| /* Maintain binary trees of symbols. |
| Copyright (C) 2000-2021 Free Software Foundation, Inc. |
| Contributed by Andy Vaught |
| |
| This file is part of GCC. |
| |
| GCC is free software; you can redistribute it and/or modify it under |
| the terms of the GNU General Public License as published by the Free |
| Software Foundation; either version 3, or (at your option) any later |
| version. |
| |
| GCC is distributed in the hope that it will be useful, but WITHOUT ANY |
| WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with GCC; see the file COPYING3. If not see |
| <http://www.gnu.org/licenses/>. */ |
| |
| |
| #include "config.h" |
| #include "system.h" |
| #include "coretypes.h" |
| #include "options.h" |
| #include "gfortran.h" |
| #include "parse.h" |
| #include "match.h" |
| #include "constructor.h" |
| |
| |
| /* Strings for all symbol attributes. We use these for dumping the |
| parse tree, in error messages, and also when reading and writing |
| modules. */ |
| |
| const mstring flavors[] = |
| { |
| minit ("UNKNOWN-FL", FL_UNKNOWN), minit ("PROGRAM", FL_PROGRAM), |
| minit ("BLOCK-DATA", FL_BLOCK_DATA), minit ("MODULE", FL_MODULE), |
| minit ("VARIABLE", FL_VARIABLE), minit ("PARAMETER", FL_PARAMETER), |
| minit ("LABEL", FL_LABEL), minit ("PROCEDURE", FL_PROCEDURE), |
| minit ("DERIVED", FL_DERIVED), minit ("NAMELIST", FL_NAMELIST), |
| minit ("UNION", FL_UNION), minit ("STRUCTURE", FL_STRUCT), |
| minit (NULL, -1) |
| }; |
| |
| const mstring procedures[] = |
| { |
| minit ("UNKNOWN-PROC", PROC_UNKNOWN), |
| minit ("MODULE-PROC", PROC_MODULE), |
| minit ("INTERNAL-PROC", PROC_INTERNAL), |
| minit ("DUMMY-PROC", PROC_DUMMY), |
| minit ("INTRINSIC-PROC", PROC_INTRINSIC), |
| minit ("EXTERNAL-PROC", PROC_EXTERNAL), |
| minit ("STATEMENT-PROC", PROC_ST_FUNCTION), |
| minit (NULL, -1) |
| }; |
| |
| const mstring intents[] = |
| { |
| minit ("UNKNOWN-INTENT", INTENT_UNKNOWN), |
| minit ("IN", INTENT_IN), |
| minit ("OUT", INTENT_OUT), |
| minit ("INOUT", INTENT_INOUT), |
| minit (NULL, -1) |
| }; |
| |
| const mstring access_types[] = |
| { |
| minit ("UNKNOWN-ACCESS", ACCESS_UNKNOWN), |
| minit ("PUBLIC", ACCESS_PUBLIC), |
| minit ("PRIVATE", ACCESS_PRIVATE), |
| minit (NULL, -1) |
| }; |
| |
| const mstring ifsrc_types[] = |
| { |
| minit ("UNKNOWN", IFSRC_UNKNOWN), |
| minit ("DECL", IFSRC_DECL), |
| minit ("BODY", IFSRC_IFBODY) |
| }; |
| |
| const mstring save_status[] = |
| { |
| minit ("UNKNOWN", SAVE_NONE), |
| minit ("EXPLICIT-SAVE", SAVE_EXPLICIT), |
| minit ("IMPLICIT-SAVE", SAVE_IMPLICIT), |
| }; |
| |
| /* Set the mstrings for DTIO procedure names. */ |
| const mstring dtio_procs[] = |
| { |
| minit ("_dtio_formatted_read", DTIO_RF), |
| minit ("_dtio_formatted_write", DTIO_WF), |
| minit ("_dtio_unformatted_read", DTIO_RUF), |
| minit ("_dtio_unformatted_write", DTIO_WUF), |
| }; |
| |
| /* This is to make sure the backend generates setup code in the correct |
| order. */ |
| |
| static int next_dummy_order = 1; |
| |
| |
| gfc_namespace *gfc_current_ns; |
| gfc_namespace *gfc_global_ns_list; |
| |
| gfc_gsymbol *gfc_gsym_root = NULL; |
| |
| gfc_symbol *gfc_derived_types; |
| |
| static gfc_undo_change_set default_undo_chgset_var = { vNULL, vNULL, NULL }; |
| static gfc_undo_change_set *latest_undo_chgset = &default_undo_chgset_var; |
| |
| |
| /*********** IMPLICIT NONE and IMPLICIT statement handlers ***********/ |
| |
| /* The following static variable indicates whether a particular element has |
| been explicitly set or not. */ |
| |
| static int new_flag[GFC_LETTERS]; |
| |
| |
| /* Handle a correctly parsed IMPLICIT NONE. */ |
| |
| void |
| gfc_set_implicit_none (bool type, bool external, locus *loc) |
| { |
| int i; |
| |
| if (external) |
| gfc_current_ns->has_implicit_none_export = 1; |
| |
| if (type) |
| { |
| gfc_current_ns->seen_implicit_none = 1; |
| for (i = 0; i < GFC_LETTERS; i++) |
| { |
| if (gfc_current_ns->set_flag[i]) |
| { |
| gfc_error_now ("IMPLICIT NONE (type) statement at %L following an " |
| "IMPLICIT statement", loc); |
| return; |
| } |
| gfc_clear_ts (&gfc_current_ns->default_type[i]); |
| gfc_current_ns->set_flag[i] = 1; |
| } |
| } |
| } |
| |
| |
| /* Reset the implicit range flags. */ |
| |
| void |
| gfc_clear_new_implicit (void) |
| { |
| int i; |
| |
| for (i = 0; i < GFC_LETTERS; i++) |
| new_flag[i] = 0; |
| } |
| |
| |
| /* Prepare for a new implicit range. Sets flags in new_flag[]. */ |
| |
| bool |
| gfc_add_new_implicit_range (int c1, int c2) |
| { |
| int i; |
| |
| c1 -= 'a'; |
| c2 -= 'a'; |
| |
| for (i = c1; i <= c2; i++) |
| { |
| if (new_flag[i]) |
| { |
| gfc_error ("Letter %qc already set in IMPLICIT statement at %C", |
| i + 'A'); |
| return false; |
| } |
| |
| new_flag[i] = 1; |
| } |
| |
| return true; |
| } |
| |
| |
| /* Add a matched implicit range for gfc_set_implicit(). Check if merging |
| the new implicit types back into the existing types will work. */ |
| |
| bool |
| gfc_merge_new_implicit (gfc_typespec *ts) |
| { |
| int i; |
| |
| if (gfc_current_ns->seen_implicit_none) |
| { |
| gfc_error ("Cannot specify IMPLICIT at %C after IMPLICIT NONE"); |
| return false; |
| } |
| |
| for (i = 0; i < GFC_LETTERS; i++) |
| { |
| if (new_flag[i]) |
| { |
| if (gfc_current_ns->set_flag[i]) |
| { |
| gfc_error ("Letter %qc already has an IMPLICIT type at %C", |
| i + 'A'); |
| return false; |
| } |
| |
| gfc_current_ns->default_type[i] = *ts; |
| gfc_current_ns->implicit_loc[i] = gfc_current_locus; |
| gfc_current_ns->set_flag[i] = 1; |
| } |
| } |
| return true; |
| } |
| |
| |
| /* Given a symbol, return a pointer to the typespec for its default type. */ |
| |
| gfc_typespec * |
| gfc_get_default_type (const char *name, gfc_namespace *ns) |
| { |
| char letter; |
| |
| letter = name[0]; |
| |
| if (flag_allow_leading_underscore && letter == '_') |
| gfc_fatal_error ("Option %<-fallow-leading-underscore%> is for use only by " |
| "gfortran developers, and should not be used for " |
| "implicitly typed variables"); |
| |
| if (letter < 'a' || letter > 'z') |
| gfc_internal_error ("gfc_get_default_type(): Bad symbol %qs", name); |
| |
| if (ns == NULL) |
| ns = gfc_current_ns; |
| |
| return &ns->default_type[letter - 'a']; |
| } |
| |
| |
| /* Recursively append candidate SYM to CANDIDATES. Store the number of |
| candidates in CANDIDATES_LEN. */ |
| |
| static void |
| lookup_symbol_fuzzy_find_candidates (gfc_symtree *sym, |
| char **&candidates, |
| size_t &candidates_len) |
| { |
| gfc_symtree *p; |
| |
| if (sym == NULL) |
| return; |
| |
| if (sym->n.sym->ts.type != BT_UNKNOWN && sym->n.sym->ts.type != BT_PROCEDURE) |
| vec_push (candidates, candidates_len, sym->name); |
| p = sym->left; |
| if (p) |
| lookup_symbol_fuzzy_find_candidates (p, candidates, candidates_len); |
| |
| p = sym->right; |
| if (p) |
| lookup_symbol_fuzzy_find_candidates (p, candidates, candidates_len); |
| } |
| |
| |
| /* Lookup symbol SYM_NAME fuzzily, taking names in SYMBOL into account. */ |
| |
| static const char* |
| lookup_symbol_fuzzy (const char *sym_name, gfc_symbol *symbol) |
| { |
| char **candidates = NULL; |
| size_t candidates_len = 0; |
| lookup_symbol_fuzzy_find_candidates (symbol->ns->sym_root, candidates, |
| candidates_len); |
| return gfc_closest_fuzzy_match (sym_name, candidates); |
| } |
| |
| |
| /* Given a pointer to a symbol, set its type according to the first |
| letter of its name. Fails if the letter in question has no default |
| type. */ |
| |
| bool |
| gfc_set_default_type (gfc_symbol *sym, int error_flag, gfc_namespace *ns) |
| { |
| gfc_typespec *ts; |
| |
| if (sym->ts.type != BT_UNKNOWN) |
| gfc_internal_error ("gfc_set_default_type(): symbol already has a type"); |
| |
| ts = gfc_get_default_type (sym->name, ns); |
| |
| if (ts->type == BT_UNKNOWN) |
| { |
| if (error_flag && !sym->attr.untyped) |
| { |
| const char *guessed = lookup_symbol_fuzzy (sym->name, sym); |
| if (guessed) |
| gfc_error ("Symbol %qs at %L has no IMPLICIT type" |
| "; did you mean %qs?", |
| sym->name, &sym->declared_at, guessed); |
| else |
| gfc_error ("Symbol %qs at %L has no IMPLICIT type", |
| sym->name, &sym->declared_at); |
| sym->attr.untyped = 1; /* Ensure we only give an error once. */ |
| } |
| |
| return false; |
| } |
| |
| sym->ts = *ts; |
| sym->attr.implicit_type = 1; |
| |
| if (ts->type == BT_CHARACTER && ts->u.cl) |
| sym->ts.u.cl = gfc_new_charlen (sym->ns, ts->u.cl); |
| else if (ts->type == BT_CLASS |
| && !gfc_build_class_symbol (&sym->ts, &sym->attr, &sym->as)) |
| return false; |
| |
| if (sym->attr.is_bind_c == 1 && warn_c_binding_type) |
| { |
| /* BIND(C) variables should not be implicitly declared. */ |
| gfc_warning_now (OPT_Wc_binding_type, "Implicitly declared BIND(C) " |
| "variable %qs at %L may not be C interoperable", |
| sym->name, &sym->declared_at); |
| sym->ts.f90_type = sym->ts.type; |
| } |
| |
| if (sym->attr.dummy != 0) |
| { |
| if (sym->ns->proc_name != NULL |
| && (sym->ns->proc_name->attr.subroutine != 0 |
| || sym->ns->proc_name->attr.function != 0) |
| && sym->ns->proc_name->attr.is_bind_c != 0 |
| && warn_c_binding_type) |
| { |
| /* Dummy args to a BIND(C) routine may not be interoperable if |
| they are implicitly typed. */ |
| gfc_warning_now (OPT_Wc_binding_type, "Implicitly declared variable " |
| "%qs at %L may not be C interoperable but it is a " |
| "dummy argument to the BIND(C) procedure %qs at %L", |
| sym->name, &(sym->declared_at), |
| sym->ns->proc_name->name, |
| &(sym->ns->proc_name->declared_at)); |
| sym->ts.f90_type = sym->ts.type; |
| } |
| } |
| |
| return true; |
| } |
| |
| |
| /* This function is called from parse.c(parse_progunit) to check the |
| type of the function is not implicitly typed in the host namespace |
| and to implicitly type the function result, if necessary. */ |
| |
| void |
| gfc_check_function_type (gfc_namespace *ns) |
| { |
| gfc_symbol *proc = ns->proc_name; |
| |
| if (!proc->attr.contained || proc->result->attr.implicit_type) |
| return; |
| |
| if (proc->result->ts.type == BT_UNKNOWN && proc->result->ts.interface == NULL) |
| { |
| if (gfc_set_default_type (proc->result, 0, gfc_current_ns)) |
| { |
| if (proc->result != proc) |
| { |
| proc->ts = proc->result->ts; |
| proc->as = gfc_copy_array_spec (proc->result->as); |
| proc->attr.dimension = proc->result->attr.dimension; |
| proc->attr.pointer = proc->result->attr.pointer; |
| proc->attr.allocatable = proc->result->attr.allocatable; |
| } |
| } |
| else if (!proc->result->attr.proc_pointer) |
| { |
| gfc_error ("Function result %qs at %L has no IMPLICIT type", |
| proc->result->name, &proc->result->declared_at); |
| proc->result->attr.untyped = 1; |
| } |
| } |
| } |
| |
| |
| /******************** Symbol attribute stuff *********************/ |
| |
| /* This is a generic conflict-checker. We do this to avoid having a |
| single conflict in two places. */ |
| |
| #define conf(a, b) if (attr->a && attr->b) { a1 = a; a2 = b; goto conflict; } |
| #define conf2(a) if (attr->a) { a2 = a; goto conflict; } |
| #define conf_std(a, b, std) if (attr->a && attr->b)\ |
| {\ |
| a1 = a;\ |
| a2 = b;\ |
| standard = std;\ |
| goto conflict_std;\ |
| } |
| |
| bool |
| gfc_check_conflict (symbol_attribute *attr, const char *name, locus *where) |
| { |
| static const char *dummy = "DUMMY", *save = "SAVE", *pointer = "POINTER", |
| *target = "TARGET", *external = "EXTERNAL", *intent = "INTENT", |
| *intent_in = "INTENT(IN)", *intrinsic = "INTRINSIC", |
| *intent_out = "INTENT(OUT)", *intent_inout = "INTENT(INOUT)", |
| *allocatable = "ALLOCATABLE", *elemental = "ELEMENTAL", |
| *privat = "PRIVATE", *recursive = "RECURSIVE", |
| *in_common = "COMMON", *result = "RESULT", *in_namelist = "NAMELIST", |
| *publik = "PUBLIC", *optional = "OPTIONAL", *entry = "ENTRY", |
| *function = "FUNCTION", *subroutine = "SUBROUTINE", |
| *dimension = "DIMENSION", *in_equivalence = "EQUIVALENCE", |
| *use_assoc = "USE ASSOCIATED", *cray_pointer = "CRAY POINTER", |
| *cray_pointee = "CRAY POINTEE", *data = "DATA", *value = "VALUE", |
| *volatile_ = "VOLATILE", *is_protected = "PROTECTED", |
| *is_bind_c = "BIND(C)", *procedure = "PROCEDURE", |
| *proc_pointer = "PROCEDURE POINTER", *abstract = "ABSTRACT", |
| *asynchronous = "ASYNCHRONOUS", *codimension = "CODIMENSION", |
| *contiguous = "CONTIGUOUS", *generic = "GENERIC", *automatic = "AUTOMATIC", |
| *pdt_len = "LEN", *pdt_kind = "KIND"; |
| static const char *threadprivate = "THREADPRIVATE"; |
| static const char *omp_declare_target = "OMP DECLARE TARGET"; |
| static const char *omp_declare_target_link = "OMP DECLARE TARGET LINK"; |
| static const char *oacc_declare_copyin = "OACC DECLARE COPYIN"; |
| static const char *oacc_declare_create = "OACC DECLARE CREATE"; |
| static const char *oacc_declare_deviceptr = "OACC DECLARE DEVICEPTR"; |
| static const char *oacc_declare_device_resident = |
| "OACC DECLARE DEVICE_RESIDENT"; |
| |
| const char *a1, *a2; |
| int standard; |
| |
| if (attr->artificial) |
| return true; |
| |
| if (where == NULL) |
| where = &gfc_current_locus; |
| |
| if (attr->pointer && attr->intent != INTENT_UNKNOWN) |
| { |
| a1 = pointer; |
| a2 = intent; |
| standard = GFC_STD_F2003; |
| goto conflict_std; |
| } |
| |
| if (attr->in_namelist && (attr->allocatable || attr->pointer)) |
| { |
| a1 = in_namelist; |
| a2 = attr->allocatable ? allocatable : pointer; |
| standard = GFC_STD_F2003; |
| goto conflict_std; |
| } |
| |
| /* Check for attributes not allowed in a BLOCK DATA. */ |
| if (gfc_current_state () == COMP_BLOCK_DATA) |
| { |
| a1 = NULL; |
| |
| if (attr->in_namelist) |
| a1 = in_namelist; |
| if (attr->allocatable) |
| a1 = allocatable; |
| if (attr->external) |
| a1 = external; |
| if (attr->optional) |
| a1 = optional; |
| if (attr->access == ACCESS_PRIVATE) |
| a1 = privat; |
| if (attr->access == ACCESS_PUBLIC) |
| a1 = publik; |
| if (attr->intent != INTENT_UNKNOWN) |
| a1 = intent; |
| |
| if (a1 != NULL) |
| { |
| gfc_error |
| ("%s attribute not allowed in BLOCK DATA program unit at %L", |
| a1, where); |
| return false; |
| } |
| } |
| |
| if (attr->save == SAVE_EXPLICIT) |
| { |
| conf (dummy, save); |
| conf (in_common, save); |
| conf (result, save); |
| conf (automatic, save); |
| |
| switch (attr->flavor) |
| { |
| case FL_PROGRAM: |
| case FL_BLOCK_DATA: |
| case FL_MODULE: |
| case FL_LABEL: |
| case_fl_struct: |
| case FL_PARAMETER: |
| a1 = gfc_code2string (flavors, attr->flavor); |
| a2 = save; |
| goto conflict; |
| case FL_NAMELIST: |
| gfc_error ("Namelist group name at %L cannot have the " |
| "SAVE attribute", where); |
| return false; |
| case FL_PROCEDURE: |
| /* Conflicts between SAVE and PROCEDURE will be checked at |
| resolution stage, see "resolve_fl_procedure". */ |
| case FL_VARIABLE: |
| default: |
| break; |
| } |
| } |
| |
| /* The copying of procedure dummy arguments for module procedures in |
| a submodule occur whilst the current state is COMP_CONTAINS. It |
| is necessary, therefore, to let this through. */ |
| if (name && attr->dummy |
| && (attr->function || attr->subroutine) |
| && gfc_current_state () == COMP_CONTAINS |
| && !(gfc_new_block && gfc_new_block->abr_modproc_decl)) |
| gfc_error_now ("internal procedure %qs at %L conflicts with " |
| "DUMMY argument", name, where); |
| |
| conf (dummy, entry); |
| conf (dummy, intrinsic); |
| conf (dummy, threadprivate); |
| conf (dummy, omp_declare_target); |
| conf (dummy, omp_declare_target_link); |
| conf (pointer, target); |
| conf (pointer, intrinsic); |
| conf (pointer, elemental); |
| conf (pointer, codimension); |
| conf (allocatable, elemental); |
| |
| conf (in_common, automatic); |
| conf (result, automatic); |
| conf (use_assoc, automatic); |
| conf (dummy, automatic); |
| |
| conf (target, external); |
| conf (target, intrinsic); |
| |
| if (!attr->if_source) |
| conf (external, dimension); /* See Fortran 95's R504. */ |
| |
| conf (external, intrinsic); |
| conf (entry, intrinsic); |
| conf (abstract, intrinsic); |
| |
| if ((attr->if_source == IFSRC_DECL && !attr->procedure) || attr->contained) |
| conf (external, subroutine); |
| |
| if (attr->proc_pointer && !gfc_notify_std (GFC_STD_F2003, |
| "Procedure pointer at %C")) |
| return false; |
| |
| conf (allocatable, pointer); |
| conf_std (allocatable, dummy, GFC_STD_F2003); |
| conf_std (allocatable, function, GFC_STD_F2003); |
| conf_std (allocatable, result, GFC_STD_F2003); |
| conf_std (elemental, recursive, GFC_STD_F2018); |
| |
| conf (in_common, dummy); |
| conf (in_common, allocatable); |
| conf (in_common, codimension); |
| conf (in_common, result); |
| |
| conf (in_equivalence, use_assoc); |
| conf (in_equivalence, codimension); |
| conf (in_equivalence, dummy); |
| conf (in_equivalence, target); |
| conf (in_equivalence, pointer); |
| conf (in_equivalence, function); |
| conf (in_equivalence, result); |
| conf (in_equivalence, entry); |
| conf (in_equivalence, allocatable); |
| conf (in_equivalence, threadprivate); |
| conf (in_equivalence, omp_declare_target); |
| conf (in_equivalence, omp_declare_target_link); |
| conf (in_equivalence, oacc_declare_create); |
| conf (in_equivalence, oacc_declare_copyin); |
| conf (in_equivalence, oacc_declare_deviceptr); |
| conf (in_equivalence, oacc_declare_device_resident); |
| conf (in_equivalence, is_bind_c); |
| |
| conf (dummy, result); |
| conf (entry, result); |
| conf (generic, result); |
| conf (generic, omp_declare_target); |
| conf (generic, omp_declare_target_link); |
| |
| conf (function, subroutine); |
| |
| if (!function && !subroutine) |
| conf (is_bind_c, dummy); |
| |
| conf (is_bind_c, cray_pointer); |
| conf (is_bind_c, cray_pointee); |
| conf (is_bind_c, codimension); |
| conf (is_bind_c, allocatable); |
| conf (is_bind_c, elemental); |
| |
| /* Need to also get volatile attr, according to 5.1 of F2003 draft. |
| Parameter conflict caught below. Also, value cannot be specified |
| for a dummy procedure. */ |
| |
| /* Cray pointer/pointee conflicts. */ |
| conf (cray_pointer, cray_pointee); |
| conf (cray_pointer, dimension); |
| conf (cray_pointer, codimension); |
| conf (cray_pointer, contiguous); |
| conf (cray_pointer, pointer); |
| conf (cray_pointer, target); |
| conf (cray_pointer, allocatable); |
| conf (cray_pointer, external); |
| conf (cray_pointer, intrinsic); |
| conf (cray_pointer, in_namelist); |
| conf (cray_pointer, function); |
| conf (cray_pointer, subroutine); |
| conf (cray_pointer, entry); |
| |
| conf (cray_pointee, allocatable); |
| conf (cray_pointee, contiguous); |
| conf (cray_pointee, codimension); |
| conf (cray_pointee, intent); |
| conf (cray_pointee, optional); |
| conf (cray_pointee, dummy); |
| conf (cray_pointee, target); |
| conf (cray_pointee, intrinsic); |
| conf (cray_pointee, pointer); |
| conf (cray_pointee, entry); |
| conf (cray_pointee, in_common); |
| conf (cray_pointee, in_equivalence); |
| conf (cray_pointee, threadprivate); |
| conf (cray_pointee, omp_declare_target); |
| conf (cray_pointee, omp_declare_target_link); |
| conf (cray_pointee, oacc_declare_create); |
| conf (cray_pointee, oacc_declare_copyin); |
| conf (cray_pointee, oacc_declare_deviceptr); |
| conf (cray_pointee, oacc_declare_device_resident); |
| |
| conf (data, dummy); |
| conf (data, function); |
| conf (data, result); |
| conf (data, allocatable); |
| |
| conf (value, pointer) |
| conf (value, allocatable) |
| conf (value, subroutine) |
| conf (value, function) |
| conf (value, volatile_) |
| conf (value, dimension) |
| conf (value, codimension) |
| conf (value, external) |
| |
| conf (codimension, result) |
| |
| if (attr->value |
| && (attr->intent == INTENT_OUT || attr->intent == INTENT_INOUT)) |
| { |
| a1 = value; |
| a2 = attr->intent == INTENT_OUT ? intent_out : intent_inout; |
| goto conflict; |
| } |
| |
| conf (is_protected, intrinsic) |
| conf (is_protected, in_common) |
| |
| conf (asynchronous, intrinsic) |
| conf (asynchronous, external) |
| |
| conf (volatile_, intrinsic) |
| conf (volatile_, external) |
| |
| if (attr->volatile_ && attr->intent == INTENT_IN) |
| { |
| a1 = volatile_; |
| a2 = intent_in; |
| goto conflict; |
| } |
| |
| conf (procedure, allocatable) |
| conf (procedure, dimension) |
| conf (procedure, codimension) |
| conf (procedure, intrinsic) |
| conf (procedure, target) |
| conf (procedure, value) |
| conf (procedure, volatile_) |
| conf (procedure, asynchronous) |
| conf (procedure, entry) |
| |
| conf (proc_pointer, abstract) |
| conf (proc_pointer, omp_declare_target) |
| conf (proc_pointer, omp_declare_target_link) |
| |
| conf (entry, omp_declare_target) |
| conf (entry, omp_declare_target_link) |
| conf (entry, oacc_declare_create) |
| conf (entry, oacc_declare_copyin) |
| conf (entry, oacc_declare_deviceptr) |
| conf (entry, oacc_declare_device_resident) |
| |
| conf (pdt_kind, allocatable) |
| conf (pdt_kind, pointer) |
| conf (pdt_kind, dimension) |
| conf (pdt_kind, codimension) |
| |
| conf (pdt_len, allocatable) |
| conf (pdt_len, pointer) |
| conf (pdt_len, dimension) |
| conf (pdt_len, codimension) |
| |
| if (attr->access == ACCESS_PRIVATE) |
| { |
| a1 = privat; |
| conf2 (pdt_kind); |
| conf2 (pdt_len); |
| } |
| |
| a1 = gfc_code2string (flavors, attr->flavor); |
| |
| if (attr->in_namelist |
| && attr->flavor != FL_VARIABLE |
| && attr->flavor != FL_PROCEDURE |
| && attr->flavor != FL_UNKNOWN) |
| { |
| a2 = in_namelist; |
| goto conflict; |
| } |
| |
| switch (attr->flavor) |
| { |
| case FL_PROGRAM: |
| case FL_BLOCK_DATA: |
| case FL_MODULE: |
| case FL_LABEL: |
| conf2 (codimension); |
| conf2 (dimension); |
| conf2 (dummy); |
| conf2 (volatile_); |
| conf2 (asynchronous); |
| conf2 (contiguous); |
| conf2 (pointer); |
| conf2 (is_protected); |
| conf2 (target); |
| conf2 (external); |
| conf2 (intrinsic); |
| conf2 (allocatable); |
| conf2 (result); |
| conf2 (in_namelist); |
| conf2 (optional); |
| conf2 (function); |
| conf2 (subroutine); |
| conf2 (threadprivate); |
| conf2 (omp_declare_target); |
| conf2 (omp_declare_target_link); |
| conf2 (oacc_declare_create); |
| conf2 (oacc_declare_copyin); |
| conf2 (oacc_declare_deviceptr); |
| conf2 (oacc_declare_device_resident); |
| |
| if (attr->access == ACCESS_PUBLIC || attr->access == ACCESS_PRIVATE) |
| { |
| a2 = attr->access == ACCESS_PUBLIC ? publik : privat; |
| gfc_error ("%s attribute applied to %s %s at %L", a2, a1, |
| name, where); |
| return false; |
| } |
| |
| if (attr->is_bind_c) |
| { |
| gfc_error_now ("BIND(C) applied to %s %s at %L", a1, name, where); |
| return false; |
| } |
| |
| break; |
| |
| case FL_VARIABLE: |
| break; |
| |
| case FL_NAMELIST: |
| conf2 (result); |
| break; |
| |
| case FL_PROCEDURE: |
| /* Conflicts with INTENT, SAVE and RESULT will be checked |
| at resolution stage, see "resolve_fl_procedure". */ |
| |
| if (attr->subroutine) |
| { |
| a1 = subroutine; |
| conf2 (target); |
| conf2 (allocatable); |
| conf2 (volatile_); |
| conf2 (asynchronous); |
| conf2 (in_namelist); |
| conf2 (codimension); |
| conf2 (dimension); |
| conf2 (function); |
| if (!attr->proc_pointer) |
| conf2 (threadprivate); |
| } |
| |
| /* Procedure pointers in COMMON blocks are allowed in F03, |
| * but forbidden per F08:C5100. */ |
| if (!attr->proc_pointer || (gfc_option.allow_std & GFC_STD_F2008)) |
| conf2 (in_common); |
| |
| conf2 (omp_declare_target_link); |
| |
| switch (attr->proc) |
| { |
| case PROC_ST_FUNCTION: |
| conf2 (dummy); |
| conf2 (target); |
| break; |
| |
| case PROC_MODULE: |
| conf2 (dummy); |
| break; |
| |
| case PROC_DUMMY: |
| conf2 (result); |
| conf2 (threadprivate); |
| break; |
| |
| default: |
| break; |
| } |
| |
| break; |
| |
| case_fl_struct: |
| conf2 (dummy); |
| conf2 (pointer); |
| conf2 (target); |
| conf2 (external); |
| conf2 (intrinsic); |
| conf2 (allocatable); |
| conf2 (optional); |
| conf2 (entry); |
| conf2 (function); |
| conf2 (subroutine); |
| conf2 (threadprivate); |
| conf2 (result); |
| conf2 (omp_declare_target); |
| conf2 (omp_declare_target_link); |
| conf2 (oacc_declare_create); |
| conf2 (oacc_declare_copyin); |
| conf2 (oacc_declare_deviceptr); |
| conf2 (oacc_declare_device_resident); |
| |
| if (attr->intent != INTENT_UNKNOWN) |
| { |
| a2 = intent; |
| goto conflict; |
| } |
| break; |
| |
| case FL_PARAMETER: |
| conf2 (external); |
| conf2 (intrinsic); |
| conf2 (optional); |
| conf2 (allocatable); |
| conf2 (function); |
| conf2 (subroutine); |
| conf2 (entry); |
| conf2 (contiguous); |
| conf2 (pointer); |
| conf2 (is_protected); |
| conf2 (target); |
| conf2 (dummy); |
| conf2 (in_common); |
| conf2 (value); |
| conf2 (volatile_); |
| conf2 (asynchronous); |
| conf2 (threadprivate); |
| conf2 (value); |
| conf2 (codimension); |
| conf2 (result); |
| if (!attr->is_iso_c) |
| conf2 (is_bind_c); |
| break; |
| |
| default: |
| break; |
| } |
| |
| return true; |
| |
| conflict: |
| if (name == NULL) |
| gfc_error ("%s attribute conflicts with %s attribute at %L", |
| a1, a2, where); |
| else |
| gfc_error ("%s attribute conflicts with %s attribute in %qs at %L", |
| a1, a2, name, where); |
| |
| return false; |
| |
| conflict_std: |
| if (name == NULL) |
| { |
| return gfc_notify_std (standard, "%s attribute conflicts " |
| "with %s attribute at %L", a1, a2, |
| where); |
| } |
| else |
| { |
| return gfc_notify_std (standard, "%s attribute conflicts " |
| "with %s attribute in %qs at %L", |
| a1, a2, name, where); |
| } |
| } |
| |
| #undef conf |
| #undef conf2 |
| #undef conf_std |
| |
| |
| /* Mark a symbol as referenced. */ |
| |
| void |
| gfc_set_sym_referenced (gfc_symbol *sym) |
| { |
| |
| if (sym->attr.referenced) |
| return; |
| |
| sym->attr.referenced = 1; |
| |
| /* Remember which order dummy variables are accessed in. */ |
| if (sym->attr.dummy) |
| sym->dummy_order = next_dummy_order++; |
| } |
| |
| |
| /* Common subroutine called by attribute changing subroutines in order |
| to prevent them from changing a symbol that has been |
| use-associated. Returns zero if it is OK to change the symbol, |
| nonzero if not. */ |
| |
| static int |
| check_used (symbol_attribute *attr, const char *name, locus *where) |
| { |
| |
| if (attr->use_assoc == 0) |
| return 0; |
| |
| if (where == NULL) |
| where = &gfc_current_locus; |
| |
| if (name == NULL) |
| gfc_error ("Cannot change attributes of USE-associated symbol at %L", |
| where); |
| else |
| gfc_error ("Cannot change attributes of USE-associated symbol %s at %L", |
| name, where); |
| |
| return 1; |
| } |
| |
| |
| /* Generate an error because of a duplicate attribute. */ |
| |
| static void |
| duplicate_attr (const char *attr, locus *where) |
| { |
| |
| if (where == NULL) |
| where = &gfc_current_locus; |
| |
| gfc_error ("Duplicate %s attribute specified at %L", attr, where); |
| } |
| |
| |
| bool |
| gfc_add_ext_attribute (symbol_attribute *attr, ext_attr_id_t ext_attr, |
| locus *where ATTRIBUTE_UNUSED) |
| { |
| attr->ext_attr |= 1 << ext_attr; |
| return true; |
| } |
| |
| |
| /* Called from decl.c (attr_decl1) to check attributes, when declared |
| separately. */ |
| |
| bool |
| gfc_add_attribute (symbol_attribute *attr, locus *where) |
| { |
| if (check_used (attr, NULL, where)) |
| return false; |
| |
| return gfc_check_conflict (attr, NULL, where); |
| } |
| |
| |
| bool |
| gfc_add_allocatable (symbol_attribute *attr, locus *where) |
| { |
| |
| if (check_used (attr, NULL, where)) |
| return false; |
| |
| if (attr->allocatable && ! gfc_submodule_procedure(attr)) |
| { |
| duplicate_attr ("ALLOCATABLE", where); |
| return false; |
| } |
| |
| if (attr->flavor == FL_PROCEDURE && attr->if_source == IFSRC_IFBODY |
| && !gfc_find_state (COMP_INTERFACE)) |
| { |
| gfc_error ("ALLOCATABLE specified outside of INTERFACE body at %L", |
| where); |
| return false; |
| } |
| |
| attr->allocatable = 1; |
| return gfc_check_conflict (attr, NULL, where); |
| } |
| |
| |
| bool |
| gfc_add_automatic (symbol_attribute *attr, const char *name, locus *where) |
| { |
| if (check_used (attr, name, where)) |
| return false; |
| |
| if (attr->automatic && !gfc_notify_std (GFC_STD_LEGACY, |
| "Duplicate AUTOMATIC attribute specified at %L", where)) |
| return false; |
| |
| attr->automatic = 1; |
| return gfc_check_conflict (attr, name, where); |
| } |
| |
| |
| bool |
| gfc_add_codimension (symbol_attribute *attr, const char *name, locus *where) |
| { |
| |
| if (check_used (attr, name, where)) |
| return false; |
| |
| if (attr->codimension) |
| { |
| duplicate_attr ("CODIMENSION", where); |
| return false; |
| } |
| |
| if (attr->flavor == FL_PROCEDURE && attr->if_source == IFSRC_IFBODY |
| && !gfc_find_state (COMP_INTERFACE)) |
| { |
| gfc_error ("CODIMENSION specified for %qs outside its INTERFACE body " |
| "at %L", name, where); |
| return false; |
| } |
| |
| attr->codimension = 1; |
| return gfc_check_conflict (attr, name, where); |
| } |
| |
| |
| bool |
| gfc_add_dimension (symbol_attribute *attr, const char *name, locus *where) |
| { |
| |
| if (check_used (attr, name, where)) |
| return false; |
| |
| if (attr->dimension && ! gfc_submodule_procedure(attr)) |
| { |
| duplicate_attr ("DIMENSION", where); |
| return false; |
| } |
| |
| if (attr->flavor == FL_PROCEDURE && attr->if_source == IFSRC_IFBODY |
| && !gfc_find_state (COMP_INTERFACE)) |
| { |
| gfc_error ("DIMENSION specified for %qs outside its INTERFACE body " |
| "at %L", name, where); |
| return false; |
| } |
| |
| attr->dimension = 1; |
| return gfc_check_conflict (attr, name, where); |
| } |
| |
| |
| bool |
| gfc_add_contiguous (symbol_attribute *attr, const char *name, locus *where) |
| { |
| |
| if (check_used (attr, name, where)) |
| return false; |
| |
| attr->contiguous = 1; |
| return gfc_check_conflict (attr, name, where); |
| } |
| |
| |
| bool |
| gfc_add_external (symbol_attribute *attr, locus *where) |
| { |
| |
| if (check_used (attr, NULL, where)) |
| return false; |
| |
| if (attr->external) |
| { |
| duplicate_attr ("EXTERNAL", where); |
| return false; |
| } |
| |
| if (attr->pointer && attr->if_source != IFSRC_IFBODY) |
| { |
| attr->pointer = 0; |
| attr->proc_pointer = 1; |
| } |
| |
| attr->external = 1; |
| |
| return gfc_check_conflict (attr, NULL, where); |
| } |
| |
| |
| bool |
| gfc_add_intrinsic (symbol_attribute *attr, locus *where) |
| { |
| |
| if (check_used (attr, NULL, where)) |
| return false; |
| |
| if (attr->intrinsic) |
| { |
| duplicate_attr ("INTRINSIC", where); |
| return false; |
| } |
| |
| attr->intrinsic = 1; |
| |
| return gfc_check_conflict (attr, NULL, where); |
| } |
| |
| |
| bool |
| gfc_add_optional (symbol_attribute *attr, locus *where) |
| { |
| |
| if (check_used (attr, NULL, where)) |
| return false; |
| |
| if (attr->optional) |
| { |
| duplicate_attr ("OPTIONAL", where); |
| return false; |
| } |
| |
| attr->optional = 1; |
| return gfc_check_conflict (attr, NULL, where); |
| } |
| |
| bool |
| gfc_add_kind (symbol_attribute *attr, locus *where) |
| { |
| if (attr->pdt_kind) |
| { |
| duplicate_attr ("KIND", where); |
| return false; |
| } |
| |
| attr->pdt_kind = 1; |
| return gfc_check_conflict (attr, NULL, where); |
| } |
| |
| bool |
| gfc_add_len (symbol_attribute *attr, locus *where) |
| { |
| if (attr->pdt_len) |
| { |
| duplicate_attr ("LEN", where); |
| return false; |
| } |
| |
| attr->pdt_len = 1; |
| return gfc_check_conflict (attr, NULL, where); |
| } |
| |
| |
| bool |
| gfc_add_pointer (symbol_attribute *attr, locus *where) |
| { |
| |
| if (check_used (attr, NULL, where)) |
| return false; |
| |
| if (attr->pointer && !(attr->if_source == IFSRC_IFBODY |
| && !gfc_find_state (COMP_INTERFACE)) |
| && ! gfc_submodule_procedure(attr)) |
| { |
| duplicate_attr ("POINTER", where); |
| return false; |
| } |
| |
| if (attr->procedure || (attr->external && attr->if_source != IFSRC_IFBODY) |
| || (attr->if_source == IFSRC_IFBODY |
| && !gfc_find_state (COMP_INTERFACE))) |
| attr->proc_pointer = 1; |
| else |
| attr->pointer = 1; |
| |
| return gfc_check_conflict (attr, NULL, where); |
| } |
| |
| |
| bool |
| gfc_add_cray_pointer (symbol_attribute *attr, locus *where) |
| { |
| |
| if (check_used (attr, NULL, where)) |
| return false; |
| |
| attr->cray_pointer = 1; |
| return gfc_check_conflict (attr, NULL, where); |
| } |
| |
| |
| bool |
| gfc_add_cray_pointee (symbol_attribute *attr, locus *where) |
| { |
| |
| if (check_used (attr, NULL, where)) |
| return false; |
| |
| if (attr->cray_pointee) |
| { |
| gfc_error ("Cray Pointee at %L appears in multiple pointer()" |
| " statements", where); |
| return false; |
| } |
| |
| attr->cray_pointee = 1; |
| return gfc_check_conflict (attr, NULL, where); |
| } |
| |
| |
| bool |
| gfc_add_protected (symbol_attribute *attr, const char *name, locus *where) |
| { |
| if (check_used (attr, name, where)) |
| return false; |
| |
| if (attr->is_protected) |
| { |
| if (!gfc_notify_std (GFC_STD_LEGACY, |
| "Duplicate PROTECTED attribute specified at %L", |
| where)) |
| return false; |
| } |
| |
| attr->is_protected = 1; |
| return gfc_check_conflict (attr, name, where); |
| } |
| |
| |
| bool |
| gfc_add_result (symbol_attribute *attr, const char *name, locus *where) |
| { |
| |
| if (check_used (attr, name, where)) |
| return false; |
| |
| attr->result = 1; |
| return gfc_check_conflict (attr, name, where); |
| } |
| |
| |
| bool |
| gfc_add_save (symbol_attribute *attr, save_state s, const char *name, |
| locus *where) |
| { |
| |
| if (check_used (attr, name, where)) |
| return false; |
| |
| if (s == SAVE_EXPLICIT && gfc_pure (NULL)) |
| { |
| gfc_error |
| ("SAVE attribute at %L cannot be specified in a PURE procedure", |
| where); |
| return false; |
| } |
| |
| if (s == SAVE_EXPLICIT) |
| gfc_unset_implicit_pure (NULL); |
| |
| if (s == SAVE_EXPLICIT && attr->save == SAVE_EXPLICIT |
| && (flag_automatic || pedantic)) |
| { |
| if (!gfc_notify_std (GFC_STD_LEGACY, |
| "Duplicate SAVE attribute specified at %L", |
| where)) |
| return false; |
| } |
| |
| attr->save = s; |
| return gfc_check_conflict (attr, name, where); |
| } |
| |
| |
| bool |
| gfc_add_value (symbol_attribute *attr, const char *name, locus *where) |
| { |
| |
| if (check_used (attr, name, where)) |
| return false; |
| |
| if (attr->value) |
| { |
| if (!gfc_notify_std (GFC_STD_LEGACY, |
| "Duplicate VALUE attribute specified at %L", |
| where)) |
| return false; |
| } |
| |
| attr->value = 1; |
| return gfc_check_conflict (attr, name, where); |
| } |
| |
| |
| bool |
| gfc_add_volatile (symbol_attribute *attr, const char *name, locus *where) |
| { |
| /* No check_used needed as 11.2.1 of the F2003 standard allows |
| that the local identifier made accessible by a use statement can be |
| given a VOLATILE attribute - unless it is a coarray (F2008, C560). */ |
| |
| if (attr->volatile_ && attr->volatile_ns == gfc_current_ns) |
| if (!gfc_notify_std (GFC_STD_LEGACY, |
| "Duplicate VOLATILE attribute specified at %L", |
| where)) |
| return false; |
| |
| /* F2008: C1282 A designator of a variable with the VOLATILE attribute |
| shall not appear in a pure subprogram. |
| |
| F2018: C1588 A local variable of a pure subprogram, or of a BLOCK |
| construct within a pure subprogram, shall not have the SAVE or |
| VOLATILE attribute. */ |
| if (gfc_pure (NULL)) |
| { |
| gfc_error ("VOLATILE attribute at %L cannot be specified in a " |
| "PURE procedure", where); |
| return false; |
| } |
| |
| |
| attr->volatile_ = 1; |
| attr->volatile_ns = gfc_current_ns; |
| return gfc_check_conflict (attr, name, where); |
| } |
| |
| |
| bool |
| gfc_add_asynchronous (symbol_attribute *attr, const char *name, locus *where) |
| { |
| /* No check_used needed as 11.2.1 of the F2003 standard allows |
| that the local identifier made accessible by a use statement can be |
| given a ASYNCHRONOUS attribute. */ |
| |
| if (attr->asynchronous && attr->asynchronous_ns == gfc_current_ns) |
| if (!gfc_notify_std (GFC_STD_LEGACY, |
| "Duplicate ASYNCHRONOUS attribute specified at %L", |
| where)) |
| return false; |
| |
| attr->asynchronous = 1; |
| attr->asynchronous_ns = gfc_current_ns; |
| return gfc_check_conflict (attr, name, where); |
| } |
| |
| |
| bool |
| gfc_add_threadprivate (symbol_attribute *attr, const char *name, locus *where) |
| { |
| |
| if (check_used (attr, name, where)) |
| return false; |
| |
| if (attr->threadprivate) |
| { |
| duplicate_attr ("THREADPRIVATE", where); |
| return false; |
| } |
| |
| attr->threadprivate = 1; |
| return gfc_check_conflict (attr, name, where); |
| } |
| |
| |
| bool |
| gfc_add_omp_declare_target (symbol_attribute *attr, const char *name, |
| locus *where) |
| { |
| |
| if (check_used (attr, name, where)) |
| return false; |
| |
| if (attr->omp_declare_target) |
| return true; |
| |
| attr->omp_declare_target = 1; |
| return gfc_check_conflict (attr, name, where); |
| } |
| |
| |
| bool |
| gfc_add_omp_declare_target_link (symbol_attribute *attr, const char *name, |
| locus *where) |
| { |
| |
| if (check_used (attr, name, where)) |
| return false; |
| |
| if (attr->omp_declare_target_link) |
| return true; |
| |
| attr->omp_declare_target_link = 1; |
| return gfc_check_conflict (attr, name, where); |
| } |
| |
| |
| bool |
| gfc_add_oacc_declare_create (symbol_attribute *attr, const char *name, |
| locus *where) |
| { |
| if (check_used (attr, name, where)) |
| return false; |
| |
| if (attr->oacc_declare_create) |
| return true; |
| |
| attr->oacc_declare_create = 1; |
| return gfc_check_conflict (attr, name, where); |
| } |
| |
| |
| bool |
| gfc_add_oacc_declare_copyin (symbol_attribute *attr, const char *name, |
| locus *where) |
| { |
| if (check_used (attr, name, where)) |
| return false; |
| |
| if (attr->oacc_declare_copyin) |
| return true; |
| |
| attr->oacc_declare_copyin = 1; |
| return gfc_check_conflict (attr, name, where); |
| } |
| |
| |
| bool |
| gfc_add_oacc_declare_deviceptr (symbol_attribute *attr, const char *name, |
| locus *where) |
| { |
| if (check_used (attr, name, where)) |
| return false; |
| |
| if (attr->oacc_declare_deviceptr) |
| return true; |
| |
| attr->oacc_declare_deviceptr = 1; |
| return gfc_check_conflict (attr, name, where); |
| } |
| |
| |
| bool |
| gfc_add_oacc_declare_device_resident (symbol_attribute *attr, const char *name, |
| locus *where) |
| { |
| if (check_used (attr, name, where)) |
| return false; |
| |
| if (attr->oacc_declare_device_resident) |
| return true; |
| |
| attr->oacc_declare_device_resident = 1; |
| return gfc_check_conflict (attr, name, where); |
| } |
| |
| |
| bool |
| gfc_add_target (symbol_attribute *attr, locus *where) |
| { |
| |
| if (check_used (attr, NULL, where)) |
| return false; |
| |
| if (attr->target) |
| { |
| duplicate_attr ("TARGET", where); |
| return false; |
| } |
| |
| attr->target = 1; |
| return gfc_check_conflict (attr, NULL, where); |
| } |
| |
| |
| bool |
| gfc_add_dummy (symbol_attribute *attr, const char *name, locus *where) |
| { |
| |
| if (check_used (attr, name, where)) |
| return false; |
| |
| /* Duplicate dummy arguments are allowed due to ENTRY statements. */ |
| attr->dummy = 1; |
| return gfc_check_conflict (attr, name, where); |
| } |
| |
| |
| bool |
| gfc_add_in_common (symbol_attribute *attr, const char *name, locus *where) |
| { |
| |
| if (check_used (attr, name, where)) |
| return false; |
| |
| /* Duplicate attribute already checked for. */ |
| attr->in_common = 1; |
| return gfc_check_conflict (attr, name, where); |
| } |
| |
| |
| bool |
| gfc_add_in_equivalence (symbol_attribute *attr, const char *name, locus *where) |
| { |
| |
| /* Duplicate attribute already checked for. */ |
| attr->in_equivalence = 1; |
| if (!gfc_check_conflict (attr, name, where)) |
| return false; |
| |
| if (attr->flavor == FL_VARIABLE) |
| return true; |
| |
| return gfc_add_flavor (attr, FL_VARIABLE, name, where); |
| } |
| |
| |
| bool |
| gfc_add_data (symbol_attribute *attr, const char *name, locus *where) |
| { |
| |
| if (check_used (attr, name, where)) |
| return false; |
| |
| attr->data = 1; |
| return gfc_check_conflict (attr, name, where); |
| } |
| |
| |
| bool |
| gfc_add_in_namelist (symbol_attribute *attr, const char *name, locus *where) |
| { |
| |
| attr->in_namelist = 1; |
| return gfc_check_conflict (attr, name, where); |
| } |
| |
| |
| bool |
| gfc_add_sequence (symbol_attribute *attr, const char *name, locus *where) |
| { |
| |
| if (check_used (attr, name, where)) |
| return false; |
| |
| attr->sequence = 1; |
| return gfc_check_conflict (attr, name, where); |
| } |
| |
| |
| bool |
| gfc_add_elemental (symbol_attribute *attr, locus *where) |
| { |
| |
| if (check_used (attr, NULL, where)) |
| return false; |
| |
| if (attr->elemental) |
| { |
| duplicate_attr ("ELEMENTAL", where); |
| return false; |
| } |
| |
| attr->elemental = 1; |
| return gfc_check_conflict (attr, NULL, where); |
| } |
| |
| |
| bool |
| gfc_add_pure (symbol_attribute *attr, locus *where) |
| { |
| |
| if (check_used (attr, NULL, where)) |
| return false; |
| |
| if (attr->pure) |
| { |
| duplicate_attr ("PURE", where); |
| return false; |
| } |
| |
| attr->pure = 1; |
| return gfc_check_conflict (attr, NULL, where); |
| } |
| |
| |
| bool |
| gfc_add_recursive (symbol_attribute *attr, locus *where) |
| { |
| |
| if (check_used (attr, NULL, where)) |
| return false; |
| |
| if (attr->recursive) |
| { |
| duplicate_attr ("RECURSIVE", where); |
| return false; |
| } |
| |
| attr->recursive = 1; |
| return gfc_check_conflict (attr, NULL, where); |
| } |
| |
| |
| bool |
| gfc_add_entry (symbol_attribute *attr, const char *name, locus *where) |
| { |
| |
| if (check_used (attr, name, where)) |
| return false; |
| |
| if (attr->entry) |
| { |
| duplicate_attr ("ENTRY", where); |
| return false; |
| } |
| |
| attr->entry = 1; |
| return gfc_check_conflict (attr, name, where); |
| } |
| |
| |
| bool |
| gfc_add_function (symbol_attribute *attr, const char *name, locus *where) |
| { |
| |
| if (attr->flavor != FL_PROCEDURE |
| && !gfc_add_flavor (attr, FL_PROCEDURE, name, where)) |
| return false; |
| |
| attr->function = 1; |
| return gfc_check_conflict (attr, name, where); |
| } |
| |
| |
| bool |
| gfc_add_subroutine (symbol_attribute *attr, const char *name, locus *where) |
| { |
| |
| if (attr->flavor != FL_PROCEDURE |
| && !gfc_add_flavor (attr, FL_PROCEDURE, name, where)) |
| return false; |
| |
| attr->subroutine = 1; |
| |
| /* If we are looking at a BLOCK DATA statement and we encounter a |
| name with a leading underscore (which must be |
| compiler-generated), do not check. See PR 84394. */ |
| |
| if (name && *name != '_' && gfc_current_state () != COMP_BLOCK_DATA) |
| return gfc_check_conflict (attr, name, where); |
| else |
| return true; |
| } |
| |
| |
| bool |
| gfc_add_generic (symbol_attribute *attr, const char *name, locus *where) |
| { |
| |
| if (attr->flavor != FL_PROCEDURE |
| && !gfc_add_flavor (attr, FL_PROCEDURE, name, where)) |
| return false; |
| |
| attr->generic = 1; |
| return gfc_check_conflict (attr, name, where); |
| } |
| |
| |
| bool |
| gfc_add_proc (symbol_attribute *attr, const char *name, locus *where) |
| { |
| |
| if (check_used (attr, NULL, where)) |
| return false; |
| |
| if (attr->flavor != FL_PROCEDURE |
| && !gfc_add_flavor (attr, FL_PROCEDURE, name, where)) |
| return false; |
| |
| if (attr->procedure) |
| { |
| duplicate_attr ("PROCEDURE", where); |
| return false; |
| } |
| |
| attr->procedure = 1; |
| |
| return gfc_check_conflict (attr, NULL, where); |
| } |
| |
| |
| bool |
| gfc_add_abstract (symbol_attribute* attr, locus* where) |
| { |
| if (attr->abstract) |
| { |
| duplicate_attr ("ABSTRACT", where); |
| return false; |
| } |
| |
| attr->abstract = 1; |
| |
| return gfc_check_conflict (attr, NULL, where); |
| } |
| |
| |
| /* Flavors are special because some flavors are not what Fortran |
| considers attributes and can be reaffirmed multiple times. */ |
| |
| bool |
| gfc_add_flavor (symbol_attribute *attr, sym_flavor f, const char *name, |
| locus *where) |
| { |
| |
| if ((f == FL_PROGRAM || f == FL_BLOCK_DATA || f == FL_MODULE |
| || f == FL_PARAMETER || f == FL_LABEL || gfc_fl_struct(f) |
| || f == FL_NAMELIST) && check_used (attr, name, where)) |
| return false; |
| |
| if (attr->flavor == f && f == FL_VARIABLE) |
| return true; |
| |
| /* Copying a procedure dummy argument for a module procedure in a |
| submodule results in the flavor being copied and would result in |
| an error without this. */ |
| if (attr->flavor == f && f == FL_PROCEDURE |
| && gfc_new_block && gfc_new_block->abr_modproc_decl) |
| return true; |
| |
| if (attr->flavor != FL_UNKNOWN) |
| { |
| if (where == NULL) |
| where = &gfc_current_locus; |
| |
| if (name) |
| gfc_error ("%s attribute of %qs conflicts with %s attribute at %L", |
| gfc_code2string (flavors, attr->flavor), name, |
| gfc_code2string (flavors, f), where); |
| else |
| gfc_error ("%s attribute conflicts with %s attribute at %L", |
| gfc_code2string (flavors, attr->flavor), |
| gfc_code2string (flavors, f), where); |
| |
| return false; |
| } |
| |
| attr->flavor = f; |
| |
| return gfc_check_conflict (attr, name, where); |
| } |
| |
| |
| bool |
| gfc_add_procedure (symbol_attribute *attr, procedure_type t, |
| const char *name, locus *where) |
| { |
| |
| if (check_used (attr, name, where)) |
| return false; |
| |
| if (attr->flavor != FL_PROCEDURE |
| && !gfc_add_flavor (attr, FL_PROCEDURE, name, where)) |
| return false; |
| |
| if (where == NULL) |
| where = &gfc_current_locus; |
| |
| if (attr->proc != PROC_UNKNOWN && !attr->module_procedure |
| && attr->access == ACCESS_UNKNOWN) |
| { |
| if (attr->proc == PROC_ST_FUNCTION && t == PROC_INTERNAL |
| && !gfc_notification_std (GFC_STD_F2008)) |
| gfc_error ("%s procedure at %L is already declared as %s " |
| "procedure. \nF2008: A pointer function assignment " |
| "is ambiguous if it is the first executable statement " |
| "after the specification block. Please add any other " |
| "kind of executable statement before it. FIXME", |
| gfc_code2string (procedures, t), where, |
| gfc_code2string (procedures, attr->proc)); |
| else |
| gfc_error ("%s procedure at %L is already declared as %s " |
| "procedure", gfc_code2string (procedures, t), where, |
| gfc_code2string (procedures, attr->proc)); |
| |
| return false; |
| } |
| |
| attr->proc = t; |
| |
| /* Statement functions are always scalar and functions. */ |
| if (t == PROC_ST_FUNCTION |
| && ((!attr->function && !gfc_add_function (attr, name, where)) |
| || attr->dimension)) |
| return false; |
| |
| return gfc_check_conflict (attr, name, where); |
| } |
| |
| |
| bool |
| gfc_add_intent (symbol_attribute *attr, sym_intent intent, locus *where) |
| { |
| |
| if (check_used (attr, NULL, where)) |
| return false; |
| |
| if (attr->intent == INTENT_UNKNOWN) |
| { |
| attr->intent = intent; |
| return gfc_check_conflict (attr, NULL, where); |
| } |
| |
| if (where == NULL) |
| where = &gfc_current_locus; |
| |
| gfc_error ("INTENT (%s) conflicts with INTENT(%s) at %L", |
| gfc_intent_string (attr->intent), |
| gfc_intent_string (intent), where); |
| |
| return false; |
| } |
| |
| |
| /* No checks for use-association in public and private statements. */ |
| |
| bool |
| gfc_add_access (symbol_attribute *attr, gfc_access access, |
| const char *name, locus *where) |
| { |
| |
| if (attr->access == ACCESS_UNKNOWN |
| || (attr->use_assoc && attr->access != ACCESS_PRIVATE)) |
| { |
| attr->access = access; |
| return gfc_check_conflict (attr, name, where); |
| } |
| |
| if (where == NULL) |
| where = &gfc_current_locus; |
| gfc_error ("ACCESS specification at %L was already specified", where); |
| |
| return false; |
| } |
| |
| |
| /* Set the is_bind_c field for the given symbol_attribute. */ |
| |
| bool |
| gfc_add_is_bind_c (symbol_attribute *attr, const char *name, locus *where, |
| int is_proc_lang_bind_spec) |
| { |
| |
| if (is_proc_lang_bind_spec == 0 && attr->flavor == FL_PROCEDURE) |
| gfc_error_now ("BIND(C) attribute at %L can only be used for " |
| "variables or common blocks", where); |
| else if (attr->is_bind_c) |
| gfc_error_now ("Duplicate BIND attribute specified at %L", where); |
| else |
| attr->is_bind_c = 1; |
| |
| if (where == NULL) |
| where = &gfc_current_locus; |
| |
| if (!gfc_notify_std (GFC_STD_F2003, "BIND(C) at %L", where)) |
| return false; |
| |
| return gfc_check_conflict (attr, name, where); |
| } |
| |
| |
| /* Set the extension field for the given symbol_attribute. */ |
| |
| bool |
| gfc_add_extension (symbol_attribute *attr, locus *where) |
| { |
| if (where == NULL) |
| where = &gfc_current_locus; |
| |
| if (attr->extension) |
| gfc_error_now ("Duplicate EXTENDS attribute specified at %L", where); |
| else |
| attr->extension = 1; |
| |
| if (!gfc_notify_std (GFC_STD_F2003, "EXTENDS at %L", where)) |
| return false; |
| |
| return true; |
| } |
| |
| |
| bool |
| gfc_add_explicit_interface (gfc_symbol *sym, ifsrc source, |
| gfc_formal_arglist * formal, locus *where) |
| { |
| if (check_used (&sym->attr, sym->name, where)) |
| return false; |
| |
| /* Skip the following checks in the case of a module_procedures in a |
| submodule since they will manifestly fail. */ |
| if (sym->attr.module_procedure == 1 |
| && source == IFSRC_DECL) |
| goto finish; |
| |
| if (where == NULL) |
| where = &gfc_current_locus; |
| |
| if (sym->attr.if_source != IFSRC_UNKNOWN |
| && sym->attr.if_source != IFSRC_DECL) |
| { |
| gfc_error ("Symbol %qs at %L already has an explicit interface", |
| sym->name, where); |
| return false; |
| } |
| |
| if (source == IFSRC_IFBODY && (sym->attr.dimension || sym->attr.allocatable)) |
| { |
| gfc_error ("%qs at %L has attributes specified outside its INTERFACE " |
| "body", sym->name, where); |
| return false; |
| } |
| |
| finish: |
| sym->formal = formal; |
| sym->attr.if_source = source; |
| |
| return true; |
| } |
| |
| |
| /* Add a type to a symbol. */ |
| |
| bool |
| gfc_add_type (gfc_symbol *sym, gfc_typespec *ts, locus *where) |
| { |
| sym_flavor flavor; |
| bt type; |
| |
| if (where == NULL) |
| where = &gfc_current_locus; |
| |
| if (sym->result) |
| type = sym->result->ts.type; |
| else |
| type = sym->ts.type; |
| |
| if (sym->attr.result && type == BT_UNKNOWN && sym->ns->proc_name) |
| type = sym->ns->proc_name->ts.type; |
| |
| if (type != BT_UNKNOWN && !(sym->attr.function && sym->attr.implicit_type) |
| && !(gfc_state_stack->previous && gfc_state_stack->previous->previous |
| && gfc_state_stack->previous->previous->state == COMP_SUBMODULE) |
| && !sym->attr.module_procedure) |
| { |
| if (sym->attr.use_assoc) |
| gfc_error ("Symbol %qs at %L conflicts with symbol from module %qs, " |
| "use-associated at %L", sym->name, where, sym->module, |
| &sym->declared_at); |
| else if (sym->attr.function && sym->attr.result) |
| gfc_error ("Symbol %qs at %L already has basic type of %s", |
| sym->ns->proc_name->name, where, gfc_basic_typename (type)); |
| else |
| gfc_error ("Symbol %qs at %L already has basic type of %s", sym->name, |
| where, gfc_basic_typename (type)); |
| return false; |
| } |
| |
| if (sym->attr.procedure && sym->ts.interface) |
| { |
| gfc_error ("Procedure %qs at %L may not have basic type of %s", |
| sym->name, where, gfc_basic_typename (ts->type)); |
| return false; |
| } |
| |
| flavor = sym->attr.flavor; |
| |
| if (flavor == FL_PROGRAM || flavor == FL_BLOCK_DATA || flavor == FL_MODULE |
| || flavor == FL_LABEL |
| || (flavor == FL_PROCEDURE && sym->attr.subroutine) |
| || flavor == FL_DERIVED || flavor == FL_NAMELIST) |
| { |
| gfc_error ("Symbol %qs at %L cannot have a type", |
| sym->ns->proc_name ? sym->ns->proc_name->name : sym->name, |
| where); |
| return false; |
| } |
| |
| sym->ts = *ts; |
| return true; |
| } |
| |
| |
| /* Clears all attributes. */ |
| |
| void |
| gfc_clear_attr (symbol_attribute *attr) |
| { |
| memset (attr, 0, sizeof (symbol_attribute)); |
| } |
| |
| |
| /* Check for missing attributes in the new symbol. Currently does |
| nothing, but it's not clear that it is unnecessary yet. */ |
| |
| bool |
| gfc_missing_attr (symbol_attribute *attr ATTRIBUTE_UNUSED, |
| locus *where ATTRIBUTE_UNUSED) |
| { |
| |
| return true; |
| } |
| |
| |
| /* Copy an attribute to a symbol attribute, bit by bit. Some |
| attributes have a lot of side-effects but cannot be present given |
| where we are called from, so we ignore some bits. */ |
| |
| bool |
| gfc_copy_attr (symbol_attribute *dest, symbol_attribute *src, locus *where) |
| { |
| int is_proc_lang_bind_spec; |
| |
| /* In line with the other attributes, we only add bits but do not remove |
| them; cf. also PR 41034. */ |
| dest->ext_attr |= src->ext_attr; |
| |
| if (src->allocatable && !gfc_add_allocatable (dest, where)) |
| goto fail; |
| |
| if (src->automatic && !gfc_add_automatic (dest, NULL, where)) |
| goto fail; |
| if (src->dimension && !gfc_add_dimension (dest, NULL, where)) |
| goto fail; |
| if (src->codimension && !gfc_add_codimension (dest, NULL, where)) |
| goto fail; |
| if (src->contiguous && !gfc_add_contiguous (dest, NULL, where)) |
| goto fail; |
| if (src->optional && !gfc_add_optional (dest, where)) |
| goto fail; |
| if (src->pointer && !gfc_add_pointer (dest, where)) |
| goto fail; |
| if (src->is_protected && !gfc_add_protected (dest, NULL, where)) |
| goto fail; |
| if (src->save && !gfc_add_save (dest, src->save, NULL, where)) |
| goto fail; |
| if (src->value && !gfc_add_value (dest, NULL, where)) |
| goto fail; |
| if (src->volatile_ && !gfc_add_volatile (dest, NULL, where)) |
| goto fail; |
| if (src->asynchronous && !gfc_add_asynchronous (dest, NULL, where)) |
| goto fail; |
| if (src->threadprivate |
| && !gfc_add_threadprivate (dest, NULL, where)) |
| goto fail; |
| if (src->omp_declare_target |
| && !gfc_add_omp_declare_target (dest, NULL, where)) |
| goto fail; |
| if (src->omp_declare_target_link |
| && !gfc_add_omp_declare_target_link (dest, NULL, where)) |
| goto fail; |
| if (src->oacc_declare_create |
| && !gfc_add_oacc_declare_create (dest, NULL, where)) |
| goto fail; |
| if (src->oacc_declare_copyin |
| && !gfc_add_oacc_declare_copyin (dest, NULL, where)) |
| goto fail; |
| if (src->oacc_declare_deviceptr |
| && !gfc_add_oacc_declare_deviceptr (dest, NULL, where)) |
| goto fail; |
| if (src->oacc_declare_device_resident |
| && !gfc_add_oacc_declare_device_resident (dest, NULL, where)) |
| goto fail; |
| if (src->target && !gfc_add_target (dest, where)) |
| goto fail; |
| if (src->dummy && !gfc_add_dummy (dest, NULL, where)) |
| goto fail; |
| if (src->result && !gfc_add_result (dest, NULL, where)) |
| goto fail; |
| if (src->entry) |
| dest->entry = 1; |
| |
| if (src->in_namelist && !gfc_add_in_namelist (dest, NULL, where)) |
| goto fail; |
| |
| if (src->in_common && !gfc_add_in_common (dest, NULL, where)) |
| goto fail; |
| |
| if (src->generic && !gfc_add_generic (dest, NULL, where)) |
| goto fail; |
| if (src->function && !gfc_add_function (dest, NULL, where)) |
| goto fail; |
| if (src->subroutine && !gfc_add_subroutine (dest, NULL, where)) |
| goto fail; |
| |
| if (src->sequence && !gfc_add_sequence (dest, NULL, where)) |
| goto fail; |
| if (src->elemental && !gfc_add_elemental (dest, where)) |
| goto fail; |
| if (src->pure && !gfc_add_pure (dest, where)) |
| goto fail; |
| if (src->recursive && !gfc_add_recursive (dest, where)) |
| goto fail; |
| |
| if (src->flavor != FL_UNKNOWN |
| && !gfc_add_flavor (dest, src->flavor, NULL, where)) |
| goto fail; |
| |
| if (src->intent != INTENT_UNKNOWN |
| && !gfc_add_intent (dest, src->intent, where)) |
| goto fail; |
| |
| if (src->access != ACCESS_UNKNOWN |
| && !gfc_add_access (dest, src->access, NULL, where)) |
| goto fail; |
| |
| if (!gfc_missing_attr (dest, where)) |
| goto fail; |
| |
| if (src->cray_pointer && !gfc_add_cray_pointer (dest, where)) |
| goto fail; |
| if (src->cray_pointee && !gfc_add_cray_pointee (dest, where)) |
| goto fail; |
| |
| is_proc_lang_bind_spec = (src->flavor == FL_PROCEDURE ? 1 : 0); |
| if (src->is_bind_c |
| && !gfc_add_is_bind_c (dest, NULL, where, is_proc_lang_bind_spec)) |
| return false; |
| |
| if (src->is_c_interop) |
| dest->is_c_interop = 1; |
| if (src->is_iso_c) |
| dest->is_iso_c = 1; |
| |
| if (src->external && !gfc_add_external (dest, where)) |
| goto fail; |
| if (src->intrinsic && !gfc_add_intrinsic (dest, where)) |
| goto fail; |
| if (src->proc_pointer) |
| dest->proc_pointer = 1; |
| |
| return true; |
| |
| fail: |
| return false; |
| } |
| |
| |
| /* A function to generate a dummy argument symbol using that from the |
| interface declaration. Can be used for the result symbol as well if |
| the flag is set. */ |
| |
| int |
| gfc_copy_dummy_sym (gfc_symbol **dsym, gfc_symbol *sym, int result) |
| { |
| int rc; |
| |
| rc = gfc_get_symbol (sym->name, NULL, dsym); |
| if (rc) |
| return rc; |
| |
| if (!gfc_add_type (*dsym, &(sym->ts), &gfc_current_locus)) |
| return 1; |
| |
| if (!gfc_copy_attr (&(*dsym)->attr, &(sym->attr), |
| &gfc_current_locus)) |
| return 1; |
| |
| if ((*dsym)->attr.dimension) |
| (*dsym)->as = gfc_copy_array_spec (sym->as); |
| |
| (*dsym)->attr.class_ok = sym->attr.class_ok; |
| |
| if ((*dsym) != NULL && !result |
| && (!gfc_add_dummy(&(*dsym)->attr, (*dsym)->name, NULL) |
| || !gfc_missing_attr (&(*dsym)->attr, NULL))) |
| return 1; |
| else if ((*dsym) != NULL && result |
| && (!gfc_add_result(&(*dsym)->attr, (*dsym)->name, NULL) |
| || !gfc_missing_attr (&(*dsym)->attr, NULL))) |
| return 1; |
| |
| return 0; |
| } |
| |
| |
| /************** Component name management ************/ |
| |
| /* Component names of a derived type form their own little namespaces |
| that are separate from all other spaces. The space is composed of |
| a singly linked list of gfc_component structures whose head is |
| located in the parent symbol. */ |
| |
| |
| /* Add a component name to a symbol. The call fails if the name is |
| already present. On success, the component pointer is modified to |
| point to the additional component structure. */ |
| |
| bool |
| gfc_add_component (gfc_symbol *sym, const char *name, |
| gfc_component **component) |
| { |
| gfc_component *p, *tail; |
| |
| /* Check for existing components with the same name, but not for union |
| components or containers. Unions and maps are anonymous so they have |
| unique internal names which will never conflict. |
| Don't use gfc_find_component here because it calls gfc_use_derived, |
| but the derived type may not be fully defined yet. */ |
| tail = NULL; |
| |
| for (p = sym->components; p; p = p->next) |
| { |
| if (strcmp (p->name, name) == 0) |
| { |
| gfc_error ("Component %qs at %C already declared at %L", |
| name, &p->loc); |
| return false; |
| } |
| |
| tail = p; |
| } |
| |
| if (sym->attr.extension |
| && gfc_find_component (sym->components->ts.u.derived, |
| name, true, true, NULL)) |
| { |
| gfc_error ("Component %qs at %C already in the parent type " |
| "at %L", name, &sym->components->ts.u.derived->declared_at); |
| return false; |
| } |
| |
| /* Allocate a new component. */ |
| p = gfc_get_component (); |
| |
| if (tail == NULL) |
| sym->components = p; |
| else |
| tail->next = p; |
| |
| p->name = gfc_get_string ("%s", name); |
| p->loc = gfc_current_locus; |
| p->ts.type = BT_UNKNOWN; |
| |
| *component = p; |
| return true; |
| } |
| |
| |
| /* Recursive function to switch derived types of all symbol in a |
| namespace. */ |
| |
| static void |
| switch_types (gfc_symtree *st, gfc_symbol *from, gfc_symbol *to) |
| { |
| gfc_symbol *sym; |
| |
| if (st == NULL) |
| return; |
| |
| sym = st->n.sym; |
| if (sym->ts.type == BT_DERIVED && sym->ts.u.derived == from) |
| sym->ts.u.derived = to; |
| |
| switch_types (st->left, from, to); |
| switch_types (st->right, from, to); |
| } |
| |
| |
| /* This subroutine is called when a derived type is used in order to |
| make the final determination about which version to use. The |
| standard requires that a type be defined before it is 'used', but |
| such types can appear in IMPLICIT statements before the actual |
| definition. 'Using' in this context means declaring a variable to |
| be that type or using the type constructor. |
| |
| If a type is used and the components haven't been defined, then we |
| have to have a derived type in a parent unit. We find the node in |
| the other namespace and point the symtree node in this namespace to |
| that node. Further reference to this name point to the correct |
| node. If we can't find the node in a parent namespace, then we have |
| an error. |
| |
| This subroutine takes a pointer to a symbol node and returns a |
| pointer to the translated node or NULL for an error. Usually there |
| is no translation and we return the node we were passed. */ |
| |
| gfc_symbol * |
| gfc_use_derived (gfc_symbol *sym) |
| { |
| gfc_symbol *s; |
| gfc_typespec *t; |
| gfc_symtree *st; |
| int i; |
| |
| if (!sym) |
| return NULL; |
| |
| if (sym->attr.unlimited_polymorphic) |
| return sym; |
| |
| if (sym->attr.generic) |
| sym = gfc_find_dt_in_generic (sym); |
| |
| if (sym->components != NULL || sym->attr.zero_comp) |
| return sym; /* Already defined. */ |
| |
| if (sym->ns->parent == NULL) |
| goto bad; |
| |
| if (gfc_find_symbol (sym->name, sym->ns->parent, 1, &s)) |
| { |
| gfc_error ("Symbol %qs at %C is ambiguous", sym->name); |
| return NULL; |
| } |
| |
| if (s == NULL || !gfc_fl_struct (s->attr.flavor)) |
| goto bad; |
| |
| /* Get rid of symbol sym, translating all references to s. */ |
| for (i = 0; i < GFC_LETTERS; i++) |
| { |
| t = &sym->ns->default_type[i]; |
| if (t->u.derived == sym) |
| t->u.derived = s; |
| } |
| |
| st = gfc_find_symtree (sym->ns->sym_root, sym->name); |
| st->n.sym = s; |
| |
| s->refs++; |
| |
| /* Unlink from list of modified symbols. */ |
| gfc_commit_symbol (sym); |
| |
| switch_types (sym->ns->sym_root, sym, s); |
| |
| /* TODO: Also have to replace sym -> s in other lists like |
| namelists, common lists and interface lists. */ |
| gfc_free_symbol (sym); |
| |
| return s; |
| |
| bad: |
| gfc_error ("Derived type %qs at %C is being used before it is defined", |
| sym->name); |
| return NULL; |
| } |
| |
| |
| /* Find the component with the given name in the union type symbol. |
| If ref is not NULL it will be set to the chain of components through which |
| the component can actually be accessed. This is necessary for unions because |
| intermediate structures may be maps, nested structures, or other unions, |
| all of which may (or must) be 'anonymous' to user code. */ |
| |
| static gfc_component * |
| find_union_component (gfc_symbol *un, const char *name, |
| bool noaccess, gfc_ref **ref) |
| { |
| gfc_component *m, *check; |
| gfc_ref *sref, *tmp; |
| |
| for (m = un->components; m; m = m->next) |
| { |
| check = gfc_find_component (m->ts.u.derived, name, noaccess, true, &tmp); |
| if (check == NULL) |
| continue; |
| |
| /* Found component somewhere in m; chain the refs together. */ |
| if (ref) |
| { |
| /* Map ref. */ |
| sref = gfc_get_ref (); |
| sref->type = REF_COMPONENT; |
| sref->u.c.component = m; |
| sref->u.c.sym = m->ts.u.derived; |
| sref->next = tmp; |
| |
| *ref = sref; |
| } |
| /* Other checks (such as access) were done in the recursive calls. */ |
| return check; |
| } |
| return NULL; |
| } |
| |
| |
| /* Recursively append candidate COMPONENT structures to CANDIDATES. Store |
| the number of total candidates in CANDIDATES_LEN. */ |
| |
| static void |
| lookup_component_fuzzy_find_candidates (gfc_component *component, |
| char **&candidates, |
| size_t &candidates_len) |
| { |
| for (gfc_component *p = component; p; p = p->next) |
| vec_push (candidates, candidates_len, p->name); |
| } |
| |
| |
| /* Lookup component MEMBER fuzzily, taking names in COMPONENT into account. */ |
| |
| static const char* |
| lookup_component_fuzzy (const char *member, gfc_component *component) |
| { |
| char **candidates = NULL; |
| size_t candidates_len = 0; |
| lookup_component_fuzzy_find_candidates (component, candidates, |
| candidates_len); |
| return gfc_closest_fuzzy_match (member, candidates); |
| } |
| |
| |
| /* Given a derived type node and a component name, try to locate the |
| component structure. Returns the NULL pointer if the component is |
| not found or the components are private. If noaccess is set, no access |
| checks are done. If silent is set, an error will not be generated if |
| the component cannot be found or accessed. |
| |
| If ref is not NULL, *ref is set to represent the chain of components |
| required to get to the ultimate component. |
| |
| If the component is simply a direct subcomponent, or is inherited from a |
| parent derived type in the given derived type, this is a single ref with its |
| component set to the returned component. |
| |
| Otherwise, *ref is constructed as a chain of subcomponents. This occurs |
| when the component is found through an implicit chain of nested union and |
| map components. Unions and maps are "anonymous" substructures in FORTRAN |
| which cannot be explicitly referenced, but the reference chain must be |
| considered as in C for backend translation to correctly compute layouts. |
| (For example, x.a may refer to x->(UNION)->(MAP)->(UNION)->(MAP)->a). */ |
| |
| gfc_component * |
| gfc_find_component (gfc_symbol *sym, const char *name, |
| bool noaccess, bool silent, gfc_ref **ref) |
| { |
| gfc_component *p, *check; |
| gfc_ref *sref = NULL, *tmp = NULL; |
| |
| if (name == NULL || sym == NULL) |
| return NULL; |
| |
| if (sym->attr.flavor == FL_DERIVED) |
| sym = gfc_use_derived (sym); |
| else |
| gcc_assert (gfc_fl_struct (sym->attr.flavor)); |
| |
| if (sym == NULL) |
| return NULL; |
| |
| /* Handle UNIONs specially - mutually recursive with gfc_find_component. */ |
| if (sym->attr.flavor == FL_UNION) |
| return find_union_component (sym, name, noaccess, ref); |
| |
| if (ref) *ref = NULL; |
| for (p = sym->components; p; p = p->next) |
| { |
| /* Nest search into union's maps. */ |
| if (p->ts.type == BT_UNION) |
| { |
| check = find_union_component (p->ts.u.derived, name, noaccess, &tmp); |
| if (check != NULL) |
| { |
| /* Union ref. */ |
| if (ref) |
| { |
| sref = gfc_get_ref (); |
| sref->type = REF_COMPONENT; |
| sref->u.c.component = p; |
| sref->u.c.sym = p->ts.u.derived; |
| sref->next = tmp; |
| *ref = sref; |
| } |
| return check; |
| } |
| } |
| else if (strcmp (p->name, name) == 0) |
| break; |
| |
| continue; |
| } |
| |
| if (p && sym->attr.use_assoc && !noaccess) |
| { |
| bool is_parent_comp = sym->attr.extension && (p == sym->components); |
| if (p->attr.access == ACCESS_PRIVATE || |
| (p->attr.access != ACCESS_PUBLIC |
| && sym->component_access == ACCESS_PRIVATE |
| && !is_parent_comp)) |
| { |
| if (!silent) |
| gfc_error ("Component %qs at %C is a PRIVATE component of %qs", |
| name, sym->name); |
| return NULL; |
| } |
| } |
| |
| if (p == NULL |
| && sym->attr.extension |
| && sym->components->ts.type == BT_DERIVED) |
| { |
| p = gfc_find_component (sym->components->ts.u.derived, name, |
| noaccess, silent, ref); |
| /* Do not overwrite the error. */ |
| if (p == NULL) |
| return p; |
| } |
| |
| if (p == NULL && !silent) |
| { |
| const char *guessed = lookup_component_fuzzy (name, sym->components); |
| if (guessed) |
| gfc_error ("%qs at %C is not a member of the %qs structure" |
| "; did you mean %qs?", |
| name, sym->name, guessed); |
| else |
| gfc_error ("%qs at %C is not a member of the %qs structure", |
| name, sym->name); |
| } |
| |
| /* Component was found; build the ultimate component reference. */ |
| if (p != NULL && ref) |
| { |
| tmp = gfc_get_ref (); |
| tmp->type = REF_COMPONENT; |
| tmp->u.c.component = p; |
| tmp->u.c.sym = sym; |
| /* Link the final component ref to the end of the chain of subrefs. */ |
| if (sref) |
| { |
| *ref = sref; |
| for (; sref->next; sref = sref->next) |
| ; |
| sref->next = tmp; |
| } |
| else |
| *ref = tmp; |
| } |
| |
| return p; |
| } |
| |
| |
| /* Given a symbol, free all of the component structures and everything |
| they point to. */ |
| |
| static void |
| free_components (gfc_component *p) |
| { |
| gfc_component *q; |
| |
| for (; p; p = q) |
| { |
| q = p->next; |
| |
| gfc_free_array_spec (p->as); |
| gfc_free_expr (p->initializer); |
| if (p->kind_expr) |
| gfc_free_expr (p->kind_expr); |
| if (p->param_list) |
| gfc_free_actual_arglist (p->param_list); |
| free (p->tb); |
| |
| free (p); |
| } |
| } |
| |
| |
| /******************** Statement label management ********************/ |
| |
| /* Comparison function for statement labels, used for managing the |
| binary tree. */ |
| |
| static int |
| compare_st_labels (void *a1, void *b1) |
| { |
| int a = ((gfc_st_label *) a1)->value; |
| int b = ((gfc_st_label *) b1)->value; |
| |
| return (b - a); |
| } |
| |
| |
| /* Free a single gfc_st_label structure, making sure the tree is not |
| messed up. This function is called only when some parse error |
| occurs. */ |
| |
| void |
| gfc_free_st_label (gfc_st_label *label) |
| { |
| |
| if (label == NULL) |
| return; |
| |
| gfc_delete_bbt (&label->ns->st_labels, label, compare_st_labels); |
| |
| if (label->format != NULL) |
| gfc_free_expr (label->format); |
| |
| free (label); |
| } |
| |
| |
| /* Free a whole tree of gfc_st_label structures. */ |
| |
| static void |
| free_st_labels (gfc_st_label *label) |
| { |
| |
| if (label == NULL) |
| return; |
| |
| free_st_labels (label->left); |
| free_st_labels (label->right); |
| |
| if (label->format != NULL) |
| gfc_free_expr (label->format); |
| free (label); |
| } |
| |
| |
| /* Given a label number, search for and return a pointer to the label |
| structure, creating it if it does not exist. */ |
| |
| gfc_st_label * |
| gfc_get_st_label (int labelno) |
| { |
| gfc_st_label *lp; |
| gfc_namespace *ns; |
| |
| if (gfc_current_state () == COMP_DERIVED) |
| ns = gfc_current_block ()->f2k_derived; |
| else |
| { |
| /* Find the namespace of the scoping unit: |
| If we're in a BLOCK construct, jump to the parent namespace. */ |
| ns = gfc_current_ns; |
| while (ns->proc_name && ns->proc_name->attr.flavor == FL_LABEL) |
| ns = ns->parent; |
| } |
| |
| /* First see if the label is already in this namespace. */ |
| lp = ns->st_labels; |
| while (lp) |
| { |
| if (lp->value == labelno) |
| return lp; |
| |
| if (lp->value < labelno) |
| lp = lp->left; |
| else |
| lp = lp->right; |
| } |
| |
| lp = XCNEW (gfc_st_label); |
| |
| lp->value = labelno; |
| lp->defined = ST_LABEL_UNKNOWN; |
| lp->referenced = ST_LABEL_UNKNOWN; |
| lp->ns = ns; |
| |
| gfc_insert_bbt (&ns->st_labels, lp, compare_st_labels); |
| |
| return lp; |
| } |
| |
| |
| /* Called when a statement with a statement label is about to be |
| accepted. We add the label to the list of the current namespace, |
| making sure it hasn't been defined previously and referenced |
| correctly. */ |
| |
| void |
| gfc_define_st_label (gfc_st_label *lp, gfc_sl_type type, locus *label_locus) |
| { |
| int labelno; |
| |
| labelno = lp->value; |
| |
| if (lp->defined != ST_LABEL_UNKNOWN) |
| gfc_error ("Duplicate statement label %d at %L and %L", labelno, |
| &lp->where, label_locus); |
| else |
| { |
| lp->where = *label_locus; |
| |
| switch (type) |
| { |
| case ST_LABEL_FORMAT: |
| if (lp->referenced == ST_LABEL_TARGET |
| || lp->referenced == ST_LABEL_DO_TARGET) |
| gfc_error ("Label %d at %C already referenced as branch target", |
| labelno); |
| else |
| lp->defined = ST_LABEL_FORMAT; |
| |
| break; |
| |
| case ST_LABEL_TARGET: |
| case ST_LABEL_DO_TARGET: |
| if (lp->referenced == ST_LABEL_FORMAT) |
| gfc_error ("Label %d at %C already referenced as a format label", |
| labelno); |
| else |
| lp->defined = type; |
| |
| if (lp->referenced == ST_LABEL_DO_TARGET && type != ST_LABEL_DO_TARGET |
| && !gfc_notify_std (GFC_STD_F95_OBS | GFC_STD_F2018_DEL, |
| "DO termination statement which is not END DO" |
| " or CONTINUE with label %d at %C", labelno)) |
| return; |
| break; |
| |
| default: |
| lp->defined = ST_LABEL_BAD_TARGET; |
| lp->referenced = ST_LABEL_BAD_TARGET; |
| } |
| } |
| } |
| |
| |
| /* Reference a label. Given a label and its type, see if that |
| reference is consistent with what is known about that label, |
| updating the unknown state. Returns false if something goes |
| wrong. */ |
| |
| bool |
| gfc_reference_st_label (gfc_st_label *lp, gfc_sl_type type) |
| { |
| gfc_sl_type label_type; |
| int labelno; |
| bool rc; |
| |
| if (lp == NULL) |
| return true; |
| |
| labelno = lp->value; |
| |
| if (lp->defined != ST_LABEL_UNKNOWN) |
| label_type = lp->defined; |
| else |
| { |
| label_type = lp->referenced; |
| lp->where = gfc_current_locus; |
| } |
| |
| if (label_type == ST_LABEL_FORMAT |
| && (type == ST_LABEL_TARGET || type == ST_LABEL_DO_TARGET)) |
| { |
| gfc_error ("Label %d at %C previously used as a FORMAT label", labelno); |
| rc = false; |
| goto done; |
| } |
| |
| if ((label_type == ST_LABEL_TARGET || label_type == ST_LABEL_DO_TARGET |
| || label_type == ST_LABEL_BAD_TARGET) |
| && type == ST_LABEL_FORMAT) |
| { |
| gfc_error ("Label %d at %C previously used as branch target", labelno); |
| rc = false; |
| goto done; |
| } |
| |
| if (lp->referenced == ST_LABEL_DO_TARGET && type == ST_LABEL_DO_TARGET |
| && !gfc_notify_std (GFC_STD_F95_OBS | GFC_STD_F2018_DEL, |
| "Shared DO termination label %d at %C", labelno)) |
| return false; |
| |
| if (type == ST_LABEL_DO_TARGET |
| && !gfc_notify_std (GFC_STD_F2018_OBS, "Labeled DO statement " |
| "at %L", &gfc_current_locus)) |
| return false; |
| |
| if (lp->referenced != ST_LABEL_DO_TARGET) |
| lp->referenced = type; |
| rc = true; |
| |
| done: |
| return rc; |
| } |
| |
| |
| /************** Symbol table management subroutines ****************/ |
| |
| /* Basic details: Fortran 95 requires a potentially unlimited number |
| of distinct namespaces when compiling a program unit. This case |
| occurs during a compilation of internal subprograms because all of |
| the internal subprograms must be read before we can start |
| generating code for the host. |
| |
| Given the tricky nature of the Fortran grammar, we must be able to |
| undo changes made to a symbol table if the current interpretation |
| of a statement is found to be incorrect. Whenever a symbol is |
| looked up, we make a copy of it and link to it. All of these |
| symbols are kept in a vector so that we can commit or |
| undo the changes at a later time. |
| |
| A symtree may point to a symbol node outside of its namespace. In |
| this case, that symbol has been used as a host associated variable |
| at some previous time. */ |
| |
| /* Allocate a new namespace structure. Copies the implicit types from |
| PARENT if PARENT_TYPES is set. */ |
| |
| gfc_namespace * |
| gfc_get_namespace (gfc_namespace *parent, int parent_types) |
| { |
| gfc_namespace *ns; |
| gfc_typespec *ts; |
| int in; |
| int i; |
| |
| ns = XCNEW (gfc_namespace); |
| ns->sym_root = NULL; |
| ns->uop_root = NULL; |
| ns->tb_sym_root = NULL; |
| ns->finalizers = NULL; |
| ns->default_access = ACCESS_UNKNOWN; |
| ns->parent = parent; |
| |
| for (in = GFC_INTRINSIC_BEGIN; in != GFC_INTRINSIC_END; in++) |
| { |
| ns->operator_access[in] = ACCESS_UNKNOWN; |
| ns->tb_op[in] = NULL; |
| } |
| |
| /* Initialize default implicit types. */ |
| for (i = 'a'; i <= 'z'; i++) |
| { |
| ns->set_flag[i - 'a'] = 0; |
| ts = &ns->default_type[i - 'a']; |
| |
| if (parent_types && ns->parent != NULL) |
| { |
| /* Copy parent settings. */ |
| *ts = ns->parent->default_type[i - 'a']; |
| continue; |
| } |
| |
| if (flag_implicit_none != 0) |
| { |
| gfc_clear_ts (ts); |
| continue; |
| } |
| |
| if ('i' <= i && i <= 'n') |
| { |
| ts->type = BT_INTEGER; |
| ts->kind = gfc_default_integer_kind; |
| } |
| else |
| { |
| ts->type = BT_REAL; |
| ts->kind = gfc_default_real_kind; |
| } |
| } |
| |
| ns->refs = 1; |
| |
| return ns; |
| } |
| |
| |
| /* Comparison function for symtree nodes. */ |
| |
| static int |
| compare_symtree (void *_st1, void *_st2) |
| { |
| gfc_symtree *st1, *st2; |
| |
| st1 = (gfc_symtree *) _st1; |
| st2 = (gfc_symtree *) _st2; |
| |
| return strcmp (st1->name, st2->name); |
| } |
| |
| |
| /* Allocate a new symtree node and associate it with the new symbol. */ |
| |
| gfc_symtree * |
| gfc_new_symtree (gfc_symtree **root, const char *name) |
| { |
| gfc_symtree *st; |
| |
| st = XCNEW (gfc_symtree); |
| st->name = gfc_get_string ("%s", name); |
| |
| gfc_insert_bbt (root, st, compare_symtree); |
| return st; |
| } |
| |
| |
| /* Delete a symbol from the tree. Does not free the symbol itself! */ |
| |
| void |
| gfc_delete_symtree (gfc_symtree **root, const char *name) |
| { |
| gfc_symtree st, *st0; |
| const char *p; |
| |
| /* Submodules are marked as mod.submod. When freeing a submodule |
| symbol, the symtree only has "submod", so adjust that here. */ |
| |
| p = strrchr(name, '.'); |
| if (p) |
| p++; |
| else |
| p = name; |
| |
| st0 = gfc_find_symtree (*root, p); |
| |
| st.name = gfc_get_string ("%s", p); |
| gfc_delete_bbt (root, &st, compare_symtree); |
| |
| free (st0); |
| } |
| |
| |
| /* Given a root symtree node and a name, try to find the symbol within |
| the namespace. Returns NULL if the symbol is not found. */ |
| |
| gfc_symtree * |
| gfc_find_symtree (gfc_symtree *st, const char *name) |
| { |
| int c; |
| |
| while (st != NULL) |
| { |
| c = strcmp (name, st->name); |
| if (c == 0) |
| return st; |
| |
| st = (c < 0) ? st->left : st->right; |
| } |
| |
| return NULL; |
| } |
| |
| |
| /* Return a symtree node with a name that is guaranteed to be unique |
| within the namespace and corresponds to an illegal fortran name. */ |
| |
| gfc_symtree * |
| gfc_get_unique_symtree (gfc_namespace *ns) |
| { |
| char name[GFC_MAX_SYMBOL_LEN + 1]; |
| static int serial = 0; |
| |
| sprintf (name, "@%d", serial++); |
| return gfc_new_symtree (&ns->sym_root, name); |
| } |
| |
| |
| /* Given a name find a user operator node, creating it if it doesn't |
| exist. These are much simpler than symbols because they can't be |
| ambiguous with one another. */ |
| |
| gfc_user_op * |
| gfc_get_uop (const char *name) |
| { |
| gfc_user_op *uop; |
| gfc_symtree *st; |
| gfc_namespace *ns = gfc_current_ns; |
| |
| if (ns->omp_udr_ns) |
| ns = ns->parent; |
| st = gfc_find_symtree (ns->uop_root, name); |
| if (st != NULL) |
| return st->n.uop; |
| |
| st = gfc_new_symtree (&ns->uop_root, name); |
| |
| uop = st->n.uop = XCNEW (gfc_user_op); |
| uop->name = gfc_get_string ("%s", name); |
| uop->access = ACCESS_UNKNOWN; |
| uop->ns = ns; |
| |
| return uop; |
| } |
| |
| |
| /* Given a name find the user operator node. Returns NULL if it does |
| not exist. */ |
| |
| gfc_user_op * |
| gfc_find_uop (const char *name, gfc_namespace *ns) |
| { |
| gfc_symtree *st; |
| |
| if (ns == NULL) |
| ns = gfc_current_ns; |
| |
| st = gfc_find_symtree (ns->uop_root, name); |
| return (st == NULL) ? NULL : st->n.uop; |
| } |
| |
| |
| /* Update a symbol's common_block field, and take care of the associated |
| memory management. */ |
| |
| static void |
| set_symbol_common_block (gfc_symbol *sym, gfc_common_head *common_block) |
| { |
| if (sym->common_block == common_block) |
| return; |
| |
| if (sym->common_block && sym->common_block->name[0] != '\0') |
| { |
| sym->common_block->refs--; |
| if (sym->common_block->refs == 0) |
| free (sym->common_block); |
| } |
| sym->common_block = common_block; |
| } |
| |
| |
| /* Remove a gfc_symbol structure and everything it points to. */ |
| |
| void |
| gfc_free_symbol (gfc_symbol *sym) |
| { |
| |
| if (sym == NULL) |
| return; |
| |
| gfc_free_array_spec (sym->as); |
| |
| free_components (sym->components); |
| |
| gfc_free_expr (sym->value); |
| |
| gfc_free_namelist (sym->namelist); |
| |
| if (sym->ns != sym->formal_ns) |
| gfc_free_namespace (sym->formal_ns); |
| |
| if (!sym->attr.generic_copy) |
| gfc_free_interface (sym->generic); |
| |
| gfc_free_formal_arglist (sym->formal); |
| |
| gfc_free_namespace (sym->f2k_derived); |
| |
| set_symbol_common_block (sym, NULL); |
| |
| if (sym->param_list) |
| gfc_free_actual_arglist (sym->param_list); |
| |
| free (sym); |
| } |
| |
| |
| /* Decrease the reference counter and free memory when we reach zero. */ |
| |
| void |
| gfc_release_symbol (gfc_symbol *sym) |
| { |
| if (sym == NULL) |
| return; |
| |
| if (sym->formal_ns != NULL && sym->refs == 2 && sym->formal_ns != sym->ns |
| && (!sym->attr.entry || !sym->module)) |
| { |
| /* As formal_ns contains a reference to sym, delete formal_ns just |
| before the deletion of sym. */ |
| gfc_namespace *ns = sym->formal_ns; |
| sym->formal_ns = NULL; |
| gfc_free_namespace (ns); |
| } |
| |
| sym->refs--; |
| if (sym->refs > 0) |
| return; |
| |
| gcc_assert (sym->refs == 0); |
| gfc_free_symbol (sym); |
| } |
| |
| |
| /* Allocate and initialize a new symbol node. */ |
| |
| gfc_symbol * |
| gfc_new_symbol (const char *name, gfc_namespace *ns) |
| { |
| gfc_symbol *p; |
| |
| p = XCNEW (gfc_symbol); |
| |
| gfc_clear_ts (&p->ts); |
| gfc_clear_attr (&p->attr); |
| p->ns = ns; |
| p->declared_at = gfc_current_locus; |
| p->name = gfc_get_string ("%s", name); |
| |
| return p; |
| } |
| |
| |
| /* Generate an error if a symbol is ambiguous, and set the error flag |
| on it. */ |
| |
| static void |
| ambiguous_symbol (const char *name, gfc_symtree *st) |
| { |
| |
| if (st->n.sym->error) |
| return; |
| |
| if (st->n.sym->module) |
| gfc_error ("Name %qs at %C is an ambiguous reference to %qs " |
| "from module %qs", name, st->n.sym->name, st->n.sym->module); |
| else |
| gfc_error ("Name %qs at %C is an ambiguous reference to %qs " |
| "from current program unit", name, st->n.sym->name); |
| |
| st->n.sym->error = 1; |
| } |
| |
| |
| /* If we're in a SELECT TYPE block, check if the variable 'st' matches any |
| selector on the stack. If yes, replace it by the corresponding temporary. */ |
| |
| static void |
| select_type_insert_tmp (gfc_symtree **st) |
| { |
| gfc_select_type_stack *stack = select_type_stack; |
| for (; stack; stack = stack->prev) |
| if ((*st)->n.sym == stack->selector && stack->tmp) |
| { |
| *st = stack->tmp; |
| select_type_insert_tmp (st); |
| return; |
| } |
| } |
| |
| |
| /* Look for a symtree in the current procedure -- that is, go up to |
| parent namespaces but only if inside a BLOCK. Returns NULL if not found. */ |
| |
| gfc_symtree* |
| gfc_find_symtree_in_proc (const char* name, gfc_namespace* ns) |
| { |
| while (ns) |
| { |
| gfc_symtree* st = gfc_find_symtree (ns->sym_root, name); |
| if (st) |
| return st; |
| |
| if (!ns->construct_entities) |
| break; |
| ns = ns->parent; |
| } |
| |
| return NULL; |
| } |
| |
| |
| /* Search for a symtree starting in the current namespace, resorting to |
| any parent namespaces if requested by a nonzero parent_flag. |
| Returns nonzero if the name is ambiguous. */ |
| |
| int |
| gfc_find_sym_tree (const char *name, gfc_namespace *ns, int parent_flag, |
| gfc_symtree **result) |
| { |
| gfc_symtree *st; |
| |
| if (ns == NULL) |
| ns = gfc_current_ns; |
| |
| do |
| { |
| st = gfc_find_symtree (ns->sym_root, name); |
| if (st != NULL) |
| { |
| select_type_insert_tmp (&st); |
| |
| *result = st; |
| /* Ambiguous generic interfaces are permitted, as long |
| as the specific interfaces are different. */ |
| if (st->ambiguous && !st->n.sym->attr.generic) |
| { |
| ambiguous_symbol (name, st); |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| if (!parent_flag) |
| break; |
| |
| /* Don't escape an interface block. */ |
| if (ns && !ns->has_import_set |
| && ns->proc_name && ns->proc_name->attr.if_source == IFSRC_IFBODY) |
| break; |
| |
| ns = ns->parent; |
| } |
| while (ns != NULL); |
| |
| if (gfc_current_state() == COMP_DERIVED |
| && gfc_current_block ()->attr.pdt_template) |
| { |
| gfc_symbol *der = gfc_current_block (); |
| for (; der; der = gfc_get_derived_super_type (der)) |
| { |
| if (der->f2k_derived && der->f2k_derived->sym_root) |
| { |
| st = gfc_find_symtree (der->f2k_derived->sym_root, name); |
| if (st) |
| break; |
| } |
| } |
| *result = st; |
| return 0; |
| } |
| |
| *result = NULL; |
| |
| return 0; |
| } |
| |
| |
| /* Same, but returns the symbol instead. */ |
| |
| int |
| gfc_find_symbol (const char *name, gfc_namespace *ns, int parent_flag, |
| gfc_symbol **result) |
| { |
| gfc_symtree *st; |
| int i; |
| |
| i = gfc_find_sym_tree (name, ns, parent_flag, &st); |
| |
| if (st == NULL) |
| *result = NULL; |
| else |
| *result = st->n.sym; |
| |
| return i; |
| } |
| |
| |
| /* Tells whether there is only one set of changes in the stack. */ |
| |
| static bool |
| single_undo_checkpoint_p (void) |
| { |
| if (latest_undo_chgset == &default_undo_chgset_var) |
| { |
| gcc_assert (latest_undo_chgset->previous == NULL); |
| return true; |
| } |
| else |
| { |
| gcc_assert (latest_undo_chgset->previous != NULL); |
| return false; |
| } |
| } |
| |
| /* Save symbol with the information necessary to back it out. */ |
| |
| void |
| gfc_save_symbol_data (gfc_symbol *sym) |
| { |
| gfc_symbol *s; |
| unsigned i; |
| |
| if (!single_undo_checkpoint_p ()) |
| { |
| /* If there is more than one change set, look for the symbol in the |
| current one. If it is found there, we can reuse it. */ |
| FOR_EACH_VEC_ELT (latest_undo_chgset->syms, i, s) |
| if (s == sym) |
| { |
| gcc_assert (sym->gfc_new || sym->old_symbol != NULL); |
| return; |
| } |
| } |
| else if (sym->gfc_new || sym->old_symbol != NULL) |
| return; |
| |
| s = XCNEW (gfc_symbol); |
| *s = *sym; |
| sym->old_symbol = s; |
| sym->gfc_new = 0; |
| |
| latest_undo_chgset->syms.safe_push (sym); |
| } |
| |
| |
| /* Given a name, find a symbol, or create it if it does not exist yet |
| in the current namespace. If the symbol is found we make sure that |
| it's OK. |
| |
| The integer return code indicates |
| 0 All OK |
| 1 The symbol name was ambiguous |
| 2 The name meant to be established was already host associated. |
| |
| So if the return value is nonzero, then an error was issued. */ |
| |
| int |
| gfc_get_sym_tree (const char *name, gfc_namespace *ns, gfc_symtree **result, |
| bool allow_subroutine) |
| { |
| gfc_symtree *st; |
| gfc_symbol *p; |
| |
| /* This doesn't usually happen during resolution. */ |
| if (ns == NULL) |
| ns = gfc_current_ns; |
| |
| /* Try to find the symbol in ns. */ |
| st = gfc_find_symtree (ns->sym_root, name); |
| |
| if (st == NULL && ns->omp_udr_ns) |
| { |
| ns = ns->parent; |
| st = gfc_find_symtree (ns->sym_root, name); |
| } |
| |
| if (st == NULL) |
| { |
| /* If not there, create a new symbol. */ |
| p = gfc_new_symbol (name, ns); |
| |
| /* Add to the list of tentative symbols. */ |
| p->old_symbol = NULL; |
| p->mark = 1; |
| p->gfc_new = 1; |
| latest_undo_chgset->syms.safe_push (p); |
| |
| st = gfc_new_symtree (&ns->sym_root, name); |
| st->n.sym = p; |
| p->refs++; |
| |
| } |
| else |
| { |
| /* Make sure the existing symbol is OK. Ambiguous |
| generic interfaces are permitted, as long as the |
| specific interfaces are different. */ |
| if (st->ambiguous && !st->n.sym->attr.generic) |
| { |
| ambiguous_symbol (name, st); |
| return 1; |
| } |
| |
| p = st->n.sym; |
| if (p->ns != ns && (!p->attr.function || ns->proc_name != p) |
| && !(allow_subroutine && p->attr.subroutine) |
| && !(ns->proc_name && ns->proc_name->attr.if_source == IFSRC_IFBODY |
| && (ns->has_import_set || p->attr.imported))) |
| { |
| /* Symbol is from another namespace. */ |
| gfc_error ("Symbol %qs at %C has already been host associated", |
| name); |
| return 2; |
| } |
| |
| p->mark = 1; |
| |
| /* Copy in case this symbol is changed. */ |
| gfc_save_symbol_data (p); |
| } |
| |
| *result = st; |
| return 0; |
| } |
| |
| |
| int |
| gfc_get_symbol (const char *name, gfc_namespace *ns, gfc_symbol **result) |
| { |
| gfc_symtree *st; |
| int i; |
| |
| i = gfc_get_sym_tree (name, ns, &st, false); |
| if (i != 0) |
| return i; |
| |
| if (st) |
| *result = st->n.sym; |
| else |
| *result = NULL; |
| return i; |
| } |
| |
| |
| /* Subroutine that searches for a symbol, creating it if it doesn't |
| exist, but tries to host-associate the symbol if possible. */ |
| |
| int |
| gfc_get_ha_sym_tree (const char *name, gfc_symtree **result) |
| { |
| gfc_symtree *st; |
| int i; |
| |
| i = gfc_find_sym_tree (name, gfc_current_ns, 0, &st); |
| |
| if (st != NULL) |
| { |
| gfc_save_symbol_data (st->n.sym); |
| *result = st; |
| return i; |
| } |
| |
| i = gfc_find_sym_tree (name, gfc_current_ns, 1, &st); |
| if (i) |
| return i; |
| |
| if (st != NULL) |
| { |
| *result = st; |
| return 0; |
| } |
| |
| return gfc_get_sym_tree (name, gfc_current_ns, result, false); |
| } |
| |
| |
| int |
| gfc_get_ha_symbol (const char *name, gfc_symbol **result) |
| { |
| int i; |
| gfc_symtree *st; |
| |
| i = gfc_get_ha_sym_tree (name, &st); |
| |
| if (st) |
| *result = st->n.sym; |
| else |
| *result = NULL; |
| |
| return i; |
| } |
| |
| |
| /* Search for the symtree belonging to a gfc_common_head; we cannot use |
| head->name as the common_root symtree's name might be mangled. */ |
| |
| static gfc_symtree * |
| find_common_symtree (gfc_symtree *st, gfc_common_head *head) |
| { |
| |
| gfc_symtree *result; |
| |
| if (st == NULL) |
| return NULL; |
| |
| if (st->n.common == head) |
| return st; |
| |
| result = find_common_symtree (st->left, head); |
| if (!result) |
| result = find_common_symtree (st->right, head); |
| |
| return result; |
| } |
| |
| |
| /* Restore previous state of symbol. Just copy simple stuff. */ |
| |
| static void |
| restore_old_symbol (gfc_symbol *p) |
| { |
| gfc_symbol *old; |
| |
| p->mark = 0; |
| old = p->old_symbol; |
| |
| p->ts.type = old->ts.type; |
| p->ts.kind = old->ts.kind; |
| |
| p->attr = old->attr; |
| |
| if (p->value != old->value) |
| { |
| gcc_checking_assert (old->value == NULL); |
| gfc_free_expr (p->value); |
| p->value = NULL; |
| } |
| |
| if (p->as != old->as) |
| { |
| if (p->as) |
| gfc_free_array_spec (p->as); |
| p->as = old->as; |
| } |
| |
| p->generic = old->generic; |
| p->component_access = old->component_access; |
| |
| if (p->namelist != NULL && old->namelist == NULL) |
| { |
| gfc_free_namelist (p->namelist); |
| p->namelist = NULL; |
| } |
| else |
| { |
| if (p->namelist_tail != old->namelist_tail) |
| { |
| gfc_free_namelist (old->namelist_tail->next); |
| old->namelist_tail->next = NULL; |
| } |
| } |
| |
| p->namelist_tail = old->namelist_tail; |
| |
| if (p->formal != old->formal) |
| { |
| gfc_free_formal_arglist (p->formal); |
| p->formal = old->formal; |
| } |
| |
| set_symbol_common_block (p, old->common_block); |
| p->common_head = old->common_head; |
| |
| p->old_symbol = old->old_symbol; |
| free (old); |
| } |
| |
| |
| /* Frees the internal data of a gfc_undo_change_set structure. Doesn't free |
| the structure itself. */ |
| |
| static void |
| free_undo_change_set_data (gfc_undo_change_set &cs) |
| { |
| cs.syms.release (); |
| cs.tbps.release (); |
| } |
| |
| |
| /* Given a change set pointer, free its target's contents and update it with |
| the address of the previous change set. Note that only the contents are |
| freed, not the target itself (the contents' container). It is not a problem |
| as the latter will be a local variable usually. */ |
| |
| static void |
| pop_undo_change_set (gfc_undo_change_set *&cs) |
| { |
| free_undo_change_set_data (*cs); |
| cs = cs->previous; |
| } |
| |
| |
| static void free_old_symbol (gfc_symbol *sym); |
| |
| |
| /* Merges the current change set into the previous one. The changes themselves |
| are left untouched; only one checkpoint is forgotten. */ |
| |
| void |
| gfc_drop_last_undo_checkpoint (void) |
| { |
| gfc_symbol *s, *t; |
| unsigned i, j; |
| |
| FOR_EACH_VEC_ELT (latest_undo_chgset->syms, i, s) |
| { |
| /* No need to loop in this case. */ |
| if (s->old_symbol == NULL) |
| continue; |
| |
| /* Remove the duplicate symbols. */ |
| FOR_EACH_VEC_ELT (latest_undo_chgset->previous->syms, j, t) |
| if (t == s) |
| { |
| latest_undo_chgset->previous->syms.unordered_remove (j); |
| |
| /* S->OLD_SYMBOL is the backup symbol for S as it was at the |
| last checkpoint. We drop that checkpoint, so S->OLD_SYMBOL |
| shall contain from now on the backup symbol for S as it was |
| at the checkpoint before. */ |
| if (s->old_symbol->gfc_new) |
| { |
| gcc_assert (s->old_symbol->old_symbol == NULL); |
| s->gfc_new = s->old_symbol->gfc_new; |
| free_old_symbol (s); |
| } |
| else |
| restore_old_symbol (s->old_symbol); |
| break; |
| } |
| } |
| |
| latest_undo_chgset->previous->syms.safe_splice (latest_undo_chgset->syms); |
| latest_undo_chgset->previous->tbps.safe_splice (latest_undo_chgset->tbps); |
| |
| pop_undo_change_set (latest_undo_chgset); |
| } |
| |
| |
| /* Undoes all the changes made to symbols since the previous checkpoint. |
| This subroutine is made simpler due to the fact that attributes are |
| never removed once added. */ |
| |
| void |
| gfc_restore_last_undo_checkpoint (void) |
| { |
| gfc_symbol *p; |
| unsigned i; |
| |
| FOR_EACH_VEC_ELT (latest_undo_chgset->syms, i, p) |
| { |
| /* Symbol in a common block was new. Or was old and just put in common */ |
| if (p->common_block |
| && (p->gfc_new || !p->old_symbol->common_block)) |
| { |
| /* If the symbol was added to any common block, it |
| needs to be removed to stop the resolver looking |
| for a (possibly) dead symbol. */ |
| if (p->common_block->head == p && !p->common_next) |
| { |
| gfc_symtree st, *st0; |
| st0 = find_common_symtree (p->ns->common_root, |
| p->common_block); |
| if (st0) |
| { |
| st.name = st0->name; |
| gfc_delete_bbt (&p->ns->common_root, &st, compare_symtree); |
| free (st0); |
| } |
| } |
| |
| if (p->common_block->head == p) |
| p->common_block->head = p->common_next; |
| else |
| { |
| gfc_symbol *cparent, *csym; |
| |
| cparent = p->common_block->head; |
| csym = cparent->common_next; |
| |
| while (csym != p) |
| { |
| cparent = csym; |
| csym = csym->common_next; |
| } |
| |
| gcc_assert(cparent->common_next == p); |
| cparent->common_next = csym->common_next; |
| } |
| p->common_next = NULL; |
| } |
| if (p->gfc_new) |
| { |
| /* The derived type is saved in the symtree with the first |
| letter capitalized; the all lower-case version to the |
| derived type contains its associated generic function. */ |
| if (gfc_fl_struct (p->attr.flavor)) |
| gfc_delete_symtree (&p->ns->sym_root,gfc_dt_upper_string (p->name)); |
| else |
| gfc_delete_symtree (&p->ns->sym_root, p->name); |
| |
| gfc_release_symbol (p); |
| } |
| else |
| restore_old_symbol (p); |
| } |
| |
| latest_undo_chgset->syms.truncate (0); |
| latest_undo_chgset->tbps.truncate (0); |
| |
| if (!single_undo_checkpoint_p ()) |
| pop_undo_change_set (latest_undo_chgset); |
| } |
| |
| |
| /* Makes sure that there is only one set of changes; in other words we haven't |
| forgotten to pair a call to gfc_new_checkpoint with a call to either |
| gfc_drop_last_undo_checkpoint or gfc_restore_last_undo_checkpoint. */ |
| |
| static void |
| enforce_single_undo_checkpoint (void) |
| { |
| gcc_checking_assert (single_undo_checkpoint_p ()); |
| } |
| |
| |
| /* Undoes all the changes made to symbols in the current statement. */ |
| |
| void |
| gfc_undo_symbols (void) |
| { |
| enforce_single_undo_checkpoint (); |
| gfc_restore_last_undo_checkpoint (); |
| } |
| |
| |
| /* Free sym->old_symbol. sym->old_symbol is mostly a shallow copy of sym; the |
| components of old_symbol that might need deallocation are the "allocatables" |
| that are restored in gfc_undo_symbols(), with two exceptions: namelist and |
| namelist_tail. In case these differ between old_symbol and sym, it's just |
| because sym->namelist has gotten a few more items. */ |
| |
| static void |
| free_old_symbol (gfc_symbol *sym) |
| { |
| |
| if (sym->old_symbol == NULL) |
| return; |
| |
| if (sym->old_symbol->as != sym->as) |
| gfc_free_array_spec (sym->old_symbol->as); |
| |
| if (sym->old_symbol->value != sym->value) |
| gfc_free_expr (sym->old_symbol->value); |
| |
| if (sym->old_symbol->formal != sym->formal) |
| gfc_free_formal_arglist (sym->old_symbol->formal); |
| |
| free (sym->old_symbol); |
| sym->old_symbol = NULL; |
| } |
| |
| |
| /* Makes the changes made in the current statement permanent-- gets |
| rid of undo information. */ |
| |
| void |
| gfc_commit_symbols (void) |
| { |
| gfc_symbol *p; |
| gfc_typebound_proc *tbp; |
| unsigned i; |
| |
| enforce_single_undo_checkpoint (); |
| |
| FOR_EACH_VEC_ELT (latest_undo_chgset->syms, i, p) |
| { |
| p->mark = 0; |
| p->gfc_new = 0; |
| free_old_symbol (p); |
| } |
| latest_undo_chgset->syms.truncate (0); |
| |
| FOR_EACH_VEC_ELT (latest_undo_chgset->tbps, i, tbp) |
| tbp->error = 0; |
| latest_undo_chgset->tbps.truncate (0); |
| } |
| |
| |
| /* Makes the changes made in one symbol permanent -- gets rid of undo |
| information. */ |
| |
| void |
| gfc_commit_symbol (gfc_symbol *sym) |
| { |
| gfc_symbol *p; |
| unsigned i; |
| |
| enforce_single_undo_checkpoint (); |
| |
| FOR_EACH_VEC_ELT (latest_undo_chgset->syms, i, p) |
| if (p == sym) |
| { |
| latest_undo_chgset->syms.unordered_remove (i); |
| break; |
| } |
| |
| sym->mark = 0; |
| sym->gfc_new = 0; |
| |
| free_old_symbol (sym); |
| } |
| |
| |
| /* Recursively free trees containing type-bound procedures. */ |
| |
| static void |
| free_tb_tree (gfc_symtree *t) |
| { |
| if (t == NULL) |
| return; |
| |
| free_tb_tree (t->left); |
| free_tb_tree (t->right); |
| |
| /* TODO: Free type-bound procedure structs themselves; probably needs some |
| sort of ref-counting mechanism. */ |
| |
| free (t); |
| } |
| |
| |
| /* Recursive function that deletes an entire tree and all the common |
| head structures it points to. */ |
| |
| static void |
| free_common_tree (gfc_symtree * common_tree) |
| { |
| if (common_tree == NULL) |
| return; |
| |
| free_common_tree (common_tree->left); |
| free_common_tree (common_tree->right); |
| |
| free (common_tree); |
| } |
| |
| |
| /* Recursive function that deletes an entire tree and all the common |
| head structures it points to. */ |
| |
| static void |
| free_omp_udr_tree (gfc_symtree * omp_udr_tree) |
| { |
| if (omp_udr_tree == NULL) |
| return; |
| |
| free_omp_udr_tree (omp_udr_tree->left); |
| free_omp_udr_tree (omp_udr_tree->right); |
| |
| gfc_free_omp_udr (omp_udr_tree->n.omp_udr); |
| free (omp_udr_tree); |
| } |
| |
| |
| /* Recursive function that deletes an entire tree and all the user |
| operator nodes that it contains. */ |
| |
| static void |
| free_uop_tree (gfc_symtree *uop_tree) |
| { |
| if (uop_tree == NULL) |
| return; |
| |
| free_uop_tree (uop_tree->left); |
| free_uop_tree (uop_tree->right); |
| |
| gfc_free_interface (uop_tree->n.uop->op); |
| free (uop_tree->n.uop); |
| free (uop_tree); |
| } |
| |
| |
| /* Recursive function that deletes an entire tree and all the symbols |
| that it contains. */ |
| |
| static void |
| free_sym_tree (gfc_symtree *sym_tree) |
| { |
| if (sym_tree == NULL) |
| return; |
| |
| free_sym_tree (sym_tree->left); |
| free_sym_tree (sym_tree->right); |
| |
| gfc_release_symbol (sym_tree->n.sym); |
| free (sym_tree); |
| } |
| |
| |
| /* Free the gfc_equiv_info's. */ |
| |
| static void |
| gfc_free_equiv_infos (gfc_equiv_info *s) |
| { |
| if (s == NULL) |
| return; |
| gfc_free_equiv_infos (s->next); |
| free (s); |
| } |
| |
| |
| /* Free the gfc_equiv_lists. */ |
| |
| static void |
| gfc_free_equiv_lists (gfc_equiv_list *l) |
| { |
| if (l == NULL) |
| return; |
| gfc_free_equiv_lists (l->next); |
| gfc_free_equiv_infos (l->equiv); |
| free (l); |
| } |
| |
| |
| /* Free a finalizer procedure list. */ |
| |
| void |
| gfc_free_finalizer (gfc_finalizer* el) |
| { |
| if (el) |
| { |
| gfc_release_symbol (el->proc_sym); |
| free (el); |
| } |
| } |
| |
| static void |
| gfc_free_finalizer_list (gfc_finalizer* list) |
| { |
| while (list) |
| { |
| gfc_finalizer* current = list; |
| list = list->next; |
| gfc_free_finalizer (current); |
| } |
| } |
| |
| |
| /* Create a new gfc_charlen structure and add it to a namespace. |
| If 'old_cl' is given, the newly created charlen will be a copy of it. */ |
| |
| gfc_charlen* |
| gfc_new_charlen (gfc_namespace *ns, gfc_charlen *old_cl) |
| { |
| gfc_charlen *cl; |
| |
| cl = gfc_get_charlen (); |
| |
| /* Copy old_cl. */ |
| if (old_cl) |
| { |
| cl->length = gfc_copy_expr (old_cl->length); |
| cl->length_from_typespec = old_cl->length_from_typespec; |
| cl->backend_decl = old_cl->backend_decl; |
| cl->passed_length = old_cl->passed_length; |
| cl->resolved = old_cl->resolved; |
| } |
| |
| /* Put into namespace. */ |
| cl->next = ns->cl_list; |
| ns->cl_list = cl; |
| |
| return cl; |
| } |
| |
| |
| /* Free the charlen list from cl to end (end is not freed). |
| Free the whole list if end is NULL. */ |
| |
| void |
| gfc_free_charlen (gfc_charlen *cl, gfc_charlen *end) |
| { |
| gfc_charlen *cl2; |
| |
| for (; cl != end; cl = cl2) |
| { |
| gcc_assert (cl); |
| |
| cl2 = cl->next; |
| gfc_free_expr (cl->length); |
| free (cl); |
| } |
| } |
| |
| |
| /* Free entry list structs. */ |
| |
| static void |
| free_entry_list (gfc_entry_list *el) |
| { |
| gfc_entry_list *next; |
| |
| if (el == NULL) |
| return; |
| |
| next = el->next; |
| free (el); |
| free_entry_list (next); |
| } |
| |
| |
| /* Free a namespace structure and everything below it. Interface |
| lists associated with intrinsic operators are not freed. These are |
| taken care of when a specific name is freed. */ |
| |
| void |
| gfc_free_namespace (gfc_namespace *ns) |
| { |
| gfc_namespace *p, *q; |
| int i; |
| gfc_was_finalized *f; |
| |
| if (ns == NULL) |
| return; |
| |
| ns->refs--; |
| if (ns->refs > 0) |
| return; |
| |
| gcc_assert (ns->refs == 0); |
| |
| gfc_free_statements (ns->code); |
| |
| free_sym_tree (ns->sym_root); |
| free_uop_tree (ns->uop_root); |
| free_common_tree (ns->common_root); |
| free_omp_udr_tree (ns->omp_udr_root); |
| free_tb_tree (ns->tb_sym_root); |
| free_tb_tree (ns->tb_uop_root); |
| gfc_free_finalizer_list (ns->finalizers); |
| gfc_free_omp_declare_simd_list (ns->omp_declare_simd); |
| gfc_free_charlen (ns->cl_list, NULL); |
| free_st_labels (ns->st_labels); |
| |
| free_entry_list (ns->entries); |
| gfc_free_equiv (ns->equiv); |
| gfc_free_equiv_lists (ns->equiv_lists); |
| gfc_free_use_stmts (ns->use_stmts); |
| |
| for (i = GFC_INTRINSIC_BEGIN; i != GFC_INTRINSIC_END; i++) |
| gfc_free_interface (ns->op[i]); |
| |
| gfc_free_data (ns->data); |
| |
| /* Free all the expr + component combinations that have been |
| finalized. */ |
| f = ns->was_finalized; |
| while (f) |
| { |
| gfc_was_finalized* current = f; |
| f = f->next; |
| free (current); |
| } |
| |
| p = ns->contained; |
| free (ns); |
| |
| /* Recursively free any contained namespaces. */ |
| while (p != NULL) |
| { |
| q = p; |
| p = p->sibling; |
| gfc_free_namespace (q); |
| } |
| } |
| |
| |
| void |
| gfc_symbol_init_2 (void) |
| { |
| |
| gfc_current_ns = gfc_get_namespace (NULL, 0); |
| } |
| |
| |
| void |
| gfc_symbol_done_2 (void) |
| { |
| if (gfc_current_ns != NULL) |
| { |
| /* free everything from the root. */ |
| while (gfc_current_ns->parent != NULL) |
| gfc_current_ns = gfc_current_ns->parent; |
| gfc_free_namespace (gfc_current_ns); |
| gfc_current_ns = NULL; |
| } |
| gfc_derived_types = NULL; |
| |
| enforce_single_undo_checkpoint (); |
| free_undo_change_set_data (*latest_undo_chgset); |
| } |
| |
| |
| /* Count how many nodes a symtree has. */ |
| |
| static unsigned |
| count_st_nodes (const gfc_symtree *st) |
| { |
| unsigned nodes; |
| if (!st) |
| return 0; |
| |
| nodes = count_st_nodes (st->left); |
| nodes++; |
| nodes += count_st_nodes (st->right); |
| |
| return nodes; |
| } |
| |
| |
| /* Convert symtree tree into symtree vector. */ |
| |
| static unsigned |
| fill_st_vector (gfc_symtree *st, gfc_symtree **st_vec, unsigned node_cntr) |
| { |
| if (!st) |
| return node_cntr; |
| |
| node_cntr = fill_st_vector (st->left, st_vec, node_cntr); |
| st_vec[node_cntr++] = st; |
| node_cntr = fill_st_vector (st->right, st_vec, node_cntr); |
| |
| return node_cntr; |
| } |
| |
| |
| /* Traverse namespace. As the functions might modify the symtree, we store the |
| symtree as a vector and operate on this vector. Note: We assume that |
| sym_func or st_func never deletes nodes from the symtree - only adding is |
| allowed. Additionally, newly added nodes are not traversed. */ |
| |
| static void |
| do_traverse_symtree (gfc_symtree *st, void (*st_func) (gfc_symtree *), |
| void (*sym_func) (gfc_symbol *)) |
| { |
| gfc_symtree **st_vec; |
| unsigned nodes, i, node_cntr; |
| |
| gcc_assert ((st_func && !sym_func) || (!st_func && sym_func)); |
| nodes = count_st_nodes (st); |
| st_vec = XALLOCAVEC (gfc_symtree *, nodes); |
| node_cntr = 0; |
| fill_st_vector (st, st_vec, node_cntr); |
| |
| if (sym_func) |
| { |
| /* Clear marks. */ |
| for (i = 0; i < nodes; i++) |
| st_vec[i]->n.sym->mark = 0; |
| for (i = 0; i < nodes; i++) |
| if (!st_vec[i]->n.sym->mark) |
| { |
| (*sym_func) (st_vec[i]->n.sym); |
| st_vec[i]->n.sym->mark = 1; |
| } |
| } |
| else |
| for (i = 0; i < nodes; i++) |
| (*st_func) (st_vec[i]); |
| } |
| |
| |
| /* Recursively traverse the symtree nodes. */ |
| |
| void |
| gfc_traverse_symtree (gfc_symtree *st, void (*st_func) (gfc_symtree *)) |
| { |
| do_traverse_symtree (st, st_func, NULL); |
| } |
| |
| |
| /* Call a given function for all symbols in the namespace. We take |
| care that each gfc_symbol node is called exactly once. */ |
| |
| void |
| gfc_traverse_ns (gfc_namespace *ns, void (*sym_func) (gfc_symbol *)) |
| { |
| do_traverse_symtree (ns->sym_root, NULL, sym_func); |
| } |
| |
| |
| /* Return TRUE when name is the name of an intrinsic type. */ |
| |
| bool |
| gfc_is_intrinsic_typename (const char *name) |
| { |
| if (strcmp (name, "integer") == 0 |
| || strcmp (name, "real") == 0 |
| || strcmp (name, "character") == 0 |
| || strcmp (name, "logical") == 0 |
| || strcmp (name, "complex") == 0 |
| || strcmp (name, "doubleprecision") == 0 |
| || strcmp (name, "doublecomplex") == 0) |
| return true; |
| else |
| return false; |
| } |
| |
| |
| /* Return TRUE if the symbol is an automatic variable. */ |
| |
| static bool |
| gfc_is_var_automatic (gfc_symbol *sym) |
| { |
| /* Pointer and allocatable variables are never automatic. */ |
| if (sym->attr.pointer || sym->attr.allocatable) |
| return false; |
| /* Check for arrays with non-constant size. */ |
| if (sym->attr.dimension && sym->as |
| && !gfc_is_compile_time_shape (sym->as)) |
| return true; |
| /* Check for non-constant length character variables. */ |
| if (sym->ts.type == BT_CHARACTER |
| && sym->ts.u.cl |
| && !gfc_is_constant_expr (sym->ts.u.cl->length)) |
| return true; |
| /* Variables with explicit AUTOMATIC attribute. */ |
| if (sym->attr.automatic) |
| return true; |
| |
| return false; |
| } |
| |
| /* Given a symbol, mark it as SAVEd if it is allowed. */ |
| |
| static void |
| save_symbol (gfc_symbol *sym) |
| { |
| |
| if (sym->attr.use_assoc) |
| return; |
| |
| if (sym->attr.in_common |
| || sym->attr.in_equivalence |
| || sym->attr.dummy |
| || sym->attr.result |
| || sym->attr.flavor != FL_VARIABLE) |
| return; |
| /* Automatic objects are not saved. */ |
| if (gfc_is_var_automatic (sym)) |
| return; |
| gfc_add_save (&sym->attr, SAVE_EXPLICIT, sym->name, &sym->declared_at); |
| } |
| |
| |
| /* Mark those symbols which can be SAVEd as such. */ |
| |
| void |
| gfc_save_all (gfc_namespace *ns) |
| { |
| gfc_traverse_ns (ns, save_symbol); |
| } |
| |
| |
| /* Make sure that no changes to symbols are pending. */ |
| |
| void |
| gfc_enforce_clean_symbol_state(void) |
| { |
| enforce_single_undo_checkpoint (); |
| gcc_assert (latest_undo_chgset->syms.is_empty ()); |
| } |
| |
| |
| /************** Global symbol handling ************/ |
| |
| |
| /* Search a tree for the global symbol. */ |
| |
| gfc_gsymbol * |
| gfc_find_gsymbol (gfc_gsymbol *symbol, const char *name) |
| { |
| int c; |
| |
| if (symbol == NULL) |
| return NULL; |
| |
| while (symbol) |
| { |
| c = strcmp (name, symbol->name); |
| if (!c) |
| return symbol; |
| |
| symbol = (c < 0) ? symbol->left : symbol->right; |
| } |
| |
| return NULL; |
| } |
| |
| |
| /* Case insensitive search a tree for the global symbol. */ |
| |
| gfc_gsymbol * |
| gfc_find_case_gsymbol (gfc_gsymbol *symbol, const char *name) |
| { |
| int c; |
| |
| if (symbol == NULL) |
| return NULL; |
| |
| while (symbol) |
| { |
| c = strcasecmp (name, symbol->name); |
| if (!c) |
| return symbol; |
| |
| symbol = (c < 0) ? symbol->left : symbol->right; |
| } |
| |
| return NULL; |
| } |
| |
| |
| /* Compare two global symbols. Used for managing the BB tree. */ |
| |
| static int |
| gsym_compare (void *_s1, void *_s2) |
| { |
| gfc_gsymbol *s1, *s2; |
| |
| s1 = (gfc_gsymbol *) _s1; |
| s2 = (gfc_gsymbol *) _s2; |
| return strcmp (s1->name, s2->name); |
| } |
| |
| |
| /* Get a global symbol, creating it if it doesn't exist. */ |
| |
| gfc_gsymbol * |
| gfc_get_gsymbol (const char *name, bool bind_c) |
| { |
| gfc_gsymbol *s; |
| |
| s = gfc_find_gsymbol (gfc_gsym_root, name); |
| if (s != NULL) |
| return s; |
| |
| s = XCNEW (gfc_gsymbol); |
| s->type = GSYM_UNKNOWN; |
| s->name = gfc_get_string ("%s", name); |
| s->bind_c = bind_c; |
| |
| gfc_insert_bbt (&gfc_gsym_root, s, gsym_compare); |
| |
| return s; |
| } |
| |
| void |
| gfc_traverse_gsymbol (gfc_gsymbol *gsym, |
| void (*do_something) (gfc_gsymbol *, void *), |
| void *data) |
| { |
| if (gsym->left) |
| gfc_traverse_gsymbol (gsym->left, do_something, data); |
| |
| (*do_something) (gsym, data); |
| |
| if (gsym->right) |
| gfc_traverse_gsymbol (gsym->right, do_something, data); |
| } |
| |
| static gfc_symbol * |
| get_iso_c_binding_dt (int sym_id) |
| { |
| gfc_symbol *dt_list = gfc_derived_types; |
| |
| /* Loop through the derived types in the name list, searching for |
| the desired symbol from iso_c_binding. Search the parent namespaces |
| if necessary and requested to (parent_flag). */ |
| if (dt_list) |
| { |
| while (dt_list->dt_next != gfc_derived_types) |
| { |
| if (dt_list->from_intmod != INTMOD_NONE |
| && dt_list->intmod_sym_id == sym_id) |
| return dt_list; |
| |
| dt_list = dt_list->dt_next; |
| } |
| } |
| |
| return NULL; |
| } |
| |
| |
| /* Verifies that the given derived type symbol, derived_sym, is interoperable |
| with C. This is necessary for any derived type that is BIND(C) and for |
| derived types that are parameters to functions that are BIND(C). All |
| fields of the derived type are required to be interoperable, and are tested |
| for such. If an error occurs, the errors are reported here, allowing for |
| multiple errors to be handled for a single derived type. */ |
| |
| bool |
| verify_bind_c_derived_type (gfc_symbol *derived_sym) |
| { |
| gfc_component *curr_comp = NULL; |
| bool is_c_interop = false; |
| bool retval = true; |
| |
| if (derived_sym == NULL) |
| gfc_internal_error ("verify_bind_c_derived_type(): Given symbol is " |
| "unexpectedly NULL"); |
| |
| /* If we've already looked at this derived symbol, do not look at it again |
| so we don't repeat warnings/errors. */ |
| if (derived_sym->ts.is_c_interop) |
| return true; |
| |
| /* The derived type must have the BIND attribute to be interoperable |
| J3/04-007, Section 15.2.3. */ |
| if (derived_sym->attr.is_bind_c != 1) |
| { |
| derived_sym->ts.is_c_interop = 0; |
| gfc_error_now ("Derived type %qs declared at %L must have the BIND " |
| "attribute to be C interoperable", derived_sym->name, |
| &(derived_sym->declared_at)); |
| retval = false; |
| } |
| |
| curr_comp = derived_sym->components; |
| |
| /* Fortran 2003 allows an empty derived type. C99 appears to disallow an |
| empty struct. Section 15.2 in Fortran 2003 states: "The following |
| subclauses define the conditions under which a Fortran entity is |
| interoperable. If a Fortran entity is interoperable, an equivalent |
| entity may be defined by means of C and the Fortran entity is said |
| to be interoperable with the C entity. There does not have to be such |
| an interoperating C entity." |
| */ |
| if (curr_comp == NULL) |
| { |
| gfc_warning (0, "Derived type %qs with BIND(C) attribute at %L is empty, " |
| "and may be inaccessible by the C companion processor", |
| derived_sym->name, &(derived_sym->declared_at)); |
| derived_sym->ts.is_c_interop = 1; |
| derived_sym->attr.is_bind_c = 1; |
| return true; |
| } |
| |
| |
| /* Initialize the derived type as being C interoperable. |
| If we find an error in the components, this will be set false. */ |
| derived_sym->ts.is_c_interop = 1; |
| |
| /* Loop through the list of components to verify that the kind of |
| each is a C interoperable type. */ |
| do |
| { |
| /* The components cannot be pointers (fortran sense). |
| J3/04-007, Section 15.2.3, C1505. */ |
| if (curr_comp->attr.pointer != 0) |
| { |
| gfc_error ("Component %qs at %L cannot have the " |
| "POINTER attribute because it is a member " |
| "of the BIND(C) derived type %qs at %L", |
| curr_comp->name, &(curr_comp->loc), |
| derived_sym->name, &(derived_sym->declared_at)); |
| retval = false; |
| } |
| |
| if (curr_comp->attr.proc_pointer != 0) |
| { |
| gfc_error ("Procedure pointer component %qs at %L cannot be a member" |
| " of the BIND(C) derived type %qs at %L", curr_comp->name, |
| &curr_comp->loc, derived_sym->name, |
| &derived_sym->declared_at); |
| retval = false; |
| } |
| |
| /* The components cannot be allocatable. |
| J3/04-007, Section 15.2.3, C1505. */ |
| if (curr_comp->attr.allocatable != 0) |
| { |
| gfc_error ("Component %qs at %L cannot have the " |
| "ALLOCATABLE attribute because it is a member " |
| "of the BIND(C) derived type %qs at %L", |
| curr_comp->name, &(curr_comp->loc), |
| derived_sym->name, &(derived_sym->declared_at)); |
| retval = false; |
| } |
| |
| /* BIND(C) derived types must have interoperable components. */ |
| if (curr_comp->ts.type == BT_DERIVED |
| && curr_comp->ts.u.derived->ts.is_iso_c != 1 |
| && curr_comp->ts.u.derived != derived_sym) |
| { |
| /* This should be allowed; the draft says a derived-type cannot |
| have type parameters if it is has the BIND attribute. Type |
| parameters seem to be for making parameterized derived types. |
| There's no need to verify the type if it is c_ptr/c_funptr. */ |
| retval = verify_bind_c_derived_type (curr_comp->ts.u.derived); |
| } |
| else |
| { |
| /* Grab the typespec for the given component and test the kind. */ |
| is_c_interop = gfc_verify_c_interop (&(curr_comp->ts)); |
| |
| if (!is_c_interop) |
| { |
| /* Report warning and continue since not fatal. The |
| draft does specify a constraint that requires all fields |
| to interoperate, but if the user says real(4), etc., it |
| may interoperate with *something* in C, but the compiler |
| most likely won't know exactly what. Further, it may not |
| interoperate with the same data type(s) in C if the user |
| recompiles with different flags (e.g., -m32 and -m64 on |
| x86_64 and using integer(4) to claim interop with a |
| C_LONG). */ |
| if (derived_sym->attr.is_bind_c == 1 && warn_c_binding_type) |
| /* If the derived type is bind(c), all fields must be |
| interop. */ |
| gfc_warning (OPT_Wc_binding_type, |
| "Component %qs in derived type %qs at %L " |
| "may not be C interoperable, even though " |
| "derived type %qs is BIND(C)", |
| curr_comp->name, derived_sym->name, |
| &(curr_comp->loc), derived_sym->name); |
| else if (warn_c_binding_type) |
| /* If derived type is param to bind(c) routine, or to one |
| of the iso_c_binding procs, it must be interoperable, so |
| all fields must interop too. */ |
| gfc_warning (OPT_Wc_binding_type, |
| "Component %qs in derived type %qs at %L " |
| "may not be C interoperable", |
| curr_comp->name, derived_sym->name, |
| &(curr_comp->loc)); |
| } |
| } |
| |
| curr_comp = curr_comp->next; |
| } while (curr_comp != NULL); |
| |
| if (derived_sym->attr.sequence != 0) |
| { |
| gfc_error ("Derived type %qs at %L cannot have the SEQUENCE " |
| "attribute because it is BIND(C)", derived_sym->name, |
| &(derived_sym->declared_at)); |
| retval = false; |
| } |
| |
| /* Mark the derived type as not being C interoperable if we found an |
| error. If there were only warnings, proceed with the assumption |
| it's interoperable. */ |
| if (!retval) |
| derived_sym->ts.is_c_interop = 0; |
| |
| return retval; |
| } |
| |
| |
| /* Generate symbols for the named constants c_null_ptr and c_null_funptr. */ |
| |
| static bool |
| gen_special_c_interop_ptr (gfc_symbol *tmp_sym, gfc_symtree *dt_symtree) |
| { |
| gfc_constructor *c; |
| |
| gcc_assert (tmp_sym && dt_symtree && dt_symtree->n.sym); |
| dt_symtree->n.sym->attr.referenced = 1; |
| |
| tmp_sym->attr.is_c_interop = 1; |
| tmp_sym->attr.is_bind_c = 1; |
| tmp_sym->ts.is_c_interop = 1; |
| tmp_sym->ts.is_iso_c = 1; |
| tmp_sym->ts.type = BT_DERIVED; |
| tmp_sym->ts.f90_type = BT_VOID; |
| tmp_sym->attr.flavor = FL_PARAMETER; |
| tmp_sym->ts.u.derived = dt_symtree->n.sym; |
| |
| /* Set the c_address field of c_null_ptr and c_null_funptr to |
| the value of NULL. */ |
| tmp_sym->value = gfc_get_expr (); |
| tmp_sym->value->expr_type = EXPR_STRUCTURE; |
| tmp_sym->value->ts.type = BT_DERIVED; |
| tmp_sym->value->ts.f90_type = BT_VOID; |
| tmp_sym->value->ts.u.derived = tmp_sym->ts.u.derived; |
| gfc_constructor_append_expr (&tmp_sym->value->value.constructor, NULL, NULL); |
| c = gfc_constructor_first (tmp_sym->value->value.constructor); |
| c->expr = gfc_get_int_expr (gfc_index_integer_kind, NULL, 0); |
| c->expr->ts.is_iso_c = 1; |
| |
| return true; |
| } |
| |
| |
| /* Add a formal argument, gfc_formal_arglist, to the |
| end of the given list of arguments. Set the reference to the |
| provided symbol, param_sym, in the argument. */ |
| |
| static void |
| add_formal_arg (gfc_formal_arglist **head, |
| gfc_formal_arglist **tail, |
| gfc_formal_arglist *formal_arg, |
| gfc_symbol *param_sym) |
| { |
| /* Put in list, either as first arg or at the tail (curr arg). */ |
| if (*head == NULL) |
| *head = *tail = formal_arg; |
| else |
| { |
| (*tail)->next = formal_arg; |
| (*tail) = formal_arg; |
| } |
| |
| (*tail)->sym = param_sym; |
| (*tail)->next = NULL; |
| |
| return; |
| } |
| |
| |
| /* Add a procedure interface to the given symbol (i.e., store a |
| reference to the list of formal arguments). */ |
| |
| static void |
| add_proc_interface (gfc_symbol *sym, ifsrc source, gfc_formal_arglist *formal) |
| { |
| |
| sym->formal = formal; |
| sym->attr.if_source = source; |
| } |
| |
| |
| /* Copy the formal args from an existing symbol, src, into a new |
| symbol, dest. New formal args are created, and the description of |
| each arg is set according to the existing ones. This function is |
| used when creating procedure declaration variables from a procedure |
| declaration statement (see match_proc_decl()) to create the formal |
| args based on the args of a given named interface. |
| |
| When an actual argument list is provided, skip the absent arguments |
| unless copy_type is true. |
| To be used together with gfc_se->ignore_optional. */ |
| |
| void |
| gfc_copy_formal_args_intr (gfc_symbol *dest, gfc_intrinsic_sym *src, |
| gfc_actual_arglist *actual, bool copy_type) |
| { |
| gfc_formal_arglist *head = NULL; |
| gfc_formal_arglist *tail = NULL; |
| gfc_formal_arglist *formal_arg = NULL; |
| gfc_intrinsic_arg *curr_arg = NULL; |
| gfc_formal_arglist *formal_prev = NULL; |
| gfc_actual_arglist *act_arg = actual; |
| /* Save current namespace so we can change it for formal args. */ |
| gfc_namespace *parent_ns = gfc_current_ns; |
| |
| /* Create a new namespace, which will be the formal ns (namespace |
| of the formal args). */ |
| gfc_current_ns = gfc_get_namespace (parent_ns, 0); |
| gfc_current_ns->proc_name = dest; |
| |
| for (curr_arg = src->formal; curr_arg; curr_arg = curr_arg->next) |
| { |
| /* Skip absent arguments. */ |
| if (actual) |
| { |
| gcc_assert (act_arg != NULL); |
| if (act_arg->expr == NULL) |
| { |
| act_arg = act_arg->next; |
| continue; |
| } |
| } |
| formal_arg = gfc_get_formal_arglist (); |
| gfc_get_symbol (curr_arg->name, gfc_current_ns, &(formal_arg->sym)); |
| |
| /* May need to copy more info for the symbol. */ |
| if (copy_type && act_arg->expr != NULL) |
| { |
| formal_arg->sym->ts = act_arg->expr->ts; |
| if (act_arg->expr->rank > 0) |
| { |
| formal_arg->sym->attr.dimension = 1; |
| formal_arg->sym->as = gfc_get_array_spec(); |
| formal_arg->sym->as->rank = -1; |
| formal_arg->sym->as->type = AS_ASSUMED_RANK; |
| } |
| if (act_arg->name && strcmp (act_arg->name, "%VAL") == 0) |
| formal_arg->sym->pass_as_value = 1; |
| } |
| else |
| formal_arg->sym->ts = curr_arg->ts; |
| |
| formal_arg->sym->attr.optional = curr_arg->optional; |
| formal_arg->sym->attr.value = curr_arg->value; |
| formal_arg->sym->attr.intent = curr_arg->intent; |
| formal_arg->sym->attr.flavor = FL_VARIABLE; |
| formal_arg->sym->attr.dummy = 1; |
| |
| if (formal_arg->sym->ts.type == BT_CHARACTER) |
| formal_arg->sym->ts.u.cl = gfc_new_charlen (gfc_current_ns, NULL); |
| |
| /* If this isn't the first arg, set up the next ptr. For the |
| last arg built, the formal_arg->next will never get set to |
| anything other than NULL. */ |
| if (formal_prev != NULL) |
| formal_prev->next = formal_arg; |
| else |
| formal_arg->next = NULL; |
| |
| formal_prev = formal_arg; |
| |
| /* Add arg to list of formal args. */ |
| add_formal_arg (&head, &tail, formal_arg, formal_arg->sym); |
| |
| /* Validate changes. */ |
| gfc_commit_symbol (formal_arg->sym); |
| if (actual) |
| act_arg = act_arg->next; |
| } |
| |
| /* Add the interface to the symbol. */ |
| add_proc_interface (dest, IFSRC_DECL, head); |
| |
| /* Store the formal namespace information. */ |
| if (dest->formal != NULL) |
| /* The current ns should be that for the dest proc. */ |
| dest->formal_ns = gfc_current_ns; |
| /* Restore the current namespace to what it was on entry. */ |
| gfc_current_ns = parent_ns; |
| } |
| |
| |
| static int |
| std_for_isocbinding_symbol (int id) |
| { |
| switch (id) |
| { |
| #define NAMED_INTCST(a,b,c,d) \ |
| case a:\ |
| return d; |
| #include "iso-c-binding.def" |
| #undef NAMED_INTCST |
| |
| #define NAMED_FUNCTION(a,b,c,d) \ |
| case a:\ |
| return d; |
| #define NAMED_SUBROUTINE(a,b,c,d) \ |
| case a:\ |
| return d; |
| #include "iso-c-binding.def" |
| #undef NAMED_FUNCTION |
| #undef NAMED_SUBROUTINE |
| |
| default: |
| return GFC_STD_F2003; |
| } |
| } |
| |
| /* Generate the given set of C interoperable kind objects, or all |
| interoperable kinds. This function will only be given kind objects |
| for valid iso_c_binding defined types because this is verified when |
| the 'use' statement is parsed. If the user gives an 'only' clause, |
| the specific kinds are looked up; if they don't exist, an error is |
| reported. If the user does not give an 'only' clause, all |
| iso_c_binding symbols are generated. If a list of specific kinds |
| is given, it must have a NULL in the first empty spot to mark the |
| end of the list. For C_null_(fun)ptr, dt_symtree has to be set and |
| point to the symtree for c_(fun)ptr. */ |
| |
| gfc_symtree * |
| generate_isocbinding_symbol (const char *mod_name, iso_c_binding_symbol s, |
| const char *local_name, gfc_symtree *dt_symtree, |
| bool hidden) |
| { |
| const char *const name = (local_name && local_name[0]) |
| ? local_name : c_interop_kinds_table[s].name; |
| gfc_symtree *tmp_symtree; |
| gfc_symbol *tmp_sym = NULL; |
| int index; |
| |
| if (gfc_notification_std (std_for_isocbinding_symbol (s)) == ERROR) |
| return NULL; |
| |
| tmp_symtree = gfc_find_symtree (gfc_current_ns->sym_root, name); |
| if (hidden |
| && (!tmp_symtree || !tmp_symtree->n.sym |
| || tmp_symtree->n.sym->from_intmod != INTMOD_ISO_C_BINDING |
| || tmp_symtree->n.sym->intmod_sym_id != s)) |
| tmp_symtree = NULL; |
| |
| /* Already exists in this scope so don't re-add it. */ |
| if (tmp_symtree != NULL && (tmp_sym = tmp_symtree->n.sym) != NULL |
| && (!tmp_sym->attr.generic |
| || (tmp_sym = gfc_find_dt_in_generic (tmp_sym)) != NULL) |
| && tmp_sym->from_intmod == INTMOD_ISO_C_BINDING) |
| { |
| if (tmp_sym->attr.flavor == FL_DERIVED |
| && !get_iso_c_binding_dt (tmp_sym->intmod_sym_id)) |
| { |
| if (gfc_derived_types) |
| { |
| tmp_sym->dt_next = gfc_derived_types->dt_next; |
| gfc_derived_types->dt_next = tmp_sym; |
| } |
| else |
| { |
| tmp_sym->dt_next = tmp_sym; |
| } |
| gfc_derived_types = tmp_sym; |
| } |
| |
| return tmp_symtree; |
| } |
| |
| /* Create the sym tree in the current ns. */ |
| if (hidden) |
| { |
| tmp_symtree = gfc_get_unique_symtree (gfc_current_ns); |
| tmp_sym = gfc_new_symbol (name, gfc_current_ns); |
| |
| /* Add to the list of tentative symbols. */ |
| latest_undo_chgset->syms.safe_push (tmp_sym); |
| tmp_sym->old_symbol = NULL; |
| tmp_sym->mark = 1; |
| tmp_sym->gfc_new = 1; |
| |
| tmp_symtree->n.sym = tmp_sym; |
| tmp_sym->refs++; |
| } |
| else |
| { |
| gfc_get_sym_tree (name, gfc_current_ns, &tmp_symtree, false); |
| gcc_assert (tmp_symtree); |
| tmp_sym = tmp_symtree->n.sym; |
| } |
| |
| /* Say what module this symbol belongs to. */ |
| tmp_sym->module = gfc_get_string ("%s", mod_name); |
| tmp_sym->from_intmod = INTMOD_ISO_C_BINDING; |
| tmp_sym->intmod_sym_id = s; |
| tmp_sym->attr.is_iso_c = 1; |
| tmp_sym->attr.use_assoc = 1; |
| |
| gcc_assert (dt_symtree == NULL || s == ISOCBINDING_NULL_FUNPTR |
| || s == ISOCBINDING_NULL_PTR); |
| |
| switch (s) |
| { |
| |
| #define NAMED_INTCST(a,b,c,d) case a : |
| #define NAMED_REALCST(a,b,c,d) case a : |
| #define NAMED_CMPXCST(a,b,c,d) case a : |
| #define NAMED_LOGCST(a,b,c) case a : |
| #define NAMED_CHARKNDCST(a,b,c) case a : |
| #include "iso-c-binding.def" |
| |
| tmp_sym->value = gfc_get_int_expr (gfc_default_integer_kind, NULL, |
| c_interop_kinds_table[s].value); |
| |
| /* Initialize an integer constant expression node. */ |
| tmp_sym->attr.flavor = FL_PARAMETER; |
| tmp_sym->ts.type = BT_INTEGER; |
| tmp_sym->ts.kind = gfc_default_integer_kind; |
| |
| /* Mark this type as a C interoperable one. */ |
| tmp_sym->ts.is_c_interop = 1; |
| tmp_sym->ts.is_iso_c = 1; |
| tmp_sym->value->ts.is_c_interop = 1; |
| tmp_sym->value->ts.is_iso_c = 1; |
| tmp_sym->attr.is_c_interop = 1; |
| |
| /* Tell what f90 type this c interop kind is valid. */ |
| tmp_sym->ts.f90_type = c_interop_kinds_table[s].f90_type; |
| |
| break; |
| |
| |
| #define NAMED_CHARCST(a,b,c) case a : |
| #include "iso-c-binding.def" |
| |
| /* Initialize an integer constant expression node for the |
| length of the character. */ |
| tmp_sym->value = gfc_get_character_expr (gfc_default_character_kind, |
| &gfc_current_locus, NULL, 1); |
| tmp_sym->value->ts.is_c_interop = 1; |
| tmp_sym->value->ts.is_iso_c = 1; |
| tmp_sym->value->value.character.length = 1; |
| tmp_sym->value->value.character.string[0] |
| = (gfc_char_t) c_interop_kinds_table[s].value; |
| tmp_sym->ts.u.cl = gfc_new_charlen (gfc_current_ns, NULL); |
| tmp_sym->ts.u.cl->length = gfc_get_int_expr (gfc_charlen_int_kind, |
| NULL, 1); |
| |
| /* May not need this in both attr and ts, but do need in |
| attr for writing module file. */ |
| tmp_sym->attr.is_c_interop = 1; |
| |
| tmp_sym->attr.flavor = FL_PARAMETER; |
| tmp_sym->ts.type = BT_CHARACTER; |
| |
| /* Need to set it to the C_CHAR kind. */ |
| tmp_sym->ts.kind = gfc_default_character_kind; |
| |
| /* Mark this type as a C interoperable one. */ |
| tmp_sym->ts.is_c_interop = 1; |
| tmp_sym->ts.is_iso_c = 1; |
| |
| /* Tell what f90 type this c interop kind is valid. */ |
| tmp_sym->ts.f90_type = BT_CHARACTER; |
| |
| break; |
| |
| case ISOCBINDING_PTR: |
| case ISOCBINDING_FUNPTR: |
| { |
| gfc_symbol *dt_sym; |
| gfc_component *tmp_comp = NULL; |
| |
| /* Generate real derived type. */ |
| if (hidden) |
| dt_sym = tmp_sym; |
| else |
| { |
| const char *hidden_name; |
| gfc_interface *intr, *head; |
| |
| hidden_name = gfc_dt_upper_string (tmp_sym->name); |
| tmp_symtree = gfc_find_symtree (gfc_current_ns->sym_root, |
| hidden_name); |
| gcc_assert (tmp_symtree == NULL); |
| gfc_get_sym_tree (hidden_name, gfc_current_ns, &tmp_symtree, false); |
| dt_sym = tmp_symtree->n.sym; |
| dt_sym->name = gfc_get_string (s == ISOCBINDING_PTR |
| ? "c_ptr" : "c_funptr"); |
| |
| /* Generate an artificial generic function. */ |
| head = tmp_sym->generic; |
| intr = gfc_get_interface (); |
| intr->sym = dt_sym; |
| intr->where = gfc_current_locus; |
| intr->next = head; |
| tmp_sym->generic = intr; |
| |
| if (!tmp_sym->attr.generic |
| && !gfc_add_generic (&tmp_sym->attr, tmp_sym->name, NULL)) |
| return NULL; |
| |
| if (!tmp_sym->attr.function |
| && !gfc_add_function (&tmp_sym->attr, tmp_sym->name, NULL)) |
| return NULL; |
| } |
| |
| /* Say what module this symbol belongs to. */ |
| dt_sym->module = gfc_get_string ("%s", mod_name); |
| dt_sym->from_intmod = INTMOD_ISO_C_BINDING; |
| dt_sym->intmod_sym_id = s; |
| dt_sym->attr.use_assoc = 1; |
| |
| /* Initialize an integer constant expression node. */ |
| dt_sym->attr.flavor = FL_DERIVED; |
| dt_sym->ts.is_c_interop = 1; |
| dt_sym->attr.is_c_interop = 1; |
| dt_sym->attr.private_comp = 1; |
| dt_sym->component_access = ACCESS_PRIVATE; |
| dt_sym->ts.is_iso_c = 1; |
| dt_sym->ts.type = BT_DERIVED; |
| dt_sym->ts.f90_type = BT_VOID; |
| |
| /* A derived type must have the bind attribute to be |
| interoperable (J3/04-007, Section 15.2.3), even though |
| the binding label is not used. */ |
| dt_sym->attr.is_bind_c = 1; |
| |
| dt_sym->attr.referenced = 1; |
| dt_sym->ts.u.derived = dt_sym; |
| |
| /* Add the symbol created for the derived type to the current ns. */ |
| if (gfc_derived_types) |
| { |
| dt_sym->dt_next = gfc_derived_types->dt_next; |
| gfc_derived_types->dt_next = dt_sym; |
| } |
| else |
| { |
| dt_sym->dt_next = dt_sym; |
| } |
| gfc_derived_types = dt_sym; |
| |
| gfc_add_component (dt_sym, "c_address", &tmp_comp); |
| if (tmp_comp == NULL) |
| gcc_unreachable (); |
| |
| tmp_comp->ts.type = BT_INTEGER; |
| |
| /* Set this because the module will need to read/write this field. */ |
| tmp_comp->ts.f90_type = BT_INTEGER; |
| |
| /* The kinds for c_ptr and c_funptr are the same. */ |
| index = get_c_kind ("c_ptr", c_interop_kinds_table); |
| tmp_comp->ts.kind = c_interop_kinds_table[index].value; |
| tmp_comp->attr.access = ACCESS_PRIVATE; |
| |
| /* Mark the component as C interoperable. */ |
| tmp_comp->ts.is_c_interop = 1; |
| } |
| |
| break; |
| |
| case ISOCBINDING_NULL_PTR: |
| case ISOCBINDING_NULL_FUNPTR: |
| gen_special_c_interop_ptr (tmp_sym, dt_symtree); |
| break; |
| |
| default: |
| gcc_unreachable (); |
| } |
| gfc_commit_symbol (tmp_sym); |
| return tmp_symtree; |
| } |
| |
| |
| /* Check that a symbol is already typed. If strict is not set, an untyped |
| symbol is acceptable for non-standard-conforming mode. */ |
| |
| bool |
| gfc_check_symbol_typed (gfc_symbol* sym, gfc_namespace* ns, |
| bool strict, locus where) |
| { |
| gcc_assert (sym); |
| |
| if (gfc_matching_prefix) |
| return true; |
| |
| /* Check for the type and try to give it an implicit one. */ |
| if (sym->ts.type == BT_UNKNOWN |
| && !gfc_set_default_type (sym, 0, ns)) |
| { |
| if (strict) |
| { |
| gfc_error ("Symbol %qs is used before it is typed at %L", |
| sym->name, &where); |
| return false; |
| } |
| |
| if (!gfc_notify_std (GFC_STD_GNU, "Symbol %qs is used before" |
| " it is typed at %L", sym->name, &where)) |
| return false; |
| } |
| |
| /* Everything is ok. */ |
| return true; |
| } |
| |
| |
| /* Construct a typebound-procedure structure. Those are stored in a tentative |
| list and marked `error' until symbols are committed. */ |
| |
| gfc_typebound_proc* |
| gfc_get_typebound_proc (gfc_typebound_proc *tb0) |
| { |
| gfc_typebound_proc *result; |
| |
| result = XCNEW (gfc_typebound_proc); |
| if (tb0) |
| *result = *tb0; |
| result->error = 1; |
| |
| latest_undo_chgset->tbps.safe_push (result); |
| |
| return result; |
| } |
| |
| |
| /* Get the super-type of a given derived type. */ |
| |
| gfc_symbol* |
| gfc_get_derived_super_type (gfc_symbol* derived) |
| { |
| gcc_assert (derived); |
| |
| if (derived->attr.generic) |
| derived = gfc_find_dt_in_generic (derived); |
| |
| if (!derived->attr.extension) |
| return NULL; |
| |
| gcc_assert (derived->components); |
| gcc_assert (derived->components->ts.type == BT_DERIVED); |
| gcc_assert (derived->components->ts.u.derived); |
| |
| if (derived->components->ts.u.derived->attr.generic) |
| return gfc_find_dt_in_generic (derived->components->ts.u.derived); |
| |
| return derived->components->ts.u.derived; |
| } |
| |
| |
| /* Get the ultimate super-type of a given derived type. */ |
| |
| gfc_symbol* |
| gfc_get_ultimate_derived_super_type (gfc_symbol* derived) |
| { |
| if (!derived->attr.extension) |
| return NULL; |
| |
| derived = gfc_get_derived_super_type (derived); |
| |
| if (derived->attr.extension) |
| return gfc_get_ultimate_derived_super_type (derived); |
| else |
| return derived; |
| } |
| |
| |
| /* Check if a derived type t2 is an extension of (or equal to) a type t1. */ |
| |
| bool |
| gfc_type_is_extension_of (gfc_symbol *t1, gfc_symbol *t2) |
| { |
| while (!gfc_compare_derived_types (t1, t2) && t2->attr.extension) |
| t2 = gfc_get_derived_super_type (t2); |
| return gfc_compare_derived_types (t1, t2); |
| } |
| |
| |
| /* Check if two typespecs are type compatible (F03:5.1.1.2): |
| If ts1 is nonpolymorphic, ts2 must be the same type. |
| If ts1 is polymorphic (CLASS), ts2 must be an extension of ts1. */ |
| |
| bool |
| gfc_type_compatible (gfc_typespec *ts1, gfc_typespec *ts2) |
| { |
| bool is_class1 = (ts1->type == BT_CLASS); |
| bool is_class2 = (ts2->type == BT_CLASS); |
| bool is_derived1 = (ts1->type == BT_DERIVED); |
| bool is_derived2 = (ts2->type == BT_DERIVED); |
| bool is_union1 = (ts1->type == BT_UNION); |
| bool is_union2 = (ts2->type == BT_UNION); |
| |
| /* A boz-literal-constant has no type. */ |
| if (ts1->type == BT_BOZ || ts2->type == BT_BOZ) |
| return false; |
| |
| if (is_class1 |
| && ts1->u.derived->components |
| && ((ts1->u.derived->attr.is_class |
| && ts1->u.derived->components->ts.u.derived->attr |
| .unlimited_polymorphic) |
| || ts1->u.derived->attr.unlimited_polymorphic)) |
| return 1; |
| |
| if (!is_derived1 && !is_derived2 && !is_class1 && !is_class2 |
| && !is_union1 && !is_union2) |
| return (ts1->type == ts2->type); |
| |
| if ((is_derived1 && is_derived2) || (is_union1 && is_union2)) |
| return gfc_compare_derived_types (ts1->u.derived, ts2->u.derived); |
| |
| if (is_derived1 && is_class2) |
| return gfc_compare_derived_types (ts1->u.derived, |
| ts2->u.derived->attr.is_class ? |
| ts2->u.derived->components->ts.u.derived |
| : ts2->u.derived); |
| if (is_class1 && is_derived2) |
| return gfc_type_is_extension_of (ts1->u.derived->attr.is_class ? |
| ts1->u.derived->components->ts.u.derived |
| : ts1->u.derived, |
| ts2->u.derived); |
| else if (is_class1 && is_class2) |
| return gfc_type_is_extension_of (ts1->u.derived->attr.is_class ? |
| ts1->u.derived->components->ts.u.derived |
| : ts1->u.derived, |
| ts2->u.derived->attr.is_class ? |
| ts2->u.derived->components->ts.u.derived |
| : ts2->u.derived); |
| else |
| return 0; |
| } |
| |
| |
| /* Find the parent-namespace of the current function. If we're inside |
| BLOCK constructs, it may not be the current one. */ |
| |
| gfc_namespace* |
| gfc_find_proc_namespace (gfc_namespace* ns) |
| { |
| while (ns->construct_entities) |
| { |
| ns = ns->parent; |
| gcc_assert (ns); |
| } |
| |
| return ns; |
| } |
| |
| |
| /* Check if an associate-variable should be translated as an `implicit' pointer |
| internally (if it is associated to a variable and not an array with |
| descriptor). */ |
| |
| bool |
| gfc_is_associate_pointer (gfc_symbol* sym) |
| { |
| if (!sym->assoc) |
| return false; |
| |
| if (sym->ts.type == BT_CLASS) |
| return true; |
| |
| if (sym->ts.type == BT_CHARACTER |
| && sym->ts.deferred |
| && sym->assoc->target |
| && sym->assoc->target->expr_type == EXPR_FUNCTION) |
| return true; |
| |
| if (!sym->assoc->variable) |
| return false; |
| |
| if (sym->attr.dimension && sym->as->type != AS_EXPLICIT) |
| return false; |
| |
| return true; |
| } |
| |
| |
| gfc_symbol * |
| gfc_find_dt_in_generic (gfc_symbol *sym) |
| { |
| gfc_interface *intr = NULL; |
| |
| if (!sym || gfc_fl_struct (sym->attr.flavor)) |
| return sym; |
| |
| if (sym->attr.generic) |
| for (intr = sym->generic; intr; intr = intr->next) |
| if (gfc_fl_struct (intr->sym->attr.flavor)) |
| break; |
| return intr ? intr->sym : NULL; |
| } |
| |
| |
| /* Get the dummy arguments from a procedure symbol. If it has been declared |
| via a PROCEDURE statement with a named interface, ts.interface will be set |
| and the arguments need to be taken from there. */ |
| |
| gfc_formal_arglist * |
| gfc_sym_get_dummy_args (gfc_symbol *sym) |
| { |
| gfc_formal_arglist *dummies; |
| |
| if (sym == NULL) |
| return NULL; |
| |
| dummies = sym->formal; |
| if (dummies == NULL && sym->ts.interface != NULL) |
| dummies = sym->ts.interface->formal; |
| |
| return dummies; |
| } |