blob: 312ab0eb87213f6ddb257c68c1923424b4d59473 [file] [log] [blame]
------------------------------------------------------------------------------
-- --
-- GNAT RUN-TIME LIBRARY (GNARL) COMPONENTS --
-- --
-- S Y S T E M . T A S K I N G . U T I L I T I E S --
-- --
-- B o d y --
-- --
-- Copyright (C) 1992-2021, Free Software Foundation, Inc. --
-- --
-- GNARL is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 3, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. --
-- --
-- As a special exception under Section 7 of GPL version 3, you are granted --
-- additional permissions described in the GCC Runtime Library Exception, --
-- version 3.1, as published by the Free Software Foundation. --
-- --
-- You should have received a copy of the GNU General Public License and --
-- a copy of the GCC Runtime Library Exception along with this program; --
-- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
-- <http://www.gnu.org/licenses/>. --
-- --
-- GNARL was developed by the GNARL team at Florida State University. --
-- Extensive contributions were provided by Ada Core Technologies, Inc. --
-- --
------------------------------------------------------------------------------
-- This package provides RTS Internal Declarations
-- These declarations are not part of the GNARLI
with System.Tasking.Debug;
with System.Task_Primitives.Operations;
with System.Tasking.Initialization;
with System.Tasking.Queuing;
package body System.Tasking.Utilities is
package STPO renames System.Task_Primitives.Operations;
use Tasking.Debug;
use Task_Primitives;
use Task_Primitives.Operations;
--------------------
-- Abort_One_Task --
--------------------
-- Similar to Locked_Abort_To_Level (Self_ID, T, Level_Completed_Task),
-- but:
-- (1) caller should be holding no locks
-- (2) may be called for tasks that have not yet been activated
-- (3) always aborts whole task
procedure Abort_One_Task (Self_ID : Task_Id; T : Task_Id) is
begin
Write_Lock (T);
if T.Common.State = Unactivated then
T.Common.Activator := null;
T.Common.State := Terminated;
T.Callable := False;
Cancel_Queued_Entry_Calls (T);
elsif T.Common.State /= Terminated then
Initialization.Locked_Abort_To_Level
(Self_ID, T, Level_Completed_Task);
end if;
Unlock (T);
end Abort_One_Task;
-----------------
-- Abort_Tasks --
-----------------
-- This must be called to implement the abort statement.
-- Much of the actual work of the abort is done by the abortee,
-- via the Abort_Handler signal handler, and propagation of the
-- Abort_Signal special exception.
procedure Abort_Tasks (Tasks : Task_List) is
Self_Id : constant Task_Id := STPO.Self;
C : Task_Id;
P : Task_Id;
begin
-- If pragma Detect_Blocking is active then Program_Error must be
-- raised if this potentially blocking operation is called from a
-- protected action.
if System.Tasking.Detect_Blocking
and then Self_Id.Common.Protected_Action_Nesting > 0
then
raise Program_Error with "potentially blocking operation";
end if;
Initialization.Defer_Abort_Nestable (Self_Id);
-- ?????
-- Really should not be nested deferral here.
-- Patch for code generation error that defers abort before
-- evaluating parameters of an entry call (at least, timed entry
-- calls), and so may propagate an exception that causes abort
-- to remain undeferred indefinitely. See C97404B. When all
-- such bugs are fixed, this patch can be removed.
Lock_RTS;
for J in Tasks'Range loop
C := Tasks (J);
Abort_One_Task (Self_Id, C);
end loop;
C := All_Tasks_List;
while C /= null loop
if C.Pending_ATC_Level > Level_Completed_Task then
P := C.Common.Parent;
while P /= null loop
if P.Pending_ATC_Level = Level_Completed_Task then
Abort_One_Task (Self_Id, C);
exit;
end if;
P := P.Common.Parent;
end loop;
end if;
C := C.Common.All_Tasks_Link;
end loop;
Unlock_RTS;
Initialization.Undefer_Abort_Nestable (Self_Id);
end Abort_Tasks;
-------------------------------
-- Cancel_Queued_Entry_Calls --
-------------------------------
-- This should only be called by T, unless T is a terminated previously
-- unactivated task.
procedure Cancel_Queued_Entry_Calls (T : Task_Id) is
Next_Entry_Call : Entry_Call_Link;
Entry_Call : Entry_Call_Link;
Self_Id : constant Task_Id := STPO.Self;
Caller : Task_Id;
pragma Unreferenced (Caller);
-- Should this be removed ???
Level : Integer;
pragma Unreferenced (Level);
-- Should this be removed ???
begin
pragma Assert (T = Self or else T.Common.State = Terminated);
for J in 1 .. T.Entry_Num loop
Queuing.Dequeue_Head (T.Entry_Queues (J), Entry_Call);
while Entry_Call /= null loop
-- Leave Entry_Call.Done = False, since this is cancelled
Caller := Entry_Call.Self;
Entry_Call.Exception_To_Raise := Tasking_Error'Identity;
Queuing.Dequeue_Head (T.Entry_Queues (J), Next_Entry_Call);
Level := Entry_Call.Level - 1;
Unlock (T);
Write_Lock (Entry_Call.Self);
Initialization.Wakeup_Entry_Caller
(Self_Id, Entry_Call, Cancelled);
Unlock (Entry_Call.Self);
Write_Lock (T);
Entry_Call.State := Done;
Entry_Call := Next_Entry_Call;
end loop;
end loop;
end Cancel_Queued_Entry_Calls;
------------------------
-- Exit_One_ATC_Level --
------------------------
-- Call only with abort deferred and holding lock of Self_Id.
-- This is a bit of common code for all entry calls.
-- The effect is to exit one level of ATC nesting.
-- If we have reached the desired ATC nesting level, reset the
-- requested level to effective infinity, to allow further calls.
-- In any case, reset Self_Id.Aborting, to allow re-raising of
-- Abort_Signal.
procedure Exit_One_ATC_Level (Self_ID : Task_Id) is
begin
pragma Assert (Self_ID.ATC_Nesting_Level > Level_No_ATC_Occurring);
Self_ID.ATC_Nesting_Level := Self_ID.ATC_Nesting_Level - 1;
pragma Debug
(Debug.Trace (Self_ID, "EOAL: exited to ATC level: " &
ATC_Level'Image (Self_ID.ATC_Nesting_Level), 'A'));
if Self_ID.Pending_ATC_Level < Level_No_Pending_Abort then
if Self_ID.Pending_ATC_Level = Self_ID.ATC_Nesting_Level then
Self_ID.Pending_ATC_Level := Level_No_Pending_Abort;
Self_ID.Aborting := False;
else
-- Force the next Undefer_Abort to re-raise Abort_Signal
pragma Assert
(Self_ID.Pending_ATC_Level < Self_ID.ATC_Nesting_Level);
if Self_ID.Aborting then
Self_ID.ATC_Hack := True;
Self_ID.Pending_Action := True;
end if;
end if;
end if;
end Exit_One_ATC_Level;
----------------------
-- Make_Independent --
----------------------
function Make_Independent return Boolean is
Self_Id : constant Task_Id := STPO.Self;
Environment_Task : constant Task_Id := STPO.Environment_Task;
Parent : constant Task_Id := Self_Id.Common.Parent;
begin
if Self_Id.Known_Tasks_Index /= -1 then
Known_Tasks (Self_Id.Known_Tasks_Index) := null;
end if;
Initialization.Defer_Abort (Self_Id);
Write_Lock (Environment_Task);
Write_Lock (Self_Id);
-- The run time assumes that the parent of an independent task is the
-- environment task.
pragma Assert (Parent = Environment_Task);
Self_Id.Master_Of_Task := Independent_Task_Level;
-- Update Independent_Task_Count that is needed for the GLADE
-- termination rule. See also pending update in
-- System.Tasking.Stages.Check_Independent
Independent_Task_Count := Independent_Task_Count + 1;
-- This should be called before the task reaches its "begin" (see spec),
-- which ensures that the environment task cannot race ahead and be
-- already waiting for children to complete.
Unlock (Self_Id);
pragma Assert (Environment_Task.Common.State /= Master_Completion_Sleep);
Unlock (Environment_Task);
Initialization.Undefer_Abort (Self_Id);
-- Return True. Actually the return value is junk, since we expect it
-- always to be ignored (see spec), but we have to return something!
return True;
end Make_Independent;
------------------
-- Make_Passive --
------------------
procedure Make_Passive (Self_ID : Task_Id; Task_Completed : Boolean) is
C : Task_Id := Self_ID;
P : Task_Id := C.Common.Parent;
Master_Completion_Phase : Integer;
begin
if P /= null then
Write_Lock (P);
end if;
Write_Lock (C);
if Task_Completed then
Self_ID.Common.State := Terminated;
if Self_ID.Awake_Count = 0 then
-- We are completing via a terminate alternative.
-- Our parent should wait in Phase 2 of Complete_Master.
Master_Completion_Phase := 2;
pragma Assert (Task_Completed);
pragma Assert (Self_ID.Terminate_Alternative);
pragma Assert (Self_ID.Alive_Count = 1);
else
-- We are NOT on a terminate alternative.
-- Our parent should wait in Phase 1 of Complete_Master.
Master_Completion_Phase := 1;
pragma Assert (Self_ID.Awake_Count >= 1);
end if;
-- We are accepting with a terminate alternative
else
if Self_ID.Open_Accepts = null then
-- Somebody started a rendezvous while we had our lock open.
-- Skip the terminate alternative.
Unlock (C);
if P /= null then
Unlock (P);
end if;
return;
end if;
Self_ID.Terminate_Alternative := True;
Master_Completion_Phase := 0;
pragma Assert (Self_ID.Terminate_Alternative);
pragma Assert (Self_ID.Awake_Count >= 1);
end if;
if Master_Completion_Phase = 2 then
-- Since our Awake_Count is zero but our Alive_Count
-- is nonzero, we have been accepting with a terminate
-- alternative, and we now have been told to terminate
-- by a completed master (in some ancestor task) that
-- is waiting (with zero Awake_Count) in Phase 2 of
-- Complete_Master.
pragma Debug (Debug.Trace (Self_ID, "Make_Passive: Phase 2", 'M'));
pragma Assert (P /= null);
C.Alive_Count := C.Alive_Count - 1;
if C.Alive_Count > 0 then
Unlock (C);
Unlock (P);
return;
end if;
-- C's count just went to zero, indicating that
-- all of C's dependents are terminated.
-- C has a parent, P.
loop
-- C's count just went to zero, indicating that all of C's
-- dependents are terminated. C has a parent, P. Notify P that
-- C and its dependents have all terminated.
P.Alive_Count := P.Alive_Count - 1;
exit when P.Alive_Count > 0;
Unlock (C);
Unlock (P);
C := P;
P := C.Common.Parent;
-- Environment task cannot have terminated yet
pragma Assert (P /= null);
Write_Lock (P);
Write_Lock (C);
end loop;
if P.Common.State = Master_Phase_2_Sleep
and then C.Master_Of_Task = P.Master_Within
then
pragma Assert (P.Common.Wait_Count > 0);
P.Common.Wait_Count := P.Common.Wait_Count - 1;
if P.Common.Wait_Count = 0 then
Wakeup (P, Master_Phase_2_Sleep);
end if;
end if;
Unlock (C);
Unlock (P);
return;
end if;
-- We are terminating in Phase 1 or Complete_Master,
-- or are accepting on a terminate alternative.
C.Awake_Count := C.Awake_Count - 1;
if Task_Completed then
C.Alive_Count := C.Alive_Count - 1;
end if;
if C.Awake_Count > 0 or else P = null then
Unlock (C);
if P /= null then
Unlock (P);
end if;
return;
end if;
-- C's count just went to zero, indicating that all of C's
-- dependents are terminated or accepting with terminate alt.
-- C has a parent, P.
loop
-- Notify P that C has gone passive
if P.Awake_Count > 0 then
P.Awake_Count := P.Awake_Count - 1;
end if;
if Task_Completed and then C.Alive_Count = 0 then
P.Alive_Count := P.Alive_Count - 1;
end if;
exit when P.Awake_Count > 0;
Unlock (C);
Unlock (P);
C := P;
P := C.Common.Parent;
if P = null then
return;
end if;
Write_Lock (P);
Write_Lock (C);
end loop;
-- P has non-passive dependents
if P.Common.State = Master_Completion_Sleep
and then C.Master_Of_Task = P.Master_Within
then
pragma Debug
(Debug.Trace
(Self_ID, "Make_Passive: Phase 1, parent waiting", 'M'));
-- If parent is in Master_Completion_Sleep, it cannot be on a
-- terminate alternative, hence it cannot have Wait_Count of zero.
pragma Assert (P.Common.Wait_Count > 0);
P.Common.Wait_Count := P.Common.Wait_Count - 1;
if P.Common.Wait_Count = 0 then
Wakeup (P, Master_Completion_Sleep);
end if;
else
pragma Debug
(Debug.Trace (Self_ID, "Make_Passive: Phase 1, parent awake", 'M'));
null;
end if;
Unlock (C);
Unlock (P);
end Make_Passive;
end System.Tasking.Utilities;