;; ARM Cortex-A53 pipeline description ;; Copyright (C) 2013-2021 Free Software Foundation, Inc. ;; ;; Contributed by ARM Ltd. ;; ;; This file is part of GCC. ;; ;; GCC is free software; you can redistribute it and/or modify it ;; under the terms of the GNU General Public License as published by ;; the Free Software Foundation; either version 3, or (at your option) ;; any later version. ;; ;; GCC is distributed in the hope that it will be useful, but ;; WITHOUT ANY WARRANTY; without even the implied warranty of ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ;; General Public License for more details. ;; ;; You should have received a copy of the GNU General Public License ;; along with GCC; see the file COPYING3. If not see ;; http://www.gnu.org/licenses/.

(define_automaton “cortex_a53”)

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; General-purpose functional units. ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; We use slot0 and slot1 to model constraints on which instructions may ;; dual-issue.

(define_cpu_unit “cortex_a53_slot0” “cortex_a53”) (define_cpu_unit “cortex_a53_slot1” “cortex_a53”) (final_presence_set “cortex_a53_slot1” “cortex_a53_slot0”)

(define_reservation “cortex_a53_slot_any” “cortex_a53_slot0
|cortex_a53_slot1”)

(define_reservation “cortex_a53_single_issue” “cortex_a53_slot0
+cortex_a53_slot1”)

;; Used to model load and store pipelines. Load/store instructions ;; can dual-issue with other instructions, but two load/stores cannot ;; simultaneously issue.

(define_cpu_unit “cortex_a53_store” “cortex_a53”) (define_cpu_unit “cortex_a53_load” “cortex_a53”) (define_cpu_unit “cortex_a53_ls_agen” “cortex_a53”)

;; Used to model a branch pipeline. Branches can dual-issue with other ;; instructions (except when those instructions take multiple cycles ;; to issue).

(define_cpu_unit “cortex_a53_branch” “cortex_a53”)

;; Used to model an integer divide pipeline.

(define_cpu_unit “cortex_a53_idiv” “cortex_a53”)

;; Used to model an integer multiply/multiply-accumulate pipeline.

(define_cpu_unit “cortex_a53_imul” “cortex_a53”)

;; Model general structural hazards, for wherever we need them.

(define_cpu_unit “cortex_a53_hazard” “cortex_a53”)

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; ALU instructions. ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(define_insn_reservation “cortex_a53_shift” 2 (and (eq_attr “tune” “cortexa53”) (eq_attr “type” “adr,shift_imm,mov_imm,mvn_imm,mov_shift”)) “cortex_a53_slot_any”)

(define_insn_reservation “cortex_a53_shift_reg” 2 (and (eq_attr “tune” “cortexa53”) (eq_attr “type” “shift_reg,mov_shift_reg”)) “cortex_a53_slot_any+cortex_a53_hazard”)

(define_insn_reservation “cortex_a53_alu” 3 (and (eq_attr “tune” “cortexa53”) (eq_attr “type” “alu_imm,alus_imm,logic_imm,logics_imm, alu_sreg,alus_sreg,logic_reg,logics_reg, adc_imm,adcs_imm,adc_reg,adcs_reg, csel,clz,rbit,rev,alu_dsp_reg, mov_reg,mvn_reg,mrs,multiple”)) “cortex_a53_slot_any”)

(define_insn_reservation “cortex_a53_alu_shift” 3 (and (eq_attr “tune” “cortexa53”) (eq_attr “type” “alu_shift_imm_lsl_1to4,alu_shift_imm_other,alus_shift_imm, crc,logic_shift_imm,logics_shift_imm, alu_ext,alus_ext,bfm,bfx,extend,mvn_shift”)) “cortex_a53_slot_any”)

(define_insn_reservation “cortex_a53_alu_shift_reg” 3 (and (eq_attr “tune” “cortexa53”) (eq_attr “type” “alu_shift_reg,alus_shift_reg, logic_shift_reg,logics_shift_reg, mvn_shift_reg”)) “cortex_a53_slot_any+cortex_a53_hazard”)

(define_insn_reservation “cortex_a53_alu_extr” 3 (and (eq_attr “tune” “cortexa53”) (eq_attr “type” “rotate_imm”)) “cortex_a53_slot1|cortex_a53_single_issue”)

(define_insn_reservation “cortex_a53_mul” 4 (and (eq_attr “tune” “cortexa53”) (ior (eq_attr “mul32” “yes”) (eq_attr “widen_mul64” “yes”))) “cortex_a53_slot_any+cortex_a53_imul”)

;; From the perspective of the GCC scheduling state machine, if we wish to ;; model an instruction as serialising other instructions, we are best to do ;; so by modelling it as taking very few cycles. Scheduling many other ;; instructions underneath it at the cost of freedom to pick from the ;; ready list is likely to hurt us more than it helps. However, we do ;; want to model some resource and latency cost for divide instructions in ;; order to avoid divides ending up too lumpy.

(define_insn_reservation “cortex_a53_div” 4 (and (eq_attr “tune” “cortexa53”) (eq_attr “type” “udiv,sdiv”)) “cortex_a53_slot0,cortex_a53_idiv*2”)

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; Load/store instructions. ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; TODO: load is not prescriptive about how much data is to be loaded. ;; This is most obvious for LDRD from AArch32 and LDP (X register) from ;; AArch64, both are tagged load2 but LDP will load 128-bits compared to ;; LDRD which is 64-bits. ;; ;; For the below, we assume AArch64 X-registers for load2, and AArch32 ;; registers for load3/load4.

(define_insn_reservation “cortex_a53_load1” 4 (and (eq_attr “tune” “cortexa53”) (eq_attr “type” “load_byte,load_4,load_acq”)) “cortex_a53_slot_any+cortex_a53_ls_agen, cortex_a53_load”)

(define_insn_reservation “cortex_a53_store1” 2 (and (eq_attr “tune” “cortexa53”) (eq_attr “type” “store_4,store_rel”)) “cortex_a53_slot_any+cortex_a53_ls_agen, cortex_a53_store”)

;; Model AArch64-sized LDP Xm, Xn, [Xa]

(define_insn_reservation “cortex_a53_load2” 4 (and (eq_attr “tune” “cortexa53”) (eq_attr “type” “load_8”)) “cortex_a53_single_issue+cortex_a53_ls_agen, cortex_a53_load+cortex_a53_slot0, cortex_a53_load”)

(define_insn_reservation “cortex_a53_store2” 2 (and (eq_attr “tune” “cortexa53”) (eq_attr “type” “store_8”)) “cortex_a53_slot_any+cortex_a53_ls_agen, cortex_a53_store”)

;; Model AArch32-sized LDM Ra, {Rm, Rn, Ro}

(define_insn_reservation “cortex_a53_load3plus” 6 (and (eq_attr “tune” “cortexa53”) (eq_attr “type” “load_12,load_16”)) “cortex_a53_single_issue+cortex_a53_ls_agen, cortex_a53_load+cortex_a53_slot0, cortex_a53_load”)

(define_insn_reservation “cortex_a53_store3plus” 2 (and (eq_attr “tune” “cortexa53”) (eq_attr “type” “store_12,store_16”)) “cortex_a53_slot_any+cortex_a53_ls_agen, cortex_a53_store+cortex_a53_slot0, cortex_a53_store”)

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; Branches. ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; Model all branches as dual-issuable from either execution, which ;; is not strictly true for all cases (indirect branches).

(define_insn_reservation “cortex_a53_branch” 0 (and (eq_attr “tune” “cortexa53”) (eq_attr “type” “branch,call”)) “cortex_a53_slot_any+cortex_a53_branch”)

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; General-purpose register bypasses ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; Model bypasses for ALU to ALU instructions.

(define_bypass 0 “cortex_a53_shift*” “cortex_a53_alu”)

(define_bypass 1 “cortex_a53_shift*” “cortex_a53_shift*,cortex_a53_alu_*”)

(define_bypass 1 “cortex_a53_alu*” “cortex_a53_alu”)

(define_bypass 1 “cortex_a53_alu*” “cortex_a53_alu_shift*” “arm_no_early_alu_shift_dep”)

(define_bypass 2 “cortex_a53_alu*” “cortex_a53_alu_,cortex_a53_shift”)

;; Model a bypass from MUL/MLA to MLA instructions.

(define_bypass 1 “cortex_a53_mul” “cortex_a53_mul” “aarch_accumulator_forwarding”)

;; Model a bypass from MUL/MLA to ALU instructions.

(define_bypass 2 “cortex_a53_mul” “cortex_a53_alu”)

(define_bypass 3 “cortex_a53_mul” “cortex_a53_alu_,cortex_a53_shift”)

;; Model bypasses for loads which are to be consumed by the ALU.

(define_bypass 2 “cortex_a53_load1” “cortex_a53_alu”)

(define_bypass 3 “cortex_a53_load1” “cortex_a53_alu_,cortex_a53_shift”)

(define_bypass 3 “cortex_a53_load2” “cortex_a53_alu”)

;; Model a bypass for ALU instructions feeding stores.

(define_bypass 0 “cortex_a53_alu*,cortex_a53_shift*” “cortex_a53_store*” “arm_no_early_store_addr_dep”)

;; Model a bypass for load and multiply instructions feeding stores.

(define_bypass 1 “cortex_a53_mul, cortex_a53_load*” “cortex_a53_store*” “arm_no_early_store_addr_dep”)

;; Model a bypass for load to load/store address.

(define_bypass 3 “cortex_a53_load1” “cortex_a53_load*” “arm_early_load_addr_dep_ptr”)

(define_bypass 3 “cortex_a53_load1” “cortex_a53_store*” “arm_early_store_addr_dep_ptr”)

;; Model a GP->FP register move as similar to stores.

(define_bypass 0 “cortex_a53_alu*,cortex_a53_shift*” “cortex_a53_r2f”)

(define_bypass 1 “cortex_a53_mul, cortex_a53_load1, cortex_a53_load2” “cortex_a53_r2f”)

(define_bypass 2 “cortex_a53_alu*” “cortex_a53_r2f_cvt”)

(define_bypass 3 “cortex_a53_mul, cortex_a53_load1, cortex_a53_load2” “cortex_a53_r2f_cvt”)

;; Model flag forwarding to branches.

(define_bypass 0 “cortex_a53_alu*,cortex_a53_shift*” “cortex_a53_branch”)

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; Floating-point/Advanced SIMD. ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(define_automaton “cortex_a53_advsimd”)

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; Broad Advanced SIMD type categorisation ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(define_attr “cortex_a53_advsimd_type” “advsimd_alu, advsimd_alu_q, advsimd_mul, advsimd_mul_q, advsimd_div_s, advsimd_div_s_q, advsimd_div_d, advsimd_div_d_q, advsimd_load_64, advsimd_store_64, advsimd_load_128, advsimd_store_128, advsimd_load_lots, advsimd_store_lots, unknown” (cond [ (eq_attr “type” “neon_add, neon_qadd, neon_add_halve, neon_sub, neon_qsub,
neon_sub_halve, neon_abs, neon_neg, neon_qneg,
neon_qabs, neon_abd, neon_minmax, neon_compare,
neon_compare_zero, neon_arith_acc, neon_reduc_add,
neon_reduc_add_acc, neon_reduc_minmax,
neon_logic, neon_tst, neon_shift_imm,
neon_shift_reg, neon_shift_acc, neon_sat_shift_imm,
neon_sat_shift_reg, neon_ins, neon_move,
neon_permute, neon_zip, neon_tbl1,
neon_tbl2, neon_tbl3, neon_tbl4, neon_bsl,
neon_cls, neon_cnt, neon_dup,
neon_ext, neon_rbit, neon_rev,
neon_fp_abd_s, neon_fp_abd_d,
neon_fp_abs_s, neon_fp_abs_d,
neon_fp_addsub_s, neon_fp_addsub_d, neon_fp_compare_s,
neon_fp_compare_d, neon_fp_minmax_s,
neon_fp_minmax_d, neon_fp_neg_s, neon_fp_neg_d,
neon_fp_reduc_add_s, neon_fp_reduc_add_d,
neon_fp_reduc_minmax_s, neon_fp_reduc_minmax_d,
neon_fp_cvt_widen_h, neon_fp_to_int_s,neon_fp_to_int_d,
neon_int_to_fp_s, neon_int_to_fp_d, neon_fp_round_s,
neon_fp_recpe_s, neon_fp_recpe_d, neon_fp_recps_s,
neon_fp_recps_d, neon_fp_recpx_s, neon_fp_recpx_d,
neon_fp_rsqrte_s, neon_fp_rsqrte_d, neon_fp_rsqrts_s,
neon_fp_rsqrts_d”) (const_string “advsimd_alu”) (eq_attr “type” “neon_add_q, neon_add_widen, neon_add_long,
neon_qadd_q, neon_add_halve_q, neon_add_halve_narrow_q,
neon_sub_q, neon_sub_widen, neon_sub_long,
neon_qsub_q, neon_sub_halve_q, neon_sub_halve_narrow_q,
neon_abs_q, neon_neg_q, neon_qneg_q, neon_qabs_q,
neon_abd_q, neon_abd_long, neon_minmax_q,
neon_compare_q, neon_compare_zero_q,
neon_arith_acc_q, neon_reduc_add_q,
neon_reduc_add_long, neon_reduc_add_acc_q,
neon_reduc_minmax_q, neon_logic_q, neon_tst_q,
neon_shift_imm_q, neon_shift_imm_narrow_q,
neon_shift_imm_long, neon_shift_reg_q,
neon_shift_acc_q, neon_sat_shift_imm_q,
neon_sat_shift_imm_narrow_q, neon_sat_shift_reg_q,
neon_ins_q, neon_move_q, neon_move_narrow_q,
neon_permute_q, neon_zip_q,
neon_tbl1_q, neon_tbl2_q, neon_tbl3_q,
neon_tbl4_q, neon_bsl_q, neon_cls_q, neon_cnt_q,
neon_dup_q, neon_ext_q, neon_rbit_q,
neon_rev_q, neon_fp_abd_s_q, neon_fp_abd_d_q,
neon_fp_abs_s_q, neon_fp_abs_d_q,
neon_fp_addsub_s_q, neon_fp_addsub_d_q,
neon_fp_compare_s_q, neon_fp_compare_d_q,
neon_fp_minmax_s_q, neon_fp_minmax_d_q,
neon_fp_cvt_widen_s, neon_fp_neg_s_q, neon_fp_neg_d_q,
neon_fp_reduc_add_s_q, neon_fp_reduc_add_d_q,
neon_fp_reduc_minmax_s_q, neon_fp_reduc_minmax_d_q,
neon_fp_cvt_narrow_s_q, neon_fp_cvt_narrow_d_q,
neon_fp_to_int_s_q, neon_fp_to_int_d_q,
neon_int_to_fp_s_q, neon_int_to_fp_d_q,
neon_fp_round_s_q,
neon_fp_recpe_s_q, neon_fp_recpe_d_q,
neon_fp_recps_s_q, neon_fp_recps_d_q,
neon_fp_recpx_s_q, neon_fp_recpx_d_q,
neon_fp_rsqrte_s_q, neon_fp_rsqrte_d_q,
neon_fp_rsqrts_s_q, neon_fp_rsqrts_d_q”) (const_string “advsimd_alu_q”) (eq_attr “type” “neon_mul_b, neon_mul_h, neon_mul_s,
neon_mul_h_scalar, neon_mul_s_scalar,
neon_sat_mul_b, neon_sat_mul_h, neon_sat_mul_s,
neon_sat_mul_h_scalar, neon_sat_mul_s_scalar,
neon_mla_b, neon_mla_h, neon_mla_s,
neon_mla_h_scalar, neon_mla_s_scalar,
neon_fp_mul_s, neon_fp_mul_s_scalar,
neon_fp_mul_d, neon_fp_mla_s,
neon_fp_mla_s_scalar, neon_fp_mla_d”) (const_string “advsimd_mul”) (eq_attr “type” “neon_mul_b_q, neon_mul_h_q, neon_mul_s_q,
neon_mul_b_long, neon_mul_h_long, neon_mul_s_long,
neon_mul_d_long, neon_mul_h_scalar_q,
neon_mul_s_scalar_q, neon_mul_h_scalar_long,
neon_mul_s_scalar_long, neon_sat_mul_b_q,
neon_sat_mul_h_q, neon_sat_mul_s_q,
neon_sat_mul_b_long, neon_sat_mul_h_long,
neon_sat_mul_s_long, neon_sat_mul_h_scalar_q,
neon_sat_mul_s_scalar_q, neon_sat_mul_h_scalar_long,
neon_sat_mul_s_scalar_long, crypto_pmull, neon_mla_b_q,
neon_mla_h_q, neon_mla_s_q, neon_mla_b_long,
neon_mla_h_long, neon_mla_s_long,
neon_mla_h_scalar_q, neon_mla_s_scalar_q,
neon_mla_h_scalar_long, neon_mla_s_scalar_long,
neon_sat_mla_b_long, neon_sat_mla_h_long,
neon_sat_mla_s_long, neon_sat_mla_h_scalar_long,
neon_sat_mla_s_scalar_long,
neon_fp_mul_s_q, neon_fp_mul_s_scalar_q,
neon_fp_mul_d_q, neon_fp_mul_d_scalar_q,
neon_fp_mla_s_q, neon_fp_mla_s_scalar_q,
neon_fp_mla_d_q, neon_fp_mla_d_scalar_q”) (const_string “advsimd_mul_q”) (eq_attr “type” “neon_fp_sqrt_s, neon_fp_div_s”) (const_string “advsimd_div_s”) (eq_attr “type” “neon_fp_sqrt_s_q, neon_fp_div_s_q”) (const_string “advsimd_div_s_q”) (eq_attr “type” “neon_fp_sqrt_d, neon_fp_div_d”) (const_string “advsimd_div_d”) (eq_attr “type” “neon_fp_sqrt_d_q, neon_fp_div_d_q”) (const_string “advsimd_div_d_q”) (eq_attr “type” “neon_ldr, neon_load1_1reg,
neon_load1_all_lanes, neon_load1_all_lanes_q,
neon_load1_one_lane, neon_load1_one_lane_q”) (const_string “advsimd_load_64”) (eq_attr “type” “neon_str, neon_store1_1reg,
neon_store1_one_lane,neon_store1_one_lane_q”) (const_string “advsimd_store_64”) (eq_attr “type” “neon_load1_1reg_q, neon_load1_2reg,
neon_load2_2reg,
neon_load2_all_lanes, neon_load2_all_lanes_q,
neon_load2_one_lane, neon_load2_one_lane_q”) (const_string “advsimd_load_128”) (eq_attr “type” “neon_store1_1reg_q, neon_store1_2reg,
neon_store2_2reg,
neon_store2_one_lane, neon_store2_one_lane_q”) (const_string “advsimd_store_128”) (eq_attr “type” “neon_load1_2reg_q, neon_load1_3reg, neon_load1_3reg_q,
neon_load1_4reg, neon_load1_4reg_q,
neon_load2_2reg_q, neon_load2_4reg,
neon_load2_4reg_q, neon_load3_3reg,
neon_load3_3reg_q, neon_load3_all_lanes,
neon_load3_all_lanes_q, neon_load3_one_lane,
neon_load3_one_lane_q, neon_load4_4reg,
neon_load4_4reg_q, neon_load4_all_lanes,
neon_load4_all_lanes_q, neon_load4_one_lane,
neon_load4_one_lane_q, neon_ldp, neon_ldp_q”) (const_string “advsimd_load_lots”) (eq_attr “type” “neon_store1_2reg_q, neon_store1_3reg,
neon_store1_3reg_q, neon_store1_4reg,
neon_store1_4reg_q, neon_store2_2reg_q,
neon_store2_4reg, neon_store2_4reg_q,
neon_store3_3reg, neon_store3_3reg_q,
neon_store3_one_lane, neon_store3_one_lane_q,
neon_store4_4reg, neon_store4_4reg_q,
neon_store4_one_lane, neon_store4_one_lane_q,
neon_stp, neon_stp_q”) (const_string “advsimd_store_lots”)] (const_string “unknown”)))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; Floating-point/Advanced SIMD functional units. ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; We model the Advanced SIMD unit as two 64-bit units, each with three ;; pipes, FP_ALU, FP_MUL, FP_DIV. We also give convenient reservations ;; for 128-bit Advanced SIMD instructions, which use both units.

;; The floating-point/Advanced SIMD ALU pipelines.

(define_cpu_unit “cortex_a53_fp_alu_lo,
cortex_a53_fp_alu_hi” “cortex_a53_advsimd”)

(define_reservation “cortex_a53_fp_alu” “cortex_a53_fp_alu_lo
|cortex_a53_fp_alu_hi”)

(define_reservation “cortex_a53_fp_alu_q” “cortex_a53_fp_alu_lo
+cortex_a53_fp_alu_hi”)

;; The floating-point/Advanced SIMD multiply/multiply-accumulate ;; pipelines.

(define_cpu_unit “cortex_a53_fp_mul_lo,
cortex_a53_fp_mul_hi” “cortex_a53_advsimd”)

(define_reservation “cortex_a53_fp_mul” “cortex_a53_fp_mul_lo
|cortex_a53_fp_mul_hi”)

(define_reservation “cortex_a53_fp_mul_q” “cortex_a53_fp_mul_lo
+cortex_a53_fp_mul_hi”)

;; Floating-point/Advanced SIMD divide/square root.

(define_cpu_unit “cortex_a53_fp_div_lo,
cortex_a53_fp_div_hi” “cortex_a53_advsimd”)

;; Once we choose a pipe, stick with it for three simulated cycles.

(define_reservation “cortex_a53_fp_div” “(cortex_a53_fp_div_lo3)
|(cortex_a53_fp_div_hi
3)”)

(define_reservation “cortex_a53_fp_div_q” “(cortex_a53_fp_div_lo3)
+(cortex_a53_fp_div_hi
3)”)

;; Cryptographic extensions

(define_cpu_unit “cortex_a53_crypto” “cortex_a53_advsimd”)

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; Floating-point arithmetic. ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(define_insn_reservation “cortex_a53_fpalu” 4 (and (eq_attr “tune” “cortexa53”) (eq_attr “type” “ffariths, fadds, ffarithd, faddd, fmov, f_cvt, fcmps, fcmpd, fccmps, fccmpd, fcsel, f_rints, f_rintd, f_minmaxs, f_minmaxd”)) “cortex_a53_slot_any,cortex_a53_fp_alu”)

(define_insn_reservation “cortex_a53_fconst” 2 (and (eq_attr “tune” “cortexa53”) (eq_attr “type” “fconsts,fconstd”)) “cortex_a53_slot_any,cortex_a53_fp_alu”)

(define_insn_reservation “cortex_a53_fpmul” 4 (and (eq_attr “tune” “cortexa53”) (eq_attr “type” “fmuls,fmuld”)) “cortex_a53_slot_any,cortex_a53_fp_mul”)

;; For multiply-accumulate, model the add (accumulate) as being issued ;; after the multiply completes.

(define_insn_reservation “cortex_a53_fpmac” 8 (and (eq_attr “tune” “cortexa53”) (eq_attr “type” “fmacs,fmacd,ffmas,ffmad”)) “cortex_a53_slot_any,cortex_a53_fp_mul, nothing*3, cortex_a53_fp_alu”)

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; Floating-point to/from core transfers. ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(define_insn_reservation “cortex_a53_r2f” 2 (and (eq_attr “tune” “cortexa53”) (eq_attr “type” “f_mcr,f_mcrr”)) “cortex_a53_slot_any,cortex_a53_fp_alu”)

(define_insn_reservation “cortex_a53_f2r” 4 (and (eq_attr “tune” “cortexa53”) (eq_attr “type” “f_mrc,f_mrrc”)) “cortex_a53_slot_any,cortex_a53_fp_alu”)

(define_insn_reservation “cortex_a53_r2f_cvt” 4 (and (eq_attr “tune” “cortexa53”) (eq_attr “type” “f_cvti2f, neon_from_gp, neon_from_gp_q”)) “cortex_a53_slot_any,cortex_a53_fp_alu”)

(define_insn_reservation “cortex_a53_f2r_cvt” 5 (and (eq_attr “tune” “cortexa53”) (eq_attr “type” “f_cvtf2i, neon_to_gp, neon_to_gp_q”)) “cortex_a53_slot_any,cortex_a53_fp_alu”)

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; Floating-point flag transfer. ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(define_insn_reservation “cortex_a53_f_flags” 5 (and (eq_attr “tune” “cortexa53”) (eq_attr “type” “f_flag”)) “cortex_a53_slot_any”)

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; Floating-point load/store. ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(define_insn_reservation “cortex_a53_f_load_64” 3 (and (eq_attr “tune” “cortexa53”) (ior (eq_attr “type” “f_loads,f_loadd”) (eq_attr “cortex_a53_advsimd_type” “advsimd_load_64”))) “cortex_a53_slot_any+cortex_a53_ls_agen, cortex_a53_load”)

(define_insn_reservation “cortex_a53_f_load_many” 4 (and (eq_attr “tune” “cortexa53”) (eq_attr “cortex_a53_advsimd_type” “advsimd_load_128,advsimd_load_lots”)) “cortex_a53_single_issue+cortex_a53_ls_agen, cortex_a53_load+cortex_a53_slot0, cortex_a53_load”)

(define_insn_reservation “cortex_a53_f_store_64” 0 (and (eq_attr “tune” “cortexa53”) (ior (eq_attr “type” “f_stores,f_stored”) (eq_attr “cortex_a53_advsimd_type” “advsimd_store_64”))) “cortex_a53_slot_any+cortex_a53_ls_agen, cortex_a53_store”)

(define_insn_reservation “cortex_a53_f_store_many” 0 (and (eq_attr “tune” “cortexa53”) (eq_attr “cortex_a53_advsimd_type” “advsimd_store_128,advsimd_store_lots”)) “cortex_a53_slot_any+cortex_a53_ls_agen, cortex_a53_store+cortex_a53_slot0, cortex_a53_store”)

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; Advanced SIMD. ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; Either we want to model use of the ALU pipe, the multiply pipe or the ;; divide/sqrt pipe. In all cases we need to check if we are a 64-bit ;; operation (in which case we model dual-issue without penalty) ;; or a 128-bit operation in which case we require in our model that we ;; issue from slot 0.

(define_insn_reservation “cortex_a53_advsimd_alu” 4 (and (eq_attr “tune” “cortexa53”) (eq_attr “cortex_a53_advsimd_type” “advsimd_alu”)) “cortex_a53_slot_any,cortex_a53_fp_alu”)

(define_insn_reservation “cortex_a53_advsimd_alu_q” 4 (and (eq_attr “tune” “cortexa53”) (eq_attr “cortex_a53_advsimd_type” “advsimd_alu_q”)) “cortex_a53_slot0,cortex_a53_fp_alu_q”)

(define_insn_reservation “cortex_a53_advsimd_mul” 4 (and (eq_attr “tune” “cortexa53”) (eq_attr “cortex_a53_advsimd_type” “advsimd_mul”)) “cortex_a53_slot_any,cortex_a53_fp_mul”)

(define_insn_reservation “cortex_a53_advsimd_mul_q” 4 (and (eq_attr “tune” “cortexa53”) (eq_attr “cortex_a53_advsimd_type” “advsimd_mul_q”)) “cortex_a53_slot0,cortex_a53_fp_mul_q”)

;; SIMD Dividers.

(define_insn_reservation “cortex_a53_advsimd_div_s” 14 (and (eq_attr “tune” “cortexa53”) (ior (eq_attr “type” “fdivs,fsqrts”) (eq_attr “cortex_a53_advsimd_type” “advsimd_div_s”))) “cortex_a53_slot0,cortex_a53_fp_mul, cortex_a53_fp_div”)

(define_insn_reservation “cortex_a53_advsimd_div_d” 29 (and (eq_attr “tune” “cortexa53”) (ior (eq_attr “type” “fdivd,fsqrtd”) (eq_attr “cortex_a53_advsimd_type” “advsimd_div_d”))) “cortex_a53_slot0,cortex_a53_fp_mul, cortex_a53_fp_div”)

(define_insn_reservation “cortex_a53_advsimd_div_s_q” 14 (and (eq_attr “tune” “cortexa53”) (eq_attr “cortex_a53_advsimd_type” “advsimd_div_s_q”)) “cortex_a53_single_issue,cortex_a53_fp_mul_q, cortex_a53_fp_div_q”)

(define_insn_reservation “cortex_a53_advsimd_divd_q” 29 (and (eq_attr “tune” “cortexa53”) (eq_attr “cortex_a53_advsimd_type” “advsimd_div_d_q”)) “cortex_a53_single_issue,cortex_a53_fp_mul_q, cortex_a53_fp_div_q”)

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; ARMv8-A Cryptographic extensions. ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; We want AESE and AESMC to end up consecutive to one another.

(define_insn_reservation “cortex_a53_crypto_aese” 3 (and (eq_attr “tune” “cortexa53”) (eq_attr “type” “crypto_aese”)) “cortex_a53_slot0”)

(define_insn_reservation “cortex_a53_crypto_aesmc” 3 (and (eq_attr “tune” “cortexa53”) (eq_attr “type” “crypto_aesmc”)) “cortex_a53_slot_any”)

;; SHA1H

(define_insn_reservation “cortex_a53_crypto_sha1_fast” 3 (and (eq_attr “tune” “cortexa53”) (eq_attr “type” “crypto_sha1_fast”)) “cortex_a53_slot_any,cortex_a53_crypto”)

(define_insn_reservation “cortex_a53_crypto_sha256_fast” 3 (and (eq_attr “tune” “cortexa53”) (eq_attr “type” “crypto_sha256_fast”)) “cortex_a53_slot0,cortex_a53_crypto”)

(define_insn_reservation “cortex_a53_crypto_sha1_xor” 4 (and (eq_attr “tune” “cortexa53”) (eq_attr “type” “crypto_sha1_xor”)) “cortex_a53_slot0,cortex_a53_crypto”)

(define_insn_reservation “cortex_a53_crypto_sha_slow” 5 (and (eq_attr “tune” “cortexa53”) (eq_attr “type” “crypto_sha1_slow, crypto_sha256_slow”)) “cortex_a53_slot0,cortex_a53_crypto”)

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; Floating-point/Advanced SIMD register bypasses. ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; Model the late use of the accumulator operand for floating-point ;; multiply-accumulate operations as a bypass reducing the latency ;; of producing instructions to near zero.

(define_bypass 1 “cortex_a53_fpalu, cortex_a53_fpmul, cortex_a53_r2f, cortex_a53_r2f_cvt, cortex_a53_fconst, cortex_a53_f_load*” “cortex_a53_fpmac” “aarch_accumulator_forwarding”)

(define_bypass 4 “cortex_a53_fpmac” “cortex_a53_fpmac” “aarch_accumulator_forwarding”)