;; iq2000.md Machine Description for Vitesse IQ2000 processors ;; Copyright (C) 2003-2021 Free Software Foundation, Inc.

;; This file is part of GCC.

;; GCC is free software; you can redistribute it and/or modify ;; it under the terms of the GNU General Public License as published by ;; the Free Software Foundation; either version 3, or (at your option) ;; any later version.

;; GCC is distributed in the hope that it will be useful, ;; but WITHOUT ANY WARRANTY; without even the implied warranty of ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ;; GNU General Public License for more details.

;; You should have received a copy of the GNU General Public License ;; along with GCC; see the file COPYING3. If not see ;; http://www.gnu.org/licenses/.

(define_constants [(UNSPEC_ADO16 0) (UNSPEC_RAM 1) (UNSPEC_CHKHDR 2) (UNSPEC_PKRL 3) (UNSPEC_CFC0 4) (UNSPEC_CFC1 5) (UNSPEC_CFC2 6) (UNSPEC_CFC3 7) (UNSPEC_CTC0 8) (UNSPEC_CTC1 9) (UNSPEC_CTC2 10) (UNSPEC_CTC3 11) (UNSPEC_MFC0 12) (UNSPEC_MFC1 13) (UNSPEC_MFC2 14) (UNSPEC_MFC3 15) (UNSPEC_MTC0 16) (UNSPEC_MTC1 17) (UNSPEC_MTC2 18) (UNSPEC_MTC3 19) (UNSPEC_LUR 20) (UNSPEC_RB 21) (UNSPEC_RX 22) (UNSPEC_SRRD 23) (UNSPEC_SRWR 24) (UNSPEC_WB 25) (UNSPEC_WX 26) (UNSPEC_LUC32 49) (UNSPEC_LUC32L 27) (UNSPEC_LUC64 28) (UNSPEC_LUC64L 29) (UNSPEC_LUK 30) (UNSPEC_LULCK 31) (UNSPEC_LUM32 32) (UNSPEC_LUM32L 33) (UNSPEC_LUM64 34) (UNSPEC_LUM64L 35) (UNSPEC_LURL 36) (UNSPEC_MRGB 37) (UNSPEC_SRRDL 38) (UNSPEC_SRULCK 39) (UNSPEC_SRWRU 40) (UNSPEC_TRAPQFL 41) (UNSPEC_TRAPQNE 42) (UNSPEC_TRAPREL 43) (UNSPEC_WBU 44) (UNSPEC_SYSCALL 45)] ) ;; UNSPEC values used in iq2000.md ;; Number USE ;; 0 movsi_ul ;; 1 movsi_us, get_fnaddr ;; 3 eh_set_return ;; 20 builtin_setjmp_setup ;; ;; UNSPEC_VOLATILE values ;; 0 blockage ;; 2 loadgp ;; 3 builtin_longjmp ;; 4 exception_receiver ;; 10 consttable_qi ;; 11 consttable_hi ;; 12 consttable_si ;; 13 consttable_di ;; 14 consttable_sf ;; 15 consttable_df ;; 16 align_2 ;; 17 align_4 ;; 18 align_8

;; .................... ;; ;; Attributes ;; ;; ....................

;; Classification of each insn. ;; branch conditional branch ;; jump unconditional jump ;; call unconditional call ;; load load instruction(s) ;; store store instruction(s) ;; move data movement within same register set ;; xfer transfer to/from coprocessor ;; arith integer arithmetic instruction ;; darith double precision integer arithmetic instructions ;; imul integer multiply ;; idiv integer divide ;; icmp integer compare ;; fadd floating point add/subtract ;; fmul floating point multiply ;; fmadd floating point multiply-add ;; fdiv floating point divide ;; fabs floating point absolute value ;; fneg floating point negation ;; fcmp floating point compare ;; fcvt floating point convert ;; fsqrt floating point square root ;; multi multiword sequence (or user asm statements) ;; nop no operation

(define_attr “type” “unknown,branch,jump,call,load,store,move,xfer,arith,darith,imul,idiv,icmp,fadd,fmul,fmadd,fdiv,fabs,fneg,fcmp,fcvt,fsqrt,multi,nop” (const_string “unknown”))

;; Main data type used by the insn (define_attr “mode” “unknown,none,QI,HI,SI,DI,SF,DF,FPSW” (const_string “unknown”))

;; Length (in # of bytes). A conditional branch is allowed only to a ;; location within a signed 18-bit offset of the delay slot. If that ;; provides too small a range, we use the `j' instruction. This ;; instruction takes a 28-bit value, but that value is not an offset. ;; Instead, it's bitwise-ored with the high-order four bits of the ;; instruction in the delay slot, which means it cannot be used to ;; cross a 256MB boundary. We could fall back on the jr ;; instruction which allows full access to the entire address space, ;; but we do not do so at present.

(define_attr “length” "" (cond [(eq_attr “type” “branch”) (cond [(lt (abs (minus (match_dup 1) (plus (pc) (const_int 4)))) (const_int 131072)) (const_int 4)] (const_int 12))] (const_int 4)))

(define_attr “cpu” “default,iq2000” (const (symbol_ref “iq2000_cpu_attr”)))

;; Does the instruction have a mandatory delay slot? has_dslot ;; Can the instruction be in a delay slot? ok_in_dslot ;; Can the instruction not be in a delay slot? not_in_dslot (define_attr “dslot” “has_dslot,ok_in_dslot,not_in_dslot” (if_then_else (eq_attr “type” “branch,jump,call,xfer,fcmp”) (const_string “has_dslot”) (const_string “ok_in_dslot”)))

;; Attribute defining whether or not we can use the branch-likely instructions

(define_attr “branch_likely” “no,yes” (const (if_then_else (match_test “GENERATE_BRANCHLIKELY”) (const_string “yes”) (const_string “no”))))

;; Describe a user's asm statement. (define_asm_attributes [(set_attr “type” “multi”)])

;; ......................... ;; ;; Delay slots, can't describe load/fcmp/xfer delay slots here ;; ;; .........................

(define_delay (eq_attr “type” “jump”) [(and (eq_attr “dslot” “ok_in_dslot”) (eq_attr “length” “4”)) (nil) (nil)])

(define_delay (eq_attr “type” “branch”) [(and (eq_attr “dslot” “ok_in_dslot”) (eq_attr “length” “4”)) (nil) (and (eq_attr “branch_likely” “yes”) (and (eq_attr “dslot” “ok_in_dslot”) (eq_attr “length” “4”)))])

(define_delay (eq_attr “type” “call”) [(and (eq_attr “dslot” “ok_in_dslot”) (eq_attr “length” “4”)) (nil) (nil)])

(include “predicates.md”) (include “constraints.md”)

;; ......................... ;; ;; Pipeline model ;; ;; .........................

(define_automaton “iq2000”) (define_cpu_unit “core,memory” “iq2000”)

(define_insn_reservation “nonmemory” 1 (eq_attr “type” “!load,move,store,xfer”) “core”)

(define_insn_reservation “iq2000_load_move” 3 (and (eq_attr “type” “load,move”) (eq_attr “cpu” “iq2000”)) “memory”)

(define_insn_reservation “other_load_move” 1 (and (eq_attr “type” “load,move”) (eq_attr “cpu” “!iq2000”)) “memory”)

(define_insn_reservation “store” 1 (eq_attr “type” “store”) “memory”)

(define_insn_reservation “xfer” 2 (eq_attr “type” “xfer”) “memory”) ;; ;; .................... ;; ;; CONDITIONAL TRAPS ;; ;; .................... ;;

(define_insn “trap” [(trap_if (const_int 1) (const_int 0))] "" “* { return "break"; }”) ;; ;; .................... ;; ;; ADDITION ;; ;; .................... ;;

(define_expand “addsi3” [(set (match_operand:SI 0 “register_operand” “=d”) (plus:SI (match_operand:SI 1 “reg_or_0_operand” “dJ”) (match_operand:SI 2 “arith_operand” “dI”)))] "" "")

(define_insn “addsi3_internal” [(set (match_operand:SI 0 “register_operand” “=d,d”) (plus:SI (match_operand:SI 1 “reg_or_0_operand” “dJ,dJ”) (match_operand:SI 2 “arith_operand” “d,I”)))] "" “@ addu\t%0,%z1,%2 addiu\t%0,%z1,%2” [(set_attr “type” “arith”) (set_attr “mode” “SI”)]) ;; ;; .................... ;; ;; SUBTRACTION ;; ;; .................... ;;

(define_expand “subsi3” [(set (match_operand:SI 0 “register_operand” “=d”) (minus:SI (match_operand:SI 1 “reg_or_0_operand” “dJ”) (match_operand:SI 2 “arith_operand” “dI”)))] "" "")

(define_insn “subsi3_internal” [(set (match_operand:SI 0 “register_operand” “=d,d”) (minus:SI (match_operand:SI 1 “reg_or_0_operand” “dJ,dJ”) (match_operand:SI 2 “arith_operand” “d,I”)))] "" “@ subu\t%0,%z1,%2 addiu\t%0,%z1,%n2” [(set_attr “type” “arith”) (set_attr “mode” “SI”)]) ;; ;; .................... ;; ;; NEGATION and ONE'S COMPLEMENT ;; ;; ....................

(define_insn “negsi2” [(set (match_operand:SI 0 “register_operand” “=d”) (neg:SI (match_operand:SI 1 “register_operand” “d”)))] "" “* { operands[2] = const0_rtx; return "subu\t%0,%z2,%1"; }” [(set_attr “type” “arith”) (set_attr “mode” “SI”)])

(define_insn “one_cmplsi2” [(set (match_operand:SI 0 “register_operand” “=d”) (not:SI (match_operand:SI 1 “register_operand” “d”)))] "" “* { operands[2] = const0_rtx; return "nor\t%0,%z2,%1"; }” [(set_attr “type” “arith”) (set_attr “mode” “SI”)]) ;; ;; .................... ;; ;; LOGICAL ;; ;; .................... ;;

(define_expand “andsi3” [(set (match_operand:SI 0 “register_operand” “=d,d,d”) (and:SI (match_operand:SI 1 “uns_arith_operand” “%d,d,d”) (match_operand:SI 2 “nonmemory_operand” “d,K,N”)))] "" "")

(define_insn "" [(set (match_operand:SI 0 “register_operand” “=d,d,d”) (and:SI (match_operand:SI 1 “uns_arith_operand” “%d,d,d”) (match_operand:SI 2 “nonmemory_operand” “d,K,N”)))] "" “* { if (which_alternative == 0) return "and\t%0,%1,%2"; else if (which_alternative == 1) return "andi\t%0,%1,%x2"; else if (which_alternative == 2) { if ((INTVAL (operands[2]) & 0xffff) == 0xffff) { operands[2] = GEN_INT (INTVAL (operands[2]) >> 16); return "andoui\t%0,%1,%x2"; } else { operands[2] = GEN_INT (INTVAL (operands[2]) & 0xffff); return "andoi\t%0,%1,%x2"; } } else gcc_unreachable (); }” [(set_attr “type” “arith”) (set_attr “mode” “SI”)])

(define_expand “iorsi3” [(set (match_operand:SI 0 “register_operand” “=d,d”) (ior:SI (match_operand:SI 1 “uns_arith_operand” “%d,d”) (match_operand:SI 2 “uns_arith_operand” “d,K”)))] "" "")

(define_insn "" [(set (match_operand:SI 0 “register_operand” “=d,d”) (ior:SI (match_operand:SI 1 “uns_arith_operand” “%d,d”) (match_operand:SI 2 “uns_arith_operand” “d,K”)))] "" “@ or\t%0,%1,%2 ori\t%0,%1,%x2” [(set_attr “type” “arith”) (set_attr “mode” “SI”)])

(define_expand “xorsi3” [(set (match_operand:SI 0 “register_operand” “=d,d”) (xor:SI (match_operand:SI 1 “uns_arith_operand” “%d,d”) (match_operand:SI 2 “uns_arith_operand” “d,K”)))] "" "")

(define_insn "" [(set (match_operand:SI 0 “register_operand” “=d,d”) (xor:SI (match_operand:SI 1 “uns_arith_operand” “%d,d”) (match_operand:SI 2 “uns_arith_operand” “d,K”)))] "" “@ xor\t%0,%1,%2 xori\t%0,%1,%x2” [(set_attr “type” “arith”) (set_attr “mode” “SI”)])

(define_insn “*norsi3” [(set (match_operand:SI 0 “register_operand” “=d”) (and:SI (not:SI (match_operand:SI 1 “register_operand” “d”)) (not:SI (match_operand:SI 2 “register_operand” “d”))))] "" “nor\t%0,%z1,%z2” [(set_attr “type” “arith”) (set_attr “mode” “SI”)]) ;; ;; .................... ;; ;; ZERO EXTENSION ;; ;; ....................

;; Extension insns. ;; Those for integer source operand are ordered widest source type first.

(define_expand “zero_extendhisi2” [(set (match_operand:SI 0 “register_operand” "") (zero_extend:SI (match_operand:HI 1 “nonimmediate_operand” "")))] "" "")

(define_insn "" [(set (match_operand:SI 0 “register_operand” “=d,d,d”) (zero_extend:SI (match_operand:HI 1 “nonimmediate_operand” “d,R,m”)))] "" “* { if (which_alternative == 0) return "andi\t%0,%1,0xffff"; else return iq2000_move_1word (operands, insn, TRUE); }” [(set_attr “type” “arith,load,load”) (set_attr “mode” “SI”) (set_attr “length” “4,4,8”)])

(define_expand “zero_extendqihi2” [(set (match_operand:HI 0 “register_operand” "") (zero_extend:HI (match_operand:QI 1 “nonimmediate_operand” "")))] "" "")

(define_insn "" [(set (match_operand:HI 0 “register_operand” “=d,d,d”) (zero_extend:HI (match_operand:QI 1 “nonimmediate_operand” “d,R,m”)))] "" “* { if (which_alternative == 0) return "andi\t%0,%1,0x00ff"; else return iq2000_move_1word (operands, insn, TRUE); }” [(set_attr “type” “arith,load,load”) (set_attr “mode” “HI”) (set_attr “length” “4,4,8”)])

(define_expand “zero_extendqisi2” [(set (match_operand:SI 0 “register_operand” "") (zero_extend:SI (match_operand:QI 1 “nonimmediate_operand” "")))] "" "")

(define_insn "" [(set (match_operand:SI 0 “register_operand” “=d,d,d”) (zero_extend:SI (match_operand:QI 1 “nonimmediate_operand” “d,R,m”)))] "" “* { if (which_alternative == 0) return "andi\t%0,%1,0x00ff"; else return iq2000_move_1word (operands, insn, TRUE); }” [(set_attr “type” “arith,load,load”) (set_attr “mode” “SI”) (set_attr “length” “4,4,8”)])

;; ;; .................... ;; ;; SIGN EXTENSION ;; ;; ....................

;; Extension insns. ;; Those for integer source operand are ordered widest source type first.

;; These patterns originally accepted general_operands, however, slightly ;; better code is generated by only accepting register_operands, and then ;; letting combine generate the lh and lb insns.

(define_expand “extendhisi2” [(set (match_operand:SI 0 “register_operand” "") (sign_extend:SI (match_operand:HI 1 “nonimmediate_operand” "")))] "" " { if (optimize && GET_CODE (operands[1]) == MEM) operands[1] = force_not_mem (operands[1]);

if (GET_CODE (operands[1]) != MEM) { rtx op1 = gen_lowpart (SImode, operands[1]); rtx temp = gen_reg_rtx (SImode); rtx shift = GEN_INT (16);

  emit_insn (gen_ashlsi3 (temp, op1, shift));
  emit_insn (gen_ashrsi3 (operands[0], temp, shift));
  DONE;
}

}")

(define_insn “extendhisi2_internal” [(set (match_operand:SI 0 “register_operand” “=d,d”) (sign_extend:SI (match_operand:HI 1 “memory_operand” “R,m”)))] "" “* return iq2000_move_1word (operands, insn, FALSE);” [(set_attr “type” “load”) (set_attr “mode” “SI”) (set_attr “length” “4,8”)])

(define_expand “extendqihi2” [(set (match_operand:HI 0 “register_operand” "") (sign_extend:HI (match_operand:QI 1 “nonimmediate_operand” "")))] "" " { if (optimize && GET_CODE (operands[1]) == MEM) operands[1] = force_not_mem (operands[1]);

if (GET_CODE (operands[1]) != MEM) { rtx op0 = gen_lowpart (SImode, operands[0]); rtx op1 = gen_lowpart (SImode, operands[1]); rtx temp = gen_reg_rtx (SImode); rtx shift = GEN_INT (24);

  emit_insn (gen_ashlsi3 (temp, op1, shift));
  emit_insn (gen_ashrsi3 (op0, temp, shift));
  DONE;
}

}")

(define_insn “extendqihi2_internal” [(set (match_operand:HI 0 “register_operand” “=d,d”) (sign_extend:HI (match_operand:QI 1 “memory_operand” “R,m”)))] "" “* return iq2000_move_1word (operands, insn, FALSE);” [(set_attr “type” “load”) (set_attr “mode” “SI”) (set_attr “length” “4,8”)])

(define_expand “extendqisi2” [(set (match_operand:SI 0 “register_operand” "") (sign_extend:SI (match_operand:QI 1 “nonimmediate_operand” "")))] "" " { if (optimize && GET_CODE (operands[1]) == MEM) operands[1] = force_not_mem (operands[1]);

if (GET_CODE (operands[1]) != MEM) { rtx op1 = gen_lowpart (SImode, operands[1]); rtx temp = gen_reg_rtx (SImode); rtx shift = GEN_INT (24);

  emit_insn (gen_ashlsi3 (temp, op1, shift));
  emit_insn (gen_ashrsi3 (operands[0], temp, shift));
  DONE;
}

}")

(define_insn “extendqisi2_insn” [(set (match_operand:SI 0 “register_operand” “=d,d”) (sign_extend:SI (match_operand:QI 1 “memory_operand” “R,m”)))] "" “* return iq2000_move_1word (operands, insn, FALSE);” [(set_attr “type” “load”) (set_attr “mode” “SI”) (set_attr “length” “4,8”)]) ;; ;; ........................ ;; ;; BIT FIELD EXTRACTION ;; ;; ........................

(define_insn “extzv” [(set (match_operand:SI 0 “register_operand” “=r”) (zero_extract:SI (match_operand:SI 1 “register_operand” “r”) (match_operand:SI 2 “const_int_operand” “O”) (match_operand:SI 3 “const_int_operand” “O”)))] "" “* { int value[4]; value[2] = INTVAL (operands[2]); value[3] = INTVAL (operands[3]); operands[2] = GEN_INT ((value[3])); operands[3] = GEN_INT ((32 - value[2])); return "ram\t%0,%1,%2,%3,0x0";
}”
[(set_attr “type” “arith”)]) ;; ;; .................... ;; ;; DATA MOVEMENT ;; ;; ....................

/* Take care of constants that don't fit in single instruction */ (define_split [(set (match_operand:SI 0 “register_operand” "") (match_operand:SI 1 “general_operand” ""))] “(reload_in_progress || reload_completed) && large_int (operands[1], SImode)”

[(set (match_dup 0 ) (high:SI (match_dup 1))) (set (match_dup 0 ) (lo_sum:SI (match_dup 0) (match_dup 1)))] )

;; ??? iq2000_move_1word has support for HIGH, so this pattern may be ;; unnecessary.

(define_insn “high” [(set (match_operand:SI 0 “register_operand” “=r”) (high:SI (match_operand:SI 1 “immediate_operand” "")))] "" “lui\t%0,%%hi(%1) # high” [(set_attr “type” “move”)])

(define_insn “low” [(set (match_operand:SI 0 “register_operand” “=r”) (lo_sum:SI (match_operand:SI 1 “register_operand” “r”) (match_operand:SI 2 “immediate_operand” "")))] "" “addiu\t%0,%1,%%lo(%2) # low” [(set_attr “type” “arith”) (set_attr “mode” “SI”)])

;; 32-bit Integer moves

(define_split [(set (match_operand:SI 0 “register_operand” "") (match_operand:SI 1 “large_int” "“))] “reload_in_progress | reload_completed” [(set (match_dup 0) (match_dup 2)) (set (match_dup 0) (ior:SI (match_dup 0) (match_dup 3)))] " { operands[2] = GEN_INT (trunc_int_for_mode (INTVAL (operands[1]) & BITMASK_UPPER16, SImode)); operands[3] = GEN_INT (INTVAL (operands[1]) & BITMASK_LOWER16); }”)

;; Unlike most other insns, the move insns can't be split with ;; different predicates, because register spilling and other parts of ;; the compiler, have memoized the insn number already.

(define_expand “movsi” [(set (match_operand:SI 0 “nonimmediate_operand” "") (match_operand:SI 1 “general_operand” ""))] "" " { if (iq2000_check_split (operands[1], SImode)) { machine_mode mode = GET_MODE (operands[0]); rtx tem = ((reload_in_progress | reload_completed) ? operands[0] : gen_reg_rtx (mode));

  emit_insn (gen_rtx_SET (tem, gen_rtx_HIGH (mode, operands[1])));

  operands[1] = gen_rtx_LO_SUM (mode, tem, operands[1]);
}

if ((reload_in_progress | reload_completed) == 0 && !register_operand (operands[0], SImode) && !register_operand (operands[1], SImode) && (GET_CODE (operands[1]) != CONST_INT || INTVAL (operands[1]) != 0)) { rtx temp = force_reg (SImode, operands[1]); emit_move_insn (operands[0], temp); DONE; }

/* Take care of constants that don't fit in single instruction */ if ((reload_in_progress || reload_completed) && CONSTANT_P (operands[1]) && GET_CODE (operands[1]) != HIGH && GET_CODE (operands[1]) != LO_SUM && ! SMALL_INT_UNSIGNED (operands[1])) { rtx tem = ((reload_in_progress | reload_completed) ? operands[0] : gen_reg_rtx (SImode));

  emit_insn (gen_rtx_SET (tem, gen_rtx_HIGH (SImode, operands[1])));
  operands[1] = gen_rtx_LO_SUM (SImode, tem, operands[1]);
}

}")

;; The difference between these two is whether or not ints are allowed ;; in FP registers (off by default, use -mdebugh to enable).

(define_insn “movsi_internal2” [(set (match_operand:SI 0 “nonimmediate_operand” “=d,d,d,d,d,R,m”) (match_operand:SI 1 “move_operand” “d,IKL,Mnis,R,m,dJ,dJ”))] “(register_operand (operands[0], SImode) || register_operand (operands[1], SImode) || (GET_CODE (operands[1]) == CONST_INT && INTVAL (operands[1]) == 0))” “* return iq2000_move_1word (operands, insn, FALSE);” [(set_attr “type” “move,arith,arith,load,load,store,store”) (set_attr “mode” “SI”) (set_attr “length” “4,4,8,8,8,4,8”)])

;; 16-bit Integer moves

;; Unlike most other insns, the move insns can't be split with ;; different predicates, because register spilling and other parts of ;; the compiler, have memoized the insn number already. ;; Unsigned loads are used because BYTE_LOADS_ZERO_EXTEND is defined

(define_expand “movhi” [(set (match_operand:HI 0 “nonimmediate_operand” "") (match_operand:HI 1 “general_operand” "“))] "" " { if ((reload_in_progress | reload_completed) == 0 && !register_operand (operands[0], HImode) && !register_operand (operands[1], HImode) && ((GET_CODE (operands[1]) != CONST_INT || INTVAL (operands[1]) != 0))) { rtx temp = force_reg (HImode, operands[1]); emit_move_insn (operands[0], temp); DONE; } }”)

;; The difference between these two is whether or not ints are allowed ;; in FP registers (off by default, use -mdebugh to enable).

(define_insn “movhi_internal2” [(set (match_operand:HI 0 “nonimmediate_operand” “=d,d,d,d,R,m”) (match_operand:HI 1 “general_operand” “d,IK,R,m,dJ,dJ”))] “(register_operand (operands[0], HImode) || register_operand (operands[1], HImode) || (GET_CODE (operands[1]) == CONST_INT && INTVAL (operands[1]) == 0))” “* return iq2000_move_1word (operands, insn, TRUE);” [(set_attr “type” “move,arith,load,load,store,store”) (set_attr “mode” “HI”) (set_attr “length” “4,4,4,8,4,8”)])

;; 8-bit Integer moves

;; Unlike most other insns, the move insns can't be split with ;; different predicates, because register spilling and other parts of ;; the compiler, have memoized the insn number already. ;; Unsigned loads are used because BYTE_LOADS_ZERO_EXTEND is defined

(define_expand “movqi” [(set (match_operand:QI 0 “nonimmediate_operand” "") (match_operand:QI 1 “general_operand” "“))] "" " { if ((reload_in_progress | reload_completed) == 0 && !register_operand (operands[0], QImode) && !register_operand (operands[1], QImode) && (GET_CODE (operands[1]) != CONST_INT || INTVAL (operands[1]) != 0)) { rtx temp = force_reg (QImode, operands[1]); emit_move_insn (operands[0], temp); DONE; } }”)

;; The difference between these two is whether or not ints are allowed ;; in FP registers (off by default, use -mdebugh to enable).

(define_insn “movqi_internal2” [(set (match_operand:QI 0 “nonimmediate_operand” “=d,d,d,d,R,m”) (match_operand:QI 1 “general_operand” “d,IK,R,m,dJ,dJ”))] “(register_operand (operands[0], QImode) || register_operand (operands[1], QImode) || (GET_CODE (operands[1]) == CONST_INT && INTVAL (operands[1]) == 0))” “* return iq2000_move_1word (operands, insn, TRUE);” [(set_attr “type” “move,arith,load,load,store,store”) (set_attr “mode” “QI”) (set_attr “length” “4,4,4,8,4,8”)])

;; 32-bit floating point moves

(define_expand “movsf” [(set (match_operand:SF 0 “general_operand” "") (match_operand:SF 1 “general_operand” ""))] "" " { if (!reload_in_progress && !reload_completed && GET_CODE (operands[0]) == MEM && (GET_CODE (operands[1]) == MEM || GET_CODE (operands[1]) == CONST_DOUBLE)) operands[1] = copy_to_mode_reg (SFmode, operands[1]);

/* Take care of reg <- SF constant */ if ( const_double_operand (operands[1], GET_MODE (operands[1]) ) ) { emit_insn (gen_movsf_high (operands[0], operands[1])); emit_insn (gen_movsf_lo_sum (operands[0], operands[0], operands[1])); DONE; } }")

(define_insn “movsf_lo_sum” [(set (match_operand:SF 0 “register_operand” “=r”) (lo_sum:SF (match_operand:SF 1 “register_operand” “r”) (match_operand:SF 2 “const_double_operand” "")))] "" "* { long i;

REAL_VALUE_TO_TARGET_SINGLE (*CONST_DOUBLE_REAL_VALUE (operands[2]), i); operands[2] = GEN_INT (i); return "addiu\t%0,%1,%%lo(%2) # low"; }" [(set_attr “length” “4”) (set_attr “type” “arith”)])

(define_insn “movsf_high” [(set (match_operand:SF 0 “register_operand” “=r”) (high:SF (match_operand:SF 1 “const_double_operand” "")))] "" "* { long i;

REAL_VALUE_TO_TARGET_SINGLE (*CONST_DOUBLE_REAL_VALUE (operands[1]), i); operands[1] = GEN_INT (i); return "lui\t%0,%%hi(%1) # high"; }" [(set_attr “length” “4”) (set_attr “type” “arith”)])

(define_insn “*movsf_internal” [(set (match_operand:SF 0 “nonimmediate_operand” “=r,r,m”) (match_operand:SF 1 “nonimmediate_operand” “r,m,r”))] “!memory_operand (operands[0], SFmode) || !memory_operand (operands[1], SFmode)” “* { iq2000_fill_delay_slot ("", DELAY_LOAD, operands, insn);
if (which_alternative == 0) return "or\t%0,%1,%1"; else if (which_alternative == 1) return "lw\t%0,%1"; else if (which_alternative == 2) return "sw\t%1,%0"; else gcc_unreachable (); }” [(set_attr “length” “4,4,4”) (set_attr “type” “arith,load,store”)] ) ;; ;; .................... ;; ;; SHIFTS ;; ;; ....................

(define_expand “ashlsi3” [(set (match_operand:SI 0 “register_operand” “=d”) (ashift:SI (match_operand:SI 1 “register_operand” “d”) (match_operand:SI 2 “arith_operand” “dI”)))] "" "")

(define_insn “ashlsi3_internal1” [(set (match_operand:SI 0 “register_operand” “=d”) (ashift:SI (match_operand:SI 1 “register_operand” “d”) (match_operand:SI 2 “arith_operand” “dI”)))] "" “* { if (GET_CODE (operands[2]) == CONST_INT) { operands[2] = GEN_INT (INTVAL (operands[2]) & 0x1f); return "sll\t%0,%1,%2"; } else return "sllv\t%0,%1,%2"; }” [(set_attr “type” “arith”) (set_attr “mode” “SI”)])

(define_expand “ashrsi3” [(set (match_operand:SI 0 “register_operand” “=d”) (ashiftrt:SI (match_operand:SI 1 “register_operand” “d”) (match_operand:SI 2 “arith_operand” “dI”)))] "" "")

(define_insn “ashrsi3_internal1” [(set (match_operand:SI 0 “register_operand” “=d”) (ashiftrt:SI (match_operand:SI 1 “register_operand” “d”) (match_operand:SI 2 “arith_operand” “dI”)))] "" “* { if (GET_CODE (operands[2]) == CONST_INT) { operands[2] = GEN_INT (INTVAL (operands[2]) & 0x1f); return "sra\t%0,%1,%2"; } else return "srav\t%0,%1,%2"; }” [(set_attr “type” “arith”) (set_attr “mode” “SI”)])

(define_expand “lshrsi3” [(set (match_operand:SI 0 “register_operand” “=d”) (lshiftrt:SI (match_operand:SI 1 “register_operand” “d”) (match_operand:SI 2 “arith_operand” “dI”)))] "" "")

(define_insn “lshrsi3_internal1” [(set (match_operand:SI 0 “register_operand” “=d”) (lshiftrt:SI (match_operand:SI 1 “register_operand” “d”) (match_operand:SI 2 “arith_operand” “dI”)))] "" “* { if (GET_CODE (operands[2]) == CONST_INT) { operands[2] = GEN_INT (INTVAL (operands[2]) & 0x1f); return "srl\t%0,%1,%2"; } else return "srlv\t%0,%1,%2"; }” [(set_attr “type” “arith”) (set_attr “mode” “SI”)])

;; Rotate Right (define_insn “rotrsi3” [(set (match_operand:SI 0 “register_operand” “=r”) (rotatert:SI (match_operand:SI 1 “register_operand” “r”) (match_operand:SI 2 “uns_arith_operand” “O”)))] "" “ram %0,%1,%2,0x0,0x0” [(set_attr “type” “arith”)])

;; ;; .................... ;; ;; CONDITIONAL BRANCHES ;; ;; ....................

(define_expand “cbranchsi4” [(set (pc) (if_then_else (match_operator 0 “ordered_comparison_operator” [(match_operand:SI 1 “register_operand”) (match_operand:SI 2 “reg_or_const_operand”)]) (label_ref (match_operand 3 "“)) (pc)))] "" " { gen_conditional_branch (operands, SImode); DONE; }”)

;; Conditional branches on comparisons with zero.

(define_insn “branch_zero” [(set (pc) (if_then_else (match_operator 0 “cmp_op” [(match_operand:SI 2 “register_operand” “d”) (const_int 0)]) (label_ref (match_operand 1 "" "")) (pc)))] "" “* { return iq2000_output_conditional_branch (insn, operands, /two_operands_p=/0, /float_p=/0, /inverted_p=/0, get_attr_length (insn)); }” [(set_attr “type” “branch”) (set_attr “mode” “none”)])

(define_insn “branch_zero_inverted” [(set (pc) (if_then_else (match_operator 0 “cmp_op” [(match_operand:SI 2 “register_operand” “d”) (const_int 0)]) (pc) (label_ref (match_operand 1 "" ""))))] "" “* { return iq2000_output_conditional_branch (insn, operands, /two_operands_p=/0, /float_p=/0, /inverted_p=/1, get_attr_length (insn)); }” [(set_attr “type” “branch”) (set_attr “mode” “none”)])

;; Conditional branch on equality comparison.

(define_insn “branch_equality” [(set (pc) (if_then_else (match_operator 0 “equality_op” [(match_operand:SI 2 “register_operand” “d”) (match_operand:SI 3 “register_operand” “d”)]) (label_ref (match_operand 1 "" "")) (pc)))] "" “* { return iq2000_output_conditional_branch (insn, operands, /two_operands_p=/1, /float_p=/0, /inverted_p=/0, get_attr_length (insn)); }” [(set_attr “type” “branch”) (set_attr “mode” “none”)])

(define_insn “branch_equality_inverted” [(set (pc) (if_then_else (match_operator 0 “equality_op” [(match_operand:SI 2 “register_operand” “d”) (match_operand:SI 3 “register_operand” “d”)]) (pc) (label_ref (match_operand 1 "" ""))))] "" “* { return iq2000_output_conditional_branch (insn, operands, /two_operands_p=/1, /float_p=/0, /inverted_p=/1, get_attr_length (insn)); }” [(set_attr “type” “branch”) (set_attr “mode” “none”)])

;; Recognize bbi and bbin instructions. These use two unusual template ;; patterns, %Ax and %Px. %Ax outputs an ‘i’ if operand x' is a LABEL_REF ;; otherwise it outputs an 'in'. %Px does nothing if x' is PC ;; and outputs the operand if `x' is a LABEL_REF.

(define_insn "" [(set (pc) (if_then_else (ne (sign_extract:SI (match_operand:SI 0 “register_operand” “r”) (const_int 1) (match_operand:SI 1 “arith_operand” “I”)) (const_int 0)) (match_operand 2 “pc_or_label_operand” "") (match_operand 3 “pc_or_label_operand” "")))] "" “bb%A2\t%0(31-%1),%P2%P3” [(set_attr “length” “4”) (set_attr “type” “branch”)])

(define_insn "" [(set (pc) (if_then_else (eq (sign_extract:SI (match_operand:SI 0 “register_operand” “r”) (const_int 1) (match_operand:SI 1 “arith_operand” “I”)) (const_int 0)) (match_operand 2 “pc_or_label_operand” "") (match_operand 3 “pc_or_label_operand” "")))] "" “bb%A3\t%0(31-%1),%P2%P3” [(set_attr “length” “4”) (set_attr “type” “branch”)])

(define_insn "" [(set (pc) (if_then_else (ne (zero_extract:SI (match_operand:SI 0 “register_operand” “r”) (const_int 1) (match_operand:SI 1 “arith_operand” “I”)) (const_int 0)) (match_operand 2 “pc_or_label_operand” "") (match_operand 3 “pc_or_label_operand” "")))] “0” “bb%A2\t%0(31-%1),%P2%P3” [(set_attr “length” “4”) (set_attr “type” “branch”)])

(define_insn "" [(set (pc) (if_then_else (eq (zero_extract:SI (match_operand:SI 0 “register_operand” “r”) (const_int 1) (match_operand:SI 1 “arith_operand” “I”)) (const_int 0)) (match_operand 2 “pc_or_label_operand” "") (match_operand 3 “pc_or_label_operand” "")))] “0” “bb%A3\t%0(31-%1),%P2%P3” [(set_attr “length” “4”) (set_attr “type” “branch”)])

(define_insn "" [(set (pc) (if_then_else (eq (and:SI (match_operand:SI 0 “register_operand” “r”) (match_operand:SI 1 “power_of_2_operand” “I”)) (const_int 0)) (match_operand 2 “pc_or_label_operand” "") (match_operand 3 “pc_or_label_operand” "")))] "" “bb%A3\t%0(%p1),%P2%P3” [(set_attr “length” “4”) (set_attr “type” “branch”)])

(define_insn "" [(set (pc) (if_then_else (ne (and:SI (match_operand:SI 0 “register_operand” “r”) (match_operand:SI 1 “power_of_2_operand” “I”)) (const_int 0)) (match_operand 2 “pc_or_label_operand” "") (match_operand 3 “pc_or_label_operand” "")))] "" “bb%A2\t%0(%p1),%P2%P3” [(set_attr “length” “4”) (set_attr “type” “branch”)]) ;; ;; .................... ;; ;; SETTING A REGISTER FROM A COMPARISON ;; ;; ....................

(define_expand “cstoresi4” [(set (match_operand:SI 0 “register_operand” “=d”) (match_operator:SI 1 “ordered_comparison_operator” [(match_operand:SI 2 “register_operand”) (match_operand:SI 3 “reg_or_const_operand”)]))] "" " { gen_int_relational (GET_CODE (operands[1]), operands[0], operands[2], operands[3], (int *)0); DONE; }")

(define_insn “seq_si_zero” [(set (match_operand:SI 0 “register_operand” “=d”) (eq:SI (match_operand:SI 1 “register_operand” “d”) (const_int 0)))] "" “sltiu\t%0,%1,1” [(set_attr “type” “arith”) (set_attr “mode” “SI”)])

(define_insn “sne_si_zero” [(set (match_operand:SI 0 “register_operand” “=d”) (ne:SI (match_operand:SI 1 “register_operand” “d”) (const_int 0)))] "" “sltu\t%0,%.,%1” [(set_attr “type” “arith”) (set_attr “mode” “SI”)])

(define_insn “sgt_si” [(set (match_operand:SI 0 “register_operand” “=d,d”) (gt:SI (match_operand:SI 1 “register_operand” “d,d”) (match_operand:SI 2 “reg_or_0_operand” “d,J”)))] "" “@ slt\t%0,%z2,%1 slt\t%0,%z2,%1” [(set_attr “type” “arith,arith”) (set_attr “mode” “SI,SI”)])

(define_insn “slt_si” [(set (match_operand:SI 0 “register_operand” “=d,d”) (lt:SI (match_operand:SI 1 “register_operand” “d,d”) (match_operand:SI 2 “arith_operand” “d,I”)))] "" “@ slt\t%0,%1,%2 slti\t%0,%1,%2” [(set_attr “type” “arith,arith”) (set_attr “mode” “SI,SI”)])

(define_insn “sle_si_const” [(set (match_operand:SI 0 “register_operand” “=d”) (le:SI (match_operand:SI 1 “register_operand” “d”) (match_operand:SI 2 “small_int” “I”)))] “INTVAL (operands[2]) < 32767” “* { operands[2] = GEN_INT (INTVAL (operands[2])+1); return "slti\t%0,%1,%2"; }” [(set_attr “type” “arith”) (set_attr “mode” “SI”)])

(define_insn “sgtu_si” [(set (match_operand:SI 0 “register_operand” “=d”) (gtu:SI (match_operand:SI 1 “register_operand” “d”) (match_operand:SI 2 “reg_or_0_operand” “dJ”)))] "" “sltu\t%0,%z2,%1” [(set_attr “type” “arith”) (set_attr “mode” “SI”)])

(define_insn “sltu_si” [(set (match_operand:SI 0 “register_operand” “=d,d”) (ltu:SI (match_operand:SI 1 “register_operand” “d,d”) (match_operand:SI 2 “arith_operand” “d,I”)))] "" “@ sltu\t%0,%1,%2 sltiu\t%0,%1,%2” [(set_attr “type” “arith,arith”) (set_attr “mode” “SI,SI”)])

(define_insn “sleu_si_const” [(set (match_operand:SI 0 “register_operand” “=d”) (leu:SI (match_operand:SI 1 “register_operand” “d”) (match_operand:SI 2 “small_int” “I”)))] “INTVAL (operands[2]) < 32767” “* { operands[2] = GEN_INT (INTVAL (operands[2]) + 1); return "sltiu\t%0,%1,%2"; }” [(set_attr “type” “arith”) (set_attr “mode” “SI”)])

;; ;; .................... ;; ;; UNCONDITIONAL BRANCHES ;; ;; ....................

;; Unconditional branches.

(define_insn “jump” [(set (pc) (label_ref (match_operand 0 "" "")))] "" “* { if (GET_CODE (operands[0]) == REG) return "j\t%0"; return "j\t%l0"; /* return "b\t%l0";*/ }” [(set_attr “type” “jump”) (set_attr “mode” “none”)])

(define_expand “indirect_jump” [(set (pc) (match_operand 0 “register_operand” “d”))] "" " { rtx dest;

if (operands[0]) /* eliminate unused code warnings */ { dest = operands[0]; if (GET_CODE (dest) != REG || GET_MODE (dest) != Pmode) operands[0] = copy_to_mode_reg (Pmode, dest);

  if (!(Pmode == DImode))
emit_jump_insn (gen_indirect_jump_internal1 (operands[0]));
  else
internal_error (\"unimplemented functionality\");

  DONE;
}

}")

(define_insn “indirect_jump_internal1” [(set (pc) (match_operand:SI 0 “register_operand” “d”))] “!(Pmode == DImode)” “j\t%0” [(set_attr “type” “jump”) (set_attr “mode” “none”)])

(define_expand “tablejump” [(set (pc) (match_operand 0 “register_operand” “d”)) (use (label_ref (match_operand 1 "" "")))] "" " { if (operands[0]) /* eliminate unused code warnings */ { gcc_assert (GET_MODE (operands[0]) == Pmode);

  if (!(Pmode == DImode))
emit_jump_insn (gen_tablejump_internal1 (operands[0], operands[1]));
  else
internal_error (\"unimplemented functionality\");

  DONE;
}

}")

(define_insn “tablejump_internal1” [(set (pc) (match_operand:SI 0 “register_operand” “d”)) (use (label_ref (match_operand 1 "" "")))] “!(Pmode == DImode)” “j\t%0” [(set_attr “type” “jump”) (set_attr “mode” “none”)])

(define_expand “tablejump_internal3” [(parallel [(set (pc) (plus:SI (match_operand:SI 0 “register_operand” “d”) (label_ref:SI (match_operand 1 "" "")))) (use (label_ref:SI (match_dup 1)))])] "" "")

;;; Make sure that this only matches the insn before ADDR_DIFF_VEC. Otherwise ;;; it is not valid. ??? With the USE, the condition tests may not be required ;;; any longer.

;;; ??? The length depends on the ABI. It is two for o32, and one for n32. ;;; We just use the conservative number here.

(define_insn "" [(set (pc) (plus:SI (match_operand:SI 0 “register_operand” “d”) (label_ref:SI (match_operand 1 "" "")))) (use (label_ref:SI (match_dup 1)))] “!(Pmode == DImode) && NEXT_INSN (as_a <rtx_insn *> (operands[1])) != 0 && GET_CODE (PATTERN (NEXT_INSN (as_a <rtx_insn *> (operands[1])))) == ADDR_DIFF_VEC” “* { return "j\t%0"; }” [(set_attr “type” “jump”) (set_attr “mode” “none”) (set_attr “length” “8”)]) ;; ;; .................... ;; ;; Function prologue/epilogue ;; ;; .................... ;;

(define_expand “prologue” [(const_int 1)] "" " { if (iq2000_isa >= 0) /* avoid unused code warnings */ { iq2000_expand_prologue (); DONE; } }")

;; Block any insns from being moved before this point, since the ;; profiling call to mcount can use various registers that aren't ;; saved or used to pass arguments.

(define_insn “blockage” [(unspec_volatile [(const_int 0)] 0)] "" "" [(set_attr “type” “unknown”) (set_attr “mode” “none”) (set_attr “length” “0”)])

(define_expand “epilogue” [(const_int 2)] "" " { if (iq2000_isa >= 0) /* avoid unused code warnings */ { iq2000_expand_epilogue (); DONE; } }")

;; Trivial return. Make it look like a normal return insn as that ;; allows jump optimizations to work better . (define_insn “return” [(return)] “iq2000_can_use_return_insn ()” “j\t%%31” [(set_attr “type” “jump”) (set_attr “mode” “none”)])

;; Normal return.

(define_insn “return_internal” [(use (match_operand 0 “pmode_register_operand” "")) (return)] "" “* { return "j\t%0"; }” [(set_attr “type” “jump”) (set_attr “mode” “none”)])

(define_insn “eh_return_internal” [(const_int 4) (return) (use (reg:SI 26)) (use (reg:SI 31))] "" “j\t%%26” [(set_attr “type” “jump”) (set_attr “mode” “none”)])

(define_expand “eh_return” [(use (match_operand:SI 0 “register_operand” “r”))] "" " { iq2000_expand_eh_return (operands[0]); DONE; }")

;; ;; .................... ;; ;; FUNCTION CALLS ;; ;; ....................

;; calls.c now passes a third argument, make saber happy

(define_expand “call” [(parallel [(call (match_operand 0 “memory_operand” “m”) (match_operand 1 "" “i”)) (clobber (reg:SI 31)) (use (match_operand 2 "" "")) ;; next_arg_reg (use (match_operand 3 "" ""))])] ;; struct_value_size_rtx "" " { rtx addr;

if (operands[0]) /* eliminate unused code warnings */ { addr = XEXP (operands[0], 0); if ((GET_CODE (addr) != REG && (!CONSTANT_ADDRESS_P (addr))) || ! call_insn_operand (addr, VOIDmode)) XEXP (operands[0], 0) = copy_to_mode_reg (Pmode, addr);

  /* In order to pass small structures by value in registers
 compatibly with the IQ2000 compiler, we need to shift the value
 into the high part of the register.  Function_arg has encoded
 a PARALLEL rtx, holding a vector of adjustments to be made
 as the next_arg_reg variable, so we split up the insns,
 and emit them separately.  */

  if (operands[2] != (rtx)0 && GET_CODE (operands[2]) == PARALLEL)
{
  rtvec adjust = XVEC (operands[2], 0);
  int num = GET_NUM_ELEM (adjust);
  int i;

  for (i = 0; i < num; i++)
    emit_insn (RTVEC_ELT (adjust, i));
}

  emit_call_insn (gen_call_internal0 (operands[0], operands[1],
				  gen_rtx_REG (SImode,
					       GP_REG_FIRST + 31)));
  DONE;
}

}")

(define_expand “call_internal0” [(parallel [(call (match_operand 0 "" "") (match_operand 1 "" "")) (clobber (match_operand:SI 2 "" ""))])] "" "")

(define_insn “call_internal1” [(call (mem (match_operand 0 “call_insn_operand” “ri”)) (match_operand 1 "" “i”)) (clobber (match_operand:SI 2 “register_operand” “=d”))] "" "* { rtx target = operands[0];

if (GET_CODE (target) == CONST_INT) return "li\t%@,%0\n\tjalr\t%2,%@"; else if (CONSTANT_ADDRESS_P (target)) return "jal\t%0"; else return "jalr\t%2,%0"; }" [(set_attr “type” “call”) (set_attr “mode” “none”)])

;; calls.c now passes a fourth argument, make saber happy

(define_expand “call_value” [(parallel [(set (match_operand 0 “register_operand” “=d”) (call (match_operand 1 “memory_operand” “m”) (match_operand 2 "" “i”))) (clobber (reg:SI 31)) (use (match_operand 3 "" ""))])] ;; next_arg_reg "" " { rtx addr;

if (operands[0]) /* eliminate unused code warning */ { addr = XEXP (operands[1], 0); if ((GET_CODE (addr) != REG && (!CONSTANT_ADDRESS_P (addr))) || ! call_insn_operand (addr, VOIDmode)) XEXP (operands[1], 0) = copy_to_mode_reg (Pmode, addr);

  /* In order to pass small structures by value in registers
 compatibly with the IQ2000 compiler, we need to shift the value
 into the high part of the register.  Function_arg has encoded
 a PARALLEL rtx, holding a vector of adjustments to be made
 as the next_arg_reg variable, so we split up the insns,
 and emit them separately.  */

  if (operands[3] != (rtx)0 && GET_CODE (operands[3]) == PARALLEL)
{
  rtvec adjust = XVEC (operands[3], 0);
  int num = GET_NUM_ELEM (adjust);
  int i;

  for (i = 0; i < num; i++)
    emit_insn (RTVEC_ELT (adjust, i));
}

  if (GET_CODE (operands[0]) == PARALLEL && XVECLEN (operands[0], 0) > 1)
{
  emit_call_insn (gen_call_value_multiple_internal0
		  (XEXP (XVECEXP (operands[0], 0, 0), 0),
		   operands[1], operands[2],
		   XEXP (XVECEXP (operands[0], 0, 1), 0),
		   gen_rtx_REG (SImode, GP_REG_FIRST + 31)));
  DONE;
}

  /* We have a call returning a DImode structure in an FP reg.
 Strip off the now unnecessary PARALLEL.  */
  if (GET_CODE (operands[0]) == PARALLEL)
operands[0] = XEXP (XVECEXP (operands[0], 0, 0), 0);

  emit_call_insn (gen_call_value_internal0 (operands[0], operands[1], operands[2],
				        gen_rtx_REG (SImode,
						     GP_REG_FIRST + 31)));

  DONE;
}

}")

(define_expand “call_value_internal0” [(parallel [(set (match_operand 0 "" "") (call (match_operand 1 "" "") (match_operand 2 "" ""))) (clobber (match_operand:SI 3 "" ""))])] "" "")

(define_insn “call_value_internal1” [(set (match_operand 0 “register_operand” “=d”) (call (mem (match_operand 1 “call_insn_operand” “r”)) (match_operand 2 "" “i”))) (clobber (match_operand:SI 3 “register_operand” “=d”))] "" "* { rtx target = operands[1];

if (GET_CODE (target) == CONST_INT) return "li\t%@,%1\n\tjalr\t%3,%@"; else if (CONSTANT_ADDRESS_P (target)) return "jal\t%1"; else return "jalr\t%3,%1"; }" [(set_attr “type” “call”) (set_attr “mode” “none”)])

(define_expand “call_value_multiple_internal0” [(parallel [(set (match_operand 0 "" "") (call (match_operand 1 "" "") (match_operand 2 "" ""))) (set (match_operand 3 "" "") (call (match_dup 1) (match_dup 2))) (clobber (match_operand:SI 4 "" ""))])] "" "")

;; ??? May eventually need all 6 versions of the call patterns with multiple ;; return values.

(define_insn “call_value_multiple_internal1” [(set (match_operand 0 “register_operand” “=d”) (call (mem (match_operand 1 “call_insn_operand” “r”)) (match_operand 2 "" “i”))) (set (match_operand 3 “register_operand” “=d”) (call (mem (match_dup 1)) (match_dup 2))) (clobber (match_operand:SI 4 “register_operand” “=d”))] "" "* { rtx target = operands[1];

if (GET_CODE (target) == CONST_INT) return "li\t%@,%1\n\tjalr\t%4,%@"; else if (CONSTANT_ADDRESS_P (target)) return "jal\t%1"; else return "jalr\t%4,%1"; }" [(set_attr “type” “call”) (set_attr “mode” “none”)])

;; Call subroutine returning any type.

(define_expand “untyped_call” [(parallel [(call (match_operand 0 "" "") (const_int 0)) (match_operand 1 "" "") (match_operand 2 "" "")])] "" " { if (operands[0]) /* silence statement not reached warnings */ { int i;

  emit_call_insn (gen_call (operands[0], const0_rtx, NULL, const0_rtx));

  for (i = 0; i < XVECLEN (operands[2], 0); i++)
{
  rtx set = XVECEXP (operands[2], 0, i);
  emit_move_insn (SET_DEST (set), SET_SRC (set));
}

  emit_insn (gen_blockage ());
  DONE;
}

}") ;; ;; .................... ;; ;; MISC. ;; ;; .................... ;;

(define_insn “nop” [(const_int 0)] "" “nop” [(set_attr “type” “nop”) (set_attr “mode” “none”)])

;; For the rare case where we need to load an address into a register ;; that cannot be recognized by the normal movsi/addsi instructions. ;; I have no idea how many insns this can actually generate. It should ;; be rare, so over-estimating as 10 instructions should not have any ;; real performance impact. (define_insn “leasi” [(set (match_operand:SI 0 “register_operand” “=d”) (match_operand:SI 1 “address_operand” “p”))] “Pmode == SImode” "* { rtx xoperands [3];

xoperands[0] = operands[0]; xoperands[1] = XEXP (operands[1], 0); xoperands[2] = XEXP (operands[1], 1); output_asm_insn ("addiu\t%0,%1,%2", xoperands); return ""; }" [(set_attr “type” “arith”) (set_attr “mode” “SI”) (set_attr “length” “40”)])

(define_insn “ado16” [(set (match_operand:SI 0 “register_operand” “=r”) (unspec:SI [(match_operand:SI 1 “register_operand” “r”) (match_operand:SI 2 “register_operand” “r”)] UNSPEC_ADO16))] "" “ado16\t%0, %1, %2” )

(define_insn “ram” [(set (match_operand:SI 0 “register_operand” “=r”) (unspec:SI [(match_operand:SI 1 “register_operand” “r”) (match_operand:SI 2 “const_int_operand” “I”) (match_operand:SI 3 “const_int_operand” “I”) (match_operand:SI 4 “const_int_operand” “I”)] UNSPEC_RAM))] "" “ram\t%0, %1, %2, %3, %4” )

(define_insn “chkhdr” [(unspec_volatile:SI [(match_operand:SI 0 “register_operand” “=r”) (match_operand:SI 1 “register_operand” “r”)] UNSPEC_CHKHDR)] "" “* return iq2000_fill_delay_slot ("chkhdr\t%0, %1", DELAY_LOAD, operands, insn);” [(set_attr “dslot” “not_in_dslot”)] )

(define_insn “pkrl” [(unspec_volatile:SI [(match_operand:SI 0 “register_operand” “r”) (match_operand:SI 1 “register_operand” “r”)] UNSPEC_PKRL)] "" “* return iq2000_fill_delay_slot ("pkrl\t%0, %1", DELAY_NONE, operands, insn);” [(set_attr “dslot” “not_in_dslot”)] )

(define_insn “cfc0” [(set (match_operand:SI 0 “register_operand” “=r”) (unspec_volatile:SI [(match_operand:SI 1 “const_int_operand” “I”)] UNSPEC_CFC0))] "" “* return iq2000_fill_delay_slot ("cfc0\t%0, %%%1", DELAY_LOAD, operands, insn);” [(set_attr “dslot” “ok_in_dslot”)] )

(define_insn “cfc1” [(set (match_operand:SI 0 “register_operand” “=r”) (unspec_volatile:SI [(match_operand:SI 1 “const_int_operand” “I”)] UNSPEC_CFC1))] "" “* return iq2000_fill_delay_slot ("cfc1\t%0, %%%1", DELAY_LOAD, operands, insn);” [(set_attr “dslot” “ok_in_dslot”)] )

(define_insn “cfc2” [(set (match_operand:SI 0 “register_operand” “=r”) (unspec_volatile:SI [(match_operand:SI 1 “const_int_operand” “I”)] UNSPEC_CFC2))] "" “* return iq2000_fill_delay_slot ("cfc2\t%0, %%%1", DELAY_LOAD, operands, insn);” [(set_attr “dslot” “not_in_dslot”)] )

(define_insn “cfc3” [(set (match_operand:SI 0 “register_operand” “=r”) (unspec_volatile:SI [(match_operand:SI 1 “const_int_operand” “I”)] UNSPEC_CFC3))] "" “* return iq2000_fill_delay_slot ("cfc3\t%0, %%%1", DELAY_LOAD, operands, insn);” [(set_attr “dslot” “not_in_dslot”)] )

(define_insn “ctc0” [(unspec_volatile:SI [(match_operand:SI 0 “reg_or_0_operand” “rJ”) (match_operand:SI 1 “const_int_operand” “I”)] UNSPEC_CTC0)] "" “* return iq2000_fill_delay_slot ("ctc0\t%z0, %%%1", DELAY_NONE, operands, insn);” [(set_attr “dslot” “ok_in_dslot”)] )

(define_insn “ctc1” [(unspec_volatile:SI [(match_operand:SI 0 “reg_or_0_operand” “rJ”) (match_operand:SI 1 “const_int_operand” “I”)] UNSPEC_CTC1)] "" “* return iq2000_fill_delay_slot ("ctc1\t%z0, %%%1", DELAY_NONE, operands, insn);” [(set_attr “dslot” “ok_in_dslot”)] )

(define_insn “ctc2” [(unspec_volatile:SI [(match_operand:SI 0 “reg_or_0_operand” “rJ”) (match_operand:SI 1 “const_int_operand” “I”)] UNSPEC_CTC2)] "" “* return iq2000_fill_delay_slot ("ctc2\t%z0, %%%1", DELAY_NONE, operands, insn);” [(set_attr “dslot” “ok_in_dslot”)] )

(define_insn “ctc3” [(unspec_volatile:SI [(match_operand:SI 0 “reg_or_0_operand” “rJ”) (match_operand:SI 1 “const_int_operand” “I”)] UNSPEC_CTC3)] "" “* return iq2000_fill_delay_slot ("ctc3\t%z0, %%%1", DELAY_NONE, operands, insn);” [(set_attr “dslot” “ok_in_dslot”)] )

(define_insn “mfc0” [(set (match_operand:SI 0 “register_operand” “=r”) (unspec_volatile:SI [(match_operand:SI 1 “const_int_operand” “I”)] UNSPEC_MFC0))] "" “* return iq2000_fill_delay_slot ("mfc0\t%0, %%%1", DELAY_LOAD, operands, insn);” [(set_attr “dslot” “ok_in_dslot”)] )

(define_insn “mfc1” [(set (match_operand:SI 0 “register_operand” “=r”) (unspec_volatile:SI [(match_operand:SI 1 “const_int_operand” “I”)] UNSPEC_MFC1))] "" “* return iq2000_fill_delay_slot ("mfc1\t%0, %%%1", DELAY_LOAD, operands, insn);” [(set_attr “dslot” “ok_in_dslot”)] )

(define_insn “mfc2” [(set (match_operand:SI 0 “register_operand” “=r”) (unspec_volatile:SI [(match_operand:SI 1 “const_int_operand” “I”)] UNSPEC_MFC2))] "" “* return iq2000_fill_delay_slot ("mfc2\t%0, %%%1", DELAY_LOAD, operands, insn);” [(set_attr “dslot” “not_in_dslot”)] )

(define_insn “mfc3” [(set (match_operand:SI 0 “register_operand” “=r”) (unspec_volatile:SI [(match_operand:SI 1 “const_int_operand” “I”)] UNSPEC_MFC3))] "" “* return iq2000_fill_delay_slot ("mfc3\t%0, %%%1", DELAY_LOAD, operands, insn);” [(set_attr “dslot” “not_in_dslot”)] )

(define_insn “mtc0” [(unspec_volatile:SI [(match_operand:SI 0 “register_operand” “r”) (match_operand:SI 1 “const_int_operand” “I”)] UNSPEC_MTC0)] "" “* return iq2000_fill_delay_slot ("mtc0\t%0, %%%1", DELAY_NONE, operands, insn);” [(set_attr “dslot” “ok_in_dslot”)] )

(define_insn “mtc1” [(unspec_volatile:SI [(match_operand:SI 0 “register_operand” “r”) (match_operand:SI 1 “const_int_operand” “I”)] UNSPEC_MTC1)] "" “* return iq2000_fill_delay_slot ("mtc1\t%0, %%%1", DELAY_NONE, operands, insn);” [(set_attr “dslot” “ok_in_dslot”)] )

(define_insn “mtc2” [(unspec_volatile:SI [(match_operand:SI 0 “register_operand” “r”) (match_operand:SI 1 “const_int_operand” “I”)] UNSPEC_MTC2)] "" “* return iq2000_fill_delay_slot ("mtc2\t%0, %%%1", DELAY_NONE, operands, insn);” [(set_attr “dslot” “ok_in_dslot”)] )

(define_insn “mtc3” [(unspec_volatile:SI [(match_operand:SI 0 “register_operand” “r”) (match_operand:SI 1 “const_int_operand” “I”)] UNSPEC_MTC3)] "" “* return iq2000_fill_delay_slot ("mtc3\t%0, %%%1", DELAY_NONE, operands, insn);” [(set_attr “dslot” “ok_in_dslot”)] )

(define_insn “lur” [(unspec_volatile:SI [(match_operand:SI 0 “register_operand” “r”) (match_operand:SI 1 “register_operand” “r”)] UNSPEC_LUR)] "" “* return iq2000_fill_delay_slot ("lur\t%0, %1", DELAY_NONE, operands, insn);” [(set_attr “dslot” “not_in_dslot”)] )

(define_insn “rb” [(unspec_volatile:SI [(match_operand:SI 0 “register_operand” “r”) (match_operand:SI 1 “register_operand” “r”)] UNSPEC_RB)] "" “* return iq2000_fill_delay_slot ("rb\t%0, %1", DELAY_NONE, operands, insn);” [(set_attr “dslot” “not_in_dslot”)] )

(define_insn “rx” [(unspec_volatile:SI [(match_operand:SI 0 “register_operand” “r”) (match_operand:SI 1 “register_operand” “r”)] UNSPEC_RX)] "" “* return iq2000_fill_delay_slot ("rx\t%0, %1", DELAY_NONE, operands, insn);” [(set_attr “dslot” “not_in_dslot”)] )

(define_insn “srrd” [(unspec_volatile:SI [(match_operand:SI 0 “register_operand” “r”)] UNSPEC_SRRD)] "" “* return iq2000_fill_delay_slot ("srrd\t%0", DELAY_NONE, operands, insn);” [(set_attr “dslot” “not_in_dslot”)] )

(define_insn “srwr” [(unspec_volatile:SI [(match_operand:SI 0 “register_operand” “r”) (match_operand:SI 1 “register_operand” “r”)] UNSPEC_SRWR)] "" “* return iq2000_fill_delay_slot ("srwr\t%0, %1", DELAY_NONE, operands, insn);” [(set_attr “dslot” “not_in_dslot”)] )

(define_insn “wb” [(unspec_volatile:SI [(match_operand:SI 0 “register_operand” “r”) (match_operand:SI 1 “register_operand” “r”)] UNSPEC_WB)] "" “* return iq2000_fill_delay_slot ("wb\t%0, %1", DELAY_NONE, operands, insn);” [(set_attr “dslot” “not_in_dslot”)] )

(define_insn “wx” [(unspec_volatile:SI [(match_operand:SI 0 “register_operand” “r”) (match_operand:SI 1 “register_operand” “r”)] UNSPEC_WX)] "" “* return iq2000_fill_delay_slot ("wx\t%0, %1", DELAY_NONE, operands, insn);” [(set_attr “dslot” “not_in_dslot”)] )

(define_insn “luc32” [(unspec_volatile:SI [(match_operand:SI 0 “register_operand” “r”) (match_operand:SI 1 “register_operand” “r”)] UNSPEC_LUC32)] "" “* return iq2000_fill_delay_slot ("luc32\t%0, %1", DELAY_NONE, operands, insn);” [(set_attr “dslot” “not_in_dslot”)] )

(define_insn “luc32l” [(unspec_volatile:SI [(match_operand:SI 0 “register_operand” “r”) (match_operand:SI 1 “register_operand” “r”)] UNSPEC_LUC32L)] "" “* return iq2000_fill_delay_slot ("luc32l\t%0, %1", DELAY_NONE, operands, insn);” [(set_attr “dslot” “not_in_dslot”)] )

(define_insn “luc64” [(unspec_volatile:SI [(match_operand:SI 0 “register_operand” “r”) (match_operand:SI 1 “register_operand” “r”)] UNSPEC_LUC64)] "" “* return iq2000_fill_delay_slot ("luc64\t%0, %1", DELAY_NONE, operands, insn);” [(set_attr “dslot” “not_in_dslot”)] )

(define_insn “luc64l” [(unspec_volatile:SI [(match_operand:SI 0 “register_operand” “r”) (match_operand:SI 1 “register_operand” “r”)] UNSPEC_LUC64L)] "" “* return iq2000_fill_delay_slot ("luc64l\t%0, %1", DELAY_NONE, operands, insn);” [(set_attr “dslot” “not_in_dslot”)] )

(define_insn “luk” [(unspec_volatile:SI [(match_operand:SI 0 “register_operand” “r”) (match_operand:SI 1 “register_operand” “r”)] UNSPEC_LUK)] "" “* return iq2000_fill_delay_slot ("luk\t%0, %1", DELAY_NONE, operands, insn);” [(set_attr “dslot” “ok_in_dslot”)] )

(define_insn “lulck” [(unspec_volatile:SI [(match_operand:SI 0 “register_operand” “r”)] UNSPEC_LULCK)] "" “* return iq2000_fill_delay_slot ("lulck\t%0", DELAY_NONE, operands, insn);” [(set_attr “dslot” “not_in_dslot”)] )

(define_insn “lum32” [(unspec_volatile:SI [(match_operand:SI 0 “register_operand” “r”) (match_operand:SI 1 “register_operand” “r”)] UNSPEC_LUM32)] "" “* return iq2000_fill_delay_slot ("lum32\t%0, %1", DELAY_NONE, operands, insn);” [(set_attr “dslot” “not_in_dslot”)] )

(define_insn “lum32l” [(unspec_volatile:SI [(match_operand:SI 0 “register_operand” “r”) (match_operand:SI 1 “register_operand” “r”)] UNSPEC_LUM32L)] "" “* return iq2000_fill_delay_slot ("lum32l\t%0, %1", DELAY_NONE, operands, insn);” [(set_attr “dslot” “not_in_dslot”)] )

(define_insn “lum64” [(unspec_volatile:SI [(match_operand:SI 0 “register_operand” “r”) (match_operand:SI 1 “register_operand” “r”)] UNSPEC_LUM64)] "" “* return iq2000_fill_delay_slot ("lum64\t%0, %1", DELAY_NONE, operands, insn);” [(set_attr “dslot” “not_in_dslot”)] )

(define_insn “lum64l” [(unspec_volatile:SI [(match_operand:SI 0 “register_operand” “r”) (match_operand:SI 1 “register_operand” “r”)] UNSPEC_LUM64L)] "" “* return iq2000_fill_delay_slot ("lum64l\t%0, %1", DELAY_NONE, operands, insn);” [(set_attr “dslot” “not_in_dslot”)] )

(define_insn “lurl” [(unspec_volatile:SI [(match_operand:SI 0 “register_operand” “r”) (match_operand:SI 1 “register_operand” “r”)] UNSPEC_LURL)] "" “* return iq2000_fill_delay_slot ("lurl\t%0, %1", DELAY_NONE, operands, insn);” [(set_attr “dslot” “not_in_dslot”)] )

(define_insn “mrgb” [(set (match_operand:SI 0 “register_operand” “=r”) (unspec_volatile:SI [(match_operand:SI 1 “register_operand” “r”) (match_operand:SI 2 “register_operand” “r”) (match_operand:SI 3 “const_int_operand” “I”)] UNSPEC_MRGB))] "" “* return iq2000_fill_delay_slot ("mrgb\t%0, %1, %2, %3", DELAY_LOAD, operands, insn);” [(set_attr “dslot” “ok_in_dslot”)] )

(define_insn “srrdl” [(unspec_volatile:SI [(match_operand:SI 0 “register_operand” “r”)] UNSPEC_SRRDL)] "" “* return iq2000_fill_delay_slot ("srrdl\t%0", DELAY_NONE, operands, insn);” [(set_attr “dslot” “not_in_dslot”)] )

(define_insn “srulck” [(unspec_volatile:SI [(match_operand:SI 0 “register_operand” “r”)] UNSPEC_SRULCK)] "" “* return iq2000_fill_delay_slot ("srulck\t%0", DELAY_NONE, operands, insn);” [(set_attr “dslot” “not_in_dslot”)] )

(define_insn “srwru” [(unspec_volatile:SI [(match_operand:SI 0 “register_operand” “r”) (match_operand:SI 1 “register_operand” “r”)] UNSPEC_SRWRU)] "" “* return iq2000_fill_delay_slot ("srwru\t%0, %1", DELAY_NONE, operands, insn);” [(set_attr “dslot” “not_in_dslot”)] )

(define_insn “trapqfl” [(unspec_volatile:SI [(const_int 1)] UNSPEC_TRAPQFL)] "" “* return iq2000_fill_delay_slot ("trapqfl", DELAY_NONE, operands, insn);” [(set_attr “dslot” “not_in_dslot”)] )

(define_insn “trapqne” [(unspec_volatile:SI [(const_int 2)] UNSPEC_TRAPQNE)] "" “* return iq2000_fill_delay_slot ("trapqne", DELAY_NONE, operands, insn);” [(set_attr “dslot” “not_in_dslot”)] )

(define_insn “traprel” [(unspec_volatile:SI [(match_operand:SI 0 “register_operand” “r”)] UNSPEC_TRAPREL)] "" “* return iq2000_fill_delay_slot ("traprel %0", DELAY_NONE, operands, insn);” [(set_attr “dslot” “not_in_dslot”)] )

(define_insn “wbu” [(unspec_volatile:SI [(match_operand:SI 0 “register_operand” “r”) (match_operand:SI 1 “register_operand” “r”)] UNSPEC_WBU)] "" “* return iq2000_fill_delay_slot ("wbu\t%0, %1", DELAY_NONE, operands, insn);” [(set_attr “dslot” “not_in_dslot”)] )

(define_insn “syscall” [(unspec_volatile:SI [(const_int 2)] UNSPEC_SYSCALL)] "" “syscall” [(set_attr “dslot” “not_in_dslot”)] )