blob: b5a4b3c970f21ebcc001b617db26df8866592505 [file] [log] [blame]
/* Handle #pragma, system V.4 style. Supports #pragma weak and #pragma pack.
Copyright (C) 1992-2022 Free Software Foundation, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "target.h"
#include "function.h" /* For cfun. */
#include "c-common.h"
#include "memmodel.h"
#include "tm_p.h" /* For REGISTER_TARGET_PRAGMAS. */
#include "stringpool.h"
#include "cgraph.h"
#include "diagnostic.h"
#include "attribs.h"
#include "varasm.h"
#include "c-pragma.h"
#include "opts.h"
#include "plugin.h"
#include "opt-suggestions.h"
#define GCC_BAD(gmsgid) \
do { warning (OPT_Wpragmas, gmsgid); return; } while (0)
#define GCC_BAD2(gmsgid, arg) \
do { warning (OPT_Wpragmas, gmsgid, arg); return; } while (0)
#define GCC_BAD_AT(loc, gmsgid) \
do { warning_at (loc, OPT_Wpragmas, gmsgid); return; } while (0)
#define GCC_BAD2_AT(loc, gmsgid, arg) \
do { warning_at (loc, OPT_Wpragmas, gmsgid, arg); return; } while (0)
struct GTY(()) align_stack {
int alignment;
tree id;
struct align_stack * prev;
};
static GTY(()) struct align_stack * alignment_stack;
static void handle_pragma_pack (cpp_reader *);
/* If we have a "global" #pragma pack(<n>) in effect when the first
#pragma pack(push,<n>) is encountered, this stores the value of
maximum_field_alignment in effect. When the final pop_alignment()
happens, we restore the value to this, not to a value of 0 for
maximum_field_alignment. Value is in bits. */
static int default_alignment;
#define SET_GLOBAL_ALIGNMENT(ALIGN) (maximum_field_alignment = *(alignment_stack == NULL \
? &default_alignment \
: &alignment_stack->alignment) = (ALIGN))
static void push_alignment (int, tree);
static void pop_alignment (tree);
/* Push an alignment value onto the stack. */
static void
push_alignment (int alignment, tree id)
{
align_stack * entry = ggc_alloc<align_stack> ();
entry->alignment = alignment;
entry->id = id;
entry->prev = alignment_stack;
/* The current value of maximum_field_alignment is not necessarily
0 since there may be a #pragma pack(<n>) in effect; remember it
so that we can restore it after the final #pragma pop(). */
if (alignment_stack == NULL)
default_alignment = maximum_field_alignment;
alignment_stack = entry;
maximum_field_alignment = alignment;
}
/* Undo a push of an alignment onto the stack. */
static void
pop_alignment (tree id)
{
align_stack * entry;
if (alignment_stack == NULL)
GCC_BAD ("%<#pragma pack (pop)%> encountered without matching "
"%<#pragma pack (push)%>");
/* If we got an identifier, strip away everything above the target
entry so that the next step will restore the state just below it. */
if (id)
{
for (entry = alignment_stack; entry; entry = entry->prev)
if (entry->id == id)
{
alignment_stack = entry;
break;
}
if (entry == NULL)
warning (OPT_Wpragmas,
"%<#pragma pack(pop, %E)%> encountered without matching "
"%<#pragma pack(push, %E)%>"
, id, id);
}
entry = alignment_stack->prev;
maximum_field_alignment = entry ? entry->alignment : default_alignment;
alignment_stack = entry;
}
/* #pragma pack ()
#pragma pack (N)
#pragma pack (push)
#pragma pack (push, N)
#pragma pack (push, ID)
#pragma pack (push, ID, N)
#pragma pack (pop)
#pragma pack (pop, ID) */
static void
handle_pragma_pack (cpp_reader *)
{
location_t loc;
tree x, id = 0;
int align = -1;
enum cpp_ttype token;
enum { set, push, pop } action;
if (pragma_lex (&x) != CPP_OPEN_PAREN)
GCC_BAD ("missing %<(%> after %<#pragma pack%> - ignored");
token = pragma_lex (&x, &loc);
if (token == CPP_CLOSE_PAREN)
{
action = set;
align = initial_max_fld_align;
}
else if (token == CPP_NUMBER)
{
if (TREE_CODE (x) != INTEGER_CST)
GCC_BAD_AT (loc, "invalid constant in %<#pragma pack%> - ignored");
align = TREE_INT_CST_LOW (x);
action = set;
if (pragma_lex (&x) != CPP_CLOSE_PAREN)
GCC_BAD ("malformed %<#pragma pack%> - ignored");
}
else if (token == CPP_NAME)
{
#define GCC_BAD_ACTION do { if (action != pop) \
GCC_BAD ("malformed %<#pragma pack(push[, id][, <n>])%> - ignored"); \
else \
GCC_BAD ("malformed %<#pragma pack(pop[, id])%> - ignored"); \
} while (0)
const char *op = IDENTIFIER_POINTER (x);
if (!strcmp (op, "push"))
action = push;
else if (!strcmp (op, "pop"))
action = pop;
else
GCC_BAD2_AT (loc, "unknown action %qE for %<#pragma pack%> - ignored",
x);
while ((token = pragma_lex (&x)) == CPP_COMMA)
{
token = pragma_lex (&x, &loc);
if (token == CPP_NAME && id == 0)
{
id = x;
}
else if (token == CPP_NUMBER && action == push && align == -1)
{
if (TREE_CODE (x) != INTEGER_CST)
GCC_BAD_AT (loc,
"invalid constant in %<#pragma pack%> - ignored");
align = TREE_INT_CST_LOW (x);
if (align == -1)
action = set;
}
else
GCC_BAD_ACTION;
}
if (token != CPP_CLOSE_PAREN)
GCC_BAD_ACTION;
#undef GCC_BAD_ACTION
}
else
GCC_BAD ("malformed %<#pragma pack%> - ignored");
if (pragma_lex (&x, &loc) != CPP_EOF)
warning_at (loc, OPT_Wpragmas, "junk at end of %<#pragma pack%>");
if (flag_pack_struct)
GCC_BAD ("%<#pragma pack%> has no effect with %<-fpack-struct%> - ignored");
if (action != pop)
switch (align)
{
case 0:
case 1:
case 2:
case 4:
case 8:
case 16:
align *= BITS_PER_UNIT;
break;
case -1:
if (action == push)
{
align = maximum_field_alignment;
break;
}
/* FALLTHRU */
default:
GCC_BAD2 ("alignment must be a small power of two, not %d", align);
}
switch (action)
{
case set: SET_GLOBAL_ALIGNMENT (align); break;
case push: push_alignment (align, id); break;
case pop: pop_alignment (id); break;
}
}
struct GTY(()) pending_weak
{
tree name;
tree value;
};
static GTY(()) vec<pending_weak, va_gc> *pending_weaks;
static void apply_pragma_weak (tree, tree);
static void handle_pragma_weak (cpp_reader *);
static void
apply_pragma_weak (tree decl, tree value)
{
if (value)
{
value = build_string (IDENTIFIER_LENGTH (value),
IDENTIFIER_POINTER (value));
decl_attributes (&decl, build_tree_list (get_identifier ("alias"),
build_tree_list (NULL, value)),
0);
}
if (SUPPORTS_WEAK && DECL_EXTERNAL (decl) && TREE_USED (decl)
&& !DECL_WEAK (decl) /* Don't complain about a redundant #pragma. */
&& DECL_ASSEMBLER_NAME_SET_P (decl)
&& TREE_SYMBOL_REFERENCED (DECL_ASSEMBLER_NAME (decl)))
warning (OPT_Wpragmas, "applying %<#pragma weak %+D%> after first use "
"results in unspecified behavior", decl);
declare_weak (decl);
}
void
maybe_apply_pragma_weak (tree decl)
{
tree id;
int i;
pending_weak *pe;
/* Avoid asking for DECL_ASSEMBLER_NAME when it's not needed. */
/* No weak symbols pending, take the short-cut. */
if (vec_safe_is_empty (pending_weaks))
return;
/* If it's not visible outside this file, it doesn't matter whether
it's weak. */
if (!DECL_EXTERNAL (decl) && !TREE_PUBLIC (decl))
return;
/* If it's not a function or a variable, it can't be weak.
FIXME: what kinds of things are visible outside this file but
aren't functions or variables? Should this be an assert instead? */
if (!VAR_OR_FUNCTION_DECL_P (decl))
return;
if (DECL_ASSEMBLER_NAME_SET_P (decl))
id = DECL_ASSEMBLER_NAME (decl);
else
{
id = DECL_ASSEMBLER_NAME (decl);
SET_DECL_ASSEMBLER_NAME (decl, NULL_TREE);
}
FOR_EACH_VEC_ELT (*pending_weaks, i, pe)
if (id == pe->name)
{
apply_pragma_weak (decl, pe->value);
pending_weaks->unordered_remove (i);
break;
}
}
/* Process all "#pragma weak A = B" directives where we have not seen
a decl for A. */
void
maybe_apply_pending_pragma_weaks (void)
{
tree alias_id, id, decl;
int i;
pending_weak *pe;
symtab_node *target;
if (vec_safe_is_empty (pending_weaks))
return;
FOR_EACH_VEC_ELT (*pending_weaks, i, pe)
{
alias_id = pe->name;
id = pe->value;
if (id == NULL)
continue;
target = symtab_node::get_for_asmname (id);
decl = build_decl (UNKNOWN_LOCATION,
target ? TREE_CODE (target->decl) : FUNCTION_DECL,
alias_id, default_function_type);
DECL_ARTIFICIAL (decl) = 1;
TREE_PUBLIC (decl) = 1;
DECL_WEAK (decl) = 1;
if (VAR_P (decl))
TREE_STATIC (decl) = 1;
if (!target)
{
error ("%q+D aliased to undefined symbol %qE",
decl, id);
continue;
}
assemble_alias (decl, id);
}
}
/* #pragma weak name [= value] */
static void
handle_pragma_weak (cpp_reader *)
{
tree name, value, x, decl;
enum cpp_ttype t;
value = 0;
if (pragma_lex (&name) != CPP_NAME)
GCC_BAD ("malformed %<#pragma weak%>, ignored");
t = pragma_lex (&x);
if (t == CPP_EQ)
{
if (pragma_lex (&value) != CPP_NAME)
GCC_BAD ("malformed %<#pragma weak%>, ignored");
t = pragma_lex (&x);
}
if (t != CPP_EOF)
warning (OPT_Wpragmas, "junk at end of %<#pragma weak%>");
decl = identifier_global_value (name);
if (decl && DECL_P (decl))
{
if (!VAR_OR_FUNCTION_DECL_P (decl))
GCC_BAD2 ("%<#pragma weak%> declaration of %q+D not allowed,"
" ignored", decl);
apply_pragma_weak (decl, value);
if (value)
{
DECL_EXTERNAL (decl) = 0;
if (VAR_P (decl))
TREE_STATIC (decl) = 1;
assemble_alias (decl, value);
}
}
else
{
pending_weak pe = {name, value};
vec_safe_push (pending_weaks, pe);
}
}
static enum scalar_storage_order_kind global_sso;
void
maybe_apply_pragma_scalar_storage_order (tree type)
{
if (global_sso == SSO_NATIVE)
return;
gcc_assert (RECORD_OR_UNION_TYPE_P (type));
if (lookup_attribute ("scalar_storage_order", TYPE_ATTRIBUTES (type)))
return;
if (global_sso == SSO_BIG_ENDIAN)
TYPE_REVERSE_STORAGE_ORDER (type) = !BYTES_BIG_ENDIAN;
else if (global_sso == SSO_LITTLE_ENDIAN)
TYPE_REVERSE_STORAGE_ORDER (type) = BYTES_BIG_ENDIAN;
else
gcc_unreachable ();
}
static void
handle_pragma_scalar_storage_order (cpp_reader *)
{
const char *kind_string;
enum cpp_ttype token;
tree x;
if (BYTES_BIG_ENDIAN != WORDS_BIG_ENDIAN)
{
error ("%<scalar_storage_order%> is not supported because endianness "
"is not uniform");
return;
}
if (c_dialect_cxx ())
{
if (warn_unknown_pragmas > in_system_header_at (input_location))
warning (OPT_Wunknown_pragmas,
"%<#pragma scalar_storage_order%> is not supported for C++");
return;
}
token = pragma_lex (&x);
if (token != CPP_NAME)
GCC_BAD ("missing %<big-endian%>, %<little-endian%>, or %<default%> after "
"%<#pragma scalar_storage_order%>");
kind_string = IDENTIFIER_POINTER (x);
if (strcmp (kind_string, "default") == 0)
global_sso = default_sso;
else if (strcmp (kind_string, "big") == 0)
global_sso = SSO_BIG_ENDIAN;
else if (strcmp (kind_string, "little") == 0)
global_sso = SSO_LITTLE_ENDIAN;
else
GCC_BAD ("expected %<big-endian%>, %<little-endian%>, or %<default%> after "
"%<#pragma scalar_storage_order%>");
}
/* GCC supports two #pragma directives for renaming the external
symbol associated with a declaration (DECL_ASSEMBLER_NAME), for
compatibility with the Solaris and VMS system headers. GCC also
has its own notation for this, __asm__("name") annotations.
Corner cases of these features and their interaction:
1) Both pragmas silently apply only to declarations with external
linkage (that is, TREE_PUBLIC || DECL_EXTERNAL). Asm labels
do not have this restriction.
2) In C++, both #pragmas silently apply only to extern "C" declarations.
Asm labels do not have this restriction.
3) If any of the three ways of changing DECL_ASSEMBLER_NAME is
applied to a decl whose DECL_ASSEMBLER_NAME is already set, and the
new name is different, a warning issues and the name does not change.
4) The "source name" for #pragma redefine_extname is the DECL_NAME,
*not* the DECL_ASSEMBLER_NAME.
5) If #pragma extern_prefix is in effect and a declaration occurs
with an __asm__ name, the #pragma extern_prefix is silently
ignored for that declaration.
6) If #pragma extern_prefix and #pragma redefine_extname apply to
the same declaration, whichever triggered first wins, and a warning
is issued. (We would like to have #pragma redefine_extname always
win, but it can appear either before or after the declaration, and
if it appears afterward, we have no way of knowing whether a modified
DECL_ASSEMBLER_NAME is due to #pragma extern_prefix.) */
struct GTY(()) pending_redefinition {
tree oldname;
tree newname;
};
static GTY(()) vec<pending_redefinition, va_gc> *pending_redefine_extname;
static void handle_pragma_redefine_extname (cpp_reader *);
/* #pragma redefine_extname oldname newname */
static void
handle_pragma_redefine_extname (cpp_reader *)
{
tree oldname, newname, decls, x;
enum cpp_ttype t;
bool found;
if (pragma_lex (&oldname) != CPP_NAME)
GCC_BAD ("malformed %<#pragma redefine_extname%>, ignored");
if (pragma_lex (&newname) != CPP_NAME)
GCC_BAD ("malformed %<#pragma redefine_extname%>, ignored");
t = pragma_lex (&x);
if (t != CPP_EOF)
warning (OPT_Wpragmas, "junk at end of %<#pragma redefine_extname%>");
found = false;
for (decls = c_linkage_bindings (oldname);
decls; )
{
tree decl;
if (TREE_CODE (decls) == TREE_LIST)
{
decl = TREE_VALUE (decls);
decls = TREE_CHAIN (decls);
}
else
{
decl = decls;
decls = NULL_TREE;
}
if ((TREE_PUBLIC (decl) || DECL_EXTERNAL (decl))
&& VAR_OR_FUNCTION_DECL_P (decl))
{
found = true;
if (DECL_ASSEMBLER_NAME_SET_P (decl))
{
const char *name = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl));
name = targetm.strip_name_encoding (name);
if (!id_equal (newname, name))
warning (OPT_Wpragmas, "%<#pragma redefine_extname%> "
"ignored due to conflict with previous rename");
}
else
symtab->change_decl_assembler_name (decl, newname);
}
}
if (!found)
/* We have to add this to the rename list even if there's already
a global value that doesn't meet the above criteria, because in
C++ "struct foo {...};" puts "foo" in the current namespace but
does *not* conflict with a subsequent declaration of a function
or variable foo. See g++.dg/other/pragma-re-2.C. */
add_to_renaming_pragma_list (oldname, newname);
}
/* This is called from here and from ia64-c.cc. */
void
add_to_renaming_pragma_list (tree oldname, tree newname)
{
unsigned ix;
pending_redefinition *p;
FOR_EACH_VEC_SAFE_ELT (pending_redefine_extname, ix, p)
if (oldname == p->oldname)
{
if (p->newname != newname)
warning (OPT_Wpragmas, "%<#pragma redefine_extname%> ignored due to "
"conflict with previous %<#pragma redefine_extname%>");
return;
}
pending_redefinition e = {oldname, newname};
vec_safe_push (pending_redefine_extname, e);
}
/* The current prefix set by #pragma extern_prefix. */
GTY(()) tree pragma_extern_prefix;
/* Hook from the front ends to apply the results of one of the preceding
pragmas that rename variables. */
tree
maybe_apply_renaming_pragma (tree decl, tree asmname)
{
unsigned ix;
pending_redefinition *p;
/* The renaming pragmas are only applied to declarations with
external linkage. */
if (!VAR_OR_FUNCTION_DECL_P (decl)
|| (!TREE_PUBLIC (decl) && !DECL_EXTERNAL (decl))
|| !has_c_linkage (decl))
return asmname;
/* If the DECL_ASSEMBLER_NAME is already set, it does not change,
but we may warn about a rename that conflicts. */
if (DECL_ASSEMBLER_NAME_SET_P (decl))
{
const char *oldname = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl));
oldname = targetm.strip_name_encoding (oldname);
if (asmname && strcmp (TREE_STRING_POINTER (asmname), oldname))
warning (OPT_Wpragmas, "%<asm%> declaration ignored due to "
"conflict with previous rename");
/* Take any pending redefine_extname off the list. */
FOR_EACH_VEC_SAFE_ELT (pending_redefine_extname, ix, p)
if (DECL_NAME (decl) == p->oldname)
{
/* Only warn if there is a conflict. */
if (!id_equal (p->newname, oldname))
warning (OPT_Wpragmas, "%<#pragma redefine_extname%> ignored "
"due to conflict with previous rename");
pending_redefine_extname->unordered_remove (ix);
break;
}
return NULL_TREE;
}
/* Find out if we have a pending #pragma redefine_extname. */
FOR_EACH_VEC_SAFE_ELT (pending_redefine_extname, ix, p)
if (DECL_NAME (decl) == p->oldname)
{
tree newname = p->newname;
pending_redefine_extname->unordered_remove (ix);
/* If we already have an asmname, #pragma redefine_extname is
ignored (with a warning if it conflicts). */
if (asmname)
{
if (strcmp (TREE_STRING_POINTER (asmname),
IDENTIFIER_POINTER (newname)) != 0)
warning (OPT_Wpragmas, "%<#pragma redefine_extname%> ignored "
"due to conflict with %<asm%> declaration");
return asmname;
}
/* Otherwise we use what we've got; #pragma extern_prefix is
silently ignored. */
return build_string (IDENTIFIER_LENGTH (newname),
IDENTIFIER_POINTER (newname));
}
/* If we've got an asmname, #pragma extern_prefix is silently ignored. */
if (asmname)
return asmname;
/* If #pragma extern_prefix is in effect, apply it. */
if (pragma_extern_prefix)
{
const char *prefix = TREE_STRING_POINTER (pragma_extern_prefix);
size_t plen = TREE_STRING_LENGTH (pragma_extern_prefix) - 1;
const char *id = IDENTIFIER_POINTER (DECL_NAME (decl));
size_t ilen = IDENTIFIER_LENGTH (DECL_NAME (decl));
char *newname = (char *) alloca (plen + ilen + 1);
memcpy (newname, prefix, plen);
memcpy (newname + plen, id, ilen + 1);
return build_string (plen + ilen, newname);
}
/* Nada. */
return NULL_TREE;
}
static void handle_pragma_visibility (cpp_reader *);
static vec<int> visstack;
/* Push the visibility indicated by STR onto the top of the #pragma
visibility stack. KIND is 0 for #pragma GCC visibility, 1 for
C++ namespace with visibility attribute and 2 for C++ builtin
ABI namespace. push_visibility/pop_visibility calls must have
matching KIND, it is not allowed to push visibility using one
KIND and pop using a different one. */
void
push_visibility (const char *str, int kind)
{
visstack.safe_push (((int) default_visibility) | (kind << 8));
if (!strcmp (str, "default"))
default_visibility = VISIBILITY_DEFAULT;
else if (!strcmp (str, "internal"))
default_visibility = VISIBILITY_INTERNAL;
else if (!strcmp (str, "hidden"))
default_visibility = VISIBILITY_HIDDEN;
else if (!strcmp (str, "protected"))
default_visibility = VISIBILITY_PROTECTED;
else
GCC_BAD ("%<#pragma GCC visibility push()%> must specify %<default%>, "
"%<internal%>, %<hidden%> or %<protected%>");
visibility_options.inpragma = 1;
}
/* Pop a level of the #pragma visibility stack. Return true if
successful. */
bool
pop_visibility (int kind)
{
if (!visstack.length ())
return false;
if ((visstack.last () >> 8) != kind)
return false;
default_visibility
= (enum symbol_visibility) (visstack.pop () & 0xff);
visibility_options.inpragma
= visstack.length () != 0;
return true;
}
/* Sets the default visibility for symbols to something other than that
specified on the command line. */
static void
handle_pragma_visibility (cpp_reader *)
{
/* Form is #pragma GCC visibility push(hidden)|pop */
tree x;
enum cpp_ttype token;
enum { bad, push, pop } action = bad;
token = pragma_lex (&x);
if (token == CPP_NAME)
{
const char *op = IDENTIFIER_POINTER (x);
if (!strcmp (op, "push"))
action = push;
else if (!strcmp (op, "pop"))
action = pop;
}
if (bad == action)
GCC_BAD ("%<#pragma GCC visibility%> must be followed by %<push%> "
"or %<pop%>");
else
{
if (pop == action)
{
if (! pop_visibility (0))
GCC_BAD ("no matching push for %<#pragma GCC visibility pop%>");
}
else
{
if (pragma_lex (&x) != CPP_OPEN_PAREN)
GCC_BAD ("missing %<(%> after %<#pragma GCC visibility push%> - ignored");
token = pragma_lex (&x);
if (token != CPP_NAME)
GCC_BAD ("malformed %<#pragma GCC visibility push%>");
else
push_visibility (IDENTIFIER_POINTER (x), 0);
if (pragma_lex (&x) != CPP_CLOSE_PAREN)
GCC_BAD ("missing %<(%> after %<#pragma GCC visibility push%> - ignored");
}
}
if (pragma_lex (&x) != CPP_EOF)
warning (OPT_Wpragmas, "junk at end of %<#pragma GCC visibility%>");
}
/* Helper routines for parsing #pragma GCC diagnostic. */
class pragma_diagnostic_data
{
pragma_diagnostic_data (const pragma_diagnostic_data &) = delete;
pragma_diagnostic_data& operator= (const pragma_diagnostic_data &) = delete;
public:
bool valid;
location_t loc_kind, loc_option;
enum pd_kind_t
{
PK_INVALID,
PK_PUSH,
PK_POP,
PK_IGNORED_ATTRIBUTES,
PK_DIAGNOSTIC,
} pd_kind;
diagnostic_t diagnostic_kind;
const char *kind_str;
const char *option_str;
bool own_option_str;
pragma_diagnostic_data () { clear (); }
void clear ()
{
valid = false;
loc_kind = loc_option = UNKNOWN_LOCATION;
pd_kind = PK_INVALID;
diagnostic_kind = DK_UNSPECIFIED;
kind_str = option_str = nullptr;
own_option_str = false;
}
~pragma_diagnostic_data ()
{
if (own_option_str && option_str)
XDELETEVEC (const_cast<char *> (option_str));
}
void set_kind (const char *kind_string)
{
kind_str = kind_string;
pd_kind = PK_INVALID;
diagnostic_kind = DK_UNSPECIFIED;
if (strcmp (kind_str, "push") == 0)
pd_kind = PK_PUSH;
else if (strcmp (kind_str, "pop") == 0)
pd_kind = PK_POP;
else if (strcmp (kind_str, "ignored_attributes") == 0)
pd_kind = PK_IGNORED_ATTRIBUTES;
else if (strcmp (kind_str, "error") == 0)
{
pd_kind = PK_DIAGNOSTIC;
diagnostic_kind = DK_ERROR;
}
else if (strcmp (kind_str, "warning") == 0)
{
pd_kind = PK_DIAGNOSTIC;
diagnostic_kind = DK_WARNING;
}
else if (strcmp (kind_str, "ignored") == 0)
{
pd_kind = PK_DIAGNOSTIC;
diagnostic_kind = DK_IGNORED;
}
}
bool needs_option () const
{
return pd_kind == PK_IGNORED_ATTRIBUTES
|| pd_kind == PK_DIAGNOSTIC;
}
};
/* When compiling normally, use pragma_lex () to obtain the needed tokens.
This will call into either the C or C++ frontends as appropriate. */
static void
pragma_diagnostic_lex_normal (pragma_diagnostic_data *result)
{
result->clear ();
tree x;
auto ttype = pragma_lex (&x, &result->loc_kind);
if (ttype != CPP_NAME)
return;
result->set_kind (IDENTIFIER_POINTER (x));
if (result->pd_kind == pragma_diagnostic_data::PK_INVALID)
return;
if (result->needs_option ())
{
ttype = pragma_lex (&x, &result->loc_option);
if (ttype != CPP_STRING)
return;
result->option_str = TREE_STRING_POINTER (x);
}
result->valid = true;
}
/* When preprocessing only, pragma_lex () is not available, so obtain the
tokens directly from libcpp. We also need to inform the token streamer
about all tokens we lex ourselves here, so it outputs them too; this is
done by calling c_pp_stream_token () for each.
??? If we need to support more pragmas in the future, maybe initialize
this_parser with the pragma tokens and call pragma_lex () instead? */
static void
pragma_diagnostic_lex_pp (pragma_diagnostic_data *result)
{
result->clear ();
auto tok = cpp_get_token_with_location (parse_in, &result->loc_kind);
c_pp_stream_token (parse_in, tok, result->loc_kind);
if (!(tok->type == CPP_NAME || tok->type == CPP_KEYWORD))
return;
const unsigned char *const kind_u = cpp_token_as_text (parse_in, tok);
result->set_kind ((const char *)kind_u);
if (result->pd_kind == pragma_diagnostic_data::PK_INVALID)
return;
if (result->needs_option ())
{
tok = cpp_get_token_with_location (parse_in, &result->loc_option);
c_pp_stream_token (parse_in, tok, result->loc_option);
if (tok->type != CPP_STRING)
return;
cpp_string str;
if (!cpp_interpret_string_notranslate (parse_in, &tok->val.str, 1, &str,
CPP_STRING)
|| !str.len)
return;
result->option_str = (const char *)str.text;
result->own_option_str = true;
}
result->valid = true;
}
/* Handle #pragma GCC diagnostic. Early mode is used by frontends (such as C++)
that do not process the deferred pragma while they are consuming tokens; they
can use early mode to make sure diagnostics affecting the preprocessor itself
are correctly modified by the #pragma. */
template<bool early, bool is_pp> static void
handle_pragma_diagnostic_impl ()
{
static const bool want_diagnostics = (is_pp || !early);
pragma_diagnostic_data data;
if (is_pp)
pragma_diagnostic_lex_pp (&data);
else
pragma_diagnostic_lex_normal (&data);
if (!data.kind_str)
{
if (want_diagnostics)
warning_at (data.loc_kind, OPT_Wpragmas,
"missing %<error%>, %<warning%>, %<ignored%>, %<push%>, "
"%<pop%>, or %<ignored_attributes%> after "
"%<#pragma GCC diagnostic%>");
return;
}
switch (data.pd_kind)
{
case pragma_diagnostic_data::PK_PUSH:
diagnostic_push_diagnostics (global_dc, input_location);
return;
case pragma_diagnostic_data::PK_POP:
diagnostic_pop_diagnostics (global_dc, input_location);
return;
case pragma_diagnostic_data::PK_IGNORED_ATTRIBUTES:
{
if (early)
return;
if (!data.option_str)
{
warning_at (data.loc_option, OPT_Wpragmas,
"missing attribute name after %<#pragma GCC diagnostic "
"ignored_attributes%>");
return;
}
char *args = xstrdup (data.option_str);
const size_t l = strlen (args);
if (l == 0)
{
warning_at (data.loc_option, OPT_Wpragmas,
"missing argument to %<#pragma GCC "
"diagnostic ignored_attributes%>");
free (args);
return;
}
else if (args[l - 1] == ',')
{
warning_at (data.loc_option, OPT_Wpragmas,
"trailing %<,%> in arguments for "
"%<#pragma GCC diagnostic ignored_attributes%>");
free (args);
return;
}
auto_vec<char *> v;
for (char *p = strtok (args, ","); p; p = strtok (NULL, ","))
v.safe_push (p);
handle_ignored_attributes_option (&v);
free (args);
return;
}
case pragma_diagnostic_data::PK_DIAGNOSTIC:
if (!data.option_str)
{
if (want_diagnostics)
warning_at (data.loc_option, OPT_Wpragmas,
"missing option after %<#pragma GCC diagnostic%> kind");
return;
}
break;
default:
if (want_diagnostics)
warning_at (data.loc_kind, OPT_Wpragmas,
"expected %<error%>, %<warning%>, %<ignored%>, %<push%>, "
"%<pop%>, %<ignored_attributes%> after "
"%<#pragma GCC diagnostic%>");
return;
}
gcc_assert (data.pd_kind == pragma_diagnostic_data::PK_DIAGNOSTIC);
gcc_assert (data.valid);
unsigned int lang_mask = c_common_option_lang_mask () | CL_COMMON;
/* option_string + 1 to skip the initial '-' */
unsigned int option_index = find_opt (data.option_str + 1, lang_mask);
if (early && !c_option_is_from_cpp_diagnostics (option_index))
return;
if (option_index == OPT_SPECIAL_unknown)
{
if (want_diagnostics)
{
auto_diagnostic_group d;
if (warning_at (data.loc_option, OPT_Wpragmas,
"unknown option after %<#pragma GCC diagnostic%> kind"))
{
option_proposer op;
const char *hint = op.suggest_option (data.option_str + 1);
if (hint)
inform (data.loc_option, "did you mean %<-%s%>?", hint);
}
}
return;
}
else if (!(cl_options[option_index].flags & CL_WARNING))
{
if (want_diagnostics)
warning_at (data.loc_option, OPT_Wpragmas,
"%qs is not an option that controls warnings",
data.option_str);
return;
}
else if (!(cl_options[option_index].flags & lang_mask))
{
if (want_diagnostics)
{
char *ok_langs = write_langs (cl_options[option_index].flags);
char *bad_lang = write_langs (c_common_option_lang_mask ());
warning_at (data.loc_option, OPT_Wpragmas,
"option %qs is valid for %s but not for %s",
data.option_str, ok_langs, bad_lang);
free (ok_langs);
free (bad_lang);
}
return;
}
const char *arg = NULL;
if (cl_options[option_index].flags & CL_JOINED)
arg = data.option_str + 1 + cl_options[option_index].opt_len;
struct cl_option_handlers handlers;
set_default_handlers (&handlers, NULL);
/* FIXME: input_location isn't the best location here, but it is
what we used to do here before and changing it breaks e.g.
PR69543 and PR69558. */
control_warning_option (option_index, (int) data.diagnostic_kind,
arg, data.diagnostic_kind != DK_IGNORED,
input_location, lang_mask, &handlers,
&global_options, &global_options_set,
global_dc);
}
static void
handle_pragma_diagnostic (cpp_reader *)
{
handle_pragma_diagnostic_impl<false, false> ();
}
static void
handle_pragma_diagnostic_early (cpp_reader *)
{
handle_pragma_diagnostic_impl<true, false> ();
}
static void
handle_pragma_diagnostic_early_pp (cpp_reader *)
{
handle_pragma_diagnostic_impl<true, true> ();
}
/* Parse #pragma GCC target (xxx) to set target specific options. */
static void
handle_pragma_target(cpp_reader *)
{
location_t loc;
enum cpp_ttype token;
tree x;
bool close_paren_needed_p = false;
if (cfun)
{
error ("%<#pragma GCC option%> is not allowed inside functions");
return;
}
token = pragma_lex (&x, &loc);
if (token == CPP_OPEN_PAREN)
{
close_paren_needed_p = true;
token = pragma_lex (&x, &loc);
}
if (token != CPP_STRING)
GCC_BAD_AT (loc, "%<#pragma GCC option%> is not a string");
/* Strings are user options. */
else
{
tree args = NULL_TREE;
do
{
/* Build up the strings now as a tree linked list. Skip empty
strings. */
if (TREE_STRING_LENGTH (x) > 0)
args = tree_cons (NULL_TREE, x, args);
token = pragma_lex (&x);
while (token == CPP_COMMA)
token = pragma_lex (&x);
}
while (token == CPP_STRING);
if (close_paren_needed_p)
{
if (token == CPP_CLOSE_PAREN)
token = pragma_lex (&x);
else
GCC_BAD ("%<#pragma GCC target (string [,string]...)%> does "
"not have a final %<)%>");
}
if (token != CPP_EOF)
{
error ("%<#pragma GCC target%> string is badly formed");
return;
}
/* put arguments in the order the user typed them. */
args = nreverse (args);
if (targetm.target_option.pragma_parse (args, NULL_TREE))
current_target_pragma = chainon (current_target_pragma, args);
/* A target pragma can also influence optimization options. */
tree current_optimize
= build_optimization_node (&global_options, &global_options_set);
if (current_optimize != optimization_current_node)
optimization_current_node = current_optimize;
}
}
/* Handle #pragma GCC optimize to set optimization options. */
static void
handle_pragma_optimize (cpp_reader *)
{
enum cpp_ttype token;
tree x;
bool close_paren_needed_p = false;
tree optimization_previous_node = optimization_current_node;
if (cfun)
{
error ("%<#pragma GCC optimize%> is not allowed inside functions");
return;
}
token = pragma_lex (&x);
if (token == CPP_OPEN_PAREN)
{
close_paren_needed_p = true;
token = pragma_lex (&x);
}
if (token != CPP_STRING && token != CPP_NUMBER)
GCC_BAD ("%<#pragma GCC optimize%> is not a string or number");
/* Strings/numbers are user options. */
else
{
tree args = NULL_TREE;
do
{
/* Build up the numbers/strings now as a list. */
if (token != CPP_STRING || TREE_STRING_LENGTH (x) > 0)
args = tree_cons (NULL_TREE, x, args);
token = pragma_lex (&x);
while (token == CPP_COMMA)
token = pragma_lex (&x);
}
while (token == CPP_STRING || token == CPP_NUMBER);
if (close_paren_needed_p)
{
if (token == CPP_CLOSE_PAREN)
token = pragma_lex (&x);
else
GCC_BAD ("%<#pragma GCC optimize (string [,string]...)%> does "
"not have a final %<)%>");
}
if (token != CPP_EOF)
{
error ("%<#pragma GCC optimize%> string is badly formed");
return;
}
/* put arguments in the order the user typed them. */
args = nreverse (args);
parse_optimize_options (args, false);
current_optimize_pragma = chainon (current_optimize_pragma, args);
optimization_current_node
= build_optimization_node (&global_options, &global_options_set);
c_cpp_builtins_optimize_pragma (parse_in,
optimization_previous_node,
optimization_current_node);
}
}
/* Stack of the #pragma GCC options created with #pragma GCC push_option. Save
both the binary representation of the options and the TREE_LIST of
strings that will be added to the function's attribute list. */
struct GTY(()) opt_stack {
struct opt_stack *prev;
tree target_binary;
tree target_strings;
tree optimize_binary;
tree optimize_strings;
gcc_options * GTY ((skip)) saved_global_options;
};
static GTY(()) struct opt_stack * options_stack;
/* Handle #pragma GCC push_options to save the current target and optimization
options. */
static void
handle_pragma_push_options (cpp_reader *)
{
enum cpp_ttype token;
tree x = 0;
token = pragma_lex (&x);
if (token != CPP_EOF)
{
warning (OPT_Wpragmas, "junk at end of %<#pragma push_options%>");
return;
}
opt_stack *p = ggc_alloc<opt_stack> ();
p->prev = options_stack;
options_stack = p;
/* Save optimization and target flags in binary format. */
if (flag_checking)
{
p->saved_global_options = XNEW (gcc_options);
*p->saved_global_options = global_options;
}
p->optimize_binary = build_optimization_node (&global_options,
&global_options_set);
p->target_binary = build_target_option_node (&global_options,
&global_options_set);
/* Save optimization and target flags in string list format. */
p->optimize_strings = copy_list (current_optimize_pragma);
p->target_strings = copy_list (current_target_pragma);
}
/* Handle #pragma GCC pop_options to restore the current target and
optimization options from a previous push_options. */
static void
handle_pragma_pop_options (cpp_reader *)
{
enum cpp_ttype token;
tree x = 0;
opt_stack *p;
token = pragma_lex (&x);
if (token != CPP_EOF)
{
warning (OPT_Wpragmas, "junk at end of %<#pragma pop_options%>");
return;
}
if (! options_stack)
{
warning (OPT_Wpragmas,
"%<#pragma GCC pop_options%> without a corresponding "
"%<#pragma GCC push_options%>");
return;
}
p = options_stack;
options_stack = p->prev;
if (p->target_binary != target_option_current_node)
{
(void) targetm.target_option.pragma_parse (NULL_TREE, p->target_binary);
target_option_current_node = p->target_binary;
}
/* Always restore optimization options as optimization_current_node is
* overwritten by invoke_set_current_function_hook. */
cl_optimization_restore (&global_options, &global_options_set,
TREE_OPTIMIZATION (p->optimize_binary));
cl_target_option_restore (&global_options, &global_options_set,
TREE_TARGET_OPTION (p->target_binary));
if (p->optimize_binary != optimization_current_node)
{
c_cpp_builtins_optimize_pragma (parse_in, optimization_current_node,
p->optimize_binary);
optimization_current_node = p->optimize_binary;
}
if (flag_checking && !seen_error ())
{
cl_optimization_compare (p->saved_global_options, &global_options);
free (p->saved_global_options);
}
current_target_pragma = p->target_strings;
current_optimize_pragma = p->optimize_strings;
}
/* Handle #pragma GCC reset_options to restore the current target and
optimization options to the original options used on the command line. */
static void
handle_pragma_reset_options (cpp_reader *)
{
enum cpp_ttype token;
tree x = 0;
tree new_optimize = optimization_default_node;
tree new_target = target_option_default_node;
token = pragma_lex (&x);
if (token != CPP_EOF)
{
warning (OPT_Wpragmas, "junk at end of %<#pragma reset_options%>");
return;
}
if (new_target != target_option_current_node)
{
(void) targetm.target_option.pragma_parse (NULL_TREE, new_target);
target_option_current_node = new_target;
}
if (new_optimize != optimization_current_node)
{
tree old_optimize = optimization_current_node;
cl_optimization_restore (&global_options, &global_options_set,
TREE_OPTIMIZATION (new_optimize));
c_cpp_builtins_optimize_pragma (parse_in, old_optimize, new_optimize);
optimization_current_node = new_optimize;
}
current_target_pragma = NULL_TREE;
current_optimize_pragma = NULL_TREE;
}
/* Print a plain user-specified message. */
static void
handle_pragma_message (cpp_reader *)
{
location_t loc;
enum cpp_ttype token;
tree x, message = 0;
token = pragma_lex (&x);
if (token == CPP_OPEN_PAREN)
{
token = pragma_lex (&x);
if (token == CPP_STRING)
message = x;
else
GCC_BAD ("expected a string after %<#pragma message%>");
if (pragma_lex (&x) != CPP_CLOSE_PAREN)
GCC_BAD ("malformed %<#pragma message%>, ignored");
}
else if (token == CPP_STRING)
message = x;
else
GCC_BAD ("expected a string after %<#pragma message%>");
gcc_assert (message);
if (pragma_lex (&x, &loc) != CPP_EOF)
warning_at (loc, OPT_Wpragmas, "junk at end of %<#pragma message%>");
if (TREE_STRING_LENGTH (message) > 1)
inform (input_location, "%<#pragma message: %s%>",
TREE_STRING_POINTER (message));
}
/* Mark whether the current location is valid for a STDC pragma. */
static bool valid_location_for_stdc_pragma;
void
mark_valid_location_for_stdc_pragma (bool flag)
{
valid_location_for_stdc_pragma = flag;
}
/* Return true if the current location is valid for a STDC pragma. */
bool
valid_location_for_stdc_pragma_p (void)
{
return valid_location_for_stdc_pragma;
}
enum pragma_switch_t { PRAGMA_ON, PRAGMA_OFF, PRAGMA_DEFAULT, PRAGMA_BAD };
/* A STDC pragma must appear outside of external declarations or
preceding all explicit declarations and statements inside a compound
statement; its behavior is undefined if used in any other context.
It takes a switch of ON, OFF, or DEFAULT. */
static enum pragma_switch_t
handle_stdc_pragma (const char *pname)
{
const char *arg;
tree t;
enum pragma_switch_t ret;
if (!valid_location_for_stdc_pragma_p ())
{
warning (OPT_Wpragmas, "invalid location for %<pragma %s%>, ignored",
pname);
return PRAGMA_BAD;
}
if (pragma_lex (&t) != CPP_NAME)
{
warning (OPT_Wpragmas, "malformed %<#pragma %s%>, ignored", pname);
return PRAGMA_BAD;
}
arg = IDENTIFIER_POINTER (t);
if (!strcmp (arg, "ON"))
ret = PRAGMA_ON;
else if (!strcmp (arg, "OFF"))
ret = PRAGMA_OFF;
else if (!strcmp (arg, "DEFAULT"))
ret = PRAGMA_DEFAULT;
else
{
warning (OPT_Wpragmas, "malformed %<#pragma %s%>, ignored", pname);
return PRAGMA_BAD;
}
if (pragma_lex (&t) != CPP_EOF)
{
warning (OPT_Wpragmas, "junk at end of %<#pragma %s%>", pname);
return PRAGMA_BAD;
}
return ret;
}
/* #pragma STDC FLOAT_CONST_DECIMAL64 ON
#pragma STDC FLOAT_CONST_DECIMAL64 OFF
#pragma STDC FLOAT_CONST_DECIMAL64 DEFAULT */
static void
handle_pragma_float_const_decimal64 (cpp_reader *)
{
if (c_dialect_cxx ())
{
if (warn_unknown_pragmas > in_system_header_at (input_location))
warning (OPT_Wunknown_pragmas,
"%<#pragma STDC FLOAT_CONST_DECIMAL64%> is not supported"
" for C++");
return;
}
if (!targetm.decimal_float_supported_p ())
{
if (warn_unknown_pragmas > in_system_header_at (input_location))
warning (OPT_Wunknown_pragmas,
"%<#pragma STDC FLOAT_CONST_DECIMAL64%> is not supported"
" on this target");
return;
}
pedwarn (input_location, OPT_Wpedantic,
"ISO C does not support %<#pragma STDC FLOAT_CONST_DECIMAL64%>");
switch (handle_stdc_pragma ("STDC FLOAT_CONST_DECIMAL64"))
{
case PRAGMA_ON:
set_float_const_decimal64 ();
break;
case PRAGMA_OFF:
case PRAGMA_DEFAULT:
clear_float_const_decimal64 ();
break;
case PRAGMA_BAD:
break;
}
}
/* A vector of registered pragma callbacks, which is never freed. */
static vec<internal_pragma_handler> registered_pragmas;
struct pragma_pp_data
{
const char *space;
const char *name;
pragma_handler_1arg early_handler;
};
static vec<pragma_pp_data> registered_pp_pragmas;
struct omp_pragma_def { const char *name; unsigned int id; };
static const struct omp_pragma_def oacc_pragmas[] = {
{ "atomic", PRAGMA_OACC_ATOMIC },
{ "cache", PRAGMA_OACC_CACHE },
{ "data", PRAGMA_OACC_DATA },
{ "declare", PRAGMA_OACC_DECLARE },
{ "enter", PRAGMA_OACC_ENTER_DATA },
{ "exit", PRAGMA_OACC_EXIT_DATA },
{ "host_data", PRAGMA_OACC_HOST_DATA },
{ "kernels", PRAGMA_OACC_KERNELS },
{ "loop", PRAGMA_OACC_LOOP },
{ "parallel", PRAGMA_OACC_PARALLEL },
{ "routine", PRAGMA_OACC_ROUTINE },
{ "serial", PRAGMA_OACC_SERIAL },
{ "update", PRAGMA_OACC_UPDATE },
{ "wait", PRAGMA_OACC_WAIT }
};
static const struct omp_pragma_def omp_pragmas[] = {
{ "allocate", PRAGMA_OMP_ALLOCATE },
{ "assumes", PRAGMA_OMP_ASSUMES },
{ "atomic", PRAGMA_OMP_ATOMIC },
{ "barrier", PRAGMA_OMP_BARRIER },
{ "begin", PRAGMA_OMP_BEGIN },
{ "cancel", PRAGMA_OMP_CANCEL },
{ "cancellation", PRAGMA_OMP_CANCELLATION_POINT },
{ "critical", PRAGMA_OMP_CRITICAL },
{ "depobj", PRAGMA_OMP_DEPOBJ },
{ "error", PRAGMA_OMP_ERROR },
{ "end", PRAGMA_OMP_END },
{ "flush", PRAGMA_OMP_FLUSH },
{ "nothing", PRAGMA_OMP_NOTHING },
{ "requires", PRAGMA_OMP_REQUIRES },
{ "scope", PRAGMA_OMP_SCOPE },
{ "section", PRAGMA_OMP_SECTION },
{ "sections", PRAGMA_OMP_SECTIONS },
{ "single", PRAGMA_OMP_SINGLE },
{ "task", PRAGMA_OMP_TASK },
{ "taskgroup", PRAGMA_OMP_TASKGROUP },
{ "taskwait", PRAGMA_OMP_TASKWAIT },
{ "taskyield", PRAGMA_OMP_TASKYIELD },
{ "threadprivate", PRAGMA_OMP_THREADPRIVATE }
};
static const struct omp_pragma_def omp_pragmas_simd[] = {
{ "assume", PRAGMA_OMP_ASSUME },
{ "declare", PRAGMA_OMP_DECLARE },
{ "distribute", PRAGMA_OMP_DISTRIBUTE },
{ "for", PRAGMA_OMP_FOR },
{ "loop", PRAGMA_OMP_LOOP },
{ "masked", PRAGMA_OMP_MASKED },
{ "master", PRAGMA_OMP_MASTER },
{ "ordered", PRAGMA_OMP_ORDERED },
{ "parallel", PRAGMA_OMP_PARALLEL },
{ "scan", PRAGMA_OMP_SCAN },
{ "simd", PRAGMA_OMP_SIMD },
{ "target", PRAGMA_OMP_TARGET },
{ "taskloop", PRAGMA_OMP_TASKLOOP },
{ "teams", PRAGMA_OMP_TEAMS },
};
void
c_pp_lookup_pragma (unsigned int id, const char **space, const char **name)
{
const int n_oacc_pragmas = ARRAY_SIZE (oacc_pragmas);
const int n_omp_pragmas = ARRAY_SIZE (omp_pragmas);
const int n_omp_pragmas_simd = sizeof (omp_pragmas_simd)
/ sizeof (*omp_pragmas);
int i;
for (i = 0; i < n_oacc_pragmas; ++i)
if (oacc_pragmas[i].id == id)
{
*space = "acc";
*name = oacc_pragmas[i].name;
return;
}
for (i = 0; i < n_omp_pragmas; ++i)
if (omp_pragmas[i].id == id)
{
*space = "omp";
*name = omp_pragmas[i].name;
return;
}
for (i = 0; i < n_omp_pragmas_simd; ++i)
if (omp_pragmas_simd[i].id == id)
{
*space = "omp";
*name = omp_pragmas_simd[i].name;
return;
}
if (id >= PRAGMA_FIRST_EXTERNAL
&& (id < PRAGMA_FIRST_EXTERNAL + registered_pp_pragmas.length ()))
{
*space = registered_pp_pragmas[id - PRAGMA_FIRST_EXTERNAL].space;
*name = registered_pp_pragmas[id - PRAGMA_FIRST_EXTERNAL].name;
return;
}
gcc_unreachable ();
}
/* Front-end wrappers for pragma registration to avoid dragging
cpplib.h in almost everywhere. */
static void
c_register_pragma_1 (const char *space, const char *name,
internal_pragma_handler ihandler, bool allow_expansion)
{
unsigned id;
if (flag_preprocess_only)
{
if (!(allow_expansion || ihandler.early_handler.handler_1arg))
return;
pragma_pp_data pp_data;
pp_data.space = space;
pp_data.name = name;
pp_data.early_handler = ihandler.early_handler.handler_1arg;
registered_pp_pragmas.safe_push (pp_data);
id = registered_pp_pragmas.length ();
id += PRAGMA_FIRST_EXTERNAL - 1;
}
else
{
registered_pragmas.safe_push (ihandler);
id = registered_pragmas.length ();
id += PRAGMA_FIRST_EXTERNAL - 1;
/* The C front end allocates 8 bits in c_token. The C++ front end
keeps the pragma kind in the form of INTEGER_CST, so no small
limit applies. At present this is sufficient. */
gcc_assert (id < 256);
}
cpp_register_deferred_pragma (parse_in, space, name, id,
allow_expansion, false);
}
/* Register a C pragma handler, using a space and a name. It disallows pragma
expansion (if you want it, use c_register_pragma_with_expansion instead). */
void
c_register_pragma (const char *space, const char *name,
pragma_handler_1arg handler)
{
c_register_pragma_with_early_handler (space, name, handler, nullptr);
}
void c_register_pragma_with_early_handler (const char *space, const char *name,
pragma_handler_1arg handler,
pragma_handler_1arg early_handler)
{
internal_pragma_handler ihandler;
ihandler.handler.handler_1arg = handler;
ihandler.early_handler.handler_1arg = early_handler;
ihandler.extra_data = false;
ihandler.data = NULL;
c_register_pragma_1 (space, name, ihandler, false);
}
/* Register a C pragma handler, using a space and a name, it also carries an
extra data field which can be used by the handler. It disallows pragma
expansion (if you want it, use c_register_pragma_with_expansion_and_data
instead). */
void
c_register_pragma_with_data (const char *space, const char *name,
pragma_handler_2arg handler, void * data)
{
internal_pragma_handler ihandler;
ihandler.handler.handler_2arg = handler;
ihandler.early_handler.handler_2arg = nullptr;
ihandler.extra_data = true;
ihandler.data = data;
c_register_pragma_1 (space, name, ihandler, false);
}
/* Register a C pragma handler, using a space and a name. It allows pragma
expansion as in the following example:
#define NUMBER 10
#pragma count (NUMBER)
Name expansion is still disallowed. */
void
c_register_pragma_with_expansion (const char *space, const char *name,
pragma_handler_1arg handler)
{
internal_pragma_handler ihandler;
ihandler.handler.handler_1arg = handler;
ihandler.early_handler.handler_1arg = nullptr;
ihandler.extra_data = false;
ihandler.data = NULL;
c_register_pragma_1 (space, name, ihandler, true);
}
/* Register a C pragma handler, using a space and a name, it also carries an
extra data field which can be used by the handler. It allows pragma
expansion as in the following example:
#define NUMBER 10
#pragma count (NUMBER)
Name expansion is still disallowed. */
void
c_register_pragma_with_expansion_and_data (const char *space, const char *name,
pragma_handler_2arg handler,
void *data)
{
internal_pragma_handler ihandler;
ihandler.handler.handler_2arg = handler;
ihandler.early_handler.handler_2arg = nullptr;
ihandler.extra_data = true;
ihandler.data = data;
c_register_pragma_1 (space, name, ihandler, true);
}
void
c_invoke_pragma_handler (unsigned int id)
{
internal_pragma_handler *ihandler;
pragma_handler_1arg handler_1arg;
pragma_handler_2arg handler_2arg;
id -= PRAGMA_FIRST_EXTERNAL;
ihandler = &registered_pragmas[id];
if (ihandler->extra_data)
{
handler_2arg = ihandler->handler.handler_2arg;
handler_2arg (parse_in, ihandler->data);
}
else
{
handler_1arg = ihandler->handler.handler_1arg;
handler_1arg (parse_in);
}
}
/* In contrast to the normal handler, the early handler is optional. */
void
c_invoke_early_pragma_handler (unsigned int id)
{
internal_pragma_handler *ihandler;
pragma_handler_1arg handler_1arg;
pragma_handler_2arg handler_2arg;
id -= PRAGMA_FIRST_EXTERNAL;
ihandler = &registered_pragmas[id];
if (ihandler->extra_data)
{
handler_2arg = ihandler->early_handler.handler_2arg;
if (handler_2arg)
handler_2arg (parse_in, ihandler->data);
}
else
{
handler_1arg = ihandler->early_handler.handler_1arg;
if (handler_1arg)
handler_1arg (parse_in);
}
}
void
c_pp_invoke_early_pragma_handler (unsigned int id)
{
const auto data = &registered_pp_pragmas[id - PRAGMA_FIRST_EXTERNAL];
if (data->early_handler)
data->early_handler (parse_in);
}
/* Set up front-end pragmas. */
void
init_pragma (void)
{
if (flag_openacc)
{
const int n_oacc_pragmas = ARRAY_SIZE (oacc_pragmas);
int i;
for (i = 0; i < n_oacc_pragmas; ++i)
cpp_register_deferred_pragma (parse_in, "acc", oacc_pragmas[i].name,
oacc_pragmas[i].id, true, true);
}
if (flag_openmp)
{
const int n_omp_pragmas = ARRAY_SIZE (omp_pragmas);
int i;
for (i = 0; i < n_omp_pragmas; ++i)
cpp_register_deferred_pragma (parse_in, "omp", omp_pragmas[i].name,
omp_pragmas[i].id, true, true);
}
if (flag_openmp || flag_openmp_simd)
{
const int n_omp_pragmas_simd = sizeof (omp_pragmas_simd)
/ sizeof (*omp_pragmas);
int i;
for (i = 0; i < n_omp_pragmas_simd; ++i)
cpp_register_deferred_pragma (parse_in, "omp", omp_pragmas_simd[i].name,
omp_pragmas_simd[i].id, true, true);
}
if (!flag_preprocess_only)
cpp_register_deferred_pragma (parse_in, "GCC", "pch_preprocess",
PRAGMA_GCC_PCH_PREPROCESS, false, false);
if (!flag_preprocess_only)
cpp_register_deferred_pragma (parse_in, "GCC", "ivdep", PRAGMA_IVDEP, false,
false);
if (!flag_preprocess_only)
cpp_register_deferred_pragma (parse_in, "GCC", "unroll", PRAGMA_UNROLL,
false, false);
#ifdef HANDLE_PRAGMA_PACK_WITH_EXPANSION
c_register_pragma_with_expansion (0, "pack", handle_pragma_pack);
#else
c_register_pragma (0, "pack", handle_pragma_pack);
#endif
c_register_pragma (0, "weak", handle_pragma_weak);
c_register_pragma ("GCC", "visibility", handle_pragma_visibility);
if (flag_preprocess_only)
c_register_pragma_with_early_handler ("GCC", "diagnostic",
nullptr,
handle_pragma_diagnostic_early_pp);
else
c_register_pragma_with_early_handler ("GCC", "diagnostic",
handle_pragma_diagnostic,
handle_pragma_diagnostic_early);
c_register_pragma ("GCC", "target", handle_pragma_target);
c_register_pragma ("GCC", "optimize", handle_pragma_optimize);
c_register_pragma ("GCC", "push_options", handle_pragma_push_options);
c_register_pragma ("GCC", "pop_options", handle_pragma_pop_options);
c_register_pragma ("GCC", "reset_options", handle_pragma_reset_options);
c_register_pragma ("STDC", "FLOAT_CONST_DECIMAL64",
handle_pragma_float_const_decimal64);
c_register_pragma_with_expansion (0, "redefine_extname",
handle_pragma_redefine_extname);
c_register_pragma_with_expansion (0, "message", handle_pragma_message);
#ifdef REGISTER_TARGET_PRAGMAS
REGISTER_TARGET_PRAGMAS ();
#endif
global_sso = default_sso;
c_register_pragma (0, "scalar_storage_order",
handle_pragma_scalar_storage_order);
/* Allow plugins to register their own pragmas. */
invoke_plugin_callbacks (PLUGIN_PRAGMAS, NULL);
}
#include "gt-c-family-c-pragma.h"