
| else |
| Set_Direct_Primitive_Operations (T, New_Elmt_List); |
| end if; |
| |
| -- If T already has a Direct_Primitive_Operations list but its |
| -- base type doesn't then set the base type's list to T's list. |
| |
| elsif not Present (Direct_Primitive_Operations (Base_Type (T))) then |
| Set_Direct_Primitive_Operations |
| (Base_Type (T), Direct_Primitive_Operations (T)); |
| end if; |
| end if; |
| |
| -- Some common processing for all types |
| |
| Set_Depends_On_Private (T, Has_Private_Component (T)); |
| Check_Ops_From_Incomplete_Type; |
| |
| -- Both the declared entity, and its anonymous base type if one was |
| -- created, need freeze nodes allocated. |
| |
| declare |
| B : constant Entity_Id := Base_Type (T); |
| |
| begin |
| -- In the case where the base type differs from the first subtype, we |
| -- pre-allocate a freeze node, and set the proper link to the first |
| -- subtype. Freeze_Entity will use this preallocated freeze node when |
| -- it freezes the entity. |
| |
| -- This does not apply if the base type is a generic type, whose |
| -- declaration is independent of the current derived definition. |
| |
| if B /= T and then not Is_Generic_Type (B) then |
| Ensure_Freeze_Node (B); |
| Set_First_Subtype_Link (Freeze_Node (B), T); |
| end if; |
| |
| -- A type that is imported through a limited_with clause cannot |
| -- generate any code, and thus need not be frozen. However, an access |
| -- type with an imported designated type needs a finalization list, |
| -- which may be referenced in some other package that has non-limited |
| -- visibility on the designated type. Thus we must create the |
| -- finalization list at the point the access type is frozen, to |
| -- prevent unsatisfied references at link time. |
| |
| if not From_Limited_With (T) or else Is_Access_Type (T) then |
| Set_Has_Delayed_Freeze (T); |
| end if; |
| end; |
| |
| -- Case where T is the full declaration of some private type which has |
| -- been swapped in Defining_Identifier (N). |
| |
| if T /= Def_Id and then Is_Private_Type (Def_Id) then |
| Process_Full_View (N, T, Def_Id); |
| |
| -- Record the reference. The form of this is a little strange, since |
| -- the full declaration has been swapped in. So the first parameter |
| -- here represents the entity to which a reference is made which is |
| -- the "real" entity, i.e. the one swapped in, and the second |
| -- parameter provides the reference location. |
| |
| -- Also, we want to kill Has_Pragma_Unreferenced temporarily here |
| -- since we don't want a complaint about the full type being an |
| -- unwanted reference to the private type |
| |
| declare |
| B : constant Boolean := Has_Pragma_Unreferenced (T); |
| begin |
| Set_Has_Pragma_Unreferenced (T, False); |
| Generate_Reference (T, T, 'c'); |
| Set_Has_Pragma_Unreferenced (T, B); |
| end; |
| |
| Set_Completion_Referenced (Def_Id); |
| |
| -- For completion of incomplete type, process incomplete dependents |
| -- and always mark the full type as referenced (it is the incomplete |
| -- type that we get for any real reference). |
| |
| elsif Ekind (Prev) = E_Incomplete_Type then |
| Process_Incomplete_Dependents (N, T, Prev); |
| Generate_Reference (Prev, Def_Id, 'c'); |
| Set_Completion_Referenced (Def_Id); |
| |
| -- If not private type or incomplete type completion, this is a real |
| -- definition of a new entity, so record it. |
| |
| else |
| Generate_Definition (Def_Id); |
| end if; |
| |
| -- Propagate any pending access types whose finalization masters need to |
| -- be fully initialized from the partial to the full view. Guard against |
| -- an illegal full view that remains unanalyzed. |
| |
| if Is_Type (Def_Id) and then Is_Incomplete_Or_Private_Type (Prev) then |
| Set_Pending_Access_Types (Def_Id, Pending_Access_Types (Prev)); |
| end if; |
| |
| if Chars (Scope (Def_Id)) = Name_System |
| and then Chars (Def_Id) = Name_Address |
| and then In_Predefined_Unit (N) |
| then |
| Set_Is_Descendant_Of_Address (Def_Id); |
| Set_Is_Descendant_Of_Address (Base_Type (Def_Id)); |
| Set_Is_Descendant_Of_Address (Prev); |
| end if; |
| |
| Set_Optimize_Alignment_Flags (Def_Id); |
| Check_Eliminated (Def_Id); |
| |
| -- If the declaration is a completion and aspects are present, apply |
| -- them to the entity for the type which is currently the partial |
| -- view, but which is the one that will be frozen. |
| |
| if Has_Aspects (N) then |
| |
| -- In most cases the partial view is a private type, and both views |
| -- appear in different declarative parts. In the unusual case where |
| -- the partial view is incomplete, perform the analysis on the |
| -- full view, to prevent freezing anomalies with the corresponding |
| -- class-wide type, which otherwise might be frozen before the |
| -- dispatch table is built. |
| |
| if Prev /= Def_Id |
| and then Ekind (Prev) /= E_Incomplete_Type |
| then |
| Analyze_Aspect_Specifications (N, Prev); |
| |
| -- Normal case |
| |
| else |
| Analyze_Aspect_Specifications (N, Def_Id); |
| end if; |
| end if; |
| |
| if Is_Derived_Type (Prev) |
| and then Def_Id /= Prev |
| then |
| Check_Nonoverridable_Aspects; |
| end if; |
| |
| -- Check for tagged type declaration at library level |
| |
| if Is_Tagged_Type (T) |
| and then not Is_Library_Level_Entity (T) |
| then |
| Check_Restriction (No_Local_Tagged_Types, T); |
| end if; |
| end Analyze_Full_Type_Declaration; |
| |
| ---------------------------------- |
| -- Analyze_Incomplete_Type_Decl -- |
| ---------------------------------- |
| |
| procedure Analyze_Incomplete_Type_Decl (N : Node_Id) is |
| F : constant Boolean := Is_Pure (Current_Scope); |
| T : Entity_Id; |
| |
| begin |
| Generate_Definition (Defining_Identifier (N)); |
| |
| -- Process an incomplete declaration. The identifier must not have been |
| -- declared already in the scope. However, an incomplete declaration may |
| -- appear in the private part of a package, for a private type that has |
| -- already been declared. |
| |
| -- In this case, the discriminants (if any) must match |
| |
| T := Find_Type_Name (N); |
| |
| Mutate_Ekind (T, E_Incomplete_Type); |
| Set_Etype (T, T); |
| Set_Is_First_Subtype (T); |
| Reinit_Size_Align (T); |
| |
| -- Set the SPARK mode from the current context |
| |
| Set_SPARK_Pragma (T, SPARK_Mode_Pragma); |
| Set_SPARK_Pragma_Inherited (T); |
| |
| -- Ada 2005 (AI-326): Minimum decoration to give support to tagged |
| -- incomplete types. |
| |
| if Tagged_Present (N) then |
| Set_Is_Tagged_Type (T, True); |
| Set_No_Tagged_Streams_Pragma (T, No_Tagged_Streams); |
| Make_Class_Wide_Type (T); |
| end if; |
| |
| -- Initialize the list of primitive operations to an empty list, |
| -- to cover tagged types as well as untagged types. For untagged |
| -- types this is used either to analyze the call as legal when |
| -- Core_Extensions_Allowed is True, or to issue a better error message |
| -- otherwise. |
| |
| Set_Direct_Primitive_Operations (T, New_Elmt_List); |
| |
| Set_Stored_Constraint (T, No_Elist); |
| |
| if Present (Discriminant_Specifications (N)) then |
| Push_Scope (T); |
| Process_Discriminants (N); |
| End_Scope; |
| end if; |
| |
| -- If the type has discriminants, nontrivial subtypes may be declared |
| -- before the full view of the type. The full views of those subtypes |
| -- will be built after the full view of the type. |
| |
| Set_Private_Dependents (T, New_Elmt_List); |
| Set_Is_Pure (T, F); |
| end Analyze_Incomplete_Type_Decl; |
| |
| ----------------------------------- |
| -- Analyze_Interface_Declaration -- |
| ----------------------------------- |
| |
| procedure Analyze_Interface_Declaration (T : Entity_Id; Def : Node_Id) is |
| CW : constant Entity_Id := Class_Wide_Type (T); |
| |
| begin |
| Set_Is_Tagged_Type (T); |
| Set_No_Tagged_Streams_Pragma (T, No_Tagged_Streams); |
| |
| Set_Is_Limited_Record (T, Limited_Present (Def) |
| or else Task_Present (Def) |
| or else Protected_Present (Def) |
| or else Synchronized_Present (Def)); |
| |
| -- Type is abstract if full declaration carries keyword, or if previous |
| -- partial view did. |
| |
| Set_Is_Abstract_Type (T); |
| Set_Is_Interface (T); |
| |
| -- Type is a limited interface if it includes the keyword limited, task, |
| -- protected, or synchronized. |
| |
| Set_Is_Limited_Interface |
| (T, Limited_Present (Def) |
| or else Protected_Present (Def) |
| or else Synchronized_Present (Def) |
| or else Task_Present (Def)); |
| |
| Set_Interfaces (T, New_Elmt_List); |
| Set_Direct_Primitive_Operations (T, New_Elmt_List); |
| |
| -- Complete the decoration of the class-wide entity if it was already |
| -- built (i.e. during the creation of the limited view) |
| |
| if Present (CW) then |
| Set_Is_Interface (CW); |
| Set_Is_Limited_Interface (CW, Is_Limited_Interface (T)); |
| end if; |
| |
| -- Check runtime support for synchronized interfaces |
| |
| if Is_Concurrent_Interface (T) |
| and then not RTE_Available (RE_Select_Specific_Data) |
| then |
| Error_Msg_CRT ("synchronized interfaces", T); |
| end if; |
| end Analyze_Interface_Declaration; |
| |
| ----------------------------- |
| -- Analyze_Itype_Reference -- |
| ----------------------------- |
| |
| -- Nothing to do. This node is placed in the tree only for the benefit of |
| -- back end processing, and has no effect on the semantic processing. |
| |
| procedure Analyze_Itype_Reference (N : Node_Id) is |
| begin |
| pragma Assert (Is_Itype (Itype (N))); |
| null; |
| end Analyze_Itype_Reference; |
| |
| -------------------------------- |
| -- Analyze_Number_Declaration -- |
| -------------------------------- |
| |
| procedure Analyze_Number_Declaration (N : Node_Id) is |
| E : constant Node_Id := Expression (N); |
| Id : constant Entity_Id := Defining_Identifier (N); |
| Index : Interp_Index; |
| It : Interp; |
| T : Entity_Id; |
| |
| begin |
| Generate_Definition (Id); |
| Enter_Name (Id); |
| |
| -- This is an optimization of a common case of an integer literal |
| |
| if Nkind (E) = N_Integer_Literal then |
| Set_Is_Static_Expression (E, True); |
| Set_Etype (E, Universal_Integer); |
| |
| Set_Etype (Id, Universal_Integer); |
| Mutate_Ekind (Id, E_Named_Integer); |
| Set_Is_Frozen (Id, True); |
| |
| Set_Debug_Info_Needed (Id); |
| return; |
| end if; |
| |
| Set_Is_Pure (Id, Is_Pure (Current_Scope)); |
| |
| -- Process expression, replacing error by integer zero, to avoid |
| -- cascaded errors or aborts further along in the processing |
| |
| -- Replace Error by integer zero, which seems least likely to cause |
| -- cascaded errors. |
| |
| if E = Error then |
| Rewrite (E, Make_Integer_Literal (Sloc (E), Uint_0)); |
| Set_Error_Posted (E); |
| end if; |
| |
| Analyze (E); |
| |
| -- Verify that the expression is static and numeric. If |
| -- the expression is overloaded, we apply the preference |
| -- rule that favors root numeric types. |
| |
| if not Is_Overloaded (E) then |
| T := Etype (E); |
| if Has_Dynamic_Predicate_Aspect (T) then |
| Error_Msg_N |
| ("subtype has dynamic predicate, " |
| & "not allowed in number declaration", N); |
| end if; |
| |
| else |
| T := Any_Type; |
| |
| Get_First_Interp (E, Index, It); |
| while Present (It.Typ) loop |
| if (Is_Integer_Type (It.Typ) or else Is_Real_Type (It.Typ)) |
| and then (Scope (Base_Type (It.Typ))) = Standard_Standard |
| then |
| if T = Any_Type then |
| T := It.Typ; |
| |
| elsif Is_Universal_Numeric_Type (It.Typ) then |
| -- Choose universal interpretation over any other |
| |
| T := It.Typ; |
| exit; |
| end if; |
| end if; |
| |
| Get_Next_Interp (Index, It); |
| end loop; |
| end if; |
| |
| if Is_Integer_Type (T) then |
| Resolve (E, T); |
| Set_Etype (Id, Universal_Integer); |
| Mutate_Ekind (Id, E_Named_Integer); |
| |
| elsif Is_Real_Type (T) then |
| |
| -- Because the real value is converted to universal_real, this is a |
| -- legal context for a universal fixed expression. |
| |
| if T = Universal_Fixed then |
| declare |
| Loc : constant Source_Ptr := Sloc (N); |
| Conv : constant Node_Id := Make_Type_Conversion (Loc, |
| Subtype_Mark => |
| New_Occurrence_Of (Universal_Real, Loc), |
| Expression => Relocate_Node (E)); |
| |
| begin |
| Rewrite (E, Conv); |
| Analyze (E); |
| end; |
| |
| elsif T = Any_Fixed then |
| Error_Msg_N ("illegal context for mixed mode operation", E); |
| |
| -- Expression is of the form : universal_fixed * integer. Try to |
| -- resolve as universal_real. |
| |
| T := Universal_Real; |
| Set_Etype (E, T); |
| end if; |
| |
| Resolve (E, T); |
| Set_Etype (Id, Universal_Real); |
| Mutate_Ekind (Id, E_Named_Real); |
| |
| else |
| Wrong_Type (E, Any_Numeric); |
| Resolve (E, T); |
| |
| Set_Etype (Id, T); |
| Mutate_Ekind (Id, E_Constant); |
| Set_Never_Set_In_Source (Id, True); |
| Set_Is_True_Constant (Id, True); |
| return; |
| end if; |
| |
| if Nkind (E) in N_Integer_Literal | N_Real_Literal then |
| Set_Etype (E, Etype (Id)); |
| end if; |
| |
| if not Is_OK_Static_Expression (E) then |
| Flag_Non_Static_Expr |
| ("non-static expression used in number declaration!", E); |
| Rewrite (E, Make_Integer_Literal (Sloc (N), 1)); |
| Set_Etype (E, Any_Type); |
| end if; |
| |
| Analyze_Dimension (N); |
| end Analyze_Number_Declaration; |
| |
| -------------------------------- |
| -- Analyze_Object_Declaration -- |
| -------------------------------- |
| |
| -- WARNING: This routine manages Ghost regions. Return statements must be |
| -- replaced by gotos which jump to the end of the routine and restore the |
| -- Ghost mode. |
| |
| procedure Analyze_Object_Declaration (N : Node_Id) is |
| Loc : constant Source_Ptr := Sloc (N); |
| Id : constant Entity_Id := Defining_Identifier (N); |
| Next_Decl : constant Node_Id := Next (N); |
| |
| Act_T : Entity_Id; |
| T : Entity_Id; |
| |
| E : Node_Id := Expression (N); |
| -- E is set to Expression (N) throughout this routine. When Expression |
| -- (N) is modified, E is changed accordingly. |
| |
| procedure Check_Dynamic_Object (Typ : Entity_Id); |
| -- A library-level object with nonstatic discriminant constraints may |
| -- require dynamic allocation. The declaration is illegal if the |
| -- profile includes the restriction No_Implicit_Heap_Allocations. |
| |
| procedure Check_For_Null_Excluding_Components |
| (Obj_Typ : Entity_Id; |
| Obj_Decl : Node_Id); |
| -- Verify that each null-excluding component of object declaration |
| -- Obj_Decl carrying type Obj_Typ has explicit initialization. Emit |
| -- a compile-time warning if this is not the case. |
| |
| function Count_Tasks (T : Entity_Id) return Uint; |
| -- This function is called when a non-generic library level object of a |
| -- task type is declared. Its function is to count the static number of |
| -- tasks declared within the type (it is only called if Has_Task is set |
| -- for T). As a side effect, if an array of tasks with nonstatic bounds |
| -- or a variant record type is encountered, Check_Restriction is called |
| -- indicating the count is unknown. |
| |
| function Delayed_Aspect_Present return Boolean; |
| -- If the declaration has an expression that is an aggregate, and it |
| -- has aspects that require delayed analysis, the resolution of the |
| -- aggregate must be deferred to the freeze point of the object. This |
| -- special processing was created for address clauses, but it must |
| -- also apply to address aspects. This must be done before the aspect |
| -- specifications are analyzed because we must handle the aggregate |
| -- before the analysis of the object declaration is complete. |
| |
| -- Any other relevant delayed aspects on object declarations ??? |
| |
| -------------------------- |
| -- Check_Dynamic_Object -- |
| -------------------------- |
| |
| procedure Check_Dynamic_Object (Typ : Entity_Id) is |
| Comp : Entity_Id; |
| Obj_Type : Entity_Id; |
| |
| begin |
| Obj_Type := Typ; |
| |
| if Is_Private_Type (Obj_Type) |
| and then Present (Full_View (Obj_Type)) |
| then |
| Obj_Type := Full_View (Obj_Type); |
| end if; |
| |
| if Known_Static_Esize (Obj_Type) then |
| return; |
| end if; |
| |
| if Restriction_Active (No_Implicit_Heap_Allocations) |
| and then Expander_Active |
| and then Has_Discriminants (Obj_Type) |
| then |
| Comp := First_Component (Obj_Type); |
| while Present (Comp) loop |
| if Known_Static_Esize (Etype (Comp)) |
| or else Size_Known_At_Compile_Time (Etype (Comp)) |
| then |
| null; |
| |
| elsif Is_Record_Type (Etype (Comp)) then |
| Check_Dynamic_Object (Etype (Comp)); |
| |
| elsif not Discriminated_Size (Comp) |
| and then Comes_From_Source (Comp) |
| then |
| Error_Msg_NE |
| ("component& of non-static size will violate restriction " |
| & "No_Implicit_Heap_Allocation?", N, Comp); |
| |
| end if; |
| |
| Next_Component (Comp); |
| end loop; |
| end if; |
| end Check_Dynamic_Object; |
| |
| ----------------------------------------- |
| -- Check_For_Null_Excluding_Components -- |
| ----------------------------------------- |
| |
| procedure Check_For_Null_Excluding_Components |
| (Obj_Typ : Entity_Id; |
| Obj_Decl : Node_Id) |
| is |
| procedure Check_Component |
| (Comp_Typ : Entity_Id; |
| Comp_Decl : Node_Id := Empty; |
| Array_Comp : Boolean := False); |
| -- Apply a compile-time null-exclusion check on a component denoted |
| -- by its declaration Comp_Decl and type Comp_Typ, and all of its |
| -- subcomponents (if any). |
| |
| --------------------- |
| -- Check_Component -- |
| --------------------- |
| |
| procedure Check_Component |
| (Comp_Typ : Entity_Id; |
| Comp_Decl : Node_Id := Empty; |
| Array_Comp : Boolean := False) |
| is |
| Comp : Entity_Id; |
| T : Entity_Id; |
| |
| begin |
| -- Do not consider internally-generated components or those that |
| -- are already initialized. |
| |
| if Present (Comp_Decl) |
| and then (not Comes_From_Source (Comp_Decl) |
| or else Present (Expression (Comp_Decl))) |
| then |
| return; |
| end if; |
| |
| if Is_Incomplete_Or_Private_Type (Comp_Typ) |
| and then Present (Full_View (Comp_Typ)) |
| then |
| T := Full_View (Comp_Typ); |
| else |
| T := Comp_Typ; |
| end if; |
| |
| -- Verify a component of a null-excluding access type |
| |
| if Is_Access_Type (T) |
| and then Can_Never_Be_Null (T) |
| then |
| if Comp_Decl = Obj_Decl then |
| Null_Exclusion_Static_Checks |
| (N => Obj_Decl, |
| Comp => Empty, |
| Array_Comp => Array_Comp); |
| |
| else |
| Null_Exclusion_Static_Checks |
| (N => Obj_Decl, |
| Comp => Comp_Decl, |
| Array_Comp => Array_Comp); |
| end if; |
| |
| -- Check array components |
| |
| elsif Is_Array_Type (T) then |
| |
| -- There is no suitable component when the object is of an |
| -- array type. However, a namable component may appear at some |
| -- point during the recursive inspection, but not at the top |
| -- level. At the top level just indicate array component case. |
| |
| if Comp_Decl = Obj_Decl then |
| Check_Component (Component_Type (T), Array_Comp => True); |
| else |
| Check_Component (Component_Type (T), Comp_Decl); |
| end if; |
| |
| -- Verify all components of type T |
| |
| -- Note: No checks are performed on types with discriminants due |
| -- to complexities involving variants. ??? |
| |
| elsif (Is_Concurrent_Type (T) |
| or else Is_Incomplete_Or_Private_Type (T) |
| or else Is_Record_Type (T)) |
| and then not Has_Discriminants (T) |
| then |
| Comp := First_Component (T); |
| while Present (Comp) loop |
| Check_Component (Etype (Comp), Parent (Comp)); |
| |
| Next_Component (Comp); |
| end loop; |
| end if; |
| end Check_Component; |
| |
| -- Start processing for Check_For_Null_Excluding_Components |
| |
| begin |
| Check_Component (Obj_Typ, Obj_Decl); |
| end Check_For_Null_Excluding_Components; |
| |
| ----------------- |
| -- Count_Tasks -- |
| ----------------- |
| |
| function Count_Tasks (T : Entity_Id) return Uint is |
| C : Entity_Id; |
| X : Node_Id; |
| V : Uint; |
| |
| begin |
| if Is_Task_Type (T) then |
| return Uint_1; |
| |
| elsif Is_Record_Type (T) then |
| if Has_Discriminants (T) then |
| Check_Restriction (Max_Tasks, N); |
| return Uint_0; |
| |
| else |
| V := Uint_0; |
| C := First_Component (T); |
| while Present (C) loop |
| V := V + Count_Tasks (Etype (C)); |
| Next_Component (C); |
| end loop; |
| |
| return V; |
| end if; |
| |
| elsif Is_Array_Type (T) then |
| X := First_Index (T); |
| V := Count_Tasks (Component_Type (T)); |
| while Present (X) loop |
| C := Etype (X); |
| |
| if not Is_OK_Static_Subtype (C) then |
| Check_Restriction (Max_Tasks, N); |
| return Uint_0; |
| else |
| V := V * (UI_Max (Uint_0, |
| Expr_Value (Type_High_Bound (C)) - |
| Expr_Value (Type_Low_Bound (C)) + Uint_1)); |
| end if; |
| |
| Next_Index (X); |
| end loop; |
| |
| return V; |
| |
| else |
| return Uint_0; |
| end if; |
| end Count_Tasks; |
| |
| ---------------------------- |
| -- Delayed_Aspect_Present -- |
| ---------------------------- |
| |
| function Delayed_Aspect_Present return Boolean is |
| A : Node_Id; |
| A_Id : Aspect_Id; |
| |
| begin |
| if Present (Aspect_Specifications (N)) then |
| A := First (Aspect_Specifications (N)); |
| |
| while Present (A) loop |
| A_Id := Get_Aspect_Id (Chars (Identifier (A))); |
| |
| if A_Id = Aspect_Address then |
| |
| -- Set flag on object entity, for later processing at |
| -- the freeze point. |
| |
| Set_Has_Delayed_Aspects (Id); |
| return True; |
| end if; |
| |
| Next (A); |
| end loop; |
| end if; |
| |
| return False; |
| end Delayed_Aspect_Present; |
| |
| -- Local variables |
| |
| Saved_GM : constant Ghost_Mode_Type := Ghost_Mode; |
| Saved_IGR : constant Node_Id := Ignored_Ghost_Region; |
| -- Save the Ghost-related attributes to restore on exit |
| |
| Prev_Entity : Entity_Id := Empty; |
| Related_Id : Entity_Id; |
| |
| -- Start of processing for Analyze_Object_Declaration |
| |
| begin |
| -- There are three kinds of implicit types generated by an |
| -- object declaration: |
| |
| -- 1. Those generated by the original Object Definition |
| |
| -- 2. Those generated by the Expression |
| |
| -- 3. Those used to constrain the Object Definition with the |
| -- expression constraints when the definition is unconstrained. |
| |
| -- They must be generated in this order to avoid order of elaboration |
| -- issues. Thus the first step (after entering the name) is to analyze |
| -- the object definition. |
| |
| if Constant_Present (N) then |
| Prev_Entity := Current_Entity_In_Scope (Id); |
| |
| if Present (Prev_Entity) |
| and then |
| -- If the homograph is an implicit subprogram, it is overridden |
| -- by the current declaration. |
| |
| ((Is_Overloadable (Prev_Entity) |
| and then Is_Inherited_Operation (Prev_Entity)) |
| |
| -- The current object is a discriminal generated for an entry |
| -- family index. Even though the index is a constant, in this |
| -- particular context there is no true constant redeclaration. |
| -- Enter_Name will handle the visibility. |
| |
| or else |
| (Is_Discriminal (Id) |
| and then Ekind (Discriminal_Link (Id)) = |
| E_Entry_Index_Parameter) |
| |
| -- The current object is the renaming for a generic declared |
| -- within the instance. |
| |
| or else |
| (Ekind (Prev_Entity) = E_Package |
| and then Nkind (Parent (Prev_Entity)) = |
| N_Package_Renaming_Declaration |
| and then not Comes_From_Source (Prev_Entity) |
| and then |
| Is_Generic_Instance (Renamed_Entity (Prev_Entity))) |
| |
| -- The entity may be a homonym of a private component of the |
| -- enclosing protected object, for which we create a local |
| -- renaming declaration. The declaration is legal, even if |
| -- useless when it just captures that component. |
| |
| or else |
| (Ekind (Scope (Current_Scope)) = E_Protected_Type |
| and then Nkind (Parent (Prev_Entity)) = |
| N_Object_Renaming_Declaration)) |
| then |
| Prev_Entity := Empty; |
| end if; |
| end if; |
| |
| if Present (Prev_Entity) then |
| |
| -- The object declaration is Ghost when it completes a deferred Ghost |
| -- constant. |
| |
| Mark_And_Set_Ghost_Completion (N, Prev_Entity); |
| |
| Constant_Redeclaration (Id, N, T); |
| |
| Generate_Reference (Prev_Entity, Id, 'c'); |
| Set_Completion_Referenced (Id); |
| |
| if Error_Posted (N) then |
| |
| -- Type mismatch or illegal redeclaration; do not analyze |
| -- expression to avoid cascaded errors. |
| |
| T := Find_Type_Of_Object (Object_Definition (N), N); |
| Set_Etype (Id, T); |
| Mutate_Ekind (Id, E_Variable); |
| goto Leave; |
| end if; |
| |
| -- In the normal case, enter identifier at the start to catch premature |
| -- usage in the initialization expression. |
| |
| else |
| Generate_Definition (Id); |
| Enter_Name (Id); |
| |
| Mark_Coextensions (N, Object_Definition (N)); |
| |
| T := Find_Type_Of_Object (Object_Definition (N), N); |
| |
| if Nkind (Object_Definition (N)) = N_Access_Definition |
| and then Present |
| (Access_To_Subprogram_Definition (Object_Definition (N))) |
| and then Protected_Present |
| (Access_To_Subprogram_Definition (Object_Definition (N))) |
| then |
| T := Replace_Anonymous_Access_To_Protected_Subprogram (N); |
| end if; |
| |
| if Error_Posted (Id) then |
| Set_Etype (Id, T); |
| Mutate_Ekind (Id, E_Variable); |
| goto Leave; |
| end if; |
| end if; |
| |
| -- Ada 2005 (AI-231): Propagate the null-excluding attribute and carry |
| -- out some static checks. |
| |
| if Ada_Version >= Ada_2005 then |
| |
| -- In case of aggregates we must also take care of the correct |
| -- initialization of nested aggregates bug this is done at the |
| -- point of the analysis of the aggregate (see sem_aggr.adb) ??? |
| |
| if Can_Never_Be_Null (T) then |
| if Present (Expression (N)) |
| and then Nkind (Expression (N)) = N_Aggregate |
| then |
| null; |
| |
| elsif Comes_From_Source (Id) then |
| declare |
| Save_Typ : constant Entity_Id := Etype (Id); |
| begin |
| Set_Etype (Id, T); -- Temp. decoration for static checks |
| Null_Exclusion_Static_Checks (N); |
| Set_Etype (Id, Save_Typ); |
| end; |
| end if; |
| |
| -- We might be dealing with an object of a composite type containing |
| -- null-excluding components without an aggregate, so we must verify |
| -- that such components have default initialization. |
| |
| else |
| Check_For_Null_Excluding_Components (T, N); |
| end if; |
| end if; |
| |
| -- Object is marked pure if it is in a pure scope |
| |
| Set_Is_Pure (Id, Is_Pure (Current_Scope)); |
| |
| -- If deferred constant, make sure context is appropriate. We detect |
| -- a deferred constant as a constant declaration with no expression. |
| -- A deferred constant can appear in a package body if its completion |
| -- is by means of an interface pragma. |
| |
| if Constant_Present (N) and then No (E) then |
| |
| -- A deferred constant may appear in the declarative part of the |
| -- following constructs: |
| |
| -- blocks |
| -- entry bodies |
| -- extended return statements |
| -- package specs |
| -- package bodies |
| -- subprogram bodies |
| -- task bodies |
| |
| -- When declared inside a package spec, a deferred constant must be |
| -- completed by a full constant declaration or pragma Import. In all |
| -- other cases, the only proper completion is pragma Import. Extended |
| -- return statements are flagged as invalid contexts because they do |
| -- not have a declarative part and so cannot accommodate the pragma. |
| |
| if Ekind (Current_Scope) = E_Return_Statement then |
| Error_Msg_N |
| ("invalid context for deferred constant declaration (RM 7.4)", |
| N); |
| Error_Msg_N |
| ("\declaration requires an initialization expression", |
| N); |
| Set_Constant_Present (N, False); |
| |
| -- In Ada 83, deferred constant must be of private type |
| |
| elsif not Is_Private_Type (T) then |
| if Ada_Version = Ada_83 and then Comes_From_Source (N) then |
| Error_Msg_N |
| ("(Ada 83) deferred constant must be private type", N); |
| end if; |
| end if; |
| |
| -- If not a deferred constant, then the object declaration freezes |
| -- its type, unless the object is of an anonymous type and has delayed |
| -- aspects. In that case the type is frozen when the object itself is. |
| |
| else |
| Check_Fully_Declared (T, N); |
| |
| if Has_Delayed_Aspects (Id) |
| and then Is_Array_Type (T) |
| and then Is_Itype (T) |
| then |
| Set_Has_Delayed_Freeze (T); |
| else |
| Freeze_Before (N, T); |
| end if; |
| end if; |
| |
| -- If the object was created by a constrained array definition, then |
| -- set the link in both the anonymous base type and anonymous subtype |
| -- that are built to represent the array type to point to the object. |
| |
| if Nkind (Object_Definition (Declaration_Node (Id))) = |
| N_Constrained_Array_Definition |
| then |
| Set_Related_Array_Object (T, Id); |
| Set_Related_Array_Object (Base_Type (T), Id); |
| end if; |
| |
| -- Check for protected objects not at library level |
| |
| if Has_Protected (T) and then not Is_Library_Level_Entity (Id) then |
| Check_Restriction (No_Local_Protected_Objects, Id); |
| end if; |
| |
| -- Check for violation of No_Local_Timing_Events |
| |
| if Has_Timing_Event (T) and then not Is_Library_Level_Entity (Id) then |
| Check_Restriction (No_Local_Timing_Events, Id); |
| end if; |
| |
| -- The actual subtype of the object is the nominal subtype, unless |
| -- the nominal one is unconstrained and obtained from the expression. |
| |
| Act_T := T; |
| |
| if Is_Library_Level_Entity (Id) then |
| Check_Dynamic_Object (T); |
| end if; |
| |
| -- Process initialization expression if present and not in error |
| |
| if Present (E) and then E /= Error then |
| |
| -- Generate an error in case of CPP class-wide object initialization. |
| -- Required because otherwise the expansion of the class-wide |
| -- assignment would try to use 'size to initialize the object |
| -- (primitive that is not available in CPP tagged types). |
| |
| if Is_Class_Wide_Type (Act_T) |
| and then |
| (Is_CPP_Class (Root_Type (Etype (Act_T))) |
| or else |
| (Present (Full_View (Root_Type (Etype (Act_T)))) |
| and then |
| Is_CPP_Class (Full_View (Root_Type (Etype (Act_T)))))) |
| then |
| Error_Msg_N |
| ("predefined assignment not available for 'C'P'P tagged types", |
| E); |
| end if; |
| |
| Mark_Coextensions (N, E); |
| Analyze (E); |
| |
| -- In case of errors detected in the analysis of the expression, |
| -- decorate it with the expected type to avoid cascaded errors. |
| |
| if No (Etype (E)) then |
| Set_Etype (E, T); |
| end if; |
| |
| -- If an initialization expression is present, then we set the |
| -- Is_True_Constant flag. It will be reset if this is a variable |
| -- and it is indeed modified. |
| |
| Set_Is_True_Constant (Id, True); |
| |
| -- If we are analyzing a constant declaration, set its completion |
| -- flag after analyzing and resolving the expression. |
| |
| if Constant_Present (N) then |
| Set_Has_Completion (Id); |
| end if; |
| |
| -- Set type and resolve (type may be overridden later on). Note: |
| -- Ekind (Id) must still be E_Void at this point so that incorrect |
| -- early usage within E is properly diagnosed. |
| |
| Set_Etype (Id, T); |
| |
| -- If the expression is an aggregate we must look ahead to detect |
| -- the possible presence of an address clause, and defer resolution |
| -- and expansion of the aggregate to the freeze point of the entity. |
| |
| -- This is not always legal because the aggregate may contain other |
| -- references that need freezing, e.g. references to other entities |
| -- with address clauses. In any case, when compiling with -gnatI the |
| -- presence of the address clause must be ignored. |
| |
| if Comes_From_Source (N) |
| and then Expander_Active |
| and then Nkind (E) = N_Aggregate |
| and then |
| ((Present (Following_Address_Clause (N)) |
| and then not Ignore_Rep_Clauses) |
| or else Delayed_Aspect_Present) |
| then |
| Set_Etype (E, T); |
| |
| -- If the aggregate is limited it will be built in place, and its |
| -- expansion is deferred until the object declaration is expanded. |
| |
| -- This is also required when generating C code to ensure that an |
| -- object with an alignment or address clause can be initialized |
| -- by means of component by component assignments. |
| |
| if Is_Limited_Type (T) or else Modify_Tree_For_C then |
| Set_Expansion_Delayed (E); |
| end if; |
| |
| else |
| -- If the expression is a formal that is a "subprogram pointer" |
| -- this is illegal in accessibility terms (see RM 3.10.2 (13.1/2) |
| -- and AARM 3.10.2 (13.b/2)). Add an explicit conversion to force |
| -- the corresponding check, as is done for assignments. |
| |
| if Is_Entity_Name (E) |
| and then Present (Entity (E)) |
| and then Is_Formal (Entity (E)) |
| and then |
| Ekind (Etype (Entity (E))) = E_Anonymous_Access_Subprogram_Type |
| and then Ekind (T) /= E_Anonymous_Access_Subprogram_Type |
| then |
| Rewrite (E, Convert_To (T, Relocate_Node (E))); |
| end if; |
| |
| Resolve (E, T); |
| end if; |
| |
| -- No further action needed if E is a call to an inlined function |
| -- which returns an unconstrained type and it has been expanded into |
| -- a procedure call. In that case N has been replaced by an object |
| -- declaration without initializing expression and it has been |
| -- analyzed (see Expand_Inlined_Call). |
| |
| if Back_End_Inlining |
| and then Expander_Active |
| and then Nkind (E) = N_Function_Call |
| and then Nkind (Name (E)) in N_Has_Entity |
| and then Is_Inlined (Entity (Name (E))) |
| and then not Is_Constrained (Etype (E)) |
| and then Analyzed (N) |
| and then No (Expression (N)) |
| then |
| goto Leave; |
| end if; |
| |
| -- If E is null and has been replaced by an N_Raise_Constraint_Error |
| -- node (which was marked already-analyzed), we need to set the type |
| -- to something else than Universal_Access to keep gigi happy. |
| |
| if Etype (E) = Universal_Access then |
| Set_Etype (E, T); |
| end if; |
| |
| -- If the object is an access to variable, the initialization |
| -- expression cannot be an access to constant. |
| |
| if Is_Access_Type (T) |
| and then not Is_Access_Constant (T) |
| and then Is_Access_Type (Etype (E)) |
| and then Is_Access_Constant (Etype (E)) |
| then |
| Error_Msg_N |
| ("access to variable cannot be initialized with an " |
| & "access-to-constant expression", E); |
| end if; |
| |
| if not Assignment_OK (N) then |
| Check_Initialization (T, E); |
| end if; |
| |
| Check_Unset_Reference (E); |
| |
| -- If this is a variable, then set current value. If this is a |
| -- declared constant of a scalar type with a static expression, |
| -- indicate that it is always valid. |
| |
| if not Constant_Present (N) then |
| if Compile_Time_Known_Value (E) then |
| Set_Current_Value (Id, E); |
| end if; |
| |
| elsif Is_Scalar_Type (T) and then Is_OK_Static_Expression (E) then |
| Set_Is_Known_Valid (Id); |
| |
| -- If it is a constant initialized with a valid nonstatic entity, |
| -- the constant is known valid as well, and can inherit the subtype |
| -- of the entity if it is a subtype of the given type. This info |
| -- is preserved on the actual subtype of the constant. |
| |
| elsif Is_Scalar_Type (T) |
| and then Is_Entity_Name (E) |
| and then Is_Known_Valid (Entity (E)) |
| and then In_Subrange_Of (Etype (Entity (E)), T) |
| then |
| Set_Is_Known_Valid (Id); |
| Mutate_Ekind (Id, E_Constant); |
| Set_Actual_Subtype (Id, Etype (Entity (E))); |
| end if; |
| |
| -- Deal with setting of null flags |
| |
| if Is_Access_Type (T) then |
| if Known_Non_Null (E) then |
| Set_Is_Known_Non_Null (Id, True); |
| elsif Known_Null (E) and then not Can_Never_Be_Null (Id) then |
| Set_Is_Known_Null (Id, True); |
| end if; |
| end if; |
| |
| -- Check incorrect use of dynamically tagged expressions |
| |
| if Is_Tagged_Type (T) then |
| Check_Dynamically_Tagged_Expression |
| (Expr => E, |
| Typ => T, |
| Related_Nod => N); |
| end if; |
| |
| Apply_Scalar_Range_Check (E, T); |
| Apply_Static_Length_Check (E, T); |
| |
| -- A formal parameter of a specific tagged type whose related |
| -- subprogram is subject to pragma Extensions_Visible with value |
| -- "False" cannot be implicitly converted to a class-wide type by |
| -- means of an initialization expression (SPARK RM 6.1.7(3)). Do |
| -- not consider internally generated expressions. |
| |
| if Is_Class_Wide_Type (T) |
| and then Comes_From_Source (E) |
| and then Is_EVF_Expression (E) |
| then |
| Error_Msg_N |
| ("formal parameter cannot be implicitly converted to " |
| & "class-wide type when Extensions_Visible is False", E); |
| end if; |
| end if; |
| |
| -- If the No_Streams restriction is set, check that the type of the |
| -- object is not, and does not contain, any subtype derived from |
| -- Ada.Streams.Root_Stream_Type. Note that we guard the call to |
| -- Has_Stream just for efficiency reasons. There is no point in |
| -- spending time on a Has_Stream check if the restriction is not set. |
| |
| if Restriction_Check_Required (No_Streams) then |
| if Has_Stream (T) then |
| Check_Restriction (No_Streams, N); |
| end if; |
| end if; |
| |
| -- Deal with predicate check before we start to do major rewriting. It |
| -- is OK to initialize and then check the initialized value, since the |
| -- object goes out of scope if we get a predicate failure. Note that we |
| -- do this in the analyzer and not the expander because the analyzer |
| -- does some substantial rewriting in some cases. |
| |
| -- We need a predicate check if the type has predicates that are not |
| -- ignored, and if either there is an initializing expression, or for |
| -- default initialization when we have at least one case of an explicit |
| -- default initial value (including via a Default_Value or |
| -- Default_Component_Value aspect, see AI12-0301) and then this is not |
| -- an internal declaration whose initialization comes later (as for an |
| -- aggregate expansion) or a deferred constant. |
| -- If expression is an aggregate it may be expanded into assignments |
| -- and the declaration itself is marked with No_Initialization, but |
| -- the predicate still applies. |
| |
| if not Suppress_Assignment_Checks (N) |
| and then (Predicate_Enabled (T) or else Has_Static_Predicate (T)) |
| and then |
| (not No_Initialization (N) |
| or else (Present (E) and then Nkind (E) = N_Aggregate)) |
| and then |
| (Present (E) |
| or else |
| Is_Partially_Initialized_Type (T, Include_Implicit => False)) |
| and then not (Constant_Present (N) and then No (E)) |
| then |
| -- If the type has a static predicate and the expression is known at |
| -- compile time, see if the expression satisfies the predicate. |
| -- In the case of a static expression, this must be done even if |
| -- the predicate is not enabled (as per static expression rules). |
| |
| if Present (E) then |
| Check_Expression_Against_Static_Predicate (E, T); |
| end if; |
| |
| -- Do not perform further predicate-related checks unless |
| -- predicates are enabled for the subtype. |
| |
| if not Predicate_Enabled (T) then |
| null; |
| |
| -- If the type is a null record and there is no explicit initial |
| -- expression, no predicate check applies. |
| |
| elsif No (E) and then Is_Null_Record_Type (T) then |
| null; |
| |
| -- Do not generate a predicate check if the initialization expression |
| -- is a type conversion whose target subtype statically matches the |
| -- object's subtype because the conversion has been subjected to the |
| -- same check. This is a small optimization which avoids redundant |
| -- checks. |
| |
| elsif Present (E) |
| and then Nkind (E) in N_Type_Conversion |
| and then Subtypes_Statically_Match (Etype (Subtype_Mark (E)), T) |
| then |
| null; |
| |
| else |
| -- The check must be inserted after the expanded aggregate |
| -- expansion code, if any. |
| |
| declare |
| Check : constant Node_Id := |
| Make_Predicate_Check (T, New_Occurrence_Of (Id, Loc)); |
| |
| begin |
| if No (Next_Decl) then |
| Append_To (List_Containing (N), Check); |
| else |
| Insert_Before (Next_Decl, Check); |
| end if; |
| end; |
| end if; |
| end if; |
| |
| -- Case of unconstrained type |
| |
| if not Is_Definite_Subtype (T) then |
| |
| -- Nothing to do in deferred constant case |
| |
| if Constant_Present (N) and then No (E) then |
| null; |
| |
| -- Case of no initialization present |
| |
| elsif No (E) then |
| if No_Initialization (N) then |
| null; |
| |
| elsif Is_Class_Wide_Type (T) then |
| Error_Msg_N |
| ("initialization required in class-wide declaration", N); |
| |
| else |
| Error_Msg_N |
| ("unconstrained subtype not allowed (need initialization)", |
| Object_Definition (N)); |
| |
| if Is_Record_Type (T) and then Has_Discriminants (T) then |
| Error_Msg_N |
| ("\provide initial value or explicit discriminant values", |
| Object_Definition (N)); |
| |
| Error_Msg_NE |
| ("\or give default discriminant values for type&", |
| Object_Definition (N), T); |
| |
| elsif Is_Array_Type (T) then |
| Error_Msg_N |
| ("\provide initial value or explicit array bounds", |
| Object_Definition (N)); |
| end if; |
| end if; |
| |
| -- Case of initialization present but in error. Set initial |
| -- expression as absent (but do not make above complaints). |
| |
| elsif E = Error then |
| Set_Expression (N, Empty); |
| E := Empty; |
| |
| -- Case of initialization present |
| |
| else |
| -- Unconstrained variables not allowed in Ada 83 |
| |
| if Ada_Version = Ada_83 |
| and then not Constant_Present (N) |
| and then Comes_From_Source (Object_Definition (N)) |
| then |
| Error_Msg_N |
| ("(Ada 83) unconstrained variable not allowed", |
| Object_Definition (N)); |
| end if; |
| |
| -- Now we constrain the variable from the initializing expression |
| |
| -- If the expression is an aggregate, it has been expanded into |
| -- individual assignments. Retrieve the actual type from the |
| -- expanded construct. |
| |
| if Is_Array_Type (T) |
| and then No_Initialization (N) |
| and then Nkind (Original_Node (E)) = N_Aggregate |
| then |
| Act_T := Etype (E); |
| |
| -- In case of class-wide interface object declarations we delay |
| -- the generation of the equivalent record type declarations until |
| -- its expansion because there are cases in they are not required. |
| |
| elsif Is_Interface (T) then |
| null; |
| |
| -- If the type is an unchecked union, no subtype can be built from |
| -- the expression. Rewrite declaration as a renaming, which the |
| -- back-end can handle properly. This is a rather unusual case, |
| -- because most unchecked_union declarations have default values |
| -- for discriminants and are thus not indefinite. |
| |
| elsif Is_Unchecked_Union (T) then |
| if Constant_Present (N) or else Nkind (E) = N_Function_Call then |
| Mutate_Ekind (Id, E_Constant); |
| else |
| Mutate_Ekind (Id, E_Variable); |
| end if; |
| |
| -- If the expression is an aggregate it contains the required |
| -- discriminant values but it has not been resolved yet, so do |
| -- it now, and treat it as the initial expression of an object |
| -- declaration, rather than a renaming. |
| |
| if Nkind (E) = N_Aggregate then |
| Analyze_And_Resolve (E, T); |
| |
| else |
| Rewrite (N, |
| Make_Object_Renaming_Declaration (Loc, |
| Defining_Identifier => Id, |
| Subtype_Mark => New_Occurrence_Of (T, Loc), |
| Name => E)); |
| |
| Set_Renamed_Object (Id, E); |
| Freeze_Before (N, T); |
| Set_Is_Frozen (Id); |
| goto Leave; |
| end if; |
| |
| else |
| -- Ensure that the generated subtype has a unique external name |
| -- when the related object is public. This guarantees that the |
| -- subtype and its bounds will not be affected by switches or |
| -- pragmas that may offset the internal counter due to extra |
| -- generated code. |
| |
| if Is_Public (Id) then |
| Related_Id := Id; |
| else |
| Related_Id := Empty; |
| end if; |
| |
| -- If the object has an unconstrained array subtype with fixed |
| -- lower bound, then sliding to that bound may be needed. |
| |
| if Is_Fixed_Lower_Bound_Array_Subtype (T) then |
| Expand_Sliding_Conversion (E, T); |
| end if; |
| |
| if In_Spec_Expression and then In_Declare_Expr > 0 then |
| -- It is too early to be doing expansion-ish things, |
| -- so exit early. But we have to set Ekind (Id) now so |
| -- that subsequent uses of this entity are not rejected |
| -- via the same mechanism that (correctly) rejects |
| -- "X : Integer := X;". |
| |
| if Constant_Present (N) then |
| Mutate_Ekind (Id, E_Constant); |
| Set_Is_True_Constant (Id); |
| else |
| Mutate_Ekind (Id, E_Variable); |
| if Present (E) then |
| Set_Has_Initial_Value (Id); |
| end if; |
| end if; |
| |
| goto Leave; |
| end if; |
| |
| Expand_Subtype_From_Expr |
| (N => N, |
| Unc_Type => T, |
| Subtype_Indic => Object_Definition (N), |
| Exp => E, |
| Related_Id => Related_Id); |
| |
| Act_T := Find_Type_Of_Object (Object_Definition (N), N); |
| end if; |
| |
| if Act_T /= T then |
| declare |
| Full_View_Present : constant Boolean := |
| Is_Private_Type (Act_T) |
| and then Present (Full_View (Act_T)); |
| -- Propagate attributes to full view when needed |
| |
| begin |
| Set_Is_Constr_Subt_For_U_Nominal (Act_T); |
| |
| if Full_View_Present then |
| Set_Is_Constr_Subt_For_U_Nominal (Full_View (Act_T)); |
| end if; |
| |
| if Aliased_Present (N) then |
| Set_Is_Constr_Subt_For_UN_Aliased (Act_T); |
| |
| if Full_View_Present then |
| Set_Is_Constr_Subt_For_UN_Aliased (Full_View (Act_T)); |
| end if; |
| end if; |
| |
| Freeze_Before (N, Act_T); |
| end; |
| end if; |
| |
| Freeze_Before (N, T); |
| end if; |
| |
| elsif Is_Array_Type (T) |
| and then No_Initialization (N) |
| and then (Nkind (Original_Node (E)) = N_Aggregate |
| or else (Nkind (Original_Node (E)) = N_Qualified_Expression |
| and then Nkind (Original_Node (Expression |
| (Original_Node (E)))) = N_Aggregate)) |
| then |
| if not Is_Entity_Name (Object_Definition (N)) then |
| Act_T := Etype (E); |
| Check_Compile_Time_Size (Act_T); |
| end if; |
| |
| -- When the given object definition and the aggregate are specified |
| -- independently, and their lengths might differ do a length check. |
| -- This cannot happen if the aggregate is of the form (others =>...) |
| |
| if Nkind (E) = N_Raise_Constraint_Error then |
| |
| -- Aggregate is statically illegal. Place back in declaration |
| |
| Set_Expression (N, E); |
| Set_No_Initialization (N, False); |
| |
| elsif T = Etype (E) then |
| null; |
| |
| elsif Nkind (E) = N_Aggregate |
| and then Present (Component_Associations (E)) |
| and then Present (Choice_List (First (Component_Associations (E)))) |
| and then |
| Nkind (First (Choice_List (First (Component_Associations (E))))) = |
| N_Others_Choice |
| then |
| null; |
| |
| else |
| Apply_Length_Check (E, T); |
| end if; |
| |
| -- When possible, build the default subtype |
| |
| elsif Build_Default_Subtype_OK (T) then |
| if No (E) then |
| Act_T := Build_Default_Subtype (T, N); |
| else |
| -- Ada 2005: A limited object may be initialized by means of an |
| -- aggregate. If the type has default discriminants it has an |
| -- unconstrained nominal type, Its actual subtype will be obtained |
| -- from the aggregate, and not from the default discriminants. |
| |
| Act_T := Etype (E); |
| end if; |
| |
| Rewrite (Object_Definition (N), New_Occurrence_Of (Act_T, Loc)); |
| |
| elsif Nkind (E) = N_Function_Call |
| and then Constant_Present (N) |
| and then Has_Unconstrained_Elements (Etype (E)) |
| then |
| -- The back-end has problems with constants of a discriminated type |
| -- with defaults, if the initial value is a function call. We |
| -- generate an intermediate temporary that will receive a reference |
| -- to the result of the call. The initialization expression then |
| -- becomes a dereference of that temporary. |
| |
| Remove_Side_Effects (E); |
| |
| -- If this is a constant declaration of an unconstrained type and |
| -- the initialization is an aggregate, we can use the subtype of the |
| -- aggregate for the declared entity because it is immutable. |
| |
| elsif not Is_Constrained (T) |
| and then Has_Discriminants (T) |
| and then Constant_Present (N) |
| and then not Has_Unchecked_Union (T) |
| and then Nkind (E) = N_Aggregate |
| then |
| Act_T := Etype (E); |
| end if; |
| |
| -- Check No_Wide_Characters restriction |
| |
| Check_Wide_Character_Restriction (T, Object_Definition (N)); |
| |
| -- Indicate this is not set in source. Certainly true for constants, and |
| -- true for variables so far (will be reset for a variable if and when |
| -- we encounter a modification in the source). |
| |
| Set_Never_Set_In_Source (Id); |
| |
| -- Now establish the proper kind and type of the object |
| |
| if Ekind (Id) = E_Void then |
| Reinit_Field_To_Zero (Id, F_Next_Inlined_Subprogram); |
| end if; |
| |
| if Constant_Present (N) then |
| Mutate_Ekind (Id, E_Constant); |
| Set_Is_True_Constant (Id); |
| |
| else |
| Mutate_Ekind (Id, E_Variable); |
| |
| -- A variable is set as shared passive if it appears in a shared |
| -- passive package, and is at the outer level. This is not done for |
| -- entities generated during expansion, because those are always |
| -- manipulated locally. |
| |
| if Is_Shared_Passive (Current_Scope) |
| and then Is_Library_Level_Entity (Id) |
| and then Comes_From_Source (Id) |
| then |
| Set_Is_Shared_Passive (Id); |
| Check_Shared_Var (Id, T, N); |
| end if; |
| |
| -- Set Has_Initial_Value if initializing expression present. Note |
| -- that if there is no initializing expression, we leave the state |
| -- of this flag unchanged (usually it will be False, but notably in |
| -- the case of exception choice variables, it will already be true). |
| |
| if Present (E) then |
| Set_Has_Initial_Value (Id); |
| end if; |
| end if; |
| |
| -- Set the SPARK mode from the current context (may be overwritten later |
| -- with explicit pragma). |
| |
| Set_SPARK_Pragma (Id, SPARK_Mode_Pragma); |
| Set_SPARK_Pragma_Inherited (Id); |
| |
| -- Preserve relevant elaboration-related attributes of the context which |
| -- are no longer available or very expensive to recompute once analysis, |
| -- resolution, and expansion are over. |
| |
| Mark_Elaboration_Attributes |
| (N_Id => Id, |
| Checks => True, |
| Warnings => True); |
| |
| -- Initialize alignment and size and capture alignment setting |
| |
| Reinit_Alignment (Id); |
| Reinit_Esize (Id); |
| Set_Optimize_Alignment_Flags (Id); |
| |
| -- Deal with aliased case |
| |
| if Aliased_Present (N) then |
| Set_Is_Aliased (Id); |
| |
| -- AI12-001: All aliased objects are considered to be specified as |
| -- independently addressable (RM C.6(8.1/4)). |
| |
| Set_Is_Independent (Id); |
| |
| -- If the object is aliased and the type is unconstrained with |
| -- defaulted discriminants and there is no expression, then the |
| -- object is constrained by the defaults, so it is worthwhile |
| -- building the corresponding subtype. |
| |
| -- Ada 2005 (AI-363): If the aliased object is discriminated and |
| -- unconstrained, then only establish an actual subtype if the |
| -- nominal subtype is indefinite. In definite cases the object is |
| -- unconstrained in Ada 2005. |
| |
| if No (E) |
| and then Is_Record_Type (T) |
| and then not Is_Constrained (T) |
| and then Has_Discriminants (T) |
| and then (Ada_Version < Ada_2005 |
| or else not Is_Definite_Subtype (T)) |
| then |
| Set_Actual_Subtype (Id, Build_Default_Subtype (T, N)); |
| end if; |
| end if; |
| |
| -- Now we can set the type of the object |
| |
| Set_Etype (Id, Act_T); |
| |
| -- Non-constant object is marked to be treated as volatile if type is |
| -- volatile and we clear the Current_Value setting that may have been |
| -- set above. Doing so for constants isn't required and might interfere |
| -- with possible uses of the object as a static expression in contexts |
| -- incompatible with volatility (e.g. as a case-statement alternative). |
| |
| if Ekind (Id) /= E_Constant and then Treat_As_Volatile (Etype (Id)) then |
| Set_Treat_As_Volatile (Id); |
| Set_Current_Value (Id, Empty); |
| end if; |
| |
| -- Deal with controlled types |
| |
| if Has_Controlled_Component (Etype (Id)) |
| or else Is_Controlled (Etype (Id)) |
| then |
| if not Is_Library_Level_Entity (Id) then |
| Check_Restriction (No_Nested_Finalization, N); |
| else |
| Validate_Controlled_Object (Id); |
| end if; |
| end if; |
| |
| if Has_Task (Etype (Id)) then |
| Check_Restriction (No_Tasking, N); |
| |
| -- Deal with counting max tasks |
| |
| -- Nothing to do if inside a generic |
| |
| if Inside_A_Generic then |
| null; |
| |
| -- If library level entity, then count tasks |
| |
| elsif Is_Library_Level_Entity (Id) then |
| Check_Restriction (Max_Tasks, N, Count_Tasks (Etype (Id))); |
| |
| -- If not library level entity, then indicate we don't know max |
| -- tasks and also check task hierarchy restriction and blocking |
| -- operation (since starting a task is definitely blocking). |
| |
| else |
| Check_Restriction (Max_Tasks, N); |
| Check_Restriction (No_Task_Hierarchy, N); |
| Check_Potentially_Blocking_Operation (N); |
| end if; |
| |
| -- A rather specialized test. If we see two tasks being declared |
| -- of the same type in the same object declaration, and the task |
| -- has an entry with an address clause, we know that program error |
| -- will be raised at run time since we can't have two tasks with |
| -- entries at the same address. |
| |
| if Is_Task_Type (Etype (Id)) and then More_Ids (N) then |
| declare |
| E : Entity_Id; |
| |
| begin |
| E := First_Entity (Etype (Id)); |
| while Present (E) loop |
| if Ekind (E) = E_Entry |
| and then Present (Get_Attribute_Definition_Clause |
| (E, Attribute_Address)) |
| then |
| Error_Msg_Warn := SPARK_Mode /= On; |
| Error_Msg_N |
| ("more than one task with same entry address<<", N); |
| Error_Msg_N ("\Program_Error [<<", N); |
| Insert_Action (N, |
| Make_Raise_Program_Error (Loc, |
| Reason => PE_Duplicated_Entry_Address)); |
| exit; |
| end if; |
| |
| Next_Entity (E); |
| end loop; |
| end; |
| end if; |
| end if; |
| |
| -- Some simple constant-propagation: if the expression is a constant |
| -- string initialized with a literal, share the literal. This avoids |
| -- a run-time copy. |
| |
| if Present (E) |
| and then Is_Entity_Name (E) |
| and then Ekind (Entity (E)) = E_Constant |
| and then Base_Type (Etype (E)) = Standard_String |
| then |
| declare |
| Val : constant Node_Id := Constant_Value (Entity (E)); |
| begin |
| if Present (Val) and then Nkind (Val) = N_String_Literal then |
| Rewrite (E, New_Copy (Val)); |
| end if; |
| end; |
| end if; |
| |
| if Present (Prev_Entity) |
| and then Is_Frozen (Prev_Entity) |
| and then not Error_Posted (Id) |
| then |
| Error_Msg_N ("full constant declaration appears too late", N); |
| end if; |
| |
| Check_Eliminated (Id); |
| |
| -- Deal with setting In_Private_Part flag if in private part |
| |
| if Ekind (Scope (Id)) = E_Package |
| and then In_Private_Part (Scope (Id)) |
| then |
| Set_In_Private_Part (Id); |
| end if; |
| |
| <<Leave>> |
| -- Initialize the refined state of a variable here because this is a |
| -- common destination for legal and illegal object declarations. |
| |
| if Ekind (Id) = E_Variable then |
| Set_Encapsulating_State (Id, Empty); |
| end if; |
| |
| if Has_Aspects (N) then |
| Analyze_Aspect_Specifications (N, Id); |
| end if; |
| |
| Analyze_Dimension (N); |
| |
| -- Verify whether the object declaration introduces an illegal hidden |
| -- state within a package subject to a null abstract state. |
| |
| if Ekind (Id) = E_Variable then |
| Check_No_Hidden_State (Id); |
| end if; |
| |
| Restore_Ghost_Region (Saved_GM, Saved_IGR); |
| end Analyze_Object_Declaration; |
| |
| --------------------------- |
| -- Analyze_Others_Choice -- |
| --------------------------- |
| |
| -- Nothing to do for the others choice node itself, the semantic analysis |
| -- of the others choice will occur as part of the processing of the parent |
| |
| procedure Analyze_Others_Choice (N : Node_Id) is |
| pragma Warnings (Off, N); |
| begin |
| null; |
| end Analyze_Others_Choice; |
| |
| ------------------------------------------- |
| -- Analyze_Private_Extension_Declaration -- |
| ------------------------------------------- |
| |
| procedure Analyze_Private_Extension_Declaration (N : Node_Id) is |
| Indic : constant Node_Id := Subtype_Indication (N); |
| T : constant Entity_Id := Defining_Identifier (N); |
| Iface : Entity_Id; |
| Iface_Elmt : Elmt_Id; |
| Parent_Base : Entity_Id; |
| Parent_Type : Entity_Id; |
| |
| begin |
| -- Ada 2005 (AI-251): Decorate all names in list of ancestor interfaces |
| |
| if Is_Non_Empty_List (Interface_List (N)) then |
| declare |
| Intf : Node_Id; |
| T : Entity_Id; |
| |
| begin |
| Intf := First (Interface_List (N)); |
| while Present (Intf) loop |
| T := Find_Type_Of_Subtype_Indic (Intf); |
| |
| Diagnose_Interface (Intf, T); |
| Next (Intf); |
| end loop; |
| end; |
| end if; |
| |
| Generate_Definition (T); |
| |
| -- For other than Ada 2012, just enter the name in the current scope |
| |
| if Ada_Version < Ada_2012 then |
| Enter_Name (T); |
| |
| -- Ada 2012 (AI05-0162): Enter the name in the current scope handling |
| -- case of private type that completes an incomplete type. |
| |
| else |
| declare |
| Prev : Entity_Id; |
| |
| begin |
| Prev := Find_Type_Name (N); |
| |
| pragma Assert (Prev = T |
| or else (Ekind (Prev) = E_Incomplete_Type |
| and then Present (Full_View (Prev)) |
| and then Full_View (Prev) = T)); |
| end; |
| end if; |
| |
| Parent_Type := Find_Type_Of_Subtype_Indic (Indic); |
| Parent_Base := Base_Type (Parent_Type); |
| |
| if Parent_Type = Any_Type or else Etype (Parent_Type) = Any_Type then |
| Mutate_Ekind (T, Ekind (Parent_Type)); |
| Set_Etype (T, Any_Type); |
| goto Leave; |
| |
| elsif not Is_Tagged_Type (Parent_Type) then |
| Error_Msg_N |
| ("parent of type extension must be a tagged type", Indic); |
| goto Leave; |
| |
| elsif Ekind (Parent_Type) in E_Void | E_Incomplete_Type then |
| Error_Msg_N ("premature derivation of incomplete type", Indic); |
| goto Leave; |
| |
| elsif Is_Concurrent_Type (Parent_Type) then |
| Error_Msg_N |
| ("parent type of a private extension cannot be a synchronized " |
| & "tagged type (RM 3.9.1 (3/1))", N); |
| |
| Set_Etype (T, Any_Type); |
| Mutate_Ekind (T, E_Limited_Private_Type); |
| Set_Private_Dependents (T, New_Elmt_List); |
| Set_Error_Posted (T); |
| goto Leave; |
| end if; |
| |
| Check_Wide_Character_Restriction (Parent_Type, Indic); |
| |
| -- Perhaps the parent type should be changed to the class-wide type's |
| -- specific type in this case to prevent cascading errors ??? |
| |
| if Is_Class_Wide_Type (Parent_Type) then |
| Error_Msg_N |
| ("parent of type extension must not be a class-wide type", Indic); |
| goto Leave; |
| end if; |
| |
| if (not Is_Package_Or_Generic_Package (Current_Scope) |
| and then Nkind (Parent (N)) /= N_Generic_Subprogram_Declaration) |
| or else In_Private_Part (Current_Scope) |
| then |
| Error_Msg_N ("invalid context for private extension", N); |
| end if; |
| |
| -- Set common attributes |
| |
| Set_Is_Pure (T, Is_Pure (Current_Scope)); |
| Set_Scope (T, Current_Scope); |
| Mutate_Ekind (T, E_Record_Type_With_Private); |
| Reinit_Size_Align (T); |
| Set_Default_SSO (T); |
| Set_No_Reordering (T, No_Component_Reordering); |
| |
| Set_Etype (T, Parent_Base); |
| Propagate_Concurrent_Flags (T, Parent_Base); |
| |
| Set_Convention (T, Convention (Parent_Type)); |
| Set_First_Rep_Item (T, First_Rep_Item (Parent_Type)); |
| Set_Is_First_Subtype (T); |
| Make_Class_Wide_Type (T); |
| |
| -- Set the SPARK mode from the current context |
| |
| Set_SPARK_Pragma (T, SPARK_Mode_Pragma); |
| Set_SPARK_Pragma_Inherited (T); |
| |
| if Unknown_Discriminants_Present (N) then |
| Set_Discriminant_Constraint (T, No_Elist); |
| end if; |
| |
| Build_Derived_Record_Type (N, Parent_Type, T); |
| |
| -- A private extension inherits the Default_Initial_Condition pragma |
| -- coming from any parent type within the derivation chain. |
| |
| if Has_DIC (Parent_Type) then |
| Set_Has_Inherited_DIC (T); |
| end if; |
| |
| -- A private extension inherits any class-wide invariants coming from a |
| -- parent type or an interface. Note that the invariant procedure of the |
| -- parent type should not be inherited because the private extension may |
| -- define invariants of its own. |
| |
| if Has_Inherited_Invariants (Parent_Type) |
| or else Has_Inheritable_Invariants (Parent_Type) |
| then |
| Set_Has_Inherited_Invariants (T); |
| |
| elsif Present (Interfaces (T)) then |
| Iface_Elmt := First_Elmt (Interfaces (T)); |
| while Present (Iface_Elmt) loop |
| Iface := Node (Iface_Elmt); |
| |
| if Has_Inheritable_Invariants (Iface) then |
| Set_Has_Inherited_Invariants (T); |
| exit; |
| end if; |
| |
| Next_Elmt (Iface_Elmt); |
| end loop; |
| end if; |
| |
| -- Ada 2005 (AI-443): Synchronized private extension or a rewritten |
| -- synchronized formal derived type. |
| |
| if Ada_Version >= Ada_2005 and then Synchronized_Present (N) then |
| Set_Is_Limited_Record (T); |
| |
| -- Formal derived type case |
| |
| if Is_Generic_Type (T) then |
| |
| -- The parent must be a tagged limited type or a synchronized |
| -- interface. |
| |
| if (not Is_Tagged_Type (Parent_Type) |
| or else not Is_Limited_Type (Parent_Type)) |
| and then |
| (not Is_Interface (Parent_Type) |
| or else not Is_Synchronized_Interface (Parent_Type)) |
| then |
| Error_Msg_NE |
| ("parent type of & must be tagged limited or synchronized", |
| N, T); |
| end if; |
| |
| -- The progenitors (if any) must be limited or synchronized |
| -- interfaces. |
| |
| if Present (Interfaces (T)) then |
| Iface_Elmt := First_Elmt (Interfaces (T)); |
| while Present (Iface_Elmt) loop |
| Iface := Node (Iface_Elmt); |
| |
| if not Is_Limited_Interface (Iface) |
| and then not Is_Synchronized_Interface (Iface) |
| then |
| Error_Msg_NE |
| ("progenitor & must be limited or synchronized", |
| N, Iface); |
| end if; |
| |
| Next_Elmt (Iface_Elmt); |
| end loop; |
| end if; |
| |
| -- Regular derived extension, the parent must be a limited or |
| -- synchronized interface. |
| |
| else |
| if not Is_Interface (Parent_Type) |
| or else (not Is_Limited_Interface (Parent_Type) |
| and then not Is_Synchronized_Interface (Parent_Type)) |
| then |
| Error_Msg_NE |
| ("parent type of & must be limited interface", N, T); |
| end if; |
| end if; |
| |
| -- A consequence of 3.9.4 (6/2) and 7.3 (7.2/2) is that a private |
| -- extension with a synchronized parent must be explicitly declared |
| -- synchronized, because the full view will be a synchronized type. |
| -- This must be checked before the check for limited types below, |
| -- to ensure that types declared limited are not allowed to extend |
| -- synchronized interfaces. |
| |
| elsif Is_Interface (Parent_Type) |
| and then Is_Synchronized_Interface (Parent_Type) |
| and then not Synchronized_Present (N) |
| then |
| Error_Msg_NE |
| ("private extension of& must be explicitly synchronized", |
| N, Parent_Type); |
| |
| elsif Limited_Present (N) then |
| Set_Is_Limited_Record (T); |
| |
| if not Is_Limited_Type (Parent_Type) |
| and then |
| (not Is_Interface (Parent_Type) |
| or else not Is_Limited_Interface (Parent_Type)) |
| then |
| Error_Msg_NE ("parent type& of limited extension must be limited", |
| N, Parent_Type); |
| end if; |
| end if; |
| |
| -- Remember that its parent type has a private extension. Used to warn |
| -- on public primitives of the parent type defined after its private |
| -- extensions (see Check_Dispatching_Operation). |
| |
| Set_Has_Private_Extension (Parent_Type); |
| |
| <<Leave>> |
| if Has_Aspects (N) then |
| Analyze_Aspect_Specifications (N, T); |
| end if; |
| end Analyze_Private_Extension_Declaration; |
| |
| --------------------------------- |
| -- Analyze_Subtype_Declaration -- |
| --------------------------------- |
| |
| procedure Analyze_Subtype_Declaration |
| (N : Node_Id; |
| Skip : Boolean := False) |
| is |
| Id : constant Entity_Id := Defining_Identifier (N); |
| T : Entity_Id; |
| |
| begin |
| Generate_Definition (Id); |
| Set_Is_Pure (Id, Is_Pure (Current_Scope)); |
| Reinit_Size_Align (Id); |
| |
| -- The following guard condition on Enter_Name is to handle cases where |
| -- the defining identifier has already been entered into the scope but |
| -- the declaration as a whole needs to be analyzed. |
| |
| -- This case in particular happens for derived enumeration types. The |
| -- derived enumeration type is processed as an inserted enumeration type |
| -- declaration followed by a rewritten subtype declaration. The defining |
| -- identifier, however, is entered into the name scope very early in the |
| -- processing of the original type declaration and therefore needs to be |
| -- avoided here, when the created subtype declaration is analyzed. (See |
| -- Build_Derived_Types) |
| |
| -- This also happens when the full view of a private type is derived |
| -- type with constraints. In this case the entity has been introduced |
| -- in the private declaration. |
| |
| -- Finally this happens in some complex cases when validity checks are |
| -- enabled, where the same subtype declaration may be analyzed twice. |
| -- This can happen if the subtype is created by the preanalysis of |
| -- an attribute that gives the range of a loop statement, and the loop |
| -- itself appears within an if_statement that will be rewritten during |
| -- expansion. |
| |
| if Skip |
| or else (Present (Etype (Id)) |
| and then (Is_Private_Type (Etype (Id)) |
| or else Is_Task_Type (Etype (Id)) |
| or else Is_Rewrite_Substitution (N))) |
| then |
| null; |
| |
| elsif Current_Entity (Id) = Id then |
| null; |
| |
| else |
| Enter_Name (Id); |
| end if; |
| |
| T := Process_Subtype (Subtype_Indication (N), N, Id, 'P'); |
| |
| -- Class-wide equivalent types of records with unknown discriminants |
| -- involve the generation of an itype which serves as the private view |
| -- of a constrained record subtype. In such cases the base type of the |
| -- current subtype we are processing is the private itype. Use the full |
| -- of the private itype when decorating various attributes. |
| |
| if Is_Itype (T) |
| and then Is_Private_Type (T) |
| and then Present (Full_View (T)) |
| then |
| T := Full_View (T); |
| end if; |
| |
| -- Inherit common attributes |
| |
| Set_Is_Volatile (Id, Is_Volatile (T)); |
| Set_Treat_As_Volatile (Id, Treat_As_Volatile (T)); |
| Set_Is_Generic_Type (Id, Is_Generic_Type (Base_Type (T))); |
| Set_Convention (Id, Convention (T)); |
| |
| -- If ancestor has predicates then so does the subtype, and in addition |
| -- we must delay the freeze to properly arrange predicate inheritance. |
| |
| -- The Ancestor_Type test is really unpleasant, there seem to be cases |
| -- in which T = ID, so the above tests and assignments do nothing??? |
| |
| if Has_Predicates (T) |
| or else (Present (Ancestor_Subtype (T)) |
| and then Has_Predicates (Ancestor_Subtype (T))) |
| then |
| Set_Has_Predicates (Id); |
| Set_Has_Delayed_Freeze (Id); |
| |
| -- Generated subtypes inherit the predicate function from the parent |
| -- (no aspects to examine on the generated declaration). |
| |
| if not Comes_From_Source (N) then |
| Mutate_Ekind (Id, Ekind (T)); |
| |
| if Present (Predicate_Function (Id)) then |
| null; |
| |
| elsif Present (Predicate_Function (T)) then |
| Set_Predicate_Function (Id, Predicate_Function (T)); |
| |
| elsif Present (Ancestor_Subtype (T)) |
| and then Present (Predicate_Function (Ancestor_Subtype (T))) |
| then |
| Set_Predicate_Function (Id, |
| Predicate_Function (Ancestor_Subtype (T))); |
| end if; |
| end if; |
| end if; |
| |
| -- In the case where there is no constraint given in the subtype |
| -- indication, Process_Subtype just returns the Subtype_Mark, so its |
| -- semantic attributes must be established here. |
| |
| if Nkind (Subtype_Indication (N)) /= N_Subtype_Indication then |
| Set_Etype (Id, Base_Type (T)); |
| |
| case Ekind (T) is |
| when Array_Kind => |
| Mutate_Ekind (Id, E_Array_Subtype); |
| Copy_Array_Subtype_Attributes (Id, T); |
| Set_Packed_Array_Impl_Type (Id, Packed_Array_Impl_Type (T)); |
| |
| when Decimal_Fixed_Point_Kind => |
| Mutate_Ekind (Id, E_Decimal_Fixed_Point_Subtype); |
| Set_Digits_Value (Id, Digits_Value (T)); |
| Set_Delta_Value (Id, Delta_Value (T)); |
| Set_Scale_Value (Id, Scale_Value (T)); |
| Set_Small_Value (Id, Small_Value (T)); |
| Set_Scalar_Range (Id, Scalar_Range (T)); |
| Set_Machine_Radix_10 (Id, Machine_Radix_10 (T)); |
| Set_Is_Constrained (Id, Is_Constrained (T)); |
| Set_Is_Known_Valid (Id, Is_Known_Valid (T)); |
| Copy_RM_Size (To => Id, From => T); |
| |
| when Enumeration_Kind => |
| Mutate_Ekind (Id, E_Enumeration_Subtype); |
| Set_First_Literal (Id, First_Literal (Base_Type (T))); |
| Set_Scalar_Range (Id, Scalar_Range (T)); |
| Set_Is_Character_Type (Id, Is_Character_Type (T)); |
| Set_Is_Constrained (Id, Is_Constrained (T)); |
| Set_Is_Known_Valid (Id, Is_Known_Valid (T)); |
| Copy_RM_Size (To => Id, From => T); |
| |
| when Ordinary_Fixed_Point_Kind => |
| Mutate_Ekind (Id, E_Ordinary_Fixed_Point_Subtype); |
| Set_Scalar_Range (Id, Scalar_Range (T)); |
| Set_Small_Value (Id, Small_Value (T)); |
| Set_Delta_Value (Id, Delta_Value (T)); |
| Set_Is_Constrained (Id, Is_Constrained (T)); |
| Set_Is_Known_Valid (Id, Is_Known_Valid (T)); |
| Copy_RM_Size (To => Id, From => T); |
| |
| when Float_Kind => |
| Mutate_Ekind (Id, E_Floating_Point_Subtype); |
| Set_Scalar_Range (Id, Scalar_Range (T)); |
| Set_Digits_Value (Id, Digits_Value (T)); |
| Set_Is_Constrained (Id, Is_Constrained (T)); |
| |
| -- If the floating point type has dimensions, these will be |
| -- inherited subsequently when Analyze_Dimensions is called. |
| |
| when Signed_Integer_Kind => |
| Mutate_Ekind (Id, E_Signed_Integer_Subtype); |
| Set_Scalar_Range (Id, Scalar_Range (T)); |
| Set_Is_Constrained (Id, Is_Constrained (T)); |
| Set_Is_Known_Valid (Id, Is_Known_Valid (T)); |
| Copy_RM_Size (To => Id, From => T); |
| |
| when Modular_Integer_Kind => |
| Mutate_Ekind (Id, E_Modular_Integer_Subtype); |
| Set_Scalar_Range (Id, Scalar_Range (T)); |
| Set_Is_Constrained (Id, Is_Constrained (T)); |
| Set_Is_Known_Valid (Id, Is_Known_Valid (T)); |
| Copy_RM_Size (To => Id, From => T); |
| |
| when Class_Wide_Kind => |
| Mutate_Ekind (Id, E_Class_Wide_Subtype); |
| Set_Class_Wide_Type (Id, Class_Wide_Type (T)); |
| Set_Cloned_Subtype (Id, T); |
| Set_Is_Tagged_Type (Id, True); |
| Set_Is_Limited_Record (Id, Is_Limited_Record (T)); |
| Set_Has_Unknown_Discriminants |
| (Id, True); |
| Set_No_Tagged_Streams_Pragma |
| (Id, No_Tagged_Streams_Pragma (T)); |
| |
| if Ekind (T) = E_Class_Wide_Subtype then |
| Set_Equivalent_Type (Id, Equivalent_Type (T)); |
| end if; |
| |
| when E_Record_Subtype |
| | E_Record_Type |
| => |
| Mutate_Ekind (Id, E_Record_Subtype); |
| |
| -- Subtype declarations introduced for formal type parameters |
| -- in generic instantiations should inherit the Size value of |
| -- the type they rename. |
| |
| if Present (Generic_Parent_Type (N)) then |
| Copy_RM_Size (To => Id, From => T); |
| end if; |
| |
| if Ekind (T) = E_Record_Subtype |
| and then Present (Cloned_Subtype (T)) |
| then |
| Set_Cloned_Subtype (Id, Cloned_Subtype (T)); |
| else |
| Set_Cloned_Subtype (Id, T); |
| end if; |
| |
| Set_First_Entity (Id, First_Entity (T)); |
| Set_Last_Entity (Id, Last_Entity (T)); |
| Set_Has_Discriminants (Id, Has_Discriminants (T)); |
| Set_Is_Constrained (Id, Is_Constrained (T)); |
| Set_Is_Limited_Record (Id, Is_Limited_Record (T)); |
| Set_Has_Implicit_Dereference |
| (Id, Has_Implicit_Dereference (T)); |
| Set_Has_Unknown_Discriminants |
| (Id, Has_Unknown_Discriminants (T)); |
| |
| if Has_Discriminants (T) then |
| Set_Discriminant_Constraint |
| (Id, Discriminant_Constraint (T)); |
| Set_Stored_Constraint_From_Discriminant_Constraint (Id); |
| |
| elsif Has_Unknown_Discriminants (Id) then |
| Set_Discriminant_Constraint (Id, No_Elist); |
| end if; |
| |
| if Is_Tagged_Type (T) then |
| Set_Is_Tagged_Type (Id, True); |
| Set_No_Tagged_Streams_Pragma |
| (Id, No_Tagged_Streams_Pragma (T)); |
| Set_Is_Abstract_Type (Id, Is_Abstract_Type (T)); |
| Set_Direct_Primitive_Operations |
| (Id, Direct_Primitive_Operations (T)); |
| Set_Class_Wide_Type (Id, Class_Wide_Type (T)); |
| |
| if Is_Interface (T) then |
| Set_Is_Interface (Id); |
| Set_Is_Limited_Interface (Id, Is_Limited_Interface (T)); |
| end if; |
| end if; |
| |
| when Private_Kind => |
| Mutate_Ekind (Id, Subtype_Kind (Ekind (T))); |
| Set_Has_Discriminants (Id, Has_Discriminants (T)); |
| Set_Is_Constrained (Id, Is_Constrained (T)); |
| Set_First_Entity (Id, First_Entity (T)); |
| Set_Last_Entity (Id, Last_Entity (T)); |
| Set_Private_Dependents (Id, New_Elmt_List); |
| Set_Is_Limited_Record (Id, Is_Limited_Record (T)); |
| Set_Has_Implicit_Dereference |
| (Id, Has_Implicit_Dereference (T)); |
| Set_Has_Unknown_Discriminants |
| (Id, Has_Unknown_Discriminants (T)); |
| Set_Known_To_Have_Preelab_Init |
| (Id, Known_To_Have_Preelab_Init (T)); |
| |
| if Is_Tagged_Type (T) then |
| Set_Is_Tagged_Type (Id); |
| Set_No_Tagged_Streams_Pragma (Id, |
| No_Tagged_Streams_Pragma (T)); |
| Set_Is_Abstract_Type (Id, Is_Abstract_Type (T)); |
| Set_Class_Wide_Type (Id, Class_Wide_Type (T)); |
| Set_Direct_Primitive_Operations (Id, |
| Direct_Primitive_Operations (T)); |
| end if; |
| |
| -- In general the attributes of the subtype of a private type |
| -- are the attributes of the partial view of parent. However, |
| -- the full view may be a discriminated type, and the subtype |
| -- must share the discriminant constraint to generate correct |
| -- calls to initialization procedures. |
| |
| if Has_Discriminants (T) then |
| Set_Discriminant_Constraint |
| (Id, Discriminant_Constraint (T)); |
| Set_Stored_Constraint_From_Discriminant_Constraint (Id); |
| |
| elsif Present (Full_View (T)) |
| and then Has_Discriminants (Full_View (T)) |
| then |
| Set_Discriminant_Constraint |
| (Id, Discriminant_Constraint (Full_View (T))); |
| Set_Stored_Constraint_From_Discriminant_Constraint (Id); |
| |
| -- This would seem semantically correct, but apparently |
| -- generates spurious errors about missing components ??? |
| |
| -- Set_Has_Discriminants (Id); |
| end if; |
| |
| Prepare_Private_Subtype_Completion (Id, N); |
| |
| -- If this is the subtype of a constrained private type with |
| -- discriminants that has got a full view and we also have |
| -- built a completion just above, show that the completion |
| -- is a clone of the full view to the back-end. |
| |
| if Has_Discriminants (T) |
| and then not Has_Unknown_Discriminants (T) |
| and then not Is_Empty_Elmt_List (Discriminant_Constraint (T)) |
| and then Present (Full_View (T)) |
| and then Present (Full_View (Id)) |
| then |
| Set_Cloned_Subtype (Full_View (Id), Full_View (T)); |
| end if; |
| |
| when Access_Kind => |
| Mutate_Ekind (Id, E_Access_Subtype); |
| Set_Is_Constrained (Id, Is_Constrained (T)); |
| Set_Is_Access_Constant |
| (Id, Is_Access_Constant (T)); |
| Set_Directly_Designated_Type |
| (Id, Designated_Type (T)); |
| Set_Can_Never_Be_Null (Id, Can_Never_Be_Null (T)); |
| |
| -- A Pure library_item must not contain the declaration of a |
| -- named access type, except within a subprogram, generic |
| -- subprogram, task unit, or protected unit, or if it has |
| -- a specified Storage_Size of zero (RM05-10.2.1(15.4-15.5)). |
| |
| if Comes_From_Source (Id) |
| and then In_Pure_Unit |
| and then not In_Subprogram_Task_Protected_Unit |
| and then not No_Pool_Assigned (Id) |
| then |
| Error_Msg_N |
| ("named access types not allowed in pure unit", N); |
| end if; |
| |
| when Concurrent_Kind => |
| Mutate_Ekind (Id, Subtype_Kind (Ekind (T))); |
| Set_Corresponding_Record_Type (Id, |
| Corresponding_Record_Type (T)); |
| Set_First_Entity (Id, First_Entity (T)); |
| Set_First_Private_Entity (Id, First_Private_Entity (T)); |
| Set_Has_Discriminants (Id, Has_Discriminants (T)); |
| Set_Is_Constrained (Id, Is_Constrained (T)); |
| Set_Is_Tagged_Type (Id, Is_Tagged_Type (T)); |
| Set_Last_Entity (Id, Last_Entity (T)); |
| |
| if Is_Tagged_Type (T) then |
| Set_No_Tagged_Streams_Pragma |
| (Id, No_Tagged_Streams_Pragma (T)); |
| end if; |
| |
| if Has_Discriminants (T) then |
| Set_Discriminant_Constraint |
| (Id, Discriminant_Constraint (T)); |
| Set_Stored_Constraint_From_Discriminant_Constraint (Id); |
| end if; |
| |
| when Incomplete_Kind => |
| if Ada_Version >= Ada_2005 then |
| |
| -- In Ada 2005 an incomplete type can be explicitly tagged: |
| -- propagate indication. Note that we also have to include |
| -- subtypes for Ada 2012 extended use of incomplete types. |
| |
| Mutate_Ekind (Id, E_Incomplete_Subtype); |
| Set_Is_Tagged_Type (Id, Is_Tagged_Type (T)); |
| Set_Private_Dependents (Id, New_Elmt_List); |
| |
| if Is_Tagged_Type (Id) then |
| Set_No_Tagged_Streams_Pragma |
| (Id, No_Tagged_Streams_Pragma (T)); |
| end if; |
| |
| -- For tagged types, or when prefixed-call syntax is allowed |
| -- for untagged types, initialize the list of primitive |
| -- operations to an empty list. |
| |
| if Is_Tagged_Type (Id) |
| or else Core_Extensions_Allowed |
| then |
| Set_Direct_Primitive_Operations (Id, New_Elmt_List); |
| end if; |
| |
| -- Ada 2005 (AI-412): Decorate an incomplete subtype of an |
| -- incomplete type visible through a limited with clause. |
| |
| if From_Limited_With (T) |
| and then Present (Non_Limited_View (T)) |
| then |
| Set_From_Limited_With (Id); |
| Set_Non_Limited_View (Id, Non_Limited_View (T)); |
| |
| -- Ada 2005 (AI-412): Add the regular incomplete subtype |
| -- to the private dependents of the original incomplete |
| -- type for future transformation. |
| |
| else |
| Append_Elmt (Id, Private_Dependents (T)); |
| end if; |
| |
| -- If the subtype name denotes an incomplete type an error |
| -- was already reported by Process_Subtype. |
| |
| else |
| Set_Etype (Id, Any_Type); |
| end if; |
| |
| when others => |
| raise Program_Error; |
| end case; |
| |
| -- If there is no constraint in the subtype indication, the |
| -- declared entity inherits predicates from the parent. |
| |
| Inherit_Predicate_Flags (Id, T); |
| end if; |
| |
| if Etype (Id) = Any_Type then |
| goto Leave; |
| end if; |
| |
| -- When prefixed calls are enabled for untagged types, the subtype |
| -- shares the primitive operations of its base type. Do this even |
| -- when Extensions_Allowed is False to issue better error messages. |
| |
| Set_Direct_Primitive_Operations |
| (Id, Direct_Primitive_Operations (Base_Type (T))); |
| |
| -- Some common processing on all types |
| |
| Set_Size_Info (Id, T); |
| Set_First_Rep_Item (Id, First_Rep_Item (T)); |
| |
| -- If the parent type is a generic actual, so is the subtype. This may |
| -- happen in a nested instance. Why Comes_From_Source test??? |
| |
| if not Comes_From_Source (N) then |
| Set_Is_Generic_Actual_Type (Id, Is_Generic_Actual_Type (T)); |
| end if; |
| |
| -- If this is a subtype declaration for an actual in an instance, |
| -- inherit static and dynamic predicates if any. |
| |
| -- If declaration has no aspect specifications, inherit predicate |
| -- info as well. Unclear how to handle the case of both specified |
| -- and inherited predicates ??? Other inherited aspects, such as |
| -- invariants, should be OK, but the combination with later pragmas |
| -- may also require special merging. |
| |
| if Has_Predicates (T) |
| and then Present (Predicate_Function (T)) |
| and then |
| ((In_Instance and then not Comes_From_Source (N)) |
| or else No (Aspect_Specifications (N))) |
| then |
| -- Inherit Subprograms_For_Type from the full view, if present |
| |
| if Present (Full_View (T)) |
| and then Present (Subprograms_For_Type (Full_View (T))) |
| then |
| Set_Subprograms_For_Type |
| (Id, Subprograms_For_Type (Full_View (T))); |
| else |
| Set_Subprograms_For_Type (Id, Subprograms_For_Type (T)); |
| end if; |
| |
| -- If the current declaration created both a private and a full view, |
| -- then propagate Predicate_Function to the latter as well. |
| |
| if Present (Full_View (Id)) |
| and then No (Predicate_Function (Full_View (Id))) |
| then |
| Set_Subprograms_For_Type |
| (Full_View (Id), Subprograms_For_Type (Id)); |
| end if; |
| |
| if Has_Static_Predicate (T) then |
| Set_Has_Static_Predicate (Id); |
| Set_Static_Discrete_Predicate (Id, Static_Discrete_Predicate (T)); |
| end if; |
| end if; |
| |
| -- If the base type is a scalar type, or else if there is no |
| -- constraint, the atomic flag is inherited by the subtype. |
| -- Ditto for the Independent aspect. |
| |
| if Is_Scalar_Type (Id) |
| or else Is_Entity_Name (Subtype_Indication (N)) |
| then |
| Set_Is_Atomic (Id, Is_Atomic (T)); |
| Set_Is_Independent (Id, Is_Independent (T)); |
| end if; |
| |
| -- Remaining processing depends on characteristics of base type |
| |
| T := Etype (Id); |
| |
| Set_Is_Immediately_Visible (Id, True); |
| Set_Depends_On_Private (Id, Has_Private_Component (T)); |
| Set_Is_Descendant_Of_Address (Id, Is_Descendant_Of_Address (T)); |
| |
| if Is_Interface (T) then |
| Set_Is_Interface (Id); |
| Set_Is_Limited_Interface (Id, Is_Limited_Interface (T)); |
| end if; |
| |
| if Present (Generic_Parent_Type (N)) |
| and then |
| (Nkind (Parent (Generic_Parent_Type (N))) /= |
| N_Formal_Type_Declaration |
| or else Nkind (Formal_Type_Definition |
| (Parent (Generic_Parent_Type (N)))) /= |
| N_Formal_Private_Type_Definition) |
| then |
| if Is_Tagged_Type (Id) then |
| |
| -- If this is a generic actual subtype for a synchronized type, |
| -- the primitive operations are those of the corresponding record |
| -- for which there is a separate subtype declaration. |
| |
| if Is_Concurrent_Type (Id) then |
| null; |
| elsif Is_Class_Wide_Type (Id) then |
| Derive_Subprograms (Generic_Parent_Type (N), Id, Etype (T)); |
| else |
| Derive_Subprograms (Generic_Parent_Type (N), Id, T); |
| end if; |
| |
| elsif Scope (Etype (Id)) /= Standard_Standard then |
| Derive_Subprograms (Generic_Parent_Type (N), Id); |
| end if; |
| end if; |
| |
| if Is_Private_Type (T) and then Present (Full_View (T)) then |
| Conditional_Delay (Id, Full_View (T)); |
| |
| -- The subtypes of components or subcomponents of protected types |
| -- do not need freeze nodes, which would otherwise appear in the |
| -- wrong scope (before the freeze node for the protected type). The |
| -- proper subtypes are those of the subcomponents of the corresponding |
| -- record. |
| |
| elsif Ekind (Scope (Id)) /= E_Protected_Type |
| and then Present (Scope (Scope (Id))) -- error defense |
| and then Ekind (Scope (Scope (Id))) /= E_Protected_Type |
| then |
| Conditional_Delay (Id, T); |
| end if; |
| |
| -- If we have a subtype of an incomplete type whose full type is a |
| -- derived numeric type, we need to have a freeze node for the subtype. |
| -- Otherwise gigi will complain while computing the (static) bounds of |
| -- the subtype. |
| |
| if Is_Itype (T) |
| and then Is_Elementary_Type (Id) |
| and then Etype (Id) /= Id |
| then |
| declare |
| Partial : constant Entity_Id := |
| Incomplete_Or_Partial_View (First_Subtype (Id)); |
| begin |
| if Present (Partial) |
| and then Ekind (Partial) = E_Incomplete_Type |
| then |
| Set_Has_Delayed_Freeze (Id); |
| end if; |
| end; |
| end if; |
| |
| -- Check that Constraint_Error is raised for a scalar subtype indication |
| -- when the lower or upper bound of a non-null range lies outside the |
| -- range of the type mark. Likewise for an array subtype, but check the |
| -- compatibility for each index. |
| |
| if Nkind (Subtype_Indication (N)) = N_Subtype_Indication then |
| declare |
| Indic_Typ : constant Entity_Id := |
| Underlying_Type (Etype (Subtype_Mark (Subtype_Indication (N)))); |
| Subt_Index : Node_Id; |
| Target_Index : Node_Id; |
| |
| begin |
| if Is_Scalar_Type (Etype (Id)) |
| and then Scalar_Range (Id) /= Scalar_Range (Indic_Typ) |
| then |
| Apply_Range_Check (Scalar_Range (Id), Indic_Typ); |
| |
| elsif Is_Array_Type (Etype (Id)) |
| and then Present (First_Index (Id)) |
| then |
| Subt_Index := First_Index (Id); |
| Target_Index := First_Index (Indic_Typ); |
| |
| while Present (Subt_Index) loop |
| if ((Nkind (Subt_Index) in N_Expanded_Name | N_Identifier |
| and then Is_Scalar_Type (Entity (Subt_Index))) |
| or else Nkind (Subt_Index) = N_Subtype_Indication) |
| and then |
| Nkind (Scalar_Range (Etype (Subt_Index))) = N_Range |
| then |
| Apply_Range_Check |
| (Scalar_Range (Etype (Subt_Index)), |
| Etype (Target_Index), |
| Insert_Node => N); |
| end if; |
| |
| Next_Index (Subt_Index); |
| Next_Index (Target_Index); |
| end loop; |
| end if; |
| end; |
| end if; |
| |
| Set_Optimize_Alignment_Flags (Id); |
| Check_Eliminated (Id); |
| |
| <<Leave>> |
| if Has_Aspects (N) then |
| Analyze_Aspect_Specifications (N, Id); |
| end if; |
| |
| Analyze_Dimension (N); |
| |
| -- Check No_Dynamic_Sized_Objects restriction, which disallows subtype |
| -- indications on composite types where the constraints are dynamic. |
| -- Note that object declarations and aggregates generate implicit |
| -- subtype declarations, which this covers. One special case is that the |
| -- implicitly generated "=" for discriminated types includes an |
| -- offending subtype declaration, which is harmless, so we ignore it |
| -- here. |
| |
| if Nkind (Subtype_Indication (N)) = N_Subtype_Indication then |
| declare |
| Cstr : constant Node_Id := Constraint (Subtype_Indication (N)); |
| begin |
| if Nkind (Cstr) = N_Index_Or_Discriminant_Constraint |
| and then not (Is_Internal (Id) |
| and then Is_TSS (Scope (Id), |
| TSS_Composite_Equality)) |
| and then not Within_Init_Proc |
| and then not All_Composite_Constraints_Static (Cstr) |
| then |
| Check_Restriction (No_Dynamic_Sized_Objects, Cstr); |
| end if; |
| end; |
| end if; |
| end Analyze_Subtype_Declaration; |
| |
| -------------------------------- |
| -- Analyze_Subtype_Indication -- |
| -------------------------------- |
| |
| procedure Analyze_Subtype_Indication (N : Node_Id) is |
| T : constant Entity_Id := Subtype_Mark (N); |
| R : constant Node_Id := Range_Expression (Constraint (N)); |
| |
| begin |
| Analyze (T); |
| |
| if R = Error then |
| Set_Error_Posted (R); |
| Set_Error_Posted (T); |
| else |
| Analyze (R); |
| Set_Etype (N, Etype (R)); |
| Resolve (R, Entity (T)); |
| end if; |
| end Analyze_Subtype_Indication; |
| |
| -------------------------- |
| -- Analyze_Variant_Part -- |
| -------------------------- |
| |
| procedure Analyze_Variant_Part (N : Node_Id) is |
| Discr_Name : Node_Id; |
| Discr_Type : Entity_Id; |
| |
| procedure Process_Variant (A : Node_Id); |
| -- Analyze declarations for a single variant |
| |
| package Analyze_Variant_Choices is |
| new Generic_Analyze_Choices (Process_Variant); |
| use Analyze_Variant_Choices; |
| |
| --------------------- |
| -- Process_Variant -- |
| --------------------- |
| |
| procedure Process_Variant (A : Node_Id) is |
| CL : constant Node_Id := Component_List (A); |
| begin |
| if not Null_Present (CL) then |
| Analyze_Declarations (Component_Items (CL)); |
| |
| if Present (Variant_Part (CL)) then |
| Analyze (Variant_Part (CL)); |
| end if; |
| end if; |
| end Process_Variant; |
| |
| -- Start of processing for Analyze_Variant_Part |
| |
| begin |
| Discr_Name := Name (N); |
| Analyze (Discr_Name); |
| |
| -- If Discr_Name bad, get out (prevent cascaded errors) |
| |
| if Etype (Discr_Name) = Any_Type then |
| return; |
| end if; |
| |
| -- Check invalid discriminant in variant part |
| |
| if Ekind (Entity (Discr_Name)) /= E_Discriminant then |
| Error_Msg_N ("invalid discriminant name in variant part", Discr_Name); |
| end if; |
| |
| Discr_Type := Etype (Entity (Discr_Name)); |
| |
| if not Is_Discrete_Type (Discr_Type) then |
| Error_Msg_N |
| ("discriminant in a variant part must be of a discrete type", |
| Name (N)); |
| return; |
| end if; |
| |
| -- Now analyze the choices, which also analyzes the declarations that |
| -- are associated with each choice. |
| |
| Analyze_Choices (Variants (N), Discr_Type); |
| |
| -- Note: we used to instantiate and call Check_Choices here to check |
| -- that the choices covered the discriminant, but it's too early to do |
| -- that because of statically predicated subtypes, whose analysis may |
| -- be deferred to their freeze point which may be as late as the freeze |
| -- point of the containing record. So this call is now to be found in |
| -- Freeze_Record_Declaration. |
| |
| end Analyze_Variant_Part; |
| |
| ---------------------------- |
| -- Array_Type_Declaration -- |
| ---------------------------- |
| |
| procedure Array_Type_Declaration (T : in out Entity_Id; Def : Node_Id) is |
| Component_Def : constant Node_Id := Component_Definition (Def); |
| Component_Typ : constant Node_Id := Subtype_Indication (Component_Def); |
| P : constant Node_Id := Parent (Def); |
| Element_Type : Entity_Id; |
| Implicit_Base : Entity_Id; |
| Index : Node_Id; |
| Nb_Index : Pos; |
| Priv : Entity_Id; |
| Related_Id : Entity_Id; |
| Has_FLB_Index : Boolean := False; |
| |
| begin |
| if Nkind (Def) = N_Constrained_Array_Definition then |
| Index := First (Discrete_Subtype_Definitions (Def)); |
| else |
| Index := First (Subtype_Marks (Def)); |
| end if; |
| |
| -- Find proper names for the implicit types which may be public. In case |
| -- of anonymous arrays we use the name of the first object of that type |
| -- as prefix. |
| |
| if No (T) then |
| Related_Id := Defining_Identifier (P); |
| else |
| Related_Id := T; |
| end if; |
| |
| Nb_Index := 1; |
| while Present (Index) loop |
| Analyze (Index); |
| |
| -- Test for odd case of trying to index a type by the type itself |
| |
| if Is_Entity_Name (Index) and then Entity (Index) = T then |
| Error_Msg_N ("type& cannot be indexed by itself", Index); |
| Set_Entity (Index, Standard_Boolean); |
| Set_Etype (Index, Standard_Boolean); |
| end if; |
| |
| -- Add a subtype declaration for each index of private array type |
| -- declaration whose type is also private. For example: |
| |
| -- package Pkg is |
| -- type Index is private; |
| -- private |
| -- type Table is array (Index) of ... |
| -- end; |
| |
| -- This is currently required by the expander for the internally |
| -- generated equality subprogram of records with variant parts in |
| -- which the type of some component is such a private type. And it |
| -- also helps semantic analysis in peculiar cases where the array |
| -- type is referenced from an instance but not the index directly. |
| |
| if Is_Package_Or_Generic_Package (Current_Scope) |
| and then In_Private_Part (Current_Scope) |
| and then Has_Private_Declaration (Etype (Index)) |
| and then Scope (Etype (Index)) = Current_Scope |
| then |
| declare |
| Loc : constant Source_Ptr := Sloc (Def); |
| Decl : Node_Id; |
| New_E : Entity_Id; |
| |
| begin |
| New_E := Make_Temporary (Loc, 'T'); |
| Set_Is_Internal (New_E); |
| |
| Decl := |
| Make_Subtype_Declaration (Loc, |
| Defining_Identifier => New_E, |
| Subtype_Indication => |
| New_Occurrence_Of (Etype (Index), Loc)); |
| |
| Insert_Before (Parent (Def), Decl); |
| Analyze (Decl); |
| Set_Etype (Index, New_E); |
| |
| -- If the index is a range or a subtype indication it carries |
| -- no entity. Example: |
| |
| -- package Pkg is |
| -- type T is private; |
| -- private |
| -- type T is new Natural; |
| -- Table : array (T(1) .. T(10)) of Boolean; |
| -- end Pkg; |
| |
| -- Otherwise the type of the reference is its entity. |
| |
| if Is_Entity_Name (Index) then |
| Set_Entity (Index, New_E); |
| end if; |
| end; |
| end if; |
| |
| Make_Index (Index, P, Related_Id, Nb_Index); |
| |
| -- In the case where we have an unconstrained array with an index |
| -- given by a subtype_indication, this is necessarily a "fixed lower |
| -- bound" index. We change the upper bound of that index to the upper |
| -- bound of the index's subtype (denoted by the subtype_mark), since |
| -- that upper bound was originally set by the parser to be the same |
| -- as the lower bound. In truth, that upper bound corresponds to |
| -- a box ("<>"), and could be set to Empty, but it's convenient to |
| -- set it to the upper bound to avoid needing to add special tests |
| -- in various places for an Empty upper bound, and in any case that |
| -- accurately characterizes the index's range of values. |
| |
| if Nkind (Def) = N_Unconstrained_Array_Definition |
| and then Nkind (Index) = N_Subtype_Indication |
| then |
| declare |
| Index_Subtype_High_Bound : constant Entity_Id := |
| Type_High_Bound (Entity (Subtype_Mark (Index))); |
| begin |
| Set_High_Bound (Range_Expression (Constraint (Index)), |
| Index_Subtype_High_Bound); |
| |
| -- Record that the array type has one or more indexes with |
| -- a fixed lower bound. |
| |
| Has_FLB_Index := True; |
| |
| -- Mark the index as belonging to an array type with a fixed |
| -- lower bound. |
| |
| Set_Is_Fixed_Lower_Bound_Index_Subtype (Etype (Index)); |
| end; |
| end if; |
| |
| -- Check error of subtype with predicate for index type |
| |
| Bad_Predicated_Subtype_Use |
| ("subtype& has predicate, not allowed as index subtype", |
| Index, Etype (Index)); |
| |
| -- Move to next index |
| |
| Next (Index); |
| Nb_Index := Nb_Index + 1; |
| end loop; |
| |
| -- Process subtype indication if one is present |
| |
| if Present (Component_Typ) then |
| Element_Type := Process_Subtype (Component_Typ, P, Related_Id, 'C'); |
| Set_Etype (Component_Typ, Element_Type); |
| |
| -- Ada 2005 (AI-230): Access Definition case |
| |
| else pragma Assert (Present (Access_Definition (Component_Def))); |
| |
| -- Indicate that the anonymous access type is created by the |
| -- array type declaration. |
| |
| Element_Type := Access_Definition |
| (Related_Nod => P, |
| N => Access_Definition (Component_Def)); |
| Set_Is_Local_Anonymous_Access (Element_Type); |
| |
| -- Propagate the parent. This field is needed if we have to generate |
| -- the master_id associated with an anonymous access to task type |
| -- component (see Expand_N_Full_Type_Declaration.Build_Master) |
| |
| Copy_Parent (To => Element_Type, From => T); |
| |
| -- Ada 2005 (AI-230): In case of components that are anonymous access |
| -- types the level of accessibility depends on the enclosing type |
| -- declaration |
| |
| Set_Scope (Element_Type, Current_Scope); -- Ada 2005 (AI-230) |
| |
| -- Ada 2005 (AI-254) |
| |
| declare |
| CD : constant Node_Id := |
| Access_To_Subprogram_Definition |
| (Access_Definition (Component_Def)); |
| begin |
| if Present (CD) and then Protected_Present (CD) then |
| Element_Type := |
| Replace_Anonymous_Access_To_Protected_Subprogram (Def); |
| end if; |
| end; |
| end if; |
| |
| -- Constrained array case |
| |
| if No (T) then |
| -- We might be creating more than one itype with the same Related_Id, |
| -- e.g. for an array object definition and its initial value. Give |
| -- them unique suffixes, because GNATprove require distinct types to |
| -- have different names. |
| |
| T := Create_Itype (E_Void, P, Related_Id, 'T', Suffix_Index => -1); |
| end if; |
| |
| if Nkind (Def) = N_Constrained_Array_Definition then |
| |
| if Ekind (T) in Incomplete_Or_Private_Kind then |
| Reinit_Field_To_Zero (T, F_Stored_Constraint); |
| else |
| pragma Assert (Ekind (T) = E_Void); |
| end if; |
| |
| -- Establish Implicit_Base as unconstrained base type |
| |
| Implicit_Base := Create_Itype (E_Array_Type, P, Related_Id, 'B'); |
| |
| Set_Etype (Implicit_Base, Implicit_Base); |
| Set_Scope (Implicit_Base, Current_Scope); |
| Set_Has_Delayed_Freeze (Implicit_Base); |
| Set_Default_SSO (Implicit_Base); |
| |
| -- The constrained array type is a subtype of the unconstrained one |
| |
| Mutate_Ekind (T, E_Array_Subtype); |
| Reinit_Size_Align (T); |
| Set_Etype (T, Implicit_Base); |
| Set_Scope (T, Current_Scope); |
| Set_Is_Constrained (T); |
| Set_First_Index (T, |
| First (Discrete_Subtype_Definitions (Def))); |
| Set_Has_Delayed_Freeze (T); |
| |
| -- Complete setup of implicit base type |
| |
| pragma Assert (not Known_Component_Size (Implicit_Base)); |
| Set_Component_Type (Implicit_Base, Element_Type); |
| Set_Finalize_Storage_Only |
| (Implicit_Base, |
| Finalize_Storage_Only (Element_Type)); |
| Set_First_Index (Implicit_Base, First_Index (T)); |
| Set_Has_Controlled_Component |
| (Implicit_Base, |
| Has_Controlled_Component (Element_Type) |
| or else Is_Controlled (Element_Type)); |
| Set_Packed_Array_Impl_Type |
| (Implicit_Base, Empty); |
| |
| Propagate_Concurrent_Flags (Implicit_Base, Element_Type); |
| |
| -- Unconstrained array case |
| |
| else pragma Assert (Nkind (Def) = N_Unconstrained_Array_Definition); |
| |
| if Ekind (T) in Incomplete_Or_Private_Kind then |
| Reinit_Field_To_Zero (T, F_Stored_Constraint); |
| else |
| pragma Assert (Ekind (T) = E_Void); |
| end if; |
| |
| Mutate_Ekind (T, E_Array_Type); |
| Reinit_Size_Align (T); |
| Set_Etype (T, T); |
| Set_Scope (T, Current_Scope); |
| pragma Assert (not Known_Component_Size (T)); |
| Set_Is_Constrained (T, False); |
| Set_Is_Fixed_Lower_Bound_Array_Subtype |
| (T, Has_FLB_Index); |
| Set_First_Index (T, First (Subtype_Marks (Def))); |
| Set_Has_Delayed_Freeze (T, True); |
| Propagate_Concurrent_Flags (T, Element_Type); |
| Set_Has_Controlled_Component (T, Has_Controlled_Component |
| (Element_Type) |
| or else |
| Is_Controlled (Element_Type)); |
| Set_Finalize_Storage_Only (T, Finalize_Storage_Only |
| (Element_Type)); |
| Set_Default_SSO (T); |
| end if; |
| |
| -- Common attributes for both cases |
| |
| Set_Component_Type (Base_Type (T), Element_Type); |
| Set_Packed_Array_Impl_Type (T, Empty); |
| |
| if Aliased_Present (Component_Definition (Def)) then |
| Set_Has_Aliased_Components (Etype (T)); |
| |
| -- AI12-001: All aliased objects are considered to be specified as |
| -- independently addressable (RM C.6(8.1/4)). |
| |
| Set_Has_Independent_Components (Etype (T)); |
| end if; |
| |
| -- Ada 2005 (AI-231): Propagate the null-excluding attribute to the |
| -- array type to ensure that objects of this type are initialized. |
| |
| if Ada_Version >= Ada_2005 and then Can_Never_Be_Null (Element_Type) then |
| Set_Can_Never_Be_Null (T); |
| |
| if Null_Exclusion_Present (Component_Definition (Def)) |
| |
| -- No need to check itypes because in their case this check was |
| -- done at their point of creation |
| |
| and then not Is_Itype (Element_Type) |
| then |
| Error_Msg_N |
| ("`NOT NULL` not allowed (null already excluded)", |
| Subtype_Indication (Component_Definition (Def))); |
| end if; |
| end if; |
| |
| Priv := Private_Component (Element_Type); |
| |
| if Present (Priv) then |
| |
| -- Check for circular definitions |
| |
| if Priv = Any_Type then |
| Set_Component_Type (Etype (T), Any_Type); |
| |
| -- There is a gap in the visibility of operations on the composite |
| -- type only if the component type is defined in a different scope. |
| |
| elsif Scope (Priv) = Current_Scope then |
| null; |
| |
| elsif Is_Limited_Type (Priv) then |
| Set_Is_Limited_Composite (Etype (T)); |
| Set_Is_Limited_Composite (T); |
| else |
| Set_Is_Private_Composite (Etype (T)); |
| Set_Is_Private_Composite (T); |
| end if; |
| end if; |
| |
| -- A syntax error in the declaration itself may lead to an empty index |
| -- list, in which case do a minimal patch. |
| |
| if No (First_Index (T)) then |
| Error_Msg_N ("missing index definition in array type declaration", T); |
| |
| declare |
| Indexes : constant List_Id := |
| New_List (New_Occurrence_Of (Any_Id, Sloc (T))); |
| begin |
| Set_Discrete_Subtype_Definitions (Def, Indexes); |
| Set_First_Index (T, First (Indexes)); |
| return; |
| end; |
| end if; |
| |
| -- Create a concatenation operator for the new type. Internal array |
| -- types created for packed entities do not need such, they are |
| -- compatible with the user-defined type. |
| |
| if Number_Dimensions (T) = 1 |
| and then not Is_Packed_Array_Impl_Type (T) |
| then |
| New_Concatenation_Op (T); |
| end if; |
| |
| -- In the case of an unconstrained array the parser has already verified |
| -- that all the indexes are unconstrained but we still need to make sure |
| -- that the element type is constrained. |
| |
| if not Is_Definite_Subtype (Element_Type) then |
| Error_Msg_N |
| ("unconstrained element type in array declaration", |
| Subtype_Indication (Component_Def)); |
| |
| elsif Is_Abstract_Type (Element_Type) then |
| Error_Msg_N |
| ("the type of a component cannot be abstract", |
| Subtype_Indication (Component_Def)); |
| end if; |
| |
| -- There may be an invariant declared for the component type, but |
| -- the construction of the component invariant checking procedure |
| -- takes place during expansion. |
| end Array_Type_Declaration; |
| |
| ------------------------------------------------------ |
| -- Replace_Anonymous_Access_To_Protected_Subprogram -- |
| ------------------------------------------------------ |
| |
| function Replace_Anonymous_Access_To_Protected_Subprogram |
| (N : Node_Id) return Entity_Id |
| is |
| Loc : constant Source_Ptr := Sloc (N); |
| |
| Curr_Scope : constant Scope_Stack_Entry := |
| Scope_Stack.Table (Scope_Stack.Last); |
| |
| Anon : constant Entity_Id := Make_Temporary (Loc, 'S'); |
| |
| Acc : Node_Id; |
| -- Access definition in declaration |
| |
| Comp : Node_Id; |
| -- Object definition or formal definition with an access definition |
| |
| Decl : Node_Id; |
| -- Declaration of anonymous access to subprogram type |
| |
| Spec : Node_Id; |
| -- Original specification in access to subprogram |
| |
| P : Node_Id; |
| |
| begin |
| Set_Is_Internal (Anon); |
| |
| case Nkind (N) is |
| when N_Constrained_Array_Definition |
| | N_Component_Declaration |
| | N_Unconstrained_Array_Definition |
| => |
| Comp := Component_Definition (N); |
| Acc := Access_Definition (Comp); |
| |
| when N_Discriminant_Specification => |
| Comp := Discriminant_Type (N); |
| Acc := Comp; |
| |
| when N_Parameter_Specification => |
| Comp := Parameter_Type (N); |
| Acc := Comp; |
| |
| when N_Access_Function_Definition => |
| Comp := Result_Definition (N); |
| Acc := Comp; |
| |
| when N_Object_Declaration => |
| Comp := Object_Definition (N); |
| Acc := Comp; |
| |
| when N_Function_Specification => |
| Comp := Result_Definition (N); |
| Acc := Comp; |
| |
| when others => |
| raise Program_Error; |
| end case; |
| |
| Spec := Access_To_Subprogram_Definition (Acc); |
| |
| Decl := |
| Make_Full_Type_Declaration (Loc, |
| Defining_Identifier => Anon, |
| Type_Definition => Copy_Separate_Tree (Spec)); |
| |
| Mark_Rewrite_Insertion (Decl); |
| |
| -- Insert the new declaration in the nearest enclosing scope. If the |
| -- parent is a body and N is its return type, the declaration belongs |
| -- in the enclosing scope. Likewise if N is the type of a parameter. |
| |
| P := Parent (N); |
| |
| if Nkind (N) = N_Function_Specification |
| and then Nkind (P) = N_Subprogram_Body |
| then |
| P := Parent (P); |
| elsif Nkind (N) = N_Parameter_Specification |
| and then Nkind (P) in N_Subprogram_Specification |
| and then Nkind (Parent (P)) = N_Subprogram_Body |
| then |
| P := Parent (Parent (P)); |
| end if; |
| |
| while Present (P) and then not Has_Declarations (P) loop |
| P := Parent (P); |
| end loop; |
| |
| pragma Assert (Present (P)); |
| |
| if Nkind (P) = N_Package_Specification then |
| Prepend (Decl, Visible_Declarations (P)); |
| else |
| Prepend (Decl, Declarations (P)); |
| end if; |
| |
| -- Replace the anonymous type with an occurrence of the new declaration. |
| -- In all cases the rewritten node does not have the null-exclusion |
| -- attribute because (if present) it was already inherited by the |
| -- anonymous entity (Anon). Thus, in case of components we do not |
| -- inherit this attribute. |
| |
| if Nkind (N) = N_Parameter_Specification then |
| Rewrite (Comp, New_Occurrence_Of (Anon, Loc)); |
| Set_Etype (Defining_Identifier (N), Anon); |
| Set_Null_Exclusion_Present (N, False); |
| |
| elsif Nkind (N) = N_Object_Declaration then |
| Rewrite (Comp, New_Occurrence_Of (Anon, Loc)); |
| Set_Etype (Defining_Identifier (N), Anon); |
| |
| elsif Nkind (N) = N_Access_Function_Definition then |
| Rewrite (Comp, New_Occurrence_Of (Anon, Loc)); |
| |
| elsif Nkind (N) = N_Function_Specification then |
| Rewrite (Comp, New_Occurrence_Of (Anon, Loc)); |
| Set_Etype (Defining_Unit_Name (N), Anon); |
| |
| else |
| Rewrite (Comp, |
| Make_Component_Definition (Loc, |
| Subtype_Indication => New_Occurrence_Of (Anon, Loc))); |
| end if; |
| |
| Mark_Rewrite_Insertion (Comp); |
| |
| if Nkind (N) in N_Object_Declaration | N_Access_Function_Definition |
| or else (Nkind (Parent (N)) = N_Full_Type_Declaration |
| and then not Is_Type (Current_Scope)) |
| then |
| |
| -- Declaration can be analyzed in the current scope. |
| |
| Analyze (Decl); |
| |
| else |
| -- Temporarily remove the current scope (record or subprogram) from |
| -- the stack to add the new declarations to the enclosing scope. |
| -- The anonymous entity is an Itype with the proper attributes. |
| |
| Scope_Stack.Decrement_Last; |
| Analyze (Decl); |
| Set_Is_Itype (Anon); |
| Set_Associated_Node_For_Itype (Anon, N); |
| Scope_Stack.Append (Curr_Scope); |
| end if; |
| |
| Mutate_Ekind (Anon, E_Anonymous_Access_Protected_Subprogram_Type); |
| Set_Can_Use_Internal_Rep (Anon, not Always_Compatible_Rep_On_Target); |
| return Anon; |
| end Replace_Anonymous_Access_To_Protected_Subprogram; |
| |
| ------------------------------------- |
| -- Build_Access_Subprogram_Wrapper -- |
| ------------------------------------- |
| |
| procedure Build_Access_Subprogram_Wrapper (Decl : Node_Id) is |
| Loc : constant Source_Ptr := Sloc (Decl); |
| Id : constant Entity_Id := Defining_Identifier (Decl); |
| Type_Def : constant Node_Id := Type_Definition (Decl); |
| Specs : constant List_Id := |
| Parameter_Specifications (Type_Def); |
| Profile : constant List_Id := New_List; |
| Subp : constant Entity_Id := Make_Temporary (Loc, 'A'); |
| |
| Contracts : constant List_Id := New_List; |
| Form_P : Node_Id; |
| New_P : Node_Id; |
| New_Decl : Node_Id; |
| Spec : Node_Id; |
| |
| procedure Replace_Type_Name (Expr : Node_Id); |
| -- In the expressions for contract aspects, replace occurrences of the |
| -- access type with the name of the subprogram entity, as needed, e.g. |
| -- for 'Result. Aspects that are not contracts, e.g. Size or Alignment) |
| -- remain on the original access type declaration. What about expanded |
| -- names denoting formals, whose prefix in source is the type name ??? |
| |
| ----------------------- |
| -- Replace_Type_Name -- |
| ----------------------- |
| |
| procedure Replace_Type_Name (Expr : Node_Id) is |
| function Process (N : Node_Id) return Traverse_Result; |
| function Process (N : Node_Id) return Traverse_Result is |
| begin |
| if Nkind (N) = N_Attribute_Reference |
| and then Is_Entity_Name (Prefix (N)) |
| and then Chars (Prefix (N)) = Chars (Id) |
| then |
| Set_Prefix (N, Make_Identifier (Sloc (N), Chars (Subp))); |
| end if; |
| |
| return OK; |
| end Process; |
| |
| procedure Traverse is new Traverse_Proc (Process); |
| begin |
| Traverse (Expr); |
| end Replace_Type_Name; |
| |
| begin |
| if Ekind (Id) in E_Access_Subprogram_Type |
| | E_Access_Protected_Subprogram_Type |
| | E_Anonymous_Access_Protected_Subprogram_Type |
| | E_Anonymous_Access_Subprogram_Type |
| then |
| null; |
| |
| else |
| Error_Msg_N |
| ("illegal pre/postcondition on access type", Decl); |
| return; |
| end if; |
| |
| declare |
| Asp : Node_Id; |
| A_Id : Aspect_Id; |
| Cond : Node_Id; |
| Expr : Node_Id; |
| |
| begin |
| Asp := First (Aspect_Specifications (Decl)); |
| while Present (Asp) loop |
| A_Id := Get_Aspect_Id (Chars (Identifier (Asp))); |
| if A_Id = Aspect_Pre or else A_Id = Aspect_Post then |
| Cond := Asp; |
| Expr := Expression (Cond); |
| Replace_Type_Name (Expr); |
| Next (Asp); |
| |
| Remove (Cond); |
| Append (Cond, Contracts); |
| |
| else |
| Next (Asp); |
| end if; |
| end loop; |
| end; |
| |
| -- If there are no contract aspects, no need for a wrapper. |
| |
| if Is_Empty_List (Contracts) then |
| return; |
| end if; |
| |
| Form_P := First (Specs); |
| |
| while Present (Form_P) loop |
| New_P := New_Copy_Tree (Form_P); |
| Set_Defining_Identifier (New_P, |
| Make_Defining_Identifier |
| (Loc, Chars (Defining_Identifier (Form_P)))); |
| Append (New_P, Profile); |
| Next (Form_P); |
| end loop; |
| |
| -- Add to parameter specifications the access parameter that is passed |
| -- in from an indirect call. |
| |
| Append ( |
| Make_Parameter_Specification (Loc, |
| Defining_Identifier => Make_Temporary (Loc, 'P'), |
| Parameter_Type => New_Occurrence_Of (Id, Loc)), |
| Profile); |
| |
| if Nkind (Type_Def) = N_Access_Procedure_Definition then |
| Spec := |
| Make_Procedure_Specification (Loc, |
| Defining_Unit_Name => Subp, |
| Parameter_Specifications => Profile); |
| Mutate_Ekind (Subp, E_Procedure); |
| else |
| Spec := |
| Make_Function_Specification (Loc, |
| Defining_Unit_Name => Subp, |
| Parameter_Specifications => Profile, |
| Result_Definition => |
| New_Copy_Tree |
| (Result_Definition (Type_Definition (Decl)))); |
| Mutate_Ekind (Subp, E_Function); |
| end if; |
| |
| New_Decl := |
| Make_Subprogram_Declaration (Loc, Specification => Spec); |
| Set_Aspect_Specifications (New_Decl, Contracts); |
| Set_Is_Wrapper (Subp); |
| |
| -- The wrapper is declared in the freezing actions to facilitate its |
| -- identification and thus avoid handling it as a primitive operation |
| -- of a tagged type (see Is_Access_To_Subprogram_Wrapper); otherwise it |
| -- may be handled as a dispatching operation and erroneously registered |
| -- in a dispatch table. |
| |
| if not GNATprove_Mode then |
| Append_Freeze_Action (Id, New_Decl); |
| |
| -- Under GNATprove mode there is no such problem but we do not declare |
| -- it in the freezing actions since they are not analyzed under this |
| -- mode. |
| |
| else |
| Insert_After (Decl, New_Decl); |
| end if; |
| |
| Set_Access_Subprogram_Wrapper (Designated_Type (Id), Subp); |
| Build_Access_Subprogram_Wrapper_Body (Decl, New_Decl); |
| end Build_Access_Subprogram_Wrapper; |
| |
| ------------------------------- |
| -- Build_Derived_Access_Type -- |
| ------------------------------- |
| |
| procedure Build_Derived_Access_Type |
| (N : Node_Id; |
| Parent_Type : Entity_Id; |
| Derived_Type : Entity_Id) |
| is |
| S : constant Node_Id := Subtype_Indication (Type_Definition (N)); |
| |
| Desig_Type : Entity_Id; |
| Discr : Entity_Id; |
| Discr_Con_Elist : Elist_Id; |
| Discr_Con_El : Elmt_Id; |
| Subt : Entity_Id; |
| |
| begin |
| -- Set the designated type so it is available in case this is an access |
| -- to a self-referential type, e.g. a standard list type with a next |
| -- pointer. Will be reset after subtype is built. |
| |
| Set_Directly_Designated_Type |
| (Derived_Type, Designated_Type (Parent_Type)); |
| |
| Subt := Process_Subtype (S, N); |
| |
| if Nkind (S) /= N_Subtype_Indication |
| and then Subt /= Base_Type (Subt) |
| then |
| Mutate_Ekind (Derived_Type, E_Access_Subtype); |
| end if; |
| |
| if Ekind (Derived_Type) = E_Access_Subtype then |
| declare |
| Pbase : constant Entity_Id := Base_Type (Parent_Type); |
| Ibase : constant Entity_Id := |
| Create_Itype (Ekind (Pbase), N, Derived_Type, 'B'); |
| Svg_Chars : constant Name_Id := Chars (Ibase); |
| Svg_Next_E : constant Entity_Id := Next_Entity (Ibase); |
| Svg_Prev_E : constant Entity_Id := Prev_Entity (Ibase); |
| |
| begin |
| Copy_Node (Pbase, Ibase); |
| |
| -- Restore Itype status after Copy_Node |
| |
| Set_Is_Itype (Ibase); |
| Set_Associated_Node_For_Itype (Ibase, N); |
| |
| Set_Chars (Ibase, Svg_Chars); |
| Set_Prev_Entity (Ibase, Svg_Prev_E); |
| Set_Next_Entity (Ibase, Svg_Next_E); |
| Set_Sloc (Ibase, Sloc (Derived_Type)); |
| Set_Scope (Ibase, Scope (Derived_Type)); |
| Set_Freeze_Node (Ibase, Empty); |
| Set_Is_Frozen (Ibase, False); |
| Set_Comes_From_Source (Ibase, False); |
| Set_Is_First_Subtype (Ibase, False); |
| |
| Set_Etype (Ibase, Pbase); |
| Set_Etype (Derived_Type, Ibase); |
| end; |
| end if; |
| |
| Set_Directly_Designated_Type |
| (Derived_Type, Designated_Type (Subt)); |
| |
| Set_Is_Constrained (Derived_Type, Is_Constrained (Subt)); |
| Set_Is_Access_Constant (Derived_Type, Is_Access_Constant (Parent_Type)); |
| Set_Size_Info (Derived_Type, Parent_Type); |
| Copy_RM_Size (To => Derived_Type, From => Parent_Type); |
| Set_Depends_On_Private (Derived_Type, |
| Has_Private_Component (Derived_Type)); |
| Conditional_Delay (Derived_Type, Subt); |
| |
| if Is_Access_Subprogram_Type (Derived_Type) |
| and then Is_Base_Type (Derived_Type) |
| then |
| Set_Can_Use_Internal_Rep |
| (Derived_Type, Can_Use_Internal_Rep (Parent_Type)); |
| end if; |
| |
| -- Ada 2005 (AI-231): Set the null-exclusion attribute, and verify |
| -- that it is not redundant. |
| |
| if Null_Exclusion_Present (Type_Definition (N)) then |
| Set_Can_Never_Be_Null (Derived_Type); |
| |
| elsif Can_Never_Be_Null (Parent_Type) then |
| Set_Can_Never_Be_Null (Derived_Type); |
| end if; |
| |
| -- Note: we do not copy the Storage_Size_Variable, since we always go to |
| -- the root type for this information. |
| |
| -- Apply range checks to discriminants for derived record case |
| -- ??? THIS CODE SHOULD NOT BE HERE REALLY. |
| |
| Desig_Type := Designated_Type (Derived_Type); |
| |
| if Is_Composite_Type (Desig_Type) |
| and then (not Is_Array_Type (Desig_Type)) |
| and then Has_Discriminants (Desig_Type) |
| and then Base_Type (Desig_Type) /= Desig_Type |
| then |
| Discr_Con_Elist := Discriminant_Constraint (Desig_Type); |
| Discr_Con_El := First_Elmt (Discr_Con_Elist); |
| |
| Discr := First_Discriminant (Base_Type (Desig_Type)); |
| while Present (Discr_Con_El) loop |
| Apply_Range_Check (Node (Discr_Con_El), Etype (Discr)); |
| Next_Elmt (Discr_Con_El); |
| Next_Discriminant (Discr); |
| end loop; |
| end if; |
| end Build_Derived_Access_Type; |
| |
| ------------------------------ |
| -- Build_Derived_Array_Type -- |
| ------------------------------ |
| |
| procedure Build_Derived_Array_Type |
| (N : Node_Id; |
| Parent_Type : Entity_Id; |
| Derived_Type : Entity_Id) |
| is |
| Loc : constant Source_Ptr := Sloc (N); |
| Tdef : constant Node_Id := Type_Definition (N); |
| Indic : constant Node_Id := Subtype_Indication (Tdef); |
| Parent_Base : constant Entity_Id := Base_Type (Parent_Type); |
| Implicit_Base : Entity_Id := Empty; |
| New_Indic : Node_Id; |
| |
| procedure Make_Implicit_Base; |
| -- If the parent subtype is constrained, the derived type is a subtype |
| -- of an implicit base type derived from the parent base. |
| |
| ------------------------ |
| -- Make_Implicit_Base -- |
| ------------------------ |
| |
| procedure Make_Implicit_Base is |
| begin |
| Implicit_Base := |
| Create_Itype (Ekind (Parent_Base), N, Derived_Type, 'B'); |
| |
| Mutate_Ekind (Implicit_Base, Ekind (Parent_Base)); |
| Set_Etype (Implicit_Base, Parent_Base); |
| |
| Copy_Array_Subtype_Attributes (Implicit_Base, Parent_Base); |
| Copy_Array_Base_Type_Attributes (Implicit_Base, Parent_Base); |
| |
| Set_Has_Delayed_Freeze (Implicit_Base, True); |
| end Make_Implicit_Base; |
| |
| -- Start of processing for Build_Derived_Array_Type |
| |
| begin |
| if not Is_Constrained (Parent_Type) then |
| if Nkind (Indic) /= N_Subtype_Indication then |
| Mutate_Ekind (Derived_Type, E_Array_Type); |
| |
| Copy_Array_Subtype_Attributes (Derived_Type, Parent_Type); |
| Copy_Array_Base_Type_Attributes (Derived_Type, Parent_Type); |
| |
| Set_Has_Delayed_Freeze (Derived_Type, True); |
| |
| else |
| Make_Implicit_Base; |
| Set_Etype (Derived_Type, Implicit_Base); |
| |
| New_Indic := |
| Make_Subtype_Declaration (Loc, |
| Defining_Identifier => Derived_Type, |
| Subtype_Indication => |
| Make_Subtype_Indication (Loc, |
| Subtype_Mark => New_Occurrence_Of (Implicit_Base, Loc), |
| Constraint => Constraint (Indic))); |
| |
| Rewrite (N, New_Indic); |
| Analyze (N); |
| end if; |
| |
| else |
| if Nkind (Indic) /= N_Subtype_Indication then |
| Make_Implicit_Base; |
| |
| Mutate_Ekind (Derived_Type, Ekind (Parent_Type)); |
| Set_Etype (Derived_Type, Implicit_Base); |
| Copy_Array_Subtype_Attributes (Derived_Type, Parent_Type); |
| |
| else |
| Error_Msg_N ("illegal constraint on constrained type", Indic); |
| end if; |
| end if; |
| |
| -- If parent type is not a derived type itself, and is declared in |
| -- closed scope (e.g. a subprogram), then we must explicitly introduce |
| -- the new type's concatenation operator since Derive_Subprograms |
| -- will not inherit the parent's operator. If the parent type is |
| -- unconstrained, the operator is of the unconstrained base type. |
| |
| if Number_Dimensions (Parent_Type) = 1 |
| and then not Is_Limited_Type (Parent_Type) |
| and then not Is_Derived_Type (Parent_Type) |
| and then not Is_Package_Or_Generic_Package |
| (Scope (Base_Type (Parent_Type))) |
| then |
| if not Is_Constrained (Parent_Type) |
| and then Is_Constrained (Derived_Type) |
| then |
| New_Concatenation_Op (Implicit_Base); |
| else |
| New_Concatenation_Op (Derived_Type); |
| end if; |
| end if; |
| end Build_Derived_Array_Type; |
| |
| ----------------------------------- |
| -- Build_Derived_Concurrent_Type -- |
| ----------------------------------- |
| |
| procedure Build_Derived_Concurrent_Type |
| (N : Node_Id; |
| Parent_Type : Entity_Id; |
| Derived_Type : Entity_Id) |
| is |
| Loc : constant Source_Ptr := Sloc (N); |
| Def : constant Node_Id := Type_Definition (N); |
| Indic : constant Node_Id := Subtype_Indication (Def); |
| |
| Corr_Record : constant Entity_Id := Make_Temporary (Loc, 'C'); |
| Corr_Decl : Node_Id := Empty; |
| Corr_Decl_Needed : Boolean; |
| -- If the derived type has fewer discriminants than its parent, the |
| -- corresponding record is also a derived type, in order to account for |
| -- the bound discriminants. We create a full type declaration for it in |
| -- this case. |
| |
| Constraint_Present : constant Boolean := |
| Nkind (Indic) = N_Subtype_Indication; |
| |
| D_Constraint : Node_Id; |
| New_Constraint : Elist_Id := No_Elist; |
| Old_Disc : Entity_Id; |
| New_Disc : Entity_Id; |
| New_N : Node_Id; |
| |
| begin |
| Set_Stored_Constraint (Derived_Type, No_Elist); |
| Corr_Decl_Needed := False; |
| Old_Disc := Empty; |
| |
| if Present (Discriminant_Specifications (N)) |
| and then Constraint_Present |
| then |
| Old_Disc := First_Discriminant (Parent_Type); |
| New_Disc := First (Discriminant_Specifications (N)); |
| while Present (New_Disc) and then Present (Old_Disc) loop |
| Next_Discriminant (Old_Disc); |
| Next (New_Disc); |
| end loop; |
| end if; |
| |
| if Present (Old_Disc) and then Expander_Active then |
| |
| -- The new type has fewer discriminants, so we need to create a new |
| -- corresponding record, which is derived from the corresponding |
| -- record of the parent, and has a stored constraint that captures |
| -- the values of the discriminant constraints. The corresponding |
| -- record is needed only if expander is active and code generation is |
| -- enabled. |
| |
| -- The type declaration for the derived corresponding record has the |
| -- same discriminant part and constraints as the current declaration. |
| -- Copy the unanalyzed tree to build declaration. |
| |
| Corr_Decl_Needed := True; |
| New_N := Copy_Separate_Tree (N); |
| |
| Corr_Decl := |
| Make_Full_Type_Declaration (Loc, |
| Defining_Identifier => Corr_Record, |
| Discriminant_Specifications => |
| Discriminant_Specifications (New_N), |
| Type_Definition => |
| Make_Derived_Type_Definition (Loc, |
| Subtype_Indication => |
| Make_Subtype_Indication (Loc, |
| Subtype_Mark => |
| New_Occurrence_Of |
| (Corresponding_Record_Type (Parent_Type), Loc), |
| Constraint => |
| Constraint |
| (Subtype_Indication (Type_Definition (New_N)))))); |
| end if; |
| |
| -- Copy Storage_Size and Relative_Deadline variables if task case |
| |
| if Is_Task_Type (Parent_Type) then |
| Set_Storage_Size_Variable (Derived_Type, |
| Storage_Size_Variable (Parent_Type)); |
| Set_Relative_Deadline_Variable (Derived_Type, |
| Relative_Deadline_Variable (Parent_Type)); |
| end if; |
| |
| if Present (Discriminant_Specifications (N)) then |
| Push_Scope (Derived_Type); |
| Check_Or_Process_Discriminants (N, Derived_Type); |
| |
| if Constraint_Present then |
| New_Constraint := |
| Expand_To_Stored_Constraint |
| (Parent_Type, |
| Build_Discriminant_Constraints |
| (Parent_Type, Indic, True)); |
| end if; |
| |
| End_Scope; |
| |
| elsif Constraint_Present then |
| |
| -- Build an unconstrained derived type and rewrite the derived type |
| -- as a subtype of this new base type. |
| |
| declare |
| Parent_Base : constant Entity_Id := Base_Type (Parent_Type); |
| New_Base : Entity_Id; |
| New_Decl : Node_Id; |
| New_Indic : Node_Id; |
| |
| begin |
| New_Base := |
| Create_Itype (Ekind (Derived_Type), N, Derived_Type, 'B'); |
| |
| New_Decl := |
| Make_Full_Type_Declaration (Loc, |
| Defining_Identifier => New_Base, |
| Type_Definition => |
| Make_Derived_Type_Definition (Loc, |
| Abstract_Present => Abstract_Present (Def), |
| Limited_Present => Limited_Present (Def), |
| Subtype_Indication => |
| New_Occurrence_Of (Parent_Base, Loc))); |
| |
| Mark_Rewrite_Insertion (New_Decl); |
| Insert_Before (N, New_Decl); |
| Analyze (New_Decl); |
| |
| New_Indic := |
| Make_Subtype_Indication (Loc, |
| Subtype_Mark => New_Occurrence_Of (New_Base, Loc), |
| Constraint => Relocate_Node (Constraint (Indic))); |
| |
| Rewrite (N, |
| Make_Subtype_Declaration (Loc, |
| Defining_Identifier => Derived_Type, |
| Subtype_Indication => New_Indic)); |
| |
| Analyze (N); |
| return; |
| end; |
| end if; |
| |
| -- By default, operations and private data are inherited from parent. |
| -- However, in the presence of bound discriminants, a new corresponding |
| -- record will be created, see below. |
| |
| Set_Has_Discriminants |
| (Derived_Type, Has_Discriminants (Parent_Type)); |
| Set_Corresponding_Record_Type |
| (Derived_Type, Corresponding_Record_Type (Parent_Type)); |
| |
| -- Is_Constrained is set according the parent subtype, but is set to |
| -- False if the derived type is declared with new discriminants. |
| |
| Set_Is_Constrained |
| (Derived_Type, |
| (Is_Constrained (Parent_Type) or else Constraint_Present) |
| and then not Present (Discriminant_Specifications (N))); |
| |
| if Constraint_Present then |
| if not Has_Discriminants (Parent_Type) then |
| Error_Msg_N ("untagged parent must have discriminants", N); |
| |
| elsif Present (Discriminant_Specifications (N)) then |
| |
| -- Verify that new discriminants are used to constrain old ones |
| |
| D_Constraint := First (Constraints (Constraint (Indic))); |
| |
| Old_Disc := First_Discriminant (Parent_Type); |
| |
| while Present (D_Constraint) loop |
| if Nkind (D_Constraint) /= N_Discriminant_Association then |
| |
| -- Positional constraint. If it is a reference to a new |
| -- discriminant, it constrains the corresponding old one. |
| |
| if Nkind (D_Constraint) = N_Identifier then |
| New_Disc := First_Discriminant (Derived_Type); |
| while Present (New_Disc) loop |
| exit when Chars (New_Disc) = Chars (D_Constraint); |
| Next_Discriminant (New_Disc); |
| end loop; |
| |
| if Present (New_Disc) then |
| Set_Corresponding_Discriminant (New_Disc, Old_Disc); |
| end if; |
| end if; |
| |
| Next_Discriminant (Old_Disc); |
| |
| -- if this is a named constraint, search by name for the old |
| -- discriminants constrained by the new one. |
| |
| elsif Nkind (Expression (D_Constraint)) = N_Identifier then |
| |
| -- Find new discriminant with that name |
| |
| New_Disc := First_Discriminant (Derived_Type); |
| while Present (New_Disc) loop |
| exit when |
| Chars (New_Disc) = Chars (Expression (D_Constraint)); |
| Next_Discriminant (New_Disc); |
| end loop; |
| |
| if Present (New_Disc) then |
| |
| -- Verify that new discriminant renames some discriminant |
| -- of the parent type, and associate the new discriminant |
| -- with one or more old ones that it renames. |
| |
| declare |
| Selector : Node_Id; |
| |
| begin |
| Selector := First (Selector_Names (D_Constraint)); |
| while Present (Selector) loop |
| Old_Disc := First_Discriminant (Parent_Type); |
| while Present (Old_Disc) loop |
| exit when Chars (Old_Disc) = Chars (Selector); |
| Next_Discriminant (Old_Disc); |
| end loop; |
| |
| if Present (Old_Disc) then |
| Set_Corresponding_Discriminant |
| (New_Disc, Old_Disc); |
| end if; |
| |
| Next (Selector); |
| end loop; |
| end; |
| end if; |
| end if; |
| |
| Next (D_Constraint); |
| end loop; |
| |
| New_Disc := First_Discriminant (Derived_Type); |
| while Present (New_Disc) loop |
| if No (Corresponding_Discriminant (New_Disc)) then |
| Error_Msg_NE |
| ("new discriminant& must constrain old one", N, New_Disc); |
| |
| -- If a new discriminant is used in the constraint, then its |
| -- subtype must be statically compatible with the subtype of |
| -- the parent discriminant (RM 3.7(15)). |
| |
| else |
| Check_Constraining_Discriminant |
| (New_Disc, Corresponding_Discriminant (New_Disc)); |
| end if; |
| |
| Next_Discriminant (New_Disc); |
| end loop; |
| end if; |
| |
| elsif Present (Discriminant_Specifications (N)) then |
| Error_Msg_N |
| ("missing discriminant constraint in untagged derivation", N); |
| end if; |
| |
| -- The entity chain of the derived type includes the new discriminants |
| -- but shares operations with the parent. |
| |
| if Present (Discriminant_Specifications (N)) then |
| Old_Disc := First_Discriminant (Parent_Type); |
| while Present (Old_Disc) loop |
| if No (Next_Entity (Old_Disc)) |
| or else Ekind (Next_Entity (Old_Disc)) /= E_Discriminant |
| then |
| Link_Entities |
| (Last_Entity (Derived_Type), Next_Entity (Old_Disc)); |
| exit; |
| end if; |
| |
| Next_Discriminant (Old_Disc); |
| end loop; |
| |
| else |
| Set_First_Entity (Derived_Type, First_Entity (Parent_Type)); |
| if Has_Discriminants (Parent_Type) then |
| Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type)); |
| Set_Discriminant_Constraint ( |
| Derived_Type, Discriminant_Constraint (Parent_Type)); |
| end if; |
| end if; |
| |
| Set_Last_Entity (Derived_Type, Last_Entity (Parent_Type)); |
| |
| Set_Has_Completion (Derived_Type); |
| |
| if Corr_Decl_Needed then |
| Set_Stored_Constraint (Derived_Type, New_Constraint); |
| Insert_After (N, Corr_Decl); |
| Analyze (Corr_Decl); |
| Set_Corresponding_Record_Type (Derived_Type, Corr_Record); |
| end if; |
| end Build_Derived_Concurrent_Type; |
| |
| ------------------------------------ |
| -- Build_Derived_Enumeration_Type -- |
| ------------------------------------ |
| |
| procedure Build_Derived_Enumeration_Type |
| (N : Node_Id; |
| Parent_Type : Entity_Id; |
| Derived_Type : Entity_Id) |
| is |
| function Bound_Belongs_To_Type (B : Node_Id) return Boolean; |
| -- When the type declaration includes a constraint, we generate |
| -- a subtype declaration of an anonymous base type, with the constraint |
| -- given in the original type declaration. Conceptually, the bounds |
| -- are converted to the new base type, and this conversion freezes |
| -- (prematurely) that base type, when the bounds are simply literals. |
| -- As a result, a representation clause for the derived type is then |
| -- rejected or ignored. This procedure recognizes the simple case of |
| -- literal bounds, which allows us to indicate that the conversions |
| -- are not freeze points, and the subsequent representation clause |
| -- can be accepted. |
| -- A similar approach might be used to resolve the long-standing |
| -- problem of premature freezing of derived numeric types ??? |
| |
| function Bound_Belongs_To_Type (B : Node_Id) return Boolean is |
| begin |
| return Nkind (B) = N_Type_Conversion |
| and then Is_Entity_Name (Expression (B)) |
| and then Ekind (Entity (Expression (B))) = E_Enumeration_Literal; |
| end Bound_Belongs_To_Type; |
| |
| Loc : constant Source_Ptr := Sloc (N); |
| Def : constant Node_Id := Type_Definition (N); |
| Indic : constant Node_Id := Subtype_Indication (Def); |
| Implicit_Base : Entity_Id; |
| Literal : Entity_Id; |
| New_Lit : Entity_Id; |
| Literals_List : List_Id; |
| Type_Decl : Node_Id; |
| Hi, Lo : Node_Id; |
| Rang_Expr : Node_Id; |
| |
| begin |
| -- Since types Standard.Character and Standard.[Wide_]Wide_Character do |
| -- not have explicit literals lists we need to process types derived |
| -- from them specially. This is handled by Derived_Standard_Character. |
| -- If the parent type is a generic type, there are no literals either, |
| -- and we construct the same skeletal representation as for the generic |
| -- parent type. |
| |
| if Is_Standard_Character_Type (Parent_Type) then |
| Derived_Standard_Character (N, Parent_Type, Derived_Type); |
| |
| elsif Is_Generic_Type (Root_Type (Parent_Type)) then |
| declare |
| Lo : Node_Id; |
| Hi : Node_Id; |
| |
| begin |
| if Nkind (Indic) /= N_Subtype_Indication then |
| Lo := |
| Make_Attribute_Reference (Loc, |
| Attribute_Name => Name_First, |
| Prefix => New_Occurrence_Of (Derived_Type, Loc)); |
| Set_Etype (Lo, Derived_Type); |
| |
| Hi := |
| Make_Attribute_Reference (Loc, |
| Attribute_Name => Name_Last, |
| Prefix => New_Occurrence_Of (Derived_Type, Loc)); |
| Set_Etype (Hi, Derived_Type); |
| |
| Set_Scalar_Range (Derived_Type, |
| Make_Range (Loc, |
| Low_Bound => Lo, |
| High_Bound => Hi)); |
| else |
| |
| -- Analyze subtype indication and verify compatibility |
| -- with parent type. |
| |
| if Base_Type (Process_Subtype (Indic, N)) /= |
| Base_Type (Parent_Type) |
| then |
| Error_Msg_N |
| ("illegal constraint for formal discrete type", N); |
| end if; |
| end if; |
| end; |
| |
| else |
| -- If a constraint is present, analyze the bounds to catch |
| -- premature usage of the derived literals. |
| |
| if Nkind (Indic) = N_Subtype_Indication |
| and then Nkind (Range_Expression (Constraint (Indic))) = N_Range |
| then |
| Analyze (Low_Bound (Range_Expression (Constraint (Indic)))); |
| Analyze (High_Bound (Range_Expression (Constraint (Indic)))); |
| end if; |
| |
| -- Create an implicit base type for the derived type even if there |
| -- is no constraint attached to it, since this seems closer to the |
| -- Ada semantics. Use an Itype like for the implicit base type of |
| -- other kinds of derived type, but build a full type declaration |
| -- for it so as to analyze the new literals properly. Then build a |
| -- subtype declaration tree which applies the constraint (if any) |
| -- and have it replace the derived type declaration. |
| |
| Literal := First_Literal (Parent_Type); |
| Literals_List := New_List; |
| while Present (Literal) |
| and then Ekind (Literal) = E_Enumeration_Literal |
| loop |
| -- Literals of the derived type have the same representation as |
| -- those of the parent type, but this representation can be |
| -- overridden by an explicit representation clause. Indicate |
| -- that there is no explicit representation given yet. These |
| -- derived literals are implicit operations of the new type, |
| -- and can be overridden by explicit ones. |
| |
| if Nkind (Literal) = N_Defining_Character_Literal then |
| New_Lit := |
| Make_Defining_Character_Literal (Loc, Chars (Literal)); |
| else |
| New_Lit := Make_Defining_Identifier (Loc, Chars (Literal)); |
| end if; |
| |
| Mutate_Ekind (New_Lit, E_Enumeration_Literal); |
| Set_Enumeration_Pos (New_Lit, Enumeration_Pos (Literal)); |
| Set_Enumeration_Rep (New_Lit, Enumeration_Rep (Literal)); |
| Set_Enumeration_Rep_Expr (New_Lit, Empty); |
| Set_Alias (New_Lit, Literal); |
| Set_Is_Known_Valid (New_Lit, True); |
| |
| Append (New_Lit, Literals_List); |
| Next_Literal (Literal); |
| end loop; |
| |
| Implicit_Base := |
| Create_Itype (E_Enumeration_Type, N, Derived_Type, 'B'); |
| |
| -- Indicate the proper nature of the derived type. This must be done |
| -- before analysis of the literals, to recognize cases when a literal |
| -- may be hidden by a previous explicit function definition (cf. |
| -- c83031a). |
| |
| Mutate_Ekind (Derived_Type, E_Enumeration_Subtype); |
| Set_Etype (Derived_Type, Implicit_Base); |
| |
| Type_Decl := |
| Make_Full_Type_Declaration (Loc, |
| Defining_Identifier => Implicit_Base, |
| Type_Definition => |
| Make_Enumeration_Type_Definition (Loc, Literals_List)); |
| |
| -- Do not insert the declarationn, just analyze it in the context |
| |
| Set_Parent (Type_Decl, Parent (N)); |
| Analyze (Type_Decl); |
| |
| -- The anonymous base now has a full declaration, but this base |
| -- is not a first subtype. |
| |
| Set_Is_First_Subtype (Implicit_Base, False); |
| |
| -- After the implicit base is analyzed its Etype needs to be changed |
| -- to reflect the fact that it is derived from the parent type which |
| -- was ignored during analysis. We also set the size at this point. |
| |
| Set_Etype (Implicit_Base, Parent_Type); |
| |
| Set_Size_Info (Implicit_Base, Parent_Type); |
| Set_RM_Size (Implicit_Base, RM_Size (Parent_Type)); |
| Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Parent_Type)); |
| |
| -- Copy other flags from parent type |
| |
| Set_Has_Non_Standard_Rep |
| (Implicit_Base, Has_Non_Standard_Rep |
| (Parent_Type)); |
| Set_Has_Pragma_Ordered |
| (Implicit_Base, Has_Pragma_Ordered |
| (Parent_Type)); |
| Set_Has_Delayed_Freeze (Implicit_Base); |
| |
| -- Process the subtype indication including a validation check on the |
| -- constraint, if any. If a constraint is given, its bounds must be |
| -- implicitly converted to the new type. |
| |
| if Nkind (Indic) = N_Subtype_Indication then |
| declare |
| R : constant Node_Id := |
| Range_Expression (Constraint (Indic)); |
| |
| begin |
| if Nkind (R) = N_Range then |
| Hi := Build_Scalar_Bound |
| (High_Bound (R), Parent_Type, Implicit_Base); |
| Lo := Build_Scalar_Bound |
| (Low_Bound (R), Parent_Type, Implicit_Base); |
| |
| else |
| -- Constraint is a Range attribute. Replace with explicit |
| -- mention of the bounds of the prefix, which must be a |
| -- subtype. |
| |
| Analyze (Prefix (R)); |
| Hi := |
| Convert_To (Implicit_Base, |
| Make_Attribute_Reference (Loc, |
| Attribute_Name => Name_Last, |
| Prefix => |
| New_Occurrence_Of (Entity (Prefix (R)), Loc))); |
| |
| Lo := |
| Convert_To (Implicit_Base, |
| Make_Attribute_Reference (Loc, |
| Attribute_Name => Name_First, |
| Prefix => |
| New_Occurrence_Of (Entity (Prefix (R)), Loc))); |
| end if; |
| end; |
| |
| else |
| Hi := |
| Build_Scalar_Bound |
| (Type_High_Bound (Parent_Type), |
| Parent_Type, Implicit_Base); |
| Lo := |
| Build_Scalar_Bound |
| (Type_Low_Bound (Parent_Type), |
| Parent_Type, Implicit_Base); |
| end if; |
| |
| Rang_Expr := |
| Make_Range (Loc, |
| Low_Bound => Lo, |
| High_Bound => Hi); |
| |
| -- If we constructed a default range for the case where no range |
| -- was given, then the expressions in the range must not freeze |
| -- since they do not correspond to expressions in the source. |
| -- However, if the type inherits predicates the expressions will |
| -- be elaborated earlier and must freeze. |
| |
| if (Nkind (Indic) /= N_Subtype_Indication |
| or else |
| (Bound_Belongs_To_Type (Lo) and then Bound_Belongs_To_Type (Hi))) |
| and then not Has_Predicates (Derived_Type) |
| then |
| Set_Must_Not_Freeze (Lo); |
| Set_Must_Not_Freeze (Hi); |
| Set_Must_Not_Freeze (Rang_Expr); |
| end if; |
| |
| Rewrite (N, |
| Make_Subtype_Declaration (Loc, |
| Defining_Identifier => Derived_Type, |
| Subtype_Indication => |
| Make_Subtype_Indication (Loc, |
| Subtype_Mark => New_Occurrence_Of (Implicit_Base, Loc), |
| Constraint => |
| Make_Range_Constraint (Loc, |
| Range_Expression => Rang_Expr)))); |
| |
| Analyze (N); |
| |
| -- Propagate the aspects from the original type declaration to the |
| -- declaration of the implicit base. |
| |
| Move_Aspects (From => Original_Node (N), To => Type_Decl); |
| |
| -- Apply a range check. Since this range expression doesn't have an |
| -- Etype, we have to specifically pass the Source_Typ parameter. Is |
| -- this right??? |
| |
| if Nkind (Indic) = N_Subtype_Indication then |
| Apply_Range_Check |
| (Range_Expression (Constraint (Indic)), Parent_Type, |
| Source_Typ => Entity (Subtype_Mark (Indic))); |
| end if; |
| end if; |
| end Build_Derived_Enumeration_Type; |
| |
| -------------------------------- |
| -- Build_Derived_Numeric_Type -- |
| -------------------------------- |
| |
| procedure Build_Derived_Numeric_Type |
| (N : Node_Id; |
| Parent_Type : Entity_Id; |
| Derived_Type : Entity_Id) |
| is |
| Loc : constant Source_Ptr := Sloc (N); |
| Tdef : constant Node_Id := Type_Definition (N); |
| Indic : constant Node_Id := Subtype_Indication (Tdef); |
| Parent_Base : constant Entity_Id := Base_Type (Parent_Type); |
| No_Constraint : constant Boolean := Nkind (Indic) /= |
| N_Subtype_Indication; |
| Implicit_Base : Entity_Id; |
| |
| Lo : Node_Id; |
| Hi : Node_Id; |
| |
| begin |
| -- Process the subtype indication including a validation check on |
| -- the constraint if any. |
| |
| Discard_Node (Process_Subtype (Indic, N)); |
| |
| -- Introduce an implicit base type for the derived type even if there |
| -- is no constraint attached to it, since this seems closer to the Ada |
| -- semantics. |
| |
| Implicit_Base := |
| Create_Itype (Ekind (Parent_Base), N, Derived_Type, 'B'); |
| |
| Set_Etype (Implicit_Base, Parent_Base); |
| Mutate_Ekind (Implicit_Base, Ekind (Parent_Base)); |
| Set_Size_Info (Implicit_Base, Parent_Base); |
| Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Parent_Base)); |
| Set_Parent (Implicit_Base, Parent (Derived_Type)); |
| Set_Is_Known_Valid (Implicit_Base, Is_Known_Valid (Parent_Base)); |
| Set_Is_Volatile (Implicit_Base, Is_Volatile (Parent_Base)); |
| |
| -- Set RM Size for discrete type or decimal fixed-point type |
| -- Ordinary fixed-point is excluded, why??? |
| |
| if Is_Discrete_Type (Parent_Base) |
| or else Is_Decimal_Fixed_Point_Type (Parent_Base) |
| then |
| Set_RM_Size (Implicit_Base, RM_Size (Parent_Base)); |
| end if; |
| |
| Set_Has_Delayed_Freeze (Implicit_Base); |
| |
| Lo := New_Copy_Tree (Type_Low_Bound (Parent_Base)); |
| Hi := New_Copy_Tree (Type_High_Bound (Parent_Base)); |
| |
| Set_Scalar_Range (Implicit_Base, |
| Make_Range (Loc, |
| Low_Bound => Lo, |
| High_Bound => Hi)); |
| |
| if Has_Infinities (Parent_Base) then |
| Set_Includes_Infinities (Scalar_Range (Implicit_Base)); |
| end if; |
| |
| -- The Derived_Type, which is the entity of the declaration, is a |
| -- subtype of the implicit base. Its Ekind is a subtype, even in the |
| -- absence of an explicit constraint. |
| |
| Set_Etype (Derived_Type, Implicit_Base); |
| |
| -- If we did not have a constraint, then the Ekind is set from the |
| -- parent type (otherwise Process_Subtype has set the bounds) |
| |
| if No_Constraint then |
| Mutate_Ekind (Derived_Type, Subtype_Kind (Ekind (Parent_Type))); |
| end if; |
| |
| -- If we did not have a range constraint, then set the range from the |
| -- parent type. Otherwise, the Process_Subtype call has set the bounds. |
| |
| if No_Constraint or else not Has_Range_Constraint (Indic) then |
| Set_Scalar_Range (Derived_Type, |
| Make_Range (Loc, |
| Low_Bound => New_Copy_Tree (Type_Low_Bound (Parent_Type)), |
| High_Bound => New_Copy_Tree (Type_High_Bound (Parent_Type)))); |
| Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type)); |
| |
| if Has_Infinities (Parent_Type) then |
| Set_Includes_Infinities (Scalar_Range (Derived_Type)); |
| end if; |
| |
| Set_Is_Known_Valid (Derived_Type, Is_Known_Valid (Parent_Type)); |
| end if; |
| |
| Set_Is_Descendant_Of_Address (Derived_Type, |
| Is_Descendant_Of_Address (Parent_Type)); |
| Set_Is_Descendant_Of_Address (Implicit_Base, |
| Is_Descendant_Of_Address (Parent_Type)); |
| |
| -- Set remaining type-specific fields, depending on numeric type |
| |
| if Is_Modular_Integer_Type (Parent_Type) then |
| Set_Modulus (Implicit_Base, Modulus (Parent_Base)); |
| |
| Set_Non_Binary_Modulus |
| (Implicit_Base, Non_Binary_Modulus (Parent_Base)); |
| |
| Set_Is_Known_Valid |
| (Implicit_Base, Is_Known_Valid (Parent_Base)); |
| |
| elsif Is_Floating_Point_Type (Parent_Type) then |
| |
| -- Digits of base type is always copied from the digits value of |
| -- the parent base type, but the digits of the derived type will |
| -- already have been set if there was a constraint present. |
| |
| Set_Digits_Value (Implicit_Base, Digits_Value (Parent_Base)); |
| Set_Float_Rep (Implicit_Base, Float_Rep (Parent_Base)); |
| |
| if No_Constraint then |
| Set_Digits_Value (Derived_Type, Digits_Value (Parent_Type)); |
| end if; |
| |
| elsif Is_Fixed_Point_Type (Parent_Type) then |
| |
| -- Small of base type and derived type are always copied from the |
| -- parent base type, since smalls never change. The delta of the |
| -- base type is also copied from the parent base type. However the |
| -- delta of the derived type will have been set already if a |
| -- constraint was present. |
| |
| Set_Small_Value (Derived_Type, Small_Value (Parent_Base)); |
| Set_Small_Value (Implicit_Base, Small_Value (Parent_Base)); |
| Set_Delta_Value (Implicit_Base, Delta_Value (Parent_Base)); |
| |
| if No_Constraint then |
| Set_Delta_Value (Derived_Type, Delta_Value (Parent_Type)); |
| end if; |
| |
| -- The scale and machine radix in the decimal case are always |
| -- copied from the parent base type. |
| |
| if Is_Decimal_Fixed_Point_Type (Parent_Type) then |
| Set_Scale_Value (Derived_Type, Scale_Value (Parent_Base)); |
| Set_Scale_Value (Implicit_Base, Scale_Value (Parent_Base)); |
| |
| Set_Machine_Radix_10 |
| (Derived_Type, Machine_Radix_10 (Parent_Base)); |
| Set_Machine_Radix_10 |
| (Implicit_Base, Machine_Radix_10 (Parent_Base)); |
| |
| Set_Digits_Value (Implicit_Base, Digits_Value (Parent_Base)); |
| |
| if No_Constraint then |
| Set_Digits_Value (Derived_Type, Digits_Value (Parent_Base)); |
| |
| else |
| -- the analysis of the subtype_indication sets the |
| -- digits value of the derived type. |
| |
| null; |
| end if; |
| end if; |
| end if; |
| |
| if Is_Integer_Type (Parent_Type) then |
| Set_Has_Shift_Operator |
| (Implicit_Base, Has_Shift_Operator (Parent_Type)); |
| end if; |
| |
| -- The type of the bounds is that of the parent type, and they |
| -- must be converted to the derived type. |
| |
| Convert_Scalar_Bounds (N, Parent_Type, Derived_Type, Loc); |
| end Build_Derived_Numeric_Type; |
| |
| -------------------------------- |
| -- Build_Derived_Private_Type -- |
| -------------------------------- |
| |
| procedure Build_Derived_Private_Type |
| (N : Node_Id; |
| Parent_Type : Entity_Id; |
| Derived_Type : Entity_Id; |
| Is_Completion : Boolean; |
| Derive_Subps : Boolean := True) |
| is |
| Loc : constant Source_Ptr := Sloc (N); |
| Par_Base : constant Entity_Id := Base_Type (Parent_Type); |
| Par_Scope : constant Entity_Id := Scope (Par_Base); |
| Full_N : constant Node_Id := New_Copy_Tree (N); |
| Full_Der : Entity_Id := New_Copy (Derived_Type); |
| Full_P : Entity_Id; |
| |
| function Available_Full_View (Typ : Entity_Id) return Entity_Id; |
| -- Return the Full_View or Underlying_Full_View of Typ, whichever is |
| -- present (they cannot be both present for the same type), or Empty. |
| |
| procedure Build_Full_Derivation; |
| -- Build full derivation, i.e. derive from the full view |
| |
| procedure Copy_And_Build; |
| -- Copy derived type declaration, replace parent with its full view, |
| -- and build derivation |
| |
| ------------------------- |
| -- Available_Full_View -- |
| ------------------------- |
| |
| function Available_Full_View (Typ : Entity_Id) return Entity_Id is |
| begin |
| if Present (Full_View (Typ)) then |
| return Full_View (Typ); |
| |
| elsif Present (Underlying_Full_View (Typ)) then |
| |
| -- We should be called on a type with an underlying full view |
| -- only by means of the recursive call made in Copy_And_Build |
| -- through the first call to Build_Derived_Type, or else if |
| -- the parent scope is being analyzed because we are deriving |
| -- a completion. |
| |
| pragma Assert (Is_Completion or else In_Private_Part (Par_Scope)); |
| |
| return Underlying_Full_View (Typ); |
| |
| else |
| return Empty; |
| end if; |
| end Available_Full_View; |
| |
| --------------------------- |
| -- Build_Full_Derivation -- |
| --------------------------- |
| |
| procedure Build_Full_Derivation is |
| begin |
| -- If parent scope is not open, install the declarations |
| |
| if not In_Open_Scopes (Par_Scope) then |
| Install_Private_Declarations (Par_Scope); |
| Install_Visible_Declarations (Par_Scope); |
| Copy_And_Build; |
| Uninstall_Declarations (Par_Scope); |
| |
| -- If parent scope is open and in another unit, and parent has a |
| -- completion, then the derivation is taking place in the visible |
| -- part of a child unit. In that case retrieve the full view of |
| -- the parent momentarily. |
| |
| elsif not In_Same_Source_Unit (N, Parent_Type) |
| and then Present (Full_View (Parent_Type)) |
| then |
| Full_P := Full_View (Parent_Type); |
| Exchange_Declarations (Parent_Type); |
| Copy_And_Build; |
| Exchange_Declarations (Full_P); |
| |
| -- Otherwise it is a local derivation |
| |
| else |
| Copy_And_Build; |
| end if; |
| end Build_Full_Derivation; |
| |
| -------------------- |
| -- Copy_And_Build -- |
| -------------------- |
| |
| procedure Copy_And_Build is |
| Full_Parent : Entity_Id := Parent_Type; |
| |
| begin |
| -- If the parent is itself derived from another private type, |
| -- installing the private declarations has not affected its |
| -- privacy status, so use its own full view explicitly. |
| |
| if Is_Private_Type (Full_Parent) |
| and then Present (Full_View (Full_Parent)) |
| then |
| Full_Parent := Full_View (Full_Parent); |
| end if; |
| |
| -- If the full view is itself derived from another private type |
| -- and has got an underlying full view, and this is done for a |
| -- completion, i.e. to build the underlying full view of the type, |
| -- then use this underlying full view. We cannot do that if this |
| -- is not a completion, i.e. to build the full view of the type, |
| -- because this would break the privacy of the parent type, except |
| -- if the parent scope is being analyzed because we are deriving a |
| -- completion. |
| |
| if Is_Private_Type (Full_Parent) |
| and then Present (Underlying_Full_View (Full_Parent)) |
| and then (Is_Completion or else In_Private_Part (Par_Scope)) |
| then |
| Full_Parent := Underlying_Full_View (Full_Parent); |
| end if; |
| |
| -- For private, record, concurrent, access and almost all enumeration |
| -- types, the derivation from the full view requires a fully-fledged |
| -- declaration. In the other cases, just use an itype. |
| |
| if Is_Private_Type (Full_Parent) |
| or else Is_Record_Type (Full_Parent) |
| or else Is_Concurrent_Type (Full_Parent) |
| or else Is_Access_Type (Full_Parent) |
| or else |
| (Is_Enumeration_Type (Full_Parent) |
| and then not Is_Standard_Character_Type (Full_Parent) |
| and then not Is_Generic_Type (Root_Type (Full_Parent))) |
| then |
| -- Copy and adjust declaration to provide a completion for what |
| -- is originally a private declaration. Indicate that full view |
| -- is internally generated. |
| |
| Set_Comes_From_Source (Full_N, False); |
| Set_Comes_From_Source (Full_Der, False); |
| Set_Parent (Full_Der, Full_N); |
| Set_Defining_Identifier (Full_N, Full_Der); |
| |
| -- If there are no constraints, adjust the subtype mark |
| |
| if Nkind (Subtype_Indication (Type_Definition (Full_N))) /= |
| N_Subtype_Indication |
| then |
| Set_Subtype_Indication |
| (Type_Definition (Full_N), |
| New_Occurrence_Of (Full_Parent, Sloc (Full_N))); |
| end if; |
| |
| Insert_After (N, Full_N); |
| |
| -- Build full view of derived type from full view of parent which |
| -- is now installed. Subprograms have been derived on the partial |
| -- view, the completion does not derive them anew. |
| |
| if Is_Record_Type (Full_Parent) then |
| |
| -- If parent type is tagged, the completion inherits the proper |
| -- primitive operations. |
| |
| if Is_Tagged_Type (Parent_Type) then |
| Build_Derived_Record_Type |
| (Full_N, Full_Parent, Full_Der, Derive_Subps); |
| else |
| Build_Derived_Record_Type |
| (Full_N, Full_Parent, Full_Der, Derive_Subps => False); |
| end if; |
| |
| else |
| -- If the parent type is private, this is not a completion and |
| -- we build the full derivation recursively as a completion. |
| |
| Build_Derived_Type |
| (Full_N, Full_Parent, Full_Der, |
| Is_Completion => Is_Private_Type (Full_Parent), |
| Derive_Subps => False); |
| end if; |
| |
| -- The full declaration has been introduced into the tree and |
| -- processed in the step above. It should not be analyzed again |
| -- (when encountered later in the current list of declarations) |
| -- to prevent spurious name conflicts. The full entity remains |
| -- invisible. |
| |
| Set_Analyzed (Full_N); |
| |
| else |
| Full_Der := |
| Make_Defining_Identifier (Sloc (Derived_Type), |
| Chars => Chars (Derived_Type)); |
| Set_Is_Itype (Full_Der); |
| Set_Associated_Node_For_Itype (Full_Der, N); |
| Set_Parent (Full_Der, N); |
| Build_Derived_Type |
| (N, Full_Parent, Full_Der, |
| Is_Completion => False, Derive_Subps => False); |
| end if; |
| |
| Set_Has_Private_Declaration (Full_Der); |
| Set_Has_Private_Declaration (Derived_Type); |
| |
| Set_Scope (Full_Der, Scope (Derived_Type)); |
| Set_Is_First_Subtype (Full_Der, Is_First_Subtype (Derived_Type)); |
| Set_Has_Size_Clause (Full_Der, False); |
| Set_Has_Alignment_Clause (Full_Der, False); |
| Set_Has_Delayed_Freeze (Full_Der); |
| Set_Is_Frozen (Full_Der, False); |
| Set_Freeze_Node (Full_Der, Empty); |
| Set_Depends_On_Private (Full_Der, Has_Private_Component (Full_Der)); |
| Set_Is_Public (Full_Der, Is_Public (Derived_Type)); |
| |
| -- The convention on the base type may be set in the private part |
| -- and not propagated to the subtype until later, so we obtain the |
| -- convention from the base type of the parent. |
| |
| Set_Convention (Full_Der, Convention (Base_Type (Full_Parent))); |
| end Copy_And_Build; |
| |
| -- Start of processing for Build_Derived_Private_Type |
| |
| begin |
| if Is_Tagged_Type (Parent_Type) then |
| Full_P := Full_View (Parent_Type); |
| |
| -- A type extension of a type with unknown discriminants is an |
| -- indefinite type that the back-end cannot handle directly. |
| -- We treat it as a private type, and build a completion that is |
| -- derived from the full view of the parent, and hopefully has |
| -- known discriminants. |
| |
| -- If the full view of the parent type has an underlying record view, |
| -- use it to generate the underlying record view of this derived type |
| -- (required for chains of derivations with unknown discriminants). |
| |
| -- Minor optimization: we avoid the generation of useless underlying |
| -- record view entities if the private type declaration has unknown |
| -- discriminants but its corresponding full view has no |
| -- discriminants. |
| |
| if Has_Unknown_Discriminants (Parent_Type) |
| and then Present (Full_P) |
| and then (Has_Discriminants (Full_P) |
| or else Present (Underlying_Record_View (Full_P))) |
| and then not In_Open_Scopes (Par_Scope) |
| and then Expander_Active |
| then |
| declare |
| Full_Der : constant Entity_Id := Make_Temporary (Loc, 'T'); |
| New_Ext : constant Node_Id := |
| Copy_Separate_Tree |
| (Record_Extension_Part (Type_Definition (N))); |
| Decl : Node_Id; |
| |
| begin |
| Build_Derived_Record_Type |
| (N, Parent_Type, Derived_Type, Derive_Subps); |
| |
| -- Build anonymous completion, as a derivation from the full |
| -- view of the parent. This is not a completion in the usual |
| -- sense, because the current type is not private. |
| |
| Decl := |
| Make_Full_Type_Declaration (Loc, |
| Defining_Identifier => Full_Der, |
| Type_Definition => |
| Make_Derived_Type_Definition (Loc, |
| Subtype_Indication => |
| New_Copy_Tree |
| (Subtype_Indication (Type_Definition (N))), |
| Record_Extension_Part => New_Ext)); |
| |
| -- If the parent type has an underlying record view, use it |
| -- here to build the new underlying record view. |
| |
| if Present (Underlying_Record_View (Full_P)) then |
| pragma Assert |
| (Nkind (Subtype_Indication (Type_Definition (Decl))) |
| = N_Identifier); |
| Set_Entity (Subtype_Indication (Type_Definition (Decl)), |
| Underlying_Record_View (Full_P)); |
| end if; |
| |
| Install_Private_Declarations (Par_Scope); |
| Install_Visible_Declarations (Par_Scope); |
| Insert_Before (N, Decl); |
| |
| -- Mark entity as an underlying record view before analysis, |
| -- to avoid generating the list of its primitive operations |
| -- (which is not really required for this entity) and thus |
| -- prevent spurious errors associated with missing overriding |
| -- of abstract primitives (overridden only for Derived_Type). |
| |
| Mutate_Ekind (Full_Der, E_Record_Type); |
| Set_Is_Underlying_Record_View (Full_Der); |
| Set_Default_SSO (Full_Der); |
| Set_No_Reordering (Full_Der, No_Component_Reordering); |
| |
| Analyze (Decl); |
| |
| pragma Assert (Has_Discriminants (Full_Der) |
| and then not Has_Unknown_Discriminants (Full_Der)); |
| |
| Uninstall_Declarations (Par_Scope); |
| |
| -- Freeze the underlying record view, to prevent generation of |
| -- useless dispatching information, which is simply shared with |
| -- the real derived type. |
| |
| Set_Is_Frozen (Full_Der); |
| |
| -- If the derived type has access discriminants, create |
| -- references to their anonymous types now, to prevent |
| -- back-end problems when their first use is in generated |
| -- bodies of primitives. |
| |
| declare |
| E : Entity_Id; |
| |
| begin |
| E := First_Entity (Full_Der); |
| |
| while Present (E) loop |
| if Ekind (E) = E_Discriminant |
| and then Ekind (Etype (E)) = E_Anonymous_Access_Type |
| then |
| Build_Itype_Reference (Etype (E), Decl); |
| end if; |
| |
| Next_Entity (E); |
| end loop; |
| end; |
| |
| -- Set up links between real entity and underlying record view |
| |
| Set_Underlying_Record_View (Derived_Type, Base_Type (Full_Der)); |
| Set_Underlying_Record_View (Base_Type (Full_Der), Derived_Type); |
| end; |
| |
| -- If discriminants are known, build derived record |
| |
| else |
| Build_Derived_Record_Type |
| (N, Parent_Type, Derived_Type, Derive_Subps); |
| end if; |
| |
| return; |
| |
| elsif Has_Discriminants (Parent_Type) then |
| |
| -- Build partial view of derived type from partial view of parent. |
| -- This must be done before building the full derivation because the |
| -- second derivation will modify the discriminants of the first and |
| -- the discriminants are chained with the rest of the components in |
| -- the full derivation. |
| |
| Build_Derived_Record_Type |
| (N, Parent_Type, Derived_Type, Derive_Subps); |
| |
| -- Build the full derivation if this is not the anonymous derived |
| -- base type created by Build_Derived_Record_Type in the constrained |
| -- case (see point 5. of its head comment) since we build it for the |
| -- derived subtype. |
| |
| if Present (Available_Full_View (Parent_Type)) |
| and then not Is_Itype (Derived_Type) |
| then |
| declare |
| Der_Base : constant Entity_Id := Base_Type (Derived_Type); |
| Discr : Entity_Id; |
| Last_Discr : Entity_Id; |
| |
| begin |
| -- If this is not a completion, construct the implicit full |
| -- view by deriving from the full view of the parent type. |
| -- But if this is a completion, the derived private type |
| -- being built is a full view and the full derivation can |
| -- only be its underlying full view. |
| |
| Build_Full_Derivation; |
| |
| if not Is_Completion then |
| Set_Full_View (Derived_Type, Full_Der); |
| else |
| Set_Underlying_Full_View (Derived_Type, Full_Der); |
| Set_Is_Underlying_Full_View (Full_Der); |
| end if; |
| |
| if not Is_Base_Type (Derived_Type) then |
| Set_Full_View (Der_Base, Base_Type (Full_Der)); |
| end if; |
| |
| -- Copy the discriminant list from full view to the partial |
| -- view (base type and its subtype). Gigi requires that the |
| -- partial and full views have the same discriminants. |
| |
| -- Note that since the partial view points to discriminants |
| -- in the full view, their scope will be that of the full |
| -- view. This might cause some front end problems and need |
| -- adjustment??? |
| |
| Discr := First_Discriminant (Base_Type (Full_Der)); |
| Set_First_Entity (Der_Base, Discr); |
| |
| loop |
| Last_Discr := Discr; |
| Next_Discriminant (Discr); |
| exit when No (Discr); |
| end loop; |
| |
| Set_Last_Entity (Der_Base, Last_Discr); |
| Set_First_Entity (Derived_Type, First_Entity (Der_Base)); |
| Set_Last_Entity (Derived_Type, Last_Entity (Der_Base)); |
| end; |
| end if; |
| |
| elsif Present (Available_Full_View (Parent_Type)) |
| and then Has_Discriminants (Available_Full_View (Parent_Type)) |
| then |
| if Has_Unknown_Discriminants (Parent_Type) |
| and then Nkind (Subtype_Indication (Type_Definition (N))) = |
| N_Subtype_Indication |
| then |
| Error_Msg_N |
| ("cannot constrain type with unknown discriminants", |
| Subtype_Indication (Type_Definition (N))); |
| return; |
| end if; |
| |
| -- If this is not a completion, construct the implicit full view by |
| -- deriving from the full view of the parent type. But if this is a |
| -- completion, the derived private type being built is a full view |
| -- and the full derivation can only be its underlying full view. |
| |
| Build_Full_Derivation; |
| |
| if not Is_Completion then |
| Set_Full_View (Derived_Type, Full_Der); |
| else |
| Set_Underlying_Full_View (Derived_Type, Full_Der); |
| Set_Is_Underlying_Full_View (Full_Der); |
| end if; |
| |
| -- In any case, the primitive operations are inherited from the |
| -- parent type, not from the internal full view. |
| |
| Set_Etype (Base_Type (Derived_Type), Base_Type (Parent_Type)); |
| |
| if Derive_Subps then |
| -- Initialize the list of primitive operations to an empty list, |
| -- to cover tagged types as well as untagged types. For untagged |
| -- types this is used either to analyze the call as legal when |
| -- Extensions_Allowed is True, or to issue a better error message |
| -- otherwise. |
| |
| Set_Direct_Primitive_Operations (Derived_Type, New_Elmt_List); |
| |
| Derive_Subprograms (Parent_Type, Derived_Type); |
| end if; |
| |
| Set_Stored_Constraint (Derived_Type, No_Elist); |
| Set_Is_Constrained |
| (Derived_Type, Is_Constrained (Available_Full_View (Parent_Type))); |
| |
| else |
| -- Untagged type, No discriminants on either view |
| |
| if Nkind (Subtype_Indication (Type_Definition (N))) = |
| N_Subtype_Indication |
| then |
| Error_Msg_N |
| ("illegal constraint on type without discriminants", N); |
| end if; |
| |
| if Present (Discriminant_Specifications (N)) |
| and then Present (Available_Full_View (Parent_Type)) |
| and then not Is_Tagged_Type (Available_Full_View (Parent_Type)) |
| then |
| Error_Msg_N ("cannot add discriminants to untagged type", N); |
| end if; |
| |
| Set_Stored_Constraint (Derived_Type, No_Elist); |
| Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type)); |
| |
| Set_Is_Controlled_Active |
| (Derived_Type, Is_Controlled_Active (Parent_Type)); |
| |
| Set_Disable_Controlled |
| (Derived_Type, Disable_Controlled (Parent_Type)); |
| |
| Set_Has_Controlled_Component |
| (Derived_Type, Has_Controlled_Component (Parent_Type)); |
| |
| -- Direct controlled types do not inherit Finalize_Storage_Only flag |
| |
| if not Is_Controlled (Parent_Type) then |
| Set_Finalize_Storage_Only |
| (Base_Type (Derived_Type), Finalize_Storage_Only (Parent_Type)); |
| end if; |
| |
| -- If this is not a completion, construct the implicit full view by |
| -- deriving from the full view of the parent type. But if this is a |
| -- completion, the derived private type being built is a full view |
| -- and the full derivation can only be its underlying full view. |
| |
| -- ??? If the parent type is untagged private and its completion is |
| -- tagged, this mechanism will not work because we cannot derive from |
| -- the tagged full view unless we have an extension. |
| |
| if Present (Available_Full_View (Parent_Type)) |
| and then not Is_Tagged_Type (Available_Full_View (Parent_Type)) |
| and then not Error_Posted (N) |
| then |
| Build_Full_Derivation; |
| |
| if not Is_Completion then |
| Set_Full_View (Derived_Type, Full_Der); |
| else |
| Set_Underlying_Full_View (Derived_Type, Full_Der); |
| Set_Is_Underlying_Full_View (Full_Der); |
| end if; |
| end if; |
| end if; |
| |
| Set_Has_Unknown_Discriminants (Derived_Type, |
| Has_Unknown_Discriminants (Parent_Type)); |
| |
| if Is_Private_Type (Derived_Type) then |
| Set_Private_Dependents (Derived_Type, New_Elmt_List); |
| end if; |
| |
| -- If the parent base type is in scope, add the derived type to its |
| -- list of private dependents, because its full view may become |
| -- visible subsequently (in a nested private part, a body, or in a |
| -- further child unit). |
| |
| if Is_Private_Type (Par_Base) and then In_Open_Scopes (Par_Scope) then |
| Append_Elmt (Derived_Type, Private_Dependents (Parent_Type)); |
| |
| -- Check for unusual case where a type completed by a private |
| -- derivation occurs within a package nested in a child unit, and |
| -- the parent is declared in an ancestor. |
| |
| if Is_Child_Unit (Scope (Current_Scope)) |
| and then Is_Completion |
| and then In_Private_Part (Current_Scope) |
| and then Scope (Parent_Type) /= Current_Scope |
| |
| -- Note that if the parent has a completion in the private part, |
| -- (which is itself a derivation from some other private type) |
| -- it is that completion that is visible, there is no full view |
| -- available, and no special processing is needed. |
| |
| and then Present (Full_View (Parent_Type)) |
| then |
| -- In this case, the full view of the parent type will become |
| -- visible in the body of the enclosing child, and only then will |
| -- the current type be possibly non-private. Build an underlying |
| -- full view that will be installed when the enclosing child body |
| -- is compiled. |
| |
| if Present (Underlying_Full_View (Derived_Type)) then |
| Full_Der := Underlying_Full_View (Derived_Type); |
| else |
| Build_Full_Derivation; |
| Set_Underlying_Full_View (Derived_Type, Full_Der); |
| Set_Is_Underlying_Full_View (Full_Der); |
| end if; |
| |
| -- The full view will be used to swap entities on entry/exit to |
| -- the body, and must appear in the entity list for the package. |
| |
| Append_Entity (Full_Der, Scope (Derived_Type)); |
| end if; |
| end if; |
| end Build_Derived_Private_Type; |
| |
| ------------------------------- |
| -- Build_Derived_Record_Type -- |
| ------------------------------- |
| |
| -- 1. INTRODUCTION |
| |
| -- Ideally we would like to use the same model of type derivation for |
| -- tagged and untagged record types. Unfortunately this is not quite |
| -- possible because the semantics of representation clauses is different |
| -- for tagged and untagged records under inheritance. Consider the |
| -- following: |
| |
| -- type R (...) is [tagged] record ... end record; |
| -- type T (...) is new R (...) [with ...]; |
| |
| -- The representation clauses for T can specify a completely different |
| -- record layout from R's. Hence the same component can be placed in two |
| -- very different positions in objects of type T and R. If R and T are |
| -- tagged types, representation clauses for T can only specify the layout |
| -- of non inherited components, thus components that are common in R and T |
| -- have the same position in objects of type R and T. |
| |
| -- This has two implications. The first is that the entire tree for R's |
| -- declaration needs to be copied for T in the untagged case, so that T |
| -- can be viewed as a record type of its own with its own representation |
| -- clauses. The second implication is the way we handle discriminants. |
| -- Specifically, in the untagged case we need a way to communicate to Gigi |
| -- what are the real discriminants in the record, while for the semantics |
| -- we need to consider those introduced by the user to rename the |
| -- discriminants in the parent type. This is handled by introducing the |
| -- notion of stored discriminants. See below for more. |
| |
| -- Fortunately the way regular components are inherited can be handled in |
| -- the same way in tagged and untagged types. |
| |
| -- To complicate things a bit more the private view of a private extension |
| -- cannot be handled in the same way as the full view (for one thing the |
| -- semantic rules are somewhat different). We will explain what differs |
| -- below. |
| |
| -- 2. DISCRIMINANTS UNDER INHERITANCE |
| |
| -- The semantic rules governing the discriminants of derived types are |
| -- quite subtle. |
| |
| -- type Derived_Type_Name [KNOWN_DISCRIMINANT_PART] is new |
| -- [abstract] Parent_Type_Name [CONSTRAINT] [RECORD_EXTENSION_PART] |
| |
| -- If parent type has discriminants, then the discriminants that are |
| -- declared in the derived type are [3.4 (11)]: |
| |
| -- o The discriminants specified by a new KNOWN_DISCRIMINANT_PART, if |
| -- there is one; |
| |
| -- o Otherwise, each discriminant of the parent type (implicitly declared |
| -- in the same order with the same specifications). In this case, the |
| -- discriminants are said to be "inherited", or if unknown in the parent |
| -- are also unknown in the derived type. |
| |
| -- Furthermore if a KNOWN_DISCRIMINANT_PART is provided, then [3.7(13-18)]: |
| |
| -- o The parent subtype must be constrained; |
| |
| -- o If the parent type is not a tagged type, then each discriminant of |
| -- the derived type must be used in the constraint defining a parent |
| -- subtype. [Implementation note: This ensures that the new discriminant |
| -- can share storage with an existing discriminant.] |
| |
| -- For the derived type each discriminant of the parent type is either |
| -- inherited, constrained to equal some new discriminant of the derived |
| -- type, or constrained to the value of an expression. |
| |
| -- When inherited or constrained to equal some new discriminant, the |
| -- parent discriminant and the discriminant of the derived type are said |
| -- to "correspond". |
| |
| -- If a discriminant of the parent type is constrained to a specific value |
| -- in the derived type definition, then the discriminant is said to be |
| -- "specified" by that derived type definition. |
| |
| -- 3. DISCRIMINANTS IN DERIVED UNTAGGED RECORD TYPES |
| |
| -- We have spoken about stored discriminants in point 1 (introduction) |
| -- above. There are two sorts of stored discriminants: implicit and |
| -- explicit. As long as the derived type inherits the same discriminants as |
| -- the root record type, stored discriminants are the same as regular |
| -- discriminants, and are said to be implicit. However, if any discriminant |
| -- in the root type was renamed in the derived type, then the derived |
| -- type will contain explicit stored discriminants. Explicit stored |
| -- discriminants are discriminants in addition to the semantically visible |
| -- discriminants defined for the derived type. Stored discriminants are |
| -- used by Gigi to figure out what are the physical discriminants in |
| -- objects of the derived type (see precise definition in einfo.ads). |
| -- As an example, consider the following: |
| |
| -- type R (D1, D2, D3 : Int) is record ... end record; |
| -- type T1 is new R; |
| -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1); |
| -- type T3 is new T2; |
| -- type T4 (Y : Int) is new T3 (Y, 99); |
| |
| -- The following table summarizes the discriminants and stored |
| -- discriminants in R and T1 through T4: |
| |
| -- Type Discrim Stored Discrim Comment |
| -- R (D1, D2, D3) (D1, D2, D3) Stored discrims implicit in R |
| -- T1 (D1, D2, D3) (D1, D2, D3) Stored discrims implicit in T1 |
| -- T2 (X1, X2) (D1, D2, D3) Stored discrims EXPLICIT in T2 |
| -- T3 (X1, X2) (D1, D2, D3) Stored discrims EXPLICIT in T3 |
| -- T4 (Y) (D1, D2, D3) Stored discrims EXPLICIT in T4 |
| |
| -- Field Corresponding_Discriminant (abbreviated CD below) allows us to |
| -- find the corresponding discriminant in the parent type, while |
| -- Original_Record_Component (abbreviated ORC below) the actual physical |
| -- component that is renamed. Finally the field Is_Completely_Hidden |
| -- (abbreviated ICH below) is set for all explicit stored discriminants |
| -- (see einfo.ads for more info). For the above example this gives: |
| |
| -- Discrim CD ORC ICH |
| -- ^^^^^^^ ^^ ^^^ ^^^ |
| -- D1 in R empty itself no |
| -- D2 in R empty itself no |
| -- D3 in R empty itself no |
| |
| -- D1 in T1 D1 in R itself no |
| -- D2 in T1 D2 in R itself no |
| -- D3 in T1 D3 in R itself no |
| |
| -- X1 in T2 D3 in T1 D3 in T2 no |
| -- X2 in T2 D1 in T1 D1 in T2 no |
| -- D1 in T2 empty itself yes |
| -- D2 in T2 empty itself yes |
| -- D3 in T2 empty itself yes |
| |
| -- X1 in T3 X1 in T2 D3 in T3 no |
| -- X2 in T3 X2 in T2 D1 in T3 no |
| -- D1 in T3 empty itself yes |
| -- D2 in T3 empty itself yes |
| -- D3 in T3 empty itself yes |
| |
| -- Y in T4 X1 in T3 D3 in T4 no |
| -- D1 in T4 empty itself yes |
| -- D2 in T4 empty itself yes |
| -- D3 in T4 empty itself yes |
| |
| -- 4. DISCRIMINANTS IN DERIVED TAGGED RECORD TYPES |
| |
| -- Type derivation for tagged types is fairly straightforward. If no |
| -- discriminants are specified by the derived type, these are inherited |
| -- from the parent. No explicit stored discriminants are ever necessary. |
| -- The only manipulation that is done to the tree is that of adding a |
| -- _parent field with parent type and constrained to the same constraint |
| -- specified for the parent in the derived type definition. For instance: |
| |
| -- type R (D1, D2, D3 : Int) is tagged record ... end record; |
| -- type T1 is new R with null record; |
| -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with null record; |
| |
| -- are changed into: |
| |
| -- type T1 (D1, D2, D3 : Int) is new R (D1, D2, D3) with record |
| -- _parent : R (D1, D2, D3); |
| -- end record; |
| |
| -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with record |
| -- _parent : T1 (X2, 88, X1); |
| -- end record; |
| |
| -- The discriminants actually present in R, T1 and T2 as well as their CD, |
| -- ORC and ICH fields are: |
| |
| -- Discrim CD ORC ICH |
| -- ^^^^^^^ ^^ ^^^ ^^^ |
| -- D1 in R empty itself no |
| -- D2 in R empty itself no |
| -- D3 in R empty itself no |
| |
| -- D1 in T1 D1 in R D1 in R no |
| -- D2 in T1 D2 in R D2 in R no |
| -- D3 in T1 D3 in R D3 in R no |
| |
| -- X1 in T2 D3 in T1 D3 in R no |
| -- X2 in T2 D1 in T1 D1 in R no |
| |
| -- 5. FIRST TRANSFORMATION FOR DERIVED RECORDS |
| -- |
| -- Regardless of whether we dealing with a tagged or untagged type |
| -- we will transform all derived type declarations of the form |
| -- |
| -- type T is new R (...) [with ...]; |
| -- or |
| -- subtype S is R (...); |
| -- type T is new S [with ...]; |
| -- into |
| -- type BT is new R [with ...]; |
| -- subtype T is BT (...); |
| -- |
| -- That is, the base derived type is constrained only if it has no |
| -- discriminants. The reason for doing this is that GNAT's semantic model |
| -- assumes that a base type with discriminants is unconstrained. |
| -- |
| -- Note that, strictly speaking, the above transformation is not always |
| -- correct. Consider for instance the following excerpt from ACVC b34011a: |
| -- |
| -- procedure B34011A is |
| -- type REC (D : integer := 0) is record |
| -- I : Integer; |
| -- end record; |
| |
| -- package P is |
| -- type T6 is new Rec; |
| -- function F return T6; |
| -- end P; |
| |
| -- use P; |
| -- package Q6 is |
| -- type U is new T6 (Q6.F.I); -- ERROR: Q6.F. |
| -- end Q6; |
| -- |
| -- The definition of Q6.U is illegal. However transforming Q6.U into |
| |
| -- type BaseU is new T6; |
| -- subtype U is BaseU (Q6.F.I) |
| |
| -- turns U into a legal subtype, which is incorrect. To avoid this problem |
| -- we always analyze the constraint (in this case (Q6.F.I)) before applying |
| -- the transformation described above. |
| |
| -- There is another instance where the above transformation is incorrect. |
| -- Consider: |
| |
| -- package Pack is |
| -- type Base (D : Integer) is tagged null record; |
| -- procedure P (X : Base); |
| |
| -- type Der is new Base (2) with null record; |
| -- procedure P (X : Der); |
| -- end Pack; |
| |
| -- Then the above transformation turns this into |
| |
| -- type Der_Base is new Base with null record; |
| -- -- procedure P (X : Base) is implicitly inherited here |
| -- -- as procedure P (X : Der_Base). |
| |
| -- subtype Der is Der_Base (2); |
| -- procedure P (X : Der); |
| -- -- The overriding of P (X : Der_Base) is illegal since we |
| -- -- have a parameter conformance problem. |
| |
| -- To get around this problem, after having semantically processed Der_Base |
| -- and the rewritten subtype declaration for Der, we copy Der_Base field |
| -- Discriminant_Constraint from Der so that when parameter conformance is |
| -- checked when P is overridden, no semantic errors are flagged. |
| |
| -- 6. SECOND TRANSFORMATION FOR DERIVED RECORDS |
| |
| -- Regardless of whether we are dealing with a tagged or untagged type |
| -- we will transform all derived type declarations of the form |
| |
| -- type R (D1, .., Dn : ...) is [tagged] record ...; |
| -- type T is new R [with ...]; |
| -- into |
| -- type T (D1, .., Dn : ...) is new R (D1, .., Dn) [with ...]; |
| |
| -- The reason for such transformation is that it allows us to implement a |
| -- very clean form of component inheritance as explained below. |
| |
| -- Note that this transformation is not achieved by direct tree rewriting |
| -- and manipulation, but rather by redoing the semantic actions that the |
| -- above transformation will entail. This is done directly in routine |
| -- Inherit_Components. |
| |
| -- 7. TYPE DERIVATION AND COMPONENT INHERITANCE |
| |
| -- In both tagged and untagged derived types, regular non discriminant |
| -- components are inherited in the derived type from the parent type. In |
| -- the absence of discriminants component, inheritance is straightforward |
| -- as components can simply be copied from the parent. |
| |
| -- If the parent has discriminants, inheriting components constrained with |
| -- these discriminants requires caution. Consider the following example: |
| |
| -- type R (D1, D2 : Positive) is [tagged] record |
| -- S : String (D1 .. D2); |
| -- end record; |
| |
| -- type T1 is new R [with null record]; |
| -- type T2 (X : positive) is new R (1, X) [with null record]; |
| |
| -- As explained in 6. above, T1 is rewritten as |
| -- type T1 (D1, D2 : Positive) is new R (D1, D2) [with null record]; |
| -- which makes the treatment for T1 and T2 identical. |
| |
| -- What we want when inheriting S, is that references to D1 and D2 in R are |
| -- replaced with references to their correct constraints, i.e. D1 and D2 in |
| -- T1 and 1 and X in T2. So all R's discriminant references are replaced |
| -- with either discriminant references in the derived type or expressions. |
| -- This replacement is achieved as follows: before inheriting R's |
| -- components, a subtype R (D1, D2) for T1 (resp. R (1, X) for T2) is |
| -- created in the scope of T1 (resp. scope of T2) so that discriminants D1 |
| -- and D2 of T1 are visible (resp. discriminant X of T2 is visible). |
| -- For T2, for instance, this has the effect of replacing String (D1 .. D2) |
| -- by String (1 .. X). |
| |
| -- 8. TYPE DERIVATION IN PRIVATE TYPE EXTENSIONS |
| |
| -- We explain here the rules governing private type extensions relevant to |
| -- type derivation. These rules are explained on the following example: |
| |
| -- type D [(...)] is new A [(...)] with private; <-- partial view |
| -- type D [(...)] is new P [(...)] with null record; <-- full view |
| |
| -- Type A is called the ancestor subtype of the private extension. |
| -- Type P is the parent type of the full view of the private extension. It |
| -- must be A or a type derived from A. |
| |
| -- The rules concerning the discriminants of private type extensions are |
| -- [7.3(10-13)]: |
| |
| -- o If a private extension inherits known discriminants from the ancestor |
| -- subtype, then the full view must also inherit its discriminants from |
| -- the ancestor subtype and the parent subtype of the full view must be |
| -- constrained if and only if the ancestor subtype is constrained. |
| |
| -- o If a partial view has unknown discriminants, then the full view may |
| -- define a definite or an indefinite subtype, with or without |
| -- discriminants. |
| |
| -- o If a partial view has neither known nor unknown discriminants, then |
| -- the full view must define a definite subtype. |
| |
| -- o If the ancestor subtype of a private extension has constrained |
| -- discriminants, then the parent subtype of the full view must impose a |
| -- statically matching constraint on those discriminants. |
| |
| -- This means that only the following forms of private extensions are |
| -- allowed: |
| |
| -- type D is new A with private; <-- partial view |
| -- type D is new P with null record; <-- full view |
| |
| -- If A has no discriminants than P has no discriminants, otherwise P must |
| -- inherit A's discriminants. |
| |
| -- type D is new A (...) with private; <-- partial view |
| -- type D is new P (:::) with null record; <-- full view |
| |
| -- P must inherit A's discriminants and (...) and (:::) must statically |
| -- match. |
| |
| -- subtype A is R (...); |
| -- type D is new A with private; <-- partial view |
| -- type D is new P with null record; <-- full view |
| |
| -- P must have inherited R's discriminants and must be derived from A or |
| -- any of its subtypes. |
| |
| -- type D (..) is new A with private; <-- partial view |
| -- type D (..) is new P [(:::)] with null record; <-- full view |
| |
| -- No specific constraints on P's discriminants or constraint (:::). |
| -- Note that A can be unconstrained, but the parent subtype P must either |
| -- be constrained or (:::) must be present. |
| |
| -- type D (..) is new A [(...)] with private; <-- partial view |
| -- type D (..) is new P [(:::)] with null record; <-- full view |
| |
| -- P's constraints on A's discriminants must statically match those |
| -- imposed by (...). |
| |
| -- 9. IMPLEMENTATION OF TYPE DERIVATION FOR PRIVATE EXTENSIONS |
| |
| -- The full view of a private extension is handled exactly as described |
| -- above. The model chose for the private view of a private extension is |
| -- the same for what concerns discriminants (i.e. they receive the same |
| -- treatment as in the tagged case). However, the private view of the |
| -- private extension always inherits the components of the parent base, |
| -- without replacing any discriminant reference. Strictly speaking this is |
| -- incorrect. However, Gigi never uses this view to generate code so this |
| -- is a purely semantic issue. In theory, a set of transformations similar |
| -- to those given in 5. and 6. above could be applied to private views of |
| -- private extensions to have the same model of component inheritance as |
| -- for non private extensions. However, this is not done because it would |
| -- further complicate private type processing. Semantically speaking, this |
| -- leaves us in an uncomfortable situation. As an example consider: |
| |
| -- package Pack is |
| -- type R (D : integer) is tagged record |
| -- S : String (1 .. D); |
| -- end record; |
| -- procedure P (X : R); |
| -- type T is new R (1) with private; |
| -- private |
| -- type T is new R (1) with null record; |
| -- end; |
| |
| -- This is transformed into: |
| |
| -- package Pack is |
| -- type R (D : integer) is tagged record |
| -- S : String (1 .. D); |
| -- end record; |
| -- procedure P (X : R); |
| -- type T is new R (1) with private; |
| -- private |
| -- type BaseT is new R with null record; |
| -- subtype T is BaseT (1); |
| -- end; |
| |
| -- (strictly speaking the above is incorrect Ada) |
| |
| -- From the semantic standpoint the private view of private extension T |
| -- should be flagged as constrained since one can clearly have |
| -- |
| -- Obj : T; |
| -- |
| -- in a unit withing Pack. However, when deriving subprograms for the |
| -- private view of private extension T, T must be seen as unconstrained |
| -- since T has discriminants (this is a constraint of the current |
| -- subprogram derivation model). Thus, when processing the private view of |
| -- a private extension such as T, we first mark T as unconstrained, we |
| -- process it, we perform program derivation and just before returning from |
| -- Build_Derived_Record_Type we mark T as constrained. |
| |
| -- ??? Are there are other uncomfortable cases that we will have to |
| -- deal with. |
| |
| -- 10. RECORD_TYPE_WITH_PRIVATE complications |
| |
| -- Types that are derived from a visible record type and have a private |
| -- extension present other peculiarities. They behave mostly like private |
| -- types, but if they have primitive operations defined, these will not |
| -- have the proper signatures for further inheritance, because other |
| -- primitive operations will use the implicit base that we define for |
| -- private derivations below. This affect subprogram inheritance (see |
| -- Derive_Subprograms for details). We also derive the implicit base from |
| -- the base type of the full view, so that the implicit base is a record |
| -- type and not another private type, This avoids infinite loops. |
| |
| procedure Build_Derived_Record_Type |
| (N : Node_Id; |
| Parent_Type : Entity_Id; |
| Derived_Type : Entity_Id; |
| Derive_Subps : Boolean := True) |
| is |
| Discriminant_Specs : constant Boolean := |
| Present (Discriminant_Specifications (N)); |
| Is_Tagged : constant Boolean := Is_Tagged_Type (Parent_Type); |
| Loc : constant Source_Ptr := Sloc (N); |
| Private_Extension : constant Boolean := |
| Nkind (N) = N_Private_Extension_Declaration; |
| Assoc_List : Elist_Id; |
| Constraint_Present : Boolean; |
| Constrs : Elist_Id; |
| Discrim : Entity_Id; |
| Indic : Node_Id; |
| Inherit_Discrims : Boolean := False; |
| Last_Discrim : Entity_Id; |
| New_Base : Entity_Id; |
| New_Decl : Node_Id; |
| New_Discrs : Elist_Id; |
| New_Indic : Node_Id; |
| Parent_Base : Entity_Id; |
| Save_Etype : Entity_Id; |
| Save_Discr_Constr : Elist_Id; |
| Save_Next_Entity : Entity_Id; |
| Type_Def : Node_Id; |
| |
| Discs : Elist_Id := New_Elmt_List; |
| -- An empty Discs list means that there were no constraints in the |
| -- subtype indication or that there was an error processing it. |
| |
| procedure Check_Generic_Ancestors; |
| -- In Ada 2005 (AI-344), the restriction that a derived tagged type |
| -- cannot be declared at a deeper level than its parent type is |
| -- removed. The check on derivation within a generic body is also |
| -- relaxed, but there's a restriction that a derived tagged type |
| -- cannot be declared in a generic body if it's derived directly |
| -- or indirectly from a formal type of that generic. This applies |
| -- to progenitors as well. |
| |
| ----------------------------- |
| -- Check_Generic_Ancestors -- |
| ----------------------------- |
| |
| procedure Check_Generic_Ancestors is |
| Ancestor_Type : Entity_Id; |
| Intf_List : List_Id; |
| Intf_Name : Node_Id; |
| |
| procedure Check_Ancestor; |
| -- For parent and progenitors. |
| |
| -------------------- |
| -- Check_Ancestor -- |
| -------------------- |
| |
| procedure Check_Ancestor is |
| begin |
| -- If the derived type does have a formal type as an ancestor |
| -- then it's an error if the derived type is declared within |
| -- the body of the generic unit that declares the formal type |
| -- in its generic formal part. It's sufficient to check whether |
| -- the ancestor type is declared inside the same generic body |
| -- as the derived type (such as within a nested generic spec), |
| -- in which case the derivation is legal. If the formal type is |
| -- declared outside of that generic body, then it's certain |
| -- that the derived type is declared within the generic body |
| -- of the generic unit declaring the formal type. |
| |
| if Is_Generic_Type (Ancestor_Type) |
| and then Enclosing_Generic_Body (Ancestor_Type) /= |
| Enclosing_Generic_Body (Derived_Type) |
| then |
| Error_Msg_NE |
| ("ancestor type& is formal type of enclosing" |
| & " generic unit (RM 3.9.1 (4/2))", |
| Indic, Ancestor_Type); |
| end if; |
| end Check_Ancestor; |
| |
| begin |
| if Nkind (N) = N_Private_Extension_Declaration then |
| Intf_List := Interface_List (N); |
| else |
| Intf_List := Interface_List (Type_Definition (N)); |
| end if; |
| |
| if Present (Enclosing_Generic_Body (Derived_Type)) then |
| Ancestor_Type := Parent_Type; |
| |
| while not Is_Generic_Type (Ancestor_Type) |
| and then Etype (Ancestor_Type) /= Ancestor_Type |
| loop |
| Ancestor_Type := Etype (Ancestor_Type); |
| end loop; |
| |
| Check_Ancestor; |
| |
| if Present (Intf_List) then |
| Intf_Name := First (Intf_List); |
| while Present (Intf_Name) loop |
| Ancestor_Type := Entity (Intf_Name); |
| Check_Ancestor; |
| Next (Intf_Name); |
| end loop; |
| end if; |
| end if; |
| end Check_Generic_Ancestors; |
| |
| -- Start of processing for Build_Derived_Record_Type |
| |
| begin |
| if Ekind (Parent_Type) = E_Record_Type_With_Private |
| and then Present (Full_View (Parent_Type)) |
| and then Has_Discriminants (Parent_Type) |
| then |
| Parent_Base := Base_Type (Full_View (Parent_Type)); |
| else |
| Parent_Base := Base_Type (Parent_Type); |
| end if; |
| |
| -- If the parent type is declared as a subtype of another private |
| -- type with inherited discriminants, its generated base type is |
| -- itself a record subtype. To further inherit the constraint we |
| -- need to use its own base to have an unconstrained type on which |
| -- to apply the inherited constraint. |
| |
| if Ekind (Parent_Base) = E_Record_Subtype then |
| Parent_Base := Base_Type (Parent_Base); |
| end if; |
| |
| -- AI05-0115: if this is a derivation from a private type in some |
| -- other scope that may lead to invisible components for the derived |
| -- type, mark it accordingly. |
| |
| if Is_Private_Type (Parent_Type) then |
| if Scope (Parent_Base) = Scope (Derived_Type) then |
| null; |
| |
| elsif In_Open_Scopes (Scope (Parent_Base)) |
| and then In_Private_Part (Scope (Parent_Base)) |
| then |
| null; |
| |
| else |
| Set_Has_Private_Ancestor (Derived_Type); |
| end if; |
| |
| else |
| Set_Has_Private_Ancestor |
| (Derived_Type, Has_Private_Ancestor (Parent_Type)); |
| end if; |
| |
| -- Before we start the previously documented transformations, here is |
| -- little fix for size and alignment of tagged types. Normally when we |
| -- derive type D from type P, we copy the size and alignment of P as the |
| -- default for D, and in the absence of explicit representation clauses |
| -- for D, the size and alignment are indeed the same as the parent. |
| |
| -- But this is wrong for tagged types, since fields may be added, and |
| -- the default size may need to be larger, and the default alignment may |
| -- need to be larger. |
| |
| -- We therefore reset the size and alignment fields in the tagged case. |
| -- Note that the size and alignment will in any case be at least as |
| -- large as the parent type (since the derived type has a copy of the |
| -- parent type in the _parent field) |
| |
| -- The type is also marked as being tagged here, which is needed when |
| -- processing components with a self-referential anonymous access type |
| -- in the call to Check_Anonymous_Access_Components below. Note that |
| -- this flag is also set later on for completeness. |
| |
| if Is_Tagged then |
| Set_Is_Tagged_Type (Derived_Type); |
| Reinit_Size_Align (Derived_Type); |
| end if; |
| |
| -- STEP 0a: figure out what kind of derived type declaration we have |
| |
| if Private_Extension then |
| Type_Def := N; |
| Mutate_Ekind (Derived_Type, E_Record_Type_With_Private); |
| Set_Default_SSO (Derived_Type); |
| Set_No_Reordering (Derived_Type, No_Component_Reordering); |
| |
| else |
| Type_Def := Type_Definition (N); |
| |
| -- Ekind (Parent_Base) is not necessarily E_Record_Type since |
| -- Parent_Base can be a private type or private extension. However, |
| -- for tagged types with an extension the newly added fields are |
| -- visible and hence the Derived_Type is always an E_Record_Type. |
| -- (except that the parent may have its own private fields). |
| -- For untagged types we preserve the Ekind of the Parent_Base. |
| |
| if Present (Record_Extension_Part (Type_Def)) then |
| Mutate_Ekind (Derived_Type, E_Record_Type); |
| Set_Default_SSO (Derived_Type); |
| Set_No_Reordering (Derived_Type, No_Component_Reordering); |
| |
| -- Create internal access types for components with anonymous |
| -- access types. |
| |
| if Ada_Version >= Ada_2005 then |
| Check_Anonymous_Access_Components |
| (N, Derived_Type, Derived_Type, |
| Component_List (Record_Extension_Part (Type_Def))); |
| end if; |
| |
| else |
| Mutate_Ekind (Derived_Type, Ekind (Parent_Base)); |
| end if; |
| end if; |
| |
| -- Indic can either be an N_Identifier if the subtype indication |
| -- contains no constraint or an N_Subtype_Indication if the subtype |
| -- indication has a constraint. In either case it can include an |
| -- interface list. |
| |
| Indic := Subtype_Indication (Type_Def); |
| Constraint_Present := (Nkind (Indic) = N_Subtype_Indication); |
| |
| -- Check that the type has visible discriminants. The type may be |
| -- a private type with unknown discriminants whose full view has |
| -- discriminants which are invisible. |
| |
| if Constraint_Present then |
| if not Has_Discriminants (Parent_Base) |
| or else |
| (Has_Unknown_Discriminants (Parent_Base) |
| and then Is_Private_Type (Parent_Base)) |
| then |
| Error_Msg_N |
| ("invalid constraint: type has no discriminant", |
| Constraint (Indic)); |
| |
| Constraint_Present := False; |
| Rewrite (Indic, New_Copy_Tree (Subtype_Mark (Indic))); |
| |
| elsif Is_Constrained (Parent_Type) then |
| Error_Msg_N |
| ("invalid constraint: parent type is already constrained", |
| Constraint (Indic)); |
| |
| Constraint_Present := False; |
| Rewrite (Indic, New_Copy_Tree (Subtype_Mark (Indic))); |
| end if; |
| end if; |
| |
| -- STEP 0b: If needed, apply transformation given in point 5. above |
| |
| if not Private_Extension |
| and then Has_Discriminants (Parent_Type) |
| and then not Discriminant_Specs |
| and then (Is_Constrained (Parent_Type) or else Constraint_Present) |
| then |
| -- First, we must analyze the constraint (see comment in point 5.) |
| -- The constraint may come from the subtype indication of the full |
| -- declaration. |
| |
| if Constraint_Present then |
| New_Discrs := Build_Discriminant_Constraints (Parent_Type, Indic); |
| |
| -- If there is no explicit constraint, there might be one that is |
| -- inherited from a constrained parent type. In that case verify that |
| -- it conforms to the constraint in the partial view. In perverse |
| -- cases the parent subtypes of the partial and full view can have |
| -- different constraints. |
| |
| elsif Present (Stored_Constraint (Parent_Type)) then |
| New_Discrs := Stored_Constraint (Parent_Type); |
| |
| else |
| New_Discrs := No_Elist; |
| end if; |
| |
| if Has_Discriminants (Derived_Type) |
| and then Has_Private_Declaration (Derived_Type) |
| and then Present (Discriminant_Constraint (Derived_Type)) |
| and then Present (New_Discrs) |
| then |
| -- Verify that constraints of the full view statically match |
| -- those given in the partial view. |
| |
| declare |
| C1, C2 : Elmt_Id; |
| |
| begin |
| C1 := First_Elmt (New_Discrs); |
| C2 := First_Elmt (Discriminant_Constraint (Derived_Type)); |
| while Present (C1) and then Present (C2) loop |
| if Fully_Conformant_Expressions (Node (C1), Node (C2)) |
| or else |
| (Is_OK_Static_Expression (Node (C1)) |
| and then Is_OK_Static_Expression (Node (C2)) |
| and then |
| Expr_Value (Node (C1)) = Expr_Value (Node (C2))) |
| then |
| null; |
| |
| else |
| if Constraint_Present then |
| Error_Msg_N |
| ("constraint not conformant to previous declaration", |
| Node (C1)); |
| else |
| Error_Msg_N |
| ("constraint of full view is incompatible " |
| & "with partial view", N); |
| end if; |
| end if; |
| |
| Next_Elmt (C1); |
| Next_Elmt (C2); |
| end loop; |
| end; |
| end if; |
| |
| -- Insert and analyze the declaration for the unconstrained base type |
| |
| New_Base := Create_Itype (Ekind (Derived_Type), N, Derived_Type, 'B'); |
| |
| New_Decl := |
| Make_Full_Type_Declaration (Loc, |
| Defining_Identifier => New_Base, |
| Type_Definition => |
| Make_Derived_Type_Definition (Loc, |
| Abstract_Present => Abstract_Present (Type_Def), |
| Limited_Present => Limited_Present (Type_Def), |
| Subtype_Indication => |
| New_Occurrence_Of (Parent_Base, Loc), |
| Record_Extension_Part => |
| Relocate_Node (Record_Extension_Part (Type_Def)), |
| Interface_List => Interface_List (Type_Def))); |
| |
| Set_Parent (New_Decl, Parent (N)); |
| Mark_Rewrite_Insertion (New_Decl); |
| Insert_Before (N, New_Decl); |
| |
| -- In the extension case, make sure ancestor is frozen appropriately |
| -- (see also non-discriminated case below). |
| |
| if Present (Record_Extension_Part (Type_Def)) |
| or else Is_Interface (Parent_Base) |
| then |
| Freeze_Before (New_Decl, Parent_Type); |
| end if; |
| |
| -- Note that this call passes False for the Derive_Subps parameter |
| -- because subprogram derivation is deferred until after creating |
| -- the subtype (see below). |
| |
| Build_Derived_Type |
| (New_Decl, Parent_Base, New_Base, |
| Is_Completion => False, Derive_Subps => False); |
| |
| -- ??? This needs re-examination to determine whether the |
| -- above call can simply be replaced by a call to Analyze. |
| |
| Set_Analyzed (New_Decl); |
| |
| -- Insert and analyze the declaration for the constrained subtype |
| |
| if Constraint_Present then |
| New_Indic := |
| Make_Subtype_Indication (Loc, |
| Subtype_Mark => New_Occurrence_Of (New_Base, Loc), |
| Constraint => Relocate_Node (Constraint (Indic))); |
| |
| else |
| declare |
| Constr_List : constant List_Id := New_List; |
| C : Elmt_Id; |
| Expr : Node_Id; |
| |
| begin |
| C := First_Elmt (Discriminant_Constraint (Parent_Type)); |
| while Present (C) loop |
| Expr := Node (C); |
| |
| -- It is safe here to call New_Copy_Tree since we called |
| -- Force_Evaluation on each constraint previously |
| -- in Build_Discriminant_Constraints. |
| |
| Append (New_Copy_Tree (Expr), To => Constr_List); |
| |
| Next_Elmt (C); |
| end loop; |
| |
| New_Indic := |
| Make_Subtype_Indication (Loc, |
| Subtype_Mark => New_Occurrence_Of (New_Base, Loc), |
| Constraint => |
| Make_Index_Or_Discriminant_Constraint (Loc, Constr_List)); |
| end; |
| end if; |
| |
| Rewrite (N, |
| Make_Subtype_Declaration (Loc, |
| Defining_Identifier => Derived_Type, |
| Subtype_Indication => New_Indic)); |
| |
| Analyze (N); |
| |
| -- Derivation of subprograms must be delayed until the full subtype |
| -- has been established, to ensure proper overriding of subprograms |
| -- inherited by full types. If the derivations occurred as part of |
| -- the call to Build_Derived_Type above, then the check for type |
| -- conformance would fail because earlier primitive subprograms |
| -- could still refer to the full type prior the change to the new |
| -- subtype and hence would not match the new base type created here. |
| -- Subprograms are not derived, however, when Derive_Subps is False |
| -- (since otherwise there could be redundant derivations). |
| |
| if Derive_Subps then |
| Derive_Subprograms (Parent_Type, Derived_Type); |
| end if; |
| |
| -- For tagged types the Discriminant_Constraint of the new base itype |
| -- is inherited from the first subtype so that no subtype conformance |
| -- problem arise when the first subtype overrides primitive |
| -- operations inherited by the implicit base type. |
| |
| if Is_Tagged then |
| Set_Discriminant_Constraint |
| (New_Base, Discriminant_Constraint (Derived_Type)); |
| end if; |
| |
| return; |
| end if; |
| |
| -- If we get here Derived_Type will have no discriminants or it will be |
| -- a discriminated unconstrained base type. |
| |
| -- STEP 1a: perform preliminary actions/checks for derived tagged types |
| |
| if Is_Tagged then |
| |
| -- The parent type is frozen for non-private extensions (RM 13.14(7)) |
| -- The declaration of a specific descendant of an interface type |
| -- freezes the interface type (RM 13.14). |
| |
| if not Private_Extension or else Is_Interface (Parent_Base) then |
| Freeze_Before (N, Parent_Type); |
| end if; |
| |
| if Ada_Version >= Ada_2005 then |
| Check_Generic_Ancestors; |
| |
| elsif Type_Access_Level (Derived_Type) /= |
| Type_Access_Level (Parent_Type) |
| and then not Is_Generic_Type (Derived_Type) |
| then |
| if Is_Controlled (Parent_Type) then |
| Error_Msg_N |
| ("controlled type must be declared at the library level", |
| Indic); |
| else |
| Error_Msg_N |
| ("type extension at deeper accessibility level than parent", |
| Indic); |
| end if; |
| |
| else |
| declare |
| GB : constant Node_Id := Enclosing_Generic_Body (Derived_Type); |
| begin |
| if Present (GB) |
| and then GB /= Enclosing_Generic_Body (Parent_Base) |
| then |
| Error_Msg_NE |
| ("parent type of& must not be outside generic body" |
| & " (RM 3.9.1(4))", |
| Indic, Derived_Type); |
| end if; |
| end; |
| end if; |
| end if; |
| |
| -- Ada 2005 (AI-251) |
| |
| if Ada_Version >= Ada_2005 and then Is_Tagged then |
| |
| -- "The declaration of a specific descendant of an interface type |
| -- freezes the interface type" (RM 13.14). |
| |
| declare |
| Iface : Node_Id; |
| begin |
| Iface := First (Interface_List (Type_Def)); |
| while Present (Iface) loop |
| Freeze_Before (N, Etype (Iface)); |
| Next (Iface); |
| end loop; |
| end; |
| end if; |
| |
| -- STEP 1b : preliminary cleanup of the full view of private types |
| |
| -- If the type is already marked as having discriminants, then it's the |
| -- completion of a private type or private extension and we need to |
| -- retain the discriminants from the partial view if the current |
| -- declaration has Discriminant_Specifications so that we can verify |
| -- conformance. However, we must remove any existing components that |
| -- were inherited from the parent (and attached in Copy_And_Swap) |
| -- because the full type inherits all appropriate components anyway, and |
| -- we do not want the partial view's components interfering. |
| |
| if Has_Discriminants (Derived_Type) and then Discriminant_Specs then |
| Discrim := First_Discriminant (Derived_Type); |
| loop |
| Last_Discrim := Discrim; |
| Next_Discriminant (Discrim); |
| exit when No (Discrim); |
| end loop; |
| |
| Set_Last_Entity (Derived_Type, Last_Discrim); |
| |
| -- In all other cases wipe out the list of inherited components (even |
| -- inherited discriminants), it will be properly rebuilt here. |
| |
| else |
| Set_First_Entity (Derived_Type, Empty); |
| Set_Last_Entity (Derived_Type, Empty); |
| end if; |
| |
| -- STEP 1c: Initialize some flags for the Derived_Type |
| |
| -- The following flags must be initialized here so that |
| -- Process_Discriminants can check that discriminants of tagged types do |
| -- not have a default initial value and that access discriminants are |
| -- only specified for limited records. For completeness, these flags are |
| -- also initialized along with all the other flags below. |
| |
| -- AI-419: Limitedness is not inherited from an interface parent, so to |
| -- be limited in that case the type must be explicitly declared as |
| -- limited. However, task and protected interfaces are always limited. |
| |
| if Limited_Present (Type_Def) then |
| Set_Is_Limited_Record (Derived_Type); |
| |
| elsif Is_Limited_Record (Parent_Type) |
| or else (Present (Full_View (Parent_Type)) |
| and then Is_Limited_Record (Full_View (Parent_Type))) |
| then |
| if not Is_Interface (Parent_Type) |
| or else Is_Concurrent_Interface (Parent_Type) |
| then |
| Set_Is_Limited_Record (Derived_Type); |
| end if; |
| end if; |
| |
| -- STEP 2a: process discriminants of derived type if any |
| |
| Push_Scope (Derived_Type); |
| |
| if Discriminant_Specs then |
| Set_Has_Unknown_Discriminants (Derived_Type, False); |
| |
| -- The following call initializes fields Has_Discriminants and |
| -- Discriminant_Constraint, unless we are processing the completion |
| -- of a private type declaration. |
| |
| Check_Or_Process_Discriminants (N, Derived_Type); |
| |
| -- For untagged types, the constraint on the Parent_Type must be |
| -- present and is used to rename the discriminants. |
| |
| if not Is_Tagged and then not Has_Discriminants (Parent_Type) then |
| Error_Msg_N ("untagged parent must have discriminants", Indic); |
| |
| elsif not Is_Tagged and then not Constraint_Present then |
| Error_Msg_N |
| ("discriminant constraint needed for derived untagged records", |
| Indic); |
| |
| -- Otherwise the parent subtype must be constrained unless we have a |
| -- private extension. |
| |
| elsif not Constraint_Present |
| and then not Private_Extension |
| and then not Is_Constrained (Parent_Type) |
| then |
| Error_Msg_N |
| ("unconstrained type not allowed in this context", Indic); |
| |
| elsif Constraint_Present then |
| -- The following call sets the field Corresponding_Discriminant |
| -- for the discriminants in the Derived_Type. |
| |
| Discs := Build_Discriminant_Constraints (Parent_Type, Indic, True); |
| |
| -- For untagged types all new discriminants must rename |
| -- discriminants in the parent. For private extensions new |
| -- discriminants cannot rename old ones (implied by [7.3(13)]). |
| |
| Discrim := First_Discriminant (Derived_Type); |
| while Present (Discrim) loop |
| if not Is_Tagged |
| and then No (Corresponding_Discriminant (Discrim)) |
| then |
| Error_Msg_N |
| ("new discriminants must constrain old ones", Discrim); |
| |
| elsif Private_Extension |
| and then Present (Corresponding_Discriminant (Discrim)) |
| then |
| Error_Msg_N |
| ("only static constraints allowed for parent" |
| & " discriminants in the partial view", Indic); |
| exit; |
| end if; |
| |
| -- If a new discriminant is used in the constraint, then its |
| -- subtype must be statically compatible with the subtype of |
| -- the parent discriminant (RM 3.7(15)). |
| |
| if Present (Corresponding_Discriminant (Discrim)) then |
| Check_Constraining_Discriminant |
| (Discrim, Corresponding_Discriminant (Discrim)); |
| end if; |
| |
| Next_Discriminant (Discrim); |
| end loop; |
| |
| -- Check whether the constraints of the full view statically |
| -- match those imposed by the parent subtype [7.3(13)]. |
| |
| if Present (Stored_Constraint (Derived_Type)) then |
| declare |
| C1, C2 : Elmt_Id; |
| |
| begin |
| C1 := First_Elmt (Discs); |
| C2 := First_Elmt (Stored_Constraint (Derived_Type)); |
| while Present (C1) and then Present (C2) loop |
| if not |
| Fully_Conformant_Expressions (Node (C1), Node (C2)) |
| then |
| Error_Msg_N |
| ("not conformant with previous declaration", |
| Node (C1)); |
| end if; |
| |
| Next_Elmt (C1); |
| Next_Elmt (C2); |
| end loop; |
| end; |
| end if; |
| end if; |
| |
| -- STEP 2b: No new discriminants, inherit discriminants if any |
| |
| else |
| if Private_Extension then |
| Set_Has_Unknown_Discriminants |
| (Derived_Type, |
| Has_Unknown_Discriminants (Parent_Type) |
| or else Unknown_Discriminants_Present (N)); |
| |
| -- The partial view of the parent may have unknown discriminants, |
| -- but if the full view has discriminants and the parent type is |
| -- in scope they must be inherited. |
| |
| elsif Has_Unknown_Discriminants (Parent_Type) |
| and then |
| (not Has_Discriminants (Parent_Type) |
| or else not In_Open_Scopes (Scope (Parent_Base))) |
| then |
| Set_Has_Unknown_Discriminants (Derived_Type); |
| end if; |
| |
| if not Has_Unknown_Discriminants (Derived_Type) |
| and then not Has_Unknown_Discriminants (Parent_Base) |
| and then Has_Discriminants (Parent_Type) |
| then |
| Inherit_Discrims := True; |
| Set_Has_Discriminants |
| (Derived_Type, True); |
| Set_Discriminant_Constraint |
| (Derived_Type, Discriminant_Constraint (Parent_Base)); |
| end if; |
| |
| -- The following test is true for private types (remember |
| -- transformation 5. is not applied to those) and in an error |
| -- situation. |
| |
| if Constraint_Present then |
| Discs := Build_Discriminant_Constraints (Parent_Type, Indic); |
| end if; |
| |
| -- For now mark a new derived type as constrained only if it has no |
| -- discriminants. At the end of Build_Derived_Record_Type we properly |
| -- set this flag in the case of private extensions. See comments in |
| -- point 9. just before body of Build_Derived_Record_Type. |
| |
| Set_Is_Constrained |
| (Derived_Type, |
| not (Inherit_Discrims |
| or else Has_Unknown_Discriminants (Derived_Type))); |
| end if; |
| |
| -- STEP 3: initialize fields of derived type |
| |
| Set_Is_Tagged_Type (Derived_Type, Is_Tagged); |
| Set_Stored_Constraint (Derived_Type, No_Elist); |
| |
| -- Ada 2005 (AI-251): Private type-declarations can implement interfaces |
| -- but cannot be interfaces |
| |
| if not Private_Extension |
| and then Ekind (Derived_Type) /= E_Private_Type |
| and then Ekind (Derived_Type) /= E_Limited_Private_Type |
| then |
| if Interface_Present (Type_Def) then |
| Analyze_Interface_Declaration (Derived_Type, Type_Def); |
| end if; |
| |
| Set_Interfaces (Derived_Type, No_Elist); |
| end if; |
| |
| -- Fields inherited from the Parent_Type |
| |
| Set_Has_Specified_Layout |
| (Derived_Type, Has_Specified_Layout (Parent_Type)); |
| Set_Is_Limited_Composite |
| (Derived_Type, Is_Limited_Composite (Parent_Type)); |
| Set_Is_Private_Composite |
| (Derived_Type, Is_Private_Composite (Parent_Type)); |
| |
| if Is_Tagged_Type (Parent_Type) then |
| Set_No_Tagged_Streams_Pragma |
| (Derived_Type, No_Tagged_Streams_Pragma (Parent_Type)); |
| end if; |
| |
| -- Fields inherited from the Parent_Base |
| |
| Set_Has_Controlled_Component |
| (Derived_Type, Has_Controlled_Component (Parent_Base)); |
| Set_Has_Non_Standard_Rep |
| (Derived_Type, Has_Non_Standard_Rep (Parent_Base)); |
| Set_Has_Primitive_Operations |
| (Derived_Type, Has_Primitive_Operations (Parent_Base)); |
| |
| -- Set fields for private derived types |
| |
| if Is_Private_Type (Derived_Type) then |
| Set_Depends_On_Private (Derived_Type, True); |
| Set_Private_Dependents (Derived_Type, New_Elmt_List); |
| end if; |
| |
| -- Inherit fields for non-private types. If this is the completion of a |
| -- derivation from a private type, the parent itself is private and the |
| -- attributes come from its full view, which must be present. |
| |
| if Is_Record_Type (Derived_Type) then |
| declare |
| Parent_Full : Entity_Id; |
| |
| begin |
| if Is_Private_Type (Parent_Base) |
| and then not Is_Record_Type (Parent_Base) |
| then |
| Parent_Full := Full_View (Parent_Base); |
| else |
| Parent_Full := Parent_Base; |
| end if; |
| |
| Set_Component_Alignment |
| (Derived_Type, Component_Alignment (Parent_Full)); |
| Set_C_Pass_By_Copy |
| (Derived_Type, C_Pass_By_Copy (Parent_Full)); |
| Set_Has_Complex_Representation |
| (Derived_Type, Has_Complex_Representation (Parent_Full)); |
| |
| -- For untagged types, inherit the layout by default to avoid |
| -- costly changes of representation for type conversions. |
| |
| if not Is_Tagged then |
| Set_Is_Packed (Derived_Type, Is_Packed (Parent_Full)); |
| Set_No_Reordering (Derived_Type, No_Reordering (Parent_Full)); |
| end if; |
| end; |
| end if; |
| |
| -- Initialize the list of primitive operations to an empty list, |
| -- to cover tagged types as well as untagged types. For untagged |
| -- types this is used either to analyze the call as legal when |
| -- Extensions_Allowed is True, or to issue a better error message |
| -- otherwise. |
| |
| Set_Direct_Primitive_Operations (Derived_Type, New_Elmt_List); |
| |
| -- Set fields for tagged types |
| |
| if Is_Tagged then |
| -- All tagged types defined in Ada.Finalization are controlled |
| |
| if Chars (Scope (Derived_Type)) = Name_Finalization |
| and then Chars (Scope (Scope (Derived_Type))) = Name_Ada |
| and then Scope (Scope (Scope (Derived_Type))) = Standard_Standard |
| then |
| Set_Is_Controlled_Active (Derived_Type); |
| else |
| Set_Is_Controlled_Active |
| (Derived_Type, Is_Controlled_Active (Parent_Base)); |
| end if; |
| |
| -- Minor optimization: there is no need to generate the class-wide |
| -- entity associated with an underlying record view. |
| |
| if not Is_Underlying_Record_View (Derived_Type) then |
| Make_Class_Wide_Type (Derived_Type); |
| end if; |
| |
| Set_Is_Abstract_Type (Derived_Type, Abstract_Present (Type_Def)); |
| |
| if Has_Discriminants (Derived_Type) |
| and then Constraint_Present |
| then |
| Set_Stored_Constraint |
| (Derived_Type, Expand_To_Stored_Constraint (Parent_Base, Discs)); |
| end if; |
| |
| if Ada_Version >= Ada_2005 then |
| declare |
| Ifaces_List : Elist_Id; |
| |
| begin |
| -- Checks rules 3.9.4 (13/2 and 14/2) |
| |
| if Comes_From_Source (Derived_Type) |
| and then not Is_Private_Type (Derived_Type) |
| and then Is_Interface (Parent_Type) |
| and then not Is_Interface (Derived_Type) |
| then |
| if Is_Task_Interface (Parent_Type) then |
| Error_Msg_N |
| ("(Ada 2005) task type required (RM 3.9.4 (13.2))", |
| Derived_Type); |
| |
| elsif Is_Protected_Interface (Parent_Type) then |
| Error_Msg_N |
| ("(Ada 2005) protected type required (RM 3.9.4 (14.2))", |
| Derived_Type); |
| end if; |
| end if; |
| |
| -- Check ARM rules 3.9.4 (15/2), 9.1 (9.d/2) and 9.4 (11.d/2) |
| |
| Check_Interfaces (N, Type_Def); |
| |
| -- Ada 2005 (AI-251): Collect the list of progenitors that are |
| -- not already in the parents. |
| |
| Collect_Interfaces |
| (T => Derived_Type, |
| Ifaces_List => Ifaces_List, |
| Exclude_Parents => True); |
| |
| Set_Interfaces (Derived_Type, Ifaces_List); |
| |
| -- If the derived type is the anonymous type created for |
| -- a declaration whose parent has a constraint, propagate |
| -- the interface list to the source type. This must be done |
| -- prior to the completion of the analysis of the source type |
| -- because the components in the extension may contain current |
| -- instances whose legality depends on some ancestor. |
| |
| if Is_Itype (Derived_Type) then |
| declare |
| Def : constant Node_Id := |
| Associated_Node_For_Itype (Derived_Type); |
| begin |
| if Present (Def) |
| and then Nkind (Def) = N_Full_Type_Declaration |
| then |
| Set_Interfaces |
| (Defining_Identifier (Def), Ifaces_List); |
| end if; |
| end; |
| end if; |
| |
| -- A type extension is automatically Ghost when one of its |
| -- progenitors is Ghost (SPARK RM 6.9(9)). This property is |
| -- also inherited when the parent type is Ghost, but this is |
| -- done in Build_Derived_Type as the mechanism also handles |
| -- untagged derivations. |
| |
| if Implements_Ghost_Interface (Derived_Type) then |
| Set_Is_Ghost_Entity (Derived_Type); |
| end if; |
| end; |
| end if; |
| end if; |
| |
| -- STEP 4: Inherit components from the parent base and constrain them. |
| -- Apply the second transformation described in point 6. above. |
| |
| if (not Is_Empty_Elmt_List (Discs) or else Inherit_Discrims) |
| or else not Has_Discriminants (Parent_Type) |
| or else not Is_Constrained (Parent_Type) |
| then |
| Constrs := Discs; |
| else |
| Constrs := Discriminant_Constraint (Parent_Type); |
| end if; |
| |
| Assoc_List := |
| Inherit_Components |
| (N, Parent_Base, Derived_Type, Is_Tagged, Inherit_Discrims, Constrs); |
| |
| -- STEP 5a: Copy the parent record declaration for untagged types |
| |
| Set_Has_Implicit_Dereference |
| (Derived_Type, Has_Implicit_Dereference (Parent_Type)); |
| |
| if not Is_Tagged then |
| |
| -- Discriminant_Constraint (Derived_Type) has been properly |
| -- constructed. Save it and temporarily set it to Empty because we |
| -- do not want the call to New_Copy_Tree below to mess this list. |
| |
| if Has_Discriminants (Derived_Type) then |
| Save_Discr_Constr := Discriminant_Constraint (Derived_Type); |
| Set_Discriminant_Constraint (Derived_Type, No_Elist); |
| else |
| Save_Discr_Constr := No_Elist; |
| end if; |
| |
| -- Save the Etype field of Derived_Type. It is correctly set now, |
| -- but the call to New_Copy tree may remap it to point to itself, |
| -- which is not what we want. Ditto for the Next_Entity field. |
| |
| Save_Etype := Etype (Derived_Type); |
| Save_Next_Entity := Next_Entity (Derived_Type); |
| |
| -- Assoc_List maps all stored discriminants in the Parent_Base to |
| -- stored discriminants in the Derived_Type. It is fundamental that |
| -- no types or itypes with discriminants other than the stored |
| -- discriminants appear in the entities declared inside |
| -- Derived_Type, since the back end cannot deal with it. |
| |
| New_Decl := |
| New_Copy_Tree |
| (Parent (Parent_Base), Map => Assoc_List, New_Sloc => Loc); |
| Copy_Dimensions_Of_Components (Derived_Type); |
| |
| -- Restore the fields saved prior to the New_Copy_Tree call |
| -- and compute the stored constraint. |
| |
| Set_Etype (Derived_Type, Save_Etype); |
| Link_Entities (Derived_Type, Save_Next_Entity); |
| |
| if Has_Discriminants (Derived_Type) then |
| Set_Discriminant_Constraint |
| (Derived_Type, Save_Discr_Constr); |
| Set_Stored_Constraint |
| (Derived_Type, Expand_To_Stored_Constraint (Parent_Type, Discs)); |
| |
| Replace_Discriminants (Derived_Type, New_Decl); |
| end if; |
| |
| -- Insert the new derived type declaration |
| |
| Rewrite (N, New_Decl); |
| |
| -- STEP 5b: Complete the processing for record extensions in generics |
| |
| -- There is no completion for record extensions declared in the |
| -- parameter part of a generic, so we need to complete processing for |
| -- these generic record extensions here. The Record_Type_Definition call |
| -- will change the Ekind of the components from E_Void to E_Component. |
| |
| elsif Private_Extension and then Is_Generic_Type (Derived_Type) then |
| Record_Type_Definition (Empty, Derived_Type); |
| |
| -- STEP 5c: Process the record extension for non private tagged types |
| |
| elsif not Private_Extension then |
| Expand_Record_Extension (Derived_Type, Type_Def); |
| |
| -- Ada 2005 (AI-251): Addition of the Tag corresponding to all the |
| -- implemented interfaces if we are in expansion mode |
| |
| if Expander_Active |
| and then Has_Interfaces (Derived_Type) |
| then |
| Add_Interface_Tag_Components (N, Derived_Type); |
| end if; |
| |
| -- Analyze the record extension |
| |
| Record_Type_Definition |
| (Record_Extension_Part (Type_Def), Derived_Type); |
| end if; |
| |
| End_Scope; |
| |
| -- Nothing else to do if there is an error in the derivation. |
| -- An unusual case: the full view may be derived from a type in an |
| -- instance, when the partial view was used illegally as an actual |
| -- in that instance, leading to a circular definition. |
| |
| if Etype (Derived_Type) = Any_Type |
| or else Etype (Parent_Type) = Derived_Type |
| then |
| return; |
| end if; |
| |
| -- Set delayed freeze and then derive subprograms, we need to do |
| -- this in this order so that derived subprograms inherit the |
| -- derived freeze if necessary. |
| |
| Set_Has_Delayed_Freeze (Derived_Type); |
| |
| if Derive_Subps then |
| Derive_Subprograms (Parent_Type, Derived_Type); |
| end if; |
| |
| -- If we have a private extension which defines a constrained derived |
| -- type mark as constrained here after we have derived subprograms. See |
| -- comment on point 9. just above the body of Build_Derived_Record_Type. |
| |
| if Private_Extension and then Inherit_Discrims then |
| if Constraint_Present and then not Is_Empty_Elmt_List (Discs) then |
| Set_Is_Constrained (Derived_Type, True); |
| Set_Discriminant_Constraint (Derived_Type, Discs); |
| |
| elsif Is_Constrained (Parent_Type) then |
| Set_Is_Constrained |
| (Derived_Type, True); |
| Set_Discriminant_Constraint |
| (Derived_Type, Discriminant_Constraint (Parent_Type)); |
| end if; |
| end if; |
| |
| -- Update the class-wide type, which shares the now-completed entity |
| -- list with its specific type. In case of underlying record views, |
| -- we do not generate the corresponding class wide entity. |
| |
| if Is_Tagged |
| and then not Is_Underlying_Record_View (Derived_Type) |
| then |
| Set_First_Entity |
| (Class_Wide_Type (Derived_Type), First_Entity (Derived_Type)); |
| Set_Last_Entity |
| (Class_Wide_Type (Derived_Type), Last_Entity (Derived_Type)); |
| end if; |
| |
| Check_Function_Writable_Actuals (N); |
| end Build_Derived_Record_Type; |
| |
| ------------------------ |
| -- Build_Derived_Type -- |
| ------------------------ |
| |
| procedure Build_Derived_Type |
| (N : Node_Id; |
| Parent_Type : Entity_Id; |
| Derived_Type : Entity_Id; |
| Is_Completion : Boolean; |
| Derive_Subps : Boolean := True) |
| is |
| Parent_Base : constant Entity_Id := Base_Type (Parent_Type); |
| |
| begin |
| -- Set common attributes |
| |
| if Ekind (Derived_Type) in Incomplete_Or_Private_Kind |
| and then Ekind (Parent_Base) in Modular_Integer_Kind | Array_Kind |
| then |
| Reinit_Field_To_Zero (Derived_Type, F_Stored_Constraint); |
| end if; |
| |
| Set_Scope (Derived_Type, Current_Scope); |
| Set_Etype (Derived_Type, Parent_Base); |
| Mutate_Ekind (Derived_Type, Ekind (Parent_Base)); |
| Propagate_Concurrent_Flags (Derived_Type, Parent_Base); |
| |
| Set_Size_Info (Derived_Type, Parent_Type); |
| Copy_RM_Size (To => Derived_Type, From => Parent_Type); |
| |
| Set_Is_Controlled_Active |
| (Derived_Type, Is_Controlled_Active (Parent_Type)); |
| |
| Set_Disable_Controlled (Derived_Type, Disable_Controlled (Parent_Type)); |
| Set_Is_Tagged_Type (Derived_Type, Is_Tagged_Type (Parent_Type)); |
| Set_Is_Volatile (Derived_Type, Is_Volatile (Parent_Type)); |
| |
| if Is_Tagged_Type (Derived_Type) then |
| Set_No_Tagged_Streams_Pragma |
| (Derived_Type, No_Tagged_Streams_Pragma (Parent_Type)); |
| end if; |
| |
| -- If the parent has primitive routines and may have not-seen-yet aspect |
| -- specifications (e.g., a Pack pragma), then set the derived type link |
| -- in order to later diagnose "early derivation" issues. If in different |
| -- compilation units, then "early derivation" cannot be an issue (and we |
| -- don't like interunit references that go in the opposite direction of |
| -- semantic dependencies). |
| |
| if Has_Primitive_Operations (Parent_Type) |
| and then Enclosing_Comp_Unit_Node (Parent_Type) = |
| Enclosing_Comp_Unit_Node (Derived_Type) |
| then |
| Set_Derived_Type_Link (Parent_Base, Derived_Type); |
| end if; |
| |
| -- If the parent type is a private subtype, the convention on the base |
| -- type may be set in the private part, and not propagated to the |
| -- subtype until later, so we obtain the convention from the base type. |
| |
| Set_Convention (Derived_Type, Convention (Parent_Base)); |
| |
| if Is_Tagged_Type (Derived_Type) |
| and then Present (Class_Wide_Type (Derived_Type)) |
| then |
| Set_Convention (Class_Wide_Type (Derived_Type), |
| Convention (Class_Wide_Type (Parent_Base))); |
| end if; |
| |
| -- Set SSO default for record or array type |
| |
| if (Is_Array_Type (Derived_Type) or else Is_Record_Type (Derived_Type)) |
| and then Is_Base_Type (Derived_Type) |
| then |
| Set_Default_SSO (Derived_Type); |
| end if; |
| |
| -- A derived type inherits the Default_Initial_Condition pragma coming |
| -- from any parent type within the derivation chain. |
| |
| if Has_DIC (Parent_Type) then |
| Set_Has_Inherited_DIC (Derived_Type); |
| end if; |
| |
| -- A derived type inherits any class-wide invariants coming from a |
| -- parent type or an interface. Note that the invariant procedure of |
| -- the parent type should not be inherited because the derived type may |
| -- define invariants of its own. |
| |
| if not Is_Interface (Derived_Type) then |
| if Has_Inherited_Invariants (Parent_Type) |
| or else Has_Inheritable_Invariants (Parent_Type) |
| then |
| Set_Has_Inherited_Invariants (Derived_Type); |
| |
| elsif Is_Concurrent_Type (Derived_Type) |
| or else Is_Tagged_Type (Derived_Type) |
| then |
| declare |
| Iface : Entity_Id; |
| Ifaces : Elist_Id; |
| Iface_Elmt : Elmt_Id; |
| |
| begin |
| Collect_Interfaces |
| (T => Derived_Type, |
| Ifaces_List => Ifaces, |
| Exclude_Parents => True); |
| |
| if Present (Ifaces) then |
| Iface_Elmt := First_Elmt (Ifaces); |
| while Present (Iface_Elmt) loop |
| Iface := Node (Iface_Elmt); |
| |
| if Has_Inheritable_Invariants (Iface) then |
| Set_Has_Inherited_Invariants (Derived_Type); |
| exit; |
| end if; |
| |
| Next_Elmt (Iface_Elmt); |
| end loop; |
| end if; |
| end; |
| end if; |
| end if; |
| |
| -- We similarly inherit predicates. Note that for scalar derived types |
| -- the predicate is inherited from the first subtype, and not from its |
| -- (anonymous) base type. |
| |
| if Has_Predicates (Parent_Type) |
| or else Has_Predicates (First_Subtype (Parent_Type)) |
| then |
| Set_Has_Predicates (Derived_Type); |
| end if; |
| |
| -- The derived type inherits representation clauses from the parent |
| -- type, and from any interfaces. |
| |
| Inherit_Rep_Item_Chain (Derived_Type, Parent_Type); |
| |
| declare |
| Iface : Node_Id := First (Abstract_Interface_List (Derived_Type)); |
| begin |
| while Present (Iface) loop |
| Inherit_Rep_Item_Chain (Derived_Type, Entity (Iface)); |
| Next (Iface); |
| end loop; |
| end; |
| |
| -- If the parent type has delayed rep aspects, then mark the derived |
| -- type as possibly inheriting a delayed rep aspect. |
| |
| if Has_Delayed_Rep_Aspects (Parent_Type) then |
| Set_May_Inherit_Delayed_Rep_Aspects (Derived_Type); |
| end if; |
| |
| -- A derived type becomes Ghost when its parent type is also Ghost |
| -- (SPARK RM 6.9(9)). Note that the Ghost-related attributes are not |
| -- directly inherited because the Ghost policy in effect may differ. |
| |
| if Is_Ghost_Entity (Parent_Type) then |
| Set_Is_Ghost_Entity (Derived_Type); |
| end if; |
| |
| -- Type dependent processing |
| |
| case Ekind (Parent_Type) is |
| when Numeric_Kind => |
| Build_Derived_Numeric_Type (N, Parent_Type, Derived_Type); |
| |
| when Array_Kind => |
| Build_Derived_Array_Type (N, Parent_Type, Derived_Type); |
| |
| when Class_Wide_Kind |
| | E_Record_Subtype |
| | E_Record_Type |
| => |
| Build_Derived_Record_Type |
| (N, Parent_Type, Derived_Type, Derive_Subps); |
| return; |
| |
| when Enumeration_Kind => |
| Build_Derived_Enumeration_Type (N, Parent_Type, Derived_Type); |
| |
| when Access_Kind => |
| Build_Derived_Access_Type (N, Parent_Type, Derived_Type); |
| |
| when Incomplete_Or_Private_Kind => |
| Build_Derived_Private_Type |
| (N, Parent_Type, Derived_Type, Is_Completion, Derive_Subps); |
| |
| -- For discriminated types, the derivation includes deriving |
| -- primitive operations. For others it is done below. |
| |
| if Is_Tagged_Type (Parent_Type) |
| or else Has_Discriminants (Parent_Type) |
| or else (Present (Full_View (Parent_Type)) |
| and then Has_Discriminants (Full_View (Parent_Type))) |
| then |
| return; |
| end if; |
| |
| when Concurrent_Kind => |
| Build_Derived_Concurrent_Type (N, Parent_Type, Derived_Type); |
| |
| when others => |
| raise Program_Error; |
| end case; |
| |
| -- Nothing more to do if some error occurred |
| |
| if Etype (Derived_Type) = Any_Type then |
| return; |
| end if; |
| |
| -- If not already set, initialize the derived type's list of primitive |
| -- operations to an empty element list. |
| |
| if not Present (Direct_Primitive_Operations (Derived_Type)) then |
| Set_Direct_Primitive_Operations (Derived_Type, New_Elmt_List); |
| |
| -- If Etype of the derived type is the base type (as opposed to |
| -- a parent type) and doesn't have an associated list of primitive |
| -- operations, then set the base type's primitive list to the |
| -- derived type's list. The lists need to be shared in common |
| -- between the two. |
| |
| if Etype (Derived_Type) = Base_Type (Derived_Type) |
| and then |
| not Present (Direct_Primitive_Operations (Etype (Derived_Type))) |
| then |
| Set_Direct_Primitive_Operations |
| (Etype (Derived_Type), |
| Direct_Primitive_Operations (Derived_Type)); |
| end if; |
| end if; |
| |
| -- Set delayed freeze and then derive subprograms, we need to do this |
| -- in this order so that derived subprograms inherit the derived freeze |
| -- if necessary. |
| |
| Set_Has_Delayed_Freeze (Derived_Type); |
| |
| if Derive_Subps then |
| Derive_Subprograms (Parent_Type, Derived_Type); |
| end if; |
| |
| Set_Has_Primitive_Operations |
| (Base_Type (Derived_Type), Has_Primitive_Operations (Parent_Type)); |
| end Build_Derived_Type; |
| |
| ----------------------- |
| -- Build_Discriminal -- |
| ----------------------- |
| |
| procedure Build_Discriminal (Discrim : Entity_Id) is |
| D_Minal : Entity_Id; |
| CR_Disc : Entity_Id; |
| |
| begin |
| -- A discriminal has the same name as the discriminant |
| |
| D_Minal := Make_Defining_Identifier (Sloc (Discrim), Chars (Discrim)); |
| |
| Mutate_Ekind (D_Minal, E_In_Parameter); |
| Set_Mechanism (D_Minal, Default_Mechanism); |
| Set_Etype (D_Minal, Etype (Discrim)); |
| Set_Scope (D_Minal, Current_Scope); |
| Set_Parent (D_Minal, Parent (Discrim)); |
| |
| Set_Discriminal (Discrim, D_Minal); |
| Set_Discriminal_Link (D_Minal, Discrim); |
| |
| -- For task types, build at once the discriminants of the corresponding |
| -- record, which are needed if discriminants are used in entry defaults |
| -- and in family bounds. |
| |
| if Is_Concurrent_Type (Current_Scope) |
| or else |
| Is_Limited_Type (Current_Scope) |
| then |
| CR_Disc := Make_Defining_Identifier (Sloc (Discrim), Chars (Discrim)); |
| |
| Mutate_Ekind (CR_Disc, E_In_Parameter); |
| Set_Mechanism (CR_Disc, Default_Mechanism); |
| Set_Etype (CR_Disc, Etype (Discrim)); |
| Set_Scope (CR_Disc, Current_Scope); |
| Set_Discriminal_Link (CR_Disc, Discrim); |
| Set_CR_Discriminant (Discrim, CR_Disc); |
| end if; |
| end Build_Discriminal; |
| |
| ------------------------------------ |
| -- Build_Discriminant_Constraints -- |
| ------------------------------------ |
| |
| function Build_Discriminant_Constraints |
| (T : Entity_Id; |
| Def : Node_Id; |
| Derived_Def : Boolean := False) return Elist_Id |
| is |
| C : constant Node_Id := Constraint (Def); |
| Nb_Discr : constant Nat := Number_Discriminants (T); |
| |
| Discr_Expr : array (1 .. Nb_Discr) of Node_Id := (others => Empty); |
| -- Saves the expression corresponding to a given discriminant in T |
| |
| function Pos_Of_Discr (T : Entity_Id; D : Entity_Id) return Nat; |
| -- Return the Position number within array Discr_Expr of a discriminant |
| -- D within the discriminant list of the discriminated type T. |
| |
| procedure Process_Discriminant_Expression |
| (Expr : Node_Id; |
| D : Entity_Id); |
| -- If this is a discriminant constraint on a partial view, do not |
| -- generate an overflow check on the discriminant expression. The check |
| -- will be generated when constraining the full view. Otherwise the |
| -- backend creates duplicate symbols for the temporaries corresponding |
| -- to the expressions to be checked, causing spurious assembler errors. |
| |
| ------------------ |
| -- Pos_Of_Discr -- |
| ------------------ |
| |
| function Pos_Of_Discr (T : Entity_Id; D : Entity_Id) return Nat is |
| Disc : Entity_Id; |
| |
| begin |
| Disc := First_Discriminant (T); |
| for J in Discr_Expr'Range loop |
| if Disc = D then |
| return J; |
| end if; |
| |
| Next_Discriminant (Disc); |
| end loop; |
| |
| -- Note: Since this function is called on discriminants that are |
| -- known to belong to the discriminated type, falling through the |
| -- loop with no match signals an internal compiler error. |
| |
| raise Program_Error; |
| end Pos_Of_Discr; |
| |
| ------------------------------------- |
| -- Process_Discriminant_Expression -- |
| ------------------------------------- |
| |
| procedure Process_Discriminant_Expression |
| (Expr : Node_Id; |
| D : Entity_Id) |
| is |
| BDT : constant Entity_Id := Base_Type (Etype (D)); |
| |
| begin |
| -- If this is a discriminant constraint on a partial view, do |
| -- not generate an overflow on the discriminant expression. The |
| -- check will be generated when constraining the full view. |
| |
| if Is_Private_Type (T) |
| and then Present (Full_View (T)) |
| then |
| Analyze_And_Resolve (Expr, BDT, Suppress => Overflow_Check); |
| else |
| Analyze_And_Resolve (Expr, BDT); |
| end if; |
| end Process_Discriminant_Expression; |
| |
| -- Declarations local to Build_Discriminant_Constraints |
| |
| Discr : Entity_Id; |
| E : Entity_Id; |
| Elist : constant Elist_Id := New_Elmt_List; |
| |
| Constr : Node_Id; |
| Expr : Node_Id; |
| Id : Node_Id; |
| Position : Nat; |
| Found : Boolean; |
| |
| Discrim_Present : Boolean := False; |
| |
| -- Start of processing for Build_Discriminant_Constraints |
| |
| begin |
| -- The following loop will process positional associations only. |
| -- For a positional association, the (single) discriminant is |
| -- implicitly specified by position, in textual order (RM 3.7.2). |
| |
| Discr := First_Discriminant (T); |
| Constr := First (Constraints (C)); |
| for D in Discr_Expr'Range loop |
| exit when Nkind (Constr) = N_Discriminant_Association; |
| |
| if No (Constr) then |
| Error_Msg_N ("too few discriminants given in constraint", C); |
| return New_Elmt_List; |
| |
| elsif Nkind (Constr) = N_Range |
| or else (Nkind (Constr) = N_Attribute_Reference |
| and then Attribute_Name (Constr) = Name_Range) |
| then |
| Error_Msg_N |
| ("a range is not a valid discriminant constraint", Constr); |
| Discr_Expr (D) := Error; |
| |
| elsif Nkind (Constr) = N_Subtype_Indication then |
| Error_Msg_N |
| ("a subtype indication is not a valid discriminant constraint", |
| Constr); |
| Discr_Expr (D) := Error; |
| |
| else |
| Process_Discriminant_Expression (Constr, Discr); |
| Discr_Expr (D) := Constr; |
| end if; |
| |
| Next_Discriminant (Discr); |
| Next (Constr); |
| end loop; |
| |
| if No (Discr) and then Present (Constr) then |
| Error_Msg_N ("too many discriminants given in constraint", Constr); |
| return New_Elmt_List; |
| end if; |
| |
| -- Named associations can be given in any order, but if both positional |
| -- and named associations are used in the same discriminant constraint, |
| -- then positional associations must occur first, at their normal |
| -- position. Hence once a named association is used, the rest of the |
| -- discriminant constraint must use only named associations. |
| |
| while Present (Constr) loop |
| |
| -- Positional association forbidden after a named association |
| |
| if Nkind (Constr) /= N_Discriminant_Association then |
| Error_Msg_N ("positional association follows named one", Constr); |
| return New_Elmt_List; |
| |
| -- Otherwise it is a named association |
| |
| else |
| -- E records the type of the discriminants in the named |
| -- association. All the discriminants specified in the same name |
| -- association must have the same type. |
| |
| E := Empty; |
| |
| -- Search the list of discriminants in T to see if the simple name |
| -- given in the constraint matches any of them. |
| |
| Id := First (Selector_Names (Constr)); |
| while Present (Id) loop |
| Found := False; |
| |
| -- If Original_Discriminant is present, we are processing a |
| -- generic instantiation and this is an instance node. We need |
| -- to find the name of the corresponding discriminant in the |
| -- actual record type T and not the name of the discriminant in |
| -- the generic formal. Example: |
| |
| -- generic |
| -- type G (D : int) is private; |
| -- package P is |
| -- subtype W is G (D => 1); |
| -- end package; |
| -- type Rec (X : int) is record ... end record; |
| -- package Q is new P (G => Rec); |
| |
| -- At the point of the instantiation, formal type G is Rec |
| -- and therefore when reanalyzing "subtype W is G (D => 1);" |
| -- which really looks like "subtype W is Rec (D => 1);" at |
| -- the point of instantiation, we want to find the discriminant |
| -- that corresponds to D in Rec, i.e. X. |
| |
| if Present (Original_Discriminant (Id)) |
| and then In_Instance |
| then |
| Discr := Find_Corresponding_Discriminant (Id, T); |
| Found := True; |
| |
| else |
| Discr := First_Discriminant (T); |
| while Present (Discr) loop |
| if Chars (Discr) = Chars (Id) then |
| Found := True; |
| exit; |
| end if; |
| |
| Next_Discriminant (Discr); |
| end loop; |
| |
| if not Found then |
| Error_Msg_N ("& does not match any discriminant", Id); |
| return New_Elmt_List; |
| |
| -- If the parent type is a generic formal, preserve the |
| -- name of the discriminant for subsequent instances. |
| -- see comment at the beginning of this if statement. |
| |
| elsif Is_Generic_Type (Root_Type (T)) then |
| Set_Original_Discriminant (Id, Discr); |
| end if; |
| end if; |
| |
| Position := Pos_Of_Discr (T, Discr); |
| |
| if Present (Discr_Expr (Position)) then |
| Error_Msg_N ("duplicate constraint for discriminant&", Id); |
| |
| else |
| -- Each discriminant specified in the same named association |
| -- must be associated with a separate copy of the |
| -- corresponding expression. |
| |
| if Present (Next (Id)) then |
| Expr := New_Copy_Tree (Expression (Constr)); |
| Set_Parent (Expr, Parent (Expression (Constr))); |
| else |
| Expr := Expression (Constr); |
| end if; |
| |
| Discr_Expr (Position) := Expr; |
| Process_Discriminant_Expression (Expr, Discr); |
| end if; |
| |
| -- A discriminant association with more than one discriminant |
| -- name is only allowed if the named discriminants are all of |
| -- the same type (RM 3.7.1(8)). |
| |
| if E = Empty then |
| E := Base_Type (Etype (Discr)); |
| |
| elsif Base_Type (Etype (Discr)) /= E then |
| Error_Msg_N |
| ("all discriminants in an association " & |
| "must have the same type", Id); |
| end if; |
| |
| Next (Id); |
| end loop; |
| end if; |
| |
| Next (Constr); |
| end loop; |
| |
| -- A discriminant constraint must provide exactly one value for each |
| -- discriminant of the type (RM 3.7.1(8)). |
| |
| for J in Discr_Expr'Range loop |
| if No (Discr_Expr (J)) then |
| Error_Msg_N ("too few discriminants given in constraint", C); |
| return New_Elmt_List; |
| end if; |
| end loop; |
| |
| -- Determine if there are discriminant expressions in the constraint |
| |
| for J in Discr_Expr'Range loop |
| if Denotes_Discriminant |
| (Discr_Expr (J), Check_Concurrent => True) |
| then |
| Discrim_Present := True; |
| exit; |
| end if; |
| end loop; |
| |
| -- Build an element list consisting of the expressions given in the |
| -- discriminant constraint and apply the appropriate checks. The list |
| -- is constructed after resolving any named discriminant associations |
| -- and therefore the expressions appear in the textual order of the |
| -- discriminants. |
| |
| Discr := First_Discriminant (T); |
| for J in Discr_Expr'Range loop |
| if Discr_Expr (J) /= Error then |
| Append_Elmt (Discr_Expr (J), Elist); |
| |
| -- If any of the discriminant constraints is given by a |
| -- discriminant and we are in a derived type declaration we |
| -- have a discriminant renaming. Establish link between new |
| -- and old discriminant. The new discriminant has an implicit |
| -- dereference if the old one does. |
| |
| if Denotes_Discriminant (Discr_Expr (J)) then |
| if Derived_Def then |
| declare |
| New_Discr : constant Entity_Id := Entity (Discr_Expr (J)); |
| |
| begin |
| Set_Corresponding_Discriminant (New_Discr, Discr); |
| Set_Has_Implicit_Dereference (New_Discr, |
| Has_Implicit_Dereference (Discr)); |
| end; |
| end if; |
| |
| -- Force the evaluation of non-discriminant expressions. |
| -- If we have found a discriminant in the constraint 3.4(26) |
| -- and 3.8(18) demand that no range checks are performed are |
| -- after evaluation. If the constraint is for a component |
| -- definition that has a per-object constraint, expressions are |
| -- evaluated but not checked either. In all other cases perform |
| -- a range check. |
| |
| else |
| if Discrim_Present then |
| null; |
| |
| elsif Parent_Kind (Parent (Def)) = N_Component_Declaration |
| and then Has_Per_Object_Constraint |
| (Defining_Identifier (Parent (Parent (Def)))) |
| then |
| null; |
| |
| elsif Is_Access_Type (Etype (Discr)) then |
| Apply_Constraint_Check (Discr_Expr (J), Etype (Discr)); |
| |
| else |
| Apply_Range_Check (Discr_Expr (J), Etype (Discr)); |
| end if; |
| |
| -- If the value of the discriminant may be visible in |
| -- another unit or child unit, create an external name |
| -- for it. We use the name of the object or component |
| -- that carries the discriminated subtype. The code |
| -- below may generate external symbols for the discriminant |
| -- expression when not strictly needed, which is harmless. |
| |
| if Expander_Active |
| and then Comes_From_Source (Def) |
| and then not Is_Subprogram (Current_Scope) |
| then |
| declare |
| Id : Entity_Id := Empty; |
| begin |
| if Nkind (Parent (Def)) = N_Object_Declaration then |
| Id := Defining_Identifier (Parent (Def)); |
| |
| elsif Nkind (Parent (Def)) = N_Component_Definition |
| and then |
| Nkind (Parent (Parent (Def))) |
| = N_Component_Declaration |
| then |
| Id := Defining_Identifier (Parent (Parent (Def))); |
| end if; |
| |
| if Present (Id) then |
| Force_Evaluation ( |
| Discr_Expr (J), |
| Related_Id => Id, |
| Discr_Number => J); |
| else |
| Force_Evaluation (Discr_Expr (J)); |
| end if; |
| end; |
| else |
| Force_Evaluation (Discr_Expr (J)); |
| end if; |
| end if; |
| |
| -- Check that the designated type of an access discriminant's |
| -- expression is not a class-wide type unless the discriminant's |
| -- designated type is also class-wide. |
| |
| if Ekind (Etype (Discr)) = E_Anonymous_Access_Type |
| and then not Is_Class_Wide_Type |
| (Designated_Type (Etype (Discr))) |
| and then Etype (Discr_Expr (J)) /= Any_Type |
| and then Is_Class_Wide_Type |
| (Designated_Type (Etype (Discr_Expr (J)))) |
| then |
| Wrong_Type (Discr_Expr (J), Etype (Discr)); |
| |
| elsif Is_Access_Type (Etype (Discr)) |
| and then not Is_Access_Constant (Etype (Discr)) |
| and then Is_Access_Type (Etype (Discr_Expr (J))) |
| and then Is_Access_Constant (Etype (Discr_Expr (J))) |
| then |
| Error_Msg_NE |
| ("constraint for discriminant& must be access to variable", |
| Def, Discr); |
| end if; |
| end if; |
| |
| Next_Discriminant (Discr); |
| end loop; |
| |
| return Elist; |
| end Build_Discriminant_Constraints; |
| |
| --------------------------------- |
| -- Build_Discriminated_Subtype -- |
| --------------------------------- |
| |
| procedure Build_Discriminated_Subtype |
| (T : Entity_Id; |
| Def_Id : Entity_Id; |
| Elist : Elist_Id; |
| Related_Nod : Node_Id; |
| For_Access : Boolean := False) |
| is |
| Has_Discrs : constant Boolean := Has_Discriminants (T); |
| Constrained : constant Boolean := |
| (Has_Discrs |
| and then not Is_Empty_Elmt_List (Elist) |
| and then not Is_Class_Wide_Type (T)) |
| or else Is_Constrained (T); |
| |
| begin |
| if Ekind (T) = E_Record_Type then |
| Mutate_Ekind (Def_Id, E_Record_Subtype); |
| |
| -- Inherit preelaboration flag from base, for types for which it |
| -- may have been set: records, private types, protected types. |
| |
| Set_Known_To_Have_Preelab_Init |
| (Def_Id, Known_To_Have_Preelab_Init (T)); |
| |
| elsif Ekind (T) = E_Task_Type then |
| Mutate_Ekind (Def_Id, E_Task_Subtype); |
| |
| elsif Ekind (T) = E_Protected_Type then |
| Mutate_Ekind (Def_Id, E_Protected_Subtype); |
| Set_Known_To_Have_Preelab_Init |
| (Def_Id, Known_To_Have_Preelab_Init (T)); |
| |
| elsif Is_Private_Type (T) then |
| Mutate_Ekind (Def_Id, Subtype_Kind (Ekind (T))); |
| Set_Known_To_Have_Preelab_Init |
| (Def_Id, Known_To_Have_Preelab_Init (T)); |
| |
| -- Private subtypes may have private dependents |
| |
| Set_Private_Dependents (Def_Id, New_Elmt_List); |
| |
| elsif Is_Class_Wide_Type (T) then |
| Mutate_Ekind (Def_Id, E_Class_Wide_Subtype); |
| |
| else |
| -- Incomplete type. Attach subtype to list of dependents, to be |
| -- completed with full view of parent type, unless is it the |
| -- designated subtype of a record component within an init_proc. |
| -- This last case arises for a component of an access type whose |
| -- designated type is incomplete (e.g. a Taft Amendment type). |
| -- The designated subtype is within an inner scope, and needs no |
| -- elaboration, because only the access type is needed in the |
| -- initialization procedure. |
| |
| if Ekind (T) = E_Incomplete_Type then |
| Mutate_Ekind (Def_Id, E_Incomplete_Subtype); |
| else |
| Mutate_Ekind (Def_Id, Ekind (T)); |
| end if; |
| |
| if For_Access and then Within_Init_Proc then |
| null; |
| else |
| Append_Elmt (Def_Id, Private_Dependents (T)); |
| end if; |
| end if; |
| |
| Set_Etype (Def_Id, T); |
| Reinit_Size_Align (Def_Id); |
| Set_Has_Discriminants (Def_Id, Has_Discrs); |
| Set_Is_Constrained (Def_Id, Constrained); |
| |
| Set_First_Entity (Def_Id, First_Entity (T)); |
| Set_Last_Entity (Def_Id, Last_Entity (T)); |
| Set_Has_Implicit_Dereference |
| (Def_Id, Has_Implicit_Dereference (T)); |
| Set_Has_Pragma_Unreferenced_Objects |
| (Def_Id, Has_Pragma_Unreferenced_Objects (T)); |
| |
| -- If the subtype is the completion of a private declaration, there may |
| -- have been representation clauses for the partial view, and they must |
| -- be preserved. Build_Derived_Type chains the inherited clauses with |
| -- the ones appearing on the extension. If this comes from a subtype |
| -- declaration, all clauses are inherited. |
| |
| if No (First_Rep_Item (Def_Id)) then |
| Set_First_Rep_Item (Def_Id, First_Rep_Item (T)); |
| end if; |
| |
| if Is_Tagged_Type (T) then |
| Set_Is_Tagged_Type (Def_Id); |
| Set_No_Tagged_Streams_Pragma (Def_Id, No_Tagged_Streams_Pragma (T)); |
| Make_Class_Wide_Type (Def_Id); |
| end if; |
| |
| Set_Stored_Constraint (Def_Id, No_Elist); |
| |
| if Has_Discrs then |
| Set_Discriminant_Constraint (Def_Id, Elist); |
| Set_Stored_Constraint_From_Discriminant_Constraint (Def_Id); |
| end if; |
| |
| if Is_Tagged_Type (T) then |
| |
| -- Ada 2005 (AI-251): In case of concurrent types we inherit the |
| -- concurrent record type (which has the list of primitive |
| -- operations). |
| |
| if Ada_Version >= Ada_2005 |
| and then Is_Concurrent_Type (T) |
| then |
| Set_Corresponding_Record_Type (Def_Id, |
| Corresponding_Record_Type (T)); |
| else |
| Set_Direct_Primitive_Operations (Def_Id, |
| Direct_Primitive_Operations (T)); |
| end if; |
| |
| Set_Is_Abstract_Type (Def_Id, Is_Abstract_Type (T)); |
| end if; |
| |
| -- Subtypes introduced by component declarations do not need to be |
| -- marked as delayed, and do not get freeze nodes, because the semantics |
| -- verifies that the parents of the subtypes are frozen before the |
| -- enclosing record is frozen. |
| |
| if not Is_Type (Scope (Def_Id)) then |
| Set_Depends_On_Private (Def_Id, Depends_On_Private (T)); |
| |
| if Is_Private_Type (T) |
| and then Present (Full_View (T)) |
| then |
| Conditional_Delay (Def_Id, Full_View (T)); |
| else |
| Conditional_Delay (Def_Id, T); |
| end if; |
| end if; |
| |
| if Is_Record_Type (T) then |
| Set_Is_Limited_Record (Def_Id, Is_Limited_Record (T)); |
| |
| if Has_Discrs |
| and then not Is_Empty_Elmt_List (Elist) |
| and then not For_Access |
| then |
| Create_Constrained_Components (Def_Id, Related_Nod, T, Elist); |
| |
| elsif not Is_Private_Type (T) then |
| Set_Cloned_Subtype (Def_Id, T); |
| end if; |
| end if; |
| end Build_Discriminated_Subtype; |
| |
| --------------------------- |
| -- Build_Itype_Reference -- |
| --------------------------- |
| |
| procedure Build_Itype_Reference |
| (Ityp : Entity_Id; |
| Nod : Node_Id) |
| is |
| IR : constant Node_Id := Make_Itype_Reference (Sloc (Nod)); |
| begin |
| |
| -- Itype references are only created for use by the back-end |
| |
| if Inside_A_Generic then |
| return; |
| else |
| Set_Itype (IR, Ityp); |
| |
| -- If Nod is a library unit entity, then Insert_After won't work, |
| -- because Nod is not a member of any list. Therefore, we use |
| -- Add_Global_Declaration in this case. This can happen if we have a |
| -- build-in-place library function, child unit or not. |
| |
| if (Nkind (Nod) in N_Entity and then Is_Compilation_Unit (Nod)) |
| or else (Nkind (Nod) in |
| N_Defining_Program_Unit_Name | N_Subprogram_Declaration |
| and then Is_Compilation_Unit (Defining_Entity (Nod))) |
| then |
| Add_Global_Declaration (IR); |
| else |
| Insert_After (Nod, IR); |
| end if; |
| end if; |
| end Build_Itype_Reference; |
| |
| ------------------------ |
| -- Build_Scalar_Bound -- |
| ------------------------ |
| |
| function Build_Scalar_Bound |
| (Bound : Node_Id; |
| Par_T : Entity_Id; |
| Der_T : Entity_Id) return Node_Id |
| is |
| New_Bound : Entity_Id; |
| |
| begin |
| -- Note: not clear why this is needed, how can the original bound |
| -- be unanalyzed at this point? and if it is, what business do we |
| -- have messing around with it? and why is the base type of the |
| -- parent type the right type for the resolution. It probably is |
| -- not. It is OK for the new bound we are creating, but not for |
| -- the old one??? Still if it never happens, no problem. |
| |
| Analyze_And_Resolve (Bound, Base_Type (Par_T)); |
| |
| if Nkind (Bound) in N_Integer_Literal | N_Real_Literal then |
| New_Bound := New_Copy (Bound); |
| Set_Etype (New_Bound, Der_T); |
| Set_Analyzed (New_Bound); |
| |
| elsif Is_Entity_Name (Bound) then |
| New_Bound := OK_Convert_To (Der_T, New_Copy (Bound)); |
| |
| -- The following is almost certainly wrong. What business do we have |
| -- relocating a node (Bound) that is presumably still attached to |
| -- the tree elsewhere??? |
| |
| else |
| New_Bound := OK_Convert_To (Der_T, Relocate_Node (Bound)); |
| end if; |
| |
| Set_Etype (New_Bound, Der_T); |
| return New_Bound; |
| end Build_Scalar_Bound; |
| |
| ------------------------------- |
| -- Check_Abstract_Overriding -- |
| ------------------------------- |
| |
| procedure Check_Abstract_Overriding (T : Entity_Id) is |
| Alias_Subp : Entity_Id; |
| Elmt : Elmt_Id; |
| Op_List : Elist_Id; |
| Subp : Entity_Id; |
| Type_Def : Node_Id; |
| |
| procedure Check_Pragma_Implemented (Subp : Entity_Id); |
| -- Ada 2012 (AI05-0030): Subprogram Subp overrides an interface routine |
| -- which has pragma Implemented already set. Check whether Subp's entity |
| -- kind conforms to the implementation kind of the overridden routine. |
| |
| procedure Check_Pragma_Implemented |
| (Subp : Entity_Id; |
| Iface_Subp : Entity_Id); |
| -- Ada 2012 (AI05-0030): Subprogram Subp overrides interface routine |
| -- Iface_Subp and both entities have pragma Implemented already set on |
| -- them. Check whether the two implementation kinds are conforming. |
| |
| procedure Inherit_Pragma_Implemented |
| (Subp : Entity_Id; |
| Iface_Subp : Entity_Id); |
| -- Ada 2012 (AI05-0030): Interface primitive Subp overrides interface |
| -- subprogram Iface_Subp which has been marked by pragma Implemented. |
| -- Propagate the implementation kind of Iface_Subp to Subp. |
| |
| ------------------------------ |
| -- Check_Pragma_Implemented -- |
| ------------------------------ |
| |
| procedure Check_Pragma_Implemented (Subp : Entity_Id) is |
| Iface_Alias : constant Entity_Id := Interface_Alias (Subp); |
| Impl_Kind : constant Name_Id := Implementation_Kind (Iface_Alias); |
| Subp_Alias : constant Entity_Id := Alias (Subp); |
| Contr_Typ : Entity_Id; |
| Impl_Subp : Entity_Id; |
| |
| begin |
| -- Subp must have an alias since it is a hidden entity used to link |
| -- an interface subprogram to its overriding counterpart. |
| |
| pragma Assert (Present (Subp_Alias)); |
| |
| -- Handle aliases to synchronized wrappers |
| |
| Impl_Subp := Subp_Alias; |
| |
| if Is_Primitive_Wrapper (Impl_Subp) then |
| Impl_Subp := Wrapped_Entity (Impl_Subp); |
| end if; |
| |
| -- Extract the type of the controlling formal |
| |
| Contr_Typ := Etype (First_Formal (Subp_Alias)); |
| |
| if Is_Concurrent_Record_Type (Contr_Typ) then |
| Contr_Typ := Corresponding_Concurrent_Type (Contr_Typ); |
| end if; |
| |
| -- An interface subprogram whose implementation kind is By_Entry must |
| -- be implemented by an entry. |
| |
| if Impl_Kind = Name_By_Entry |
| and then Ekind (Impl_Subp) /= E_Entry |
| then |
| Error_Msg_Node_2 := Iface_Alias; |
| Error_Msg_NE |
| ("type & must implement abstract subprogram & with an entry", |
| Subp_Alias, Contr_Typ); |
| |
| elsif Impl_Kind = Name_By_Protected_Procedure then |
| |
| -- An interface subprogram whose implementation kind is By_ |
| -- Protected_Procedure cannot be implemented by a primitive |
| -- procedure of a task type. |
| |
| if Ekind (Contr_Typ) /= E_Protected_Type then |
| Error_Msg_Node_2 := Contr_Typ; |
| Error_Msg_NE |
| ("interface subprogram & cannot be implemented by a " |
| & "primitive procedure of task type &", |
| Subp_Alias, Iface_Alias); |
| |
| -- An interface subprogram whose implementation kind is By_ |
| -- Protected_Procedure must be implemented by a procedure. |
| |
| elsif Ekind (Impl_Subp) /= E_Procedure then |
| Error_Msg_Node_2 := Iface_Alias; |
| Error_Msg_NE |
| ("type & must implement abstract subprogram & with a " |
| & "procedure", Subp_Alias, Contr_Typ); |
| |
| elsif Present (Get_Rep_Pragma (Impl_Subp, Name_Implemented)) |
| and then Implementation_Kind (Impl_Subp) /= Impl_Kind |
| then |
| Error_Msg_Name_1 := Impl_Kind; |
| Error_Msg_N |
| ("overriding operation& must have synchronization%", |
| Subp_Alias); |
| end if; |
| |
| -- If primitive has Optional synchronization, overriding operation |
| -- must match if it has an explicit synchronization. |
| |
| elsif Present (Get_Rep_Pragma (Impl_Subp, Name_Implemented)) |
| and then Implementation_Kind (Impl_Subp) /= Impl_Kind |
| then |
| Error_Msg_Name_1 := Impl_Kind; |
| Error_Msg_N |
| ("overriding operation& must have synchronization%", Subp_Alias); |
| end if; |
| end Check_Pragma_Implemented; |
| |
| ------------------------------ |
| -- Check_Pragma_Implemented -- |
| ------------------------------ |
| |
| procedure Check_Pragma_Implemented |
| (Subp : Entity_Id; |
| Iface_Subp : Entity_Id) |
| is |
| Iface_Kind : constant Name_Id := Implementation_Kind (Iface_Subp); |
| Subp_Kind : constant Name_Id := Implementation_Kind (Subp); |
| |
| begin |
| -- Ada 2012 (AI05-0030): The implementation kinds of an overridden |
| -- and overriding subprogram are different. In general this is an |
| -- error except when the implementation kind of the overridden |
| -- subprograms is By_Any or Optional. |
| |
| if Iface_Kind /= Subp_Kind |
| and then Iface_Kind /= Name_By_Any |
| and then Iface_Kind /= Name_Optional |
| then |
| if Iface_Kind = Name_By_Entry then |
| Error_Msg_N |
| ("incompatible implementation kind, overridden subprogram " & |
| "is marked By_Entry", Subp); |
| else |
| Error_Msg_N |
| ("incompatible implementation kind, overridden subprogram " & |
| "is marked By_Protected_Procedure", Subp); |
| end if; |
| end if; |
| end Check_Pragma_Implemented; |
| |
| -------------------------------- |
| -- Inherit_Pragma_Implemented -- |
| -------------------------------- |
| |
| procedure Inherit_Pragma_Implemented |
| (Subp : Entity_Id; |
| Iface_Subp : Entity_Id) |
| is |
| Iface_Kind : constant Name_Id := Implementation_Kind (Iface_Subp); |
| Loc : constant Source_Ptr := Sloc (Subp); |
| Impl_Prag : Node_Id; |
| |
| begin |
| -- Since the implementation kind is stored as a representation item |
| -- rather than a flag, create a pragma node. |
| |
| Impl_Prag := |
| Make_Pragma (Loc, |
| Chars => Name_Implemented, |
| Pragma_Argument_Associations => New_List ( |
| Make_Pragma_Argument_Association (Loc, |
| Expression => New_Occurrence_Of (Subp, Loc)), |
| |
| Make_Pragma_Argument_Association (Loc, |
| Expression => Make_Identifier (Loc, Iface_Kind)))); |
| |
| -- The pragma doesn't need to be analyzed because it is internally |
| -- built. It is safe to directly register it as a rep item since we |
| -- are only interested in the characters of the implementation kind. |
| |
| Record_Rep_Item (Subp, Impl_Prag); |
| end Inherit_Pragma_Implemented; |
| |
| -- Start of processing for Check_Abstract_Overriding |
| |
| begin |
| Op_List := Primitive_Operations (T); |
| |
| -- Loop to check primitive operations |
| |
| Elmt := First_Elmt (Op_List); |
| while Present (Elmt) loop |
| Subp := Node (Elmt); |
| Alias_Subp := Alias (Subp); |
| |
| -- If the parent type is untagged, then no overriding error checks |
| -- are needed (such as in the case of an implicit full type for |
| -- a derived type whose parent is an untagged private type with |
| -- a tagged full type). |
| |
| if not Is_Tagged_Type (Etype (T)) then |
| null; |
| |
| -- Inherited subprograms are identified by the fact that they do not |
| -- come from source, and the associated source location is the |
| -- location of the first subtype of the derived type. |
| |
| -- Ada 2005 (AI-228): Apply the rules of RM-3.9.3(6/2) for |
| -- subprograms that "require overriding". |
| |
| -- Special exception, do not complain about failure to override the |
| -- stream routines _Input and _Output, as well as the primitive |
| -- operations used in dispatching selects since we always provide |
| -- automatic overridings for these subprograms. |
| |
| -- The partial view of T may have been a private extension, for |
| -- which inherited functions dispatching on result are abstract. |
| -- If the full view is a null extension, there is no need for |
| -- overriding in Ada 2005, but wrappers need to be built for them |
| -- (see exp_ch3, Build_Controlling_Function_Wrappers). |
| |
| elsif Is_Null_Extension (T) |
| and then Has_Controlling_Result (Subp) |
| and then Ada_Version >= Ada_2005 |
| and then Present (Alias_Subp) |
| and then not Comes_From_Source (Subp) |
| and then not Is_Abstract_Subprogram (Alias_Subp) |
| and then not Is_Access_Type (Etype (Subp)) |
| then |
| null; |
| |
| -- Ada 2005 (AI-251): Internal entities of interfaces need no |
| -- processing because this check is done with the aliased |
| -- entity |
| |
| elsif Present (Interface_Alias (Subp)) then |
| null; |
| |
| -- AI12-0042: Test for rule in 7.3.2(6.1/4), that requires overriding |
| -- of a visible private primitive inherited from an ancestor with |
| -- the aspect Type_Invariant'Class, unless the inherited primitive |
| -- is abstract. |
| |
| elsif not Is_Abstract_Subprogram (Subp) |
| and then not Comes_From_Source (Subp) -- An inherited subprogram |
| and then Requires_Overriding (Subp) |
| and then Present (Alias_Subp) |
| and then Has_Invariants (Etype (T)) |
| and then Present (Get_Pragma (Etype (T), Pragma_Invariant)) |
| and then Class_Present (Get_Pragma (Etype (T), Pragma_Invariant)) |
| and then Is_Private_Primitive (Alias_Subp) |
| then |
| Error_Msg_NE |
| ("inherited private primitive & must be overridden", T, Subp); |
| Error_Msg_N |
| ("\because ancestor type has 'Type_'Invariant''Class " & |
| "(RM 7.3.2(6.1))", T); |
| |
| elsif (Is_Abstract_Subprogram (Subp) |
| or else Requires_Overriding (Subp) |
| or else |
| (Has_Controlling_Result (Subp) |
| and then Present (Alias_Subp) |
| and then not Comes_From_Source (Subp) |
| and then Sloc (Subp) = Sloc (First_Subtype (T)))) |
| and then not Is_TSS (Subp, TSS_Stream_Input) |
| and then not Is_TSS (Subp, TSS_Stream_Output) |
| and then not Is_Abstract_Type (T) |
| and then not Is_Predefined_Interface_Primitive (Subp) |
| |
| -- Ada 2005 (AI-251): Do not consider hidden entities associated |
| -- with abstract interface types because the check will be done |
| -- with the aliased entity (otherwise we generate a duplicated |
| -- error message). |
| |
| and then No (Interface_Alias (Subp)) |
| then |
| if Present (Alias_Subp) then |
| |
| -- Only perform the check for a derived subprogram when the |
| -- type has an explicit record extension. This avoids incorrect |
| -- flagging of abstract subprograms for the case of a type |
| -- without an extension that is derived from a formal type |
| -- with a tagged actual (can occur within a private part). |
| |
| -- Ada 2005 (AI-391): In the case of an inherited function with |
| -- a controlling result of the type, the rule does not apply if |
| -- the type is a null extension (unless the parent function |
| -- itself is abstract, in which case the function must still be |
| -- be overridden). The expander will generate an overriding |
| -- wrapper function calling the parent subprogram (see |
| -- Exp_Ch3.Make_Controlling_Wrapper_Functions). |
| |
| Type_Def := Type_Definition (Parent (T)); |
| |
| if Nkind (Type_Def) = N_Derived_Type_Definition |
| and then Present (Record_Extension_Part (Type_Def)) |
| and then |
| (Ada_Version < Ada_2005 |
| or else not Is_Null_Extension (T) |
| or else Ekind (Subp) = E_Procedure |
| or else not Has_Controlling_Result (Subp) |
| or else Is_Abstract_Subprogram (Alias_Subp) |
| or else Requires_Overriding (Subp) |
| or else Is_Access_Type (Etype (Subp))) |
| then |
| -- Avoid reporting error in case of abstract predefined |
| -- primitive inherited from interface type because the |
| -- body of internally generated predefined primitives |
| -- of tagged types are generated later by Freeze_Type |
| |
| if Is_Interface (Root_Type (T)) |
| and then Is_Abstract_Subprogram (Subp) |
| and then Is_Predefined_Dispatching_Operation (Subp) |
| and then not Comes_From_Source (Ultimate_Alias (Subp)) |
| then |
| null; |
| |
| -- A null extension is not obliged to override an inherited |
| -- procedure subject to pragma Extensions_Visible with value |
| -- False and at least one controlling OUT parameter |
| -- (SPARK RM 6.1.7(6)). |
| |
| elsif Is_Null_Extension (T) |
| and then Is_EVF_Procedure (Subp) |
| then |
| null; |
| |
| -- Subprogram renamings cannot be overridden |
| |
| elsif Comes_From_Source (Subp) |
| and then Present (Alias (Subp)) |
| then |
| null; |
| |
| -- Skip reporting the error on Ada 2022 only subprograms |
| -- that require overriding if we are not in Ada 2022 mode. |
| |
| elsif Ada_Version < Ada_2022 |
| and then Requires_Overriding (Subp) |
| and then Is_Ada_2022_Only (Ultimate_Alias (Subp)) |
| then |
| null; |
| |
| else |
| Error_Msg_NE |
| ("type must be declared abstract or & overridden", |
| T, Subp); |
| |
| -- Traverse the whole chain of aliased subprograms to |
| -- complete the error notification. This is especially |
| -- useful for traceability of the chain of entities when |
| -- the subprogram corresponds with an interface |
| -- subprogram (which may be defined in another package). |
| |
| if Present (Alias_Subp) then |
| declare |
| E : Entity_Id; |
| |
| begin |
| E := Subp; |
| while Present (Alias (E)) loop |
| |
| -- Avoid reporting redundant errors on entities |
| -- inherited from interfaces |
| |
| if Sloc (E) /= Sloc (T) then |
| Error_Msg_Sloc := Sloc (E); |
| Error_Msg_NE |
| ("\& has been inherited #", T, Subp); |
| end if; |
| |
| E := Alias (E); |
| end loop; |
| |
| Error_Msg_Sloc := Sloc (E); |
| |
| -- AI05-0068: report if there is an overriding |
| -- non-abstract subprogram that is invisible. |
| |
| if Is_Hidden (E) |
| and then not Is_Abstract_Subprogram (E) |
| then |
| Error_Msg_NE |
| ("\& subprogram# is not visible", |
| T, Subp); |
| |
| -- Clarify the case where a non-null extension must |
| -- override inherited procedure subject to pragma |
| -- Extensions_Visible with value False and at least |
| -- one controlling OUT param. |
| |
| elsif Is_EVF_Procedure (E) then |
| Error_Msg_NE |
| ("\& # is subject to Extensions_Visible False", |
| T, Subp); |
| |
| else |
| Error_Msg_NE |
| ("\& has been inherited from subprogram #", |
| T, Subp); |
| end if; |
| end; |
| end if; |
| end if; |
| |
| -- Ada 2005 (AI-345): Protected or task type implementing |
| -- abstract interfaces. |
| |
| elsif Is_Concurrent_Record_Type (T) |
| and then Present (Interfaces (T)) |
| then |
| -- There is no need to check here RM 9.4(11.9/3) since we |
| -- are processing the corresponding record type and the |
| -- mode of the overriding subprograms was verified by |
| -- Check_Conformance when the corresponding concurrent |
| -- type declaration was analyzed. |
| |
| Error_Msg_NE |
| ("interface subprogram & must be overridden", T, Subp); |
| |
| -- Examine primitive operations of synchronized type to find |
| -- homonyms that have the wrong profile. |
| |
| declare |
| Prim : Entity_Id; |
| |
| begin |
| Prim := First_Entity (Corresponding_Concurrent_Type (T)); |
| while Present (Prim) loop |
| if Chars (Prim) = Chars (Subp) then |
| Error_Msg_NE |
| ("profile is not type conformant with prefixed " |
| & "view profile of inherited operation&", |
| Prim, Subp); |
| end if; |
| |
| Next_Entity (Prim); |
| end loop; |
| end; |
| end if; |
| |
| else |
| Error_Msg_Node_2 := T; |
| Error_Msg_N |
| ("abstract subprogram& not allowed for type&", Subp); |
| |
| -- Also post unconditional warning on the type (unconditional |
| -- so that if there are more than one of these cases, we get |
| -- them all, and not just the first one). |
| |
| Error_Msg_Node_2 := Subp; |
| Error_Msg_N ("nonabstract type& has abstract subprogram&!", T); |
| end if; |
| |
| -- A subprogram subject to pragma Extensions_Visible with value |
| -- "True" cannot override a subprogram subject to the same pragma |
| -- with value "False" (SPARK RM 6.1.7(5)). |
| |
| elsif Extensions_Visible_Status (Subp) = Extensions_Visible_True |
| and then Present (Overridden_Operation (Subp)) |
| and then Extensions_Visible_Status (Overridden_Operation (Subp)) = |
| Extensions_Visible_False |
| then |
| Error_Msg_Sloc := Sloc (Overridden_Operation (Subp)); |
| Error_Msg_N |
| ("subprogram & with Extensions_Visible True cannot override " |
| & "subprogram # with Extensions_Visible False", Subp); |
| end if; |
| |
| -- Ada 2012 (AI05-0030): Perform checks related to pragma Implemented |
| |
| -- Subp is an expander-generated procedure which maps an interface |
| -- alias to a protected wrapper. The interface alias is flagged by |
| -- pragma Implemented. Ensure that Subp is a procedure when the |
| -- implementation kind is By_Protected_Procedure or an entry when |
| -- By_Entry. |
| |
| if Ada_Version >= Ada_2012 |
| and then Is_Hidden (Subp) |
| and then Present (Interface_Alias (Subp)) |
| and then Has_Rep_Pragma (Interface_Alias (Subp), Name_Implemented) |
| then |
| Check_Pragma_Implemented (Subp); |
| end if; |
| |
| -- Subp is an interface primitive which overrides another interface |
| -- primitive marked with pragma Implemented. |
| |
| if Ada_Version >= Ada_2012 |
| and then Present (Overridden_Operation (Subp)) |
| and then Has_Rep_Pragma |
| (Overridden_Operation (Subp), Name_Implemented) |
| then |
| -- If the overriding routine is also marked by Implemented, check |
| -- that the two implementation kinds are conforming. |
| |
| if Has_Rep_Pragma (Subp, Name_Implemented) then |
| Check_Pragma_Implemented |
| (Subp => Subp, |
| Iface_Subp => Overridden_Operation (Subp)); |
| |
| -- Otherwise the overriding routine inherits the implementation |
| -- kind from the overridden subprogram. |
| |
| else |
| Inherit_Pragma_Implemented |
| (Subp => Subp, |
| Iface_Subp => Overridden_Operation (Subp)); |
| end if; |
| end if; |
| |
| -- Ada 2005 (AI95-0414) and Ada 2022 (AI12-0269): Diagnose failure to |
| -- match No_Return in parent, but do it unconditionally in Ada 95 too |
| -- for procedures, since this is our pragma. |
| |
| if Present (Overridden_Operation (Subp)) |
| and then No_Return (Overridden_Operation (Subp)) |
| then |
| |
| -- If the subprogram is a renaming, check that the renamed |
| -- subprogram is No_Return. |
| |
| if Present (Renamed_Or_Alias (Subp)) then |
| if not No_Return (Renamed_Or_Alias (Subp)) then |
| Error_Msg_NE ("subprogram & must be No_Return", |
| Subp, |
| Renamed_Or_Alias (Subp)); |
| Error_Msg_N ("\since renaming & overrides No_Return " |
| & "subprogram (RM 6.5.1(6/2))", |
| Subp); |
| end if; |
| |
| -- Make sure that the subprogram itself is No_Return. |
| |
| elsif not No_Return (Subp) then |
| Error_Msg_N ("overriding subprogram & must be No_Return", Subp); |
| Error_Msg_N |
| ("\since overridden subprogram is No_Return (RM 6.5.1(6/2))", |
| Subp); |
| end if; |
| end if; |
| |
| -- If the operation is a wrapper for a synchronized primitive, it |
| -- may be called indirectly through a dispatching select. We assume |
| -- that it will be referenced elsewhere indirectly, and suppress |
| -- warnings about an unused entity. |
| |
| if Is_Primitive_Wrapper (Subp) |
| and then Present (Wrapped_Entity (Subp)) |
| then |
| Set_Referenced (Wrapped_Entity (Subp)); |
| end if; |
| |
| Next_Elmt (Elmt); |
| end loop; |
| end Check_Abstract_Overriding; |
| |
| ------------------------------------------------ |
| -- Check_Access_Discriminant_Requires_Limited -- |
| ------------------------------------------------ |
| |
| procedure Check_Access_Discriminant_Requires_Limited |
| (D : Node_Id; |
| Loc : Node_Id) |
| is |
| begin |
| -- A discriminant_specification for an access discriminant shall appear |
| -- only in the declaration for a task or protected type, or for a type |
| -- with the reserved word 'limited' in its definition or in one of its |
| -- ancestors (RM 3.7(10)). |
| |
| -- AI-0063: The proper condition is that type must be immutably limited, |
| -- or else be a partial view. |
| |
| if Nkind (Discriminant_Type (D)) = N_Access_Definition then |
| if Is_Limited_View (Current_Scope) |
| or else |
| (Nkind (Parent (Current_Scope)) = N_Private_Type_Declaration |
| and then Limited_Present (Parent (Current_Scope))) |
| then |
| null; |
| |
| else |
| Error_Msg_N |
| ("access discriminants allowed only for limited types", Loc); |
| end if; |
| end if; |
| end Check_Access_Discriminant_Requires_Limited; |
| |
| ----------------------------------- |
| -- Check_Aliased_Component_Types -- |
| ----------------------------------- |
| |
| procedure Check_Aliased_Component_Types (T : Entity_Id) is |
| C : Entity_Id; |
| |
| begin |
| -- ??? Also need to check components of record extensions, but not |
| -- components of protected types (which are always limited). |
| |
| -- Ada 2005: AI-363 relaxes this rule, to allow heap objects of such |
| -- types to be unconstrained. This is safe because it is illegal to |
| -- create access subtypes to such types with explicit discriminant |
| -- constraints. |
| |
| if not Is_Limited_Type (T) then |
| if Ekind (T) = E_Record_Type then |
| C := First_Component (T); |
| while Present (C) loop |
| if Is_Aliased (C) |
| and then Has_Discriminants (Etype (C)) |
| and then not Is_Constrained (Etype (C)) |
| and then not In_Instance_Body |
| and then Ada_Version < Ada_2005 |
| then |
| Error_Msg_N |
| ("aliased component must be constrained (RM 3.6(11))", |
| C); |
| end if; |
| |
| Next_Component (C); |
| end loop; |
| |
| elsif Ekind (T) = E_Array_Type then |
| if Has_Aliased_Components (T) |
| and then Has_Discriminants (Component_Type (T)) |
| and then not Is_Constrained (Component_Type (T)) |
| and then not In_Instance_Body |
| and then Ada_Version < Ada_2005 |
| then |
| Error_Msg_N |
| ("aliased component type must be constrained (RM 3.6(11))", |
| T); |
| end if; |
| end if; |
| end if; |
| end Check_Aliased_Component_Types; |
| |
| -------------------------------------- |
| -- Check_Anonymous_Access_Component -- |
| -------------------------------------- |
| |
| procedure Check_Anonymous_Access_Component |
| (Typ_Decl : Node_Id; |
| Typ : Entity_Id; |
| Prev : Entity_Id; |
| Comp_Def : Node_Id; |
| Access_Def : Node_Id) |
| is |
| Loc : constant Source_Ptr := Sloc (Comp_Def); |
| Anon_Access : Entity_Id; |
| Acc_Def : Node_Id; |
| Decl : Node_Id; |
| Type_Def : Node_Id; |
| |
| procedure Build_Incomplete_Type_Declaration; |
| -- If the record type contains components that include an access to the |
| -- current record, then create an incomplete type declaration for the |
| -- record, to be used as the designated type of the anonymous access. |
| -- This is done only once, and only if there is no previous partial |
| -- view of the type. |
| |
| function Designates_T (Subt : Node_Id) return Boolean; |
| -- Check whether a node designates the enclosing record type, or 'Class |
| -- of that type |
| |
| function Mentions_T (Acc_Def : Node_Id) return Boolean; |
| -- Check whether an access definition includes a reference to |
| -- the enclosing record type. The reference can be a subtype mark |
| -- in the access definition itself, a 'Class attribute reference, or |
| -- recursively a reference appearing in a parameter specification |
| -- or result definition of an access_to_subprogram definition. |
| |
| -------------------------------------- |
| -- Build_Incomplete_Type_Declaration -- |
| -------------------------------------- |
| |
| procedure Build_Incomplete_Type_Declaration is |
| Decl : Node_Id; |
| Inc_T : Entity_Id; |
| H : Entity_Id; |
| |
| -- Is_Tagged indicates whether the type is tagged. It is tagged if |
| -- it's "is new ... with record" or else "is tagged record ...". |
| |
| Typ_Def : constant Node_Id := |
| (if Nkind (Typ_Decl) = N_Full_Type_Declaration |
| then Type_Definition (Typ_Decl) else Empty); |
| Is_Tagged : constant Boolean := |
| Present (Typ_Def) |
| and then |
| ((Nkind (Typ_Def) = N_Derived_Type_Definition |
| and then |
| Present (Record_Extension_Part (Typ_Def))) |
| or else |
| (Nkind (Typ_Def) = N_Record_Definition |
| and then Tagged_Present (Typ_Def))); |
| |
| begin |
| -- If there is a previous partial view, no need to create a new one |
| -- If the partial view, given by Prev, is incomplete, If Prev is |
| -- a private declaration, full declaration is flagged accordingly. |
| |
| if Prev /= Typ then |
| if Is_Tagged then |
| Make_Class_Wide_Type (Prev); |
| Set_Class_Wide_Type (Typ, Class_Wide_Type (Prev)); |
| Set_Etype (Class_Wide_Type (Typ), Typ); |
| end if; |
| |
| return; |
| |
| elsif Has_Private_Declaration (Typ) then |
| |
| -- If we refer to T'Class inside T, and T is the completion of a |
| -- private type, then make sure the class-wide type exists. |
| |
| if Is_Tagged then |
| Make_Class_Wide_Type (Typ); |
| end if; |
| |
| return; |
| |
| -- If there was a previous anonymous access type, the incomplete |
| -- type declaration will have been created already. |
| |
| elsif Present (Current_Entity (Typ)) |
| and then Ekind (Current_Entity (Typ)) = E_Incomplete_Type |
| and then Full_View (Current_Entity (Typ)) = Typ |
| then |
| if Is_Tagged |
| and then Comes_From_Source (Current_Entity (Typ)) |
| and then not Is_Tagged_Type (Current_Entity (Typ)) |
| then |
| Make_Class_Wide_Type (Typ); |
| Error_Msg_N |
| ("incomplete view of tagged type should be declared tagged??", |
| Parent (Current_Entity (Typ))); |
| end if; |
| return; |
| |
| else |
| Inc_T := Make_Defining_Identifier (Loc, Chars (Typ)); |
| Decl := Make_Incomplete_Type_Declaration (Loc, Inc_T); |
| |
| -- Type has already been inserted into the current scope. Remove |
| -- it, and add incomplete declaration for type, so that subsequent |
| -- anonymous access types can use it. The entity is unchained from |
| -- the homonym list and from immediate visibility. After analysis, |
| -- the entity in the incomplete declaration becomes immediately |
| -- visible in the record declaration that follows. |
| |
| H := Current_Entity (Typ); |
| |
| if H = Typ then |
| Set_Name_Entity_Id (Chars (Typ), Homonym (Typ)); |
| |
| else |
| while Present (Homonym (H)) and then Homonym (H) /= Typ loop |
| H := Homonym (Typ); |
| end loop; |
| |
| Set_Homonym (H, Homonym (Typ)); |
| end if; |
| |
| Insert_Before (Typ_Decl, Decl); |
| Analyze (Decl); |
| Set_Full_View (Inc_T, Typ); |
| Set_Incomplete_View (Typ_Decl, Inc_T); |
| |
| -- If the type is tagged, create a common class-wide type for |
| -- both views, and set the Etype of the class-wide type to the |
| -- full view. |
| |
| if Is_Tagged then |
| Make_Class_Wide_Type (Inc_T); |
| Set_Class_Wide_Type (Typ, Class_Wide_Type (Inc_T)); |
| Set_Etype (Class_Wide_Type (Typ), Typ); |
| end if; |
| |
| -- If the scope is a package with a limited view, create a shadow |
| -- entity for the incomplete type like Build_Limited_Views, so as |
| -- to make it possible for Remove_Limited_With_Unit to reinstall |
| -- this incomplete type as the visible entity. |
| |
| if Ekind (Scope (Inc_T)) = E_Package |
| and then Present (Limited_View (Scope (Inc_T))) |
| then |
| declare |
| Shadow : constant Entity_Id := Make_Temporary (Loc, 'Z'); |
| |
| begin |
| -- This is modeled on Build_Shadow_Entity |
| |
| Set_Chars (Shadow, Chars (Inc_T)); |
| Set_Parent (Shadow, Decl); |
| Decorate_Type (Shadow, Scope (Inc_T), Is_Tagged); |
| Set_Is_Internal (Shadow); |
| Set_From_Limited_With (Shadow); |
| Set_Non_Limited_View (Shadow, Inc_T); |
| Set_Private_Dependents (Shadow, New_Elmt_List); |
| |
| if Is_Tagged then |
| Set_Non_Limited_View |
| (Class_Wide_Type (Shadow), Class_Wide_Type (Inc_T)); |
| end if; |
| |
| Append_Entity (Shadow, Limited_View (Scope (Inc_T))); |
| end; |
| end if; |
| end if; |
| end Build_Incomplete_Type_Declaration; |
| |
| ------------------ |
| -- Designates_T -- |
| ------------------ |
| |
| function Designates_T (Subt : Node_Id) return Boolean is |
| Type_Id : constant Name_Id := Chars (Typ); |
| |
| function Names_T (Nam : Node_Id) return Boolean; |
| -- The record type has not been introduced in the current scope |
| -- yet, so we must examine the name of the type itself, either |
| -- an identifier T, or an expanded name of the form P.T, where |
| -- P denotes the current scope. |
| |
| ------------- |
| -- Names_T -- |
| ------------- |
| |
| function Names_T (Nam : Node_Id) return Boolean is |
| begin |
| if Nkind (Nam) = N_Identifier then |
| return Chars (Nam) = Type_Id; |
| |
| elsif Nkind (Nam) = N_Selected_Component then |
| if Chars (Selector_Name (Nam)) = Type_Id then |
| if Nkind (Prefix (Nam)) = N_Identifier then |
| return Chars (Prefix (Nam)) = Chars (Current_Scope); |
| |
| elsif Nkind (Prefix (Nam)) = N_Selected_Component then |
| return Chars (Selector_Name (Prefix (Nam))) = |
| Chars (Current_Scope); |
| else |
| return False; |
| end if; |
| |
| else |
| return False; |
| end if; |
| |
| else |
| return False; |
| end if; |
| end Names_T; |
| |
| -- Start of processing for Designates_T |
| |
| begin |
| if Nkind (Subt) = N_Identifier then |
| return Chars (Subt) = Type_Id; |
| |
| -- Reference can be through an expanded name which has not been |
| -- analyzed yet, and which designates enclosing scopes. |
| |
| elsif Nkind (Subt) = N_Selected_Component then |
| if Names_T (Subt) then |
| return True; |
| |
| -- Otherwise it must denote an entity that is already visible. |
| -- The access definition may name a subtype of the enclosing |
| -- type, if there is a previous incomplete declaration for it. |
| |
| else |
| Find_Selected_Component (Subt); |
| return |
| Is_Entity_Name (Subt) |
| and then Scope (Entity (Subt)) = Current_Scope |
| and then |
| (Chars (Base_Type (Entity (Subt))) = Type_Id |
| or else |
| (Is_Class_Wide_Type (Entity (Subt)) |
| and then |
| Chars (Etype (Base_Type (Entity (Subt)))) = |
| Type_Id)); |
| end if; |
| |
| -- A reference to the current type may appear as the prefix of |
| -- a 'Class attribute. |
| |
| elsif Nkind (Subt) = N_Attribute_Reference |
| and then Attribute_Name (Subt) = Name_Class |
| then |
| return Names_T (Prefix (Subt)); |
| |
| else |
| return False; |
| end if; |
| end Designates_T; |
| |
| ---------------- |
| -- Mentions_T -- |
| ---------------- |
| |
| function Mentions_T (Acc_Def : Node_Id) return Boolean is |
| Param_Spec : Node_Id; |
| |
| Acc_Subprg : constant Node_Id := |
| Access_To_Subprogram_Definition (Acc_Def); |
| |
| begin |
| if No (Acc_Subprg) then |
| return Designates_T (Subtype_Mark (Acc_Def)); |
| end if; |
| |
| -- Component is an access_to_subprogram: examine its formals, |
| -- and result definition in the case of an access_to_function. |
| |
| Param_Spec := First (Parameter_Specifications (Acc_Subprg)); |
| while Present (Param_Spec) loop |
| if Nkind (Parameter_Type (Param_Spec)) = N_Access_Definition |
| and then Mentions_T (Parameter_Type (Param_Spec)) |
| then |
| return True; |
| |
| elsif Designates_T (Parameter_Type (Param_Spec)) then |
| return True; |
| end if; |
| |
| Next (Param_Spec); |
| end loop; |
| |
| if Nkind (Acc_Subprg) = N_Access_Function_Definition then |
| if Nkind (Result_Definition (Acc_Subprg)) = |
| N_Access_Definition |
| then |
| return Mentions_T (Result_Definition (Acc_Subprg)); |
| else |
| return Designates_T (Result_Definition (Acc_Subprg)); |
| end if; |
| end if; |
| |
| return False; |
| end Mentions_T; |
| |
| -- Start of processing for Check_Anonymous_Access_Component |
| |
| begin |
| if Present (Access_Def) and then Mentions_T (Access_Def) then |
| Acc_Def := Access_To_Subprogram_Definition (Access_Def); |
| |
| Build_Incomplete_Type_Declaration; |
| Anon_Access := Make_Temporary (Loc, 'S'); |
| |
| -- Create a declaration for the anonymous access type: either |
| -- an access_to_object or an access_to_subprogram. |
| |
| if Present (Acc_Def) then |
| if Nkind (Acc_Def) = N_Access_Function_Definition then |
| Type_Def := |
| Make_Access_Function_Definition (Loc, |
| Parameter_Specifications => |
| Parameter_Specifications (Acc_Def), |
| Result_Definition => Result_Definition (Acc_Def)); |
| else |
| Type_Def := |
| Make_Access_Procedure_Definition (Loc, |
| Parameter_Specifications => |
| Parameter_Specifications (Acc_Def)); |
| end if; |
| |
| else |
| Type_Def := |
| Make_Access_To_Object_Definition (Loc, |
| Subtype_Indication => |
| Relocate_Node (Subtype_Mark (Access_Def))); |
| |
| Set_Constant_Present (Type_Def, Constant_Present (Access_Def)); |
| Set_All_Present (Type_Def, All_Present (Access_Def)); |
| end if; |
| |
| Set_Null_Exclusion_Present |
| (Type_Def, Null_Exclusion_Present (Access_Def)); |
| |
| Decl := |
| Make_Full_Type_Declaration (Loc, |
| Defining_Identifier => Anon_Access, |
| Type_Definition => Type_Def); |
| |
| Insert_Before (Typ_Decl, Decl); |
| Analyze (Decl); |
| |
| -- At first sight we could add here the extra formals of an access to |
| -- subprogram; however, it must delayed till the freeze point so that |
| -- we know the convention. |
| |
| if Nkind (Comp_Def) = N_Component_Definition then |
| Rewrite (Comp_Def, |
| Make_Component_Definition (Loc, |
| Subtype_Indication => New_Occurrence_Of (Anon_Access, Loc))); |
| else |
| pragma Assert (Nkind (Comp_Def) = N_Discriminant_Specification); |
| Rewrite (Comp_Def, |
| Make_Discriminant_Specification (Loc, |
| Defining_Identifier => Defining_Identifier (Comp_Def), |
| Discriminant_Type => New_Occurrence_Of (Anon_Access, Loc))); |
| end if; |
| |
| if Ekind (Designated_Type (Anon_Access)) = E_Subprogram_Type then |
| Mutate_Ekind (Anon_Access, E_Anonymous_Access_Subprogram_Type); |
| else |
| Mutate_Ekind (Anon_Access, E_Anonymous_Access_Type); |
| end if; |
| |
| Set_Is_Local_Anonymous_Access (Anon_Access); |
| end if; |
| end Check_Anonymous_Access_Component; |
| |
| --------------------------------------- |
| -- Check_Anonymous_Access_Components -- |
| --------------------------------------- |
| |
| procedure Check_Anonymous_Access_Components |
| (Typ_Decl : Node_Id; |
| Typ : Entity_Id; |
| Prev : Entity_Id; |
| Comp_List : Node_Id) |
| is |
| Comp : Node_Id; |
| begin |
| if No (Comp_List) then |
| return; |
| end if; |
| |
| Comp := First (Component_Items (Comp_List)); |
| while Present (Comp) loop |
| if Nkind (Comp) = N_Component_Declaration then |
| Check_Anonymous_Access_Component |
| (Typ_Decl, Typ, Prev, |
| Component_Definition (Comp), |
| Access_Definition (Component_Definition (Comp))); |
| end if; |
| |
| Next (Comp); |
| end loop; |
| |
| if Present (Variant_Part (Comp_List)) then |
| declare |
| V : Node_Id; |
| begin |
| V := First_Non_Pragma (Variants (Variant_Part (Comp_List))); |
| while Present (V) loop |
| Check_Anonymous_Access_Components |
| (Typ_Decl, Typ, Prev, Component_List (V)); |
| Next_Non_Pragma (V); |
| end loop; |
| end; |
| end if; |
| end Check_Anonymous_Access_Components; |
| |
| ---------------------- |
| -- Check_Completion -- |
| ---------------------- |
| |
| procedure Check_Completion (Body_Id : Node_Id := Empty) is |
| E : Entity_Id; |
| |
| procedure Post_Error; |
| -- Post error message for lack of completion for entity E |
| |
| ---------------- |
| -- Post_Error -- |
| ---------------- |
| |
| procedure Post_Error is |
| procedure Missing_Body; |
| -- Output missing body message |
| |
| ------------------ |
| -- Missing_Body -- |
| ------------------ |
| |
| procedure Missing_Body is |
| begin |
| -- Spec is in same unit, so we can post on spec |
| |
| if In_Same_Source_Unit (Body_Id, E) then |
| Error_Msg_N ("missing body for &", E); |
| |
| -- Spec is in a separate unit, so we have to post on the body |
| |
| else |
| Error_Msg_NE ("missing body for & declared#!", Body_Id, E); |
| end if; |
| end Missing_Body; |
| |
| -- Start of processing for Post_Error |
| |
| begin |
| if not Comes_From_Source (E) then |
| if Ekind (E) in E_Task_Type | E_Protected_Type then |
| |
| -- It may be an anonymous protected type created for a |
| -- single variable. Post error on variable, if present. |
| |
| declare |
| Var : Entity_Id; |
| |
| begin |
| Var := First_Entity (Current_Scope); |
| while Present (Var) loop |
| exit when Etype (Var) = E |
| and then Comes_From_Source (Var); |
| |
| Next_Entity (Var); |
| end loop; |
| |
| if Present (Var) then |
| E := Var; |
| end if; |
| end; |
| end if; |
| end if; |
| |
| -- If a generated entity has no completion, then either previous |
| -- semantic errors have disabled the expansion phase, or else we had |
| -- missing subunits, or else we are compiling without expansion, |
| -- or else something is very wrong. |
| |
| if not Comes_From_Source (E) then |
| pragma Assert |
| (Serious_Errors_Detected > 0 |
| or else Configurable_Run_Time_Violations > 0 |
| or else Subunits_Missing |
| or else not Expander_Active); |
| return; |
| |
| -- Here for source entity |
| |
| else |
| -- Here if no body to post the error message, so we post the error |
| -- on the declaration that has no completion. This is not really |
| -- the right place to post it, think about this later ??? |
| |
| if No (Body_Id) then |
| if Is_Type (E) then |
| Error_Msg_NE |
| ("missing full declaration for }", Parent (E), E); |
| else |
| Error_Msg_NE ("missing body for &", Parent (E), E); |
| end if; |
| |
| -- Package body has no completion for a declaration that appears |
| -- in the corresponding spec. Post error on the body, with a |
| -- reference to the non-completed declaration. |
| |
| else |
| Error_Msg_Sloc := Sloc (E); |
| |
| if Is_Type (E) then |
| Error_Msg_NE ("missing full declaration for }!", Body_Id, E); |
| |
| elsif Is_Overloadable (E) |
| and then Current_Entity_In_Scope (E) /= E |
| then |
| -- It may be that the completion is mistyped and appears as |
| -- a distinct overloading of the entity. |
| |
| declare |
| Candidate : constant Entity_Id := |
| Current_Entity_In_Scope (E); |
| Decl : constant Node_Id := |
| Unit_Declaration_Node (Candidate); |
| |
| begin |
| if Is_Overloadable (Candidate) |
| and then Ekind (Candidate) = Ekind (E) |
| and then Nkind (Decl) = N_Subprogram_Body |
| and then Acts_As_Spec (Decl) |
| then |
| Check_Type_Conformant (Candidate, E); |
| |
| else |
| Missing_Body; |
| end if; |
| end; |
| |
| else |
| Missing_Body; |
| end if; |
| end if; |
| end if; |
| end Post_Error; |
| |
| -- Local variables |
| |
| Pack_Id : constant Entity_Id := Current_Scope; |
| |
| -- Start of processing for Check_Completion |
| |
| begin |
| E := First_Entity (Pack_Id); |
| while Present (E) loop |
| if Is_Intrinsic_Subprogram (E) then |
| null; |
| |
| -- The following situation requires special handling: a child unit |
| -- that appears in the context clause of the body of its parent: |
| |
| -- procedure Parent.Child (...); |
| |
| -- with Parent.Child; |
| -- package body Parent is |
| |
| -- Here Parent.Child appears as a local entity, but should not be |
| -- flagged as requiring completion, because it is a compilation |
| -- unit. |
| |
| -- Ignore missing completion for a subprogram that does not come from |
| -- source (including the _Call primitive operation of RAS types, |
| -- which has to have the flag Comes_From_Source for other purposes): |
| -- we assume that the expander will provide the missing completion. |
| -- In case of previous errors, other expansion actions that provide |
| -- bodies for null procedures with not be invoked, so inhibit message |
| -- in those cases. |
| |
| -- Note that E_Operator is not in the list that follows, because |
| -- this kind is reserved for predefined operators, that are |
| -- intrinsic and do not need completion. |
| |
| elsif Ekind (E) in E_Function |
| | E_Procedure |
| | E_Generic_Function |
| | E_Generic_Procedure |
| then |
| if Has_Completion (E) then |
| null; |
| |
| elsif Is_Subprogram (E) and then Is_Abstract_Subprogram (E) then |
| null; |
| |
| elsif Is_Subprogram (E) |
| and then (not Comes_From_Source (E) |
| or else Chars (E) = Name_uCall) |
| then |
| null; |
| |
| elsif |
| Nkind (Parent (Unit_Declaration_Node (E))) = N_Compilation_Unit |
| then |
| null; |
| |
| elsif Nkind (Parent (E)) = N_Procedure_Specification |
| and then Null_Present (Parent (E)) |
| and then Serious_Errors_Detected > 0 |
| then |
| null; |
| |
| else |
| Post_Error; |
| end if; |
| |
| elsif Is_Entry (E) then |
| if not Has_Completion (E) |
| and then Ekind (Scope (E)) = E_Protected_Type |
| then |
| Post_Error; |
| end if; |
| |
| elsif Is_Package_Or_Generic_Package (E) then |
| if Unit_Requires_Body (E) then |
| if not Has_Completion (E) |
| and then Nkind (Parent (Unit_Declaration_Node (E))) /= |
| N_Compilation_Unit |
| then |
| Post_Error; |
| end if; |
| |
| elsif not Is_Child_Unit (E) then |
| May_Need_Implicit_Body (E); |
| end if; |
| |
| -- A formal incomplete type (Ada 2012) does not require a completion; |
| -- other incomplete type declarations do. |
| |
| elsif Ekind (E) = E_Incomplete_Type then |
| if No (Underlying_Type (E)) |
| and then not Is_Generic_Type (E) |
| then |
| Post_Error; |
| end if; |
| |
| elsif Ekind (E) in E_Task_Type | E_Protected_Type then |
| if not Has_Completion (E) then |
| Post_Error; |
| end if; |
| |
| -- A single task declared in the current scope is a constant, verify |
| -- that the body of its anonymous type is in the same scope. If the |
| -- task is defined elsewhere, this may be a renaming declaration for |
| -- which no completion is needed. |
| |
| elsif Ekind (E) = E_Constant then |
| if Ekind (Etype (E)) = E_Task_Type |
| and then not Has_Completion (Etype (E)) |
| and then Scope (Etype (E)) = Current_Scope |
| then |
| Post_Error; |
| end if; |
| |
| elsif Ekind (E) = E_Record_Type then |
| if Is_Tagged_Type (E) then |
| Check_Abstract_Overriding (E); |
| Check_Conventions (E); |
| end if; |
| |
| Check_Aliased_Component_Types (E); |
| |
| elsif Ekind (E) = E_Array_Type then |
| Check_Aliased_Component_Types (E); |
| |
| end if; |
| |
| Next_Entity (E); |
| end loop; |
| end Check_Completion; |
| |
| ------------------------------------- |
| -- Check_Constraining_Discriminant -- |
| ------------------------------------- |
| |
| procedure Check_Constraining_Discriminant (New_Disc, Old_Disc : Entity_Id) |
| is |
| New_Type : constant Entity_Id := Etype (New_Disc); |
| Old_Type : Entity_Id; |
| |
| begin |
| -- If the record type contains an array constrained by the discriminant |
| -- but with some different bound, the compiler tries to create a smaller |
| -- range for the discriminant type (see exp_ch3.Adjust_Discriminants). |
| -- In this case, where the discriminant type is a scalar type, the check |
| -- must use the original discriminant type in the parent declaration. |
| |
| if Is_Scalar_Type (New_Type) then |
| Old_Type := Entity (Discriminant_Type (Parent (Old_Disc))); |
| else |
| Old_Type := Etype (Old_Disc); |
| end if; |
| |
| if not Subtypes_Statically_Compatible (New_Type, Old_Type) then |
| Error_Msg_N |
| ("subtype must be statically compatible with parent discriminant", |
| New_Disc); |
| |
| if not Predicates_Compatible (New_Type, Old_Type) then |
| Error_Msg_N |
| ("\subtype predicate is not compatible with parent discriminant", |
| New_Disc); |
| end if; |
| end if; |
| end Check_Constraining_Discriminant; |
| |
| ------------------------------------ |
| -- Check_CPP_Type_Has_No_Defaults -- |
| ------------------------------------ |
| |
| procedure Check_CPP_Type_Has_No_Defaults (T : Entity_Id) is |
| Tdef : constant Node_Id := Type_Definition (Declaration_Node (T)); |
| Clist : Node_Id; |
| Comp : Node_Id; |
| |
| begin |
| -- Obtain the component list |
| |
| if Nkind (Tdef) = N_Record_Definition then |
| Clist := Component_List (Tdef); |
| else pragma Assert (Nkind (Tdef) = N_Derived_Type_Definition); |
| Clist := Component_List (Record_Extension_Part (Tdef)); |
| end if; |
| |
| -- Check all components to ensure no default expressions |
| |
| if Present (Clist) then |
| Comp := First (Component_Items (Clist)); |
| while Present (Comp) loop |
| if Present (Expression (Comp)) then |
| Error_Msg_N |
| ("component of imported 'C'P'P type cannot have " |
| & "default expression", Expression (Comp)); |
| end if; |
| |
| Next (Comp); |
| end loop; |
| end if; |
| end Check_CPP_Type_Has_No_Defaults; |
| |
| ---------------------------- |
| -- Check_Delta_Expression -- |
| ---------------------------- |
| |
| procedure Check_Delta_Expression (E : Node_Id) is |
| begin |
| if not (Is_Real_Type (Etype (E))) then |
| Wrong_Type (E, Any_Real); |
| |
| elsif not Is_OK_Static_Expression (E) then |
| Flag_Non_Static_Expr |
| ("non-static expression used for delta value!", E); |
| |
| elsif not UR_Is_Positive (Expr_Value_R (E)) then |
| Error_Msg_N ("delta expression must be positive", E); |
| |
| else |
| return; |
| end if; |
| |
| -- If any of above errors occurred, then replace the incorrect |
| -- expression by the real 0.1, which should prevent further errors. |
| |
| Rewrite (E, |
| Make_Real_Literal (Sloc (E), Ureal_Tenth)); |
| Analyze_And_Resolve (E, Standard_Float); |
| end Check_Delta_Expression; |
| |
| ----------------------------- |
| -- Check_Digits_Expression -- |
| ----------------------------- |
| |
| procedure Check_Digits_Expression (E : Node_Id) is |
| begin |
| if not (Is_Integer_Type (Etype (E))) then |
| Wrong_Type (E, Any_Integer); |
| |
| elsif not Is_OK_Static_Expression (E) then |
| Flag_Non_Static_Expr |
| ("non-static expression used for digits value!", E); |
| |
| elsif Expr_Value (E) <= 0 then |
| Error_Msg_N ("digits value must be greater than zero", E); |
| |
| else |
| return; |
| end if; |
| |
| -- If any of above errors occurred, then replace the incorrect |
| -- expression by the integer 1, which should prevent further errors. |
| |
| Rewrite (E, Make_Integer_Literal (Sloc (E), 1)); |
| Analyze_And_Resolve (E, Standard_Integer); |
| |
| end Check_Digits_Expression; |
| |
| -------------------------- |
| -- Check_Initialization -- |
| -------------------------- |
| |
| procedure Check_Initialization (T : Entity_Id; Exp : Node_Id) is |
| begin |
| -- Special processing for limited types |
| |
| if Is_Limited_Type (T) |
| and then not In_Instance |
| and then not In_Inlined_Body |
| then |
| if not OK_For_Limited_Init (T, Exp) then |
| |
| -- In GNAT mode, this is just a warning, to allow it to be evilly |
| -- turned off. Otherwise it is a real error. |
| |
| if GNAT_Mode then |
| Error_Msg_N |
| ("??cannot initialize entities of limited type!", Exp); |
| |
| elsif Ada_Version < Ada_2005 then |
| |
| -- The side effect removal machinery may generate illegal Ada |
| -- code to avoid the usage of access types and 'reference in |
| -- SPARK mode. Since this is legal code with respect to theorem |
| -- proving, do not emit the error. |
| |
| if GNATprove_Mode |
| and then Nkind (Exp) = N_Function_Call |
| and then Nkind (Parent (Exp)) = N_Object_Declaration |
| and then not Comes_From_Source |
| (Defining_Identifier (Parent (Exp))) |
| then |
| null; |
| |
| else |
| Error_Msg_N |
| ("cannot initialize entities of limited type", Exp); |
| Explain_Limited_Type (T, Exp); |
| end if; |
| |
| else |
| -- Specialize error message according to kind of illegal |
| -- initial expression. We check the Original_Node to cover |
| -- cases where the initialization expression of an object |
| -- declaration generated by the compiler has been rewritten |
| -- (such as for dispatching calls). |
| |
| if Nkind (Original_Node (Exp)) = N_Type_Conversion |
| and then |
| Nkind (Expression (Original_Node (Exp))) = N_Function_Call |
| then |
| -- No error for internally-generated object declarations, |
| -- which can come from build-in-place assignment statements. |
| |
| if Nkind (Parent (Exp)) = N_Object_Declaration |
| and then not Comes_From_Source |
| (Defining_Identifier (Parent (Exp))) |
| then |
| null; |
| |
| else |
| Error_Msg_N |
| ("illegal context for call to function with limited " |
| & "result", Exp); |
| end if; |
| |
| else |
| Error_Msg_N |
| ("initialization of limited object requires aggregate or " |
| & "function call", Exp); |
| end if; |
| end if; |
| end if; |
| end if; |
| |
| -- In gnatc or gnatprove mode, make sure set Do_Range_Check flag gets |
| -- set unless we can be sure that no range check is required. |
| |
| if not Expander_Active |
| and then Is_Scalar_Type (T) |
| and then not Is_In_Range (Exp, T, Assume_Valid => True) |
| then |
| Set_Do_Range_Check (Exp); |
| end if; |
| end Check_Initialization; |
| |
| ---------------------- |
| -- Check_Interfaces -- |
| ---------------------- |
| |
| procedure Check_Interfaces (N : Node_Id; Def : Node_Id) is |
| Parent_Type : constant Entity_Id := Etype (Defining_Identifier (N)); |
| |
| Iface : Node_Id; |
| Iface_Def : Node_Id; |
| Iface_Typ : Entity_Id; |
| Parent_Node : Node_Id; |
| |
| Is_Task : Boolean := False; |
| -- Set True if parent type or any progenitor is a task interface |
| |
| Is_Protected : Boolean := False; |
| -- Set True if parent type or any progenitor is a protected interface |
| |
| procedure Check_Ifaces (Iface_Def : Node_Id; Error_Node : Node_Id); |
| -- Check that a progenitor is compatible with declaration. If an error |
| -- message is output, it is posted on Error_Node. |
| |
| ------------------ |
| -- Check_Ifaces -- |
| ------------------ |
| |
| procedure Check_Ifaces (Iface_Def : Node_Id; Error_Node : Node_Id) is |
| Iface_Id : constant Entity_Id := |
| Defining_Identifier (Parent (Iface_Def)); |
| Type_Def : Node_Id; |
| |
| begin |
| if Nkind (N) = N_Private_Extension_Declaration then |
| Type_Def := N; |
| else |
| Type_Def := Type_Definition (N); |
| end if; |
| |
| if Is_Task_Interface (Iface_Id) then |
| Is_Task := True; |
| |
| elsif Is_Protected_Interface (Iface_Id) then |
| Is_Protected := True; |
| end if; |
| |
| if Is_Synchronized_Interface (Iface_Id) then |
| |
| -- A consequence of 3.9.4 (6/2) and 7.3 (7.2/2) is that a private |
| -- extension derived from a synchronized interface must explicitly |
| -- be declared synchronized, because the full view will be a |
| -- synchronized type. |
| |
| if Nkind (N) = N_Private_Extension_Declaration then |
| if not Synchronized_Present (N) then |
| Error_Msg_NE |
| ("private extension of& must be explicitly synchronized", |
| N, Iface_Id); |
| end if; |
| |
| -- However, by 3.9.4(16/2), a full type that is a record extension |
| -- is never allowed to derive from a synchronized interface (note |
| -- that interfaces must be excluded from this check, because those |
| -- are represented by derived type definitions in some cases). |
| |
| elsif Nkind (Type_Definition (N)) = N_Derived_Type_Definition |
| and then not Interface_Present (Type_Definition (N)) |
| then |
| Error_Msg_N ("record extension cannot derive from synchronized " |
| & "interface", Error_Node); |
| end if; |
| end if; |
| |
| -- Check that the characteristics of the progenitor are compatible |
| -- with the explicit qualifier in the declaration. |
| -- The check only applies to qualifiers that come from source. |
| -- Limited_Present also appears in the declaration of corresponding |
| -- records, and the check does not apply to them. |
| |
| if Limited_Present (Type_Def) |
| and then not |
| Is_Concurrent_Record_Type (Defining_Identifier (N)) |
| then |
| if Is_Limited_Interface (Parent_Type) |
| and then not Is_Limited_Interface (Iface_Id) |
| then |
| Error_Msg_NE |
| ("progenitor & must be limited interface", |
| Error_Node, Iface_Id); |
| |
| elsif |
| (Task_Present (Iface_Def) |
| or else Protected_Present (Iface_Def) |
| or else Synchronized_Present (Iface_Def)) |
| and then Nkind (N) /= N_Private_Extension_Declaration |
| and then not Error_Posted (N) |
| then |
| Error_Msg_NE |
| ("progenitor & must be limited interface", |
| Error_Node, Iface_Id); |
| end if; |
| |
| -- Protected interfaces can only inherit from limited, synchronized |
| -- or protected interfaces. |
| |
| elsif Nkind (N) = N_Full_Type_Declaration |
| and then Protected_Present (Type_Def) |
| then |
| if Limited_Present (Iface_Def) |
| or else Synchronized_Present (Iface_Def) |
| or else Protected_Present (Iface_Def) |
| then |
| null; |
| |
| elsif Task_Present (Iface_Def) then |
| Error_Msg_N ("(Ada 2005) protected interface cannot inherit " |
| & "from task interface", Error_Node); |
| |
| else |
| Error_Msg_N ("(Ada 2005) protected interface cannot inherit " |
| & "from non-limited interface", Error_Node); |
| end if; |
| |
| -- Ada 2005 (AI-345): Synchronized interfaces can only inherit from |
| -- limited and synchronized. |
| |
| elsif Synchronized_Present (Type_Def) then |
| if Limited_Present (Iface_Def) |
| or else Synchronized_Present (Iface_Def) |
| then |
| null; |
| |
| elsif Protected_Present (Iface_Def) |
| and then Nkind (N) /= N_Private_Extension_Declaration |
| then |
| Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit " |
| & "from protected interface", Error_Node); |
| |
| elsif Task_Present (Iface_Def) |
| and then Nkind (N) /= N_Private_Extension_Declaration |
| then |
| Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit " |
| & "from task interface", Error_Node); |
| |
| elsif not Is_Limited_Interface (Iface_Id) then |
| Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit " |
| & "from non-limited interface", Error_Node); |
| end if; |
| |
| -- Ada 2005 (AI-345): Task interfaces can only inherit from limited, |
| -- synchronized or task interfaces. |
| |
| elsif Nkind (N) = N_Full_Type_Declaration |
| and then Task_Present (Type_Def) |
| then |
| if Limited_Present (Iface_Def) |
| or else Synchronized_Present (Iface_Def) |
| or else Task_Present (Iface_Def) |
| then |
| null; |
| |
| elsif Protected_Present (Iface_Def) then |
| Error_Msg_N ("(Ada 2005) task interface cannot inherit from " |
| & "protected interface", Error_Node); |
| |
| else |
| Error_Msg_N ("(Ada 2005) task interface cannot inherit from " |
| & "non-limited interface", Error_Node); |
| end if; |
| end if; |
| end Check_Ifaces; |
| |
| -- Start of processing for Check_Interfaces |
| |
| begin |
| if Is_Interface (Parent_Type) then |
| if Is_Task_Interface (Parent_Type) then |
| Is_Task := True; |
| |
| elsif Is_Protected_Interface (Parent_Type) then |
| Is_Protected := True; |
| end if; |
| end if; |
| |
| if Nkind (N) = N_Private_Extension_Declaration then |
| |
| -- Check that progenitors are compatible with declaration |
| |
| Iface := First (Interface_List (Def)); |
| while Present (Iface) loop |
| Iface_Typ := Find_Type_Of_Subtype_Indic (Iface); |
| |
| Parent_Node := Parent (Base_Type (Iface_Typ)); |
| Iface_Def := Type_Definition (Parent_Node); |
| |
| if not Is_Interface (Iface_Typ) then |
| Diagnose_Interface (Iface, Iface_Typ); |
| else |
| Check_Ifaces (Iface_Def, Iface); |
| end if; |
| |
| Next (Iface); |
| end loop; |
| |
| if Is_Task and Is_Protected then |
| Error_Msg_N |
| ("type cannot derive from task and protected interface", N); |
| end if; |
| |
| return; |
| end if; |
| |
| -- Full type declaration of derived type. |
| -- Check compatibility with parent if it is interface type |
| |
| if Nkind (Type_Definition (N)) = N_Derived_Type_Definition |
| and then Is_Interface (Parent_Type) |
| then |
| Parent_Node := Parent (Parent_Type); |
| |
| -- More detailed checks for interface varieties |
| |
| Check_Ifaces |
| (Iface_Def => Type_Definition (Parent_Node), |
| Error_Node => Subtype_Indication (Type_Definition (N))); |
| end if; |
| |
| Iface := First (Interface_List (Def)); |
| while Present (Iface) loop |
| Iface_Typ := Find_Type_Of_Subtype_Indic (Iface); |
| |
| Parent_Node := Parent (Base_Type (Iface_Typ)); |
| Iface_Def := Type_Definition (Parent_Node); |
| |
| if not Is_Interface (Iface_Typ) then |
| Diagnose_Interface (Iface, Iface_Typ); |
| |
| else |
| -- "The declaration of a specific descendant of an interface |
| -- type freezes the interface type" RM 13.14 |
| |
| Freeze_Before (N, Iface_Typ); |
| Check_Ifaces (Iface_Def, Error_Node => Iface); |
| end if; |
| |
| Next (Iface); |
| end loop; |
| |
| if Is_Task and Is_Protected then |
| Error_Msg_N |
| ("type cannot derive from task and protected interface", N); |
| end if; |
| end Check_Interfaces; |
| |
| ------------------------------------ |
| -- Check_Or_Process_Discriminants -- |
| ------------------------------------ |
| |
| -- If an incomplete or private type declaration was already given for the |
| -- type, the discriminants may have already been processed if they were |
| -- present on the incomplete declaration. In this case a full conformance |
| -- check has been performed in Find_Type_Name, and we then recheck here |
| -- some properties that can't be checked on the partial view alone. |
| -- Otherwise we call Process_Discriminants. |
| |
| procedure Check_Or_Process_Discriminants |
| (N : Node_Id; |
| T : Entity_Id; |
| Prev : Entity_Id := Empty) |
| is |
| begin |
| if Has_Discriminants (T) then |
| |
| -- Discriminants are already set on T if they were already present |
| -- on the partial view. Make them visible to component declarations. |
| |
| declare |
| D : Entity_Id; |
| -- Discriminant on T (full view) referencing expr on partial view |
| |
| Prev_D : Entity_Id; |
| -- Entity of corresponding discriminant on partial view |
| |
| New_D : Node_Id; |
| -- Discriminant specification for full view, expression is |
| -- the syntactic copy on full view (which has been checked for |
| -- conformance with partial view), only used here to post error |
| -- message. |
| |
| begin |
| D := First_Discriminant (T); |
| New_D := First (Discriminant_Specifications (N)); |
| while Present (D) loop |
| Prev_D := Current_Entity (D); |
| Set_Current_Entity (D); |
| Set_Is_Immediately_Visible (D); |
| Set_Homonym (D, Prev_D); |
| |
| -- Handle the case where there is an untagged partial view and |
| -- the full view is tagged: must disallow discriminants with |
| -- defaults, unless compiling for Ada 2012, which allows a |
| -- limited tagged type to have defaulted discriminants (see |
| -- AI05-0214). However, suppress error here if it was already |
| -- reported on the default expression of the partial view. |
| |
| if Is_Tagged_Type (T) |
| and then Present (Expression (Parent (D))) |
| and then (not Is_Limited_Type (Current_Scope) |
| or else Ada_Version < Ada_2012) |
| and then not Error_Posted (Expression (Parent (D))) |
| then |
| if Ada_Version >= Ada_2012 then |
| Error_Msg_N |
| ("discriminants of nonlimited tagged type cannot have " |
| & "defaults", |
| Expression (New_D)); |
| else |
| Error_Msg_N |
| ("discriminants of tagged type cannot have defaults", |
| Expression (New_D)); |
| end if; |
| end if; |
| |
| -- Ada 2005 (AI-230): Access discriminant allowed in |
| -- non-limited record types. |
| |
| if Ada_Version < Ada_2005 then |
| |
| -- This restriction gets applied to the full type here. It |
| -- has already been applied earlier to the partial view. |
| |
| Check_Access_Discriminant_Requires_Limited (Parent (D), N); |
| end if; |
| |
| Next_Discriminant (D); |
| Next (New_D); |
| end loop; |
| end; |
| |
| elsif Present (Discriminant_Specifications (N)) then |
| Process_Discriminants (N, Prev); |
| end if; |
| end Check_Or_Process_Discriminants; |
| |
| ---------------------- |
| -- Check_Real_Bound -- |
| ---------------------- |
| |
| procedure Check_Real_Bound (Bound : Node_Id) is |
| begin |
| if not Is_Real_Type (Etype (Bound)) then |
| Error_Msg_N |
| ("bound in real type definition must be of real type", Bound); |
| |
| elsif not Is_OK_Static_Expression (Bound) then |
| Flag_Non_Static_Expr |
| ("non-static expression used for real type bound!", Bound); |
| |
| else |
| return; |
| end if; |
| |
| Rewrite |
| (Bound, Make_Real_Literal (Sloc (Bound), Ureal_0)); |
| Analyze (Bound); |
| Resolve (Bound, Standard_Float); |
| end Check_Real_Bound; |
| |
| ------------------------------ |
| -- Complete_Private_Subtype -- |
| ------------------------------ |
| |
| procedure Complete_Private_Subtype |
| (Priv : Entity_Id; |
| Full : Entity_Id; |
| Full_Base : Entity_Id; |
| Related_Nod : Node_Id) |
| is |
| Save_Next_Entity : Entity_Id; |
| Save_Homonym : Entity_Id; |
| |
| begin |
| -- Set semantic attributes for (implicit) private subtype completion. |
| -- If the full type has no discriminants, then it is a copy of the |
| -- full view of the base. Otherwise, it is a subtype of the base with |
| -- a possible discriminant constraint. Save and restore the original |
| -- Next_Entity field of full to ensure that the calls to Copy_Node do |
| -- not corrupt the entity chain. |
| |
| Save_Next_Entity := Next_Entity (Full); |
| Save_Homonym := Homonym (Priv); |
| |
| if Is_Private_Type (Full_Base) |
| or else Is_Record_Type (Full_Base) |
| or else Is_Concurrent_Type (Full_Base) |
| then |
| Copy_Node (Priv, Full); |
| |
| -- Note that the Etype of the full view is the same as the Etype of |
| -- the partial view. In this fashion, the subtype has access to the |
| -- correct view of the parent. |
| |
| Set_Has_Discriminants (Full, Has_Discriminants (Full_Base)); |
| Set_Has_Unknown_Discriminants |
| (Full, Has_Unknown_Discriminants (Full_Base)); |
| Set_First_Entity (Full, First_Entity (Full_Base)); |
| Set_Last_Entity (Full, Last_Entity (Full_Base)); |
| |
| -- If the underlying base type is constrained, we know that the |
| -- full view of the subtype is constrained as well (the converse |
| -- is not necessarily true). |
| |
| if Is_Constrained (Full_Base) then |
| Set_Is_Constrained (Full); |
| end if; |
| |
| else |
| Copy_Node (Full_Base, Full); |
| |
| -- The following subtlety with the Etype of the full view needs to be |
| -- taken into account here. One could think that it must naturally be |
| -- set to the base type of the full base: |
| |
| -- Set_Etype (Full, Base_Type (Full_Base)); |
| |
| -- so that the full view becomes a subtype of the full base when the |
| -- latter is a base type, which must for example happen when the full |
| -- base is declared as derived type. That's also correct if the full |
| -- base is declared as an array type, or a floating-point type, or a |
| -- fixed-point type, or a signed integer type, as these declarations |
| -- create an implicit base type and a first subtype so the Etype of |
| -- the full views must be the implicit base type. But that's wrong |
| -- if the full base is declared as an access type, or an enumeration |
| -- type, or a modular integer type, as these declarations directly |
| -- create a base type, i.e. with Etype pointing to itself. Moreover |
| -- the full base being declared in the private part, i.e. when the |
| -- views are swapped, the end result is that the Etype of the full |
| -- base is set to its private view in this case and that we need to |
| -- propagate this setting to the full view in order for the subtype |
| -- to be compatible with the base type. |
| |
| if Is_Base_Type (Full_Base) |
| and then (Is_Derived_Type (Full_Base) |
| or else Ekind (Full_Base) in Array_Kind |
| or else Ekind (Full_Base) in Fixed_Point_Kind |
| or else Ekind (Full_Base) in Float_Kind |
| or else Ekind (Full_Base) in Signed_Integer_Kind) |
| then |
| Set_Etype (Full, Full_Base); |
| end if; |
| |
| Set_Chars (Full, Chars (Priv)); |
| Set_Sloc (Full, Sloc (Priv)); |
| Conditional_Delay (Full, Priv); |
| end if; |
| |
| Link_Entities (Full, Save_Next_Entity); |
| Set_Homonym (Full, Save_Homonym); |
| Set_Associated_Node_For_Itype (Full, Related_Nod); |
| |
| if Ekind (Full) in Incomplete_Or_Private_Kind then |
| Reinit_Field_To_Zero (Full, F_Private_Dependents); |
| end if; |
| |
| -- Set common attributes for all subtypes: kind, convention, etc. |
| |
| Mutate_Ekind (Full, Subtype_Kind (Ekind (Full_Base))); |
| Set_Convention (Full, Convention (Full_Base)); |
| Set_Is_First_Subtype (Full, False); |
| Set_Scope (Full, Scope (Priv)); |
| Set_Size_Info (Full, Full_Base); |
| Copy_RM_Size (To => Full, From => Full_Base); |
| Set_Is_Itype (Full); |
| |
| -- A subtype of a private-type-without-discriminants, whose full-view |
| -- has discriminants with default expressions, is not constrained. |
| |
| if not Has_Discriminants (Priv) then |
| Set_Is_Constrained (Full, Is_Constrained (Full_Base)); |
| |
| if Has_Discriminants (Full_Base) then |
| Set_Discriminant_Constraint |
| (Full, Discriminant_Constraint (Full_Base)); |
| |
| -- The partial view may have been indefinite, the full view |
| -- might not be. |
| |
| Set_Has_Unknown_Discriminants |
| (Full, Has_Unknown_Discriminants (Full_Base)); |
| end if; |
| end if; |
| |
| Set_First_Rep_Item (Full, First_Rep_Item (Full_Base)); |
| Set_Depends_On_Private (Full, Has_Private_Component (Full)); |
| |
| -- Freeze the private subtype entity if its parent is delayed, and not |
| -- already frozen. We skip this processing if the type is an anonymous |
| -- subtype of a record component, or is the corresponding record of a |
| -- protected type, since these are processed when the enclosing type |
| -- is frozen. If the parent type is declared in a nested package then |
| -- the freezing of the private and full views also happens later. |
| |
| if not Is_Type (Scope (Full)) then |
| if Is_Itype (Priv) |
| and then In_Same_Source_Unit (Full, Full_Base) |
| and then Scope (Full_Base) /= Scope (Full) |
| then |
| Set_Has_Delayed_Freeze (Full); |
| Set_Has_Delayed_Freeze (Priv); |
| |
| else |
| Set_Has_Delayed_Freeze (Full, |
| Has_Delayed_Freeze (Full_Base) |
| and then not Is_Frozen (Full_Base)); |
| end if; |
| end if; |
| |
| Set_Freeze_Node (Full, Empty); |
| Set_Is_Frozen (Full, False); |
| |
| if Has_Discriminants (Full) then |
| Set_Stored_Constraint_From_Discriminant_Constraint (Full); |
| Set_Stored_Constraint (Priv, Stored_Constraint (Full)); |
| |
| if Has_Unknown_Discriminants (Full) then |
| Set_Discriminant_Constraint (Full, No_Elist); |
| end if; |
| end if; |
| |
| if Ekind (Full_Base) = E_Record_Type |
| and then Has_Discriminants (Full_Base) |
| and then Has_Discriminants (Priv) -- might not, if errors |
| and then not Has_Unknown_Discriminants (Priv) |
| and then not Is_Empty_Elmt_List (Discriminant_Constraint (Priv)) |
| then |
| Create_Constrained_Components |
| (Full, Related_Nod, Full_Base, Discriminant_Constraint (Priv)); |
| |
| -- If the full base is itself derived from private, build a congruent |
| -- subtype of its underlying full view, for use by the back end. |
| |
| elsif Is_Private_Type (Full_Base) |
| and then Present (Underlying_Full_View (Full_Base)) |
| then |
| declare |
| Underlying_Full_Base : constant Entity_Id |
| := Underlying_Full_View (Full_Base); |
| Underlying_Full : constant Entity_Id |
| := Make_Defining_Identifier (Sloc (Priv), Chars (Priv)); |
| begin |
| Set_Is_Itype (Underlying_Full); |
| Set_Associated_Node_For_Itype (Underlying_Full, Related_Nod); |
| Complete_Private_Subtype |
| (Priv, Underlying_Full, Underlying_Full_Base, Related_Nod); |
| Set_Underlying_Full_View (Full, Underlying_Full); |
| Set_Is_Underlying_Full_View (Underlying_Full); |
| end; |
| |
| elsif Is_Record_Type (Full_Base) then |
| |
| -- Show Full is simply a renaming of Full_Base |
| |
| Set_Cloned_Subtype (Full, Full_Base); |
| Set_Is_Limited_Record (Full, Is_Limited_Record (Full_Base)); |
| |
| -- Propagate predicates |
| |
| Propagate_Predicate_Attributes (Full, Full_Base); |
| end if; |
| |
| -- It is unsafe to share the bounds of a scalar type, because the Itype |
| -- is elaborated on demand, and if a bound is nonstatic, then different |
| -- orders of elaboration in different units will lead to different |
| -- external symbols. |
| |
| if Is_Scalar_Type (Full_Base) then |
| Set_Scalar_Range (Full, |
| Make_Range (Sloc (Related_Nod), |
| Low_Bound => |
| Duplicate_Subexpr_No_Checks (Type_Low_Bound (Full_Base)), |
| High_Bound => |
| Duplicate_Subexpr_No_Checks (Type_High_Bound (Full_Base)))); |
| |
| -- This completion inherits the bounds of the full parent, but if |
| -- the parent is an unconstrained floating point type, so is the |
| -- completion. |
| |
| if Is_Floating_Point_Type (Full_Base) then |
| Set_Includes_Infinities |
| (Scalar_Range (Full), Has_Infinities (Full_Base)); |
| end if; |
| end if; |
| |
| -- ??? It seems that a lot of fields are missing that should be copied |
| -- from Full_Base to Full. Here are some that are introduced in a |
| -- non-disruptive way but a cleanup is necessary. |
| |
| if Is_Tagged_Type (Full_Base) then |
| Set_Is_Tagged_Type (Full); |
| Set_Is_Limited_Record (Full, Is_Limited_Record (Full_Base)); |
| |
| Set_Direct_Primitive_Operations |
| (Full, Direct_Primitive_Operations (Full_Base)); |
| Set_No_Tagged_Streams_Pragma |
| (Full, No_Tagged_Streams_Pragma (Full_Base)); |
| |
| if Is_Interface (Full_Base) then |
| Set_Is_Interface (Full); |
| Set_Is_Limited_Interface (Full, Is_Limited_Interface (Full_Base)); |
| end if; |
| |
| -- Inherit class_wide type of full_base in case the partial view was |
| -- not tagged. Otherwise it has already been created when the private |
| -- subtype was analyzed. |
| |
| if No (Class_Wide_Type (Full)) then |
| Set_Class_Wide_Type (Full, Class_Wide_Type (Full_Base)); |
| end if; |
| |
| -- If this is a subtype of a protected or task type, constrain its |
| -- corresponding record, unless this is a subtype without constraints, |
| -- i.e. a simple renaming as with an actual subtype in an instance. |
| |
| elsif Is_Concurrent_Type (Full_Base) then |
| if Has_Discriminants (Full) |
| and then Present (Corresponding_Record_Type (Full_Base)) |
| and then |
| not Is_Empty_Elmt_List (Discriminant_Constraint (Full)) |
| then |
| Set_Corresponding_Record_Type (Full, |
| Constrain_Corresponding_Record |
| (Full, Corresponding_Record_Type (Full_Base), Related_Nod)); |
| |
| else |
| Set_Corresponding_Record_Type (Full, |
| Corresponding_Record_Type (Full_Base)); |
| end if; |
| end if; |
| |
| -- Link rep item chain, and also setting of Has_Predicates from private |
| -- subtype to full subtype, since we will need these on the full subtype |
| -- to create the predicate function. Note that the full subtype may |
| -- already have rep items, inherited from the full view of the base |
| -- type, so we must be sure not to overwrite these entries. |
| |
| declare |
| Append : Boolean; |
| Item : Node_Id; |
| Next_Item : Node_Id; |
| Priv_Item : Node_Id; |
| |
| begin |
| Item := First_Rep_Item (Full); |
| Priv_Item := First_Rep_Item (Priv); |
| |
| -- If no existing rep items on full type, we can just link directly |
| -- to the list of items on the private type, if any exist.. Same if |
| -- the rep items are only those inherited from the base |
| |
| if (No (Item) |
| or else Nkind (Item) /= N_Aspect_Specification |
| or else Entity (Item) = Full_Base) |
| and then Present (First_Rep_Item (Priv)) |
| then |
| Set_First_Rep_Item (Full, Priv_Item); |
| |
| -- Otherwise, search to the end of items currently linked to the full |
| -- subtype and append the private items to the end. However, if Priv |
| -- and Full already have the same list of rep items, then the append |
| -- is not done, as that would create a circularity. |
| -- |
| -- The partial view may have a predicate and the rep item lists of |
| -- both views agree when inherited from the same ancestor. In that |
| -- case, simply propagate the list from one view to the other. |
| -- A more complex analysis needed here ??? |
| |
| elsif Present (Priv_Item) |
| and then Item = Next_Rep_Item (Priv_Item) |
| then |
| Set_First_Rep_Item (Full, Priv_Item); |
| |
| elsif Item /= Priv_Item then |
| Append := True; |
| loop |
| Next_Item := Next_Rep_Item (Item); |
| exit when No (Next_Item); |
| Item := Next_Item; |
| |
| -- If the private view has aspect specifications, the full view |
| -- inherits them. Since these aspects may already have been |
| -- attached to the full view during derivation, do not append |
| -- them if already present. |
| |
| if Item = First_Rep_Item (Priv) then |
| Append := False; |
| exit; |
| end if; |
| end loop; |
| |
| -- And link the private type items at the end of the chain |
| |
| if Append then |
| Set_Next_Rep_Item (Item, First_Rep_Item (Priv)); |
| end if; |
| end if; |
| end; |
| |
| -- Make sure Has_Predicates is set on full type if it is set on the |
| -- private type. Note that it may already be set on the full type and |
| -- if so, we don't want to unset it. Similarly, propagate information |
| -- about delayed aspects, because the corresponding pragmas must be |
| -- analyzed when one of the views is frozen. This last step is needed |
| -- in particular when the full type is a scalar type for which an |
| -- anonymous base type is constructed. |
| |
| -- The predicate functions are generated either at the freeze point |
| -- of the type or at the end of the visible part, and we must avoid |
| -- generating them twice. |
| |
| Propagate_Predicate_Attributes (Full, Priv); |
| |
| if Has_Delayed_Aspects (Priv) then |
| Set_Has_Delayed_Aspects (Full); |
| end if; |
| end Complete_Private_Subtype; |
| |
| ---------------------------- |
| -- Constant_Redeclaration -- |
| ---------------------------- |
| |
| procedure Constant_Redeclaration |
| (Id : Entity_Id; |
| N : Node_Id; |
| T : out Entity_Id) |
| is |
| Prev : constant Entity_Id := Current_Entity_In_Scope (Id); |
| Obj_Def : constant Node_Id := Object_Definition (N); |
| New_T : Entity_Id; |
| |
| procedure Check_Possible_Deferred_Completion |
| (Prev_Id : Entity_Id; |
| Curr_Obj_Def : Node_Id); |
| -- Determine whether the two object definitions describe the partial |
| -- and the full view of a constrained deferred constant. Generate |
| -- a subtype for the full view and verify that it statically matches |
| -- the subtype of the partial view. |
| |
| procedure Check_Recursive_Declaration (Typ : Entity_Id); |
| -- If deferred constant is an access type initialized with an allocator, |
| -- check whether there is an illegal recursion in the definition, |
| -- through a default value of some record subcomponent. This is normally |
| -- detected when generating init procs, but requires this additional |
| -- mechanism when expansion is disabled. |
| |
| ---------------------------------------- |
| -- Check_Possible_Deferred_Completion -- |
| ---------------------------------------- |
| |
| procedure Check_Possible_Deferred_Completion |
| (Prev_Id : Entity_Id; |
| Curr_Obj_Def : Node_Id) |
| is |
| Curr_Typ : Entity_Id; |
| Prev_Typ : constant Entity_Id := Etype (Prev_Id); |
| Anon_Acc : constant Boolean := Is_Anonymous_Access_Type (Prev_Typ); |
| Mismatch : Boolean := False; |
| begin |
| if Anon_Acc then |
| null; |
| elsif Nkind (Curr_Obj_Def) = N_Subtype_Indication then |
| declare |
| Loc : constant Source_Ptr := Sloc (N); |
| Def_Id : constant Entity_Id := Make_Temporary (Loc, 'S'); |
| Decl : constant Node_Id := |
| Make_Subtype_Declaration (Loc, |
| Defining_Identifier => Def_Id, |
| Subtype_Indication => |
| Relocate_Node (Curr_Obj_Def)); |
| |
| begin |
| Insert_Before_And_Analyze (N, Decl); |
| Set_Etype (Id, Def_Id); |
| Curr_Typ := Def_Id; |
| end; |
| else |
| Curr_Typ := Etype (Curr_Obj_Def); |
| end if; |
| |
| if Anon_Acc then |
| if Nkind (Curr_Obj_Def) /= N_Access_Definition then |
| Mismatch := True; |
| elsif Has_Null_Exclusion (Prev_Typ) |
| and then not Null_Exclusion_Present (Curr_Obj_Def) |
| then |
| Mismatch := True; |
| end if; |
| -- ??? Another check needed: mismatch if disagreement |
| -- between designated types/profiles . |
| else |
| Mismatch := |
| Is_Constrained (Prev_Typ) |
| and then not Subtypes_Statically_Match (Prev_Typ, Curr_Typ); |
| end if; |
| |
| if Mismatch then |
| Error_Msg_Sloc := Sloc (Prev_Id); |
| Error_Msg_N ("subtype does not statically match deferred " |
| & "declaration #", N); |
| end if; |
| end Check_Possible_Deferred_Completion; |
| |
| --------------------------------- |
| -- Check_Recursive_Declaration -- |
| --------------------------------- |
| |
| procedure Check_Recursive_Declaration (Typ : Entity_Id) is |
| Comp : Entity_Id; |
| |
| begin |
| if Is_Record_Type (Typ) then |
| Comp := First_Component (Typ); |
| while Present (Comp) loop |
| if Comes_From_Source (Comp) then |
| if Present (Expression (Parent (Comp))) |
| and then Is_Entity_Name (Expression (Parent (Comp))) |
| and then Entity (Expression (Parent (Comp))) = Prev |
| then |
| Error_Msg_Sloc := Sloc (Parent (Comp)); |
| Error_Msg_NE |
| ("illegal circularity with declaration for & #", |
| N, Comp); |
| return; |
| |
| elsif Is_Record_Type (Etype (Comp)) then |
| Check_Recursive_Declaration (Etype (Comp)); |
| end if; |
| end if; |
| |
| Next_Component (Comp); |
| end loop; |
| end if; |
| end Check_Recursive_Declaration; |
| |
| -- Start of processing for Constant_Redeclaration |
| |
| begin |
| if Nkind (Parent (Prev)) = N_Object_Declaration then |
| if Nkind (Object_Definition |
| (Parent (Prev))) = N_Subtype_Indication |
| then |
| -- Find type of new declaration. The constraints of the two |
| -- views must match statically, but there is no point in |
| -- creating an itype for the full view. |
| |
| if Nkind (Obj_Def) = N_Subtype_Indication then |
| Find_Type (Subtype_Mark (Obj_Def)); |
| New_T := Entity (Subtype_Mark (Obj_Def)); |
| |
| else |
| Find_Type (Obj_Def); |
| New_T := Entity (Obj_Def); |
| end if; |
| |
| T := Etype (Prev); |
| |
| else |
| -- The full view may impose a constraint, even if the partial |
| -- view does not, so construct the subtype. |
| |
| New_T := Find_Type_Of_Object (Obj_Def, N); |
| T := New_T; |
| end if; |
| |
| else |
| -- Current declaration is illegal, diagnosed below in Enter_Name |
| |
| T := Empty; |
| New_T := Any_Type; |
| end if; |
| |
| -- If previous full declaration or a renaming declaration exists, or if |
| -- a homograph is present, let Enter_Name handle it, either with an |
| -- error or with the removal of an overridden implicit subprogram. |
| -- The previous one is a full declaration if it has an expression |
| -- (which in the case of an aggregate is indicated by the Init flag). |
| |
| if Ekind (Prev) /= E_Constant |
| or else Nkind (Parent (Prev)) = N_Object_Renaming_Declaration |
| or else Present (Expression (Parent (Prev))) |
| or else Has_Init_Expression (Parent (Prev)) |
| or else Present (Full_View (Prev)) |
| then |
| Enter_Name (Id); |
| |
| -- Verify that types of both declarations match, or else that both types |
| -- are anonymous access types whose designated subtypes statically match |
| -- (as allowed in Ada 2005 by AI-385). |
| |
| elsif Base_Type (Etype (Prev)) /= Base_Type (New_T) |
| and then |
| (Ekind (Etype (Prev)) /= E_Anonymous_Access_Type |
| or else Ekind (Etype (New_T)) /= E_Anonymous_Access_Type |
| or else Is_Access_Constant (Etype (New_T)) /= |
| Is_Access_Constant (Etype (Prev)) |
| or else Can_Never_Be_Null (Etype (New_T)) /= |
| Can_Never_Be_Null (Etype (Prev)) |
| or else Null_Exclusion_Present (Parent (Prev)) /= |
| Null_Exclusion_Present (Parent (Id)) |
| or else not Subtypes_Statically_Match |
| (Designated_Type (Etype (Prev)), |
| Designated_Type (Etype (New_T)))) |
| then |
| Error_Msg_Sloc := Sloc (Prev); |
| Error_Msg_N ("type does not match declaration#", N); |
| Set_Full_View (Prev, Id); |
| Set_Etype (Id, Any_Type); |
| |
| -- A deferred constant whose type is an anonymous array is always |
| -- illegal (unless imported). A detailed error message might be |
| -- helpful for Ada beginners. |
| |
| if Nkind (Object_Definition (Parent (Prev))) |
| = N_Constrained_Array_Definition |
| and then Nkind (Object_Definition (N)) |
| = N_Constrained_Array_Definition |
| then |
| Error_Msg_N ("\each anonymous array is a distinct type", N); |
| Error_Msg_N ("a deferred constant must have a named type", |
| Object_Definition (Parent (Prev))); |
| end if; |
| |
| elsif |
| Null_Exclusion_Present (Parent (Prev)) |
| and then not Null_Exclusion_Present (N) |
| then |
| Error_Msg_Sloc := Sloc (Prev); |
| Error_Msg_N ("null-exclusion does not match declaration#", N); |
| Set_Full_View (Prev, Id); |
| Set_Etype (Id, Any_Type); |
| |
| -- If so, process the full constant declaration |
| |
| else |
| -- RM 7.4 (6): If the subtype defined by the subtype_indication in |
| -- the deferred declaration is constrained, then the subtype defined |
| -- by the subtype_indication in the full declaration shall match it |
| -- statically. |
| |
| Check_Possible_Deferred_Completion |
| (Prev_Id => Prev, |
| Curr_Obj_Def => Obj_Def); |
| |
| Set_Full_View (Prev, Id); |
| Set_Is_Public (Id, Is_Public (Prev)); |
| Set_Is_Internal (Id); |
| Append_Entity (Id, Current_Scope); |
| |
| -- Check ALIASED present if present before (RM 7.4(7)) |
| |
| if Is_Aliased (Prev) |
| and then not Aliased_Present (N) |
| then |
| Error_Msg_Sloc := Sloc (Prev); |
| Error_Msg_N ("ALIASED required (see declaration #)", N); |
| end if; |
| |
| -- Check that placement is in private part and that the incomplete |
| -- declaration appeared in the visible part. |
| |
| if Ekind (Current_Scope) = E_Package |
| and then not In_Private_Part (Current_Scope) |
| then |
| Error_Msg_Sloc := Sloc (Prev); |
| Error_Msg_N |
| ("full constant for declaration # must be in private part", N); |
| |
| elsif Ekind (Current_Scope) = E_Package |
| and then |
| List_Containing (Parent (Prev)) /= |
| Visible_Declarations (Package_Specification (Current_Scope)) |
| then |
| Error_Msg_N |
| ("deferred constant must be declared in visible part", |
| Parent (Prev)); |
| end if; |
| |
| if Is_Access_Type (T) |
| and then Nkind (Expression (N)) = N_Allocator |
| then |
| Check_Recursive_Declaration (Designated_Type (T)); |
| end if; |
| |
| -- A deferred constant is a visible entity. If type has invariants, |
| -- verify that the initial value satisfies them. This is not done in |
| -- GNATprove mode, as GNATprove handles invariant checks itself. |
| |
| if Has_Invariants (T) |
| and then Present (Invariant_Procedure (T)) |
| and then not GNATprove_Mode |
| then |
| Insert_After (N, |
| Make_Invariant_Call (New_Occurrence_Of (Prev, Sloc (N)))); |
| end if; |
| end if; |
| end Constant_Redeclaration; |
| |
| ---------------------- |
| -- Constrain_Access -- |
| ---------------------- |
| |
| procedure Constrain_Access |
| (Def_Id : in out Entity_Id; |
| S : Node_Id; |
| Related_Nod : Node_Id) |
| is |
| T : constant Entity_Id := Entity (Subtype_Mark (S)); |
| Desig_Type : constant Entity_Id := Designated_Type (T); |
| Desig_Subtype : Entity_Id; |
| Constraint_OK : Boolean := True; |
| |
| begin |
| if Is_Array_Type (Desig_Type) then |
| Desig_Subtype := Create_Itype (E_Void, Related_Nod); |
| Constrain_Array (Desig_Subtype, S, Related_Nod, Def_Id, 'P'); |
| |
| elsif (Is_Record_Type (Desig_Type) |
| or else Is_Incomplete_Or_Private_Type (Desig_Type)) |
| and then not Is_Constrained (Desig_Type) |
| then |
| -- If this is a constrained access definition for a record |
| -- component, we leave the type as an unconstrained access, |
| -- and mark the component so that its actual type is built |
| -- at a point of use (e.g., an assignment statement). This |
| -- is handled in Sem_Util.Build_Actual_Subtype_Of_Component. |
| |
| if Desig_Type = Current_Scope |
| and then No (Def_Id) |
| then |
| Desig_Subtype := |
| Create_Itype |
| (E_Void, Related_Nod, Scope_Id => Scope (Desig_Type)); |
| Mutate_Ekind (Desig_Subtype, E_Record_Subtype); |
| Def_Id := Entity (Subtype_Mark (S)); |
| |
| -- We indicate that the component has a per-object constraint |
| -- for treatment at a point of use, even though the constraint |
| -- may be independent of discriminants of the enclosing type. |
| |
| if Nkind (Related_Nod) = N_Component_Declaration then |
| Set_Has_Per_Object_Constraint |
| (Defining_Identifier (Related_Nod)); |
| end if; |
| |
| -- This call added to ensure that the constraint is analyzed |
| -- (needed for a B test). Note that we still return early from |
| -- this procedure to avoid recursive processing. |
| |
| Constrain_Discriminated_Type |
| (Desig_Subtype, S, Related_Nod, For_Access => True); |
| return; |
| end if; |
| |
| -- Enforce rule that the constraint is illegal if there is an |
| -- unconstrained view of the designated type. This means that the |
| -- partial view (either a private type declaration or a derivation |
| -- from a private type) has no discriminants. (Defect Report |
| -- 8652/0008, Technical Corrigendum 1, checked by ACATS B371001). |
| |
| -- Rule updated for Ada 2005: The private type is said to have |
| -- a constrained partial view, given that objects of the type |
| -- can be declared. Furthermore, the rule applies to all access |
| -- types, unlike the rule concerning default discriminants (see |
| -- RM 3.7.1(7/3)) |
| |
| if (Ekind (T) = E_General_Access_Type or else Ada_Version >= Ada_2005) |
| and then Has_Private_Declaration (Desig_Type) |
| and then In_Open_Scopes (Scope (Desig_Type)) |
| and then Has_Discriminants (Desig_Type) |
| then |
| declare |
| Pack : constant Node_Id := |
| Unit_Declaration_Node (Scope (Desig_Type)); |
| Decls : List_Id; |
| Decl : Node_Id; |
| |
| begin |
| if Nkind (Pack) = N_Package_Declaration then |
| Decls := Visible_Declarations (Specification (Pack)); |
| Decl := First (Decls); |
| while Present (Decl) loop |
| if (Nkind (Decl) = N_Private_Type_Declaration |
| and then Chars (Defining_Identifier (Decl)) = |
| Chars (Desig_Type)) |
| |
| or else |
| (Nkind (Decl) = N_Full_Type_Declaration |
| and then |
| Chars (Defining_Identifier (Decl)) = |
| Chars (Desig_Type) |
| and then Is_Derived_Type (Desig_Type) |
| and then |
| Has_Private_Declaration (Etype (Desig_Type))) |
| then |
| if No (Discriminant_Specifications (Decl)) then |
| Error_Msg_N |
| ("cannot constrain access type if designated " |
| & "type has constrained partial view", S); |
| end if; |
| |
| exit; |
| end if; |
| |
| Next (Decl); |
| end loop; |
| end if; |
| end; |
| end if; |
| |
| Desig_Subtype := Create_Itype (E_Void, Related_Nod); |
| Constrain_Discriminated_Type (Desig_Subtype, S, Related_Nod, |
| For_Access => True); |
| |
| elsif Is_Concurrent_Type (Desig_Type) |
| and then not Is_Constrained (Desig_Type) |
| then |
| Desig_Subtype := Create_Itype (E_Void, Related_Nod); |
| Constrain_Concurrent (Desig_Subtype, S, Related_Nod, Desig_Type, ' '); |
| |
| else |
| Error_Msg_N ("invalid constraint on access type", S); |
| |
| -- We simply ignore an invalid constraint |
| |
| Desig_Subtype := Desig_Type; |
| Constraint_OK := False; |
| end if; |
| |
| if No (Def_Id) then |
| Def_Id := Create_Itype (E_Access_Subtype, Related_Nod); |
| else |
| Mutate_Ekind (Def_Id, E_Access_Subtype); |
| end if; |
| |
| if Constraint_OK then |
| Set_Etype (Def_Id, Base_Type (T)); |
| |
| if Is_Private_Type (Desig_Type) then |
| Prepare_Private_Subtype_Completion (Desig_Subtype, Related_Nod); |
| end if; |
| else |
| Set_Etype (Def_Id, Any_Type); |
| end if; |
| |
| Set_Size_Info (Def_Id, T); |
| Set_Is_Constrained (Def_Id, Constraint_OK); |
| Set_Directly_Designated_Type (Def_Id, Desig_Subtype); |
| Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id)); |
| Set_Is_Access_Constant (Def_Id, Is_Access_Constant (T)); |
| Set_Can_Never_Be_Null (Def_Id, Can_Never_Be_Null (T)); |
| |
| Conditional_Delay (Def_Id, T); |
| |
| -- AI-363 : Subtypes of general access types whose designated types have |
| -- default discriminants are disallowed. In instances, the rule has to |
| -- be checked against the actual, of which T is the subtype. In a |
| -- generic body, the rule is checked assuming that the actual type has |
| -- defaulted discriminants. |
| |
| if Ada_Version >= Ada_2005 or else Warn_On_Ada_2005_Compatibility then |
| if Ekind (Base_Type (T)) = E_General_Access_Type |
| and then Has_Defaulted_Discriminants (Desig_Type) |
| then |
| if Ada_Version < Ada_2005 then |
| Error_Msg_N |
| ("access subtype of general access type would not " & |
| "be allowed in Ada 2005?y?", S); |
| else |
| Error_Msg_N |
| ("access subtype of general access type not allowed", S); |
| end if; |
| |
| Error_Msg_N ("\discriminants have defaults", S); |
| |
| elsif Is_Access_Type (T) |
| and then Is_Generic_Type (Desig_Type) |
| and then Has_Discriminants (Desig_Type) |
| and then In_Package_Body (Current_Scope) |
| then |
| if Ada_Version < Ada_2005 then |
| Error_Msg_N |
| ("access subtype would not be allowed in generic body " |
| & "in Ada 2005?y?", S); |
| else |
| Error_Msg_N |
| ("access subtype not allowed in generic body", S); |
| end if; |
| |
| Error_Msg_N |
| ("\designated type is a discriminated formal", S); |
| end if; |
| end if; |
| end Constrain_Access; |
| |
| --------------------- |
| -- Constrain_Array -- |
| --------------------- |
| |
| procedure Constrain_Array |
| (Def_Id : in out Entity_Id; |
| SI : Node_Id; |
| Related_Nod : Node_Id; |
| Related_Id : Entity_Id; |
| Suffix : Character) |
| is |
| C : constant Node_Id := Constraint (SI); |
| Number_Of_Constraints : Nat := 0; |
| Index : Node_Id; |
| S, T : Entity_Id; |
| Constraint_OK : Boolean := True; |
| Is_FLB_Array_Subtype : Boolean := False; |
| |
| begin |
| T := Entity (Subtype_Mark (SI)); |
| |
| if Is_Access_Type (T) then |
| T := Designated_Type (T); |
| end if; |
| |
| T := Underlying_Type (T); |
| |
| -- If an index constraint follows a subtype mark in a subtype indication |
| -- then the type or subtype denoted by the subtype mark must not already |
| -- impose an index constraint. The subtype mark must denote either an |
| -- unconstrained array type or an access type whose designated type |
| -- is such an array type... (RM 3.6.1) |
| |
| if Is_Constrained (T) then |
| Error_Msg_N ("array type is already constrained", Subtype_Mark (SI)); |
| Constraint_OK := False; |
| |
| else |
| S := First (Constraints (C)); |
| while Present (S) loop |
| Number_Of_Constraints := Number_Of_Constraints + 1; |
| Next (S); |
| end loop; |
| |
| -- In either case, the index constraint must provide a discrete |
| -- range for each index of the array type and the type of each |
| -- discrete range must be the same as that of the corresponding |
| -- index. (RM 3.6.1) |
| |
| if Number_Of_Constraints /= Number_Dimensions (T) then |
| Error_Msg_NE ("incorrect number of index constraints for }", C, T); |
| Constraint_OK := False; |
| |
| else |
| S := First (Constraints (C)); |
| Index := First_Index (T); |
| Analyze (Index); |
| |
| -- Apply constraints to each index type |
| |
| for J in 1 .. Number_Of_Constraints loop |
| Constrain_Index (Index, S, Related_Nod, Related_Id, Suffix, J); |
| |
| -- If the subtype of the index has been set to indicate that |
| -- it has a fixed lower bound, then record that the subtype's |
| -- entity will need to be marked as being a fixed-lower-bound |
| -- array subtype. |
| |
| if S = First (Constraints (C)) then |
| Is_FLB_Array_Subtype := |
| Is_Fixed_Lower_Bound_Index_Subtype (Etype (S)); |
| |
| -- If the parent subtype (or should this be Etype of that?) |
| -- is an FLB array subtype, we flag an error, because we |
| -- don't currently allow subtypes of such subtypes to |
| -- specify a fixed lower bound for any of their indexes, |
| -- even if the index of the parent subtype is a "range <>" |
| -- index. |
| |
| if Is_FLB_Array_Subtype |
| and then Is_Fixed_Lower_Bound_Array_Subtype (T) |
| then |
| Error_Msg_NE |
| ("index with fixed lower bound not allowed for subtype " |
| & "of fixed-lower-bound }", S, T); |
| |
| Is_FLB_Array_Subtype := False; |
| end if; |
| |
| elsif Is_FLB_Array_Subtype |
| and then not Is_Fixed_Lower_Bound_Index_Subtype (Etype (S)) |
| then |
| Error_Msg_NE |
| ("constrained index not allowed for fixed-lower-bound " |
| & "subtype of}", S, T); |
| |
| elsif not Is_FLB_Array_Subtype |
| and then Is_Fixed_Lower_Bound_Index_Subtype (Etype (S)) |
| then |
| Error_Msg_NE |
| ("index with fixed lower bound not allowed for " |
| & "constrained subtype of}", S, T); |
| end if; |
| |
| Next (Index); |
| Next (S); |
| end loop; |
| |
| end if; |
| end if; |
| |
| if No (Def_Id) then |
| Def_Id := |
| Create_Itype (E_Array_Subtype, Related_Nod, Related_Id, Suffix); |
| Set_Parent (Def_Id, Related_Nod); |
| |
| else |
| Mutate_Ekind (Def_Id, E_Array_Subtype); |
| end if; |
| |
| Set_Size_Info (Def_Id, (T)); |
| Set_First_Rep_Item (Def_Id, First_Rep_Item (T)); |
| Set_Etype (Def_Id, Base_Type (T)); |
| |
| if Constraint_OK then |
| Set_First_Index (Def_Id, First (Constraints (C))); |
| else |
| Set_First_Index (Def_Id, First_Index (T)); |
| end if; |
| |
| Set_Is_Constrained (Def_Id, not Is_FLB_Array_Subtype); |
| Set_Is_Fixed_Lower_Bound_Array_Subtype |
| (Def_Id, Is_FLB_Array_Subtype); |
| Set_Is_Aliased (Def_Id, Is_Aliased (T)); |
| Set_Is_Independent (Def_Id, Is_Independent (T)); |
| Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id)); |
| |
| Set_Is_Private_Composite (Def_Id, Is_Private_Composite (T)); |
| Set_Is_Limited_Composite (Def_Id, Is_Limited_Composite (T)); |
| |
| -- A subtype does not inherit the Packed_Array_Impl_Type of is parent. |
| -- We need to initialize the attribute because if Def_Id is previously |
| -- analyzed through a limited_with clause, it will have the attributes |
| -- of an incomplete type, one of which is an Elist that overlaps the |
| -- Packed_Array_Impl_Type field. |
| |
| Set_Packed_Array_Impl_Type (Def_Id, Empty); |
| |
| -- Build a freeze node if parent still needs one. Also make sure that |
| -- the Depends_On_Private status is set because the subtype will need |
| -- reprocessing at the time the base type does, and also we must set a |
| -- conditional delay. |
| |
| Set_Depends_On_Private (Def_Id, Depends_On_Private (T)); |
| Conditional_Delay (Def_Id, T); |
| end Constrain_Array; |
| |
| ------------------------------ |
| -- Constrain_Component_Type -- |
| ------------------------------ |
| |
| function Constrain_Component_Type |
| (Comp : Entity_Id; |
| Constrained_Typ : Entity_Id; |
| Related_Node : Node_Id; |
| Typ : Entity_Id; |
| Constraints : Elist_Id) return Entity_Id |
| is |
| Loc : constant Source_Ptr := Sloc (Constrained_Typ); |
| Compon_Type : constant Entity_Id := Etype (Comp); |
| |
| function Build_Constrained_Array_Type |
| (Old_Type : Entity_Id) return Entity_Id; |
| -- If Old_Type is an array type, one of whose indexes is constrained |
| -- by a discriminant, build an Itype whose constraint replaces the |
| -- discriminant with its value in the constraint. |
| |
| function Build_Constrained_Discriminated_Type |
| (Old_Type : Entity_Id) return Entity_Id; |
| -- Ditto for record components. Handle the case where the constraint |
| -- is a conversion of the discriminant value, introduced during |
| -- expansion. |
| |
| function Build_Constrained_Access_Type |
| (Old_Type : Entity_Id) return Entity_Id; |
| -- Ditto for access types. Makes use of previous two functions, to |
| -- constrain designated type. |
| |
| function Is_Discriminant (Expr : Node_Id) return Boolean; |
| -- Returns True if Expr is a discriminant |
| |
| function Get_Discr_Value (Discr_Expr : Node_Id) return Node_Id; |
| -- Find the value of a discriminant named by Discr_Expr in Constraints |
| |
| ----------------------------------- |
| -- Build_Constrained_Access_Type -- |
| ----------------------------------- |
| |
| function Build_Constrained_Access_Type |
| (Old_Type : Entity_Id) return Entity_Id |
| is |
| Desig_Type : constant Entity_Id := Designated_Type (Old_Type); |
| Itype : Entity_Id; |
| Desig_Subtype : Entity_Id; |
| Scop : Entity_Id; |
| |
| begin |
| -- If the original access type was not embedded in the enclosing |
| -- type definition, there is no need to produce a new access |
| -- subtype. In fact every access type with an explicit constraint |
| -- generates an itype whose scope is the enclosing record. |
| |
| if not Is_Type (Scope (Old_Type)) then |
| return Old_Type; |
| |
| elsif Is_Array_Type (Desig_Type) then |
| Desig_Subtype := Build_Constrained_Array_Type (Desig_Type); |
| |
| elsif Has_Discriminants (Desig_Type) then |
| |
| -- This may be an access type to an enclosing record type for |
| -- which we are constructing the constrained components. Return |
| -- the enclosing record subtype. This is not always correct, |
| -- but avoids infinite recursion. ??? |
| |
| Desig_Subtype := Any_Type; |
| |
| for J in reverse 0 .. Scope_Stack.Last loop |
| Scop := Scope_Stack.Table (J).Entity; |
| |
| if Is_Type (Scop) |
| and then Base_Type (Scop) = Base_Type (Desig_Type) |
| then |
| Desig_Subtype := Scop; |
| end if; |
| |
| exit when not Is_Type (Scop); |
| end loop; |
| |
| if Desig_Subtype = Any_Type then |
| Desig_Subtype := |
| Build_Constrained_Discriminated_Type (Desig_Type); |
| end if; |
| |
| else |
| return Old_Type; |
| end if; |
| |
| if Desig_Subtype /= Desig_Type then |
| |
| -- The Related_Node better be here or else we won't be able |
| -- to attach new itypes to a node in the tree. |
| |
| pragma Assert (Present (Related_Node)); |
| |
| Itype := Create_Itype (E_Access_Subtype, Related_Node); |
| |
| Set_Etype (Itype, Base_Type (Old_Type)); |
| Set_Size_Info (Itype, (Old_Type)); |
| Set_Directly_Designated_Type (Itype, Desig_Subtype); |
| Set_Depends_On_Private (Itype, Has_Private_Component |
| (Old_Type)); |
| Set_Is_Access_Constant (Itype, Is_Access_Constant |
| (Old_Type)); |
| |
| -- The new itype needs freezing when it depends on a not frozen |
| -- type and the enclosing subtype needs freezing. |
| |
| if Has_Delayed_Freeze (Constrained_Typ) |
| and then not Is_Frozen (Constrained_Typ) |
| then |
| Conditional_Delay (Itype, Base_Type (Old_Type)); |
| end if; |
| |
| return Itype; |
| |
| else |
| return Old_Type; |
| end if; |
| end Build_Constrained_Access_Type; |
| |
| ---------------------------------- |
| -- Build_Constrained_Array_Type -- |
| ---------------------------------- |
| |
| function Build_Constrained_Array_Type |
| (Old_Type : Entity_Id) return Entity_Id |
| is |
| Lo_Expr : Node_Id; |
| Hi_Expr : Node_Id; |
| Old_Index : Node_Id; |
| Range_Node : Node_Id; |
| Constr_List : List_Id; |
| |
| Need_To_Create_Itype : Boolean := False; |
| |
| begin |
| Old_Index := First_Index (Old_Type); |
| while Present (Old_Index) loop |
| Get_Index_Bounds (Old_Index, Lo_Expr, Hi_Expr); |
| |
| if Is_Discriminant (Lo_Expr) |
| or else |
| Is_Discriminant (Hi_Expr) |
| then |
| Need_To_Create_Itype := True; |
| exit; |
| end if; |
| |
| Next_Index (Old_Index); |
| end loop; |
| |
| if Need_To_Create_Itype then |
| Constr_List := New_List; |
| |
| Old_Index := First_Index (Old_Type); |
| while Present (Old_Index) loop |
| Get_Index_Bounds (Old_Index, Lo_Expr, Hi_Expr); |
| |
| if Is_Discriminant (Lo_Expr) then |
| Lo_Expr := Get_Discr_Value (Lo_Expr); |
| end if; |
| |
| if Is_Discriminant (Hi_Expr) then |
| Hi_Expr := Get_Discr_Value (Hi_Expr); |
| end if; |
| |
| Range_Node := |
| Make_Range |
| (Loc, New_Copy_Tree (Lo_Expr), New_Copy_Tree (Hi_Expr)); |
| |
| Append (Range_Node, To => Constr_List); |
| |
| Next_Index (Old_Index); |
| end loop; |
| |
| return Build_Subtype (Related_Node, Loc, Old_Type, Constr_List); |
| |
| else |
| return Old_Type; |
| end if; |
| end Build_Constrained_Array_Type; |
| |
| ------------------------------------------ |
| -- Build_Constrained_Discriminated_Type -- |
| ------------------------------------------ |
| |
| function Build_Constrained_Discriminated_Type |
| (Old_Type : Entity_Id) return Entity_Id |
| is |
| Expr : Node_Id; |
| Constr_List : List_Id; |
| Old_Constraint : Elmt_Id; |
| |
| Need_To_Create_Itype : Boolean := False; |
| |
| begin |
| Old_Constraint := First_Elmt (Discriminant_Constraint (Old_Type)); |
| while Present (Old_Constraint) loop |
| Expr := Node (Old_Constraint); |
| |
| if Is_Discriminant (Expr) then |
| Need_To_Create_Itype := True; |
| exit; |
| |
| -- After expansion of discriminated task types, the value |
| -- of the discriminant may be converted to a run-time type |
| -- for restricted run-times. Propagate the value of the |
| -- discriminant as well, so that e.g. the secondary stack |
| -- component has a static constraint. Necessary for LLVM. |
| |
| elsif Nkind (Expr) = N_Type_Conversion |
| and then Is_Discriminant (Expression (Expr)) |
| then |
| Need_To_Create_Itype := True; |
| exit; |
| end if; |
| |
| Next_Elmt (Old_Constraint); |
| end loop; |
| |
| if Need_To_Create_Itype then |
| Constr_List := New_List; |
| |
| Old_Constraint := First_Elmt (Discriminant_Constraint (Old_Type)); |
| while Present (Old_Constraint) loop |
| Expr := Node (Old_Constraint); |
| |
| if Is_Discriminant (Expr) then |
| Expr := Get_Discr_Value (Expr); |
| |
| elsif Nkind (Expr) = N_Type_Conversion |
| and then Is_Discriminant (Expression (Expr)) |
| then |
| Expr := New_Copy_Tree (Expr); |
| Set_Expression (Expr, Get_Discr_Value (Expression (Expr))); |
| end if; |
| |
| Append (New_Copy_Tree (Expr), To => Constr_List); |
| |
| Next_Elmt (Old_Constraint); |
| end loop; |
| |
| return Build_Subtype (Related_Node, Loc, Old_Type, Constr_List); |
| |
| else |
| return Old_Type; |
| end if; |
| end Build_Constrained_Discriminated_Type; |
| |
| --------------------- |
| -- Get_Discr_Value -- |
| --------------------- |
| |
| function Get_Discr_Value (Discr_Expr : Node_Id) return Node_Id is |
| Discr_Id : constant Entity_Id := Entity (Discr_Expr); |
| -- Entity of a discriminant that appear as a standalone expression in |
| -- the constraint of a component. |
| |
| D : Entity_Id; |
| E : Elmt_Id; |
| |
| begin |
| -- The discriminant may be declared for the type, in which case we |
| -- find it by iterating over the list of discriminants. If the |
| -- discriminant is inherited from a parent type, it appears as the |
| -- corresponding discriminant of the current type. This will be the |
| -- case when constraining an inherited component whose constraint is |
| -- given by a discriminant of the parent. |
| |
| D := First_Discriminant (Typ); |
| E := First_Elmt (Constraints); |
| |
| while Present (D) loop |
| if D = Discr_Id |
| or else D = CR_Discriminant (Discr_Id) |
| or else Corresponding_Discriminant (D) = Discr_Id |
| then |
| return New_Copy_Tree (Node (E)); |
| end if; |
| |
| Next_Discriminant (D); |
| Next_Elmt (E); |
| end loop; |
| |
| -- The Corresponding_Discriminant mechanism is incomplete, because |
| -- the correspondence between new and old discriminants is not one |
| -- to one: one new discriminant can constrain several old ones. In |
| -- that case, scan sequentially the stored_constraint, the list of |
| -- discriminants of the parents, and the constraints. |
| |
| -- Previous code checked for the present of the Stored_Constraint |
| -- list for the derived type, but did not use it at all. Should it |
| -- be present when the component is a discriminated task type? |
| |
| if Is_Derived_Type (Typ) |
| and then Scope (Discr_Id) = Etype (Typ) |
| then |
| D := First_Discriminant (Etype (Typ)); |
| E := First_Elmt (Constraints); |
| while Present (D) loop |
| if D = Discr_Id then |
| return New_Copy_Tree (Node (E)); |
| end if; |
| |
| Next_Discriminant (D); |
| Next_Elmt (E); |
| end loop; |
| end if; |
| |
| -- Something is wrong if we did not find the value |
| |
| raise Program_Error; |
| end Get_Discr_Value; |
| |
| --------------------- |
| -- Is_Discriminant -- |
| --------------------- |
| |
| function Is_Discriminant (Expr : Node_Id) return Boolean is |
| Discrim_Scope : Entity_Id; |
| |
| begin |
| if Denotes_Discriminant (Expr) then |
| Discrim_Scope := Scope (Entity (Expr)); |
| |
| -- Either we have a reference to one of Typ's discriminants, |
| |
| pragma Assert (Discrim_Scope = Typ |
| |
| -- or to the discriminants of the parent type, in the case |
| -- of a derivation of a tagged type with variants. |
| |
| or else Discrim_Scope = Etype (Typ) |
| or else Full_View (Discrim_Scope) = Etype (Typ) |
| |
| -- or same as above for the case where the discriminants |
| -- were declared in Typ's private view. |
| |
| or else (Is_Private_Type (Discrim_Scope) |
| and then Chars (Discrim_Scope) = Chars (Typ)) |
| |
| -- or else we are deriving from the full view and the |
| -- discriminant is declared in the private entity. |
| |
| or else (Is_Private_Type (Typ) |
| and then Chars (Discrim_Scope) = Chars (Typ)) |
| |
| -- Or we are constrained the corresponding record of a |
| -- synchronized type that completes a private declaration. |
| |
| or else (Is_Concurrent_Record_Type (Typ) |
| and then |
| Corresponding_Concurrent_Type (Typ) = Discrim_Scope) |
| |
| -- or we have a class-wide type, in which case make sure the |
| -- discriminant found belongs to the root type. |
| |
| or else (Is_Class_Wide_Type (Typ) |
| and then Etype (Typ) = Discrim_Scope)); |
| |
| return True; |
| end if; |
| |
| -- In all other cases we have something wrong |
| |
| return False; |
| end Is_Discriminant; |
| |
| -- Start of processing for Constrain_Component_Type |
| |
| begin |
| if Nkind (Parent (Comp)) = N_Component_Declaration |
| and then Comes_From_Source (Parent (Comp)) |
| and then Comes_From_Source |
| (Subtype_Indication (Component_Definition (Parent (Comp)))) |
| and then |
| Is_Entity_Name |
| (Subtype_Indication (Component_Definition (Parent (Comp)))) |
| then |
| return Compon_Type; |
| |
| elsif Is_Array_Type (Compon_Type) then |
| return Build_Constrained_Array_Type (Compon_Type); |
| |
| elsif Has_Discriminants (Compon_Type) then |
| return Build_Constrained_Discriminated_Type (Compon_Type); |
| |
| elsif Is_Access_Type (Compon_Type) then |
| return Build_Constrained_Access_Type (Compon_Type); |
| |
| else |
| return Compon_Type; |
| end if; |
| end Constrain_Component_Type; |
| |
| -------------------------- |
| -- Constrain_Concurrent -- |
| -------------------------- |
| |
| -- For concurrent types, the associated record value type carries the same |
| -- discriminants, so when we constrain a concurrent type, we must constrain |
| -- the corresponding record type as well. |
| |
| procedure Constrain_Concurrent |
| (Def_Id : in out Entity_Id; |
| SI : Node_Id; |
| Related_Nod : Node_Id; |
| Related_Id : Entity_Id; |
| Suffix : Character) |
| is |
| -- Retrieve Base_Type to ensure getting to the concurrent type in the |
| -- case of a private subtype (needed when only doing semantic analysis). |
| |
| T_Ent : Entity_Id := Base_Type (Entity (Subtype_Mark (SI))); |
| T_Val : Entity_Id; |
| |
| begin |
| if Is_Access_Type (T_Ent) then |
| T_Ent := Designated_Type (T_Ent); |
| end if; |
| |
| T_Val := Corresponding_Record_Type (T_Ent); |
| |
| if Present (T_Val) then |
| |
| if No (Def_Id) then |
| Def_Id := Create_Itype (E_Void, Related_Nod, Related_Id, Suffix); |
| |
| -- Elaborate itype now, as it may be used in a subsequent |
| -- synchronized operation in another scope. |
| |
| if Nkind (Related_Nod) = N_Full_Type_Declaration then |
| Build_Itype_Reference (Def_Id, Related_Nod); |
| end if; |
| end if; |
| |
| Constrain_Discriminated_Type (Def_Id, SI, Related_Nod); |
| Set_First_Private_Entity (Def_Id, First_Private_Entity (T_Ent)); |
| |
| Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id)); |
| Set_Corresponding_Record_Type (Def_Id, |
| Constrain_Corresponding_Record (Def_Id, T_Val, Related_Nod)); |
| |
| else |
| -- If there is no associated record, expansion is disabled and this |
| -- is a generic context. Create a subtype in any case, so that |
| -- semantic analysis can proceed. |
| |
| if No (Def_Id) then |
| Def_Id := Create_Itype (E_Void, Related_Nod, Related_Id, Suffix); |
| end if; |
| |
| Constrain_Discriminated_Type (Def_Id, SI, Related_Nod); |
| end if; |
| end Constrain_Concurrent; |
| |
| ------------------------------------ |
| -- Constrain_Corresponding_Record -- |
| ------------------------------------ |
| |
| function Constrain_Corresponding_Record |
| (Prot_Subt : Entity_Id; |
| Corr_Rec : Entity_Id; |
| Related_Nod : Node_Id) return Entity_Id |
| is |
| T_Sub : constant Entity_Id := |
| Create_Itype |
| (Ekind => E_Record_Subtype, |
| Related_Nod => Related_Nod, |
| Related_Id => Corr_Rec, |
| Suffix => 'C', |
| Suffix_Index => -1); |
| |
| begin |
| Set_Etype (T_Sub, Corr_Rec); |
| Set_Has_Discriminants (T_Sub, Has_Discriminants (Prot_Subt)); |
| Set_Is_Tagged_Type (T_Sub, Is_Tagged_Type (Corr_Rec)); |
| Set_Is_Constrained (T_Sub, True); |
| Set_First_Entity (T_Sub, First_Entity (Corr_Rec)); |
| Set_Last_Entity (T_Sub, Last_Entity (Corr_Rec)); |
| |
| if Has_Discriminants (Prot_Subt) then -- False only if errors. |
| Set_Discriminant_Constraint |
| (T_Sub, Discriminant_Constraint (Prot_Subt)); |
| Set_Stored_Constraint_From_Discriminant_Constraint (T_Sub); |
| Create_Constrained_Components |
| (T_Sub, Related_Nod, Corr_Rec, Discriminant_Constraint (T_Sub)); |
| end if; |
| |
| Set_Depends_On_Private (T_Sub, Has_Private_Component (T_Sub)); |
| |
| if Ekind (Scope (Prot_Subt)) /= E_Record_Type then |
| Conditional_Delay (T_Sub, Corr_Rec); |
| |
| else |
| -- This is a component subtype: it will be frozen in the context of |
| -- the enclosing record's init_proc, so that discriminant references |
| -- are resolved to discriminals. (Note: we used to skip freezing |
| -- altogether in that case, which caused errors downstream for |
| -- components of a bit packed array type). |
| |
| Set_Has_Delayed_Freeze (T_Sub); |
| end if; |
| |
| return T_Sub; |
| end Constrain_Corresponding_Record; |
| |
| ----------------------- |
| -- Constrain_Decimal -- |
| ----------------------- |
| |
| procedure Constrain_Decimal (Def_Id : Entity_Id; S : Node_Id) is |
| T : constant Entity_Id := Entity (Subtype_Mark (S)); |
| C : constant Node_Id := Constraint (S); |
| Loc : constant Source_Ptr := Sloc (C); |
| Range_Expr : Node_Id; |
| Digits_Expr : Node_Id; |
| Digits_Val : Uint; |
| Bound_Val : Ureal; |
| |
| begin |
| Mutate_Ekind (Def_Id, E_Decimal_Fixed_Point_Subtype); |
| |
| if Nkind (C) = N_Range_Constraint then |
| Range_Expr := Range_Expression (C); |
| Digits_Val := Digits_Value (T); |
| |
| else |
| pragma Assert (Nkind (C) = N_Digits_Constraint); |
| |
| Digits_Expr := Digits_Expression (C); |
| Analyze_And_Resolve (Digits_Expr, Any_Integer); |
| |
| Check_Digits_Expression (Digits_Expr); |
| Digits_Val := Expr_Value (Digits_Expr); |
| |
| if Digits_Val > Digits_Value (T) then |
| Error_Msg_N |
| ("digits expression is incompatible with subtype", C); |
| Digits_Val := Digits_Value (T); |
| end if; |
| |
| if Present (Range_Constraint (C)) then |
| Range_Expr := Range_Expression (Range_Constraint (C)); |
| else |
| Range_Expr := Empty; |
| end if; |
| end if; |
| |
| Set_Etype (Def_Id, Base_Type (T)); |
| Set_Size_Info (Def_Id, (T)); |
| Set_First_Rep_Item (Def_Id, First_Rep_Item (T)); |
| Set_Delta_Value (Def_Id, Delta_Value (T)); |
| Set_Scale_Value (Def_Id, Scale_Value (T)); |
| Set_Small_Value (Def_Id, Small_Value (T)); |
| Set_Machine_Radix_10 (Def_Id, Machine_Radix_10 (T)); |
| Set_Digits_Value (Def_Id, Digits_Val); |
| |
| -- Manufacture range from given digits value if no range present |
| |
| if No (Range_Expr) then |
| Bound_Val := (Ureal_10 ** Digits_Val - Ureal_1) * Small_Value (T); |
| Range_Expr := |
| Make_Range (Loc, |
| Low_Bound => |
| Convert_To (T, Make_Real_Literal (Loc, (-Bound_Val))), |
| High_Bound => |
| Convert_To (T, Make_Real_Literal (Loc, Bound_Val))); |
| end if; |
| |
| Set_Scalar_Range_For_Subtype (Def_Id, Range_Expr, T); |
| Set_Discrete_RM_Size (Def_Id); |
| |
| -- Unconditionally delay the freeze, since we cannot set size |
| -- information in all cases correctly until the freeze point. |
| |
| Set_Has_Delayed_Freeze (Def_Id); |
| end Constrain_Decimal; |
| |
| ---------------------------------- |
| -- Constrain_Discriminated_Type -- |
| ---------------------------------- |
| |
| procedure Constrain_Discriminated_Type |
| (Def_Id : Entity_Id; |
| S : Node_Id; |
| Related_Nod : Node_Id; |
| For_Access : Boolean := False) |
| is |
| E : Entity_Id := Entity (Subtype_Mark (S)); |
| T : Entity_Id; |
| |
| procedure Fixup_Bad_Constraint; |
| -- Called after finding a bad constraint, and after having posted an |
| -- appropriate error message. The goal is to leave type Def_Id in as |
| -- reasonable state as possible. |
| |
| -------------------------- |
| -- Fixup_Bad_Constraint -- |
| -------------------------- |
| |
| procedure Fixup_Bad_Constraint is |
| begin |
| -- Set a reasonable Ekind for the entity, including incomplete types. |
| |
| Mutate_Ekind (Def_Id, Subtype_Kind (Ekind (T))); |
| |
| -- Set Etype to the known type, to reduce chances of cascaded errors |
| |
| Set_Etype (Def_Id, E); |
| Set_Error_Posted (Def_Id); |
| end Fixup_Bad_Constraint; |
| |
| -- Local variables |
| |
| C : Node_Id; |
| Constr : Elist_Id := New_Elmt_List; |
| |
| -- Start of processing for Constrain_Discriminated_Type |
| |
| begin |
| C := Constraint (S); |
| |
| -- A discriminant constraint is only allowed in a subtype indication, |
| -- after a subtype mark. This subtype mark must denote either a type |
| -- with discriminants, or an access type whose designated type is a |
| -- type with discriminants. A discriminant constraint specifies the |
| -- values of these discriminants (RM 3.7.2(5)). |
| |
| T := Base_Type (Entity (Subtype_Mark (S))); |
| |
| if Is_Access_Type (T) then |
| T := Designated_Type (T); |
| end if; |
| |
| -- In an instance it may be necessary to retrieve the full view of a |
| -- type with unknown discriminants, or a full view with defaulted |
| -- discriminants. In other contexts the constraint is illegal. |
| |
| if In_Instance |
| and then Is_Private_Type (T) |
| and then Present (Full_View (T)) |
| and then |
| (Has_Unknown_Discriminants (T) |
| or else |
| (not Has_Discriminants (T) |
| and then Has_Defaulted_Discriminants (Full_View (T)))) |
| then |
| T := Full_View (T); |
| E := Full_View (E); |
| end if; |
| |
| -- Ada 2005 (AI-412): Constrained incomplete subtypes are illegal. Avoid |
| -- generating an error for access-to-incomplete subtypes. |
| |
| if Ada_Version >= Ada_2005 |
| and then Ekind (T) = E_Incomplete_Type |
| and then Nkind (Parent (S)) = N_Subtype_Declaration |
| and then not Is_Itype (Def_Id) |
| then |
| -- A little sanity check: emit an error message if the type has |
| -- discriminants to begin with. Type T may be a regular incomplete |
| -- type or imported via a limited with clause. |
| |
| if Has_Discriminants (T) |
| or else (From_Limited_With (T) |
| and then Present (Non_Limited_View (T)) |
| and then Nkind (Parent (Non_Limited_View (T))) = |
| N_Full_Type_Declaration |
| and then Present (Discriminant_Specifications |
| (Parent (Non_Limited_View (T))))) |
| then |
| Error_Msg_N |
| ("(Ada 2005) incomplete subtype may not be constrained", C); |
| else |
| Error_Msg_N ("invalid constraint: type has no discriminant", C); |
| end if; |
| |
| Fixup_Bad_Constraint; |
| return; |
| |
| -- Check that the type has visible discriminants. The type may be |
| -- a private type with unknown discriminants whose full view has |
| -- discriminants which are invisible. |
| |
| elsif not Has_Discriminants (T) |
| or else |
| (Has_Unknown_Discriminants (T) |
| and then Is_Private_Type (T)) |
| then |
| Error_Msg_N ("invalid constraint: type has no discriminant", C); |
| Fixup_Bad_Constraint; |
| return; |
| |
| elsif Is_Constrained (E) |
| or else (Ekind (E) = E_Class_Wide_Subtype |
| and then Present (Discriminant_Constraint (E))) |
| then |
| Error_Msg_N ("type is already constrained", Subtype_Mark (S)); |
| Fixup_Bad_Constraint; |
| return; |
| end if; |
| |
| -- T may be an unconstrained subtype (e.g. a generic actual). Constraint |
| -- applies to the base type. |
| |
| T := Base_Type (T); |
| |
| Constr := Build_Discriminant_Constraints (T, S); |
| |
| -- If the list returned was empty we had an error in building the |
| -- discriminant constraint. We have also already signalled an error |
| -- in the incomplete type case |
| |
| if Is_Empty_Elmt_List (Constr) then |
| Fixup_Bad_Constraint; |
| return; |
| end if; |
| |
| Build_Discriminated_Subtype (T, Def_Id, Constr, Related_Nod, For_Access); |
| end Constrain_Discriminated_Type; |
| |
| --------------------------- |
| -- Constrain_Enumeration -- |
| --------------------------- |
| |
| procedure Constrain_Enumeration (Def_Id : Entity_Id; S : Node_Id) is |
| T : constant Entity_Id := Entity (Subtype_Mark (S)); |
| C : constant Node_Id := Constraint (S); |
| |
| begin |
| Mutate_Ekind (Def_Id, E_Enumeration_Subtype); |
| |
| Set_First_Literal (Def_Id, First_Literal (Base_Type (T))); |
| Set_Etype (Def_Id, Base_Type (T)); |
| Set_Size_Info (Def_Id, (T)); |
| Set_Is_Character_Type (Def_Id, Is_Character_Type (T)); |
| Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T); |
| |
| -- Inherit the chain of representation items instead of replacing it |
| -- because Build_Derived_Enumeration_Type rewrites the declaration of |
| -- the derived type as a subtype declaration and the former needs to |
| -- preserve existing representation items (see Build_Derived_Type). |
| |
| Inherit_Rep_Item_Chain (Def_Id, T); |
| |
| Set_Discrete_RM_Size (Def_Id); |
| end Constrain_Enumeration; |
| |
| ---------------------- |
| -- Constrain_Float -- |
| ---------------------- |
| |
| procedure Constrain_Float (Def_Id : Entity_Id; S : Node_Id) is |
| T : constant Entity_Id := Entity (Subtype_Mark (S)); |
| C : Node_Id; |
| D : Node_Id; |
| Rais : Node_Id; |
| |
| begin |
| Mutate_Ekind (Def_Id, E_Floating_Point_Subtype); |
| |
| Set_Etype (Def_Id, Base_Type (T)); |
| Set_Size_Info (Def_Id, (T)); |
| Set_First_Rep_Item (Def_Id, First_Rep_Item (T)); |
| |
| -- Process the constraint |
| |
| C := Constraint (S); |
| |
| -- Digits constraint present |
| |
| if Nkind (C) = N_Digits_Constraint then |
| Check_Restriction (No_Obsolescent_Features, C); |
| |
| if Warn_On_Obsolescent_Feature then |
| Error_Msg_N |
| ("subtype digits constraint is an " & |
| "obsolescent feature (RM J.3(8))?j?", C); |
| end if; |
| |
| D := Digits_Expression (C); |
| Analyze_And_Resolve (D, Any_Integer); |
| Check_Digits_Expression (D); |
| Set_Digits_Value (Def_Id, Expr_Value (D)); |
| |
| -- Check that digits value is in range. Obviously we can do this |
| -- at compile time, but it is strictly a runtime check, and of |
| -- course there is an ACVC test that checks this. |
| |
| if Digits_Value (Def_Id) > Digits_Value (T) then |
| Error_Msg_Uint_1 := Digits_Value (T); |
| Error_Msg_N ("??digits value is too large, maximum is ^", D); |
| Rais := |
| Make_Raise_Constraint_Error (Sloc (D), |
| Reason => CE_Range_Check_Failed); |
| Insert_Action (Declaration_Node (Def_Id), Rais); |
| end if; |
| |
| C := Range_Constraint (C); |
| |
| -- No digits constraint present |
| |
| else |
| Set_Digits_Value (Def_Id, Digits_Value (T)); |
| end if; |
| |
| -- Range constraint present |
| |
| if Nkind (C) = N_Range_Constraint then |
| Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T); |
| |
| -- No range constraint present |
| |
| else |
| pragma Assert (No (C)); |
| Set_Scalar_Range (Def_Id, Scalar_Range (T)); |
| end if; |
| |
| Set_Is_Constrained (Def_Id); |
| end Constrain_Float; |
| |
| --------------------- |
| -- Constrain_Index -- |
| --------------------- |
| |
| procedure Constrain_Index |
| (Index : Node_Id; |
| S : Node_Id; |
| Related_Nod : Node_Id; |
| Related_Id : Entity_Id; |
| Suffix : Character; |
| Suffix_Index : Pos) |
| is |
| Def_Id : Entity_Id; |
| R : Node_Id := Empty; |
| T : constant Entity_Id := Etype (Index); |
| Is_FLB_Index : Boolean := False; |
| |
| begin |
| Def_Id := |
| Create_Itype (E_Void, Related_Nod, Related_Id, Suffix, Suffix_Index); |
| Set_Etype (Def_Id, Base_Type (T)); |
| |
| if Nkind (S) = N_Range |
| or else |
| (Nkind (S) = N_Attribute_Reference |
| and then Attribute_Name (S) = Name_Range) |
| then |
| -- A Range attribute will be transformed into N_Range by Resolve |
| |
| -- If a range has an Empty upper bound, then remember that for later |
| -- setting of the index subtype's Is_Fixed_Lower_Bound_Index_Subtype |
| -- flag, and also set the upper bound of the range to the index |
| -- subtype's upper bound rather than leaving it Empty. In truth, |
| -- that upper bound corresponds to a box ("<>"), but it's convenient |
| -- to set it to the upper bound to avoid needing to add special tests |
| -- in various places for an Empty upper bound, and in any case it |
| -- accurately characterizes the index's range of values. |
| |
| if Nkind (S) = N_Range and then No (High_Bound (S)) then |
| Is_FLB_Index := True; |
| Set_High_Bound (S, Type_High_Bound (T)); |
| end if; |
| |
| R := S; |
| |
| Process_Range_Expr_In_Decl (R, T); |
| |
| if not Error_Posted (S) |
| and then |
| (Nkind (S) /= N_Range |
| or else not Covers (T, (Etype (Low_Bound (S)))) |
| or else not Covers (T, (Etype (High_Bound (S))))) |
| then |
| if Base_Type (T) /= Any_Type |
| and then Etype (Low_Bound (S)) /= Any_Type |
| and then Etype (High_Bound (S)) /= Any_Type |
| then |
| Error_Msg_N ("range expected", S); |
| end if; |
| end if; |
| |
| elsif Nkind (S) = N_Subtype_Indication then |
| |
| -- The parser has verified that this is a discrete indication |
| |
| Resolve_Discrete_Subtype_Indication (S, T); |
| Bad_Predicated_Subtype_Use |
| ("subtype& has predicate, not allowed in index constraint", |
| S, Entity (Subtype_Mark (S))); |
| |
| R := Range_Expression (Constraint (S)); |
| |
| -- Capture values of bounds and generate temporaries for them if |
| -- needed, since checks may cause duplication of the expressions |
| -- which must not be reevaluated. |
| |
| -- The forced evaluation removes side effects from expressions, which |
| -- should occur also in GNATprove mode. Otherwise, we end up with |
| -- unexpected insertions of actions at places where this is not |
| -- supposed to occur, e.g. on default parameters of a call. |
| |
| if Expander_Active or GNATprove_Mode then |
| Force_Evaluation |
| (Low_Bound (R), Related_Id => Def_Id, Is_Low_Bound => True); |
| Force_Evaluation |
| (High_Bound (R), Related_Id => Def_Id, Is_High_Bound => True); |
| end if; |
| |
| elsif Nkind (S) = N_Discriminant_Association then |
| |
| -- Syntactically valid in subtype indication |
| |
| Error_Msg_N ("invalid index constraint", S); |
| Rewrite (S, New_Occurrence_Of (T, Sloc (S))); |
| return; |
| |
| -- Subtype_Mark case, no anonymous subtypes to construct |
| |
| else |
| Analyze (S); |
| |
| if Is_Entity_Name (S) then |
| if not Is_Type (Entity (S)) then |
| Error_Msg_N ("expect subtype mark for index constraint", S); |
| |
| elsif Base_Type (Entity (S)) /= Base_Type (T) then |
| Wrong_Type (S, Base_Type (T)); |
| |
| -- Check error of subtype with predicate in index constraint |
| |
| else |
| Bad_Predicated_Subtype_Use |
| ("subtype& has predicate, not allowed in index constraint", |
| S, Entity (S)); |
| end if; |
| |
| return; |
| |
| else |
| Error_Msg_N ("invalid index constraint", S); |
| Rewrite (S, New_Occurrence_Of (T, Sloc (S))); |
| return; |
| end if; |
| end if; |
| |
| -- Complete construction of the Itype |
| |
| if Is_Modular_Integer_Type (T) then |
| Mutate_Ekind (Def_Id, E_Modular_Integer_Subtype); |
| |
| elsif Is_Integer_Type (T) then |
| Mutate_Ekind (Def_Id, E_Signed_Integer_Subtype); |
| |
| else |
| Mutate_Ekind (Def_Id, E_Enumeration_Subtype); |
| Set_Is_Character_Type (Def_Id, Is_Character_Type (T)); |
| Set_First_Literal (Def_Id, First_Literal (T)); |
| end if; |
| |
| Set_Size_Info (Def_Id, (T)); |
| Copy_RM_Size (To => Def_Id, From => T); |
| Set_First_Rep_Item (Def_Id, First_Rep_Item (T)); |
| |
| -- If this is a range for a fixed-lower-bound subtype, then set the |
| -- index itype's low bound to the FLB and the index itype's upper bound |
| -- to the high bound of the parent array type's index subtype. Also, |
| -- mark the itype as an FLB index subtype. |
| |
| if Nkind (S) = N_Range and then Is_FLB_Index then |
| Set_Scalar_Range |
| (Def_Id, |
| Make_Range (Sloc (S), |
| Low_Bound => Low_Bound (S), |
| High_Bound => Type_High_Bound (T))); |
| Set_Is_Fixed_Lower_Bound_Index_Subtype (Def_Id); |
| |
| else |
| Set_Scalar_Range (Def_Id, R); |
| end if; |
| |
| Set_Etype (S, Def_Id); |
| Set_Discrete_RM_Size (Def_Id); |
| end Constrain_Index; |
| |
| ----------------------- |
| -- Constrain_Integer -- |
| ----------------------- |
| |
| procedure Constrain_Integer (Def_Id : Entity_Id; S : Node_Id) is |
| T : constant Entity_Id := Entity (Subtype_Mark (S)); |
| C : constant Node_Id := Constraint (S); |
| |
| begin |
| Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T); |
| |
| if Is_Modular_Integer_Type (T) then |
| Mutate_Ekind (Def_Id, E_Modular_Integer_Subtype); |
| else |
| Mutate_Ekind (Def_Id, E_Signed_Integer_Subtype); |
| end if; |
| |
| Set_Etype (Def_Id, Base_Type (T)); |
| Set_Size_Info (Def_Id, (T)); |
| Set_First_Rep_Item (Def_Id, First_Rep_Item (T)); |
| Set_Discrete_RM_Size (Def_Id); |
| end Constrain_Integer; |
| |
| ------------------------------ |
| -- Constrain_Ordinary_Fixed -- |
| ------------------------------ |
| |
| procedure Constrain_Ordinary_Fixed (Def_Id : Entity_Id; S : Node_Id) is |
| T : constant Entity_Id := Entity (Subtype_Mark (S)); |
| C : Node_Id; |
| D : Node_Id; |
| Rais : Node_Id; |
| |
| begin |
| Mutate_Ekind (Def_Id, E_Ordinary_Fixed_Point_Subtype); |
| Set_Etype (Def_Id, Base_Type (T)); |
| Set_Size_Info (Def_Id, (T)); |
| Set_First_Rep_Item (Def_Id, First_Rep_Item (T)); |
| Set_Small_Value (Def_Id, Small_Value (T)); |
| |
| -- Process the constraint |
| |
| C := Constraint (S); |
| |
| -- Delta constraint present |
| |
| if Nkind (C) = N_Delta_Constraint then |
| Check_Restriction (No_Obsolescent_Features, C); |
| |
| if Warn_On_Obsolescent_Feature then |
| Error_Msg_S |
| ("subtype delta constraint is an " & |
| "obsolescent feature (RM J.3(7))?j?"); |
| end if; |
| |
| D := Delta_Expression (C); |
| Analyze_And_Resolve (D, Any_Real); |
| Check_Delta_Expression (D); |
| Set_Delta_Value (Def_Id, Expr_Value_R (D)); |
| |
| -- Check that delta value is in range. Obviously we can do this |
| -- at compile time, but it is strictly a runtime check, and of |
| -- course there is an ACVC test that checks this. |
| |
| if Delta_Value (Def_Id) < Delta_Value (T) then |
| Error_Msg_N ("??delta value is too small", D); |
| Rais := |
| Make_Raise_Constraint_Error (Sloc (D), |
| Reason => CE_Range_Check_Failed); |
| Insert_Action (Declaration_Node (Def_Id), Rais); |
| end if; |
| |
| C := Range_Constraint (C); |
| |
| -- No delta constraint present |
| |
| else |
| Set_Delta_Value (Def_Id, Delta_Value (T)); |
| end if; |
| |
| -- Range constraint present |
| |
| if Nkind (C) = N_Range_Constraint then |
| Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T); |
| |
| -- No range constraint present |
| |
| else |
| pragma Assert (No (C)); |
| Set_Scalar_Range (Def_Id, Scalar_Range (T)); |
| end if; |
| |
| Set_Discrete_RM_Size (Def_Id); |
| |
| -- Unconditionally delay the freeze, since we cannot set size |
| -- information in all cases correctly until the freeze point. |
| |
| Set_Has_Delayed_Freeze (Def_Id); |
| end Constrain_Ordinary_Fixed; |
| |
| ----------------------- |
| -- Contain_Interface -- |
| ----------------------- |
| |
| function Contain_Interface |
| (Iface : Entity_Id; |
| Ifaces : Elist_Id) return Boolean |
| is |
| Iface_Elmt : Elmt_Id; |
| |
| begin |
| if Present (Ifaces) then |
| Iface_Elmt := First_Elmt (Ifaces); |
| while Present (Iface_Elmt) loop |
| if Node (Iface_Elmt) = Iface then |
| return True; |
| end if; |
| |
| Next_Elmt (Iface_Elmt); |
| end loop; |
| end if; |
| |
| return False; |
| end Contain_Interface; |
| |
| --------------------------- |
| -- Convert_Scalar_Bounds -- |
| --------------------------- |
| |
| procedure Convert_Scalar_Bounds |
| (N : Node_Id; |
| Parent_Type : Entity_Id; |
| Derived_Type : Entity_Id; |
| Loc : Source_Ptr) |
| is |
| Implicit_Base : constant Entity_Id := Base_Type (Derived_Type); |
| |
| Lo : Node_Id; |
| Hi : Node_Id; |
| Rng : Node_Id; |
| |
| begin |
| -- Defend against previous errors |
| |
| if No (Scalar_Range (Derived_Type)) then |
| Check_Error_Detected; |
| return; |
| end if; |
| |
| Lo := Build_Scalar_Bound |
| (Type_Low_Bound (Derived_Type), |
| Parent_Type, Implicit_Base); |
| |
| Hi := Build_Scalar_Bound |
| (Type_High_Bound (Derived_Type), |
| Parent_Type, Implicit_Base); |
| |
| Rng := |
| Make_Range (Loc, |
| Low_Bound => Lo, |
| High_Bound => Hi); |
| |
| Set_Includes_Infinities (Rng, Has_Infinities (Derived_Type)); |
| |
| Set_Parent (Rng, N); |
| Set_Scalar_Range (Derived_Type, Rng); |
| |
| -- Analyze the bounds |
| |
| Analyze_And_Resolve (Lo, Implicit_Base); |
| Analyze_And_Resolve (Hi, Implicit_Base); |
| |
| -- Analyze the range itself, except that we do not analyze it if |
| -- the bounds are real literals, and we have a fixed-point type. |
| -- The reason for this is that we delay setting the bounds in this |
| -- case till we know the final Small and Size values (see circuit |
| -- in Freeze.Freeze_Fixed_Point_Type for further details). |
| |
| if Is_Fixed_Point_Type (Parent_Type) |
| and then Nkind (Lo) = N_Real_Literal |
| and then Nkind (Hi) = N_Real_Literal |
| then |
| return; |
| |
| -- Here we do the analysis of the range |
| |
| -- Note: we do this manually, since if we do a normal Analyze and |
| -- Resolve call, there are problems with the conversions used for |
| -- the derived type range. |
| |
| else |
| Set_Etype (Rng, Implicit_Base); |
| Set_Analyzed (Rng, True); |
| end if; |
| end Convert_Scalar_Bounds; |
| |
| ------------------- |
| -- Copy_And_Swap -- |
| ------------------- |
| |
| procedure Copy_And_Swap (Priv, Full : Entity_Id) is |
| begin |
| -- Initialize new full declaration entity by copying the pertinent |
| -- fields of the corresponding private declaration entity. |
| |
| -- We temporarily set Ekind to a value appropriate for a type to |
| -- avoid assert failures in Einfo from checking for setting type |
| -- attributes on something that is not a type. Ekind (Priv) is an |
| -- appropriate choice, since it allowed the attributes to be set |
| -- in the first place. This Ekind value will be modified later. |
| |
| Mutate_Ekind (Full, Ekind (Priv)); |
| |
| -- Also set Etype temporarily to Any_Type, again, in the absence |
| -- of errors, it will be properly reset, and if there are errors, |
| -- then we want a value of Any_Type to remain. |
| |
| Set_Etype (Full, Any_Type); |
| |
| -- Now start copying attributes |
| |
| Set_Has_Discriminants (Full, Has_Discriminants (Priv)); |
| |
| if Has_Discriminants (Full) then |
| Set_Discriminant_Constraint (Full, Discriminant_Constraint (Priv)); |
| Set_Stored_Constraint (Full, Stored_Constraint (Priv)); |
| end if; |
| |
| Set_First_Rep_Item (Full, First_Rep_Item (Priv)); |
| Set_Homonym (Full, Homonym (Priv)); |
| Set_Is_Immediately_Visible (Full, Is_Immediately_Visible (Priv)); |
| Set_Is_Public (Full, Is_Public (Priv)); |
| Set_Is_Pure (Full, Is_Pure (Priv)); |
| Set_Is_Tagged_Type (Full, Is_Tagged_Type (Priv)); |
| Set_Has_Pragma_Unmodified (Full, Has_Pragma_Unmodified (Priv)); |
| Set_Has_Pragma_Unreferenced (Full, Has_Pragma_Unreferenced (Priv)); |
| Set_Has_Pragma_Unreferenced_Objects |
| (Full, Has_Pragma_Unreferenced_Objects |
| (Priv)); |
| |
| Conditional_Delay (Full, Priv); |
| |
| if Is_Tagged_Type (Full) then |
| Set_Direct_Primitive_Operations |
| (Full, Direct_Primitive_Operations (Priv)); |
| Set_No_Tagged_Streams_Pragma |
| (Full, No_Tagged_Streams_Pragma (Priv)); |
| |
| if Is_Base_Type (Priv) then |
| Set_Class_Wide_Type (Full, Class_Wide_Type (Priv)); |
| end if; |
| end if; |
| |
| Set_Is_Volatile (Full, Is_Volatile (Priv)); |
| Set_Treat_As_Volatile (Full, Treat_As_Volatile (Priv)); |
| Set_Scope (Full, Scope (Priv)); |
| Set_Prev_Entity (Full, Prev_Entity (Priv)); |
| Set_Next_Entity (Full, Next_Entity (Priv)); |
| Set_First_Entity (Full, First_Entity (Priv)); |
| Set_Last_Entity (Full, Last_Entity (Priv)); |
| |
| -- If access types have been recorded for later handling, keep them in |
| -- the full view so that they get handled when the full view freeze |
| -- node is expanded. |
| |
| if Present (Freeze_Node (Priv)) |
| and then Present (Access_Types_To_Process (Freeze_Node (Priv))) |
| then |
| Ensure_Freeze_Node (Full); |
| Set_Access_Types_To_Process |
| (Freeze_Node (Full), |
| Access_Types_To_Process (Freeze_Node (Priv))); |
| end if; |
| |
| -- Swap the two entities. Now Private is the full type entity and Full |
| -- is the private one. They will be swapped back at the end of the |
| -- private part. This swapping ensures that the entity that is visible |
| -- in the private part is the full declaration. |
| |
| Exchange_Entities (Priv, Full); |
| Append_Entity (Full, Scope (Full)); |
| end Copy_And_Swap; |
| |
| ------------------------------------- |
| -- Copy_Array_Base_Type_Attributes -- |
| ------------------------------------- |
| |
| procedure Copy_Array_Base_Type_Attributes (T1, T2 : Entity_Id) is |
| begin |
| Set_Component_Alignment (T1, Component_Alignment (T2)); |
| Set_Component_Type (T1, Component_Type (T2)); |
| Set_Component_Size (T1, Component_Size (T2)); |
| Set_Has_Controlled_Component (T1, Has_Controlled_Component (T2)); |
| Set_Has_Non_Standard_Rep (T1, Has_Non_Standard_Rep (T2)); |
| Propagate_Concurrent_Flags (T1, T2); |
| Set_Is_Packed (T1, Is_Packed (T2)); |
| Set_Has_Aliased_Components (T1, Has_Aliased_Components (T2)); |
| Set_Has_Atomic_Components (T1, Has_Atomic_Components (T2)); |
| Set_Has_Independent_Components (T1, Has_Independent_Components (T2)); |
| Set_Has_Volatile_Components (T1, Has_Volatile_Components (T2)); |
| end Copy_Array_Base_Type_Attributes; |
| |
| ----------------------------------- |
| -- Copy_Array_Subtype_Attributes -- |
| ----------------------------------- |
| |
| -- Note that we used to copy Packed_Array_Impl_Type too here, but we now |
| -- let it be recreated during freezing for the sake of better debug info. |
| |
| procedure Copy_Array_Subtype_Attributes (T1, T2 : Entity_Id) is |
| begin |
| Set_Size_Info (T1, T2); |
| |
| Set_First_Index (T1, First_Index (T2)); |
| Set_Is_Aliased (T1, Is_Aliased (T2)); |
| Set_Is_Atomic (T1, Is_Atomic (T2)); |
| Set_Is_Independent (T1, Is_Independent (T2)); |
| Set_Is_Volatile (T1, Is_Volatile (T2)); |
| Set_Is_Volatile_Full_Access (T1, Is_Volatile_Full_Access (T2)); |
| Set_Treat_As_Volatile (T1, Treat_As_Volatile (T2)); |
| Set_Is_Constrained (T1, Is_Constrained (T2)); |
| Set_Depends_On_Private (T1, Has_Private_Component (T2)); |
| Inherit_Rep_Item_Chain (T1, T2); |
| Set_Convention (T1, Convention (T2)); |
| Set_Is_Limited_Composite (T1, Is_Limited_Composite (T2)); |
| Set_Is_Private_Composite (T1, Is_Private_Composite (T2)); |
| end Copy_Array_Subtype_Attributes; |
| |
| ----------------------------------- |
| -- Create_Constrained_Components -- |
| ----------------------------------- |
| |
| procedure Create_Constrained_Components |
| (Subt : Entity_Id; |
| Decl_Node : Node_Id; |
| Typ : Entity_Id; |
| Constraints : Elist_Id) |
| is |
| Loc : constant Source_Ptr := Sloc (Subt); |
| Comp_List : constant Elist_Id := New_Elmt_List; |
| Parent_Type : constant Entity_Id := Etype (Typ); |
| Assoc_List : constant List_Id := New_List; |
| |
| Discr_Val : Elmt_Id; |
| Errors : Boolean; |
| New_C : Entity_Id; |
| Old_C : Entity_Id; |
| Is_Static : Boolean := True; |
| Is_Compile_Time_Known : Boolean := True; |
| |
| procedure Collect_Fixed_Components (Typ : Entity_Id); |
| -- Collect parent type components that do not appear in a variant part |
| |
| procedure Create_All_Components; |
| -- Iterate over Comp_List to create the components of the subtype |
| |
| function Create_Component (Old_Compon : Entity_Id) return Entity_Id; |
| -- Creates a new component from Old_Compon, copying all the fields from |
| -- it, including its Etype, inserts the new component in the Subt entity |
| -- chain and returns the new component. |
| |
| function Is_Variant_Record (T : Entity_Id) return Boolean; |
| -- If true, and discriminants are static, collect only components from |
| -- variants selected by discriminant values. |
| |
| ------------------------------ |
| -- Collect_Fixed_Components -- |
| ------------------------------ |
| |
| procedure Collect_Fixed_Components (Typ : Entity_Id) is |
| begin |
| -- Build association list for discriminants, and find components of the |
| -- variant part selected by the values of the discriminants. |
| |
| Old_C := First_Discriminant (Typ); |
| Discr_Val := First_Elmt (Constraints); |
| while Present (Old_C) loop |
| Append_To (Assoc_List, |
| Make_Component_Association (Loc, |
| Choices => New_List (New_Occurrence_Of (Old_C, Loc)), |
| Expression => New_Copy (Node (Discr_Val)))); |
| |
| Next_Elmt (Discr_Val); |
| Next_Discriminant (Old_C); |
| end loop; |
| |
| -- The tag and the possible parent component are unconditionally in |
| -- the subtype. |
| |
| if Is_Tagged_Type (Typ) or else Has_Controlled_Component (Typ) then |
| Old_C := First_Component (Typ); |
| while Present (Old_C) loop |
| if Chars (Old_C) in Name_uTag | Name_uParent then |
| Append_Elmt (Old_C, Comp_List); |
| end if; |
| |
| Next_Component (Old_C); |
| end loop; |
| end if; |
| end Collect_Fixed_Components; |
| |
| --------------------------- |
| -- Create_All_Components -- |
| --------------------------- |
| |
| procedure Create_All_Components is |
| Comp : Elmt_Id; |
| |
| begin |
| Comp := First_Elmt (Comp_List); |
| while Present (Comp) loop |
| Old_C := Node (Comp); |
| New_C := Create_Component (Old_C); |
| |
| Set_Etype |
| (New_C, |
| Constrain_Component_Type |
| (Old_C, Subt, Decl_Node, Typ, Constraints)); |
| Set_Is_Public (New_C, Is_Public (Subt)); |
| |
| Next_Elmt (Comp); |
| end loop; |
| end Create_All_Components; |
| |
| ---------------------- |
| -- Create_Component -- |
| ---------------------- |
| |
| function Create_Component (Old_Compon : Entity_Id) return Entity_Id is |
| New_Compon : constant Entity_Id := New_Copy (Old_Compon); |
| |
| begin |
| if Ekind (Old_Compon) = E_Discriminant |
| and then Is_Completely_Hidden (Old_Compon) |
| then |
| -- This is a shadow discriminant created for a discriminant of |
| -- the parent type, which needs to be present in the subtype. |
| -- Give the shadow discriminant an internal name that cannot |
| -- conflict with that of visible components. |
| |
| Set_Chars (New_Compon, New_Internal_Name ('C')); |
| end if; |
| |
| -- Set the parent so we have a proper link for freezing etc. This is |
| -- not a real parent pointer, since of course our parent does not own |
| -- up to us and reference us, we are an illegitimate child of the |
| -- original parent. |
| |
| Set_Parent (New_Compon, Parent (Old_Compon)); |
| |
| -- We do not want this node marked as Comes_From_Source, since |
| -- otherwise it would get first class status and a separate cross- |
| -- reference line would be generated. Illegitimate children do not |
| -- rate such recognition. |
| |
| Set_Comes_From_Source (New_Compon, False); |
| |
| -- But it is a real entity, and a birth certificate must be properly |
| -- registered by entering it into the entity list, and setting its |
| -- scope to the given subtype. This turns out to be useful for the |
| -- LLVM code generator, but that scope is not used otherwise. |
| |
| Enter_Name (New_Compon); |
| Set_Scope (New_Compon, Subt); |
| |
| return New_Compon; |
| end Create_Component; |
| |
| ----------------------- |
| -- Is_Variant_Record -- |
| ----------------------- |
| |
| function Is_Variant_Record (T : Entity_Id) return Boolean is |
| begin |
| return Nkind (Parent (T)) = N_Full_Type_Declaration |
| and then Nkind (Type_Definition (Parent (T))) = N_Record_Definition |
| and then Present (Component_List (Type_Definition (Parent (T)))) |
| and then |
| Present |
| (Variant_Part (Component_List (Type_Definition (Parent (T))))); |
| end Is_Variant_Record; |
| |
| -- Start of processing for Create_Constrained_Components |
| |
| begin |
| pragma Assert (Subt /= Base_Type (Subt)); |
| pragma Assert (Typ = Base_Type (Typ)); |
| |
| Set_First_Entity (Subt, Empty); |
| Set_Last_Entity (Subt, Empty); |
| |
| -- Check whether constraint is fully static, in which case we can |
| -- optimize the list of components. |
| |
| Discr_Val := First_Elmt (Constraints); |
| while Present (Discr_Val) loop |
| if not Is_OK_Static_Expression (Node (Discr_Val)) then |
| Is_Static := False; |
| |
| if not Compile_Time_Known_Value (Node (Discr_Val)) then |
| Is_Compile_Time_Known := False; |
| exit; |
| end if; |
| end if; |
| |
| Next_Elmt (Discr_Val); |
| end loop; |
| |
| Set_Has_Static_Discriminants (Subt, Is_Static); |
| |
| Push_Scope (Subt); |
| |
| -- Inherit the discriminants of the parent type |
| |
| Add_Discriminants : declare |
| Num_Disc : Nat; |
| Num_Stor : Nat; |
| |
| begin |
| Num_Disc := 0; |
| Old_C := First_Discriminant (Typ); |
| |
| while Present (Old_C) loop |
| Num_Disc := Num_Disc + 1; |
| New_C := Create_Component (Old_C); |
| Set_Is_Public (New_C, Is_Public (Subt)); |
| Next_Discriminant (Old_C); |
| end loop; |
| |
| -- For an untagged derived subtype, the number of discriminants may |
| -- be smaller than the number of inherited discriminants, because |
| -- several of them may be renamed by a single new discriminant or |
| -- constrained. In this case, add the hidden discriminants back into |
| -- the subtype, because they need to be present if the optimizer of |
| -- the GCC 4.x back-end decides to break apart assignments between |
| -- objects using the parent view into member-wise assignments. |
| |
| Num_Stor := 0; |
| |
| if Is_Derived_Type (Typ) |
| and then not Is_Tagged_Type (Typ) |
| then |
| Old_C := First_Stored_Discriminant (Typ); |
| |
| while Present (Old_C) loop |
| Num_Stor := Num_Stor + 1; |
| Next_Stored_Discriminant (Old_C); |
| end loop; |
| end if; |
| |
| if Num_Stor > Num_Disc then |
| |
| -- Find out multiple uses of new discriminants, and add hidden |
| -- components for the extra renamed discriminants. We recognize |
| -- multiple uses through the Corresponding_Discriminant of a |
| -- new discriminant: if it constrains several old discriminants, |
| -- this field points to the last one in the parent type. The |
| -- stored discriminants of the derived type have the same name |
| -- as those of the parent. |
| |
| declare |
| Constr : Elmt_Id; |
| New_Discr : Entity_Id; |
| Old_Discr : Entity_Id; |
| |
| begin |
| Constr := First_Elmt (Stored_Constraint (Typ)); |
| Old_Discr := First_Stored_Discriminant (Typ); |
| while Present (Constr) loop |
| if Is_Entity_Name (Node (Constr)) |
| and then Ekind (Entity (Node (Constr))) = E_Discriminant |
| then |
| New_Discr := Entity (Node (Constr)); |
| |
| if Chars (Corresponding_Discriminant (New_Discr)) /= |
| Chars (Old_Discr) |
| then |
| -- The new discriminant has been used to rename a |
| -- subsequent old discriminant. Introduce a shadow |
| -- component for the current old discriminant. |
| |
| New_C := Create_Component (Old_Discr); |
| Set_Original_Record_Component (New_C, Old_Discr); |
| end if; |
| |
| else |
| -- The constraint has eliminated the old discriminant. |
| -- Introduce a shadow component. |
| |
| New_C := Create_Component (Old_Discr); |
| Set_Original_Record_Component (New_C, Old_Discr); |
| end if; |
| |
| Next_Elmt (Constr); |
| Next_Stored_Discriminant (Old_Discr); |
| end loop; |
| end; |
| end if; |
| end Add_Discriminants; |
| |
| if Is_Compile_Time_Known |
| and then Is_Variant_Record (Typ) |
| then |
| Collect_Fixed_Components (Typ); |
| Gather_Components |
| (Typ, |
| Component_List (Type_Definition (Parent (Typ))), |
| Governed_By => Assoc_List, |
| Into => Comp_List, |
| Report_Errors => Errors, |
| Allow_Compile_Time => True); |
| pragma Assert (not Errors or else Serious_Errors_Detected > 0); |
| |
| Create_All_Components; |
| |
| -- If the subtype declaration is created for a tagged type derivation |
| -- with constraints, we retrieve the record definition of the parent |
| -- type to select the components of the proper variant. |
| |
| elsif Is_Compile_Time_Known |
| and then Is_Tagged_Type (Typ) |
| and then Nkind (Parent (Typ)) = N_Full_Type_Declaration |
| and then |
| Nkind (Type_Definition (Parent (Typ))) = N_Derived_Type_Definition |
| and then Is_Variant_Record (Parent_Type) |
| then |
| Collect_Fixed_Components (Typ); |
| Gather_Components |
| (Typ, |
| Component_List (Type_Definition (Parent (Parent_Type))), |
| Governed_By => Assoc_List, |
| Into => Comp_List, |
| Report_Errors => Errors, |
| Allow_Compile_Time => True); |
| |
| -- Note: previously there was a check at this point that no errors |
| -- were detected. As a consequence of AI05-220 there may be an error |
| -- if an inherited discriminant that controls a variant has a non- |
| -- static constraint. |
| |
| -- If the tagged derivation has a type extension, collect all the |
| -- new relevant components therein via Gather_Components. |
| |
| if Present (Record_Extension_Part (Type_Definition (Parent (Typ)))) |
| then |
| Gather_Components |
| (Typ, |
| Component_List |
| (Record_Extension_Part (Type_Definition (Parent (Typ)))), |
| Governed_By => Assoc_List, |
| Into => Comp_List, |
| Report_Errors => Errors, |
| Allow_Compile_Time => True, |
| Include_Interface_Tag => True); |
| end if; |
| |
| Create_All_Components; |
| |
| else |
| -- If discriminants are not static, or if this is a multi-level type |
| -- extension, we have to include all components of the parent type. |
| |
| Old_C := First_Component (Typ); |
| while Present (Old_C) loop |
| New_C := Create_Component (Old_C); |
| |
| Set_Etype |
| (New_C, |
| Constrain_Component_Type |
| (Old_C, Subt, Decl_Node, Typ, Constraints)); |
| Set_Is_Public (New_C, Is_Public (Subt)); |
| |
| Next_Component (Old_C); |
| end loop; |
| end if; |
| |
| End_Scope; |
| end Create_Constrained_Components; |
| |
| ------------------------------------------ |
| -- Decimal_Fixed_Point_Type_Declaration -- |
| ------------------------------------------ |
| |
| procedure Decimal_Fixed_Point_Type_Declaration |
| (T : Entity_Id; |
| Def : Node_Id) |
| is |
| Loc : constant Source_Ptr := Sloc (Def); |
| Digs_Expr : constant Node_Id := Digits_Expression (Def); |
| Delta_Expr : constant Node_Id := Delta_Expression (Def); |
| Max_Digits : constant Nat := |
| (if System_Max_Integer_Size = 128 then 38 else 18); |
| -- Maximum number of digits that can be represented in an integer |
| |
| Implicit_Base : Entity_Id; |
| Digs_Val : Uint; |
| Delta_Val : Ureal; |
| Scale_Val : Uint; |
| Bound_Val : Ureal; |
| |
| begin |
| Check_Restriction (No_Fixed_Point, Def); |
| |
| -- Create implicit base type |
| |
| Implicit_Base := |
| Create_Itype (E_Decimal_Fixed_Point_Type, Parent (Def), T, 'B'); |
| Set_Etype (Implicit_Base, Implicit_Base); |
| |
| -- Analyze and process delta expression |
| |
| Analyze_And_Resolve (Delta_Expr, Universal_Real); |
| |
| Check_Delta_Expression (Delta_Expr); |
| Delta_Val := Expr_Value_R (Delta_Expr); |
| |
| -- Check delta is power of 10, and determine scale value from it |
| |
| declare |
| Val : Ureal; |
| |
| begin |
| Scale_Val := Uint_0; |
| Val := Delta_Val; |
| |
| if Val < Ureal_1 then |
| while Val < Ureal_1 loop |
| Val := Val * Ureal_10; |
| Scale_Val := Scale_Val + 1; |
| end loop; |
| |
| if Scale_Val > Max_Digits then |
| Error_Msg_Uint_1 := UI_From_Int (Max_Digits); |
| Error_Msg_N ("scale exceeds maximum value of ^", Def); |
| Scale_Val := UI_From_Int (Max_Digits); |
| end if; |
| |
| else |
| while Val > Ureal_1 loop |
| Val := Val / Ureal_10; |
| Scale_Val := Scale_Val - 1; |
| end loop; |
| |
| if Scale_Val < -Max_Digits then |
| Error_Msg_Uint_1 := UI_From_Int (-Max_Digits); |
| Error_Msg_N ("scale is less than minimum value of ^", Def); |
| Scale_Val := UI_From_Int (-Max_Digits); |
| end if; |
| end if; |
| |
| if Val /= Ureal_1 then |
| Error_Msg_N ("delta expression must be a power of 10", Def); |
| Delta_Val := Ureal_10 ** (-Scale_Val); |
| end if; |
| end; |
| |
| -- Set delta, scale and small (small = delta for decimal type) |
| |
| Set_Delta_Value (Implicit_Base, Delta_Val); |
| Set_Scale_Value (Implicit_Base, Scale_Val); |
| Set_Small_Value (Implicit_Base, Delta_Val); |
| |
| -- Analyze and process digits expression |
| |
| Analyze_And_Resolve (Digs_Expr, Any_Integer); |
| Check_Digits_Expression (Digs_Expr); |
| Digs_Val := Expr_Value (Digs_Expr); |
| |
| if Digs_Val > Max_Digits then |
| Error_Msg_Uint_1 := UI_From_Int (Max_Digits); |
| Error_Msg_N ("digits value out of range, maximum is ^", Digs_Expr); |
| Digs_Val := UI_From_Int (Max_Digits); |
| end if; |
| |
| Set_Digits_Value (Implicit_Base, Digs_Val); |
| Bound_Val := UR_From_Uint (10 ** Digs_Val - 1) * Delta_Val; |
| |
| -- Set range of base type from digits value for now. This will be |
| -- expanded to represent the true underlying base range by Freeze. |
| |
| Set_Fixed_Range (Implicit_Base, Loc, -Bound_Val, Bound_Val); |
| |
| -- Note: We leave Esize unset for now, size will be set at freeze |
| -- time. We have to do this for ordinary fixed-point, because the size |
| -- depends on the specified small, and we might as well do the same for |
| -- decimal fixed-point. |
| |
| pragma Assert (not Known_Esize (Implicit_Base)); |
| |
| -- If there are bounds given in the declaration use them as the |
| -- bounds of the first named subtype. |
| |
| if Present (Real_Range_Specification (Def)) then |
| declare |
| RRS : constant Node_Id := Real_Range_Specification (Def); |
| Low : constant Node_Id := Low_Bound (RRS); |
| High : constant Node_Id := High_Bound (RRS); |
| Low_Val : Ureal; |
| High_Val : Ureal; |
| |
| begin |
| Analyze_And_Resolve (Low, Any_Real); |
| Analyze_And_Resolve (High, Any_Real); |
| Check_Real_Bound (Low); |
| Check_Real_Bound (High); |
| Low_Val := Expr_Value_R (Low); |
| High_Val := Expr_Value_R (High); |
| |
| if Low_Val < (-Bound_Val) then |
| Error_Msg_N |
| ("range low bound too small for digits value", Low); |
| Low_Val := -Bound_Val; |
| end if; |
| |
| if High_Val > Bound_Val then |
| Error_Msg_N |
| ("range high bound too large for digits value", High); |
| High_Val := Bound_Val; |
| end if; |
| |
| Set_Fixed_Range (T, Loc, Low_Val, High_Val); |
| end; |
| |
| -- If no explicit range, use range that corresponds to given |
| -- digits value. This will end up as the final range for the |
| -- first subtype. |
| |
| else |
| Set_Fixed_Range (T, Loc, -Bound_Val, Bound_Val); |
| end if; |
| |
| -- Complete entity for first subtype. The inheritance of the rep item |
| -- chain ensures that SPARK-related pragmas are not clobbered when the |
| -- decimal fixed point type acts as a full view of a private type. |
| |
| Mutate_Ekind (T, E_Decimal_Fixed_Point_Subtype); |
| Set_Etype (T, Implicit_Base); |
| Set_Size_Info (T, Implicit_Base); |
| Inherit_Rep_Item_Chain (T, Implicit_Base); |
| Set_Digits_Value (T, Digs_Val); |
| Set_Delta_Value (T, Delta_Val); |
| Set_Small_Value (T, Delta_Val); |
| Set_Scale_Value (T, Scale_Val); |
| Set_Is_Constrained (T); |
| end Decimal_Fixed_Point_Type_Declaration; |
| |
| ----------------------------------- |
| -- Derive_Progenitor_Subprograms -- |
| ----------------------------------- |
| |
| procedure Derive_Progenitor_Subprograms |
| (Parent_Type : Entity_Id; |
| Tagged_Type : Entity_Id) |
| is |
| E : Entity_Id; |
| Elmt : Elmt_Id; |
| Iface : Entity_Id; |
| Iface_Alias : Entity_Id; |
| Iface_Elmt : Elmt_Id; |
| Iface_Subp : Entity_Id; |
| New_Subp : Entity_Id := Empty; |
| Prim_Elmt : Elmt_Id; |
| Subp : Entity_Id; |
| Typ : Entity_Id; |
| |
| begin |
| pragma Assert (Ada_Version >= Ada_2005 |
| and then Is_Record_Type (Tagged_Type) |
| and then Is_Tagged_Type (Tagged_Type) |
| and then Has_Interfaces (Tagged_Type)); |
| |
| -- Step 1: Transfer to the full-view primitives associated with the |
| -- partial-view that cover interface primitives. Conceptually this |
| -- work should be done later by Process_Full_View; done here to |
| -- simplify its implementation at later stages. It can be safely |
| -- done here because interfaces must be visible in the partial and |
| -- private view (RM 7.3(7.3/2)). |
| |
| -- Small optimization: This work is only required if the parent may |
| -- have entities whose Alias attribute reference an interface primitive. |
| -- Such a situation may occur if the parent is an abstract type and the |
| -- primitive has not been yet overridden or if the parent is a generic |
| -- formal type covering interfaces. |
| |
| -- If the tagged type is not abstract, it cannot have abstract |
| -- primitives (the only entities in the list of primitives of |
| -- non-abstract tagged types that can reference abstract primitives |
| -- through its Alias attribute are the internal entities that have |
| -- attribute Interface_Alias, and these entities are generated later |
| -- by Add_Internal_Interface_Entities). |
| |
| if In_Private_Part (Current_Scope) |
| and then (Is_Abstract_Type (Parent_Type) |
| or else |
| Is_Generic_Type (Parent_Type)) |
| then |
| Elmt := First_Elmt (Primitive_Operations (Tagged_Type)); |
| while Present (Elmt) loop |
| Subp := Node (Elmt); |
| |
| -- At this stage it is not possible to have entities in the list |
| -- of primitives that have attribute Interface_Alias. |
| |
| pragma Assert (No (Interface_Alias (Subp))); |
| |
| Typ := Find_Dispatching_Type (Ultimate_Alias (Subp)); |
| |
| if Is_Interface (Typ) then |
| E := Find_Primitive_Covering_Interface |
| (Tagged_Type => Tagged_Type, |
| Iface_Prim => Subp); |
| |
| if Present (E) |
| and then Find_Dispatching_Type (Ultimate_Alias (E)) /= Typ |
| then |
| Replace_Elmt (Elmt, E); |
| Remove_Homonym (Subp); |
| end if; |
| end if; |
| |
| Next_Elmt (Elmt); |
| end loop; |
| end if; |
| |
| -- Step 2: Add primitives of progenitors that are not implemented by |
| -- parents of Tagged_Type. |
| |
| if Present (Interfaces (Base_Type (Tagged_Type))) then |
| Iface_Elmt := First_Elmt (Interfaces (Base_Type (Tagged_Type))); |
| while Present (Iface_Elmt) loop |
| Iface := Node (Iface_Elmt); |
| |
| Prim_Elmt := First_Elmt (Primitive_Operations (Iface)); |
| while Present (Prim_Elmt) loop |
| Iface_Subp := Node (Prim_Elmt); |
| Iface_Alias := Ultimate_Alias (Iface_Subp); |
| |
| -- Exclude derivation of predefined primitives except those |
| -- that come from source, or are inherited from one that comes |
| -- from source. Required to catch declarations of equality |
| -- operators of interfaces. For example: |
| |
| -- type Iface is interface; |
| -- function "=" (Left, Right : Iface) return Boolean; |
| |
| if not Is_Predefined_Dispatching_Operation (Iface_Subp) |
| or else Comes_From_Source (Iface_Alias) |
| then |
| E := |
| Find_Primitive_Covering_Interface |
| (Tagged_Type => Tagged_Type, |
| Iface_Prim => Iface_Subp); |
| |
| -- If not found we derive a new primitive leaving its alias |
| -- attribute referencing the interface primitive. |
| |
| if No (E) then |
| Derive_Subprogram |
| (New_Subp, Iface_Subp, Tagged_Type, Iface); |
| |
| -- Ada 2012 (AI05-0197): If the covering primitive's name |
| -- differs from the name of the interface primitive then it |
| -- is a private primitive inherited from a parent type. In |
| -- such case, given that Tagged_Type covers the interface, |
| -- the inherited private primitive becomes visible. For such |
| -- purpose we add a new entity that renames the inherited |
| -- private primitive. |
| |
| elsif Chars (E) /= Chars (Iface_Subp) then |
| pragma Assert (Has_Suffix (E, 'P')); |
| Derive_Subprogram |
| (New_Subp, Iface_Subp, Tagged_Type, Iface); |
| Set_Alias (New_Subp, E); |
| Set_Is_Abstract_Subprogram (New_Subp, |
| Is_Abstract_Subprogram (E)); |
| |
| -- Propagate to the full view interface entities associated |
| -- with the partial view. |
| |
| elsif In_Private_Part (Current_Scope) |
| and then Present (Alias (E)) |
| and then Alias (E) = Iface_Subp |
| and then |
| List_Containing (Parent (E)) /= |
| Private_Declarations |
| (Specification |
| (Unit_Declaration_Node (Current_Scope))) |
| then |
| Append_Elmt (E, Primitive_Operations (Tagged_Type)); |
| end if; |
| end if; |
| |
| Next_Elmt (Prim_Elmt); |
| end loop; |
| |
| Next_Elmt (Iface_Elmt); |
| end loop; |
| end if; |
| end Derive_Progenitor_Subprograms; |
| |
| ----------------------- |
| -- Derive_Subprogram -- |
| ----------------------- |
| |
| procedure Derive_Subprogram |
| (New_Subp : out Entity_Id; |
| Parent_Subp : Entity_Id; |
| Derived_Type : Entity_Id; |
| Parent_Type : Entity_Id; |
| Actual_Subp : Entity_Id := Empty) |
| is |
| Formal : Entity_Id; |
| -- Formal parameter of parent primitive operation |
| |
| Formal_Of_Actual : Entity_Id; |
| -- Formal parameter of actual operation, when the derivation is to |
| -- create a renaming for a primitive operation of an actual in an |
| -- instantiation. |
| |
| New_Formal : Entity_Id; |
| -- Formal of inherited operation |
| |
| Visible_Subp : Entity_Id := Parent_Subp; |
| |
| function Is_Private_Overriding return Boolean; |
| -- If Subp is a private overriding of a visible operation, the inherited |
| -- operation derives from the overridden op (even though its body is the |
| -- overriding one) and the inherited operation is visible now. See |
| -- sem_disp to see the full details of the handling of the overridden |
| -- subprogram, which is removed from the list of primitive operations of |
| -- the type. The overridden subprogram is saved locally in Visible_Subp, |
| -- and used to diagnose abstract operations that need overriding in the |
| -- derived type. |
| |
| procedure Replace_Type (Id, New_Id : Entity_Id); |
| -- When the type is an anonymous access type, create a new access type |
| -- designating the derived type. |
| |
| procedure Set_Derived_Name; |
| -- This procedure sets the appropriate Chars name for New_Subp. This |
| -- is normally just a copy of the parent name. An exception arises for |
| -- type support subprograms, where the name is changed to reflect the |
| -- name of the derived type, e.g. if type foo is derived from type bar, |
| -- then a procedure barDA is derived with a name fooDA. |
| |
| --------------------------- |
| -- Is_Private_Overriding -- |
| --------------------------- |
| |
| function Is_Private_Overriding return Boolean is |
| Prev : Entity_Id; |
| |
| begin |
| -- If the parent is not a dispatching operation there is no |
| -- need to investigate overridings |
| |
| if not Is_Dispatching_Operation (Parent_Subp) then |
| return False; |
| end if; |
| |
| -- The visible operation that is overridden is a homonym of the |
| -- parent subprogram. We scan the homonym chain to find the one |
| -- whose alias is the subprogram we are deriving. |
| |
| Prev := Current_Entity (Parent_Subp); |
| while Present (Prev) loop |
| if Ekind (Prev) = Ekind (Parent_Subp) |
| and then Alias (Prev) = Parent_Subp |
| and then Scope (Parent_Subp) = Scope (Prev) |
| and then not Is_Hidden (Prev) |
| then |
| Visible_Subp := Prev; |
| return True; |
| end if; |
| |
| Prev := Homonym (Prev); |
| end loop; |
| |
| return False; |
| end Is_Private_Overriding; |
| |
| ------------------ |
| -- Replace_Type -- |
| ------------------ |
| |
| procedure Replace_Type (Id, New_Id : Entity_Id) is |
| Id_Type : constant Entity_Id := Etype (Id); |
| Acc_Type : Entity_Id; |
| Par : constant Node_Id := Parent (Derived_Type); |
| |
| begin |
| -- When the type is an anonymous access type, create a new access |
| -- type designating the derived type. This itype must be elaborated |
| -- at the point of the derivation, not on subsequent calls that may |
| -- be out of the proper scope for Gigi, so we insert a reference to |
| -- it after the derivation. |
| |
| if Ekind (Id_Type) = E_Anonymous_Access_Type then |
| declare |
| Desig_Typ : Entity_Id := Designated_Type (Id_Type); |
| |
| begin |
| if Ekind (Desig_Typ) = E_Record_Type_With_Private |
| and then Present (Full_View (Desig_Typ)) |
| and then not Is_Private_Type (Parent_Type) |
| then |
| Desig_Typ := Full_View (Desig_Typ); |
| end if; |
| |
| if Base_Type (Desig_Typ) = Base_Type (Parent_Type) |
| |
| -- Ada 2005 (AI-251): Handle also derivations of abstract |
| -- interface primitives. |
| |
| or else (Is_Interface (Desig_Typ) |
| and then not Is_Class_Wide_Type (Desig_Typ)) |
| then |
| Acc_Type := New_Copy (Id_Type); |
| Set_Etype (Acc_Type, Acc_Type); |
| Set_Scope (Acc_Type, New_Subp); |
| |
| -- Set size of anonymous access type. If we have an access |
| -- to an unconstrained array, this is a fat pointer, so it |
| -- is sizes at twice addtress size. |
| |
| if Is_Array_Type (Desig_Typ) |
| and then not Is_Constrained (Desig_Typ) |
| then |
| Init_Size (Acc_Type, 2 * System_Address_Size); |
| |
| -- Other cases use a thin pointer |
| |
| else |
| Init_Size (Acc_Type, System_Address_Size); |
| end if; |
| |
| -- Set remaining characterstics of anonymous access type |
| |
| Reinit_Alignment (Acc_Type); |
| Set_Directly_Designated_Type (Acc_Type, Derived_Type); |
| |
| Set_Etype (New_Id, Acc_Type); |
| Set_Scope (New_Id, New_Subp); |
| |
| -- Create a reference to it |
| |
| Build_Itype_Reference (Acc_Type, Parent (Derived_Type)); |
| |
| else |
| Set_Etype (New_Id, Id_Type); |
| end if; |
| end; |
| |
| -- In Ada2012, a formal may have an incomplete type but the type |
| -- derivation that inherits the primitive follows the full view. |
| |
| elsif Base_Type (Id_Type) = Base_Type (Parent_Type) |
| or else |
| (Ekind (Id_Type) = E_Record_Type_With_Private |
| and then Present (Full_View (Id_Type)) |
| and then |
| Base_Type (Full_View (Id_Type)) = Base_Type (Parent_Type)) |
| or else |
| (Ada_Version >= Ada_2012 |
| and then Ekind (Id_Type) = E_Incomplete_Type |
| and then Full_View (Id_Type) = Parent_Type) |
| then |
| -- Constraint checks on formals are generated during expansion, |
| -- based on the signature of the original subprogram. The bounds |
| -- of the derived type are not relevant, and thus we can use |
| -- the base type for the formals. However, the return type may be |
| -- used in a context that requires that the proper static bounds |
| -- be used (a case statement, for example) and for those cases |
| -- we must use the derived type (first subtype), not its base. |
| |
| -- If the derived_type_definition has no constraints, we know that |
| -- the derived type has the same constraints as the first subtype |
| -- of the parent, and we can also use it rather than its base, |
| -- which can lead to more efficient code. |
| |
| if Etype (Id) = Parent_Type then |
| if Is_Scalar_Type (Parent_Type) |
| and then |
| Subtypes_Statically_Compatible (Parent_Type, Derived_Type) |
| then |
| Set_Etype (New_Id, Derived_Type); |
| |
| elsif Nkind (Par) = N_Full_Type_Declaration |
| and then |
| Nkind (Type_Definition (Par)) = N_Derived_Type_Definition |
| and then |
| Is_Entity_Name |
| (Subtype_Indication (Type_Definition (Par))) |
| then |
| Set_Etype (New_Id, Derived_Type); |
| |
| else |
| Set_Etype (New_Id, Base_Type (Derived_Type)); |
| end if; |
| |
| else |
| Set_Etype (New_Id, Base_Type (Derived_Type)); |
| end if; |
| |
| else |
| Set_Etype (New_Id, Etype (Id)); |
| end if; |
| end Replace_Type; |
| |
| ---------------------- |
| -- Set_Derived_Name -- |
| ---------------------- |
| |
| procedure Set_Derived_Name is |
| Nm : constant TSS_Name_Type := Get_TSS_Name (Parent_Subp); |
| begin |
| if Nm = TSS_Null then |
| Set_Chars (New_Subp, Chars (Parent_Subp)); |
| else |
| Set_Chars (New_Subp, Make_TSS_Name (Base_Type (Derived_Type), Nm)); |
| end if; |
| end Set_Derived_Name; |
| |
| -- Start of processing for Derive_Subprogram |
| |
| begin |
| New_Subp := New_Entity (Nkind (Parent_Subp), Sloc (Derived_Type)); |
| Mutate_Ekind (New_Subp, Ekind (Parent_Subp)); |
| |
| -- Check whether the inherited subprogram is a private operation that |
| -- should be inherited but not yet made visible. Such subprograms can |
| -- become visible at a later point (e.g., the private part of a public |
| -- child unit) via Declare_Inherited_Private_Subprograms. If the |
| -- following predicate is true, then this is not such a private |
| -- operation and the subprogram simply inherits the name of the parent |
| -- subprogram. Note the special check for the names of controlled |
| -- operations, which are currently exempted from being inherited with |
| -- a hidden name because they must be findable for generation of |
| -- implicit run-time calls. |
| |
| if not Is_Hidden (Parent_Subp) |
| or else Is_Internal (Parent_Subp) |
| or else Is_Private_Overriding |
| or else Is_Internal_Name (Chars (Parent_Subp)) |
| or else (Is_Controlled (Parent_Type) |
| and then Chars (Parent_Subp) in Name_Adjust |
| | Name_Finalize |
| | Name_Initialize) |
| then |
| Set_Derived_Name; |
| |
| -- An inherited dispatching equality will be overridden by an internally |
| -- generated one, or by an explicit one, so preserve its name and thus |
| -- its entry in the dispatch table. Otherwise, if Parent_Subp is a |
| -- private operation it may become invisible if the full view has |
| -- progenitors, and the dispatch table will be malformed. |
| -- We check that the type is limited to handle the anomalous declaration |
| -- of Limited_Controlled, which is derived from a non-limited type, and |
| -- which is handled specially elsewhere as well. |
| |
| elsif Chars (Parent_Subp) = Name_Op_Eq |
| and then Is_Dispatching_Operation (Parent_Subp) |
| and then Etype (Parent_Subp) = Standard_Boolean |
| and then not Is_Limited_Type (Etype (First_Formal (Parent_Subp))) |
| and then |
| Etype (First_Formal (Parent_Subp)) = |
| Etype (Next_Formal (First_Formal (Parent_Subp))) |
| then |
| Set_Derived_Name; |
| |
| -- If parent is hidden, this can be a regular derivation if the |
| -- parent is immediately visible in a non-instantiating context, |
| -- or if we are in the private part of an instance. This test |
| -- should still be refined ??? |
| |
| -- The test for In_Instance_Not_Visible avoids inheriting the derived |
| -- operation as a non-visible operation in cases where the parent |
| -- subprogram might not be visible now, but was visible within the |
| -- original generic, so it would be wrong to make the inherited |
| -- subprogram non-visible now. (Not clear if this test is fully |
| -- correct; are there any cases where we should declare the inherited |
| -- operation as not visible to avoid it being overridden, e.g., when |
| -- the parent type is a generic actual with private primitives ???) |
| |
| -- (they should be treated the same as other private inherited |
| -- subprograms, but it's not clear how to do this cleanly). ??? |
| |
| elsif (In_Open_Scopes (Scope (Base_Type (Parent_Type))) |
| and then Is_Immediately_Visible (Parent_Subp) |
| and then not In_Instance) |
| or else In_Instance_Not_Visible |
| then |
| Set_Derived_Name; |
| |
| -- Ada 2005 (AI-251): Regular derivation if the parent subprogram |
| -- overrides an interface primitive because interface primitives |
| -- must be visible in the partial view of the parent (RM 7.3 (7.3/2)) |
| |
| elsif Ada_Version >= Ada_2005 |
| and then Is_Dispatching_Operation (Parent_Subp) |
| and then Present (Covered_Interface_Op (Parent_Subp)) |
| then |
| Set_Derived_Name; |
| |
| -- Otherwise, the type is inheriting a private operation, so enter it |
| -- with a special name so it can't be overridden. See also below, where |
| -- we check for this case, and if so avoid setting Requires_Overriding. |
| |
| else |
| Set_Chars (New_Subp, New_External_Name (Chars (Parent_Subp), 'P')); |
| end if; |
| |
| Set_Parent (New_Subp, Parent (Derived_Type)); |
| |
| if Present (Actual_Subp) then |
| Replace_Type (Actual_Subp, New_Subp); |
| else |
| Replace_Type (Parent_Subp, New_Subp); |
| end if; |
| |
| Conditional_Delay (New_Subp, Parent_Subp); |
| |
| -- If we are creating a renaming for a primitive operation of an |
| -- actual of a generic derived type, we must examine the signature |
| -- of the actual primitive, not that of the generic formal, which for |
| -- example may be an interface. However the name and initial value |
| -- of the inherited operation are those of the formal primitive. |
| |
| Formal := First_Formal (Parent_Subp); |
| |
| if Present (Actual_Subp) then |
| Formal_Of_Actual := First_Formal (Actual_Subp); |
| else |
| Formal_Of_Actual := Empty; |
| end if; |
| |
| while Present (Formal) loop |
| New_Formal := New_Copy (Formal); |
| |
| -- Extra formals are not inherited from a limited interface parent |
| -- since limitedness is not inherited in such case (AI-419) and this |
| -- affects the extra formals. |
| |
| if Is_Limited_Interface (Parent_Type) then |
| Set_Extra_Formal (New_Formal, Empty); |
| Set_Extra_Accessibility (New_Formal, Empty); |
| end if; |
| |
| -- Normally we do not go copying parents, but in the case of |
| -- formals, we need to link up to the declaration (which is the |
| -- parameter specification), and it is fine to link up to the |
| -- original formal's parameter specification in this case. |
| |
| Set_Parent (New_Formal, Parent (Formal)); |
| Append_Entity (New_Formal, New_Subp); |
| |
| if Present (Formal_Of_Actual) then |
| Replace_Type (Formal_Of_Actual, New_Formal); |
| Next_Formal (Formal_Of_Actual); |
| else |
| Replace_Type (Formal, New_Formal); |
| end if; |
| |
| Next_Formal (Formal); |
| end loop; |
| |
| -- Extra formals are shared between the parent subprogram and this |
| -- internal entity built by Derive_Subprogram (implicit in the above |
| -- copy of formals), unless the parent type is a limited interface type; |
| -- hence we must inherit also the reference to the first extra formal. |
| -- When the parent type is an interface, the extra formals will be added |
| -- when the tagged type is frozen (see Expand_Freeze_Record_Type). |
| |
| if not Is_Limited_Interface (Parent_Type) then |
| Set_Extra_Formals (New_Subp, Extra_Formals (Parent_Subp)); |
| |
| if Ekind (New_Subp) = E_Function then |
| Set_Extra_Accessibility_Of_Result (New_Subp, |
| Extra_Accessibility_Of_Result (Parent_Subp)); |
| end if; |
| end if; |
| |
| -- If this derivation corresponds to a tagged generic actual, then |
| -- primitive operations rename those of the actual. Otherwise the |
| -- primitive operations rename those of the parent type, If the parent |
| -- renames an intrinsic operator, so does the new subprogram. We except |
| -- concatenation, which is always properly typed, and does not get |
| -- expanded as other intrinsic operations. |
| |
| if No (Actual_Subp) then |
| if Is_Intrinsic_Subprogram (Parent_Subp) then |
| Set_Is_Intrinsic_Subprogram (New_Subp); |
| |
| if Present (Alias (Parent_Subp)) |
| and then Chars (Parent_Subp) /= Name_Op_Concat |
| then |
| Set_Alias (New_Subp, Alias (Parent_Subp)); |
| else |
| Set_Alias (New_Subp, Parent_Subp); |
| end if; |
| |
| else |
| Set_Alias (New_Subp, Parent_Subp); |
| end if; |
| |
| else |
| Set_Alias (New_Subp, Actual_Subp); |
| end if; |
| |
| Copy_Strub_Mode (New_Subp, Alias (New_Subp)); |
| |
| -- Derived subprograms of a tagged type must inherit the convention |
| -- of the parent subprogram (a requirement of AI95-117). Derived |
| -- subprograms of untagged types simply get convention Ada by default. |
| |
| -- If the derived type is a tagged generic formal type with unknown |
| -- discriminants, its convention is intrinsic (RM 6.3.1 (8)). |
| |
| -- However, if the type is derived from a generic formal, the further |
| -- inherited subprogram has the convention of the non-generic ancestor. |
| -- Otherwise there would be no way to override the operation. |
| -- (This is subject to forthcoming ARG discussions). |
| |
| if Is_Tagged_Type (Derived_Type) then |
| if Is_Generic_Type (Derived_Type) |
| and then Has_Unknown_Discriminants (Derived_Type) |
| then |
| Set_Convention (New_Subp, Convention_Intrinsic); |
| |
| else |
| if Is_Generic_Type (Parent_Type) |
| and then Has_Unknown_Discriminants (Parent_Type) |
| then |
| Set_Convention (New_Subp, Convention (Alias (Parent_Subp))); |
| else |
| Set_Convention (New_Subp, Convention (Parent_Subp)); |
| end if; |
| end if; |
| end if; |
| |
| -- Predefined controlled operations retain their name even if the parent |
| -- is hidden (see above), but they are not primitive operations if the |
| -- ancestor is not visible, for example if the parent is a private |
| -- extension completed with a controlled extension. Note that a full |
| -- type that is controlled can break privacy: the flag Is_Controlled is |
| -- set on both views of the type. |
| |
| if Is_Controlled (Parent_Type) |
| and then Chars (Parent_Subp) in Name_Initialize |
| | Name_Adjust |
| | Name_Finalize |
| and then Is_Hidden (Parent_Subp) |
| and then not Is_Visibly_Controlled (Parent_Type) |
| then |
| Set_Is_Hidden (New_Subp); |
| end if; |
| |
| Set_Is_Imported (New_Subp, Is_Imported (Parent_Subp)); |
| Set_Is_Exported (New_Subp, Is_Exported (Parent_Subp)); |
| |
| if Ekind (Parent_Subp) = E_Procedure then |
| Set_Is_Valued_Procedure |
| (New_Subp, Is_Valued_Procedure (Parent_Subp)); |
| else |
| Set_Has_Controlling_Result |
| (New_Subp, Has_Controlling_Result (Parent_Subp)); |
| end if; |
| |
| -- No_Return must be inherited properly. If this is overridden in the |
| -- case of a dispatching operation, then the check is made later in |
| -- Check_Abstract_Overriding that the overriding operation is also |
| -- No_Return (no such check is required for the nondispatching case). |
| |
| Set_No_Return (New_Subp, No_Return (Parent_Subp)); |
| |
| -- If the parent subprogram is marked as Ghost, then so is the derived |
| -- subprogram. The ghost policy for the derived subprogram is set from |
| -- the effective ghost policy at the point of derived type declaration. |
| |
| if Is_Ghost_Entity (Parent_Subp) then |
| Set_Is_Ghost_Entity (New_Subp); |
| end if; |
| |
| -- A derived function with a controlling result is abstract. If the |
| -- Derived_Type is a nonabstract formal generic derived type, then |
| -- inherited operations are not abstract: the required check is done at |
| -- instantiation time. If the derivation is for a generic actual, the |
| -- function is not abstract unless the actual is. |
| |
| if Is_Generic_Type (Derived_Type) |
| and then not Is_Abstract_Type (Derived_Type) |
| then |
| null; |
| |
| -- Ada 2005 (AI-228): Calculate the "require overriding" and "abstract" |
| -- properties of the subprogram, as defined in RM-3.9.3(4/2-6/2). Note |
| -- that functions with controlling access results of record extensions |
| -- with a null extension part require overriding (AI95-00391/06). |
| |
| -- Ada 2022 (AI12-0042): Similarly, set those properties for |
| -- implementing the rule of RM 7.3.2(6.1/4). |
| |
| -- A subprogram subject to pragma Extensions_Visible with value False |
| -- requires overriding if the subprogram has at least one controlling |
| -- OUT parameter (SPARK RM 6.1.7(6)). |
| |
| elsif Ada_Version >= Ada_2005 |
| and then (Is_Abstract_Subprogram (Alias (New_Subp)) |
| or else (Is_Tagged_Type (Derived_Type) |
| and then Etype (New_Subp) = Derived_Type |
| and then not Is_Null_Extension (Derived_Type)) |
| or else (Is_Tagged_Type (Derived_Type) |
| and then Ekind (Etype (New_Subp)) = |
| E_Anonymous_Access_Type |
| and then Designated_Type (Etype (New_Subp)) = |
| Derived_Type) |
| or else (Comes_From_Source (Alias (New_Subp)) |
| and then Is_EVF_Procedure (Alias (New_Subp))) |
| |
| -- AI12-0042: Set Requires_Overriding when a type extension |
| -- inherits a private operation that is visible at the |
| -- point of extension (Has_Private_Ancestor is False) from |
| -- an ancestor that has Type_Invariant'Class, and when the |
| -- type extension is in a visible part (the latter as |
| -- clarified by AI12-0382). |
| |
| or else |
| (not Has_Private_Ancestor (Derived_Type) |
| and then Has_Invariants (Parent_Type) |
| and then |
| Present (Get_Pragma (Parent_Type, Pragma_Invariant)) |
| and then |
| Class_Present |
| (Get_Pragma (Parent_Type, Pragma_Invariant)) |
| and then Is_Private_Primitive (Parent_Subp) |
| and then In_Visible_Part (Scope (Derived_Type)))) |
| |
| and then No (Actual_Subp) |
| then |
| if not Is_Tagged_Type (Derived_Type) |
| or else Is_Abstract_Type (Derived_Type) |
| or else Is_Abstract_Subprogram (Alias (New_Subp)) |
| then |
| Set_Is_Abstract_Subprogram (New_Subp); |
| |
| -- If the Chars of the new subprogram is different from that of the |
| -- parent's one, it means that we entered it with a special name so |
| -- it can't be overridden (see above). In that case we had better not |
| -- *require* it to be overridden. This is the case where the parent |
| -- type inherited the operation privately, so there's no danger of |
| -- dangling dispatching. |
| |
| elsif Chars (New_Subp) = Chars (Alias (New_Subp)) then |
| Set_Requires_Overriding (New_Subp); |
| end if; |
| |
| elsif Ada_Version < Ada_2005 |
| and then (Is_Abstract_Subprogram (Alias (New_Subp)) |
| or else (Is_Tagged_Type (Derived_Type) |
| and then Etype (New_Subp) = Derived_Type |
| and then No (Actual_Subp))) |
| then |
| Set_Is_Abstract_Subprogram (New_Subp); |
| |
| -- AI05-0097 : an inherited operation that dispatches on result is |
| -- abstract if the derived type is abstract, even if the parent type |
| -- is concrete and the derived type is a null extension. |
| |
| elsif Has_Controlling_Result (Alias (New_Subp)) |
| and then Is_Abstract_Type (Etype (New_Subp)) |
| then |
| Set_Is_Abstract_Subprogram (New_Subp); |
| |
| -- Finally, if the parent type is abstract we must verify that all |
| -- inherited operations are either non-abstract or overridden, or that |
| -- the derived type itself is abstract (this check is performed at the |
| -- end of a package declaration, in Check_Abstract_Overriding). A |
| -- private overriding in the parent type will not be visible in the |
| -- derivation if we are not in an inner package or in a child unit of |
| -- the parent type, in which case the abstractness of the inherited |
| -- operation is carried to the new subprogram. |
| |
| elsif Is_Abstract_Type (Parent_Type) |
| and then not In_Open_Scopes (Scope (Parent_Type)) |
| and then Is_Private_Overriding |
| and then Is_Abstract_Subprogram (Visible_Subp) |
| then |
| if No (Actual_Subp) then |
| Set_Alias (New_Subp, Visible_Subp); |
| Set_Is_Abstract_Subprogram (New_Subp, True); |
| |
| else |
| -- If this is a derivation for an instance of a formal derived |
| -- type, abstractness comes from the primitive operation of the |
| -- actual, not from the operation inherited from the ancestor. |
| |
| Set_Is_Abstract_Subprogram |
| (New_Subp, Is_Abstract_Subprogram (Actual_Subp)); |
| end if; |
| end if; |
| |
| New_Overloaded_Entity (New_Subp, Derived_Type); |
| |
| -- Ada RM 6.1.1 (15): If a subprogram inherits nonconforming class-wide |
| -- preconditions and the derived type is abstract, the derived operation |
| -- is abstract as well if parent subprogram is not abstract or null. |
| |
| if Is_Abstract_Type (Derived_Type) |
| and then Has_Non_Trivial_Precondition (Parent_Subp) |
| and then Present (Interfaces (Derived_Type)) |
| then |
| |
| -- Add useful attributes of subprogram before the freeze point, |
| -- in case freezing is delayed or there are previous errors. |
| |
| Set_Is_Dispatching_Operation (New_Subp); |
| |
| declare |
| Iface_Prim : constant Entity_Id := Covered_Interface_Op (New_Subp); |
| |
| begin |
| if Present (Iface_Prim) |
| and then Has_Non_Trivial_Precondition (Iface_Prim) |
| then |
| Set_Is_Abstract_Subprogram (New_Subp); |
| end if; |
| end; |
| end if; |
| |
| -- Check for case of a derived subprogram for the instantiation of a |
| -- formal derived tagged type, if so mark the subprogram as dispatching |
| -- and inherit the dispatching attributes of the actual subprogram. The |
| -- derived subprogram is effectively renaming of the actual subprogram, |
| -- so it needs to have the same attributes as the actual. |
| |
| if Present (Actual_Subp) |
| and then Is_Dispatching_Operation (Actual_Subp) |
| then |
| Set_Is_Dispatching_Operation (New_Subp); |
| |
| if Present (DTC_Entity (Actual_Subp)) then |
| Set_DTC_Entity (New_Subp, DTC_Entity (Actual_Subp)); |
| Set_DT_Position_Value (New_Subp, DT_Position (Actual_Subp)); |
| end if; |
| end if; |
| |
| -- Indicate that a derived subprogram does not require a body and that |
| -- it does not require processing of default expressions. |
| |
| Set_Has_Completion (New_Subp); |
| Set_Default_Expressions_Processed (New_Subp); |
| |
| if Ekind (New_Subp) = E_Function then |
| Set_Mechanism (New_Subp, Mechanism (Parent_Subp)); |
| Set_Returns_By_Ref (New_Subp, Returns_By_Ref (Parent_Subp)); |
| end if; |
| |
| -- Ada 2022 (AI12-0279): If a Yield aspect is specified True for a |
| -- primitive subprogram S of a type T, then the aspect is inherited |
| -- by the corresponding primitive subprogram of each descendant of T. |
| |
| if Is_Tagged_Type (Derived_Type) |
| and then Is_Dispatching_Operation (New_Subp) |
| and then Has_Yield_Aspect (Alias (New_Subp)) |
| then |
| Set_Has_Yield_Aspect (New_Subp, Has_Yield_Aspect (Alias (New_Subp))); |
| end if; |
| |
| Set_Is_Ada_2022_Only (New_Subp, Is_Ada_2022_Only (Parent_Subp)); |
| end Derive_Subprogram; |
| |
| ------------------------ |
| -- Derive_Subprograms -- |
| ------------------------ |
| |
| procedure Derive_Subprograms |
| (Parent_Type : Entity_Id; |
| Derived_Type : Entity_Id; |
| Generic_Actual : Entity_Id := Empty) |
| is |
| Op_List : constant Elist_Id := |
| Collect_Primitive_Operations (Parent_Type); |
| |
| function Check_Derived_Type return Boolean; |
| -- Check that all the entities derived from Parent_Type are found in |
| -- the list of primitives of Derived_Type exactly in the same order. |
| |
| procedure Derive_Interface_Subprogram |
| (New_Subp : out Entity_Id; |
| Subp : Entity_Id; |
| Actual_Subp : Entity_Id); |
| -- Derive New_Subp from the ultimate alias of the parent subprogram Subp |
| -- (which is an interface primitive). If Generic_Actual is present then |
| -- Actual_Subp is the actual subprogram corresponding with the generic |
| -- subprogram Subp. |
| |
| ------------------------ |
| -- Check_Derived_Type -- |
| ------------------------ |
| |
| function Check_Derived_Type return Boolean is |
| E : Entity_Id; |
| Derived_Elmt : Elmt_Id; |
| Derived_Op : Entity_Id; |
| Derived_Ops : Elist_Id; |
| Parent_Elmt : Elmt_Id; |
| Parent_Op : Entity_Id; |
| |
| begin |
| -- Traverse list of entities in the current scope searching for |
| -- an incomplete type whose full-view is derived type. |
| |
| E := First_Entity (Scope (Derived_Type)); |
| while Present (E) and then E /= Derived_Type loop |
| if Ekind (E) = E_Incomplete_Type |
| and then Present (Full_View (E)) |
| and then Full_View (E) = Derived_Type |
| then |
| -- Disable this test if Derived_Type completes an incomplete |
| -- type because in such case more primitives can be added |
| -- later to the list of primitives of Derived_Type by routine |
| -- Process_Incomplete_Dependents. |
| |
| return True; |
| end if; |
| |
| Next_Entity (E); |
| end loop; |
| |
| Derived_Ops := Collect_Primitive_Operations (Derived_Type); |
| |
| Derived_Elmt := First_Elmt (Derived_Ops); |
| Parent_Elmt := First_Elmt (Op_List); |
| while Present (Parent_Elmt) loop |
| Parent_Op := Node (Parent_Elmt); |
| Derived_Op := Node (Derived_Elmt); |
| |
| -- At this early stage Derived_Type has no entities with attribute |
| -- Interface_Alias. In addition, such primitives are always |
| -- located at the end of the list of primitives of Parent_Type. |
| -- Therefore, if found we can safely stop processing pending |
| -- entities. |
| |
| exit when Present (Interface_Alias (Parent_Op)); |
| |
| -- Handle hidden entities |
| |
| if not Is_Predefined_Dispatching_Operation (Parent_Op) |
| and then Is_Hidden (Parent_Op) |
| then |
| if Present (Derived_Op) |
| and then Primitive_Names_Match (Parent_Op, Derived_Op) |
| then |
| Next_Elmt (Derived_Elmt); |
| end if; |
| |
| else |
| if No (Derived_Op) |
| or else Ekind (Parent_Op) /= Ekind (Derived_Op) |
| or else not Primitive_Names_Match (Parent_Op, Derived_Op) |
| then |
| return False; |
| end if; |
| |
| Next_Elmt (Derived_Elmt); |
| end if; |
| |
| Next_Elmt (Parent_Elmt); |
| end loop; |
| |
| return True; |
| end Check_Derived_Type; |
| |
| --------------------------------- |
| -- Derive_Interface_Subprogram -- |
| --------------------------------- |
| |
| procedure Derive_Interface_Subprogram |
| (New_Subp : out Entity_Id; |
| Subp : Entity_Id; |
| Actual_Subp : Entity_Id) |
| is |
| Iface_Subp : constant Entity_Id := Ultimate_Alias (Subp); |
| Iface_Type : constant Entity_Id := Find_Dispatching_Type (Iface_Subp); |
| |
| begin |
| pragma Assert (Is_Interface (Iface_Type)); |
| |
| Derive_Subprogram |
| (New_Subp => New_Subp, |
| Parent_Subp => Iface_Subp, |
| Derived_Type => Derived_Type, |
| Parent_Type => Iface_Type, |
| Actual_Subp => Actual_Subp); |
| |
| -- Given that this new interface entity corresponds with a primitive |
| -- of the parent that was not overridden we must leave it associated |
| -- with its parent primitive to ensure that it will share the same |
| -- dispatch table slot when overridden. We must set the Alias to Subp |
| -- (instead of Iface_Subp), and we must fix Is_Abstract_Subprogram |
| -- (in case we inherited Subp from Iface_Type via a nonabstract |
| -- generic formal type). |
| |
| if No (Actual_Subp) then |
| Set_Alias (New_Subp, Subp); |
| |
| declare |
| T : Entity_Id := Find_Dispatching_Type (Subp); |
| begin |
| while Etype (T) /= T loop |
| if Is_Generic_Type (T) and then not Is_Abstract_Type (T) then |
| Set_Is_Abstract_Subprogram (New_Subp, False); |
| exit; |
| end if; |
| |
| T := Etype (T); |
| end loop; |
| end; |
| |
| -- For instantiations this is not needed since the previous call to |
| -- Derive_Subprogram leaves the entity well decorated. |
| |
| else |
| pragma Assert (Alias (New_Subp) = Actual_Subp); |
| null; |
| end if; |
| end Derive_Interface_Subprogram; |
| |
| -- Local variables |
| |
| Alias_Subp : Entity_Id; |
| Act_List : Elist_Id; |
| Act_Elmt : Elmt_Id; |
| Act_Subp : Entity_Id := Empty; |
| Elmt : Elmt_Id; |
| Need_Search : Boolean := False; |
| New_Subp : Entity_Id; |
| Parent_Base : Entity_Id; |
| Subp : Entity_Id; |
| |
| -- Start of processing for Derive_Subprograms |
| |
| begin |
| if Ekind (Parent_Type) = E_Record_Type_With_Private |
| and then Has_Discriminants (Parent_Type) |
| and then Present (Full_View (Parent_Type)) |
| then |
| Parent_Base := Full_View (Parent_Type); |
| else |
| Parent_Base := Parent_Type; |
| end if; |
| |
| if Present (Generic_Actual) then |
| Act_List := Collect_Primitive_Operations (Generic_Actual); |
| Act_Elmt := First_Elmt (Act_List); |
| else |
| Act_List := No_Elist; |
| Act_Elmt := No_Elmt; |
| end if; |
| |
| -- Derive primitives inherited from the parent. Note that if the generic |
| -- actual is present, this is not really a type derivation, it is a |
| -- completion within an instance. |
| |
| -- Case 1: Derived_Type does not implement interfaces |
| |
| if not Is_Tagged_Type (Derived_Type) |
| or else (not Has_Interfaces (Derived_Type) |
| and then not (Present (Generic_Actual) |
| and then Has_Interfaces (Generic_Actual))) |
| then |
| Elmt := First_Elmt (Op_List); |
| while Present (Elmt) loop |
| Subp := Node (Elmt); |
| |
| -- Literals are derived earlier in the process of building the |
| -- derived type, and are skipped here. |
| |
| if Ekind (Subp) = E_Enumeration_Literal then |
| null; |
| |
| -- The actual is a direct descendant and the common primitive |
| -- operations appear in the same order. |
| |
| -- If the generic parent type is present, the derived type is an |
| -- instance of a formal derived type, and within the instance its |
| -- operations are those of the actual. We derive from the formal |
| -- type but make the inherited operations aliases of the |
| -- corresponding operations of the actual. |
| |
| else |
| pragma Assert (No (Node (Act_Elmt)) |
| or else (Primitive_Names_Match (Subp, Node (Act_Elmt)) |
| and then |
| Type_Conformant |
| (Subp, Node (Act_Elmt), |
| Skip_Controlling_Formals => True))); |
| |
| Derive_Subprogram |
| (New_Subp, Subp, Derived_Type, Parent_Base, Node (Act_Elmt)); |
| |
| if Present (Act_Elmt) then |
| Next_Elmt (Act_Elmt); |
| end if; |
| end if; |
| |
| Next_Elmt (Elmt); |
| end loop; |
| |
| -- Case 2: Derived_Type implements interfaces |
| |
| else |
| -- If the parent type has no predefined primitives we remove |
| -- predefined primitives from the list of primitives of generic |
| -- actual to simplify the complexity of this algorithm. |
| |
| if Present (Generic_Actual) then |
| declare |
| Has_Predefined_Primitives : Boolean := False; |
| |
| begin |
| -- Check if the parent type has predefined primitives |
| |
| Elmt := First_Elmt (Op_List); |
| while Present (Elmt) loop |
| Subp := Node (Elmt); |
| |
| if Is_Predefined_Dispatching_Operation (Subp) |
| and then not Comes_From_Source (Ultimate_Alias (Subp)) |
| then |
| Has_Predefined_Primitives := True; |
| exit; |
| end if; |
| |
| Next_Elmt (Elmt); |
| end loop; |
| |
| -- Remove predefined primitives of Generic_Actual. We must use |
| -- an auxiliary list because in case of tagged types the value |
| -- returned by Collect_Primitive_Operations is the value stored |
| -- in its Primitive_Operations attribute (and we don't want to |
| -- modify its current contents). |
| |
| if not Has_Predefined_Primitives then |
| declare |
| Aux_List : constant Elist_Id := New_Elmt_List; |
| |
| begin |
| Elmt := First_Elmt (Act_List); |
| while Present (Elmt) loop |
| Subp := Node (Elmt); |
| |
| if not Is_Predefined_Dispatching_Operation (Subp) |
| or else Comes_From_Source (Subp) |
| then |
| Append_Elmt (Subp, Aux_List); |
| end if; |
| |
| Next_Elmt (Elmt); |
| end loop; |
| |
| Act_List := Aux_List; |
| end; |
| end if; |
| |
| Act_Elmt := First_Elmt (Act_List); |
| Act_Subp := Node (Act_Elmt); |
| end; |
| end if; |
| |
| -- Stage 1: If the generic actual is not present we derive the |
| -- primitives inherited from the parent type. If the generic parent |
| -- type is present, the derived type is an instance of a formal |
| -- derived type, and within the instance its operations are those of |
| -- the actual. We derive from the formal type but make the inherited |
| -- operations aliases of the corresponding operations of the actual. |
| |
| Elmt := First_Elmt (Op_List); |
| while Present (Elmt) loop |
| Subp := Node (Elmt); |
| Alias_Subp := Ultimate_Alias (Subp); |
| |
| -- Do not derive internal entities of the parent that link |
| -- interface primitives with their covering primitive. These |
| -- entities will be added to this type when frozen. |
| |
| if Present (Interface_Alias (Subp)) then |
| goto Continue; |
| end if; |
| |
| -- If the generic actual is present find the corresponding |
| -- operation in the generic actual. If the parent type is a |
| -- direct ancestor of the derived type then, even if it is an |
| -- interface, the operations are inherited from the primary |
| -- dispatch table and are in the proper order. If we detect here |
| -- that primitives are not in the same order we traverse the list |
| -- of primitive operations of the actual to find the one that |
| -- implements the interface primitive. |
| |
| if Need_Search |
| or else |
| (Present (Generic_Actual) |
| and then Present (Act_Subp) |
| and then not |
| (Primitive_Names_Match (Subp, Act_Subp) |
| and then |
| Type_Conformant (Subp, Act_Subp, |
| Skip_Controlling_Formals => True))) |
| then |
| pragma Assert (not Is_Ancestor (Parent_Base, Generic_Actual, |
| Use_Full_View => True)); |
| |
| -- Remember that we need searching for all pending primitives |
| |
| Need_Search := True; |
| |
| -- Handle entities associated with interface primitives |
| |
| if Present (Alias_Subp) |
| and then Is_Interface (Find_Dispatching_Type (Alias_Subp)) |
| and then not Is_Predefined_Dispatching_Operation (Subp) |
| then |
| -- Search for the primitive in the homonym chain |
| |
| Act_Subp := |
| Find_Primitive_Covering_Interface |
| (Tagged_Type => Generic_Actual, |
| Iface_Prim => Alias_Subp); |
| |
| -- Previous search may not locate primitives covering |
| -- interfaces defined in generics units or instantiations. |
| -- (it fails if the covering primitive has formals whose |
| -- type is also defined in generics or instantiations). |
| -- In such case we search in the list of primitives of the |
| -- generic actual for the internal entity that links the |
| -- interface primitive and the covering primitive. |
| |
| if No (Act_Subp) |
| and then Is_Generic_Type (Parent_Type) |
| then |
| -- This code has been designed to handle only generic |
| -- formals that implement interfaces that are defined |
| -- in a generic unit or instantiation. If this code is |
| -- needed for other cases we must review it because |
| -- (given that it relies on Original_Location to locate |
| -- the primitive of Generic_Actual that covers the |
| -- interface) it could leave linked through attribute |
| -- Alias entities of unrelated instantiations). |
| |
| pragma Assert |
| (Is_Generic_Unit |
| (Scope (Find_Dispatching_Type (Alias_Subp))) |
| or else |
| Instantiation_Location |
| (Sloc (Find_Dispatching_Type (Alias_Subp))) |
| /= No_Location); |
| declare |
| Iface_Prim_Loc : constant Source_Ptr := |
| Original_Location (Sloc (Alias_Subp)); |
| |
| Elmt : Elmt_Id; |
| Prim : Entity_Id; |
| |
| begin |
| Elmt := |
| First_Elmt (Primitive_Operations (Generic_Actual)); |
| |
| Search : while Present (Elmt) loop |
| Prim := Node (Elmt); |
| |
| if Present (Interface_Alias (Prim)) |
| and then Original_Location |
| (Sloc (Interface_Alias (Prim))) = |
| Iface_Prim_Loc |
| then |
| Act_Subp := Alias (Prim); |
| exit Search; |
| end if; |
| |
| Next_Elmt (Elmt); |
| end loop Search; |
| end; |
| end if; |
| |
| pragma Assert (Present (Act_Subp) |
| or else Is_Abstract_Type (Generic_Actual) |
| or else Serious_Errors_Detected > 0); |
| |
| -- Handle predefined primitives plus the rest of user-defined |
| -- primitives |
| |
| else |
| Act_Elmt := First_Elmt (Act_List); |
| while Present (Act_Elmt) loop |
| Act_Subp := Node (Act_Elmt); |
| |
| exit when Primitive_Names_Match (Subp, Act_Subp) |
| and then Type_Conformant |
| (Subp, Act_Subp, |
| Skip_Controlling_Formals => True) |
| and then No (Interface_Alias (Act_Subp)); |
| |
| Next_Elmt (Act_Elmt); |
| end loop; |
| |
| if No (Act_Elmt) then |
| Act_Subp := Empty; |
| end if; |
| end if; |
| end if; |
| |
| -- Case 1: If the parent is a limited interface then it has the |
| -- predefined primitives of synchronized interfaces. However, the |
| -- actual type may be a non-limited type and hence it does not |
| -- have such primitives. |
| |
| if Present (Generic_Actual) |
| and then No (Act_Subp) |
| and then Is_Limited_Interface (Parent_Base) |
| and then Is_Predefined_Interface_Primitive (Subp) |
| then |
| null; |
| |
| -- Case 2: Inherit entities associated with interfaces that were |
| -- not covered by the parent type. We exclude here null interface |
| -- primitives because they do not need special management. |
| |
| -- We also exclude interface operations that are renamings. If the |
| -- subprogram is an explicit renaming of an interface primitive, |
| -- it is a regular primitive operation, and the presence of its |
| -- alias is not relevant: it has to be derived like any other |
| -- primitive. |
| |
| elsif Present (Alias (Subp)) |
| and then Nkind (Unit_Declaration_Node (Subp)) /= |
| N_Subprogram_Renaming_Declaration |
| and then Is_Interface (Find_Dispatching_Type (Alias_Subp)) |
| and then not |
| (Nkind (Parent (Alias_Subp)) = N_Procedure_Specification |
| and then Null_Present (Parent (Alias_Subp))) |
| then |
| -- If this is an abstract private type then we transfer the |
| -- derivation of the interface primitive from the partial view |
| -- to the full view. This is safe because all the interfaces |
| -- must be visible in the partial view. Done to avoid adding |
| -- a new interface derivation to the private part of the |
| -- enclosing package; otherwise this new derivation would be |
| -- decorated as hidden when the analysis of the enclosing |
| -- package completes. |
| |
| if Is_Abstract_Type (Derived_Type) |
| and then In_Private_Part (Current_Scope) |
| and then Has_Private_Declaration (Derived_Type) |
| then |
| declare |
| Partial_View : Entity_Id; |
| Elmt : Elmt_Id; |
| Ent : Entity_Id; |
| |
| begin |
| Partial_View := First_Entity (Current_Scope); |
| loop |
| exit when No (Partial_View) |
| or else (Has_Private_Declaration (Partial_View) |
| and then |
| Full_View (Partial_View) = Derived_Type); |
| |
| Next_Entity (Partial_View); |
| end loop; |
| |
| -- If the partial view was not found then the source code |
| -- has errors and the derivation is not needed. |
| |
| if Present (Partial_View) then |
| Elmt := |
| First_Elmt (Primitive_Operations (Partial_View)); |
| while Present (Elmt) loop |
| Ent := Node (Elmt); |
| |
| if Present (Alias (Ent)) |
| and then Ultimate_Alias (Ent) = Alias (Subp) |
| then |
| Append_Elmt |
| (Ent, Primitive_Operations (Derived_Type)); |
| exit; |
| end if; |
| |
| Next_Elmt (Elmt); |
| end loop; |
| |
| -- If the interface primitive was not found in the |
| -- partial view then this interface primitive was |
| -- overridden. We add a derivation to activate in |
| -- Derive_Progenitor_Subprograms the machinery to |
| -- search for it. |
| |
| if No (Elmt) then |
| Derive_Interface_Subprogram |
| (New_Subp => New_Subp, |
| Subp => Subp, |
| Actual_Subp => Act_Subp); |
| end if; |
| end if; |
| end; |
| else |
| Derive_Interface_Subprogram |
| (New_Subp => New_Subp, |
| Subp => Subp, |
| Actual_Subp => Act_Subp); |
| end if; |
| |
| -- Case 3: Common derivation |
| |
| else |
| Derive_Subprogram |
| (New_Subp => New_Subp, |
| Parent_Subp => Subp, |
| Derived_Type => Derived_Type, |
| Parent_Type => Parent_Base, |
| Actual_Subp => Act_Subp); |
| end if; |
| |
| -- No need to update Act_Elm if we must search for the |
| -- corresponding operation in the generic actual |
| |
| if not Need_Search |
| and then Present (Act_Elmt) |
| then |
| Next_Elmt (Act_Elmt); |
| Act_Subp := Node (Act_Elmt); |
| end if; |
| |
| <<Continue>> |
| Next_Elmt (Elmt); |
| end loop; |
| |
| -- Inherit additional operations from progenitors. If the derived |
| -- type is a generic actual, there are not new primitive operations |
| -- for the type because it has those of the actual, and therefore |
| -- nothing needs to be done. The renamings generated above are not |
| -- primitive operations, and their purpose is simply to make the |
| -- proper operations visible within an instantiation. |
| |
| if No (Generic_Actual) then |
| Derive_Progenitor_Subprograms (Parent_Base, Derived_Type); |
| end if; |
| end if; |
| |
| -- Final check: Direct descendants must have their primitives in the |
| -- same order. We exclude from this test untagged types and instances |
| -- of formal derived types. We skip this test if we have already |
| -- reported serious errors in the sources. |
| |
| pragma Assert (not Is_Tagged_Type (Derived_Type) |
| or else Present (Generic_Actual) |
| or else Serious_Errors_Detected > 0 |
| or else Check_Derived_Type); |
| end Derive_Subprograms; |
| |
| -------------------------------- |
| -- Derived_Standard_Character -- |
| -------------------------------- |
| |
| procedure Derived_Standard_Character |
| (N : Node_Id; |
| Parent_Type : Entity_Id; |
| Derived_Type : Entity_Id) |
| is |
| Loc : constant Source_Ptr := Sloc (N); |
| Def : constant Node_Id := Type_Definition (N); |
| Indic : constant Node_Id := Subtype_Indication (Def); |
| Parent_Base : constant Entity_Id := Base_Type (Parent_Type); |
| Implicit_Base : constant Entity_Id := |
| Create_Itype |
| (E_Enumeration_Type, N, Derived_Type, 'B'); |
| |
| Lo : Node_Id; |
| Hi : Node_Id; |
| |
| begin |
| Discard_Node (Process_Subtype (Indic, N)); |
| |
| Set_Etype (Implicit_Base, Parent_Base); |
| Set_Size_Info (Implicit_Base, Root_Type (Parent_Type)); |
| Set_RM_Size (Implicit_Base, RM_Size (Root_Type (Parent_Type))); |
| |
| Set_Is_Character_Type (Implicit_Base, True); |
| Set_Has_Delayed_Freeze (Implicit_Base); |
| |
| -- The bounds of the implicit base are the bounds of the parent base. |
| -- Note that their type is the parent base. |
| |
| Lo := New_Copy_Tree (Type_Low_Bound (Parent_Base)); |
| Hi := New_Copy_Tree (Type_High_Bound (Parent_Base)); |
| |
| Set_Scalar_Range (Implicit_Base, |
| Make_Range (Loc, |
| Low_Bound => Lo, |
| High_Bound => Hi)); |
| |
| Mutate_Ekind (Derived_Type, E_Enumeration_Subtype); |
| Set_Etype (Derived_Type, Implicit_Base); |
| Set_Size_Info (Derived_Type, Parent_Type); |
| |
| if not Known_RM_Size (Derived_Type) then |
| Set_RM_Size (Derived_Type, RM_Size (Parent_Type)); |
| end if; |
| |
| Set_Is_Character_Type (Derived_Type, True); |
| |
| if Nkind (Indic) /= N_Subtype_Indication then |
| |
| -- If no explicit constraint, the bounds are those |
| -- of the parent type. |
| |
| Lo := New_Copy_Tree (Type_Low_Bound (Parent_Type)); |
| Hi := New_Copy_Tree (Type_High_Bound (Parent_Type)); |
| Set_Scalar_Range (Derived_Type, Make_Range (Loc, Lo, Hi)); |
| end if; |
| |
| Convert_Scalar_Bounds (N, Parent_Type, Derived_Type, Loc); |
| end Derived_Standard_Character; |
| |
| ------------------------------ |
| -- Derived_Type_Declaration -- |
| ------------------------------ |
| |
| procedure Derived_Type_Declaration |
| (T : Entity_Id; |
| N : Node_Id; |
| Is_Completion : Boolean) |
| is |
| Parent_Type : Entity_Id; |
| |
| function Comes_From_Generic (Typ : Entity_Id) return Boolean; |
| -- Check whether the parent type is a generic formal, or derives |
| -- directly or indirectly from one. |
| |
| ------------------------ |
| -- Comes_From_Generic -- |
| ------------------------ |
| |
| function Comes_From_Generic (Typ : Entity_Id) return Boolean is |
| begin |
| if Is_Generic_Type (Typ) then |
| return True; |
| |
| elsif Is_Generic_Type (Root_Type (Parent_Type)) then |
| return True; |
| |
| elsif Is_Private_Type (Typ) |
| and then Present (Full_View (Typ)) |
| and then Is_Generic_Type (Root_Type (Full_View (Typ))) |
| then |
| return True; |
| |
| elsif Is_Generic_Actual_Type (Typ) then |
| return True; |
| |
| else |
| return False; |
| end if; |
| end Comes_From_Generic; |
| |
| -- Local variables |
| |
| Def : constant Node_Id := Type_Definition (N); |
| Iface_Def : Node_Id; |
| Indic : constant Node_Id := Subtype_Indication (Def); |
| Extension : constant Node_Id := Record_Extension_Part (Def); |
| Parent_Node : Node_Id; |
| Taggd : Boolean; |
| |
| -- Start of processing for Derived_Type_Declaration |
| |
| begin |
| Parent_Type := Find_Type_Of_Subtype_Indic (Indic); |
| |
| if SPARK_Mode = On |
| and then Is_Tagged_Type (Parent_Type) |
| then |
| declare |
| Partial_View : constant Entity_Id := |
| Incomplete_Or_Partial_View (Parent_Type); |
| |
| begin |
| -- If the partial view was not found then the parent type is not |
| -- a private type. Otherwise check if the partial view is a tagged |
| -- private type. |
| |
| if Present (Partial_View) |
| and then Is_Private_Type (Partial_View) |
| and then not Is_Tagged_Type (Partial_View) |
| then |
| Error_Msg_NE |
| ("cannot derive from & declared as untagged private " |
| & "(SPARK RM 3.4(1))", N, Partial_View); |
| end if; |
| end; |
| end if; |
| |
| -- Ada 2005 (AI-251): In case of interface derivation check that the |
| -- parent is also an interface. |
| |
| if Interface_Present (Def) then |
| if not Is_Interface (Parent_Type) then |
| Diagnose_Interface (Indic, Parent_Type); |
| |
| else |
| Parent_Node := Parent (Base_Type (Parent_Type)); |
| Iface_Def := Type_Definition (Parent_Node); |
| |
| -- Ada 2005 (AI-251): Limited interfaces can only inherit from |
| -- other limited interfaces. |
| |
| if Limited_Present (Def) then |
| if Limited_Present (Iface_Def) then |
| null; |
| |
| elsif Protected_Present (Iface_Def) then |
| Error_Msg_NE |
| ("descendant of & must be declared as a protected " |
| & "interface", N, Parent_Type); |
| |
| elsif Synchronized_Present (Iface_Def) then |
| Error_Msg_NE |
| ("descendant of & must be declared as a synchronized " |
| & "interface", N, Parent_Type); |
| |
| elsif Task_Present (Iface_Def) then |
| Error_Msg_NE |
| ("descendant of & must be declared as a task interface", |
| N, Parent_Type); |
| |
| else |
| Error_Msg_N |
| ("(Ada 2005) limited interface cannot inherit from " |
| & "non-limited interface", Indic); |
| end if; |
| |
| -- Ada 2005 (AI-345): Non-limited interfaces can only inherit |
| -- from non-limited or limited interfaces. |
| |
| elsif not Protected_Present (Def) |
| and then not Synchronized_Present (Def) |
| and then not Task_Present (Def) |
| then |
| if Limited_Present (Iface_Def) then |
| null; |
| |
| elsif Protected_Present (Iface_Def) then |
| Error_Msg_NE |
| ("descendant of & must be declared as a protected " |
| & "interface", N, Parent_Type); |
| |
| elsif Synchronized_Present (Iface_Def) then |
| Error_Msg_NE |
| ("descendant of & must be declared as a synchronized " |
| & "interface", N, Parent_Type); |
| |
| elsif Task_Present (Iface_Def) then |
| Error_Msg_NE |
| ("descendant of & must be declared as a task interface", |
| N, Parent_Type); |
| else |
| null; |
| end if; |
| end if; |
| end if; |
| end if; |
| |
| if Is_Tagged_Type (Parent_Type) |
| and then Is_Concurrent_Type (Parent_Type) |
| and then not Is_Interface (Parent_Type) |
| then |
| Error_Msg_N |
| ("parent type of a record extension cannot be a synchronized " |
| & "tagged type (RM 3.9.1 (3/1))", N); |
| Set_Etype (T, Any_Type); |
| return; |
| end if; |
| |
| -- Ada 2005 (AI-251): Decorate all the names in the list of ancestor |
| -- interfaces |
| |
| if Is_Tagged_Type (Parent_Type) |
| and then Is_Non_Empty_List (Interface_List (Def)) |
| then |
| declare |
| Intf : Node_Id; |
| T : Entity_Id; |
| |
| begin |
| Intf := First (Interface_List (Def)); |
| while Present (Intf) loop |
| T := Find_Type_Of_Subtype_Indic (Intf); |
| |
| if not Is_Interface (T) then |
| Diagnose_Interface (Intf, T); |
| |
| -- Check the rules of 3.9.4(12/2) and 7.5(2/2) that disallow |
| -- a limited type from having a nonlimited progenitor. |
| |
| elsif (Limited_Present (Def) |
| or else (not Is_Interface (Parent_Type) |
| and then Is_Limited_Type (Parent_Type))) |
| and then not Is_Limited_Interface (T) |
| then |
| Error_Msg_NE |
| ("progenitor interface& of limited type must be limited", |
| N, T); |
| end if; |
| |
| Next (Intf); |
| end loop; |
| end; |
| |
| -- Check consistency of any nonoverridable aspects that are |
| -- inherited from multiple sources. |
| |
| Check_Inherited_Nonoverridable_Aspects |
| (Inheritor => T, |
| Interface_List => Interface_List (Def), |
| Parent_Type => Parent_Type); |
| end if; |
| |
| if Parent_Type = Any_Type |
| or else Etype (Parent_Type) = Any_Type |
| or else (Is_Class_Wide_Type (Parent_Type) |
| and then Etype (Parent_Type) = T) |
| then |
| -- If Parent_Type is undefined or illegal, make new type into a |
| -- subtype of Any_Type, and set a few attributes to prevent cascaded |
| -- errors. If this is a self-definition, emit error now. |
| |
| if T = Parent_Type or else T = Etype (Parent_Type) then |
| Error_Msg_N ("type cannot be used in its own definition", Indic); |
| end if; |
| |
| Mutate_Ekind (T, Ekind (Parent_Type)); |
| Set_Etype (T, Any_Type); |
| Set_Scalar_Range (T, Scalar_Range (Any_Type)); |
| |
| -- Initialize the list of primitive operations to an empty list, |
| -- to cover tagged types as well as untagged types. For untagged |
| -- types this is used either to analyze the call as legal when |
| -- Extensions_Allowed is True, or to issue a better error message |
| -- otherwise. |
| |
| Set_Direct_Primitive_Operations (T, New_Elmt_List); |
| |
| return; |
| end if; |
| |
| -- Ada 2005 (AI-251): The case in which the parent of the full-view is |
| -- an interface is special because the list of interfaces in the full |
| -- view can be given in any order. For example: |
| |
| -- type A is interface; |
| -- type B is interface and A; |
| -- type D is new B with private; |
| -- private |
| -- type D is new A and B with null record; -- 1 -- |
| |
| -- In this case we perform the following transformation of -1-: |
| |
| -- type D is new B and A with null record; |
| |
| -- If the parent of the full-view covers the parent of the partial-view |
| -- we have two possible cases: |
| |
| -- 1) They have the same parent |
| -- 2) The parent of the full-view implements some further interfaces |
| |
| -- In both cases we do not need to perform the transformation. In the |
| -- first case the source program is correct and the transformation is |
| -- not needed; in the second case the source program does not fulfill |
| -- the no-hidden interfaces rule (AI-396) and the error will be reported |
| -- later. |
| |
| -- This transformation not only simplifies the rest of the analysis of |
| -- this type declaration but also simplifies the correct generation of |
| -- the object layout to the expander. |
| |
| if In_Private_Part (Current_Scope) |
| and then Is_Interface (Parent_Type) |
| then |
| declare |
| Partial_View : Entity_Id; |
| Partial_View_Parent : Entity_Id; |
| |
| function Reorder_Interfaces return Boolean; |
| -- Look for an interface in the full view's interface list that |
| -- matches the parent type of the partial view, and when found, |
| -- rewrite the full view's parent with the partial view's parent, |
| -- append the full view's original parent to the interface list, |
| -- recursively call Derived_Type_Definition on the full type, and |
| -- return True. If a match is not found, return False. |
| |
| ------------------------ |
| -- Reorder_Interfaces -- |
| ------------------------ |
| |
| function Reorder_Interfaces return Boolean is |
| Iface : Node_Id; |
| New_Iface : Node_Id; |
| |
| begin |
| Iface := First (Interface_List (Def)); |
| while Present (Iface) loop |
| if Etype (Iface) = Etype (Partial_View) then |
| Rewrite (Subtype_Indication (Def), |
| New_Copy (Subtype_Indication (Parent (Partial_View)))); |
| |
| New_Iface := |
| Make_Identifier (Sloc (N), Chars (Parent_Type)); |
| Rewrite (Iface, New_Iface); |
| |
| -- Analyze the transformed code |
| |
| Derived_Type_Declaration (T, N, Is_Completion); |
| return True; |
| end if; |
| |
| Next (Iface); |
| end loop; |
| return False; |
| end Reorder_Interfaces; |
| |
| begin |
| -- Look for the associated private type declaration |
| |
| Partial_View := Incomplete_Or_Partial_View (T); |
| |
| -- If the partial view was not found then the source code has |
| -- errors and the transformation is not needed. |
| |
| if Present (Partial_View) then |
| Partial_View_Parent := Etype (Partial_View); |
| |
| -- If the parent of the full-view covers the parent of the |
| -- partial-view we have nothing else to do. |
| |
| if Interface_Present_In_Ancestor |
| (Parent_Type, Partial_View_Parent) |
| then |
| null; |
| |
| -- Traverse the list of interfaces of the full view to look |
| -- for the parent of the partial view and reorder the |
| -- interfaces to match the order in the partial view, |
| -- if needed. |
| |
| else |
| |
| if Reorder_Interfaces then |
| -- Having the interfaces listed in any order is legal. |
| -- However, the compiler does not properly handle |
| -- different orders between partial and full views in |
| -- generic units. We give a warning about the order |
| -- mismatch, so the user can work around this problem. |
| |
| Error_Msg_N ("??full declaration does not respect " & |
| "partial declaration order", T); |
| Error_Msg_N ("\??consider reordering", T); |
| |
| return; |
| end if; |
| end if; |
| end if; |
| end; |
| end if; |
| |
| -- Only composite types other than array types are allowed to have |
| -- discriminants. |
| |
| if Present (Discriminant_Specifications (N)) then |
| if (Is_Elementary_Type (Parent_Type) |
| or else |
| Is_Array_Type (Parent_Type)) |
| and then not Error_Posted (N) |
| then |
| Error_Msg_N |
| ("elementary or array type cannot have discriminants", |
| Defining_Identifier (First (Discriminant_Specifications (N)))); |
| |
| -- Unset Has_Discriminants flag to prevent cascaded errors, but |
| -- only if we are not already processing a malformed syntax tree. |
| |
| if Is_Type (T) then |
| Set_Has_Discriminants (T, False); |
| end if; |
| end if; |
| end if; |
| |
| -- In Ada 83, a derived type defined in a package specification cannot |
| -- be used for further derivation until the end of its visible part. |
| -- Note that derivation in the private part of the package is allowed. |
| |
| if Ada_Version = Ada_83 |
| and then Is_Derived_Type (Parent_Type) |
| and then In_Visible_Part (Scope (Parent_Type)) |
| then |
| if Ada_Version = Ada_83 and then Comes_From_Source (Indic) then |
| Error_Msg_N |
| ("(Ada 83) premature use of type for derivation", Indic); |
| end if; |
| end if; |
| |
| -- Check for early use of incomplete or private type |
| |
| if Ekind (Parent_Type) in E_Void | E_Incomplete_Type then |
| Error_Msg_N ("premature derivation of incomplete type", Indic); |
| return; |
| |
| elsif (Is_Incomplete_Or_Private_Type (Parent_Type) |
| and then not Comes_From_Generic (Parent_Type)) |
| or else Has_Private_Component (Parent_Type) |
| then |
| -- The ancestor type of a formal type can be incomplete, in which |
| -- case only the operations of the partial view are available in the |
| -- generic. Subsequent checks may be required when the full view is |
| -- analyzed to verify that a derivation from a tagged type has an |
| -- extension. |
| |
| if Nkind (Original_Node (N)) = N_Formal_Type_Declaration then |
| null; |
| |
| elsif No (Underlying_Type (Parent_Type)) |
| or else Has_Private_Component (Parent_Type) |
| then |
| Error_Msg_N |
| ("premature derivation of derived or private type", Indic); |
| |
| -- Flag the type itself as being in error, this prevents some |
| -- nasty problems with subsequent uses of the malformed type. |
| |
| Set_Error_Posted (T); |
| |
| -- Check that within the immediate scope of an untagged partial |
| -- view it's illegal to derive from the partial view if the |
| -- full view is tagged. (7.3(7)) |
| |
| -- We verify that the Parent_Type is a partial view by checking |
| -- that it is not a Full_Type_Declaration (i.e. a private type or |
| -- private extension declaration), to distinguish a partial view |
| -- from a derivation from a private type which also appears as |
| -- E_Private_Type. If the parent base type is not declared in an |
| -- enclosing scope there is no need to check. |
| |
| elsif Present (Full_View (Parent_Type)) |
| and then Nkind (Parent (Parent_Type)) /= N_Full_Type_Declaration |
| and then not Is_Tagged_Type (Parent_Type) |
| and then Is_Tagged_Type (Full_View (Parent_Type)) |
| and then In_Open_Scopes (Scope (Base_Type (Parent_Type))) |
| then |
| Error_Msg_N |
| ("premature derivation from type with tagged full view", |
| Indic); |
| end if; |
| end if; |
| |
| -- Check that form of derivation is appropriate |
| |
| Taggd := Is_Tagged_Type (Parent_Type); |
| |
| -- Set the parent type to the class-wide type's specific type in this |
| -- case to prevent cascading errors |
| |
| if Present (Extension) and then Is_Class_Wide_Type (Parent_Type) then |
| Error_Msg_N ("parent type must not be a class-wide type", Indic); |
| Set_Etype (T, Etype (Parent_Type)); |
| return; |
| end if; |
| |
| if Present (Extension) and then not Taggd then |
| Error_Msg_N |
| ("type derived from untagged type cannot have extension", Indic); |
| |
| elsif No (Extension) and then Taggd then |
| |
| -- If this declaration is within a private part (or body) of a |
| -- generic instantiation then the derivation is allowed (the parent |
| -- type can only appear tagged in this case if it's a generic actual |
| -- type, since it would otherwise have been rejected in the analysis |
| -- of the generic template). |
| |
| if not Is_Generic_Actual_Type (Parent_Type) |
| or else In_Visible_Part (Scope (Parent_Type)) |
| then |
| if Is_Class_Wide_Type (Parent_Type) then |
| Error_Msg_N |
| ("parent type must not be a class-wide type", Indic); |
| |
| -- Use specific type to prevent cascaded errors. |
| |
| Parent_Type := Etype (Parent_Type); |
| |
| else |
| Error_Msg_N |
| ("type derived from tagged type must have extension", Indic); |
| end if; |
| end if; |
| end if; |
| |
| -- AI-443: Synchronized formal derived types require a private |
| -- extension. There is no point in checking the ancestor type or |
| -- the progenitors since the construct is wrong to begin with. |
| |
| if Ada_Version >= Ada_2005 |
| and then Is_Generic_Type (T) |
| and then Present (Original_Node (N)) |
| then |
| declare |
| Decl : constant Node_Id := Original_Node (N); |
| |
| begin |
| if Nkind (Decl) = N_Formal_Type_Declaration |
| and then Nkind (Formal_Type_Definition (Decl)) = |
| N_Formal_Derived_Type_Definition |
| and then Synchronized_Present (Formal_Type_Definition (Decl)) |
| and then No (Extension) |
| |
| -- Avoid emitting a duplicate error message |
| |
| and then not Error_Posted (Indic) |
| then |
| Error_Msg_N |
| ("synchronized derived type must have extension", N); |
| end if; |
| end; |
| end if; |
| |
| if Null_Exclusion_Present (Def) |
| and then not Is_Access_Type (Parent_Type) |
| then |
| Error_Msg_N ("null exclusion can only apply to an access type", N); |
| end if; |
| |
| Check_Wide_Character_Restriction (Parent_Type, Indic); |
| |
| -- Avoid deriving parent primitives of underlying record views |
| |
| Build_Derived_Type (N, Parent_Type, T, Is_Completion, |
| Derive_Subps => not Is_Underlying_Record_View (T)); |
| |
| -- AI-419: The parent type of an explicitly limited derived type must |
| -- be a limited type or a limited interface. |
| |
| if Limited_Present (Def) then |
| Set_Is_Limited_Record (T); |
| |
| if Is_Interface (T) then |
| Set_Is_Limited_Interface (T); |
| end if; |
| |
| if not Is_Limited_Type (Parent_Type) |
| and then |
| (not Is_Interface (Parent_Type) |
| or else not Is_Limited_Interface (Parent_Type)) |
| then |
| -- AI05-0096: a derivation in the private part of an instance is |
| -- legal if the generic formal is untagged limited, and the actual |
| -- is non-limited. |
| |
| if Is_Generic_Actual_Type (Parent_Type) |
| and then In_Private_Part (Current_Scope) |
| and then |
| not Is_Tagged_Type |
| (Generic_Parent_Type (Parent (Parent_Type))) |
| then |
| null; |
| |
| else |
| Error_Msg_NE |
| ("parent type& of limited type must be limited", |
| N, Parent_Type); |
| end if; |
| end if; |
| end if; |
| end Derived_Type_Declaration; |
| |
| ------------------------ |
| -- Diagnose_Interface -- |
| ------------------------ |
| |
| procedure Diagnose_Interface (N : Node_Id; E : Entity_Id) is |
| begin |
| if not Is_Interface (E) and then E /= Any_Type then |
| Error_Msg_NE ("(Ada 2005) & must be an interface", N, E); |
| end if; |
| end Diagnose_Interface; |
| |
| ---------------------------------- |
| -- Enumeration_Type_Declaration -- |
| ---------------------------------- |
| |
| procedure Enumeration_Type_Declaration (T : Entity_Id; Def : Node_Id) is |
| Ev : Uint; |
| L : Node_Id; |
| R_Node : Node_Id; |
| B_Node : Node_Id; |
| |
| begin |
| -- Create identifier node representing lower bound |
| |
| B_Node := New_Node (N_Identifier, Sloc (Def)); |
| L := First (Literals (Def)); |
| Set_Chars (B_Node, Chars (L)); |
| Set_Entity (B_Node, L); |
| Set_Etype (B_Node, T); |
| Set_Is_Static_Expression (B_Node, True); |
| |
| R_Node := New_Node (N_Range, Sloc (Def)); |
| Set_Low_Bound (R_Node, B_Node); |
| |
| Mutate_Ekind (T, E_Enumeration_Type); |
| Set_First_Literal (T, L); |
| Set_Etype (T, T); |
| Set_Is_Constrained (T); |
| |
| Ev := Uint_0; |
| |
| -- Loop through literals of enumeration type setting pos and rep values |
| -- except that if the Ekind is already set, then it means the literal |
| -- was already constructed (case of a derived type declaration and we |
| -- should not disturb the Pos and Rep values. |
| |
| while Present (L) loop |
| if Ekind (L) /= E_Enumeration_Literal then |
| Mutate_Ekind (L, E_Enumeration_Literal); |
| Set_Enumeration_Pos (L, Ev); |
| Set_Enumeration_Rep (L, Ev); |
| Set_Is_Known_Valid (L, True); |
| end if; |
| |
| Set_Etype (L, T); |
| New_Overloaded_Entity (L); |
| Generate_Definition (L); |
| Set_Convention (L, Convention_Intrinsic); |
| |
| -- Case of character literal |
| |
| if Nkind (L) = N_Defining_Character_Literal then |
| Set_Is_Character_Type (T, True); |
| |
| -- Check violation of No_Wide_Characters |
| |
| if Restriction_Check_Required (No_Wide_Characters) then |
| Get_Name_String (Chars (L)); |
| |
| if Name_Len >= 3 and then Name_Buffer (1 .. 2) = "QW" then |
| Check_Restriction (No_Wide_Characters, L); |
| end if; |
| end if; |
| end if; |
| |
| Ev := Ev + 1; |
| Next (L); |
| end loop; |
| |
| -- Now create a node representing upper bound |
| |
| B_Node := New_Node (N_Identifier, Sloc (Def)); |
| Set_Chars (B_Node, Chars (Last (Literals (Def)))); |
| Set_Entity (B_Node, Last (Literals (Def))); |
| Set_Etype (B_Node, T); |
| Set_Is_Static_Expression (B_Node, True); |
| |
| Set_High_Bound (R_Node, B_Node); |
| |
| -- Initialize various fields of the type. Some of this information |
| -- may be overwritten later through rep. clauses. |
| |
| Set_Scalar_Range (T, R_Node); |
| Set_RM_Size (T, UI_From_Int (Minimum_Size (T))); |
| Set_Enum_Esize (T); |
| Set_Enum_Pos_To_Rep (T, Empty); |
| |
| -- Set Discard_Names if configuration pragma set, or if there is |
| -- a parameterless pragma in the current declarative region |
| |
| if Global_Discard_Names or else Discard_Names (Scope (T)) then |
| Set_Discard_Names (T); |
| end if; |
| |
| -- Process end label if there is one |
| |
| if Present (Def) then |
| Process_End_Label (Def, 'e', T); |
| end if; |
| end Enumeration_Type_Declaration; |
| |
| --------------------------------- |
| -- Expand_To_Stored_Constraint -- |
| --------------------------------- |
| |
| function Expand_To_Stored_Constraint |
| (Typ : Entity_Id; |
| Constraint : Elist_Id) return Elist_Id |
| is |
| Explicitly_Discriminated_Type : Entity_Id; |
| Expansion : Elist_Id; |
| Discriminant : Entity_Id; |
| |
| function Type_With_Explicit_Discrims (Id : Entity_Id) return Entity_Id; |
| -- Find the nearest type that actually specifies discriminants |
| |
| --------------------------------- |
| -- Type_With_Explicit_Discrims -- |
| --------------------------------- |
| |
| function Type_With_Explicit_Discrims (Id : Entity_Id) return Entity_Id is |
| Typ : constant E := Base_Type (Id); |
| |
| begin |
| if Ekind (Typ) in Incomplete_Or_Private_Kind then |
| if Present (Full_View (Typ)) then |
| return Type_With_Explicit_Discrims (Full_View (Typ)); |
| end if; |
| |
| else |
| if Has_Discriminants (Typ) then |
| return Typ; |
| end if; |
| end if; |
| |
| if Etype (Typ) = Typ then |
| return Empty; |
| elsif Has_Discriminants (Typ) then |
| return Typ; |
| else |
| return Type_With_Explicit_Discrims (Etype (Typ)); |
| end if; |
| |
| end Type_With_Explicit_Discrims; |
| |
| -- Start of processing for Expand_To_Stored_Constraint |
| |
| begin |
| if No (Constraint) or else Is_Empty_Elmt_List (Constraint) then |
| return No_Elist; |
| end if; |
| |
| Explicitly_Discriminated_Type := Type_With_Explicit_Discrims (Typ); |
| |
| if No (Explicitly_Discriminated_Type) then |
| return No_Elist; |
| end if; |
| |
| Expansion := New_Elmt_List; |
| |
| Discriminant := |
| First_Stored_Discriminant (Explicitly_Discriminated_Type); |
| while Present (Discriminant) loop |
| Append_Elmt |
| (Get_Discriminant_Value |
| (Discriminant, Explicitly_Discriminated_Type, Constraint), |
| To => Expansion); |
| Next_Stored_Discriminant (Discriminant); |
| end loop; |
| |
| return Expansion; |
| end Expand_To_Stored_Constraint; |
| |
| --------------------------- |
| -- Find_Hidden_Interface -- |
| --------------------------- |
| |
| function Find_Hidden_Interface |
| (Src : Elist_Id; |
| Dest : Elist_Id) return Entity_Id |
| is |
| Iface : Entity_Id; |
| Iface_Elmt : Elmt_Id; |
| |
| begin |
| if Present (Src) and then Present (Dest) then |
| Iface_Elmt := First_Elmt (Src); |
| while Present (Iface_Elmt) loop |
| Iface := Node (Iface_Elmt); |
| |
| if Is_Interface (Iface) |
| and then not Contain_Interface (Iface, Dest) |
| then |
| return Iface; |
| end if; |
| |
| Next_Elmt (Iface_Elmt); |
| end loop; |
| end if; |
| |
| return Empty; |
| end Find_Hidden_Interface; |
| |
| -------------------- |
| -- Find_Type_Name -- |
| -------------------- |
| |
| function Find_Type_Name (N : Node_Id) return Entity_Id is |
| Id : constant Entity_Id := Defining_Identifier (N); |
| New_Id : Entity_Id; |
| Prev : Entity_Id; |
| Prev_Par : Node_Id; |
| |
| procedure Check_Duplicate_Aspects; |
| -- Check that aspects specified in a completion have not been specified |
| -- already in the partial view. |
| |
| procedure Tag_Mismatch; |
| -- Diagnose a tagged partial view whose full view is untagged. We post |
| -- the message on the full view, with a reference to the previous |
| -- partial view. The partial view can be private or incomplete, and |
| -- these are handled in a different manner, so we determine the position |
| -- of the error message from the respective slocs of both. |
| |
| ----------------------------- |
| -- Check_Duplicate_Aspects -- |
| ----------------------------- |
| |
| procedure Check_Duplicate_Aspects is |
| function Get_Partial_View_Aspect (Asp : Node_Id) return Node_Id; |
| -- Return the corresponding aspect of the partial view which matches |
| -- the aspect id of Asp. Return Empty is no such aspect exists. |
| |
| ----------------------------- |
| -- Get_Partial_View_Aspect -- |
| ----------------------------- |
| |
| function Get_Partial_View_Aspect (Asp : Node_Id) return Node_Id is |
| Asp_Id : constant Aspect_Id := Get_Aspect_Id (Asp); |
| Prev_Asps : constant List_Id := Aspect_Specifications (Prev_Par); |
| Prev_Asp : Node_Id; |
| |
| begin |
| if Present (Prev_Asps) then |
| Prev_Asp := First (Prev_Asps); |
| while Present (Prev_Asp) loop |
| if Get_Aspect_Id (Prev_Asp) = Asp_Id then |
| return Prev_Asp; |
| end if; |
| |
| Next (Prev_Asp); |
| end loop; |
| end if; |
| |
| return Empty; |
| end Get_Partial_View_Aspect; |
| |
| -- Local variables |
| |
| Full_Asps : constant List_Id := Aspect_Specifications (N); |
| Full_Asp : Node_Id; |
| Part_Asp : Node_Id; |
| |
| -- Start of processing for Check_Duplicate_Aspects |
| |
| begin |
| if Present (Full_Asps) then |
| Full_Asp := First (Full_Asps); |
| while Present (Full_Asp) loop |
| Part_Asp := Get_Partial_View_Aspect (Full_Asp); |
| |
| -- An aspect and its class-wide counterpart are two distinct |
| -- aspects and may apply to both views of an entity. |
| |
| if Present (Part_Asp) |
| and then Class_Present (Part_Asp) = Class_Present (Full_Asp) |
| then |
| Error_Msg_N |
| ("aspect already specified in private declaration", |
| Full_Asp); |
| |
| Remove (Full_Asp); |
| return; |
| end if; |
| |
| if Has_Discriminants (Prev) |
| and then not Has_Unknown_Discriminants (Prev) |
| and then Get_Aspect_Id (Full_Asp) = |
| Aspect_Implicit_Dereference |
| then |
| Error_Msg_N |
| ("cannot specify aspect if partial view has known " |
| & "discriminants", Full_Asp); |
| end if; |
| |
| Next (Full_Asp); |
| end loop; |
| end if; |
| end Check_Duplicate_Aspects; |
| |
| ------------------ |
| -- Tag_Mismatch -- |
| ------------------ |
| |
| procedure Tag_Mismatch is |
| begin |
| if Sloc (Prev) < Sloc (Id) then |
| if Ada_Version >= Ada_2012 |
| and then Nkind (N) = N_Private_Type_Declaration |
| then |
| Error_Msg_NE |
| ("declaration of private } must be a tagged type", Id, Prev); |
| else |
| Error_Msg_NE |
| ("full declaration of } must be a tagged type", Id, Prev); |
| end if; |
| |
| else |
| if Ada_Version >= Ada_2012 |
| and then Nkind (N) = N_Private_Type_Declaration |
| then |
| Error_Msg_NE |
| ("declaration of private } must be a tagged type", Prev, Id); |
| else |
| Error_Msg_NE |
| ("full declaration of } must be a tagged type", Prev, Id); |
| end if; |
| end if; |
| end Tag_Mismatch; |
| |
| -- Start of processing for Find_Type_Name |
| |
| begin |
| -- Find incomplete declaration, if one was given |
| |
| Prev := Current_Entity_In_Scope (Id); |
| |
| -- New type declaration |
| |
| if No (Prev) then |
| Enter_Name (Id); |
| return Id; |
| |
| -- Previous declaration exists |
| |
| else |
| Prev_Par := Parent (Prev); |
| |
| -- Error if not incomplete/private case except if previous |
| -- declaration is implicit, etc. Enter_Name will emit error if |
| -- appropriate. |
| |
| if not Is_Incomplete_Or_Private_Type (Prev) then |
| Enter_Name (Id); |
| New_Id := Id; |
| |
| -- Check invalid completion of private or incomplete type |
| |
| elsif Nkind (N) not in N_Full_Type_Declaration |
| | N_Task_Type_Declaration |
| | N_Protected_Type_Declaration |
| and then |
| (Ada_Version < Ada_2012 |
| or else not Is_Incomplete_Type (Prev) |
| or else Nkind (N) not in N_Private_Type_Declaration |
| | N_Private_Extension_Declaration) |
| then |
| -- Completion must be a full type declarations (RM 7.3(4)) |
| |
| Error_Msg_Sloc := Sloc (Prev); |
| Error_Msg_NE ("invalid completion of }", Id, Prev); |
| |
| -- Set scope of Id to avoid cascaded errors. Entity is never |
| -- examined again, except when saving globals in generics. |
| |
| Set_Scope (Id, Current_Scope); |
| New_Id := Id; |
| |
| -- If this is a repeated incomplete declaration, no further |
| -- checks are possible. |
| |
| if Nkind (N) = N_Incomplete_Type_Declaration then |
| return Prev; |
| end if; |
| |
| -- Case of full declaration of incomplete type |
| |
| elsif Ekind (Prev) = E_Incomplete_Type |
| and then (Ada_Version < Ada_2012 |
| or else No (Full_View (Prev)) |
| or else not Is_Private_Type (Full_View (Prev))) |
| then |
| -- Indicate that the incomplete declaration has a matching full |
| -- declaration. The defining occurrence of the incomplete |
| -- declaration remains the visible one, and the procedure |
| -- Get_Full_View dereferences it whenever the type is used. |
| |
| if Present (Full_View (Prev)) then |
| Error_Msg_NE ("invalid redeclaration of }", Id, Prev); |
| end if; |
| |
| Set_Full_View (Prev, Id); |
| Append_Entity (Id, Current_Scope); |
| Set_Is_Public (Id, Is_Public (Prev)); |
| Set_Is_Internal (Id); |
| New_Id := Prev; |
| |
| -- If the incomplete view is tagged, a class_wide type has been |
| -- created already. Use it for the private type as well, in order |
| -- to prevent multiple incompatible class-wide types that may be |
| -- created for self-referential anonymous access components. |
| |
| if Is_Tagged_Type (Prev) |
| and then Present (Class_Wide_Type (Prev)) |
| then |
| Mutate_Ekind (Id, Ekind (Prev)); -- will be reset later |
| Set_Class_Wide_Type (Id, Class_Wide_Type (Prev)); |
| |
| -- Type of the class-wide type is the current Id. Previously |
| -- this was not done for private declarations because of order- |
| -- of-elaboration issues in the back end, but gigi now handles |
| -- this properly. |
| |
| Set_Etype (Class_Wide_Type (Id), Id); |
| end if; |
| |
| -- Case of full declaration of private type |
| |
| else |
| -- If the private type was a completion of an incomplete type then |
| -- update Prev to reference the private type |
| |
| if Ada_Version >= Ada_2012 |
| and then Ekind (Prev) = E_Incomplete_Type |
| and then Present (Full_View (Prev)) |
| and then Is_Private_Type (Full_View (Prev)) |
| then |
| Prev := Full_View (Prev); |
| Prev_Par := Parent (Prev); |
| end if; |
| |
| if Nkind (N) = N_Full_Type_Declaration |
| and then Nkind (Type_Definition (N)) in |
| N_Record_Definition | N_Derived_Type_Definition |
| and then Interface_Present (Type_Definition (N)) |
| then |
| Error_Msg_N |
| ("completion of private type cannot be an interface", N); |
| end if; |
| |
| if Nkind (Parent (Prev)) /= N_Private_Extension_Declaration then |
| if Etype (Prev) /= Prev then |
| |
| -- Prev is a private subtype or a derived type, and needs |
| -- no completion. |
| |
| Error_Msg_NE ("invalid redeclaration of }", Id, Prev); |
| New_Id := Id; |
| |
| elsif Ekind (Prev) = E_Private_Type |
| and then Nkind (N) in N_Task_Type_Declaration |
| | N_Protected_Type_Declaration |
| then |
| Error_Msg_N |
| ("completion of nonlimited type cannot be limited", N); |
| |
| elsif Ekind (Prev) = E_Record_Type_With_Private |
| and then Nkind (N) in N_Task_Type_Declaration |
| | N_Protected_Type_Declaration |
| then |
| if not Is_Limited_Record (Prev) then |
| Error_Msg_N |
| ("completion of nonlimited type cannot be limited", N); |
| |
| elsif No (Interface_List (N)) then |
| Error_Msg_N |
| ("completion of tagged private type must be tagged", |
| N); |
| end if; |
| end if; |
| |
| -- Ada 2005 (AI-251): Private extension declaration of a task |
| -- type or a protected type. This case arises when covering |
| -- interface types. |
| |
| elsif Nkind (N) in N_Task_Type_Declaration |
| | N_Protected_Type_Declaration |
| then |
| null; |
| |
| elsif Nkind (N) /= N_Full_Type_Declaration |
| or else Nkind (Type_Definition (N)) /= N_Derived_Type_Definition |
| then |
| Error_Msg_N |
| ("full view of private extension must be an extension", N); |
| |
| elsif not (Abstract_Present (Parent (Prev))) |
| and then Abstract_Present (Type_Definition (N)) |
| then |
| Error_Msg_N |
| ("full view of non-abstract extension cannot be abstract", N); |
| end if; |
| |
| if not In_Private_Part (Current_Scope) then |
| Error_Msg_N |
| ("declaration of full view must appear in private part", N); |
| end if; |
| |
| if Ada_Version >= Ada_2012 then |
| Check_Duplicate_Aspects; |
| end if; |
| |
| Copy_And_Swap (Prev, Id); |
| Set_Has_Private_Declaration (Prev); |
| Set_Has_Private_Declaration (Id); |
| |
| -- AI12-0133: Indicate whether we have a partial view with |
| -- unknown discriminants, in which case initialization of objects |
| -- of the type do not receive an invariant check. |
| |
| Set_Partial_View_Has_Unknown_Discr |
| (Prev, Has_Unknown_Discriminants (Id)); |
| |
| -- Preserve aspect and iterator flags that may have been set on |
| -- the partial view. |
| |
| Set_Has_Delayed_Aspects (Prev, Has_Delayed_Aspects (Id)); |
| Set_Has_Implicit_Dereference (Prev, Has_Implicit_Dereference (Id)); |
| |
| -- If no error, propagate freeze_node from private to full view. |
| -- It may have been generated for an early operational item. |
| |
| if Present (Freeze_Node (Id)) |
| and then Serious_Errors_Detected = 0 |
| and then No (Full_View (Id)) |
| then |
| Set_Freeze_Node (Prev, Freeze_Node (Id)); |
| Set_Freeze_Node (Id, Empty); |
| Set_First_Rep_Item (Prev, First_Rep_Item (Id)); |
| end if; |
| |
| Set_Full_View (Id, Prev); |
| New_Id := Prev; |
| end if; |
| |
| -- Verify that full declaration conforms to partial one |
| |
| if Is_Incomplete_Or_Private_Type (Prev) |
| and then Present (Discriminant_Specifications (Prev_Par)) |
| then |
| if Present (Discriminant_Specifications (N)) then |
| if Ekind (Prev) = E_Incomplete_Type then |
| Check_Discriminant_Conformance (N, Prev, Prev); |
| else |
| Check_Discriminant_Conformance (N, Prev, Id); |
| end if; |
| |
| else |
| Error_Msg_N |
| ("missing discriminants in full type declaration", N); |
| |
| -- To avoid cascaded errors on subsequent use, share the |
| -- discriminants of the partial view. |
| |
| Set_Discriminant_Specifications (N, |
| Discriminant_Specifications (Prev_Par)); |
| end if; |
| end if; |
| |
| -- A prior untagged partial view can have an associated class-wide |
| -- type due to use of the class attribute, and in this case the full |
| -- type must also be tagged. This Ada 95 usage is deprecated in favor |
| -- of incomplete tagged declarations, but we check for it. |
| |
| if Is_Type (Prev) |
| and then (Is_Tagged_Type (Prev) |
| or else Present (Class_Wide_Type (Prev))) |
| then |
| -- Ada 2012 (AI05-0162): A private type may be the completion of |
| -- an incomplete type. |
| |
| if Ada_Version >= Ada_2012 |
| and then Is_Incomplete_Type (Prev) |
| and then Nkind (N) in N_Private_Type_Declaration |
| | N_Private_Extension_Declaration |
| then |
| -- No need to check private extensions since they are tagged |
| |
| if Nkind (N) = N_Private_Type_Declaration |
| and then not Tagged_Present (N) |
| then |
| Tag_Mismatch; |
| end if; |
| |
| -- The full declaration is either a tagged type (including |
| -- a synchronized type that implements interfaces) or a |
| -- type extension, otherwise this is an error. |
| |
| elsif Nkind (N) in N_Task_Type_Declaration |
| | N_Protected_Type_Declaration |
| then |
| if No (Interface_List (N)) and then not Error_Posted (N) then |
| Tag_Mismatch; |
| end if; |
| |
| elsif Nkind (Type_Definition (N)) = N_Record_Definition then |
| |
| -- Indicate that the previous declaration (tagged incomplete |
| -- or private declaration) requires the same on the full one. |
| |
| if not Tagged_Present (Type_Definition (N)) then |
| Tag_Mismatch; |
| Set_Is_Tagged_Type (Id); |
| end if; |
| |
| elsif Nkind (Type_Definition (N)) = N_Derived_Type_Definition then |
| if No (Record_Extension_Part (Type_Definition (N))) then |
| Error_Msg_NE |
| ("full declaration of } must be a record extension", |
| Prev, Id); |
| |
| -- Set some attributes to produce a usable full view |
| |
| Set_Is_Tagged_Type (Id); |
| end if; |
| |
| else |
| Tag_Mismatch; |
| end if; |
| end if; |
| |
| if Present (Prev) |
| and then Nkind (Parent (Prev)) = N_Incomplete_Type_Declaration |
| and then Present (Premature_Use (Parent (Prev))) |
| then |
| Error_Msg_Sloc := Sloc (N); |
| Error_Msg_N |
| ("\full declaration #", Premature_Use (Parent (Prev))); |
| end if; |
| |
| return New_Id; |
| end if; |
| end Find_Type_Name; |
| |
| ------------------------- |
| -- Find_Type_Of_Object -- |
| ------------------------- |
| |
| function Find_Type_Of_Object |
| (Obj_Def : Node_Id; |
| Related_Nod : Node_Id) return Entity_Id |
| is |
| Def_Kind : constant Node_Kind := Nkind (Obj_Def); |
| P : Node_Id := Parent (Obj_Def); |
| T : Entity_Id; |
| Nam : Name_Id; |
| |
| begin |
| -- If the parent is a component_definition node we climb to the |
| -- component_declaration node. |
| |
| if Nkind (P) = N_Component_Definition then |
| P := Parent (P); |
| end if; |
| |
| -- Case of an anonymous array subtype |
| |
| if Def_Kind in N_Array_Type_Definition then |
| T := Empty; |
| Array_Type_Declaration (T, Obj_Def); |
| |
| -- Create an explicit subtype whenever possible |
| |
| elsif Nkind (P) /= N_Component_Declaration |
| and then Def_Kind = N_Subtype_Indication |
| then |
| -- Base name of subtype on object name, which will be unique in |
| -- the current scope. |
| |
| -- If this is a duplicate declaration, return base type, to avoid |
| -- generating duplicate anonymous types. |
| |
| if Error_Posted (P) then |
| Analyze (Subtype_Mark (Obj_Def)); |
| return Entity (Subtype_Mark (Obj_Def)); |
| end if; |
| |
| Nam := |
| New_External_Name |
| (Chars (Defining_Identifier (Related_Nod)), 'S', 0, 'T'); |
| |
| T := Make_Defining_Identifier (Sloc (P), Nam); |
| |
| -- If In_Spec_Expression, for example within a pre/postcondition, |
| -- provide enough information for use of the subtype without |
| -- depending on full analysis and freezing, which will happen when |
| -- building the corresponding subprogram. |
| |
| if In_Spec_Expression then |
| Analyze (Subtype_Mark (Obj_Def)); |
| |
| declare |
| Base_T : constant Entity_Id := Entity (Subtype_Mark (Obj_Def)); |
| Decl : constant Node_Id := |
| Make_Subtype_Declaration (Sloc (P), |
| Defining_Identifier => T, |
| Subtype_Indication => Relocate_Node (Obj_Def)); |
| begin |
| Set_Etype (T, Base_T); |
| Mutate_Ekind (T, Subtype_Kind (Ekind (Base_T))); |
| Set_Parent (T, Obj_Def); |
| |
| if Ekind (T) = E_Array_Subtype then |
| Set_First_Index (T, First_Index (Base_T)); |
| Set_Is_Constrained (T); |
| |
| elsif Ekind (T) = E_Record_Subtype then |
| Set_First_Entity (T, First_Entity (Base_T)); |
| Set_Has_Discriminants (T, Has_Discriminants (Base_T)); |
| Set_Is_Constrained (T); |
| end if; |
| |
| Insert_Before (Related_Nod, Decl); |
| end; |
| |
| return T; |
| end if; |
| |
| -- When generating code, insert subtype declaration ahead of |
| -- declaration that generated it. |
| |
| Insert_Action (Obj_Def, |
| Make_Subtype_Declaration (Sloc (P), |
| Defining_Identifier => T, |
| Subtype_Indication => Relocate_Node (Obj_Def))); |
| |
| -- This subtype may need freezing, and this will not be done |
| -- automatically if the object declaration is not in declarative |
| -- part. Since this is an object declaration, the type cannot always |
| -- be frozen here. Deferred constants do not freeze their type |
| -- (which often enough will be private). |
| |
| if Nkind (P) = N_Object_Declaration |
| and then Constant_Present (P) |
| and then No (Expression (P)) |
| then |
| null; |
| |
| -- Here we freeze the base type of object type to catch premature use |
| -- of discriminated private type without a full view. |
| |
| else |
| Insert_Actions (Obj_Def, Freeze_Entity (Base_Type (T), P)); |
| end if; |
| |
| -- Ada 2005 AI-406: the object definition in an object declaration |
| -- can be an access definition. |
| |
| elsif Def_Kind = N_Access_Definition then |
| T := Access_Definition (Related_Nod, Obj_Def); |
| |
| Set_Is_Local_Anonymous_Access |
| (T, Ada_Version < Ada_2012 |
| or else Nkind (P) /= N_Object_Declaration |
| or else Is_Library_Level_Entity (Defining_Identifier (P))); |
| |
| -- Otherwise, the object definition is just a subtype_mark |
| |
| else |
| T := Process_Subtype (Obj_Def, Related_Nod); |
| end if; |
| |
| return T; |
| end Find_Type_Of_Object; |
| |
| -------------------------------- |
| -- Find_Type_Of_Subtype_Indic -- |
| -------------------------------- |
| |
| function Find_Type_Of_Subtype_Indic (S : Node_Id) return Entity_Id is |
| Typ : Entity_Id; |
| |
| begin |
| -- Case of subtype mark with a constraint |
| |
| if Nkind (S) = N_Subtype_Indication then |
| Find_Type (Subtype_Mark (S)); |
| Typ := Entity (Subtype_Mark (S)); |
| |
| if not |
| Is_Valid_Constraint_Kind (Ekind (Typ), Nkind (Constraint (S))) |
| then |
| Error_Msg_N |
| ("incorrect constraint for this kind of type", Constraint (S)); |
| Rewrite (S, New_Copy_Tree (Subtype_Mark (S))); |
| end if; |
| |
| -- Otherwise we have a subtype mark without a constraint |
| |
| elsif Error_Posted (S) then |
| Rewrite (S, New_Occurrence_Of (Any_Id, Sloc (S))); |
| return Any_Type; |
| |
| else |
| Find_Type (S); |
| Typ := Entity (S); |
| end if; |
| |
| return Typ; |
| end Find_Type_Of_Subtype_Indic; |
| |
| ------------------------------------- |
| -- Floating_Point_Type_Declaration -- |
| ------------------------------------- |
| |
| procedure Floating_Point_Type_Declaration (T : Entity_Id; Def : Node_Id) is |
| Digs : constant Node_Id := Digits_Expression (Def); |
| Max_Digs_Val : constant Uint := Digits_Value (Standard_Long_Long_Float); |
| Digs_Val : Uint; |
| Base_Typ : Entity_Id; |
| Implicit_Base : Entity_Id; |
| |
| function Can_Derive_From (E : Entity_Id) return Boolean; |
| -- Find if given digits value, and possibly a specified range, allows |
| -- derivation from specified type |
| |
| procedure Convert_Bound (B : Node_Id); |
| -- If specified, the bounds must be static but may be of different |
| -- types. They must be converted into machine numbers of the base type, |
| -- in accordance with RM 4.9(38). |
| |
| function Find_Base_Type return Entity_Id; |
| -- Find a predefined base type that Def can derive from, or generate |
| -- an error and substitute Long_Long_Float if none exists. |
| |
| --------------------- |
| -- Can_Derive_From -- |
| --------------------- |
| |
| function Can_Derive_From (E : Entity_Id) return Boolean is |
| Spec : constant Entity_Id := Real_Range_Specification (Def); |
| |
| begin |
| -- Check specified "digits" constraint |
| |
| if Digs_Val > Digits_Value (E) then |
| return False; |
| end if; |
| |
| -- Check for matching range, if specified |
| |
| if Present (Spec) then |
| if Expr_Value_R (Type_Low_Bound (E)) > |
| Expr_Value_R (Low_Bound (Spec)) |
| then |
| return False; |
| end if; |
| |
| if Expr_Value_R (Type_High_Bound (E)) < |
| Expr_Value_R (High_Bound (Spec)) |
| then |
| return False; |
| end if; |
| end if; |
| |
| return True; |
| end Can_Derive_From; |
| |
| ------------------- |
| -- Convert_Bound -- |
| -------------------- |
| |
| procedure Convert_Bound (B : Node_Id) is |
| begin |
| -- If the bound is not a literal it can only be static if it is |
| -- a static constant, possibly of a specified type. |
| |
| if Is_Entity_Name (B) |
| and then Ekind (Entity (B)) = E_Constant |
| then |
| Rewrite (B, Constant_Value (Entity (B))); |
| end if; |
| |
| if Nkind (B) = N_Real_Literal then |
| Set_Realval (B, Machine (Base_Typ, Realval (B), Round, B)); |
| Set_Is_Machine_Number (B); |
| Set_Etype (B, Base_Typ); |
| end if; |
| end Convert_Bound; |
| |
| -------------------- |
| -- Find_Base_Type -- |
| -------------------- |
| |
| function Find_Base_Type return Entity_Id is |
| Choice : Elmt_Id := First_Elmt (Predefined_Float_Types); |
| |
| begin |
| -- Iterate over the predefined types in order, returning the first |
| -- one that Def can derive from. |
| |
| while Present (Choice) loop |
| if Can_Derive_From (Node (Choice)) then |
| return Node (Choice); |
| end if; |
| |
| Next_Elmt (Choice); |
| end loop; |
| |
| -- If we can't derive from any existing type, use Long_Long_Float |
| -- and give appropriate message explaining the problem. |
| |
| if Digs_Val > Max_Digs_Val then |
| -- It might be the case that there is a type with the requested |
| -- range, just not the combination of digits and range. |
| |
| Error_Msg_N |
| ("no predefined type has requested range and precision", |
| Real_Range_Specification (Def)); |
| |
| else |
| Error_Msg_N |
| ("range too large for any predefined type", |
| Real_Range_Specification (Def)); |
| end if; |
| |
| return Standard_Long_Long_Float; |
| end Find_Base_Type; |
| |
| -- Start of processing for Floating_Point_Type_Declaration |
| |
| begin |
| Check_Restriction (No_Floating_Point, Def); |
| |
| -- Create an implicit base type |
| |
| Implicit_Base := |
| Create_Itype (E_Floating_Point_Type, Parent (Def), T, 'B'); |
| |
| -- Analyze and verify digits value |
| |
| Analyze_And_Resolve (Digs, Any_Integer); |
| Check_Digits_Expression (Digs); |
| Digs_Val := Expr_Value (Digs); |
| |
| -- Process possible range spec and find correct type to derive from |
| |
| Process_Real_Range_Specification (Def); |
| |
| -- Check that requested number of digits is not too high. |
| |
| if Digs_Val > Max_Digs_Val then |
| |
| -- The check for Max_Base_Digits may be somewhat expensive, as it |
| -- requires reading System, so only do it when necessary. |
| |
| declare |
| Max_Base_Digits : constant Uint := |
| Expr_Value |
| (Expression |
| (Parent (RTE (RE_Max_Base_Digits)))); |
| |
| begin |
| if Digs_Val > Max_Base_Digits then |
| Error_Msg_Uint_1 := Max_Base_Digits; |
| Error_Msg_N ("digits value out of range, maximum is ^", Digs); |
| |
| elsif No (Real_Range_Specification (Def)) then |
| Error_Msg_Uint_1 := Max_Digs_Val; |
| Error_Msg_N ("types with more than ^ digits need range spec " |
| & "(RM 3.5.7(6))", Digs); |
| end if; |
| end; |
| end if; |
| |
| -- Find a suitable type to derive from or complain and use a substitute |
| |
| Base_Typ := Find_Base_Type; |
| |
| -- If there are bounds given in the declaration use them as the bounds |
| -- of the type, otherwise use the bounds of the predefined base type |
| -- that was chosen based on the Digits value. |
| |
| if Present (Real_Range_Specification (Def)) then |
| Set_Scalar_Range (T, Real_Range_Specification (Def)); |
| Set_Is_Constrained (T); |
| |
| Convert_Bound (Type_Low_Bound (T)); |
| Convert_Bound (Type_High_Bound (T)); |
| |
| else |
| Set_Scalar_Range (T, Scalar_Range (Base_Typ)); |
| end if; |
| |
| -- Complete definition of implicit base and declared first subtype. The |
| -- inheritance of the rep item chain ensures that SPARK-related pragmas |
| -- are not clobbered when the floating point type acts as a full view of |
| -- a private type. |
| |
| Set_Etype (Implicit_Base, Base_Typ); |
| Set_Scalar_Range (Implicit_Base, Scalar_Range (Base_Typ)); |
| Set_Size_Info (Implicit_Base, Base_Typ); |
| Set_RM_Size (Implicit_Base, RM_Size (Base_Typ)); |
| Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Base_Typ)); |
| Set_Digits_Value (Implicit_Base, Digits_Value (Base_Typ)); |
| Set_Float_Rep (Implicit_Base, Float_Rep (Base_Typ)); |
| |
| Mutate_Ekind (T, E_Floating_Point_Subtype); |
| Set_Etype (T, Implicit_Base); |
| Set_Size_Info (T, Implicit_Base); |
| Set_RM_Size (T, RM_Size (Implicit_Base)); |
| Inherit_Rep_Item_Chain (T, Implicit_Base); |
| |
| if Digs_Val >= Uint_1 then |
| Set_Digits_Value (T, Digs_Val); |
| else |
| pragma Assert (Serious_Errors_Detected > 0); null; |
| end if; |
| end Floating_Point_Type_Declaration; |
| |
| ---------------------------- |
| -- Get_Discriminant_Value -- |
| ---------------------------- |
| |
| -- This is the situation: |
| |
| -- There is a non-derived type |
| |
| -- type T0 (Dx, Dy, Dz...) |
| |
| -- There are zero or more levels of derivation, with each derivation |
| -- either purely inheriting the discriminants, or defining its own. |
| |
| -- type Ti is new Ti-1 |
| -- or |
| -- type Ti (Dw) is new Ti-1(Dw, 1, X+Y) |
| -- or |
| -- subtype Ti is ... |
| |
| -- The subtype issue is avoided by the use of Original_Record_Component, |
| -- and the fact that derived subtypes also derive the constraints. |
| |
| -- This chain leads back from |
| |
| -- Typ_For_Constraint |
| |
| -- Typ_For_Constraint has discriminants, and the value for each |
| -- discriminant is given by its corresponding Elmt of Constraints. |
| |
| -- Discriminant is some discriminant in this hierarchy |
| |
| -- We need to return its value |
| |
| -- We do this by recursively searching each level, and looking for |
| -- Discriminant. Once we get to the bottom, we start backing up |
| -- returning the value for it which may in turn be a discriminant |
| -- further up, so on the backup we continue the substitution. |
| |
| function Get_Discriminant_Value |
| (Discriminant : Entity_Id; |
| Typ_For_Constraint : Entity_Id; |
| Constraint : Elist_Id) return Node_Id |
| is |
| function Root_Corresponding_Discriminant |
| (Discr : Entity_Id) return Entity_Id; |
| -- Given a discriminant, traverse the chain of inherited discriminants |
| -- and return the topmost discriminant. |
| |
| function Search_Derivation_Levels |
| (Ti : Entity_Id; |
| Discrim_Values : Elist_Id; |
| Stored_Discrim_Values : Boolean) return Node_Or_Entity_Id; |
| -- This is the routine that performs the recursive search of levels |
| -- as described above. |
| |
| ------------------------------------- |
| -- Root_Corresponding_Discriminant -- |
| ------------------------------------- |
| |
| function Root_Corresponding_Discriminant |
| (Discr : Entity_Id) return Entity_Id |
| is |
| D : Entity_Id; |
| |
| begin |
| D := Discr; |
| while Present (Corresponding_Discriminant (D)) loop |
| D := Corresponding_Discriminant (D); |
| end loop; |
| |
| return D; |
| end Root_Corresponding_Discriminant; |
| |
| ------------------------------ |
| -- Search_Derivation_Levels -- |
| ------------------------------ |
| |
| function Search_Derivation_Levels |
| (Ti : Entity_Id; |
| Discrim_Values : Elist_Id; |
| Stored_Discrim_Values : Boolean) return Node_Or_Entity_Id |
| is |
| Assoc : Elmt_Id; |
| Disc : Entity_Id; |
| Result : Node_Or_Entity_Id; |
| Result_Entity : Node_Id; |
| |
| begin |
| -- If inappropriate type, return Error, this happens only in |
| -- cascaded error situations, and we want to avoid a blow up. |
| |
| if not Is_Composite_Type (Ti) or else Is_Array_Type (Ti) then |
| return Error; |
| end if; |
| |
| -- Look deeper if possible. Use Stored_Constraints only for |
| -- untagged types. For tagged types use the given constraint. |
| -- This asymmetry needs explanation??? |
| |
| if not Stored_Discrim_Values |
| and then Present (Stored_Constraint (Ti)) |
| and then not Is_Tagged_Type (Ti) |
| then |
| Result := |
| Search_Derivation_Levels (Ti, Stored_Constraint (Ti), True); |
| |
| else |
| declare |
| Td : Entity_Id := Etype (Ti); |
| |
| begin |
| -- If the parent type is private, the full view may include |
| -- renamed discriminants, and it is those stored values that |
| -- may be needed (the partial view never has more information |
| -- than the full view). |
| |
| if Is_Private_Type (Td) and then Present (Full_View (Td)) then |
| Td := Full_View (Td); |
| end if; |
| |
| if Td = Ti then |
| Result := Discriminant; |
| |
| else |
| if Present (Stored_Constraint (Ti)) then |
| Result := |
| Search_Derivation_Levels |
| (Td, Stored_Constraint (Ti), True); |
| else |
| Result := |
| Search_Derivation_Levels |
| (Td, Discrim_Values, Stored_Discrim_Values); |
| end if; |
| end if; |
| end; |
| end if; |
| |
| -- Extra underlying places to search, if not found above. For |
| -- concurrent types, the relevant discriminant appears in the |
| -- corresponding record. For a type derived from a private type |
| -- without discriminant, the full view inherits the discriminants |
| -- of the full view of the parent. |
| |
| if Result = Discriminant then |
| if Is_Concurrent_Type (Ti) |
| and then Present (Corresponding_Record_Type (Ti)) |
| then |
| Result := |
| Search_Derivation_Levels ( |
| Corresponding_Record_Type (Ti), |
| Discrim_Values, |
| Stored_Discrim_Values); |
| |
| elsif Is_Private_Type (Ti) |
| and then not Has_Discriminants (Ti) |
| and then Present (Full_View (Ti)) |
| and then Etype (Full_View (Ti)) /= Ti |
| then |
| Result := |
| Search_Derivation_Levels ( |
| Full_View (Ti), |
| Discrim_Values, |
| Stored_Discrim_Values); |
| end if; |
| end if; |
| |
| -- If Result is not a (reference to a) discriminant, return it, |
| -- otherwise set Result_Entity to the discriminant. |
| |
| if Nkind (Result) = N_Defining_Identifier then |
| pragma Assert (Result = Discriminant); |
| Result_Entity := Result; |
| |
| else |
| if not Denotes_Discriminant (Result) then |
| return Result; |
| end if; |
| |
| Result_Entity := Entity (Result); |
| end if; |
| |
| -- See if this level of derivation actually has discriminants because |
| -- tagged derivations can add them, hence the lower levels need not |
| -- have any. |
| |
| if not Has_Discriminants (Ti) then |
| return Result; |
| end if; |
| |
| -- Scan Ti's discriminants for Result_Entity, and return its |
| -- corresponding value, if any. |
| |
| Result_Entity := Original_Record_Component (Result_Entity); |
| |
| Assoc := First_Elmt (Discrim_Values); |
| |
| if Stored_Discrim_Values then |
| Disc := First_Stored_Discriminant (Ti); |
| else |
| Disc := First_Discriminant (Ti); |
| end if; |
| |
| while Present (Disc) loop |
| |
| -- If no further associations return the discriminant, value will |
| -- be found on the second pass. |
| |
| if No (Assoc) then |
| return Result; |
| end if; |
| |
| if Original_Record_Component (Disc) = Result_Entity then |
| return Node (Assoc); |
| end if; |
| |
| Next_Elmt (Assoc); |
| |
| if Stored_Discrim_Values then |
| Next_Stored_Discriminant (Disc); |
| else |
| Next_Discriminant (Disc); |
| end if; |
| end loop; |
| |
| -- Could not find it |
| |
| return Result; |
| end Search_Derivation_Levels; |
| |
| -- Local Variables |
| |
| Result : Node_Or_Entity_Id; |
| |
| -- Start of processing for Get_Discriminant_Value |
| |
| begin |
| -- ??? This routine is a gigantic mess and will be deleted. For the |
| -- time being just test for the trivial case before calling recurse. |
| |
| -- We are now celebrating the 20th anniversary of this comment! |
| |
| if Base_Type (Scope (Discriminant)) = Base_Type (Typ_For_Constraint) then |
| declare |
| D : Entity_Id; |
| E : Elmt_Id; |
| |
| begin |
| D := First_Discriminant (Typ_For_Constraint); |
| E := First_Elmt (Constraint); |
| while Present (D) loop |
| if Chars (D) = Chars (Discriminant) then |
| return Node (E); |
| end if; |
| |
| Next_Discriminant (D); |
| Next_Elmt (E); |
| end loop; |
| end; |
| end if; |
| |
| Result := Search_Derivation_Levels |
| (Typ_For_Constraint, Constraint, False); |
| |
| -- ??? hack to disappear when this routine is gone |
| |
| if Nkind (Result) = N_Defining_Identifier then |
| declare |
| D : Entity_Id; |
| E : Elmt_Id; |
| |
| begin |
| D := First_Discriminant (Typ_For_Constraint); |
| E := First_Elmt (Constraint); |
| while Present (D) loop |
| if Root_Corresponding_Discriminant (D) = Discriminant then |
| return Node (E); |
| end if; |
| |
| Next_Discriminant (D); |
| Next_Elmt (E); |
| end loop; |
| end; |
| end if; |
| |
| pragma Assert (Nkind (Result) /= N_Defining_Identifier); |
| return Result; |
| end Get_Discriminant_Value; |
| |
| -------------------------- |
| -- Has_Range_Constraint -- |
| -------------------------- |
| |
| function Has_Range_Constraint (N : Node_Id) return Boolean is |
| C : constant Node_Id := Constraint (N); |
| |
| begin |
| if Nkind (C) = N_Range_Constraint then |
| return True; |
| |
| elsif Nkind (C) = N_Digits_Constraint then |
| return |
| Is_Decimal_Fixed_Point_Type (Entity (Subtype_Mark (N))) |
| or else Present (Range_Constraint (C)); |
| |
| elsif Nkind (C) = N_Delta_Constraint then |
| return Present (Range_Constraint (C)); |
| |
| else |
| return False; |
| end if; |
| end Has_Range_Constraint; |
| |
| ------------------------ |
| -- Inherit_Components -- |
| ------------------------ |
| |
| function Inherit_Components |
| (N : Node_Id; |
| Parent_Base : Entity_Id; |
| Derived_Base : Entity_Id; |
| Is_Tagged : Boolean; |
| Inherit_Discr : Boolean; |
| Discs : Elist_Id) return Elist_Id |
| is |
| Assoc_List : constant Elist_Id := New_Elmt_List; |
| |
| procedure Inherit_Component |
| (Old_C : Entity_Id; |
| Plain_Discrim : Boolean := False; |
| Stored_Discrim : Boolean := False); |
| -- Inherits component Old_C from Parent_Base to the Derived_Base. If |
| -- Plain_Discrim is True, Old_C is a discriminant. If Stored_Discrim is |
| -- True, Old_C is a stored discriminant. If they are both false then |
| -- Old_C is a regular component. |
| |
| ----------------------- |
| -- Inherit_Component -- |
| ----------------------- |
| |
| procedure Inherit_Component |
| (Old_C : Entity_Id; |
| Plain_Discrim : Boolean := False; |
| Stored_Discrim : Boolean := False) |
| is |
| procedure Set_Anonymous_Type (Id : Entity_Id); |
| -- Id denotes the entity of an access discriminant or anonymous |
| -- access component. Set the type of Id to either the same type of |
| -- Old_C or create a new one depending on whether the parent and |
| -- the child types are in the same scope. |
| |
| ------------------------ |
| -- Set_Anonymous_Type -- |
| ------------------------ |
| |
| procedure Set_Anonymous_Type (Id : Entity_Id) is |
| Old_Typ : constant Entity_Id := Etype (Old_C); |
| |
| begin |
| if Scope (Parent_Base) = Scope (Derived_Base) then |
| Set_Etype (Id, Old_Typ); |
| |
| -- The parent and the derived type are in two different scopes. |
| -- Reuse the type of the original discriminant / component by |
| -- copying it in order to preserve all attributes. |
| |
| else |
| declare |
| Typ : constant Entity_Id := New_Copy (Old_Typ); |
| |
| begin |
| Set_Etype (Id, Typ); |
| |
| -- Since we do not generate component declarations for |
| -- inherited components, associate the itype with the |
| -- derived type. |
| |
| Set_Associated_Node_For_Itype (Typ, Parent (Derived_Base)); |
| Set_Scope (Typ, Derived_Base); |
| end; |
| end if; |
| end Set_Anonymous_Type; |
| |
| -- Local variables and constants |
| |
| New_C : constant Entity_Id := New_Copy (Old_C); |
| |
| Corr_Discrim : Entity_Id; |
| Discrim : Entity_Id; |
| |
| -- Start of processing for Inherit_Component |
| |
| begin |
| pragma Assert (not Is_Tagged or not Stored_Discrim); |
| |
| Set_Parent (New_C, Parent (Old_C)); |
| |
| -- Regular discriminants and components must be inserted in the scope |
| -- of the Derived_Base. Do it here. |
| |
| if not Stored_Discrim then |
| Enter_Name (New_C); |
| end if; |
| |
| -- For tagged types the Original_Record_Component must point to |
| -- whatever this field was pointing to in the parent type. This has |
| -- already been achieved by the call to New_Copy above. |
| |
| if not Is_Tagged then |
| Set_Original_Record_Component (New_C, New_C); |
| Set_Corresponding_Record_Component (New_C, Old_C); |
| end if; |
| |
| -- Set the proper type of an access discriminant |
| |
| if Ekind (New_C) = E_Discriminant |
| and then Ekind (Etype (New_C)) = E_Anonymous_Access_Type |
| then |
| Set_Anonymous_Type (New_C); |
| end if; |
| |
| -- If we have inherited a component then see if its Etype contains |
| -- references to Parent_Base discriminants. In this case, replace |
| -- these references with the constraints given in Discs. We do not |
| -- do this for the partial view of private types because this is |
| -- not needed (only the components of the full view will be used |
| -- for code generation) and cause problem. We also avoid this |
| -- transformation in some error situations. |
| |
| if Ekind (New_C) = E_Component then |
| |
| -- Set the proper type of an anonymous access component |
| |
| if Ekind (Etype (New_C)) = E_Anonymous_Access_Type then |
| Set_Anonymous_Type (New_C); |
| |
| elsif (Is_Private_Type (Derived_Base) |
| and then not Is_Generic_Type (Derived_Base)) |
| or else (Is_Empty_Elmt_List (Discs) |
| and then not Expander_Active) |
| then |
| Set_Etype (New_C, Etype (Old_C)); |
| |
| else |
| -- The current component introduces a circularity of the |
| -- following kind: |
| |
| -- limited with Pack_2; |
| -- package Pack_1 is |
| -- type T_1 is tagged record |
| -- Comp : access Pack_2.T_2; |
| -- ... |
| -- end record; |
| -- end Pack_1; |
| |
| -- with Pack_1; |
| -- package Pack_2 is |
| -- type T_2 is new Pack_1.T_1 with ...; |
| -- end Pack_2; |
| |
| Set_Etype |
| (New_C, |
| Constrain_Component_Type |
| (Old_C, Derived_Base, N, Parent_Base, Discs)); |
| end if; |
| end if; |
| |
| -- In derived tagged types it is illegal to reference a non |
| -- discriminant component in the parent type. To catch this, mark |
| -- these components with an Ekind of E_Void. This will be reset in |
| -- Record_Type_Definition after processing the record extension of |
| -- the derived type. |
| |
| -- If the declaration is a private extension, there is no further |
| -- record extension to process, and the components retain their |
| -- current kind, because they are visible at this point. |
| |
| if Is_Tagged and then Ekind (New_C) = E_Component |
| and then Nkind (N) /= N_Private_Extension_Declaration |
| then |
| Mutate_Ekind (New_C, E_Void); |
| end if; |
| |
| if Plain_Discrim then |
| Set_Corresponding_Discriminant (New_C, Old_C); |
| Build_Discriminal (New_C); |
| |
| -- If we are explicitly inheriting a stored discriminant it will be |
| -- completely hidden. |
| |
| elsif Stored_Discrim then |
| Set_Corresponding_Discriminant (New_C, Empty); |
| Set_Discriminal (New_C, Empty); |
| Set_Is_Completely_Hidden (New_C); |
| |
| -- Set the Original_Record_Component of each discriminant in the |
| -- derived base to point to the corresponding stored that we just |
| -- created. |
| |
| Discrim := First_Discriminant (Derived_Base); |
| while Present (Discrim) loop |
| Corr_Discrim := Corresponding_Discriminant (Discrim); |
| |
| -- Corr_Discrim could be missing in an error situation |
| |
| if Present (Corr_Discrim) |
| and then Original_Record_Component (Corr_Discrim) = Old_C |
| then |
| Set_Original_Record_Component (Discrim, New_C); |
| Set_Corresponding_Record_Component (Discrim, Empty); |
| end if; |
| |
| Next_Discriminant (Discrim); |
| end loop; |
| |
| Append_Entity (New_C, Derived_Base); |
| end if; |
| |
| if not Is_Tagged then |
| Append_Elmt (Old_C, Assoc_List); |
| Append_Elmt (New_C, Assoc_List); |
| end if; |
| end Inherit_Component; |
| |
| -- Variables local to Inherit_Component |
| |
| Loc : constant Source_Ptr := Sloc (N); |
| |
| Parent_Discrim : Entity_Id; |
| Stored_Discrim : Entity_Id; |
| D : Entity_Id; |
| Component : Entity_Id; |
| |
| -- Start of processing for Inherit_Components |
| |
| begin |
| if not Is_Tagged then |
| Append_Elmt (Parent_Base, Assoc_List); |
| Append_Elmt (Derived_Base, Assoc_List); |
| end if; |
| |
| -- Inherit parent discriminants if needed |
| |
| if Inherit_Discr then |
| Parent_Discrim := First_Discriminant (Parent_Base); |
| while Present (Parent_Discrim) loop |
| Inherit_Component (Parent_Discrim, Plain_Discrim => True); |
| Next_Discriminant (Parent_Discrim); |
| end loop; |
| end if; |
| |
| -- Create explicit stored discrims for untagged types when necessary |
| |
| if not Has_Unknown_Discriminants (Derived_Base) |
| and then Has_Discriminants (Parent_Base) |
| and then not Is_Tagged |
| and then |
| (not Inherit_Discr |
| or else First_Discriminant (Parent_Base) /= |
| First_Stored_Discriminant (Parent_Base)) |
| then |
| Stored_Discrim := First_Stored_Discriminant (Parent_Base); |
| while Present (Stored_Discrim) loop |
| Inherit_Component (Stored_Discrim, Stored_Discrim => True); |
| Next_Stored_Discriminant (Stored_Discrim); |
| end loop; |
| end if; |
| |
| -- See if we can apply the second transformation for derived types, as |
| -- explained in point 6. in the comments above Build_Derived_Record_Type |
| -- This is achieved by appending Derived_Base discriminants into Discs, |
| -- which has the side effect of returning a non empty Discs list to the |
| -- caller of Inherit_Components, which is what we want. This must be |
| -- done for private derived types if there are explicit stored |
| -- discriminants, to ensure that we can retrieve the values of the |
| -- constraints provided in the ancestors. |
| |
| if Inherit_Discr |
| and then Is_Empty_Elmt_List (Discs) |
| and then Present (First_Discriminant (Derived_Base)) |
| and then |
| (not Is_Private_Type (Derived_Base) |
| or else Is_Completely_Hidden |
| (First_Stored_Discriminant (Derived_Base)) |
| or else Is_Generic_Type (Derived_Base)) |
| then |
| D := First_Discriminant (Derived_Base); |
| while Present (D) loop |
| Append_Elmt (New_Occurrence_Of (D, Loc), Discs); |
| Next_Discriminant (D); |
| end loop; |
| end if; |
| |
| -- Finally, inherit non-discriminant components unless they are not |
| -- visible because defined or inherited from the full view of the |
| -- parent. Don't inherit the _parent field of the parent type. |
| |
| Component := First_Entity (Parent_Base); |
| while Present (Component) loop |
| |
| -- Ada 2005 (AI-251): Do not inherit components associated with |
| -- secondary tags of the parent. |
| |
| if Ekind (Component) = E_Component |
| and then Present (Related_Type (Component)) |
| then |
| null; |
| |
| elsif Ekind (Component) /= E_Component |
| or else Chars (Component) = Name_uParent |
| then |
| null; |
| |
| -- If the derived type is within the parent type's declarative |
| -- region, then the components can still be inherited even though |
| -- they aren't visible at this point. This can occur for cases |
| -- such as within public child units where the components must |
| -- become visible upon entering the child unit's private part. |
| |
| elsif not Is_Visible_Component (Component) |
| and then not In_Open_Scopes (Scope (Parent_Base)) |
| then |
| null; |
| |
| elsif Ekind (Derived_Base) in E_Private_Type | E_Limited_Private_Type |
| then |
| null; |
| |
| else |
| Inherit_Component (Component); |
| end if; |
| |
| Next_Entity (Component); |
| end loop; |
| |
| -- For tagged derived types, inherited discriminants cannot be used in |
| -- component declarations of the record extension part. To achieve this |
| -- we mark the inherited discriminants as not visible. |
| |
| if Is_Tagged and then Inherit_Discr then |
| D := First_Discriminant (Derived_Base); |
| while Present (D) loop |
| Set_Is_Immediately_Visible (D, False); |
| Next_Discriminant (D); |
| end loop; |
| end if; |
| |
| return Assoc_List; |
| end Inherit_Components; |
| |
| ---------------------- |
| -- Is_EVF_Procedure -- |
| ---------------------- |
| |
| function Is_EVF_Procedure (Subp : Entity_Id) return Boolean is |
| Formal : Entity_Id; |
| |
| begin |
| -- Examine the formals of an Extensions_Visible False procedure looking |
| -- for a controlling OUT parameter. |
| |
| if Ekind (Subp) = E_Procedure |
| and then Extensions_Visible_Status (Subp) = Extensions_Visible_False |
| then |
| Formal := First_Formal (Subp); |
| while Present (Formal) loop |
| if Ekind (Formal) = E_Out_Parameter |
| and then Is_Controlling_Formal (Formal) |
| then |
| return True; |
| end if; |
| |
| Next_Formal (Formal); |
| end loop; |
| end if; |
| |
| return False; |
| end Is_EVF_Procedure; |
| |
| -------------------------- |
| -- Is_Private_Primitive -- |
| -------------------------- |
| |
| function Is_Private_Primitive (Prim : Entity_Id) return Boolean is |
| Prim_Scope : constant Entity_Id := Scope (Prim); |
| Priv_Entity : Entity_Id; |
| begin |
| if Is_Package_Or_Generic_Package (Prim_Scope) then |
| Priv_Entity := First_Private_Entity (Prim_Scope); |
| |
| while Present (Priv_Entity) loop |
| if Priv_Entity = Prim then |
| return True; |
| end if; |
| |
| Next_Entity (Priv_Entity); |
| end loop; |
| end if; |
| |
| return False; |
| end Is_Private_Primitive; |
| |
| ------------------------------ |
| -- Is_Valid_Constraint_Kind -- |
| ------------------------------ |
| |
| function Is_Valid_Constraint_Kind |
| (T_Kind : Type_Kind; |
| Constraint_Kind : Node_Kind) return Boolean |
| is |
| begin |
| case T_Kind is |
| when Enumeration_Kind |
| | Integer_Kind |
| => |
| return Constraint_Kind = N_Range_Constraint; |
| |
| when Decimal_Fixed_Point_Kind => |
| return Constraint_Kind in N_Digits_Constraint | N_Range_Constraint; |
| |
| when Ordinary_Fixed_Point_Kind => |
| return Constraint_Kind in N_Delta_Constraint | N_Range_Constraint; |
| |
| when Float_Kind => |
| return Constraint_Kind in N_Digits_Constraint | N_Range_Constraint; |
| |
| when Access_Kind |
| | Array_Kind |
| | Class_Wide_Kind |
| | Concurrent_Kind |
| | Private_Kind |
| | E_Incomplete_Type |
| | E_Record_Subtype |
| | E_Record_Type |
| => |
| return Constraint_Kind = N_Index_Or_Discriminant_Constraint; |
| |
| when others => |
| return True; -- Error will be detected later |
| end case; |
| end Is_Valid_Constraint_Kind; |
| |
| -------------------------- |
| -- Is_Visible_Component -- |
| -------------------------- |
| |
| function Is_Visible_Component |
| (C : Entity_Id; |
| N : Node_Id := Empty) return Boolean |
| is |
| Original_Comp : Entity_Id := Empty; |
| Original_Type : Entity_Id; |
| Type_Scope : Entity_Id; |
| |
| function Is_Local_Type (Typ : Entity_Id) return Boolean; |
| -- Check whether parent type of inherited component is declared locally, |
| -- possibly within a nested package or instance. The current scope is |
| -- the derived record itself. |
| |
| ------------------- |
| -- Is_Local_Type -- |
| ------------------- |
| |
| function Is_Local_Type (Typ : Entity_Id) return Boolean is |
| begin |
| return Scope_Within (Inner => Typ, Outer => Scope (Current_Scope)); |
| end Is_Local_Type; |
| |
| -- Start of processing for Is_Visible_Component |
| |
| begin |
| if Ekind (C) in E_Component | E_Discriminant then |
| Original_Comp := Original_Record_Component (C); |
| end if; |
| |
| if No (Original_Comp) then |
| |
| -- Premature usage, or previous error |
| |
| return False; |
| |
| else |
| Original_Type := Scope (Original_Comp); |
| Type_Scope := Scope (Base_Type (Scope (C))); |
| end if; |
| |
| -- This test only concerns tagged types |
| |
| if not Is_Tagged_Type (Original_Type) then |
| |
| -- Check if this is a renamed discriminant (hidden either by the |
| -- derived type or by some ancestor), unless we are analyzing code |
| -- generated by the expander since it may reference such components |
| -- (for example see the expansion of Deep_Adjust). |
| |
| if Ekind (C) = E_Discriminant and then Present (N) then |
| return |
| not Comes_From_Source (N) |
| or else not Is_Completely_Hidden (C); |
| else |
| return True; |
| end if; |
| |
| -- If it is _Parent or _Tag, there is no visibility issue |
| |
| elsif not Comes_From_Source (Original_Comp) then |
| return True; |
| |
| -- Discriminants are visible unless the (private) type has unknown |
| -- discriminants. If the discriminant reference is inserted for a |
| -- discriminant check on a full view it is also visible. |
| |
| elsif Ekind (Original_Comp) = E_Discriminant |
| and then |
| (not Has_Unknown_Discriminants (Original_Type) |
| or else (Present (N) |
| and then Nkind (N) = N_Selected_Component |
| and then Nkind (Prefix (N)) = N_Type_Conversion |
| and then not Comes_From_Source (Prefix (N)))) |
| then |
| return True; |
| |
| -- If the component has been declared in an ancestor which is currently |
| -- a private type, then it is not visible. The same applies if the |
| -- component's containing type is not in an open scope and the original |
| -- component's enclosing type is a visible full view of a private type |
| -- (which can occur in cases where an attempt is being made to reference |
| -- a component in a sibling package that is inherited from a visible |
| -- component of a type in an ancestor package; the component in the |
| -- sibling package should not be visible even though the component it |
| -- inherited from is visible), but instance bodies are not subject to |
| -- this second case since they have the Has_Private_View mechanism to |
| -- ensure proper visibility. This does not apply however in the case |
| -- where the scope of the type is a private child unit, or when the |
| -- parent comes from a local package in which the ancestor is currently |
| -- visible. The latter suppression of visibility is needed for cases |
| -- that are tested in B730006. |
| |
| elsif Is_Private_Type (Original_Type) |
| or else |
| (not Is_Private_Descendant (Type_Scope) |
| and then not In_Open_Scopes (Type_Scope) |
| and then Has_Private_Declaration (Original_Type) |
| and then not In_Instance_Body) |
| then |
| -- If the type derives from an entity in a formal package, there |
| -- are no additional visible components. |
| |
| if Nkind (Original_Node (Unit_Declaration_Node (Type_Scope))) = |
| N_Formal_Package_Declaration |
| then |
| return False; |
| |
| -- if we are not in the private part of the current package, there |
| -- are no additional visible components. |
| |
| elsif Ekind (Scope (Current_Scope)) = E_Package |
| and then not In_Private_Part (Scope (Current_Scope)) |
| then |
| return False; |
| else |
| return |
| Is_Child_Unit (Cunit_Entity (Current_Sem_Unit)) |
| and then In_Open_Scopes (Scope (Original_Type)) |
| and then Is_Local_Type (Type_Scope); |
| end if; |
| |
| -- There is another weird way in which a component may be invisible when |
| -- the private and the full view are not derived from the same ancestor. |
| -- Here is an example : |
| |
| -- type A1 is tagged record F1 : integer; end record; |
| -- type A2 is new A1 with record F2 : integer; end record; |
| -- type T is new A1 with private; |
| -- private |
| -- type T is new A2 with null record; |
| |
| -- In this case, the full view of T inherits F1 and F2 but the private |
| -- view inherits only F1 |
| |
| else |
| declare |
| Ancestor : Entity_Id := Scope (C); |
| |
| begin |
| loop |
| if Ancestor = Original_Type then |
| return True; |
| |
| -- The ancestor may have a partial view of the original type, |
| -- but if the full view is in scope, as in a child body, the |
| -- component is visible. |
| |
| elsif In_Private_Part (Scope (Original_Type)) |
| and then Full_View (Ancestor) = Original_Type |
| then |
| return True; |
| |
| elsif Ancestor = Etype (Ancestor) then |
| |
| -- No further ancestors to examine |
| |
| return False; |
| end if; |
| |
| Ancestor := Etype (Ancestor); |
| end loop; |
| end; |
| end if; |
| end Is_Visible_Component; |
| |
| -------------------------- |
| -- Make_Class_Wide_Type -- |
| -------------------------- |
| |
| procedure Make_Class_Wide_Type (T : Entity_Id) is |
| CW_Type : Entity_Id; |
| CW_Name : Name_Id; |
| Next_E : Entity_Id; |
| Prev_E : Entity_Id; |
| |
| begin |
| if Present (Class_Wide_Type (T)) then |
| |
| -- The class-wide type is a partially decorated entity created for a |
| -- unanalyzed tagged type referenced through a limited with clause. |
| -- When the tagged type is analyzed, its class-wide type needs to be |
| -- redecorated. Note that we reuse the entity created by Decorate_ |
| -- Tagged_Type in order to preserve all links. |
| |
| if Materialize_Entity (Class_Wide_Type (T)) then |
| CW_Type := Class_Wide_Type (T); |
| Set_Materialize_Entity (CW_Type, False); |
| |
| -- The class wide type can have been defined by the partial view, in |
| -- which case everything is already done. |
| |
| else |
| return; |
| end if; |
| |
| -- Default case, we need to create a new class-wide type |
| |
| else |
| CW_Type := |
| New_External_Entity (E_Void, Scope (T), Sloc (T), T, 'C', 0, 'T'); |
| end if; |
| |
| -- Inherit root type characteristics |
| |
| CW_Name := Chars (CW_Type); |
| Next_E := Next_Entity (CW_Type); |
| Prev_E := Prev_Entity (CW_Type); |
| Copy_Node (T, CW_Type); |
| Set_Comes_From_Source (CW_Type, False); |
| Set_Chars (CW_Type, CW_Name); |
| Set_Parent (CW_Type, Parent (T)); |
| Set_Prev_Entity (CW_Type, Prev_E); |
| Set_Next_Entity (CW_Type, Next_E); |
| |
| -- Ensure we have a new freeze node for the class-wide type. The partial |
| -- view may have freeze action of its own, requiring a proper freeze |
| -- node, and the same freeze node cannot be shared between the two |
| -- types. |
| |
| Set_Has_Delayed_Freeze (CW_Type); |
| Set_Freeze_Node (CW_Type, Empty); |
| |
| -- Customize the class-wide type: It has no prim. op., it cannot be |
| -- abstract, its Etype points back to the specific root type, and it |
| -- cannot have any invariants. |
| |
| if Ekind (CW_Type) in Incomplete_Or_Private_Kind then |
| Reinit_Field_To_Zero (CW_Type, F_Private_Dependents); |
| |
| elsif Ekind (CW_Type) in Concurrent_Kind then |
| Reinit_Field_To_Zero (CW_Type, F_First_Private_Entity); |
| Reinit_Field_To_Zero (CW_Type, F_Scope_Depth_Value); |
| |
| if Ekind (CW_Type) in Task_Kind then |
| Reinit_Field_To_Zero (CW_Type, F_Is_Elaboration_Checks_OK_Id); |
| Reinit_Field_To_Zero (CW_Type, F_Is_Elaboration_Warnings_OK_Id); |
| end if; |
| |
| if Ekind (CW_Type) in E_Task_Type | E_Protected_Type then |
| Reinit_Field_To_Zero (CW_Type, F_SPARK_Aux_Pragma_Inherited); |
| end if; |
| end if; |
| |
| Mutate_Ekind (CW_Type, E_Class_Wide_Type); |
| Set_Is_Tagged_Type (CW_Type, True); |
| Set_Direct_Primitive_Operations (CW_Type, New_Elmt_List); |
| Set_Is_Abstract_Type (CW_Type, False); |
| Set_Is_Constrained (CW_Type, False); |
| Set_Is_First_Subtype (CW_Type, Is_First_Subtype (T)); |
| Set_Default_SSO (CW_Type); |
| Set_Has_Inheritable_Invariants (CW_Type, False); |
| Set_Has_Inherited_Invariants (CW_Type, False); |
| Set_Has_Own_Invariants (CW_Type, False); |
| |
| if Ekind (T) = E_Class_Wide_Subtype then |
| Set_Etype (CW_Type, Etype (Base_Type (T))); |
| else |
| Set_Etype (CW_Type, T); |
| end if; |
| |
| Set_No_Tagged_Streams_Pragma (CW_Type, No_Tagged_Streams); |
| |
| -- If this is the class_wide type of a constrained subtype, it does |
| -- not have discriminants. |
| |
| Set_Has_Discriminants (CW_Type, |
| Has_Discriminants (T) and then not Is_Constrained (T)); |
| |
| Set_Has_Unknown_Discriminants (CW_Type, True); |
| Set_Class_Wide_Type (T, CW_Type); |
| Set_Equivalent_Type (CW_Type, Empty); |
| |
| -- The class-wide type of a class-wide type is itself (RM 3.9(14)) |
| |
| Set_Class_Wide_Type (CW_Type, CW_Type); |
| end Make_Class_Wide_Type; |
| |
| ---------------- |
| -- Make_Index -- |
| ---------------- |
| |
| procedure Make_Index |
| (N : Node_Id; |
| Related_Nod : Node_Id; |
| Related_Id : Entity_Id := Empty; |
| Suffix_Index : Pos := 1) |
| is |
| R : Node_Id; |
| T : Entity_Id; |
| Def_Id : Entity_Id := Empty; |
| Found : Boolean := False; |
| |
| begin |
| -- For a discrete range used in a constrained array definition and |
| -- defined by a range, an implicit conversion to the predefined type |
| -- INTEGER is assumed if each bound is either a numeric literal, a named |
| -- number, or an attribute, and the type of both bounds (prior to the |
| -- implicit conversion) is the type universal_integer. Otherwise, both |
| -- bounds must be of the same discrete type, other than universal |
| -- integer; this type must be determinable independently of the |
| -- context, but using the fact that the type must be discrete and that |
| -- both bounds must have the same type. |
| |
| -- Character literals also have a universal type in the absence of |
| -- of additional context, and are resolved to Standard_Character. |
| |
| if Nkind (N) = N_Range then |
| |
| -- The index is given by a range constraint. The bounds are known |
| -- to be of a consistent type. |
| |
| if not Is_Overloaded (N) then |
| T := Etype (N); |
| |
| -- For universal bounds, choose the specific predefined type |
| |
| if T = Universal_Integer then |
| T := Standard_Integer; |
| |
| elsif T = Any_Character then |
| Ambiguous_Character (Low_Bound (N)); |
| |
| T := Standard_Character; |
| end if; |
| |
| -- The node may be overloaded because some user-defined operators |
| -- are available, but if a universal interpretation exists it is |
| -- also the selected one. |
| |
| elsif Universal_Interpretation (N) = Universal_Integer then |
| T := Standard_Integer; |
| |
| else |
| T := Any_Type; |
| |
| declare |
| Ind : Interp_Index; |
| It : Interp; |
| |
| begin |
| Get_First_Interp (N, Ind, It); |
| while Present (It.Typ) loop |
| if Is_Discrete_Type (It.Typ) then |
| |
| if Found |
| and then not Covers (It.Typ, T) |
| and then not Covers (T, It.Typ) |
| then |
| Error_Msg_N ("ambiguous bounds in discrete range", N); |
| exit; |
| else |
| T := It.Typ; |
| Found := True; |
| end if; |
| end if; |
| |
| Get_Next_Interp (Ind, It); |
| end loop; |
| |
| if T = Any_Type then |
| Error_Msg_N ("discrete type required for range", N); |
| Set_Etype (N, Any_Type); |
| return; |
| |
| elsif T = Universal_Integer then |
| T := Standard_Integer; |
| end if; |
| end; |
| end if; |
| |
| if not Is_Discrete_Type (T) then |
| Error_Msg_N ("discrete type required for range", N); |
| Set_Etype (N, Any_Type); |
| return; |
| end if; |
| |
| -- If the range bounds are "T'First .. T'Last" where T is a name of a |
| -- discrete type, then use T as the type of the index. |
| |
| if Nkind (Low_Bound (N)) = N_Attribute_Reference |
| and then Attribute_Name (Low_Bound (N)) = Name_First |
| and then Is_Entity_Name (Prefix (Low_Bound (N))) |
| and then Is_Discrete_Type (Entity (Prefix (Low_Bound (N)))) |
| |
| and then Nkind (High_Bound (N)) = N_Attribute_Reference |
| and then Attribute_Name (High_Bound (N)) = Name_Last |
| and then Is_Entity_Name (Prefix (High_Bound (N))) |
| and then Entity (Prefix (High_Bound (N))) = Def_Id |
| then |
| Def_Id := Entity (Prefix (Low_Bound (N))); |
| end if; |
| |
| R := N; |
| Process_Range_Expr_In_Decl (R, T); |
| |
| elsif Nkind (N) = N_Subtype_Indication then |
| |
| -- The index is given by a subtype with a range constraint |
| |
| T := Base_Type (Entity (Subtype_Mark (N))); |
| |
| if not Is_Discrete_Type (T) then |
| Error_Msg_N ("discrete type required for range", N); |
| Set_Etype (N, Any_Type); |
| return; |
| end if; |
| |
| R := Range_Expression (Constraint (N)); |
| |
| Resolve (R, T); |
| Process_Range_Expr_In_Decl (R, Entity (Subtype_Mark (N))); |
| |
| elsif Nkind (N) = N_Attribute_Reference then |
| |
| -- Catch beginner's error (use of attribute other than 'Range) |
| |
| if Attribute_Name (N) /= Name_Range then |
| Error_Msg_N ("expect attribute ''Range", N); |
| Set_Etype (N, Any_Type); |
| return; |
| end if; |
| |
| -- If the node denotes the range of a type mark, that is also the |
| -- resulting type, and we do not need to create an Itype for it. |
| |
| if Is_Entity_Name (Prefix (N)) |
| and then Comes_From_Source (N) |
| and then Is_Discrete_Type (Entity (Prefix (N))) |
| then |
| Def_Id := Entity (Prefix (N)); |
| end if; |
| |
| Analyze_And_Resolve (N); |
| T := Etype (N); |
| R := N; |
| |
| -- If none of the above, must be a subtype. We convert this to a |
| -- range attribute reference because in the case of declared first |
| -- named subtypes, the types in the range reference can be different |
| -- from the type of the entity. A range attribute normalizes the |
| -- reference and obtains the correct types for the bounds. |
| |
| -- This transformation is in the nature of an expansion, is only |
| -- done if expansion is active. In particular, it is not done on |
| -- formal generic types, because we need to retain the name of the |
| -- original index for instantiation purposes. |
| |
| else |
| if not Is_Entity_Name (N) or else not Is_Type (Entity (N)) then |
| Error_Msg_N ("invalid subtype mark in discrete range", N); |
| Set_Etype (N, Any_Integer); |
| return; |
| |
| else |
| -- The type mark may be that of an incomplete type. It is only |
| -- now that we can get the full view, previous analysis does |
| -- not look specifically for a type mark. |
| |
| Set_Entity (N, Get_Full_View (Entity (N))); |
| Set_Etype (N, Entity (N)); |
| Def_Id := Entity (N); |
| |
| if not Is_Discrete_Type (Def_Id) then |
| Error_Msg_N ("discrete type required for index", N); |
| Set_Etype (N, Any_Type); |
| return; |
| end if; |
| end if; |
| |
| if Expander_Active then |
| Rewrite (N, |
| Make_Attribute_Reference (Sloc (N), |
| Attribute_Name => Name_Range, |
| Prefix => Relocate_Node (N))); |
| |
| -- The original was a subtype mark that does not freeze. This |
| -- means that the rewritten version must not freeze either. |
| |
| Set_Must_Not_Freeze (N); |
| Set_Must_Not_Freeze (Prefix (N)); |
| Analyze_And_Resolve (N); |
| T := Etype (N); |
| R := N; |
| |
| -- If expander is inactive, type is legal, nothing else to construct |
| |
| else |
| return; |
| end if; |
| end if; |
| |
| if not Is_Discrete_Type (T) then |
| Error_Msg_N ("discrete type required for range", N); |
| Set_Etype (N, Any_Type); |
| return; |
| |
| elsif T = Any_Type then |
| Set_Etype (N, Any_Type); |
| return; |
| end if; |
| |
| -- We will now create the appropriate Itype to describe the range, but |
| -- first a check. If we originally had a subtype, then we just label |
| -- the range with this subtype. Not only is there no need to construct |
| -- a new subtype, but it is wrong to do so for two reasons: |
| |
| -- 1. A legality concern, if we have a subtype, it must not freeze, |
| -- and the Itype would cause freezing incorrectly |
| |
| -- 2. An efficiency concern, if we created an Itype, it would not be |
| -- recognized as the same type for the purposes of eliminating |
| -- checks in some circumstances. |
| |
| -- We signal this case by setting the subtype entity in Def_Id |
| |
| if No (Def_Id) then |
| Def_Id := |
| Create_Itype (E_Void, Related_Nod, Related_Id, 'D', Suffix_Index); |
| Set_Etype (Def_Id, Base_Type (T)); |
| |
| if Is_Signed_Integer_Type (T) then |
| Mutate_Ekind (Def_Id, E_Signed_Integer_Subtype); |
| |
| elsif Is_Modular_Integer_Type (T) then |
| Mutate_Ekind (Def_Id, E_Modular_Integer_Subtype); |
| |
| else |
| Mutate_Ekind (Def_Id, E_Enumeration_Subtype); |
| Set_Is_Character_Type (Def_Id, Is_Character_Type (T)); |
| Set_First_Literal (Def_Id, First_Literal (T)); |
| end if; |
| |
| Set_Size_Info (Def_Id, (T)); |
| Set_RM_Size (Def_Id, RM_Size (T)); |
| Set_First_Rep_Item (Def_Id, First_Rep_Item (T)); |
| |
| Set_Scalar_Range (Def_Id, R); |
| Conditional_Delay (Def_Id, T); |
| |
| -- In the subtype indication case inherit properties of the parent |
| |
| if Nkind (N) = N_Subtype_Indication then |
| |
| -- It is enough to inherit predicate flags and not the predicate |
| -- functions, because predicates on an index type are illegal |
| -- anyway and the flags are enough to detect them. |
| |
| Inherit_Predicate_Flags (Def_Id, Entity (Subtype_Mark (N))); |
| |
| -- If the immediate parent of the new subtype is nonstatic, then |
| -- the subtype we create is nonstatic as well, even if its bounds |
| -- are static. |
| |
| if not Is_OK_Static_Subtype (Entity (Subtype_Mark (N))) then |
| Set_Is_Non_Static_Subtype (Def_Id); |
| end if; |
| end if; |
| |
| Set_Parent (Def_Id, N); |
| end if; |
| |
| -- Final step is to label the index with this constructed type |
| |
| Set_Etype (N, Def_Id); |
| end Make_Index; |
| |
| ------------------------------ |
| -- Modular_Type_Declaration -- |
| ------------------------------ |
| |
| procedure Modular_Type_Declaration (T : Entity_Id; Def : Node_Id) is |
| Mod_Expr : constant Node_Id := Expression (Def); |
| M_Val : Uint; |
| |
| procedure Set_Modular_Size (Bits : Int); |
| -- Sets RM_Size to Bits, and Esize to normal word size above this |
| |
| ---------------------- |
| -- Set_Modular_Size -- |
| ---------------------- |
| |
| procedure Set_Modular_Size (Bits : Int) is |
| Siz : Int; |
| |
| begin |
| Set_RM_Size (T, UI_From_Int (Bits)); |
| |
| if Bits < System_Max_Binary_Modulus_Power then |
| Siz := 8; |
| |
| while Siz < 128 loop |
| exit when Bits <= Siz; |
| Siz := Siz * 2; |
| end loop; |
| |
| Set_Esize (T, UI_From_Int (Siz)); |
| |
| else |
| Set_Esize (T, UI_From_Int (System_Max_Binary_Modulus_Power)); |
| end if; |
| |
| if not Non_Binary_Modulus (T) and then Esize (T) = RM_Size (T) then |
| Set_Is_Known_Valid (T); |
| end if; |
| end Set_Modular_Size; |
| |
| -- Start of processing for Modular_Type_Declaration |
| |
| begin |
| -- If the mod expression is (exactly) 2 * literal, where literal is |
| -- 128 or less, then almost certainly the * was meant to be **. Warn. |
| |
| if Warn_On_Suspicious_Modulus_Value |
| and then Nkind (Mod_Expr) = N_Op_Multiply |
| and then Nkind (Left_Opnd (Mod_Expr)) = N_Integer_Literal |
| and then Intval (Left_Opnd (Mod_Expr)) = Uint_2 |
| and then Nkind (Right_Opnd (Mod_Expr)) = N_Integer_Literal |
| and then Intval (Right_Opnd (Mod_Expr)) <= Uint_128 |
| then |
| Error_Msg_N |
| ("suspicious MOD value, was '*'* intended'??.m?", Mod_Expr); |
| end if; |
| |
| -- Proceed with analysis of mod expression |
| |
| Analyze_And_Resolve (Mod_Expr, Any_Integer); |
| |
| if Ekind (T) in Incomplete_Or_Private_Kind then |
| Reinit_Field_To_Zero (T, F_Stored_Constraint); |
| end if; |
| |
| Set_Etype (T, T); |
| Mutate_Ekind (T, E_Modular_Integer_Type); |
| Reinit_Alignment (T); |
| Set_Is_Constrained (T); |
| |
| if not Is_OK_Static_Expression (Mod_Expr) then |
| Flag_Non_Static_Expr |
| ("non-static expression used for modular type bound!", Mod_Expr); |
| M_Val := 2 ** System_Max_Binary_Modulus_Power; |
| else |
| M_Val := Expr_Value (Mod_Expr); |
| end if; |
| |
| if M_Val < 1 then |
| Error_Msg_N ("modulus value must be positive", Mod_Expr); |
| M_Val := 2 ** System_Max_Binary_Modulus_Power; |
| end if; |
| |
| if M_Val > 2 ** Standard_Long_Integer_Size then |
| Check_Restriction (No_Long_Long_Integers, Mod_Expr); |
| end if; |
| |
| Set_Modulus (T, M_Val); |
| |
| -- Create bounds for the modular type based on the modulus given in |
| -- the type declaration and then analyze and resolve those bounds. |
| |
| Set_Scalar_Range (T, |
| Make_Range (Sloc (Mod_Expr), |
| Low_Bound => Make_Integer_Literal (Sloc (Mod_Expr), 0), |
| High_Bound => Make_Integer_Literal (Sloc (Mod_Expr), M_Val - 1))); |
| |
| -- Properly analyze the literals for the range. We do this manually |
| -- because we can't go calling Resolve, since we are resolving these |
| -- bounds with the type, and this type is certainly not complete yet. |
| |
| Set_Etype (Low_Bound (Scalar_Range (T)), T); |
| Set_Etype (High_Bound (Scalar_Range (T)), T); |
| Set_Is_Static_Expression (Low_Bound (Scalar_Range (T))); |
| Set_Is_Static_Expression (High_Bound (Scalar_Range (T))); |
| |
| -- Loop through powers of two to find number of bits required |
| |
| for Bits in Int range 0 .. System_Max_Binary_Modulus_Power loop |
| |
| -- Binary case |
| |
| if M_Val = 2 ** Bits then |
| Set_Modular_Size (Bits); |
| return; |
| |
| -- Nonbinary case |
| |
| elsif M_Val < 2 ** Bits then |
| Set_Non_Binary_Modulus (T); |
| |
| if Bits > System_Max_Nonbinary_Modulus_Power then |
| Error_Msg_Uint_1 := |
| UI_From_Int (System_Max_Nonbinary_Modulus_Power); |
| Error_Msg_F |
| ("nonbinary modulus exceeds limit (2 '*'*^ - 1)", Mod_Expr); |
| Set_Modular_Size (System_Max_Binary_Modulus_Power); |
| return; |
| |
| else |
| -- In the nonbinary case, set size as per RM 13.3(55) |
| |
| Set_Modular_Size (Bits); |
| return; |
| end if; |
| end if; |
| |
| end loop; |
| |
| -- If we fall through, then the size exceed System.Max_Binary_Modulus |
| -- so we just signal an error and set the maximum size. |
| |
| Error_Msg_Uint_1 := UI_From_Int (System_Max_Binary_Modulus_Power); |
| Error_Msg_F ("modulus exceeds limit (2 '*'*^)", Mod_Expr); |
| |
| Set_Modular_Size (System_Max_Binary_Modulus_Power); |
| Reinit_Alignment (T); |
| |
| end Modular_Type_Declaration; |
| |
| -------------------------- |
| -- New_Concatenation_Op -- |
| -------------------------- |
| |
| procedure New_Concatenation_Op (Typ : Entity_Id) is |
| Loc : constant Source_Ptr := Sloc (Typ); |
| Op : Entity_Id; |
| |
| function Make_Op_Formal (Typ, Op : Entity_Id) return Entity_Id; |
| -- Create abbreviated declaration for the formal of a predefined |
| -- Operator 'Op' of type 'Typ' |
| |
| -------------------- |
| -- Make_Op_Formal -- |
| -------------------- |
| |
| function Make_Op_Formal (Typ, Op : Entity_Id) return Entity_Id is |
| Formal : Entity_Id; |
| begin |
| Formal := New_Internal_Entity (E_In_Parameter, Op, Loc, 'P'); |
| Set_Etype (Formal, Typ); |
| Set_Mechanism (Formal, Default_Mechanism); |
| return Formal; |
| end Make_Op_Formal; |
| |
| -- Start of processing for New_Concatenation_Op |
| |
| begin |
| Op := Make_Defining_Operator_Symbol (Loc, Name_Op_Concat); |
| |
| Mutate_Ekind (Op, E_Operator); |
| Set_Scope (Op, Current_Scope); |
| Set_Etype (Op, Typ); |
| Set_Homonym (Op, Get_Name_Entity_Id (Name_Op_Concat)); |
| Set_Is_Immediately_Visible (Op); |
| Set_Is_Intrinsic_Subprogram (Op); |
| Set_Has_Completion (Op); |
| Append_Entity (Op, Current_Scope); |
| |
| Set_Name_Entity_Id (Name_Op_Concat, Op); |
| |
| Append_Entity (Make_Op_Formal (Typ, Op), Op); |
| Append_Entity (Make_Op_Formal (Typ, Op), Op); |
| end New_Concatenation_Op; |
| |
| ------------------------- |
| -- OK_For_Limited_Init -- |
| ------------------------- |
| |
| -- ???Check all calls of this, and compare the conditions under which it's |
| -- called. |
| |
| function OK_For_Limited_Init |
| (Typ : Entity_Id; |
| Exp : Node_Id) return Boolean |
| is |
| begin |
| return Is_CPP_Constructor_Call (Exp) |
| or else (Ada_Version >= Ada_2005 |
| and then not Debug_Flag_Dot_L |
| and then OK_For_Limited_Init_In_05 (Typ, Exp)); |
| end OK_For_Limited_Init; |
| |
| ------------------------------- |
| -- OK_For_Limited_Init_In_05 -- |
| ------------------------------- |
| |
| function OK_For_Limited_Init_In_05 |
| (Typ : Entity_Id; |
| Exp : Node_Id) return Boolean |
| is |
| begin |
| -- An object of a limited interface type can be initialized with any |
| -- expression of a nonlimited descendant type. However this does not |
| -- apply if this is a view conversion of some other expression. This |
| -- is checked below. |
| |
| if Is_Class_Wide_Type (Typ) |
| and then Is_Limited_Interface (Typ) |
| and then not Is_Limited_Type (Etype (Exp)) |
| and then Nkind (Exp) /= N_Type_Conversion |
| then |
| return True; |
| end if; |
| |
| -- Ada 2005 (AI-287, AI-318): Relax the strictness of the front end in |
| -- case of limited aggregates (including extension aggregates), and |
| -- function calls. The function call may have been given in prefixed |
| -- notation, in which case the original node is an indexed component. |
| -- If the function is parameterless, the original node was an explicit |
| -- dereference. The function may also be parameterless, in which case |
| -- the source node is just an identifier. |
| |
| -- A branch of a conditional expression may have been removed if the |
| -- condition is statically known. This happens during expansion, and |
| -- thus will not happen if previous errors were encountered. The check |
| -- will have been performed on the chosen branch, which replaces the |
| -- original conditional expression. |
| |
| if No (Exp) then |
| return True; |
| end if; |
| |
| case Nkind (Original_Node (Exp)) is |
| when N_Aggregate |
| | N_Delta_Aggregate |
| | N_Extension_Aggregate |
| | N_Function_Call |
| | N_Op |
| => |
| return True; |
| |
| when N_Identifier => |
| return Present (Entity (Original_Node (Exp))) |
| and then Ekind (Entity (Original_Node (Exp))) = E_Function; |
| |
| when N_Qualified_Expression => |
| return |
| OK_For_Limited_Init_In_05 |
| (Typ, Expression (Original_Node (Exp))); |
| |
| -- Ada 2005 (AI-251): If a class-wide interface object is initialized |
| -- with a function call, the expander has rewritten the call into an |
| -- N_Type_Conversion node to force displacement of the pointer to |
| -- reference the component containing the secondary dispatch table. |
| -- Otherwise a type conversion is not a legal context. |
| -- A return statement for a build-in-place function returning a |
| -- synchronized type also introduces an unchecked conversion. |
| |
| when N_Type_Conversion |
| | N_Unchecked_Type_Conversion |
| => |
| return not Comes_From_Source (Exp) |
| and then |
| -- If the conversion has been rewritten, check Original_Node; |
| -- otherwise, check the expression of the compiler-generated |
| -- conversion (which is a conversion that we want to ignore |
| -- for purposes of the limited-initialization restrictions). |
| |
| (if Is_Rewrite_Substitution (Exp) |
| then OK_For_Limited_Init_In_05 (Typ, Original_Node (Exp)) |
| else OK_For_Limited_Init_In_05 (Typ, Expression (Exp))); |
| |
| when N_Explicit_Dereference |
| | N_Indexed_Component |
| | N_Selected_Component |
| => |
| return Nkind (Exp) = N_Function_Call; |
| |
| -- A use of 'Input is a function call, hence allowed. Normally the |
| -- attribute will be changed to a call, but the attribute by itself |
| -- can occur with -gnatc. |
| |
| when N_Attribute_Reference => |
| return Attribute_Name (Original_Node (Exp)) = Name_Input; |
| |
| -- "return raise ..." is OK |
| |
| when N_Raise_Expression => |
| return True; |
| |
| -- For a case expression, all dependent expressions must be legal |
| |
| when N_Case_Expression => |
| declare |
| Alt : Node_Id; |
| |
| begin |
| Alt := First (Alternatives (Original_Node (Exp))); |
| while Present (Alt) loop |
| if not OK_For_Limited_Init_In_05 (Typ, Expression (Alt)) then |
| return False; |
| end if; |
| |
| Next (Alt); |
| end loop; |
| |
| return True; |
| end; |
| |
| -- For an if expression, all dependent expressions must be legal |
| |
| when N_If_Expression => |
| declare |
| Then_Expr : constant Node_Id := |
| Next (First (Expressions (Original_Node (Exp)))); |
| Else_Expr : constant Node_Id := Next (Then_Expr); |
| begin |
| return OK_For_Limited_Init_In_05 (Typ, Then_Expr) |
| and then |
| OK_For_Limited_Init_In_05 (Typ, Else_Expr); |
| end; |
| |
| when others => |
| return False; |
| end case; |
| end OK_For_Limited_Init_In_05; |
| |
| ------------------------------------------- |
| -- Ordinary_Fixed_Point_Type_Declaration -- |
| ------------------------------------------- |
| |
| procedure Ordinary_Fixed_Point_Type_Declaration |
| (T : Entity_Id; |
| Def : Node_Id) |
| is |
| Loc : constant Source_Ptr := Sloc (Def); |
| Delta_Expr : constant Node_Id := Delta_Expression (Def); |
| RRS : constant Node_Id := Real_Range_Specification (Def); |
| Implicit_Base : Entity_Id; |
| Delta_Val : Ureal; |
| Small_Val : Ureal; |
| Low_Val : Ureal; |
| High_Val : Ureal; |
| |
| begin |
| Check_Restriction (No_Fixed_Point, Def); |
| |
| -- Create implicit base type |
| |
| Implicit_Base := |
| Create_Itype (E_Ordinary_Fixed_Point_Type, Parent (Def), T, 'B'); |
| Set_Etype (Implicit_Base, Implicit_Base); |
| |
| -- Analyze and process delta expression |
| |
| Analyze_And_Resolve (Delta_Expr, Any_Real); |
| |
| Check_Delta_Expression (Delta_Expr); |
| Delta_Val := Expr_Value_R (Delta_Expr); |
| |
| Set_Delta_Value (Implicit_Base, Delta_Val); |
| |
| -- Compute default small from given delta, which is the largest power |
| -- of two that does not exceed the given delta value. |
| |
| declare |
| Tmp : Ureal; |
| Scale : Int; |
| |
| begin |
| Tmp := Ureal_1; |
| Scale := 0; |
| |
| if Delta_Val < Ureal_1 then |
| while Delta_Val < Tmp loop |
| Tmp := Tmp / Ureal_2; |
| Scale := Scale + 1; |
| end loop; |
| |
| else |
| loop |
| Tmp := Tmp * Ureal_2; |
| exit when Tmp > Delta_Val; |
| Scale := Scale - 1; |
| end loop; |
| end if; |
| |
| Small_Val := UR_From_Components (Uint_1, UI_From_Int (Scale), 2); |
| end; |
| |
| Set_Small_Value (Implicit_Base, Small_Val); |
| |
| -- If no range was given, set a dummy range |
| |
| if RRS <= Empty_Or_Error then |
| Low_Val := -Small_Val; |
| High_Val := Small_Val; |
| |
| -- Otherwise analyze and process given range |
| |
| else |
| declare |
| Low : constant Node_Id := Low_Bound (RRS); |
| High : constant Node_Id := High_Bound (RRS); |
| |
| begin |
| Analyze_And_Resolve (Low, Any_Real); |
| Analyze_And_Resolve (High, Any_Real); |
| Check_Real_Bound (Low); |
| Check_Real_Bound (High); |
| |
| -- Obtain and set the range |
| |
| Low_Val := Expr_Value_R (Low); |
| High_Val := Expr_Value_R (High); |
| |
| if Low_Val > High_Val then |
| Error_Msg_NE ("??fixed point type& has null range", Def, T); |
| end if; |
| end; |
| end if; |
| |
| -- The range for both the implicit base and the declared first subtype |
| -- cannot be set yet, so we use the special routine Set_Fixed_Range to |
| -- set a temporary range in place. Note that the bounds of the base |
| -- type will be widened to be symmetrical and to fill the available |
| -- bits when the type is frozen. |
| |
| -- We could do this with all discrete types, and probably should, but |
| -- we absolutely have to do it for fixed-point, since the end-points |
| -- of the range and the size are determined by the small value, which |
| -- could be reset before the freeze point. |
| |
| Set_Fixed_Range (Implicit_Base, Loc, Low_Val, High_Val); |
| Set_Fixed_Range (T, Loc, Low_Val, High_Val); |
| |
| -- Complete definition of first subtype. The inheritance of the rep item |
| -- chain ensures that SPARK-related pragmas are not clobbered when the |
| -- ordinary fixed point type acts as a full view of a private type. |
| |
| Mutate_Ekind (T, E_Ordinary_Fixed_Point_Subtype); |
| Set_Etype (T, Implicit_Base); |
| Reinit_Size_Align (T); |
| Inherit_Rep_Item_Chain (T, Implicit_Base); |
| Set_Small_Value (T, Small_Val); |
| Set_Delta_Value (T, Delta_Val); |
| Set_Is_Constrained (T); |
| end Ordinary_Fixed_Point_Type_Declaration; |
| |
| ---------------------------------- |
| -- Preanalyze_Assert_Expression -- |
| ---------------------------------- |
| |
| procedure Preanalyze_Assert_Expression (N : Node_Id; T : Entity_Id) is |
| begin |
| In_Assertion_Expr := In_Assertion_Expr + 1; |
| Preanalyze_Spec_Expression (N, T); |
| In_Assertion_Expr := In_Assertion_Expr - 1; |
| end Preanalyze_Assert_Expression; |
| |
| -- ??? The variant below explicitly saves and restores all the flags, |
| -- because it is impossible to compose the existing variety of |
| -- Analyze/Resolve (and their wrappers, e.g. Preanalyze_Spec_Expression) |
| -- to achieve the desired semantics. |
| |
| procedure Preanalyze_Assert_Expression (N : Node_Id) is |
| Save_In_Spec_Expression : constant Boolean := In_Spec_Expression; |
| Save_Must_Not_Freeze : constant Boolean := Must_Not_Freeze (N); |
| Save_Full_Analysis : constant Boolean := Full_Analysis; |
| |
| begin |
| In_Assertion_Expr := In_Assertion_Expr + 1; |
| In_Spec_Expression := True; |
| Set_Must_Not_Freeze (N); |
| Inside_Preanalysis_Without_Freezing := |
| Inside_Preanalysis_Without_Freezing + 1; |
| Full_Analysis := False; |
| Expander_Mode_Save_And_Set (False); |
| |
| if GNATprove_Mode then |
| Analyze_And_Resolve (N); |
| else |
| Analyze_And_Resolve (N, Suppress => All_Checks); |
| end if; |
| |
| Expander_Mode_Restore; |
| Full_Analysis := Save_Full_Analysis; |
| Inside_Preanalysis_Without_Freezing := |
| Inside_Preanalysis_Without_Freezing - 1; |
| Set_Must_Not_Freeze (N, Save_Must_Not_Freeze); |
| In_Spec_Expression := Save_In_Spec_Expression; |
| In_Assertion_Expr := In_Assertion_Expr - 1; |
| end Preanalyze_Assert_Expression; |
| |
| ----------------------------------- |
| -- Preanalyze_Default_Expression -- |
| ----------------------------------- |
| |
| procedure Preanalyze_Default_Expression (N : Node_Id; T : Entity_Id) is |
| Save_In_Default_Expr : constant Boolean := In_Default_Expr; |
| Save_In_Spec_Expression : constant Boolean := In_Spec_Expression; |
| |
| begin |
| In_Default_Expr := True; |
| In_Spec_Expression := True; |
| |
| Preanalyze_With_Freezing_And_Resolve (N, T); |
| |
| In_Default_Expr := Save_In_Default_Expr; |
| In_Spec_Expression := Save_In_Spec_Expression; |
| end Preanalyze_Default_Expression; |
| |
| -------------------------------- |
| -- Preanalyze_Spec_Expression -- |
| -------------------------------- |
| |
| procedure Preanalyze_Spec_Expression (N : Node_Id; T : Entity_Id) is |
| Save_In_Spec_Expression : constant Boolean := In_Spec_Expression; |
| begin |
| In_Spec_Expression := True; |
| Preanalyze_And_Resolve (N, T); |
| In_Spec_Expression := Save_In_Spec_Expression; |
| end Preanalyze_Spec_Expression; |
| |
| ---------------------------------------- |
| -- Prepare_Private_Subtype_Completion -- |
| ---------------------------------------- |
| |
| procedure Prepare_Private_Subtype_Completion |
| (Id : Entity_Id; |
| Related_Nod : Node_Id) |
| is |
| Id_B : constant Entity_Id := Base_Type (Id); |
| Full_B : constant Entity_Id := Full_View (Id_B); |
| Full : Entity_Id; |
| |
| begin |
| if Present (Full_B) then |
| |
| -- The Base_Type is already completed, we can complete the subtype |
| -- now. We have to create a new entity with the same name, Thus we |
| -- can't use Create_Itype. |
| |
| Full := Make_Defining_Identifier (Sloc (Id), Chars (Id)); |
| Set_Is_Itype (Full); |
| Set_Associated_Node_For_Itype (Full, Related_Nod); |
| Complete_Private_Subtype (Id, Full, Full_B, Related_Nod); |
| Set_Full_View (Id, Full); |
| end if; |
| |
| -- The parent subtype may be private, but the base might not, in some |
| -- nested instances. In that case, the subtype does not need to be |
| -- exchanged. It would still be nice to make private subtypes and their |
| -- bases consistent at all times ??? |
| |
| if Is_Private_Type (Id_B) then |
| Append_Elmt (Id, Private_Dependents (Id_B)); |
| end if; |
| end Prepare_Private_Subtype_Completion; |
| |
| --------------------------- |
| -- Process_Discriminants -- |
| --------------------------- |
| |
| procedure Process_Discriminants |
| (N : Node_Id; |
| Prev : Entity_Id := Empty) |
| is |
| Elist : constant Elist_Id := New_Elmt_List; |
| Id : Node_Id; |
| Discr : Node_Id; |
| Discr_Number : Uint; |
| Discr_Type : Entity_Id; |
| Default_Present : Boolean := False; |
| Default_Not_Present : Boolean := False; |
| |
| begin |
| -- A composite type other than an array type can have discriminants. |
| -- On entry, the current scope is the composite type. |
| |
| -- The discriminants are initially entered into the scope of the type |
| -- via Enter_Name with the default Ekind of E_Void to prevent premature |
| -- use, as explained at the end of this procedure. |
| |
| Discr := First (Discriminant_Specifications (N)); |
| while Present (Discr) loop |
| Enter_Name (Defining_Identifier (Discr)); |
| |
| -- For navigation purposes we add a reference to the discriminant |
| -- in the entity for the type. If the current declaration is a |
| -- completion, place references on the partial view. Otherwise the |
| -- type is the current scope. |
| |
| if Present (Prev) then |
| |
| -- The references go on the partial view, if present. If the |
| -- partial view has discriminants, the references have been |
| -- generated already. |
| |
| if not Has_Discriminants (Prev) then |
| Generate_Reference (Prev, Defining_Identifier (Discr), 'd'); |
| end if; |
| else |
| Generate_Reference |
| (Current_Scope, Defining_Identifier (Discr), 'd'); |
| end if; |
| |
| if Nkind (Discriminant_Type (Discr)) = N_Access_Definition then |
| Check_Anonymous_Access_Component |
| (Typ_Decl => N, |
| Typ => Defining_Identifier (N), |
| Prev => Prev, |
| Comp_Def => Discr, |
| Access_Def => Discriminant_Type (Discr)); |
| |
| -- if Check_Anonymous_Access_Component replaced Discr then |
| -- its Original_Node points to the old Discr and the access type |
| -- for Discr_Type has already been created. |
| |
| if Is_Rewrite_Substitution (Discr) then |
| Discr_Type := Etype (Discriminant_Type (Discr)); |
| else |
| Discr_Type := |
| Access_Definition (Discr, Discriminant_Type (Discr)); |
| |
| -- Ada 2005 (AI-254) |
| |
| if Present (Access_To_Subprogram_Definition |
| (Discriminant_Type (Discr))) |
| and then Protected_Present (Access_To_Subprogram_Definition |
| (Discriminant_Type (Discr))) |
| then |
| Discr_Type := |
| Replace_Anonymous_Access_To_Protected_Subprogram (Discr); |
| end if; |
| end if; |
| else |
| Find_Type (Discriminant_Type (Discr)); |
| Discr_Type := Etype (Discriminant_Type (Discr)); |
| |
| if Error_Posted (Discriminant_Type (Discr)) then |
| Discr_Type := Any_Type; |
| end if; |
| end if; |
| |
| -- Handling of discriminants that are access types |
| |
| if Is_Access_Type (Discr_Type) then |
| |
| -- Ada 2005 (AI-230): Access discriminant allowed in non- |
| -- limited record types |
| |
| if Ada_Version < Ada_2005 then |
| Check_Access_Discriminant_Requires_Limited |
| (Discr, Discriminant_Type (Discr)); |
| end if; |
| |
| if Ada_Version = Ada_83 and then Comes_From_Source (Discr) then |
| Error_Msg_N |
| ("(Ada 83) access discriminant not allowed", Discr); |
| end if; |
| |
| -- If not access type, must be a discrete type |
| |
| elsif not Is_Discrete_Type (Discr_Type) then |
| Error_Msg_N |
| ("discriminants must have a discrete or access type", |
| Discriminant_Type (Discr)); |
| end if; |
| |
| Set_Etype (Defining_Identifier (Discr), Discr_Type); |
| |
| -- If a discriminant specification includes the assignment compound |
| -- delimiter followed by an expression, the expression is the default |
| -- expression of the discriminant; the default expression must be of |
| -- the type of the discriminant. (RM 3.7.1) Since this expression is |
| -- a default expression, we do the special preanalysis, since this |
| -- expression does not freeze (see section "Handling of Default and |
| -- Per-Object Expressions" in spec of package Sem). |
| |
| if Present (Expression (Discr)) then |
| Preanalyze_Default_Expression (Expression (Discr), Discr_Type); |
| |
| -- Legaity checks |
| |
| if Nkind (N) = N_Formal_Type_Declaration then |
| Error_Msg_N |
| ("discriminant defaults not allowed for formal type", |
| Expression (Discr)); |
| |
| -- Flag an error for a tagged type with defaulted discriminants, |
| -- excluding limited tagged types when compiling for Ada 2012 |
| -- (see AI05-0214). |
| |
| elsif Is_Tagged_Type (Current_Scope) |
| and then (not Is_Limited_Type (Current_Scope) |
| or else Ada_Version < Ada_2012) |
| and then Comes_From_Source (N) |
| then |
| -- Note: see similar test in Check_Or_Process_Discriminants, to |
| -- handle the (illegal) case of the completion of an untagged |
| -- view with discriminants with defaults by a tagged full view. |
| -- We skip the check if Discr does not come from source, to |
| -- account for the case of an untagged derived type providing |
| -- defaults for a renamed discriminant from a private untagged |
| -- ancestor with a tagged full view (ACATS B460006). |
| |
| if Ada_Version >= Ada_2012 then |
| Error_Msg_N |
| ("discriminants of nonlimited tagged type cannot have" |
| & " defaults", |
| Expression (Discr)); |
| else |
| Error_Msg_N |
| ("discriminants of tagged type cannot have defaults", |
| Expression (Discr)); |
| end if; |
| |
| else |
| Default_Present := True; |
| Append_Elmt (Expression (Discr), Elist); |
| |
| -- Tag the defining identifiers for the discriminants with |
| -- their corresponding default expressions from the tree. |
| |
| Set_Discriminant_Default_Value |
| (Defining_Identifier (Discr), Expression (Discr)); |
| end if; |
| |
| -- In gnatc or GNATprove mode, make sure set Do_Range_Check flag |
| -- gets set unless we can be sure that no range check is required. |
| |
| if not Expander_Active |
| and then not |
| Is_In_Range |
| (Expression (Discr), Discr_Type, Assume_Valid => True) |
| then |
| Set_Do_Range_Check (Expression (Discr)); |
| end if; |
| |
| -- No default discriminant value given |
| |
| else |
| Default_Not_Present := True; |
| end if; |
| |
| -- Ada 2005 (AI-231): Create an Itype that is a duplicate of |
| -- Discr_Type but with the null-exclusion attribute |
| |
| if Ada_Version >= Ada_2005 then |
| |
| -- Ada 2005 (AI-231): Static checks |
| |
| if Can_Never_Be_Null (Discr_Type) then |
| Null_Exclusion_Static_Checks (Discr); |
| |
| elsif Is_Access_Type (Discr_Type) |
| and then Null_Exclusion_Present (Discr) |
| |
| -- No need to check itypes because in their case this check |
| -- was done at their point of creation |
| |
| and then not Is_Itype (Discr_Type) |
| then |
| if Can_Never_Be_Null (Discr_Type) then |
| Error_Msg_NE |
| ("`NOT NULL` not allowed (& already excludes null)", |
| Discr, |
| Discr_Type); |
| end if; |
| |
| Set_Etype (Defining_Identifier (Discr), |
| Create_Null_Excluding_Itype |
| (T => Discr_Type, |
| Related_Nod => Discr)); |
| |
| -- Check for improper null exclusion if the type is otherwise |
| -- legal for a discriminant. |
| |
| elsif Null_Exclusion_Present (Discr) |
| and then Is_Discrete_Type (Discr_Type) |
| then |
| Error_Msg_N |
| ("null exclusion can only apply to an access type", Discr); |
| end if; |
| |
| -- Ada 2005 (AI-402): access discriminants of nonlimited types |
| -- can't have defaults. Synchronized types, or types that are |
| -- explicitly limited are fine, but special tests apply to derived |
| -- types in generics: in a generic body we have to assume the |
| -- worst, and therefore defaults are not allowed if the parent is |
| -- a generic formal private type (see ACATS B370001). |
| |
| if Is_Access_Type (Discr_Type) and then Default_Present then |
| if Ekind (Discr_Type) /= E_Anonymous_Access_Type |
| or else Is_Limited_Record (Current_Scope) |
| or else Is_Concurrent_Type (Current_Scope) |
| or else Is_Concurrent_Record_Type (Current_Scope) |
| or else Ekind (Current_Scope) = E_Limited_Private_Type |
| then |
| if not Is_Derived_Type (Current_Scope) |
| or else not Is_Generic_Type (Etype (Current_Scope)) |
| or else not In_Package_Body (Scope (Etype (Current_Scope))) |
| or else Limited_Present |
| (Type_Definition (Parent (Current_Scope))) |
| then |
| null; |
| |
| else |
| Error_Msg_N |
| ("access discriminants of nonlimited types cannot " |
| & "have defaults", Expression (Discr)); |
| end if; |
| |
| elsif Present (Expression (Discr)) then |
| Error_Msg_N |
| ("(Ada 2005) access discriminants of nonlimited types " |
| & "cannot have defaults", Expression (Discr)); |
| end if; |
| end if; |
| end if; |
| |
| -- A discriminant cannot be effectively volatile (SPARK RM 7.1.3(4)). |
| -- This check is relevant only when SPARK_Mode is on as it is not a |
| -- standard Ada legality rule. The only way for a discriminant to be |
| -- effectively volatile is to have an effectively volatile type, so |
| -- we check this directly, because the Ekind of Discr might not be |
| -- set yet (to help preventing cascaded errors on derived types). |
| |
| if SPARK_Mode = On |
| and then Is_Effectively_Volatile (Discr_Type) |
| then |
| Error_Msg_N ("discriminant cannot be volatile", Discr); |
| end if; |
| |
| Next (Discr); |
| end loop; |
| |
| -- An element list consisting of the default expressions of the |
| -- discriminants is constructed in the above loop and used to set |
| -- the Discriminant_Constraint attribute for the type. If an object |
| -- is declared of this (record or task) type without any explicit |
| -- discriminant constraint given, this element list will form the |
| -- actual parameters for the corresponding initialization procedure |
| -- for the type. |
| |
| Set_Discriminant_Constraint (Current_Scope, Elist); |
| Set_Stored_Constraint (Current_Scope, No_Elist); |
| |
| -- Default expressions must be provided either for all or for none |
| -- of the discriminants of a discriminant part. (RM 3.7.1) |
| |
| if Default_Present and then Default_Not_Present then |
| Error_Msg_N |
| ("incomplete specification of defaults for discriminants", N); |
| end if; |
| |
| -- The use of the name of a discriminant is not allowed in default |
| -- expressions of a discriminant part if the specification of the |
| -- discriminant is itself given in the discriminant part. (RM 3.7.1) |
| |
| -- To detect this, the discriminant names are entered initially with an |
| -- Ekind of E_Void (which is the default Ekind given by Enter_Name). Any |
| -- attempt to use a void entity (for example in an expression that is |
| -- type-checked) produces the error message: premature usage. Now after |
| -- completing the semantic analysis of the discriminant part, we can set |
| -- the Ekind of all the discriminants appropriately. |
| |
| Discr := First (Discriminant_Specifications (N)); |
| Discr_Number := Uint_1; |
| while Present (Discr) loop |
| Id := Defining_Identifier (Discr); |
| |
| if Ekind (Id) = E_In_Parameter then |
| Reinit_Field_To_Zero (Id, F_Discriminal_Link); |
| end if; |
| |
| Mutate_Ekind (Id, E_Discriminant); |
| Reinit_Component_Location (Id); |
| Reinit_Esize (Id); |
| Set_Discriminant_Number (Id, Discr_Number); |
| |
| -- Make sure this is always set, even in illegal programs |
| |
| Set_Corresponding_Discriminant (Id, Empty); |
| |
| -- Initialize the Original_Record_Component to the entity itself. |
| -- Inherit_Components will propagate the right value to |
| -- discriminants in derived record types. |
| |
| Set_Original_Record_Component (Id, Id); |
| |
| -- Create the discriminal for the discriminant |
| |
| Build_Discriminal (Id); |
| |
| Next (Discr); |
| Discr_Number := Discr_Number + 1; |
| end loop; |
| |
| Set_Has_Discriminants (Current_Scope); |
| end Process_Discriminants; |
| |
| ----------------------- |
| -- Process_Full_View -- |
| ----------------------- |
| |
| -- WARNING: This routine manages Ghost regions. Return statements must be |
| -- replaced by gotos which jump to the end of the routine and restore the |
| -- Ghost mode. |
| |
| procedure Process_Full_View (N : Node_Id; Full_T, Priv_T : Entity_Id) is |
| procedure Collect_Implemented_Interfaces |
| (Typ : Entity_Id; |
| Ifaces : Elist_Id); |
| -- Ada 2005: Gather all the interfaces that Typ directly or |
| -- inherently implements. Duplicate entries are not added to |
| -- the list Ifaces. |
| |
| ------------------------------------ |
| -- Collect_Implemented_Interfaces -- |
| ------------------------------------ |
| |
| procedure Collect_Implemented_Interfaces |
| (Typ : Entity_Id; |
| Ifaces : Elist_Id) |
| is |
| Iface : Entity_Id; |
| Iface_Elmt : Elmt_Id; |
| |
| begin |
| -- Abstract interfaces are only associated with tagged record types |
| |
| if not Is_Tagged_Type (Typ) or else not Is_Record_Type (Typ) then |
| return; |
| end if; |
| |
| -- Recursively climb to the ancestors |
| |
| if Etype (Typ) /= Typ |
| |
| -- Protect the frontend against wrong cyclic declarations like: |
| |
| -- type B is new A with private; |
| -- type C is new A with private; |
| -- private |
| -- type B is new C with null record; |
| -- type C is new B with null record; |
| |
| and then Etype (Typ) /= Priv_T |
| and then Etype (Typ) /= Full_T |
| then |
| -- Keep separate the management of private type declarations |
| |
| if Ekind (Typ) = E_Record_Type_With_Private then |
| |
| -- Handle the following illegal usage: |
| -- type Private_Type is tagged private; |
| -- private |
| -- type Private_Type is new Type_Implementing_Iface; |
| |
| if Present (Full_View (Typ)) |
| and then Etype (Typ) /= Full_View (Typ) |
| then |
| if Is_Interface (Etype (Typ)) then |
| Append_Unique_Elmt (Etype (Typ), Ifaces); |
| end if; |
| |
| Collect_Implemented_Interfaces (Etype (Typ), Ifaces); |
| end if; |
| |
| -- Non-private types |
| |
| else |
| if Is_Interface (Etype (Typ)) then |
| Append_Unique_Elmt (Etype (Typ), Ifaces); |
| end if; |
| |
| Collect_Implemented_Interfaces (Etype (Typ), Ifaces); |
| end if; |
| end if; |
| |
| -- Handle entities in the list of abstract interfaces |
| |
| if Present (Interfaces (Typ)) then |
| Iface_Elmt := First_Elmt (Interfaces (Typ)); |
| while Present (Iface_Elmt) loop |
| Iface := Node (Iface_Elmt); |
| |
| pragma Assert (Is_Interface (Iface)); |
| |
| if not Contain_Interface (Iface, Ifaces) then |
| Append_Elmt (Iface, Ifaces); |
| Collect_Implemented_Interfaces (Iface, Ifaces); |
| end if; |
| |
| Next_Elmt (Iface_Elmt); |
| end loop; |
| end if; |
| end Collect_Implemented_Interfaces; |
| |
| -- Local variables |
| |
| Saved_GM : constant Ghost_Mode_Type := Ghost_Mode; |
| Saved_IGR : constant Node_Id := Ignored_Ghost_Region; |
| -- Save the Ghost-related attributes to restore on exit |
| |
| Full_Indic : Node_Id; |
| Full_Parent : Entity_Id; |
| Priv_Parent : Entity_Id; |
| |
| -- Start of processing for Process_Full_View |
| |
| begin |
| Mark_And_Set_Ghost_Completion (N, Priv_T); |
| |
| -- First some sanity checks that must be done after semantic |
| -- decoration of the full view and thus cannot be placed with other |
| -- similar checks in Find_Type_Name |
| |
| if not Is_Limited_Type (Priv_T) |
| and then (Is_Limited_Type (Full_T) |
| or else Is_Limited_Composite (Full_T)) |
| then |
| if In_Instance then |
| null; |
| else |
| Error_Msg_N |
| ("completion of nonlimited type cannot be limited", Full_T); |
| Explain_Limited_Type (Full_T, Full_T); |
| end if; |
| |
| elsif Is_Abstract_Type (Full_T) |
| and then not Is_Abstract_Type (Priv_T) |
| then |
| Error_Msg_N |
| ("completion of nonabstract type cannot be abstract", Full_T); |
| |
| elsif Is_Tagged_Type (Priv_T) |
| and then Is_Limited_Type (Priv_T) |
| and then not Is_Limited_Type (Full_T) |
| then |
| -- If pragma CPP_Class was applied to the private declaration |
| -- propagate the limitedness to the full-view |
| |
| if Is_CPP_Class (Priv_T) then |
| Set_Is_Limited_Record (Full_T); |
| |
| -- GNAT allow its own definition of Limited_Controlled to disobey |
| -- this rule in order in ease the implementation. This test is safe |
| -- because Root_Controlled is defined in a child of System that |
| -- normal programs are not supposed to use. |
| |
| elsif Is_RTE (Etype (Full_T), RE_Root_Controlled) then |
| Set_Is_Limited_Composite (Full_T); |
| else |
| Error_Msg_N |
| ("completion of limited tagged type must be limited", Full_T); |
| end if; |
| |
| elsif Is_Generic_Type (Priv_T) then |
| Error_Msg_N ("generic type cannot have a completion", Full_T); |
| end if; |
| |
| -- Check that ancestor interfaces of private and full views are |
| -- consistent. We omit this check for synchronized types because |
| -- they are performed on the corresponding record type when frozen. |
| |
| if Ada_Version >= Ada_2005 |
| and then Is_Tagged_Type (Priv_T) |
| and then Is_Tagged_Type (Full_T) |
| and then not Is_Concurrent_Type (Full_T) |
| then |
| declare |
| Iface : Entity_Id; |
| Priv_T_Ifaces : constant Elist_Id := New_Elmt_List; |
| Full_T_Ifaces : constant Elist_Id := New_Elmt_List; |
| |
| begin |
| Collect_Implemented_Interfaces (Priv_T, Priv_T_Ifaces); |
| Collect_Implemented_Interfaces (Full_T, Full_T_Ifaces); |
| |
| -- Ada 2005 (AI-251): The partial view shall be a descendant of |
| -- an interface type if and only if the full type is descendant |
| -- of the interface type (AARM 7.3 (7.3/2)). |
| |
| Iface := Find_Hidden_Interface (Priv_T_Ifaces, Full_T_Ifaces); |
| |
| if Present (Iface) then |
| Error_Msg_NE |
| ("interface in partial view& not implemented by full type " |
| & "(RM-2005 7.3 (7.3/2))", Full_T, Iface); |
| end if; |
| |
| Iface := Find_Hidden_Interface (Full_T_Ifaces, Priv_T_Ifaces); |
| |
| if Present (Iface) then |
| Error_Msg_NE |
| ("interface & not implemented by partial view " |
| & "(RM-2005 7.3 (7.3/2))", Full_T, Iface); |
| end if; |
| end; |
| end if; |
| |
| if Is_Tagged_Type (Priv_T) |
| and then Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration |
| and then Is_Derived_Type (Full_T) |
| then |
| Priv_Parent := Etype (Priv_T); |
| |
| -- The full view of a private extension may have been transformed |
| -- into an unconstrained derived type declaration and a subtype |
| -- declaration (see build_derived_record_type for details). |
| |
| if Nkind (N) = N_Subtype_Declaration then |
| Full_Indic := Subtype_Indication (N); |
| Full_Parent := Etype (Base_Type (Full_T)); |
| else |
| Full_Indic := Subtype_Indication (Type_Definition (N)); |
| Full_Parent := Etype (Full_T); |
| end if; |
| |
| -- Check that the parent type of the full type is a descendant of |
| -- the ancestor subtype given in the private extension. If either |
| -- entity has an Etype equal to Any_Type then we had some previous |
| -- error situation [7.3(8)]. |
| |
| if Priv_Parent = Any_Type or else Full_Parent = Any_Type then |
| goto Leave; |
| |
| -- Ada 2005 (AI-251): Interfaces in the full type can be given in |
| -- any order. Therefore we don't have to check that its parent must |
| -- be a descendant of the parent of the private type declaration. |
| |
| elsif Is_Interface (Priv_Parent) |
| and then Is_Interface (Full_Parent) |
| then |
| null; |
| |
| -- Ada 2005 (AI-251): If the parent of the private type declaration |
| -- is an interface there is no need to check that it is an ancestor |
| -- of the associated full type declaration. The required tests for |
| -- this case are performed by Build_Derived_Record_Type. |
| |
| elsif not Is_Interface (Base_Type (Priv_Parent)) |
| and then not Is_Ancestor (Base_Type (Priv_Parent), Full_Parent) |
| then |
| Error_Msg_N |
| ("parent of full type must descend from parent of private " |
| & "extension", Full_Indic); |
| |
| -- First check a formal restriction, and then proceed with checking |
| -- Ada rules. Since the formal restriction is not a serious error, we |
| -- don't prevent further error detection for this check, hence the |
| -- ELSE. |
| |
| else |
| -- Check the rules of 7.3(10): if the private extension inherits |
| -- known discriminants, then the full type must also inherit those |
| -- discriminants from the same (ancestor) type, and the parent |
| -- subtype of the full type must be constrained if and only if |
| -- the ancestor subtype of the private extension is constrained. |
| |
| if No (Discriminant_Specifications (Parent (Priv_T))) |
| and then not Has_Unknown_Discriminants (Priv_T) |
| and then Has_Discriminants (Base_Type (Priv_Parent)) |
| then |
| declare |
| Priv_Indic : constant Node_Id := |
| Subtype_Indication (Parent (Priv_T)); |
| |
| Priv_Constr : constant Boolean := |
| Is_Constrained (Priv_Parent) |
| or else |
| Nkind (Priv_Indic) = N_Subtype_Indication |
| or else |
| Is_Constrained (Entity (Priv_Indic)); |
| |
| Full_Constr : constant Boolean := |
| Is_Constrained (Full_Parent) |
| or else |
| Nkind (Full_Indic) = N_Subtype_Indication |
| or else |
| Is_Constrained (Entity (Full_Indic)); |
| |
| Priv_Discr : Entity_Id; |
| Full_Discr : Entity_Id; |
| |
| begin |
| Priv_Discr := First_Discriminant (Priv_Parent); |
| Full_Discr := First_Discriminant (Full_Parent); |
| while Present (Priv_Discr) and then Present (Full_Discr) loop |
| if Original_Record_Component (Priv_Discr) = |
| Original_Record_Component (Full_Discr) |
| or else |
| Corresponding_Discriminant (Priv_Discr) = |
| Corresponding_Discriminant (Full_Discr) |
| then |
| null; |
| else |
| exit; |
| end if; |
| |
| Next_Discriminant (Priv_Discr); |
| Next_Discriminant (Full_Discr); |
| end loop; |
| |
| if Present (Priv_Discr) or else Present (Full_Discr) then |
| Error_Msg_N |
| ("full view must inherit discriminants of the parent " |
| & "type used in the private extension", Full_Indic); |
| |
| elsif Priv_Constr and then not Full_Constr then |
| Error_Msg_N |
| ("parent subtype of full type must be constrained", |
| Full_Indic); |
| |
| elsif Full_Constr and then not Priv_Constr then |
| Error_Msg_N |
| ("parent subtype of full type must be unconstrained", |
| Full_Indic); |
| end if; |
| end; |
| |
| -- Check the rules of 7.3(12): if a partial view has neither |
| -- known or unknown discriminants, then the full type |
| -- declaration shall define a definite subtype. |
| |
| elsif not Has_Unknown_Discriminants (Priv_T) |
| and then not Has_Discriminants (Priv_T) |
| and then not Is_Constrained (Full_T) |
| then |
| Error_Msg_N |
| ("full view must define a constrained type if partial view " |
| & "has no discriminants", Full_T); |
| end if; |
| |
| -- Do we implement the following properly??? |
| -- If the ancestor subtype of a private extension has constrained |
| -- discriminants, then the parent subtype of the full view shall |
| -- impose a statically matching constraint on those discriminants |
| -- [7.3(13)]. |
| end if; |
| |
| else |
| -- For untagged types, verify that a type without discriminants is |
| -- not completed with an unconstrained type. A separate error message |
| -- is produced if the full type has defaulted discriminants. |
| |
| if Is_Definite_Subtype (Priv_T) |
| and then not Is_Definite_Subtype (Full_T) |
| then |
| Error_Msg_Sloc := Sloc (Parent (Priv_T)); |
| Error_Msg_NE |
| ("full view of& not compatible with declaration#", |
| Full_T, Priv_T); |
| |
| if not Is_Tagged_Type (Full_T) then |
| Error_Msg_N |
| ("\one is constrained, the other unconstrained", Full_T); |
| end if; |
| end if; |
| end if; |
| |
| -- AI-419: verify that the use of "limited" is consistent |
| |
| declare |
| Orig_Decl : constant Node_Id := Original_Node (N); |
| |
| begin |
| if Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration |
|
|