blob: 054d06ca76f6bd657ce99d2d73713601ca0b311f [file] [log] [blame]
------------------------------------------------------------------------------
-- --
-- GNAT COMPILER COMPONENTS --
-- --
-- T R E E P R --
-- --
-- B o d y --
-- --
-- Copyright (C) 1992-2021, Free Software Foundation, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 3, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
-- for more details. You should have received a copy of the GNU General --
-- Public License distributed with GNAT; see file COPYING3. If not, go to --
-- http://www.gnu.org/licenses for a complete copy of the license. --
-- --
-- GNAT was originally developed by the GNAT team at New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc. --
-- --
------------------------------------------------------------------------------
with Aspects; use Aspects;
with Atree; use Atree;
with Csets; use Csets;
with Debug; use Debug;
with Einfo; use Einfo;
with Einfo.Entities; use Einfo.Entities;
with Einfo.Utils; use Einfo.Utils;
with Elists; use Elists;
with Lib; use Lib;
with Namet; use Namet;
with Nlists; use Nlists;
with Output; use Output;
with Seinfo; use Seinfo;
with Sinfo; use Sinfo;
with Sinfo.Nodes; use Sinfo.Nodes;
with Sinfo.Utils; use Sinfo.Utils;
with Snames; use Snames;
with Sinput; use Sinput;
with Stand; use Stand;
with Stringt; use Stringt;
with SCIL_LL; use SCIL_LL;
with Uintp; use Uintp;
with Urealp; use Urealp;
with Uname; use Uname;
with Unchecked_Conversion;
with Unchecked_Deallocation;
package body Treepr is
----------------------------------
-- Approach Used for Tree Print --
----------------------------------
-- When a complete subtree is being printed, a trace phase first marks
-- the nodes and lists to be printed. This trace phase allocates logical
-- numbers corresponding to the order in which the nodes and lists will
-- be printed. The Node_Id, List_Id and Elist_Id values are mapped to
-- logical node numbers using a hash table. Output is done using a set
-- of Print_xxx routines, which are similar to the Write_xxx routines
-- with the same name, except that they do not generate any output in
-- the marking phase. This allows identical logic to be used in the
-- two phases.
-- Note that the hash table not only holds the serial numbers, but also
-- acts as a record of which nodes have already been visited. In the
-- marking phase, a node has been visited if it is already in the hash
-- table, and in the printing phase, we can tell whether a node has
-- already been printed by looking at the value of the serial number.
----------------------
-- Global Variables --
----------------------
Print_Low_Level_Info : Boolean := False with Warnings => Off;
-- Set True to print low-level information useful for debugging Atree and
-- the like.
type Hash_Record is record
Serial : Nat;
-- Serial number for hash table entry. A value of zero means that
-- the entry is currently unused.
Id : Int;
-- If serial number field is non-zero, contains corresponding Id value
end record;
type Hash_Table_Type is array (Nat range <>) of Hash_Record;
type Access_Hash_Table_Type is access Hash_Table_Type;
Hash_Table : Access_Hash_Table_Type;
-- The hash table itself, see Serial_Number function for details of use
Hash_Table_Len : Nat;
-- Range of Hash_Table is from 0 .. Hash_Table_Len - 1 so that dividing
-- by Hash_Table_Len gives a remainder that is in Hash_Table'Range.
Next_Serial_Number : Nat;
-- Number of last visited node or list. Used during the marking phase to
-- set proper node numbers in the hash table, and during the printing
-- phase to make sure that a given node is not printed more than once.
-- (nodes are printed in order during the printing phase, that's the
-- point of numbering them in the first place).
Printing_Descendants : Boolean;
-- True if descendants are being printed, False if not. In the false case,
-- only node Id's are printed. In the true case, node numbers as well as
-- node Id's are printed, as described above.
type Phase_Type is (Marking, Printing);
-- Type for Phase variable
Phase : Phase_Type;
-- When an entire tree is being printed, the traversal operates in two
-- phases. The first phase marks the nodes in use by installing node
-- numbers in the node number table. The second phase prints the nodes.
-- This variable indicates the current phase.
----------------------
-- Local Procedures --
----------------------
function From_Union is new Unchecked_Conversion (Union_Id, Uint);
function From_Union is new Unchecked_Conversion (Union_Id, Ureal);
function Capitalize (S : String) return String;
procedure Capitalize (S : in out String);
-- Turns an identifier into Mixed_Case
function Image (F : Node_Field) return String;
function Image (F : Entity_Field) return String;
procedure Print_Init;
-- Initialize for printing of tree with descendants
procedure Print_End_Span (N : Node_Id);
-- Print contents of End_Span field of node N. The format includes the
-- implicit source location as well as the value of the field.
procedure Print_Term;
-- Clean up after printing of tree with descendants
procedure Print_Char (C : Character);
-- Print character C if currently in print phase, noop if in marking phase
procedure Print_Name (N : Name_Id);
-- Print name from names table if currently in print phase, noop if in
-- marking phase. Note that the name is output in mixed case mode.
procedure Print_Node_Header (N : Node_Id);
-- Print header line used by Print_Node and Print_Node_Briefly
procedure Print_Node_Kind (N : Node_Id);
-- Print node kind name in mixed case if in print phase, noop if in
-- marking phase.
procedure Print_Str (S : String);
-- Print string S if currently in print phase, noop if in marking phase
procedure Print_Str_Mixed_Case (S : String);
-- Like Print_Str, except that the string is printed in mixed case mode
procedure Print_Int (I : Int);
-- Print integer I if currently in print phase, noop if in marking phase
procedure Print_Eol;
-- Print end of line if currently in print phase, noop if in marking phase
procedure Print_Node_Ref (N : Node_Id);
-- Print "<empty>", "<error>" or "Node #nnn" with additional information
-- in the latter case, including the Id and the Nkind of the node.
procedure Print_List_Ref (L : List_Id);
-- Print "<no list>", or "<empty node list>" or "Node list #nnn"
procedure Print_Elist_Ref (E : Elist_Id);
-- Print "<no elist>", or "<empty element list>" or "Element list #nnn"
procedure Print_Entity_Info (Ent : Entity_Id; Prefix : String);
-- Called if the node being printed is an entity. Prints fields from the
-- extension, using routines in Einfo to get the field names and flags.
procedure Print_Field (Val : Union_Id; Format : UI_Format := Auto);
procedure Print_Field
(Prefix : String;
Field : String;
N : Node_Or_Entity_Id;
FD : Field_Descriptor;
Format : UI_Format);
-- Print representation of Field value (name, tree, string, uint, charcode)
-- The format parameter controls the format of printing in the case of an
-- integer value (see UI_Write for details).
procedure Print_Node_Field
(Prefix : String;
Field : Node_Field;
N : Node_Id;
FD : Field_Descriptor;
Format : UI_Format := Auto);
procedure Print_Entity_Field
(Prefix : String;
Field : Entity_Field;
N : Entity_Id;
FD : Field_Descriptor;
Format : UI_Format := Auto);
procedure Print_Flag (F : Boolean);
-- Print True or False
procedure Print_Node
(N : Node_Id;
Prefix_Str : String;
Prefix_Char : Character);
-- This is the internal routine used to print a single node. Each line of
-- output is preceded by Prefix_Str (which is used to set the indentation
-- level and the bars used to link list elements). In addition, for lines
-- other than the first, an additional character Prefix_Char is output.
function Serial_Number (Id : Int) return Nat;
-- Given a Node_Id, List_Id or Elist_Id, returns the previously assigned
-- serial number, or zero if no serial number has yet been assigned.
procedure Set_Serial_Number;
-- Can be called only immediately following a call to Serial_Number that
-- returned a value of zero. Causes the value of Next_Serial_Number to be
-- placed in the hash table (corresponding to the Id argument used in the
-- Serial_Number call), and increments Next_Serial_Number.
procedure Visit_Node
(N : Node_Id;
Prefix_Str : String;
Prefix_Char : Character);
-- Called to process a single node in the case where descendants are to
-- be printed before every line, and Prefix_Char added to all lines
-- except the header line for the node.
procedure Visit_List (L : List_Id; Prefix_Str : String);
-- Visit_List is called to process a list in the case where descendants
-- are to be printed. Prefix_Str is to be added to all printed lines.
procedure Visit_Elist (E : Elist_Id; Prefix_Str : String);
-- Visit_Elist is called to process an element list in the case where
-- descendants are to be printed. Prefix_Str is to be added to all
-- printed lines.
----------------
-- Capitalize --
----------------
procedure Capitalize (S : in out String) is
Cap : Boolean := True;
begin
for J in S'Range loop
declare
Old : constant Character := S (J);
begin
if Cap then
S (J) := Fold_Upper (S (J));
else
S (J) := Fold_Lower (S (J));
end if;
Cap := Old = '_';
end;
end loop;
end Capitalize;
function Capitalize (S : String) return String is
begin
return Result : String (S'Range) := S do
Capitalize (Result);
end return;
end Capitalize;
-----------
-- Image --
-----------
function Image (F : Node_Field) return String is
begin
case F is
when F_Alloc_For_BIP_Return =>
return "Alloc_For_BIP_Return";
when F_Assignment_OK =>
return "Assignment_OK";
when F_Backwards_OK =>
return "Backwards_OK";
when F_Conversion_OK =>
return "Conversion_OK";
when F_Forwards_OK =>
return "Forwards_OK";
when F_Has_SP_Choice =>
return "Has_SP_Choice";
when F_Is_Elaboration_Checks_OK_Node =>
return "Is_Elaboration_Checks_OK_Node";
when F_Is_Elaboration_Warnings_OK_Node =>
return "Is_Elaboration_Warnings_OK_Node";
when F_Is_Known_Guaranteed_ABE =>
return "Is_Known_Guaranteed_ABE";
when F_Is_SPARK_Mode_On_Node =>
return "Is_SPARK_Mode_On_Node";
when F_Local_Raise_Not_OK =>
return "Local_Raise_Not_OK";
when F_SCIL_Controlling_Tag =>
return "SCIL_Controlling_Tag";
when F_SCIL_Entity =>
return "SCIL_Entity";
when F_SCIL_Tag_Value =>
return "SCIL_Tag_Value";
when F_SCIL_Target_Prim =>
return "SCIL_Target_Prim";
when F_Shift_Count_OK =>
return "Shift_Count_OK";
when F_Split_PPC =>
return "Split_PPC";
when F_TSS_Elist =>
return "TSS_Elist";
when others =>
declare
Result : constant String := Capitalize (F'Img);
begin
return Result (3 .. Result'Last); -- Remove "F_"
end;
end case;
end Image;
function Image (F : Entity_Field) return String is
begin
case F is
when F_BIP_Initialization_Call =>
return "BIP_Initialization_Call";
when F_Body_Needed_For_SAL =>
return "Body_Needed_For_SAL";
when F_CR_Discriminant =>
return "CR_Discriminant";
when F_DT_Entry_Count =>
return "DT_Entry_Count";
when F_DT_Offset_To_Top_Func =>
return "DT_Offset_To_Top_Func";
when F_DT_Position =>
return "DT_Position";
when F_DTC_Entity =>
return "DTC_Entity";
when F_Has_Inherited_DIC =>
return "Has_Inherited_DIC";
when F_Has_Own_DIC =>
return "Has_Own_DIC";
when F_Has_RACW =>
return "Has_RACW";
when F_Ignore_SPARK_Mode_Pragmas =>
return "Ignore_SPARK_Mode_Pragmas";
when F_Is_Constr_Subt_For_UN_Aliased =>
return "Is_Constr_Subt_For_UN_Aliased";
when F_Is_CPP_Class =>
return "Is_CPP_Class";
when F_Is_CUDA_Kernel =>
return "Is_CUDA_Kernel";
when F_Is_DIC_Procedure =>
return "Is_DIC_Procedure";
when F_Is_Discrim_SO_Function =>
return "Is_Discrim_SO_Function";
when F_Is_Elaboration_Checks_OK_Id =>
return "Is_Elaboration_Checks_OK_Id";
when F_Is_Elaboration_Warnings_OK_Id =>
return "Is_Elaboration_Warnings_OK_Id";
when F_Is_RACW_Stub_Type =>
return "Is_RACW_Stub_Type";
when F_LSP_Subprogram =>
return "LSP_Subprogram";
when F_OK_To_Rename =>
return "OK_To_Rename";
when F_Referenced_As_LHS =>
return "Referenced_As_LHS";
when F_RM_Size =>
return "RM_Size";
when F_SPARK_Aux_Pragma =>
return "SPARK_Aux_Pragma";
when F_SPARK_Aux_Pragma_Inherited =>
return "SPARK_Aux_Pragma_Inherited";
when F_SPARK_Pragma =>
return "SPARK_Pragma";
when F_SPARK_Pragma_Inherited =>
return "SPARK_Pragma_Inherited";
when F_SSO_Set_High_By_Default =>
return "SSO_Set_High_By_Default";
when F_SSO_Set_Low_By_Default =>
return "SSO_Set_Low_By_Default";
when others =>
declare
Result : constant String := Capitalize (F'Img);
begin
return Result (3 .. Result'Last); -- Remove "F_"
end;
end case;
end Image;
-------
-- p --
-------
function p (N : Union_Id) return Node_Or_Entity_Id is
begin
case N is
when List_Low_Bound .. List_High_Bound - 1 =>
return Nlists.Parent (List_Id (N));
when Node_Range =>
return Parent (Node_Or_Entity_Id (N));
when others =>
Write_Int (Int (N));
Write_Str (" is not a Node_Id or List_Id value");
Write_Eol;
return Empty;
end case;
end p;
---------
-- par --
---------
function par (N : Union_Id) return Node_Or_Entity_Id renames p;
procedure ppar (N : Union_Id) is
begin
if N /= Empty_List_Or_Node then
pp (N);
ppar (Union_Id (p (N)));
end if;
end ppar;
--------
-- pe --
--------
procedure pe (N : Union_Id) renames pn;
--------
-- pl --
--------
procedure pl (L : Int) is
Lid : Int;
begin
Push_Output;
Set_Standard_Output;
if L < 0 then
Lid := L;
-- This is the case where we transform e.g. +36 to -99999936
else
if L <= 9 then
Lid := -(99999990 + L);
elsif L <= 99 then
Lid := -(99999900 + L);
elsif L <= 999 then
Lid := -(99999000 + L);
elsif L <= 9999 then
Lid := -(99990000 + L);
elsif L <= 99999 then
Lid := -(99900000 + L);
elsif L <= 999999 then
Lid := -(99000000 + L);
elsif L <= 9999999 then
Lid := -(90000000 + L);
else
Lid := -L;
end if;
end if;
-- Now output the list
Print_Tree_List (List_Id (Lid));
Pop_Output;
end pl;
--------
-- pn --
--------
procedure pn (N : Union_Id) is
begin
Push_Output;
Set_Standard_Output;
case N is
when List_Low_Bound .. List_High_Bound - 1 =>
pl (Int (N));
when Node_Range =>
Print_Tree_Node (Node_Id (N));
when Elist_Range =>
Print_Tree_Elist (Elist_Id (N));
when Elmt_Range =>
declare
Id : constant Elmt_Id := Elmt_Id (N);
begin
if No (Id) then
Write_Str ("No_Elmt");
Write_Eol;
else
Write_Str ("Elmt_Id --> ");
Print_Tree_Node (Node (Id));
end if;
end;
when Names_Range =>
Namet.wn (Name_Id (N));
when Strings_Range =>
Write_String_Table_Entry (String_Id (N));
when Uint_Range =>
Uintp.pid (From_Union (N));
when Ureal_Range =>
Urealp.pr (From_Union (N));
when others =>
Write_Str ("Invalid Union_Id: ");
Write_Int (Int (N));
Write_Eol;
end case;
Pop_Output;
end pn;
--------
-- pp --
--------
procedure pp (N : Union_Id) renames pn;
---------
-- ppp --
---------
procedure ppp (N : Union_Id) renames pt;
----------------
-- Print_Char --
----------------
procedure Print_Char (C : Character) is
begin
if Phase = Printing then
Write_Char (C);
end if;
end Print_Char;
---------------------
-- Print_Elist_Ref --
---------------------
procedure Print_Elist_Ref (E : Elist_Id) is
begin
if Phase /= Printing then
return;
end if;
if E = No_Elist then
Write_Str ("<no elist>");
elsif Is_Empty_Elmt_List (E) then
Write_Str ("Empty elist, (Elist_Id=");
Write_Int (Int (E));
Write_Char (')');
else
Write_Str ("(Elist_Id=");
Write_Int (Int (E));
Write_Char (')');
if Printing_Descendants then
Write_Str (" #");
Write_Int (Serial_Number (Int (E)));
end if;
end if;
end Print_Elist_Ref;
-------------------------
-- Print_Elist_Subtree --
-------------------------
procedure Print_Elist_Subtree (E : Elist_Id) is
begin
Print_Init;
Next_Serial_Number := 1;
Phase := Marking;
Visit_Elist (E, "");
Next_Serial_Number := 1;
Phase := Printing;
Visit_Elist (E, "");
Print_Term;
end Print_Elist_Subtree;
--------------------
-- Print_End_Span --
--------------------
procedure Print_End_Span (N : Node_Id) is
Val : constant Uint := End_Span (N);
begin
UI_Write (Val);
Write_Str (" (Uint = ");
Write_Str (UI_Image (Val));
Write_Str (") ");
if Val /= No_Uint then
Write_Location (End_Location (N));
end if;
end Print_End_Span;
-----------------------
-- Print_Entity_Info --
-----------------------
procedure Print_Entity_Info (Ent : Entity_Id; Prefix : String) is
begin
Print_Str (Prefix);
Print_Str ("Ekind = ");
Print_Str_Mixed_Case (Entity_Kind'Image (Ekind (Ent)));
Print_Eol;
Print_Str (Prefix);
Print_Str ("Etype = ");
Print_Node_Ref (Etype (Ent));
Print_Eol;
if Convention (Ent) /= Convention_Ada then
Print_Str (Prefix);
Print_Str ("Convention = ");
-- Print convention name skipping the Convention_ at the start
declare
S : constant String := Convention_Id'Image (Convention (Ent));
begin
Print_Str_Mixed_Case (S (12 .. S'Last));
Print_Eol;
end;
end if;
declare
Fields : Entity_Field_Array renames
Entity_Field_Table (Ekind (Ent)).all;
Should_Print : constant Entity_Field_Set :=
-- Set of fields that should be printed. False for fields that were
-- already printed above.
(F_Ekind
| F_Basic_Convention => False, -- Convention was printed
others => True);
begin
-- Outer loop makes flags come out last
for Print_Flags in Boolean loop
for Field_Index in Fields'Range loop
declare
FD : Field_Descriptor renames
Entity_Field_Descriptors (Fields (Field_Index));
begin
if Should_Print (Fields (Field_Index))
and then (FD.Kind = Flag_Field) = Print_Flags
then
Print_Entity_Field
(Prefix, Fields (Field_Index), Ent, FD);
end if;
end;
end loop;
end loop;
end;
end Print_Entity_Info;
---------------
-- Print_Eol --
---------------
procedure Print_Eol is
begin
if Phase = Printing then
Write_Eol;
end if;
end Print_Eol;
-----------------
-- Print_Field --
-----------------
-- Instantiations of low-level getters and setters that take offsets
-- in units of the size of the field.
use Atree.Atree_Private_Part;
function Get_Flag is new Get_1_Bit_Field
(Boolean) with Inline;
function Get_Node_Id is new Get_32_Bit_Field
(Node_Id) with Inline;
function Get_List_Id is new Get_32_Bit_Field
(List_Id) with Inline;
function Get_Elist_Id is new Get_32_Bit_Field_With_Default
(Elist_Id, No_Elist) with Inline;
function Get_Name_Id is new Get_32_Bit_Field
(Name_Id) with Inline;
function Get_String_Id is new Get_32_Bit_Field
(String_Id) with Inline;
function Get_Uint is new Get_32_Bit_Field_With_Default
(Uint, Uint_0) with Inline;
function Get_Valid_Uint is new Get_32_Bit_Field
(Uint) with Inline;
-- Used for both Valid_Uint and other subtypes of Uint. Note that we don't
-- instantiate Get_Valid_32_Bit_Field; we don't want to blow up if the
-- value is wrong.
function Get_Ureal is new Get_32_Bit_Field
(Ureal) with Inline;
function Get_Node_Kind_Type is new Get_8_Bit_Field
(Node_Kind) with Inline;
function Get_Entity_Kind_Type is new Get_8_Bit_Field
(Entity_Kind) with Inline;
function Get_Source_Ptr is new Get_32_Bit_Field
(Source_Ptr) with Inline, Unreferenced;
function Get_Small_Paren_Count_Type is new Get_2_Bit_Field
(Small_Paren_Count_Type) with Inline, Unreferenced;
function Get_Union_Id is new Get_32_Bit_Field
(Union_Id) with Inline;
function Get_Convention_Id is new Get_8_Bit_Field
(Convention_Id) with Inline, Unreferenced;
function Get_Mechanism_Type is new Get_32_Bit_Field
(Mechanism_Type) with Inline, Unreferenced;
procedure Print_Field (Val : Union_Id; Format : UI_Format := Auto) is
begin
if Phase /= Printing then
return;
end if;
if Val in Node_Range then
Print_Node_Ref (Node_Id (Val));
elsif Val in List_Range then
Print_List_Ref (List_Id (Val));
elsif Val in Elist_Range then
Print_Elist_Ref (Elist_Id (Val));
elsif Val in Names_Range then
Print_Name (Name_Id (Val));
Write_Str (" (Name_Id=");
Write_Int (Int (Val));
Write_Char (')');
elsif Val in Strings_Range then
Write_String_Table_Entry (String_Id (Val));
Write_Str (" (String_Id=");
Write_Int (Int (Val));
Write_Char (')');
elsif Val in Uint_Range then
UI_Write (From_Union (Val), Format);
Write_Str (" (Uint = ");
Write_Int (Int (Val));
Write_Char (')');
elsif Val in Ureal_Range then
UR_Write (From_Union (Val));
Write_Str (" (Ureal = ");
Write_Int (Int (Val));
Write_Char (')');
else
Print_Str ("****** Incorrect value = ");
Print_Int (Int (Val));
end if;
end Print_Field;
procedure Print_Field
(Prefix : String;
Field : String;
N : Node_Or_Entity_Id;
FD : Field_Descriptor;
Format : UI_Format)
is
Printed : Boolean := False;
procedure Print_Initial;
-- Print the initial stuff that goes before the value
procedure Print_Initial is
begin
Printed := True;
Print_Str (Prefix);
Print_Str (Field);
if Print_Low_Level_Info then
Write_Str (" at ");
Write_Int (Int (FD.Offset));
end if;
Write_Str (" = ");
end Print_Initial;
begin
if Phase /= Printing then
return;
end if;
case FD.Kind is
when Flag_Field =>
declare
Val : constant Boolean := Get_Flag (N, FD.Offset);
begin
if Val then
Print_Initial;
Print_Flag (Val);
end if;
end;
when Node_Id_Field =>
declare
Val : constant Node_Id := Get_Node_Id (N, FD.Offset);
begin
if Present (Val) then
Print_Initial;
Print_Node_Ref (Val);
end if;
end;
when List_Id_Field =>
declare
Val : constant List_Id := Get_List_Id (N, FD.Offset);
begin
if Present (Val) then
Print_Initial;
Print_List_Ref (Val);
end if;
end;
when Elist_Id_Field =>
declare
Val : constant Elist_Id := Get_Elist_Id (N, FD.Offset);
begin
if Present (Val) then
Print_Initial;
Print_Elist_Ref (Val);
end if;
end;
when Name_Id_Field =>
declare
Val : constant Name_Id := Get_Name_Id (N, FD.Offset);
begin
if Present (Val) then
Print_Initial;
Print_Name (Val);
Write_Str (" (Name_Id=");
Write_Int (Int (Val));
Write_Char (')');
end if;
end;
when String_Id_Field =>
declare
Val : constant String_Id := Get_String_Id (N, FD.Offset);
begin
if Val /= No_String then
Print_Initial;
Write_String_Table_Entry (Val);
Write_Str (" (String_Id=");
Write_Int (Int (Val));
Write_Char (')');
end if;
end;
when Uint_Field =>
declare
Val : constant Uint := Get_Uint (N, FD.Offset);
function Cast is new Unchecked_Conversion (Uint, Int);
begin
-- Do this even if Val = No_Uint, because Uint fields default
-- to Uint_0.
Print_Initial;
UI_Write (Val, Format);
Write_Str (" (Uint = ");
Write_Int (Cast (Val));
Write_Char (')');
end;
when Valid_Uint_Field | Unat_Field | Upos_Field
| Nonzero_Uint_Field =>
declare
Val : constant Uint := Get_Valid_Uint (N, FD.Offset);
function Cast is new Unchecked_Conversion (Uint, Int);
begin
Print_Initial;
UI_Write (Val, Format);
case FD.Kind is
when Valid_Uint_Field => Write_Str (" v");
when Unat_Field => Write_Str (" n");
when Upos_Field => Write_Str (" p");
when Nonzero_Uint_Field => Write_Str (" nz");
when others => raise Program_Error;
end case;
Write_Str (" (Uint = ");
Write_Int (Cast (Val));
Write_Char (')');
end;
when Ureal_Field =>
declare
Val : constant Ureal := Get_Ureal (N, FD.Offset);
function Cast is new Unchecked_Conversion (Ureal, Int);
begin
if Val /= No_Ureal then
Print_Initial;
UR_Write (Val);
Write_Str (" (Ureal = ");
Write_Int (Cast (Val));
Write_Char (')');
end if;
end;
when Node_Kind_Type_Field =>
declare
Val : constant Node_Kind := Get_Node_Kind_Type (N, FD.Offset);
begin
Print_Initial;
Print_Str_Mixed_Case (Node_Kind'Image (Val));
end;
when Entity_Kind_Type_Field =>
declare
Val : constant Entity_Kind :=
Get_Entity_Kind_Type (N, FD.Offset);
begin
Print_Initial;
Print_Str_Mixed_Case (Entity_Kind'Image (Val));
end;
when Union_Id_Field =>
declare
Val : constant Union_Id := Get_Union_Id (N, FD.Offset);
begin
if Val /= Empty_List_Or_Node then
Print_Initial;
if Val in Node_Range then
Print_Node_Ref (Node_Id (Val));
elsif Val in List_Range then
Print_List_Ref (List_Id (Val));
else
Print_Str ("<invalid union id>");
end if;
end if;
end;
when others =>
Print_Initial;
Print_Str ("<unknown ");
Print_Str (Field_Kind'Image (FD.Kind));
Print_Str (">");
end case;
if Printed then
Print_Eol;
end if;
-- If an exception is raised while printing, we try to print some low-level
-- information that is useful for debugging.
exception
when others =>
declare
function Cast is new Unchecked_Conversion (Field_Size_32_Bit, Int);
begin
Write_Eol;
Print_Initial;
Write_Str ("exception raised in Print_Field -- int val = ");
Write_Eol;
case Field_Size (FD.Kind) is
when 1 => Write_Int (Int (Get_1_Bit_Val (N, FD.Offset)));
when 2 => Write_Int (Int (Get_2_Bit_Val (N, FD.Offset)));
when 4 => Write_Int (Int (Get_4_Bit_Val (N, FD.Offset)));
when 8 => Write_Int (Int (Get_8_Bit_Val (N, FD.Offset)));
when others => -- 32
Write_Int (Cast (Get_32_Bit_Val (N, FD.Offset)));
end case;
Write_Str (", ");
Write_Str (FD.Kind'Img);
Write_Str (" ");
Write_Int (Int (Field_Size (FD.Kind)));
Write_Str (" bits");
Write_Eol;
exception
when others =>
Write_Eol;
Write_Str ("double exception raised in Print_Field");
Write_Eol;
end;
end Print_Field;
----------------------
-- Print_Node_Field --
----------------------
procedure Print_Node_Field
(Prefix : String;
Field : Node_Field;
N : Node_Id;
FD : Field_Descriptor;
Format : UI_Format := Auto)
is
begin
if not Field_Is_Initial_Zero (N, Field) then
Print_Field (Prefix, Image (Field), N, FD, Format);
end if;
end Print_Node_Field;
------------------------
-- Print_Entity_Field --
------------------------
procedure Print_Entity_Field
(Prefix : String;
Field : Entity_Field;
N : Entity_Id;
FD : Field_Descriptor;
Format : UI_Format := Auto)
is
begin
if not Field_Is_Initial_Zero (N, Field) then
Print_Field (Prefix, Image (Field), N, FD, Format);
end if;
end Print_Entity_Field;
----------------
-- Print_Flag --
----------------
procedure Print_Flag (F : Boolean) is
begin
if F then
Print_Str ("True");
else
Print_Str ("False");
end if;
end Print_Flag;
----------------
-- Print_Init --
----------------
procedure Print_Init is
Max_Hash_Entries : constant Nat :=
Approx_Num_Nodes_And_Entities + Num_Lists + Num_Elists;
begin
Printing_Descendants := True;
Write_Eol;
-- Allocate and clear serial number hash table. The size is 150% of
-- the maximum possible number of entries, so that the hash table
-- cannot get significantly overloaded.
Hash_Table_Len := (150 * Max_Hash_Entries) / 100;
Hash_Table := new Hash_Table_Type (0 .. Hash_Table_Len - 1);
for J in Hash_Table'Range loop
Hash_Table (J).Serial := 0;
end loop;
end Print_Init;
---------------
-- Print_Int --
---------------
procedure Print_Int (I : Int) is
begin
if Phase = Printing then
Write_Int (I);
end if;
end Print_Int;
--------------------
-- Print_List_Ref --
--------------------
procedure Print_List_Ref (L : List_Id) is
begin
if Phase /= Printing then
return;
end if;
if No (L) then
Write_Str ("<no list>");
elsif Is_Empty_List (L) then
Write_Str ("<empty list> (List_Id=");
Write_Int (Int (L));
Write_Char (')');
else
Write_Str ("List");
if Printing_Descendants then
Write_Str (" #");
Write_Int (Serial_Number (Int (L)));
end if;
Write_Str (" (List_Id=");
Write_Int (Int (L));
Write_Char (')');
end if;
end Print_List_Ref;
------------------------
-- Print_List_Subtree --
------------------------
procedure Print_List_Subtree (L : List_Id) is
begin
Print_Init;
Next_Serial_Number := 1;
Phase := Marking;
Visit_List (L, "");
Next_Serial_Number := 1;
Phase := Printing;
Visit_List (L, "");
Print_Term;
end Print_List_Subtree;
----------------
-- Print_Name --
----------------
procedure Print_Name (N : Name_Id) is
begin
if Phase = Printing then
if N = No_Name then
Print_Str ("<No_Name>");
elsif N = Error_Name then
Print_Str ("<Error_Name>");
elsif Is_Valid_Name (N) then
Get_Name_String (N);
Print_Char ('"');
Write_Name (N);
Print_Char ('"');
else
Print_Str ("<invalid name>");
end if;
end if;
end Print_Name;
----------------
-- Print_Node --
----------------
procedure Print_Node
(N : Node_Id;
Prefix_Str : String;
Prefix_Char : Character)
is
Prefix : constant String := Prefix_Str & Prefix_Char;
Sfile : Source_File_Index;
Fmt : UI_Format;
begin
if Phase /= Printing then
return;
end if;
-- If there is no such node, indicate that. Skip the rest, so we don't
-- crash getting fields of the nonexistent node.
if not Is_Valid_Node (Union_Id (N)) then
Print_Str ("No such node: ");
Print_Int (Int (N));
Print_Eol;
return;
end if;
-- Print header line
Print_Str (Prefix_Str);
Print_Node_Header (N);
if Is_Rewrite_Substitution (N) then
Print_Str (Prefix_Str);
Print_Str (" Rewritten: original node = ");
Print_Node_Ref (Original_Node (N));
Print_Eol;
end if;
if Print_Low_Level_Info then
Print_Atree_Info (N);
end if;
if N = Empty then
return;
end if;
if not Is_List_Member (N) then
Print_Str (Prefix_Str);
Print_Str (" Parent = ");
Print_Node_Ref (Parent (N));
Print_Eol;
end if;
-- Print Sloc field if it is set
if Sloc (N) /= No_Location then
Print_Str (Prefix);
Print_Str ("Sloc = ");
if Sloc (N) = Standard_Location then
Print_Str ("Standard_Location");
elsif Sloc (N) = Standard_ASCII_Location then
Print_Str ("Standard_ASCII_Location");
else
Sfile := Get_Source_File_Index (Sloc (N));
Print_Int (Int (Sloc (N)) - Int (Source_Text (Sfile)'First));
Write_Str (" ");
Write_Location (Sloc (N));
end if;
Print_Eol;
end if;
-- Print Chars field if present
if Nkind (N) in N_Has_Chars and then Chars (N) /= No_Name then
Print_Str (Prefix);
Print_Str ("Chars = ");
Print_Name (Chars (N));
Write_Str (" (Name_Id=");
Write_Int (Int (Chars (N)));
Write_Char (')');
Print_Eol;
end if;
-- Special field print operations for non-entity nodes
if Nkind (N) not in N_Entity then
-- Deal with Left_Opnd and Right_Opnd fields
if Nkind (N) in N_Op
or else Nkind (N) in N_Short_Circuit
or else Nkind (N) in N_Membership_Test
then
-- Print Left_Opnd if present
if Nkind (N) not in N_Unary_Op then
Print_Str (Prefix);
Print_Str ("Left_Opnd = ");
Print_Node_Ref (Left_Opnd (N));
Print_Eol;
end if;
-- Print Right_Opnd
Print_Str (Prefix);
Print_Str ("Right_Opnd = ");
Print_Node_Ref (Right_Opnd (N));
Print_Eol;
end if;
-- Deal with Entity_Or_Associated_Node. If N has both, then just
-- print Entity; they are the same thing.
if N in N_Inclusive_Has_Entity and then Present (Entity (N)) then
Print_Str (Prefix);
Print_Str ("Entity = ");
Print_Node_Ref (Entity (N));
Print_Eol;
elsif N in N_Has_Associated_Node
and then Present (Associated_Node (N))
then
Print_Str (Prefix);
Print_Str ("Associated_Node = ");
Print_Node_Ref (Associated_Node (N));
Print_Eol;
end if;
-- Print special fields if we have a subexpression
if Nkind (N) in N_Subexpr then
if Assignment_OK (N) then
Print_Str (Prefix);
Print_Str ("Assignment_OK = True");
Print_Eol;
end if;
if Do_Range_Check (N) then
Print_Str (Prefix);
Print_Str ("Do_Range_Check = True");
Print_Eol;
end if;
if Has_Dynamic_Length_Check (N) then
Print_Str (Prefix);
Print_Str ("Has_Dynamic_Length_Check = True");
Print_Eol;
end if;
if Has_Aspects (N) then
Print_Str (Prefix);
Print_Str ("Has_Aspects = True");
Print_Eol;
end if;
if Is_Controlling_Actual (N) then
Print_Str (Prefix);
Print_Str ("Is_Controlling_Actual = True");
Print_Eol;
end if;
if Is_Overloaded (N) then
Print_Str (Prefix);
Print_Str ("Is_Overloaded = True");
Print_Eol;
end if;
if Is_Static_Expression (N) then
Print_Str (Prefix);
Print_Str ("Is_Static_Expression = True");
Print_Eol;
end if;
if Must_Not_Freeze (N) then
Print_Str (Prefix);
Print_Str ("Must_Not_Freeze = True");
Print_Eol;
end if;
if Paren_Count (N) /= 0 then
Print_Str (Prefix);
Print_Str ("Paren_Count = ");
Print_Int (Int (Paren_Count (N)));
Print_Eol;
end if;
if Raises_Constraint_Error (N) then
Print_Str (Prefix);
Print_Str ("Raises_Constraint_Error = True");
Print_Eol;
end if;
end if;
-- Print Do_Overflow_Check field if present
if Nkind (N) in N_Op and then Do_Overflow_Check (N) then
Print_Str (Prefix);
Print_Str ("Do_Overflow_Check = True");
Print_Eol;
end if;
-- Print Etype field if present (printing of this field for entities
-- is handled by the Print_Entity_Info procedure).
if Nkind (N) in N_Has_Etype and then Present (Etype (N)) then
Print_Str (Prefix);
Print_Str ("Etype = ");
Print_Node_Ref (Etype (N));
Print_Eol;
end if;
end if;
if Nkind (N) = N_Integer_Literal and then Print_In_Hex (N) then
Fmt := Hex;
else
Fmt := Auto;
end if;
declare
Fields : Node_Field_Array renames Node_Field_Table (Nkind (N)).all;
Should_Print : constant Node_Field_Set :=
-- Set of fields that should be printed. False for fields that were
-- already printed above, and for In_List, which we don't bother
-- printing.
(F_Nkind
| F_Chars
| F_Comes_From_Source
| F_Analyzed
| F_Error_Posted
| F_Is_Ignored_Ghost_Node
| F_Check_Actuals
| F_Link -- Parent was printed
| F_Sloc
| F_Left_Opnd
| F_Right_Opnd
| F_Entity_Or_Associated_Node -- one of them was printed
| F_Assignment_OK
| F_Do_Range_Check
| F_Has_Dynamic_Length_Check
| F_Has_Aspects
| F_Is_Controlling_Actual
| F_Is_Overloaded
| F_Is_Static_Expression
| F_Must_Not_Freeze
| F_Small_Paren_Count -- Paren_Count was printed
| F_Raises_Constraint_Error
| F_Do_Overflow_Check
| F_Etype
| F_In_List
=> False,
others => True);
begin
-- Outer loop makes flags come out last
for Print_Flags in Boolean loop
for Field_Index in Fields'Range loop
declare
FD : Field_Descriptor renames
Node_Field_Descriptors (Fields (Field_Index));
begin
if Should_Print (Fields (Field_Index))
and then (FD.Kind = Flag_Field) = Print_Flags
then
-- Special case for End_Span, which also prints the
-- End_Location.
if Fields (Field_Index) = F_End_Span then
Print_End_Span (N);
else
Print_Node_Field
(Prefix, Fields (Field_Index), N, FD, Fmt);
end if;
end if;
end;
end loop;
end loop;
end;
-- Print aspects if present
if Has_Aspects (N) then
Print_Str (Prefix);
Print_Str ("Aspect_Specifications = ");
Print_Field (Union_Id (Aspect_Specifications (N)));
Print_Eol;
end if;
-- Print entity information for entities
if Nkind (N) in N_Entity then
Print_Entity_Info (N, Prefix);
end if;
-- Print the SCIL node (if available)
if Present (Get_SCIL_Node (N)) then
Print_Str (Prefix);
Print_Str ("SCIL_Node = ");
Print_Node_Ref (Get_SCIL_Node (N));
Print_Eol;
end if;
end Print_Node;
------------------------
-- Print_Node_Briefly --
------------------------
procedure Print_Node_Briefly (N : Node_Id) is
begin
Printing_Descendants := False;
Phase := Printing;
Print_Node_Header (N);
end Print_Node_Briefly;
-----------------------
-- Print_Node_Header --
-----------------------
procedure Print_Node_Header (N : Node_Id) is
Enumerate : Boolean := False;
-- Flag set when enumerating multiple header flags
procedure Print_Header_Flag (Flag : String);
-- Output one of the flags that appears in a node header. The routine
-- automatically handles enumeration of multiple flags.
-----------------------
-- Print_Header_Flag --
-----------------------
procedure Print_Header_Flag (Flag : String) is
begin
if Enumerate then
Print_Char (',');
else
Enumerate := True;
Print_Char ('(');
end if;
Print_Str (Flag);
end Print_Header_Flag;
-- Start of processing for Print_Node_Header
begin
Print_Node_Ref (N);
if not Is_Valid_Node (Union_Id (N)) then
Print_Str (" (no such node)");
Print_Eol;
return;
end if;
Print_Char (' ');
if Comes_From_Source (N) then
Print_Header_Flag ("source");
end if;
if Analyzed (N) then
Print_Header_Flag ("analyzed");
end if;
if Error_Posted (N) then
Print_Header_Flag ("posted");
end if;
if Is_Ignored_Ghost_Node (N) then
Print_Header_Flag ("ignored ghost");
end if;
if Check_Actuals (N) then
Print_Header_Flag ("check actuals");
end if;
if Enumerate then
Print_Char (')');
end if;
Print_Eol;
end Print_Node_Header;
---------------------
-- Print_Node_Kind --
---------------------
procedure Print_Node_Kind (N : Node_Id) is
begin
if Phase = Printing then
Print_Str_Mixed_Case (Node_Kind'Image (Nkind (N)));
end if;
end Print_Node_Kind;
--------------------
-- Print_Node_Ref --
--------------------
procedure Print_Node_Ref (N : Node_Id) is
S : Nat;
begin
if Phase /= Printing then
return;
end if;
if N = Empty then
Write_Str ("<empty>");
elsif N = Error then
Write_Str ("<error>");
else
if Printing_Descendants then
S := Serial_Number (Int (N));
if S /= 0 then
Write_Str ("Node");
Write_Str (" #");
Write_Int (S);
Write_Char (' ');
end if;
end if;
Print_Node_Kind (N);
if Nkind (N) in N_Has_Chars then
Write_Char (' ');
Print_Name (Chars (N));
end if;
if Nkind (N) in N_Entity then
Write_Str (" (Entity_Id=");
else
Write_Str (" (Node_Id=");
end if;
Write_Int (Int (N));
if Sloc (N) <= Standard_Location then
Write_Char ('s');
end if;
Write_Char (')');
end if;
end Print_Node_Ref;
------------------------
-- Print_Node_Subtree --
------------------------
procedure Print_Node_Subtree (N : Node_Id) is
begin
Print_Init;
Next_Serial_Number := 1;
Phase := Marking;
Visit_Node (N, "", ' ');
Next_Serial_Number := 1;
Phase := Printing;
Visit_Node (N, "", ' ');
Print_Term;
end Print_Node_Subtree;
---------------
-- Print_Str --
---------------
procedure Print_Str (S : String) is
begin
if Phase = Printing then
Write_Str (S);
end if;
end Print_Str;
--------------------------
-- Print_Str_Mixed_Case --
--------------------------
procedure Print_Str_Mixed_Case (S : String) is
Ucase : Boolean;
begin
if Phase = Printing then
Ucase := True;
for J in S'Range loop
if Ucase then
Write_Char (S (J));
else
Write_Char (Fold_Lower (S (J)));
end if;
Ucase := (S (J) = '_');
end loop;
end if;
end Print_Str_Mixed_Case;
----------------
-- Print_Term --
----------------
procedure Print_Term is
procedure Free is new Unchecked_Deallocation
(Hash_Table_Type, Access_Hash_Table_Type);
begin
Free (Hash_Table);
end Print_Term;
---------------------
-- Print_Tree_Elist --
---------------------
procedure Print_Tree_Elist (E : Elist_Id) is
M : Elmt_Id;
begin
Printing_Descendants := False;
Phase := Printing;
Print_Elist_Ref (E);
Print_Eol;
if Present (E) and then not Is_Empty_Elmt_List (E) then
M := First_Elmt (E);
loop
Print_Char ('|');
Print_Eol;
exit when No (Next_Elmt (M));
Print_Node (Node (M), "", '|');
Next_Elmt (M);
end loop;
Print_Node (Node (M), "", ' ');
Print_Eol;
end if;
end Print_Tree_Elist;
---------------------
-- Print_Tree_List --
---------------------
procedure Print_Tree_List (L : List_Id) is
N : Node_Id;
begin
Printing_Descendants := False;
Phase := Printing;
Print_List_Ref (L);
Print_Str (" List_Id=");
Print_Int (Int (L));
Print_Eol;
N := First (L);
if N = Empty then
Print_Str ("<empty node list>");
Print_Eol;
else
loop
Print_Char ('|');
Print_Eol;
exit when Next (N) = Empty;
Print_Node (N, "", '|');
Next (N);
end loop;
Print_Node (N, "", ' ');
Print_Eol;
end if;
end Print_Tree_List;
---------------------
-- Print_Tree_Node --
---------------------
procedure Print_Tree_Node (N : Node_Id; Label : String := "") is
begin
Printing_Descendants := False;
Phase := Printing;
Print_Node (N, Label, ' ');
end Print_Tree_Node;
--------
-- pt --
--------
procedure pt (N : Union_Id) is
begin
case N is
when List_Low_Bound .. List_High_Bound - 1 =>
Print_List_Subtree (List_Id (N));
when Node_Range =>
Print_Node_Subtree (Node_Id (N));
when Elist_Range =>
Print_Elist_Subtree (Elist_Id (N));
when others =>
pp (N);
end case;
end pt;
-------------------
-- Serial_Number --
-------------------
-- The hashing algorithm is to use the remainder of the ID value divided
-- by the hash table length as the starting point in the table, and then
-- handle collisions by serial searching wrapping at the end of the table.
Hash_Slot : Nat;
-- Set by an unsuccessful call to Serial_Number (one which returns zero)
-- to save the slot that should be used if Set_Serial_Number is called.
function Serial_Number (Id : Int) return Nat is
H : Int := Id mod Hash_Table_Len;
begin
while Hash_Table (H).Serial /= 0 loop
if Id = Hash_Table (H).Id then
return Hash_Table (H).Serial;
end if;
H := H + 1;
if H > Hash_Table'Last then
H := 0;
end if;
end loop;
-- Entry was not found, save slot number for possible subsequent call
-- to Set_Serial_Number, and unconditionally save the Id in this slot
-- in case of such a call (the Id field is never read if the serial
-- number of the slot is zero, so this is harmless in the case where
-- Set_Serial_Number is not subsequently called).
Hash_Slot := H;
Hash_Table (H).Id := Id;
return 0;
end Serial_Number;
-----------------------
-- Set_Serial_Number --
-----------------------
procedure Set_Serial_Number is
begin
Hash_Table (Hash_Slot).Serial := Next_Serial_Number;
Next_Serial_Number := Next_Serial_Number + 1;
end Set_Serial_Number;
---------------
-- Tree_Dump --
---------------
procedure Tree_Dump is
procedure Underline;
-- Put underline under string we just printed
procedure Underline is
Col : constant Int := Column;
begin
Write_Eol;
while Col > Column loop
Write_Char ('-');
end loop;
Write_Eol;
end Underline;
-- Start of processing for Tree_Dump. Note that we turn off the tree dump
-- flags immediately, before starting the dump. This avoids generating two
-- copies of the dump if an abort occurs after printing the dump, and more
-- importantly, avoids an infinite loop if an abort occurs during the dump.
-- Note: unlike in the source print case (in Sprint), we do not output
-- separate trees for each unit. Instead the -df debug switch causes the
-- tree that is output from the main unit to trace references into other
-- units (normally such references are not traced). Since all other units
-- are linked to the main unit by at least one reference, this causes all
-- tree nodes to be included in the output tree.
begin
if Debug_Flag_Y then
Debug_Flag_Y := False;
Write_Eol;
Write_Str ("Tree created for Standard (spec) ");
Underline;
Print_Node_Subtree (Standard_Package_Node);
Write_Eol;
end if;
if Debug_Flag_T then
Debug_Flag_T := False;
Write_Eol;
Write_Str ("Tree created for ");
Write_Unit_Name (Unit_Name (Main_Unit));
Underline;
Print_Node_Subtree (Cunit (Main_Unit));
Write_Eol;
end if;
end Tree_Dump;
-----------------
-- Visit_Elist --
-----------------
procedure Visit_Elist (E : Elist_Id; Prefix_Str : String) is
M : Elmt_Id;
N : Node_Id;
S : constant Nat := Serial_Number (Int (E));
begin
-- In marking phase, return if already marked, otherwise set next
-- serial number in hash table for later reference.
if Phase = Marking then
if S /= 0 then
return; -- already visited
else
Set_Serial_Number;
end if;
-- In printing phase, if already printed, then return, otherwise we
-- are printing the next item, so increment the serial number.
else
if S < Next_Serial_Number then
return; -- already printed
else
Next_Serial_Number := Next_Serial_Number + 1;
end if;
end if;
-- Now process the list (Print calls have no effect in marking phase)
Print_Str (Prefix_Str);
Print_Elist_Ref (E);
Print_Eol;
if Is_Empty_Elmt_List (E) then
Print_Str (Prefix_Str);
Print_Str ("(Empty element list)");
Print_Eol;
Print_Eol;
else
if Phase = Printing then
M := First_Elmt (E);
while Present (M) loop
N := Node (M);
Print_Str (Prefix_Str);
Print_Str (" ");
Print_Node_Ref (N);
Print_Eol;
Next_Elmt (M);
end loop;
Print_Str (Prefix_Str);
Print_Eol;
end if;
M := First_Elmt (E);
while Present (M) loop
Visit_Node (Node (M), Prefix_Str, ' ');
Next_Elmt (M);
end loop;
end if;
end Visit_Elist;
----------------
-- Visit_List --
----------------
procedure Visit_List (L : List_Id; Prefix_Str : String) is
N : Node_Id;
S : constant Nat := Serial_Number (Int (L));
begin
-- In marking phase, return if already marked, otherwise set next
-- serial number in hash table for later reference.
if Phase = Marking then
if S /= 0 then
return;
else
Set_Serial_Number;
end if;
-- In printing phase, if already printed, then return, otherwise we
-- are printing the next item, so increment the serial number.
else
if S < Next_Serial_Number then
return; -- already printed
else
Next_Serial_Number := Next_Serial_Number + 1;
end if;
end if;
-- Now process the list (Print calls have no effect in marking phase)
Print_Str (Prefix_Str);
Print_List_Ref (L);
Print_Eol;
Print_Str (Prefix_Str);
Print_Str ("|Parent = ");
Print_Node_Ref (Parent (L));
Print_Eol;
N := First (L);
if N = Empty then
Print_Str (Prefix_Str);
Print_Str ("(Empty list)");
Print_Eol;
Print_Eol;
else
Print_Str (Prefix_Str);
Print_Char ('|');
Print_Eol;
while Next (N) /= Empty loop
Visit_Node (N, Prefix_Str, '|');
Next (N);
end loop;
end if;
Visit_Node (N, Prefix_Str, ' ');
end Visit_List;
----------------
-- Visit_Node --
----------------
procedure Visit_Node
(N : Node_Id;
Prefix_Str : String;
Prefix_Char : Character)
is
New_Prefix : String (Prefix_Str'First .. Prefix_Str'Last + 2);
-- Prefix string for printing referenced fields
procedure Visit_Descendant
(D : Union_Id;
No_Indent : Boolean := False);
-- This procedure tests the given value of one of the Fields referenced
-- by the current node to determine whether to visit it recursively.
-- Normally No_Indent is false, which means that the visited node will
-- be indented using New_Prefix. If No_Indent is set to True, then
-- this indentation is skipped, and Prefix_Str is used for the call
-- to print the descendant. No_Indent is effective only if the
-- referenced descendant is a node.
----------------------
-- Visit_Descendant --
----------------------
procedure Visit_Descendant
(D : Union_Id;
No_Indent : Boolean := False)
is
begin
-- Case of descendant is a node
if D in Node_Range then
-- Don't bother about Empty or Error descendants
if D <= Union_Id (Empty_Or_Error) then
return;
end if;
declare
Nod : constant Node_Or_Entity_Id := Node_Or_Entity_Id (D);
begin
-- Descendants in one of the standardly compiled internal
-- packages are normally ignored, unless the parent is also
-- in such a package (happens when Standard itself is output)
-- or if the -df switch is set which causes all links to be
-- followed, even into package standard.
if Sloc (Nod) <= Standard_Location then
if Sloc (N) > Standard_Location
and then not Debug_Flag_F
then
return;
end if;
-- Don't bother about a descendant in a different unit than
-- the node we came from unless the -df switch is set. Note
-- that we know at this point that Sloc (D) > Standard_Location
-- Note: the tests for No_Location here just make sure that we
-- don't blow up on a node which is missing an Sloc value. This
-- should not normally happen.
else
if (Sloc (N) <= Standard_Location
or else Sloc (N) = No_Location
or else Sloc (Nod) = No_Location
or else not In_Same_Source_Unit (Nod, N))
and then not Debug_Flag_F
then
return;
end if;
end if;
-- Don't bother visiting a source node that has a parent which
-- is not the node we came from. We prefer to trace such nodes
-- from their real parents. This causes the tree to be printed
-- in a more coherent order, e.g. a defining identifier listed
-- next to its corresponding declaration, instead of next to
-- some semantic reference.
-- This test is skipped for nodes in standard packages unless
-- the -dy option is set (which outputs the tree for standard)
-- Also, always follow pointers to Is_Itype entities,
-- since we want to list these when they are first referenced.
if Parent (Nod) /= Empty
and then Comes_From_Source (Nod)
and then Parent (Nod) /= N
and then (Sloc (N) > Standard_Location or else Debug_Flag_Y)
then
return;
end if;
-- If we successfully fall through all the above tests (which
-- execute a return if the node is not to be visited), we can
-- go ahead and visit the node.
if No_Indent then
Visit_Node (Nod, Prefix_Str, Prefix_Char);
else
Visit_Node (Nod, New_Prefix, ' ');
end if;
end;
-- Case of descendant is a list
elsif D in List_Range then
-- Don't bother with a missing list, empty list or error list
pragma Assert (D /= Union_Id (No_List));
-- Because No_List = Empty, which is in Node_Range above
if D = Union_Id (Error_List)
or else Is_Empty_List (List_Id (D))
then
return;
-- Otherwise we can visit the list. Note that we don't bother to
-- do the parent test that we did for the node case, because it
-- just does not happen that lists are referenced more than one
-- place in the tree. We aren't counting on this being the case
-- to generate valid output, it is just that we don't need in
-- practice to worry about listing the list at a place that is
-- inconvenient.
else
Visit_List (List_Id (D), New_Prefix);
end if;
-- Case of descendant is an element list
elsif D in Elist_Range then
-- Don't bother with a missing list, or an empty list
if D = Union_Id (No_Elist)
or else Is_Empty_Elmt_List (Elist_Id (D))
then
return;
-- Otherwise, visit the referenced element list
else
Visit_Elist (Elist_Id (D), New_Prefix);
end if;
else
raise Program_Error;
end if;
end Visit_Descendant;
-- Start of processing for Visit_Node
begin
if N = Empty then
return;
end if;
-- Set fatal error node in case we get a blow up during the trace
Current_Error_Node := N;
New_Prefix (Prefix_Str'Range) := Prefix_Str;
New_Prefix (Prefix_Str'Last + 1) := Prefix_Char;
New_Prefix (Prefix_Str'Last + 2) := ' ';
-- In the marking phase, all we do is to set the serial number
if Phase = Marking then
if Serial_Number (Int (N)) /= 0 then
return; -- already visited
else
Set_Serial_Number;
end if;
-- In the printing phase, we print the node
else
if Serial_Number (Int (N)) < Next_Serial_Number then
-- Here we have already visited the node, but if it is in a list,
-- we still want to print the reference, so that it is clear that
-- it belongs to the list.
if Is_List_Member (N) then
Print_Str (Prefix_Str);
Print_Node_Ref (N);
Print_Eol;
Print_Str (Prefix_Str);
Print_Char (Prefix_Char);
Print_Str ("(already output)");
Print_Eol;
Print_Str (Prefix_Str);
Print_Char (Prefix_Char);
Print_Eol;
end if;
return;
else
Print_Node (N, Prefix_Str, Prefix_Char);
Print_Str (Prefix_Str);
Print_Char (Prefix_Char);
Print_Eol;
Next_Serial_Number := Next_Serial_Number + 1;
end if;
end if;
-- Visit all descendants of this node
declare
A : Node_Field_Array renames Node_Field_Table (Nkind (N)).all;
begin
for Field_Index in A'Range loop
declare
F : constant Node_Field := A (Field_Index);
FD : Field_Descriptor renames Node_Field_Descriptors (F);
begin
if FD.Kind in Node_Id_Field | List_Id_Field | Elist_Id_Field
-- For all other kinds of descendants (strings, names, uints
-- etc), there is nothing to visit (the contents of the
-- field will be printed when we print the containing node,
-- but what concerns us now is looking for descendants in
-- the tree.
and then F /= F_Next_Entity -- See below for why we skip this
then
Visit_Descendant (Get_Union_Id (N, FD.Offset));
end if;
end;
end loop;
end;
if Has_Aspects (N) then
Visit_Descendant (Union_Id (Aspect_Specifications (N)));
end if;
if Nkind (N) in N_Entity then
declare
A : Entity_Field_Array renames Entity_Field_Table (Ekind (N)).all;
begin
for Field_Index in A'Range loop
declare
F : constant Entity_Field := A (Field_Index);
FD : Field_Descriptor renames Entity_Field_Descriptors (F);
begin
if FD.Kind in Node_Id_Field | List_Id_Field | Elist_Id_Field
then
Visit_Descendant (Get_Union_Id (N, FD.Offset));
end if;
end;
end loop;
end;
-- Now an interesting special case. Normally parents are always
-- printed since we traverse the tree in a downwards direction.
-- However, there is an exception to this rule, which is the
-- case where a parent is constructed by the compiler and is not
-- referenced elsewhere in the tree. The following catches this case.
if not Comes_From_Source (N) then
Visit_Descendant (Union_Id (Parent (N)));
end if;
-- You may be wondering why we omitted Next_Entity above. The answer
-- is that we want to treat it rather specially. Why? Because a
-- Next_Entity link does not correspond to a level deeper in the
-- tree, and we do not want the tree to march off to the right of the
-- page due to bogus indentations coming from this effect.
-- To prevent this, what we do is to control references via
-- Next_Entity only from the first entity on a given scope chain,
-- and we keep them all at the same level. Of course if an entity
-- has already been referenced it is not printed.
if Present (Next_Entity (N))
and then Present (Scope (N))
and then First_Entity (Scope (N)) = N
then
declare
Nod : Node_Id;
begin
Nod := N;
while Present (Nod) loop
Visit_Descendant (Union_Id (Next_Entity (Nod)));
Next_Entity (Nod);
end loop;
end;
end if;
end if;
end Visit_Node;
end Treepr;