/* A typesafe wrapper around libiberty's splay-tree.h. | |

Copyright (C) 2015-2022 Free Software Foundation, Inc. | |

This file is part of GCC. | |

GCC is free software; you can redistribute it and/or modify it under | |

the terms of the GNU General Public License as published by the Free | |

Software Foundation; either version 3, or (at your option) any later | |

version. | |

GCC is distributed in the hope that it will be useful, but WITHOUT ANY | |

WARRANTY; without even the implied warranty of MERCHANTABILITY or | |

FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License | |

for more details. | |

You should have received a copy of the GNU General Public License | |

along with GCC; see the file COPYING3. If not see | |

<http://www.gnu.org/licenses/>. */ | |

#ifndef GCC_TYPED_SPLAY_TREE_H | |

#define GCC_TYPED_SPLAY_TREE_H | |

/* Typesafe wrapper around libiberty's splay-tree.h. */ | |

template <typename KEY_TYPE, typename VALUE_TYPE> | |

class typed_splay_tree | |

{ | |

public: | |

typedef KEY_TYPE key_type; | |

typedef VALUE_TYPE value_type; | |

typedef int (*compare_fn) (key_type, key_type); | |

typedef void (*delete_key_fn) (key_type); | |

typedef void (*delete_value_fn) (value_type); | |

typedef int (*foreach_fn) (key_type, value_type, void *); | |

typed_splay_tree (compare_fn, | |

delete_key_fn, | |

delete_value_fn); | |

~typed_splay_tree (); | |

value_type lookup (key_type k); | |

value_type predecessor (key_type k); | |

value_type successor (key_type k); | |

void insert (key_type k, value_type v); | |

void remove (key_type k); | |

value_type max (); | |

value_type min (); | |

int foreach (foreach_fn, void *); | |

private: | |

/* Copy and assignment ops are not supported. */ | |

typed_splay_tree (const typed_splay_tree &); | |

typed_splay_tree & operator = (const typed_splay_tree &); | |

typedef key_type splay_tree_key; | |

typedef value_type splay_tree_value; | |

/* The nodes in the splay tree. */ | |

struct splay_tree_node_s { | |

/* The key. */ | |

splay_tree_key key; | |

/* The value. */ | |

splay_tree_value value; | |

/* The left and right children, respectively. */ | |

splay_tree_node_s *left, *right; | |

/* Used as temporary value for tree traversals. */ | |

splay_tree_node_s *back; | |

}; | |

typedef splay_tree_node_s *splay_tree_node; | |

inline void KDEL (splay_tree_key); | |

inline void VDEL (splay_tree_value); | |

void splay_tree_delete_helper (splay_tree_node); | |

static inline void rotate_left (splay_tree_node *, | |

splay_tree_node, splay_tree_node); | |

static inline void rotate_right (splay_tree_node *, | |

splay_tree_node, splay_tree_node); | |

void splay_tree_splay (splay_tree_key); | |

static int splay_tree_foreach_helper (splay_tree_node, | |

foreach_fn, void*); | |

splay_tree_node splay_tree_insert (splay_tree_key, splay_tree_value); | |

void splay_tree_remove (splay_tree_key key); | |

splay_tree_node splay_tree_lookup (splay_tree_key key); | |

splay_tree_node splay_tree_predecessor (splay_tree_key); | |

splay_tree_node splay_tree_successor (splay_tree_key); | |

splay_tree_node splay_tree_max (); | |

splay_tree_node splay_tree_min (); | |

static value_type node_to_value (splay_tree_node node); | |

/* The root of the tree. */ | |

splay_tree_node root; | |

/* The comparision function. */ | |

compare_fn comp; | |

/* The deallocate-key function. NULL if no cleanup is necessary. */ | |

delete_key_fn delete_key; | |

/* The deallocate-value function. NULL if no cleanup is necessary. */ | |

delete_value_fn delete_value; | |

}; | |

/* Constructor for typed_splay_tree <K, V>. */ | |

template <typename KEY_TYPE, typename VALUE_TYPE> | |

inline typed_splay_tree<KEY_TYPE, VALUE_TYPE>:: | |

typed_splay_tree (compare_fn compare_fn, | |

delete_key_fn delete_key_fn, | |

delete_value_fn delete_value_fn) | |

{ | |

root = NULL; | |

comp = compare_fn; | |

delete_key = delete_key_fn; | |

delete_value = delete_value_fn; | |

} | |

/* Destructor for typed_splay_tree <K, V>. */ | |

template <typename KEY_TYPE, typename VALUE_TYPE> | |

inline typed_splay_tree<KEY_TYPE, VALUE_TYPE>:: | |

~typed_splay_tree () | |

{ | |

splay_tree_delete_helper (root); | |

} | |

/* Lookup KEY, returning a value if present, and NULL | |

otherwise. */ | |

template <typename KEY_TYPE, typename VALUE_TYPE> | |

inline VALUE_TYPE | |

typed_splay_tree<KEY_TYPE, VALUE_TYPE>::lookup (key_type key) | |

{ | |

splay_tree_node node = splay_tree_lookup (key); | |

return node_to_value (node); | |

} | |

/* Return the immediate predecessor of KEY, or NULL if there is no | |

predecessor. KEY need not be present in the tree. */ | |

template <typename KEY_TYPE, typename VALUE_TYPE> | |

inline VALUE_TYPE | |

typed_splay_tree<KEY_TYPE, VALUE_TYPE>::predecessor (key_type key) | |

{ | |

splay_tree_node node = splay_tree_predecessor (key); | |

return node_to_value (node); | |

} | |

/* Return the immediate successor of KEY, or NULL if there is no | |

successor. KEY need not be present in the tree. */ | |

template <typename KEY_TYPE, typename VALUE_TYPE> | |

inline VALUE_TYPE | |

typed_splay_tree<KEY_TYPE, VALUE_TYPE>::successor (key_type key) | |

{ | |

splay_tree_node node = splay_tree_successor (key); | |

return node_to_value (node); | |

} | |

/* Insert a new node (associating KEY with VALUE). If a | |

previous node with the indicated KEY exists, its data is replaced | |

with the new value. */ | |

template <typename KEY_TYPE, typename VALUE_TYPE> | |

inline void | |

typed_splay_tree<KEY_TYPE, VALUE_TYPE>::insert (key_type key, | |

value_type value) | |

{ | |

splay_tree_insert (key, value); | |

} | |

/* Remove a node (associating KEY with VALUE). */ | |

template <typename KEY_TYPE, typename VALUE_TYPE> | |

inline void | |

typed_splay_tree<KEY_TYPE, VALUE_TYPE>::remove (key_type key) | |

{ | |

splay_tree_remove (key); | |

} | |

/* Get the value with maximal key. */ | |

template <typename KEY_TYPE, typename VALUE_TYPE> | |

inline VALUE_TYPE | |

typed_splay_tree<KEY_TYPE, VALUE_TYPE>::max () | |

{ | |

return node_to_value (splay_tree_max ()); | |

} | |

/* Get the value with minimal key. */ | |

template <typename KEY_TYPE, typename VALUE_TYPE> | |

inline VALUE_TYPE | |

typed_splay_tree<KEY_TYPE, VALUE_TYPE>::min () | |

{ | |

return node_to_value (splay_tree_min ()); | |

} | |

/* Call OUTER_CB, passing it the OUTER_USER_DATA, for every node, | |

following an in-order traversal. If OUTER_CB ever returns a non-zero | |

value, the iteration ceases immediately, and the value is returned. | |

Otherwise, this function returns 0. */ | |

template <typename KEY_TYPE, typename VALUE_TYPE> | |

inline int | |

typed_splay_tree<KEY_TYPE, VALUE_TYPE>::foreach (foreach_fn foreach_fn, | |

void *user_data) | |

{ | |

return splay_tree_foreach_helper (root, foreach_fn, user_data); | |

} | |

/* Internal function for converting from splay_tree_node to | |

VALUE_TYPE. */ | |

template <typename KEY_TYPE, typename VALUE_TYPE> | |

inline VALUE_TYPE | |

typed_splay_tree<KEY_TYPE, VALUE_TYPE>::node_to_value (splay_tree_node node) | |

{ | |

if (node) | |

return node->value; | |

else | |

return 0; | |

} | |

template <typename KEY_TYPE, typename VALUE_TYPE> | |

inline void | |

typed_splay_tree<KEY_TYPE, VALUE_TYPE>::KDEL(splay_tree_key x) | |

{ | |

if (delete_key) | |

(*delete_key)(x); | |

} | |

template <typename KEY_TYPE, typename VALUE_TYPE> | |

inline void | |

typed_splay_tree<KEY_TYPE, VALUE_TYPE>::VDEL(splay_tree_value x) | |

{ | |

if (delete_value) | |

(*delete_value)(x); | |

} | |

/* Deallocate NODE (a member of SP), and all its sub-trees. */ | |

template <typename KEY_TYPE, typename VALUE_TYPE> | |

void | |

typed_splay_tree<KEY_TYPE, | |

VALUE_TYPE>::splay_tree_delete_helper (splay_tree_node node) | |

{ | |

splay_tree_node pending = NULL; | |

splay_tree_node active = NULL; | |

if (!node) | |

return; | |

KDEL (node->key); | |

VDEL (node->value); | |

/* We use the "back" field to hold the "next" pointer. */ | |

node->back = pending; | |

pending = node; | |

/* Now, keep processing the pending list until there aren't any | |

more. This is a little more complicated than just recursing, but | |

it doesn't toast the stack for large trees. */ | |

while (pending) | |

{ | |

active = pending; | |

pending = NULL; | |

while (active) | |

{ | |

splay_tree_node temp; | |

/* active points to a node which has its key and value | |

deallocated, we just need to process left and right. */ | |

if (active->left) | |

{ | |

KDEL (active->left->key); | |

VDEL (active->left->value); | |

active->left->back = pending; | |

pending = active->left; | |

} | |

if (active->right) | |

{ | |

KDEL (active->right->key); | |

VDEL (active->right->value); | |

active->right->back = pending; | |

pending = active->right; | |

} | |

temp = active; | |

active = temp->back; | |

delete temp; | |

} | |

} | |

} | |

/* Rotate the edge joining the left child N with its parent P. PP is the | |

grandparents' pointer to P. */ | |

template <typename KEY_TYPE, typename VALUE_TYPE> | |

inline void | |

typed_splay_tree<KEY_TYPE, VALUE_TYPE>::rotate_left (splay_tree_node *pp, | |

splay_tree_node p, | |

splay_tree_node n) | |

{ | |

splay_tree_node tmp; | |

tmp = n->right; | |

n->right = p; | |

p->left = tmp; | |

*pp = n; | |

} | |

/* Rotate the edge joining the right child N with its parent P. PP is the | |

grandparents' pointer to P. */ | |

template <typename KEY_TYPE, typename VALUE_TYPE> | |

inline void | |

typed_splay_tree<KEY_TYPE, VALUE_TYPE>::rotate_right (splay_tree_node *pp, | |

splay_tree_node p, | |

splay_tree_node n) | |

{ | |

splay_tree_node tmp; | |

tmp = n->left; | |

n->left = p; | |

p->right = tmp; | |

*pp = n; | |

} | |

/* Bottom up splay of key. */ | |

template <typename KEY_TYPE, typename VALUE_TYPE> | |

void | |

typed_splay_tree<KEY_TYPE, VALUE_TYPE>::splay_tree_splay (splay_tree_key key) | |

{ | |

if (root == NULL) | |

return; | |

do { | |

int cmp1, cmp2; | |

splay_tree_node n, c; | |

n = root; | |

cmp1 = (*comp) (key, n->key); | |

/* Found. */ | |

if (cmp1 == 0) | |

return; | |

/* Left or right? If no child, then we're done. */ | |

if (cmp1 < 0) | |

c = n->left; | |

else | |

c = n->right; | |

if (!c) | |

return; | |

/* Next one left or right? If found or no child, we're done | |

after one rotation. */ | |

cmp2 = (*comp) (key, c->key); | |

if (cmp2 == 0 | |

|| (cmp2 < 0 && !c->left) | |

|| (cmp2 > 0 && !c->right)) | |

{ | |

if (cmp1 < 0) | |

rotate_left (&root, n, c); | |

else | |

rotate_right (&root, n, c); | |

return; | |

} | |

/* Now we have the four cases of double-rotation. */ | |

if (cmp1 < 0 && cmp2 < 0) | |

{ | |

rotate_left (&n->left, c, c->left); | |

rotate_left (&root, n, n->left); | |

} | |

else if (cmp1 > 0 && cmp2 > 0) | |

{ | |

rotate_right (&n->right, c, c->right); | |

rotate_right (&root, n, n->right); | |

} | |

else if (cmp1 < 0 && cmp2 > 0) | |

{ | |

rotate_right (&n->left, c, c->right); | |

rotate_left (&root, n, n->left); | |

} | |

else if (cmp1 > 0 && cmp2 < 0) | |

{ | |

rotate_left (&n->right, c, c->left); | |

rotate_right (&root, n, n->right); | |

} | |

} while (1); | |

} | |

/* Call FN, passing it the DATA, for every node below NODE, all of | |

which are from SP, following an in-order traversal. If FN every | |

returns a non-zero value, the iteration ceases immediately, and the | |

value is returned. Otherwise, this function returns 0. */ | |

template <typename KEY_TYPE, typename VALUE_TYPE> | |

int | |

typed_splay_tree<KEY_TYPE, VALUE_TYPE>::splay_tree_foreach_helper ( | |

splay_tree_node node, | |

foreach_fn fn, void *data) | |

{ | |

int val; | |

splay_tree_node stack; | |

/* A non-recursive implementation is used to avoid filling the stack | |

for large trees. Splay trees are worst case O(n) in the depth of | |

the tree. */ | |

stack = NULL; | |

val = 0; | |

for (;;) | |

{ | |

while (node != NULL) | |

{ | |

node->back = stack; | |

stack = node; | |

node = node->left; | |

} | |

if (stack == NULL) | |

break; | |

node = stack; | |

stack = stack->back; | |

val = (*fn) (node->key, node->value, data); | |

if (val) | |

break; | |

node = node->right; | |

} | |

return val; | |

} | |

/* Insert a new node (associating KEY with DATA) into SP. If a | |

previous node with the indicated KEY exists, its data is replaced | |

with the new value. Returns the new node. */ | |

template <typename KEY_TYPE, typename VALUE_TYPE> | |

typename typed_splay_tree<KEY_TYPE, VALUE_TYPE>::splay_tree_node | |

typed_splay_tree<KEY_TYPE, VALUE_TYPE>::splay_tree_insert ( | |

splay_tree_key key, | |

splay_tree_value value) | |

{ | |

int comparison = 0; | |

splay_tree_splay (key); | |

if (root) | |

comparison = (*comp)(root->key, key); | |

if (root && comparison == 0) | |

{ | |

/* If the root of the tree already has the indicated KEY, just | |

replace the value with VALUE. */ | |

VDEL(root->value); | |

root->value = value; | |

} | |

else | |

{ | |

/* Create a new node, and insert it at the root. */ | |

splay_tree_node node; | |

node = new splay_tree_node_s; | |

node->key = key; | |

node->value = value; | |

if (!root) | |

node->left = node->right = 0; | |

else if (comparison < 0) | |

{ | |

node->left = root; | |

node->right = node->left->right; | |

node->left->right = 0; | |

} | |

else | |

{ | |

node->right = root; | |

node->left = node->right->left; | |

node->right->left = 0; | |

} | |

root = node; | |

} | |

return root; | |

} | |

/* Remove KEY from SP. It is not an error if it did not exist. */ | |

template <typename KEY_TYPE, typename VALUE_TYPE> | |

void | |

typed_splay_tree<KEY_TYPE, VALUE_TYPE>::splay_tree_remove (splay_tree_key key) | |

{ | |

splay_tree_splay (key); | |

if (root && (*comp) (root->key, key) == 0) | |

{ | |

splay_tree_node left, right; | |

left = root->left; | |

right = root->right; | |

/* Delete the root node itself. */ | |

VDEL (root->value); | |

delete root; | |

/* One of the children is now the root. Doesn't matter much | |

which, so long as we preserve the properties of the tree. */ | |

if (left) | |

{ | |

root = left; | |

/* If there was a right child as well, hang it off the | |

right-most leaf of the left child. */ | |

if (right) | |

{ | |

while (left->right) | |

left = left->right; | |

left->right = right; | |

} | |

} | |

else | |

root = right; | |

} | |

} | |

/* Lookup KEY in SP, returning VALUE if present, and NULL | |

otherwise. */ | |

template <typename KEY_TYPE, typename VALUE_TYPE> | |

typename typed_splay_tree<KEY_TYPE, VALUE_TYPE>::splay_tree_node | |

typed_splay_tree<KEY_TYPE, VALUE_TYPE>::splay_tree_lookup (splay_tree_key key) | |

{ | |

splay_tree_splay (key); | |

if (root && (*comp)(root->key, key) == 0) | |

return root; | |

else | |

return 0; | |

} | |

/* Return the node in SP with the greatest key. */ | |

template <typename KEY_TYPE, typename VALUE_TYPE> | |

typename typed_splay_tree<KEY_TYPE, VALUE_TYPE>::splay_tree_node | |

typed_splay_tree<KEY_TYPE, VALUE_TYPE>::splay_tree_max () | |

{ | |

splay_tree_node n = root; | |

if (!n) | |

return NULL; | |

while (n->right) | |

n = n->right; | |

return n; | |

} | |

/* Return the node in SP with the smallest key. */ | |

template <typename KEY_TYPE, typename VALUE_TYPE> | |

typename typed_splay_tree<KEY_TYPE, VALUE_TYPE>::splay_tree_node | |

typed_splay_tree<KEY_TYPE, VALUE_TYPE>::splay_tree_min () | |

{ | |

splay_tree_node n = root; | |

if (!n) | |

return NULL; | |

while (n->left) | |

n = n->left; | |

return n; | |

} | |

/* Return the immediate predecessor KEY, or NULL if there is no | |

predecessor. KEY need not be present in the tree. */ | |

template <typename KEY_TYPE, typename VALUE_TYPE> | |

typename typed_splay_tree<KEY_TYPE, VALUE_TYPE>::splay_tree_node | |

typed_splay_tree<KEY_TYPE, | |

VALUE_TYPE>::splay_tree_predecessor (splay_tree_key key) | |

{ | |

int comparison; | |

splay_tree_node node; | |

/* If the tree is empty, there is certainly no predecessor. */ | |

if (!root) | |

return NULL; | |

/* Splay the tree around KEY. That will leave either the KEY | |

itself, its predecessor, or its successor at the root. */ | |

splay_tree_splay (key); | |

comparison = (*comp)(root->key, key); | |

/* If the predecessor is at the root, just return it. */ | |

if (comparison < 0) | |

return root; | |

/* Otherwise, find the rightmost element of the left subtree. */ | |

node = root->left; | |

if (node) | |

while (node->right) | |

node = node->right; | |

return node; | |

} | |

/* Return the immediate successor KEY, or NULL if there is no | |

successor. KEY need not be present in the tree. */ | |

template <typename KEY_TYPE, typename VALUE_TYPE> | |

typename typed_splay_tree<KEY_TYPE, VALUE_TYPE>::splay_tree_node | |

typed_splay_tree<KEY_TYPE, | |

VALUE_TYPE>::splay_tree_successor (splay_tree_key key) | |

{ | |

int comparison; | |

splay_tree_node node; | |

/* If the tree is empty, there is certainly no successor. */ | |

if (!root) | |

return NULL; | |

/* Splay the tree around KEY. That will leave either the KEY | |

itself, its predecessor, or its successor at the root. */ | |

splay_tree_splay (key); | |

comparison = (*comp)(root->key, key); | |

/* If the successor is at the root, just return it. */ | |

if (comparison > 0) | |

return root; | |

/* Otherwise, find the leftmost element of the right subtree. */ | |

node = root->right; | |

if (node) | |

while (node->left) | |

node = node->left; | |

return node; | |

} | |

#endif /* GCC_TYPED_SPLAY_TREE_H */ |