blob: 5ced54a27b61f4e2582a34bfaf91ac798778a6f3 [file] [log] [blame]
------------------------------------------------------------------------------
-- --
-- GNAT RUN-TIME LIBRARY (GNARL) COMPONENTS --
-- --
-- S Y S T E M . T A S K _ P R I M I T I V E S . O P E R A T I O N S --
-- --
-- B o d y --
-- --
-- Copyright (C) 1992-2023, Free Software Foundation, Inc. --
-- --
-- GNARL is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 3, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. --
-- --
-- As a special exception under Section 7 of GPL version 3, you are granted --
-- additional permissions described in the GCC Runtime Library Exception, --
-- version 3.1, as published by the Free Software Foundation. --
-- --
-- You should have received a copy of the GNU General Public License and --
-- a copy of the GCC Runtime Library Exception along with this program; --
-- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
-- <http://www.gnu.org/licenses/>. --
-- --
-- GNARL was developed by the GNARL team at Florida State University. --
-- Extensive contributions were provided by Ada Core Technologies, Inc. --
-- --
------------------------------------------------------------------------------
-- This is a Solaris (native) version of this package
-- This package contains all the GNULL primitives that interface directly with
-- the underlying OS.
with Interfaces.C;
with System.Multiprocessors;
with System.Tasking.Debug;
with System.Interrupt_Management;
with System.OS_Constants;
with System.OS_Primitives;
with System.Task_Info;
pragma Warnings (Off);
with System.OS_Lib;
pragma Warnings (On);
with System.Soft_Links;
-- We use System.Soft_Links instead of System.Tasking.Initialization
-- because the later is a higher level package that we shouldn't depend on.
-- For example when using the restricted run time, it is replaced by
-- System.Tasking.Restricted.Stages.
package body System.Task_Primitives.Operations is
package OSC renames System.OS_Constants;
package SSL renames System.Soft_Links;
use System.Tasking.Debug;
use System.Tasking;
use Interfaces.C;
use System.OS_Interface;
use System.Parameters;
use System.OS_Primitives;
----------------
-- Local Data --
----------------
-- The following are logically constants, but need to be initialized
-- at run time.
Environment_Task_Id : Task_Id;
-- A variable to hold Task_Id for the environment task.
-- If we use this variable to get the Task_Id, we need the following
-- ATCB_Key only for non-Ada threads.
Unblocked_Signal_Mask : aliased sigset_t;
-- The set of signals that should unblocked in all tasks
ATCB_Key : aliased thread_key_t;
-- Key used to find the Ada Task_Id associated with a thread,
-- at least for C threads unknown to the Ada run-time system.
Single_RTS_Lock : aliased RTS_Lock;
-- This is a lock to allow only one thread of control in the RTS at
-- a time; it is used to execute in mutual exclusion from all other tasks.
-- Used to protect All_Tasks_List
Next_Serial_Number : Task_Serial_Number := 100;
-- We start at 100, to reserve some special values for
-- using in error checking.
-- The following are internal configuration constants needed.
Abort_Handler_Installed : Boolean := False;
-- True if a handler for the abort signal is installed
Null_Thread_Id : constant Thread_Id := Thread_Id'Last;
-- Constant to indicate that the thread identifier has not yet been
-- initialized.
----------------------
-- Priority Support --
----------------------
Priority_Ceiling_Emulation : constant Boolean := True;
-- controls whether we emulate priority ceiling locking
-- To get a scheduling close to annex D requirements, we use the real-time
-- class provided for LWPs and map each task/thread to a specific and
-- unique LWP (there is 1 thread per LWP, and 1 LWP per thread).
-- The real time class can only be set when the process has root
-- privileges, so in the other cases, we use the normal thread scheduling
-- and priority handling.
Using_Real_Time_Class : Boolean := False;
-- indicates whether the real time class is being used (i.e. the process
-- has root privileges).
Prio_Param : aliased struct_pcparms;
-- Hold priority info (Real_Time) initialized during the package
-- elaboration.
-----------------------------------
-- External Configuration Values --
-----------------------------------
Time_Slice_Val : constant Integer;
pragma Import (C, Time_Slice_Val, "__gl_time_slice_val");
Locking_Policy : constant Character;
pragma Import (C, Locking_Policy, "__gl_locking_policy");
Dispatching_Policy : constant Character;
pragma Import (C, Dispatching_Policy, "__gl_task_dispatching_policy");
Foreign_Task_Elaborated : aliased Boolean := True;
-- Used to identified fake tasks (i.e., non-Ada Threads)
-----------------------
-- Local Subprograms --
-----------------------
function sysconf (name : System.OS_Interface.int) return processorid_t;
pragma Import (C, sysconf, "sysconf");
SC_NPROCESSORS_CONF : constant System.OS_Interface.int := 14;
function Num_Procs
(name : System.OS_Interface.int := SC_NPROCESSORS_CONF)
return processorid_t renames sysconf;
procedure Abort_Handler
(Sig : Signal;
Code : not null access siginfo_t;
Context : not null access ucontext_t);
-- Target-dependent binding of inter-thread Abort signal to
-- the raising of the Abort_Signal exception.
-- See also comments in 7staprop.adb
------------
-- Checks --
------------
function Check_Initialize_Lock
(L : Lock_Ptr;
Level : Lock_Level) return Boolean;
pragma Inline (Check_Initialize_Lock);
function Check_Lock (L : Lock_Ptr) return Boolean;
pragma Inline (Check_Lock);
function Record_Lock (L : Lock_Ptr) return Boolean;
pragma Inline (Record_Lock);
function Check_Sleep (Reason : Task_States) return Boolean;
pragma Inline (Check_Sleep);
function Record_Wakeup
(L : Lock_Ptr;
Reason : Task_States) return Boolean;
pragma Inline (Record_Wakeup);
function Check_Wakeup
(T : Task_Id;
Reason : Task_States) return Boolean;
pragma Inline (Check_Wakeup);
function Check_Unlock (L : Lock_Ptr) return Boolean;
pragma Inline (Check_Unlock);
function Check_Finalize_Lock (L : Lock_Ptr) return Boolean;
pragma Inline (Check_Finalize_Lock);
--------------------
-- Local Packages --
--------------------
package Specific is
procedure Initialize (Environment_Task : Task_Id);
pragma Inline (Initialize);
-- Initialize various data needed by this package
function Is_Valid_Task return Boolean;
pragma Inline (Is_Valid_Task);
-- Does executing thread have a TCB?
procedure Set (Self_Id : Task_Id);
pragma Inline (Set);
-- Set the self id for the current task
function Self return Task_Id;
pragma Inline (Self);
-- Return a pointer to the Ada Task Control Block of the calling task
end Specific;
package body Specific is separate;
-- The body of this package is target specific
----------------------------------
-- ATCB allocation/deallocation --
----------------------------------
package body ATCB_Allocation is separate;
-- The body of this package is shared across several targets
---------------------------------
-- Support for foreign threads --
---------------------------------
function Register_Foreign_Thread
(Thread : Thread_Id;
Sec_Stack_Size : Size_Type := Unspecified_Size) return Task_Id;
-- Allocate and initialize a new ATCB for the current Thread. The size of
-- the secondary stack can be optionally specified.
function Register_Foreign_Thread
(Thread : Thread_Id;
Sec_Stack_Size : Size_Type := Unspecified_Size)
return Task_Id is separate;
------------
-- Checks --
------------
Check_Count : Integer := 0;
Lock_Count : Integer := 0;
Unlock_Count : Integer := 0;
-------------------
-- Abort_Handler --
-------------------
procedure Abort_Handler
(Sig : Signal;
Code : not null access siginfo_t;
Context : not null access ucontext_t)
is
pragma Unreferenced (Sig);
pragma Unreferenced (Code);
pragma Unreferenced (Context);
Self_ID : constant Task_Id := Self;
Old_Set : aliased sigset_t;
Result : Interfaces.C.int;
pragma Warnings (Off, Result);
begin
-- It's not safe to raise an exception when using GCC ZCX mechanism.
-- Note that we still need to install a signal handler, since in some
-- cases (e.g. shutdown of the Server_Task in System.Interrupts) we
-- need to send the Abort signal to a task.
if ZCX_By_Default then
return;
end if;
if Self_ID.Deferral_Level = 0
and then Self_ID.Pending_ATC_Level < Self_ID.ATC_Nesting_Level
and then not Self_ID.Aborting
then
Self_ID.Aborting := True;
-- Make sure signals used for RTS internal purpose are unmasked
Result :=
thr_sigsetmask
(SIG_UNBLOCK,
Unblocked_Signal_Mask'Unchecked_Access,
Old_Set'Unchecked_Access);
pragma Assert (Result = 0);
raise Standard'Abort_Signal;
end if;
end Abort_Handler;
-----------------
-- Stack_Guard --
-----------------
-- The underlying thread system sets a guard page at the
-- bottom of a thread stack, so nothing is needed.
procedure Stack_Guard (T : ST.Task_Id; On : Boolean) is
pragma Unreferenced (T);
pragma Unreferenced (On);
begin
null;
end Stack_Guard;
-------------------
-- Get_Thread_Id --
-------------------
function Get_Thread_Id (T : ST.Task_Id) return OSI.Thread_Id is
begin
return T.Common.LL.Thread;
end Get_Thread_Id;
----------------
-- Initialize --
----------------
procedure Initialize (Environment_Task : ST.Task_Id) is
act : aliased struct_sigaction;
old_act : aliased struct_sigaction;
Tmp_Set : aliased sigset_t;
Result : Interfaces.C.int;
procedure Configure_Processors;
-- Processors configuration
-- The user can specify a processor which the program should run
-- on to emulate a single-processor system. This can be easily
-- done by setting environment variable GNAT_PROCESSOR to one of
-- the following :
--
-- -2 : use the default configuration (run the program on all
-- available processors) - this is the same as having
-- GNAT_PROCESSOR unset
-- -1 : let the RTS choose one processor and run the program on
-- that processor
-- 0 .. Last_Proc : run the program on the specified processor
--
-- Last_Proc is equal to the value of the system variable
-- _SC_NPROCESSORS_CONF, minus one.
procedure Configure_Processors is
Proc_Acc : constant System.OS_Lib.String_Access :=
System.OS_Lib.Getenv ("GNAT_PROCESSOR");
Proc : aliased processorid_t; -- User processor #
Last_Proc : processorid_t; -- Last processor #
begin
if Proc_Acc.all'Length /= 0 then
-- Environment variable is defined
Last_Proc := Num_Procs - 1;
if Last_Proc /= -1 then
Proc := processorid_t'Value (Proc_Acc.all);
if Proc <= -2 or else Proc > Last_Proc then
-- Use the default configuration
null;
elsif Proc = -1 then
-- Choose a processor
Result := 0;
while Proc < Last_Proc loop
Proc := Proc + 1;
Result := p_online (Proc, PR_STATUS);
exit when Result = PR_ONLINE;
end loop;
pragma Assert (Result = PR_ONLINE);
Result := processor_bind (P_PID, P_MYID, Proc, null);
pragma Assert (Result = 0);
else
-- Use user processor
Result := processor_bind (P_PID, P_MYID, Proc, null);
pragma Assert (Result = 0);
end if;
end if;
end if;
exception
when Constraint_Error =>
-- Illegal environment variable GNAT_PROCESSOR - ignored
null;
end Configure_Processors;
function State
(Int : System.Interrupt_Management.Interrupt_ID) return Character;
pragma Import (C, State, "__gnat_get_interrupt_state");
-- Get interrupt state. Defined in a-init.c
-- The input argument is the interrupt number,
-- and the result is one of the following:
Default : constant Character := 's';
-- 'n' this interrupt not set by any Interrupt_State pragma
-- 'u' Interrupt_State pragma set state to User
-- 'r' Interrupt_State pragma set state to Runtime
-- 's' Interrupt_State pragma set state to System (use "default"
-- system handler)
-- Start of processing for Initialize
begin
Environment_Task_Id := Environment_Task;
Interrupt_Management.Initialize;
-- Prepare the set of signals that should unblocked in all tasks
Result := sigemptyset (Unblocked_Signal_Mask'Access);
pragma Assert (Result = 0);
for J in Interrupt_Management.Interrupt_ID loop
if System.Interrupt_Management.Keep_Unmasked (J) then
Result := sigaddset (Unblocked_Signal_Mask'Access, Signal (J));
pragma Assert (Result = 0);
end if;
end loop;
if Dispatching_Policy = 'F' then
declare
Result : Interfaces.C.long;
Class_Info : aliased struct_pcinfo;
Secs, Nsecs : Interfaces.C.long;
begin
-- If a pragma Time_Slice is specified, takes the value in account
if Time_Slice_Val > 0 then
-- Convert Time_Slice_Val (microseconds) to seconds/nanosecs
Secs := Interfaces.C.long (Time_Slice_Val / 1_000_000);
Nsecs :=
Interfaces.C.long ((Time_Slice_Val rem 1_000_000) * 1_000);
-- Otherwise, default to no time slicing (i.e run until blocked)
else
Secs := RT_TQINF;
Nsecs := RT_TQINF;
end if;
-- Get the real time class id
Class_Info.pc_clname (1) := 'R';
Class_Info.pc_clname (2) := 'T';
Class_Info.pc_clname (3) := ASCII.NUL;
Result := priocntl (PC_VERSION, P_LWPID, P_MYID, PC_GETCID,
Class_Info'Address);
-- Request the real time class
Prio_Param.pc_cid := Class_Info.pc_cid;
Prio_Param.rt_pri := pri_t (Class_Info.rt_maxpri);
Prio_Param.rt_tqsecs := Secs;
Prio_Param.rt_tqnsecs := Nsecs;
Result :=
priocntl
(PC_VERSION, P_LWPID, P_MYID, PC_SETPARMS, Prio_Param'Address);
Using_Real_Time_Class := Result /= -1;
end;
end if;
Specific.Initialize (Environment_Task);
-- The following is done in Enter_Task, but this is too late for the
-- Environment Task, since we need to call Self in Check_Locks when
-- the run time is compiled with assertions on.
Specific.Set (Environment_Task);
-- Initialize the lock used to synchronize chain of all ATCBs
Initialize_Lock (Single_RTS_Lock'Access, RTS_Lock_Level);
-- Make environment task known here because it doesn't go through
-- Activate_Tasks, which does it for all other tasks.
Known_Tasks (Known_Tasks'First) := Environment_Task;
Environment_Task.Known_Tasks_Index := Known_Tasks'First;
Enter_Task (Environment_Task);
Configure_Processors;
if State
(System.Interrupt_Management.Abort_Task_Interrupt) /= Default
then
-- Set sa_flags to SA_NODEFER so that during the handler execution
-- we do not change the Signal_Mask to be masked for the Abort_Signal
-- This is a temporary fix to the problem that the Signal_Mask is
-- not restored after the exception (longjmp) from the handler.
-- The right fix should be made in sigsetjmp so that we save
-- the Signal_Set and restore it after a longjmp.
-- In that case, this field should be changed back to 0. ???
act.sa_flags := 16;
act.sa_handler := Abort_Handler'Address;
Result := sigemptyset (Tmp_Set'Access);
pragma Assert (Result = 0);
act.sa_mask := Tmp_Set;
Result :=
sigaction
(Signal (System.Interrupt_Management.Abort_Task_Interrupt),
act'Unchecked_Access,
old_act'Unchecked_Access);
pragma Assert (Result = 0);
Abort_Handler_Installed := True;
end if;
end Initialize;
---------------------
-- Initialize_Lock --
---------------------
-- Note: mutexes and cond_variables needed per-task basis are initialized
-- in Initialize_TCB and the Storage_Error is handled. Other mutexes (such
-- as RTS_Lock, Memory_Lock...) used in RTS is initialized before any
-- status change of RTS. Therefore raising Storage_Error in the following
-- routines should be able to be handled safely.
procedure Initialize_Lock
(Prio : System.Any_Priority;
L : not null access Lock)
is
Result : Interfaces.C.int;
begin
pragma Assert (Check_Initialize_Lock (Lock_Ptr (L), PO_Level));
if Priority_Ceiling_Emulation then
L.Ceiling := Prio;
end if;
Result := mutex_init (L.L'Access, USYNC_THREAD, System.Null_Address);
pragma Assert (Result = 0 or else Result = ENOMEM);
if Result = ENOMEM then
raise Storage_Error with "Failed to allocate a lock";
end if;
end Initialize_Lock;
procedure Initialize_Lock
(L : not null access RTS_Lock;
Level : Lock_Level)
is
Result : Interfaces.C.int;
begin
pragma Assert
(Check_Initialize_Lock (To_Lock_Ptr (RTS_Lock_Ptr (L)), Level));
Result := mutex_init (L.L'Access, USYNC_THREAD, System.Null_Address);
pragma Assert (Result = 0 or else Result = ENOMEM);
if Result = ENOMEM then
raise Storage_Error with "Failed to allocate a lock";
end if;
end Initialize_Lock;
-------------------
-- Finalize_Lock --
-------------------
procedure Finalize_Lock (L : not null access Lock) is
Result : Interfaces.C.int;
begin
pragma Assert (Check_Finalize_Lock (Lock_Ptr (L)));
Result := mutex_destroy (L.L'Access);
pragma Assert (Result = 0);
end Finalize_Lock;
procedure Finalize_Lock (L : not null access RTS_Lock) is
Result : Interfaces.C.int;
begin
pragma Assert (Check_Finalize_Lock (To_Lock_Ptr (RTS_Lock_Ptr (L))));
Result := mutex_destroy (L.L'Access);
pragma Assert (Result = 0);
end Finalize_Lock;
----------------
-- Write_Lock --
----------------
procedure Write_Lock
(L : not null access Lock;
Ceiling_Violation : out Boolean)
is
Result : Interfaces.C.int;
begin
pragma Assert (Check_Lock (Lock_Ptr (L)));
if Priority_Ceiling_Emulation and then Locking_Policy = 'C' then
declare
Self_Id : constant Task_Id := Self;
Saved_Priority : System.Any_Priority;
begin
if Self_Id.Common.LL.Active_Priority > L.Ceiling then
Ceiling_Violation := True;
return;
end if;
Saved_Priority := Self_Id.Common.LL.Active_Priority;
if Self_Id.Common.LL.Active_Priority < L.Ceiling then
Set_Priority (Self_Id, L.Ceiling);
end if;
Result := mutex_lock (L.L'Access);
pragma Assert (Result = 0);
Ceiling_Violation := False;
L.Saved_Priority := Saved_Priority;
end;
else
Result := mutex_lock (L.L'Access);
pragma Assert (Result = 0);
Ceiling_Violation := False;
end if;
pragma Assert (Record_Lock (Lock_Ptr (L)));
end Write_Lock;
procedure Write_Lock (L : not null access RTS_Lock) is
Result : Interfaces.C.int;
begin
pragma Assert (Check_Lock (To_Lock_Ptr (RTS_Lock_Ptr (L))));
Result := mutex_lock (L.L'Access);
pragma Assert (Result = 0);
pragma Assert (Record_Lock (To_Lock_Ptr (RTS_Lock_Ptr (L))));
end Write_Lock;
procedure Write_Lock (T : Task_Id) is
Result : Interfaces.C.int;
begin
pragma Assert (Check_Lock (To_Lock_Ptr (T.Common.LL.L'Access)));
Result := mutex_lock (T.Common.LL.L.L'Access);
pragma Assert (Result = 0);
pragma Assert (Record_Lock (To_Lock_Ptr (T.Common.LL.L'Access)));
end Write_Lock;
---------------
-- Read_Lock --
---------------
procedure Read_Lock
(L : not null access Lock;
Ceiling_Violation : out Boolean) is
begin
Write_Lock (L, Ceiling_Violation);
end Read_Lock;
------------
-- Unlock --
------------
procedure Unlock (L : not null access Lock) is
Result : Interfaces.C.int;
begin
pragma Assert (Check_Unlock (Lock_Ptr (L)));
if Priority_Ceiling_Emulation and then Locking_Policy = 'C' then
declare
Self_Id : constant Task_Id := Self;
begin
Result := mutex_unlock (L.L'Access);
pragma Assert (Result = 0);
if Self_Id.Common.LL.Active_Priority > L.Saved_Priority then
Set_Priority (Self_Id, L.Saved_Priority);
end if;
end;
else
Result := mutex_unlock (L.L'Access);
pragma Assert (Result = 0);
end if;
end Unlock;
procedure Unlock (L : not null access RTS_Lock) is
Result : Interfaces.C.int;
begin
pragma Assert (Check_Unlock (To_Lock_Ptr (RTS_Lock_Ptr (L))));
Result := mutex_unlock (L.L'Access);
pragma Assert (Result = 0);
end Unlock;
procedure Unlock (T : Task_Id) is
Result : Interfaces.C.int;
begin
pragma Assert (Check_Unlock (To_Lock_Ptr (T.Common.LL.L'Access)));
Result := mutex_unlock (T.Common.LL.L.L'Access);
pragma Assert (Result = 0);
end Unlock;
-----------------
-- Set_Ceiling --
-----------------
-- Dynamic priority ceilings are not supported by the underlying system
procedure Set_Ceiling
(L : not null access Lock;
Prio : System.Any_Priority)
is
pragma Unreferenced (L, Prio);
begin
null;
end Set_Ceiling;
-- For the time delay implementation, we need to make sure we
-- achieve following criteria:
-- 1) We have to delay at least for the amount requested.
-- 2) We have to give up CPU even though the actual delay does not
-- result in blocking.
-- 3) Except for restricted run-time systems that do not support
-- ATC or task abort, the delay must be interrupted by the
-- abort_task operation.
-- 4) The implementation has to be efficient so that the delay overhead
-- is relatively cheap.
-- (1)-(3) are Ada requirements. Even though (2) is an Annex-D
-- requirement we still want to provide the effect in all cases.
-- The reason is that users may want to use short delays to implement
-- their own scheduling effect in the absence of language provided
-- scheduling policies.
---------------------
-- Monotonic_Clock --
---------------------
function Monotonic_Clock return Duration is
TS : aliased timespec;
Result : Interfaces.C.int;
begin
Result := clock_gettime (OSC.CLOCK_RT_Ada, TS'Unchecked_Access);
pragma Assert (Result = 0);
return To_Duration (TS);
end Monotonic_Clock;
-------------------
-- RT_Resolution --
-------------------
function RT_Resolution return Duration is
TS : aliased timespec;
Result : Interfaces.C.int;
begin
Result := clock_getres (OSC.CLOCK_REALTIME, TS'Unchecked_Access);
pragma Assert (Result = 0);
return To_Duration (TS);
end RT_Resolution;
-----------
-- Yield --
-----------
procedure Yield (Do_Yield : Boolean := True) is
begin
if Do_Yield then
System.OS_Interface.thr_yield;
end if;
end Yield;
-----------
-- Self ---
-----------
function Self return Task_Id renames Specific.Self;
------------------
-- Set_Priority --
------------------
procedure Set_Priority
(T : Task_Id;
Prio : System.Any_Priority;
Loss_Of_Inheritance : Boolean := False)
is
pragma Unreferenced (Loss_Of_Inheritance);
Result : Interfaces.C.int;
pragma Unreferenced (Result);
Param : aliased struct_pcparms;
use Task_Info;
begin
T.Common.Current_Priority := Prio;
if Priority_Ceiling_Emulation then
T.Common.LL.Active_Priority := Prio;
end if;
if Using_Real_Time_Class then
Param.pc_cid := Prio_Param.pc_cid;
Param.rt_pri := pri_t (Prio);
Param.rt_tqsecs := Prio_Param.rt_tqsecs;
Param.rt_tqnsecs := Prio_Param.rt_tqnsecs;
Result := Interfaces.C.int (
priocntl (PC_VERSION, P_LWPID, T.Common.LL.LWP, PC_SETPARMS,
Param'Address));
else
if T.Common.Task_Info /= null
and then not T.Common.Task_Info.Bound_To_LWP
then
-- The task is not bound to a LWP, so use thr_setprio
Result :=
thr_setprio (T.Common.LL.Thread, Interfaces.C.int (Prio));
else
-- The task is bound to a LWP, use priocntl
-- ??? TBD
null;
end if;
end if;
end Set_Priority;
------------------
-- Get_Priority --
------------------
function Get_Priority (T : Task_Id) return System.Any_Priority is
begin
return T.Common.Current_Priority;
end Get_Priority;
----------------
-- Enter_Task --
----------------
procedure Enter_Task (Self_ID : Task_Id) is
begin
Self_ID.Common.LL.Thread := thr_self;
Self_ID.Common.LL.LWP := lwp_self;
Set_Task_Affinity (Self_ID);
Specific.Set (Self_ID);
-- We need the above code even if we do direct fetch of Task_Id in Self
-- for the main task on Sun, x86 Solaris and for gcc 2.7.2.
end Enter_Task;
-------------------
-- Is_Valid_Task --
-------------------
function Is_Valid_Task return Boolean renames Specific.Is_Valid_Task;
-----------------------------
-- Register_Foreign_Thread --
-----------------------------
function Register_Foreign_Thread return Task_Id is
begin
if Is_Valid_Task then
return Self;
else
return Register_Foreign_Thread (thr_self);
end if;
end Register_Foreign_Thread;
--------------------
-- Initialize_TCB --
--------------------
procedure Initialize_TCB (Self_ID : Task_Id; Succeeded : out Boolean) is
Result : Interfaces.C.int := 0;
begin
-- Give the task a unique serial number
Self_ID.Serial_Number := Next_Serial_Number;
Next_Serial_Number := Next_Serial_Number + 1;
pragma Assert (Next_Serial_Number /= 0);
Self_ID.Common.LL.Thread := Null_Thread_Id;
Result :=
mutex_init
(Self_ID.Common.LL.L.L'Access, USYNC_THREAD, System.Null_Address);
Self_ID.Common.LL.L.Level :=
Private_Task_Serial_Number (Self_ID.Serial_Number);
pragma Assert (Result = 0 or else Result = ENOMEM);
if Result = 0 then
Result := cond_init (Self_ID.Common.LL.CV'Access, USYNC_THREAD, 0);
pragma Assert (Result = 0 or else Result = ENOMEM);
end if;
if Result = 0 then
Succeeded := True;
else
Result := mutex_destroy (Self_ID.Common.LL.L.L'Access);
pragma Assert (Result = 0);
Succeeded := False;
end if;
end Initialize_TCB;
-----------------
-- Create_Task --
-----------------
procedure Create_Task
(T : Task_Id;
Wrapper : System.Address;
Stack_Size : System.Parameters.Size_Type;
Priority : System.Any_Priority;
Succeeded : out Boolean)
is
pragma Unreferenced (Priority);
Result : Interfaces.C.int;
Adjusted_Stack_Size : Interfaces.C.size_t;
Opts : Interfaces.C.int := THR_DETACHED;
Page_Size : constant System.Parameters.Size_Type := 4096;
-- This constant is for reserving extra space at the
-- end of the stack, which can be used by the stack
-- checking as guard page. The idea is that we need
-- to have at least Stack_Size bytes available for
-- actual use.
use System.Task_Info;
use type System.Multiprocessors.CPU_Range;
begin
-- Check whether both Dispatching_Domain and CPU are specified for the
-- task, and the CPU value is not contained within the range of
-- processors for the domain.
if T.Common.Domain /= null
and then T.Common.Base_CPU /= System.Multiprocessors.Not_A_Specific_CPU
and then
(T.Common.Base_CPU not in T.Common.Domain'Range
or else not T.Common.Domain (T.Common.Base_CPU))
then
Succeeded := False;
return;
end if;
Adjusted_Stack_Size := Interfaces.C.size_t (Stack_Size + Page_Size);
-- Since the initial signal mask of a thread is inherited from the
-- creator, and the Environment task has all its signals masked, we
-- do not need to manipulate caller's signal mask at this point.
-- All tasks in RTS will have All_Tasks_Mask initially.
if T.Common.Task_Info /= null then
if T.Common.Task_Info.New_LWP then
Opts := Opts + THR_NEW_LWP;
end if;
if T.Common.Task_Info.Bound_To_LWP then
Opts := Opts + THR_BOUND;
end if;
else
Opts := THR_DETACHED + THR_BOUND;
end if;
-- Note: the use of Unrestricted_Access in the following call is needed
-- because otherwise we have an error of getting a access-to-volatile
-- value which points to a non-volatile object. But in this case it is
-- safe to do this, since we know we have no problems with aliasing and
-- Unrestricted_Access bypasses this check.
Result :=
thr_create
(System.Null_Address,
Adjusted_Stack_Size,
Thread_Body_Access (Wrapper),
To_Address (T),
Opts,
T.Common.LL.Thread'Unrestricted_Access);
Succeeded := Result = 0;
pragma Assert
(Result = 0
or else Result = ENOMEM
or else Result = EAGAIN);
end Create_Task;
------------------
-- Finalize_TCB --
------------------
procedure Finalize_TCB (T : Task_Id) is
Result : Interfaces.C.int;
begin
T.Common.LL.Thread := Null_Thread_Id;
Result := mutex_destroy (T.Common.LL.L.L'Access);
pragma Assert (Result = 0);
Result := cond_destroy (T.Common.LL.CV'Access);
pragma Assert (Result = 0);
if T.Known_Tasks_Index /= -1 then
Known_Tasks (T.Known_Tasks_Index) := null;
end if;
ATCB_Allocation.Free_ATCB (T);
end Finalize_TCB;
---------------
-- Exit_Task --
---------------
-- This procedure must be called with abort deferred. It can no longer
-- call Self or access the current task's ATCB, since the ATCB has been
-- deallocated.
procedure Exit_Task is
begin
Specific.Set (null);
end Exit_Task;
----------------
-- Abort_Task --
----------------
procedure Abort_Task (T : Task_Id) is
Result : Interfaces.C.int;
begin
if Abort_Handler_Installed then
pragma Assert (T /= Self);
Result :=
thr_kill
(T.Common.LL.Thread,
Signal (System.Interrupt_Management.Abort_Task_Interrupt));
pragma Assert (Result = 0);
end if;
end Abort_Task;
-----------
-- Sleep --
-----------
procedure Sleep
(Self_ID : Task_Id;
Reason : Task_States)
is
Result : Interfaces.C.int;
begin
pragma Assert (Check_Sleep (Reason));
Result :=
cond_wait
(Self_ID.Common.LL.CV'Access, Self_ID.Common.LL.L.L'Access);
pragma Assert
(Record_Wakeup (To_Lock_Ptr (Self_ID.Common.LL.L'Access), Reason));
pragma Assert (Result = 0 or else Result = EINTR);
end Sleep;
-- Note that we are relying heavily here on GNAT representing
-- Calendar.Time, System.Real_Time.Time, Duration,
-- System.Real_Time.Time_Span in the same way, i.e., as a 64-bit count of
-- nanoseconds.
-- This allows us to always pass the timeout value as a Duration
-- ???
-- We are taking liberties here with the semantics of the delays. That is,
-- we make no distinction between delays on the Calendar clock and delays
-- on the Real_Time clock. That is technically incorrect, if the Calendar
-- clock happens to be reset or adjusted. To solve this defect will require
-- modification to the compiler interface, so that it can pass through more
-- information, to tell us here which clock to use.
-- cond_timedwait will return if any of the following happens:
-- 1) some other task did cond_signal on this condition variable
-- In this case, the return value is 0
-- 2) the call just returned, for no good reason
-- This is called a "spurious wakeup".
-- In this case, the return value may also be 0.
-- 3) the time delay expires
-- In this case, the return value is ETIME
-- 4) this task received a signal, which was handled by some
-- handler procedure, and now the thread is resuming execution
-- UNIX calls this an "interrupted" system call.
-- In this case, the return value is EINTR
-- If the cond_timedwait returns 0 or EINTR, it is still possible that the
-- time has actually expired, and by chance a signal or cond_signal
-- occurred at around the same time.
-- We have also observed that on some OS's the value ETIME will be
-- returned, but the clock will show that the full delay has not yet
-- expired.
-- For these reasons, we need to check the clock after return from
-- cond_timedwait. If the time has expired, we will set Timedout = True.
-- This check might be omitted for systems on which the cond_timedwait()
-- never returns early or wakes up spuriously.
-- Annex D requires that completion of a delay cause the task to go to the
-- end of its priority queue, regardless of whether the task actually was
-- suspended by the delay. Since cond_timedwait does not do this on
-- Solaris, we add a call to thr_yield at the end. We might do this at the
-- beginning, instead, but then the round-robin effect would not be the
-- same; the delayed task would be ahead of other tasks of the same
-- priority that awoke while it was sleeping.
-- For Timed_Sleep, we are expecting possible cond_signals to indicate
-- other events (e.g., completion of a RV or completion of the abortable
-- part of an async. select), we want to always return if interrupted. The
-- caller will be responsible for checking the task state to see whether
-- the wakeup was spurious, and to go back to sleep again in that case. We
-- don't need to check for pending abort or priority change on the way in
-- our out; that is the caller's responsibility.
-- For Timed_Delay, we are not expecting any cond_signals or other
-- interruptions, except for priority changes and aborts. Therefore, we
-- don't want to return unless the delay has actually expired, or the call
-- has been aborted. In this case, since we want to implement the entire
-- delay statement semantics, we do need to check for pending abort and
-- priority changes. We can quietly handle priority changes inside the
-- procedure, since there is no entry-queue reordering involved.
-----------------
-- Timed_Sleep --
-----------------
procedure Timed_Sleep
(Self_ID : Task_Id;
Time : Duration;
Mode : ST.Delay_Modes;
Reason : System.Tasking.Task_States;
Timedout : out Boolean;
Yielded : out Boolean)
is
Base_Time : constant Duration := Monotonic_Clock;
Check_Time : Duration := Base_Time;
Abs_Time : Duration;
Request : aliased timespec;
Result : Interfaces.C.int;
begin
pragma Assert (Check_Sleep (Reason));
Timedout := True;
Yielded := False;
Abs_Time :=
(if Mode = Relative
then Duration'Min (Time, Max_Sensible_Delay) + Check_Time
else Duration'Min (Check_Time + Max_Sensible_Delay, Time));
if Abs_Time > Check_Time then
Request := To_Timespec (Abs_Time);
loop
exit when Self_ID.Pending_ATC_Level < Self_ID.ATC_Nesting_Level;
Result :=
cond_timedwait
(Self_ID.Common.LL.CV'Access,
Self_ID.Common.LL.L.L'Access, Request'Access);
Yielded := True;
Check_Time := Monotonic_Clock;
exit when Abs_Time <= Check_Time or else Check_Time < Base_Time;
if Result = 0 or Result = EINTR then
-- Somebody may have called Wakeup for us
Timedout := False;
exit;
end if;
pragma Assert (Result = ETIME);
end loop;
end if;
pragma Assert
(Record_Wakeup (To_Lock_Ptr (Self_ID.Common.LL.L'Access), Reason));
end Timed_Sleep;
-----------------
-- Timed_Delay --
-----------------
procedure Timed_Delay
(Self_ID : Task_Id;
Time : Duration;
Mode : ST.Delay_Modes)
is
Base_Time : constant Duration := Monotonic_Clock;
Check_Time : Duration := Base_Time;
Abs_Time : Duration;
Request : aliased timespec;
Result : Interfaces.C.int;
Yielded : Boolean := False;
begin
Write_Lock (Self_ID);
Abs_Time :=
(if Mode = Relative
then Time + Check_Time
else Duration'Min (Check_Time + Max_Sensible_Delay, Time));
if Abs_Time > Check_Time then
Request := To_Timespec (Abs_Time);
Self_ID.Common.State := Delay_Sleep;
pragma Assert (Check_Sleep (Delay_Sleep));
loop
exit when Self_ID.Pending_ATC_Level < Self_ID.ATC_Nesting_Level;
Result :=
cond_timedwait
(Self_ID.Common.LL.CV'Access,
Self_ID.Common.LL.L.L'Access,
Request'Access);
Yielded := True;
Check_Time := Monotonic_Clock;
exit when Abs_Time <= Check_Time or else Check_Time < Base_Time;
pragma Assert
(Result = 0 or else
Result = ETIME or else
Result = EINTR);
end loop;
pragma Assert
(Record_Wakeup
(To_Lock_Ptr (Self_ID.Common.LL.L'Access), Delay_Sleep));
Self_ID.Common.State := Runnable;
end if;
Unlock (Self_ID);
if not Yielded then
thr_yield;
end if;
end Timed_Delay;
------------
-- Wakeup --
------------
procedure Wakeup
(T : Task_Id;
Reason : Task_States)
is
Result : Interfaces.C.int;
begin
pragma Assert (Check_Wakeup (T, Reason));
Result := cond_signal (T.Common.LL.CV'Access);
pragma Assert (Result = 0);
end Wakeup;
---------------------------
-- Check_Initialize_Lock --
---------------------------
-- The following code is intended to check some of the invariant assertions
-- related to lock usage, on which we depend.
function Check_Initialize_Lock
(L : Lock_Ptr;
Level : Lock_Level) return Boolean
is
Self_ID : constant Task_Id := Self;
begin
-- Check that caller is abort-deferred
if Self_ID.Deferral_Level = 0 then
return False;
end if;
-- Check that the lock is not yet initialized
if L.Level /= 0 then
return False;
end if;
L.Level := Lock_Level'Pos (Level) + 1;
return True;
end Check_Initialize_Lock;
----------------
-- Check_Lock --
----------------
function Check_Lock (L : Lock_Ptr) return Boolean is
Self_ID : constant Task_Id := Self;
P : Lock_Ptr;
begin
-- Check that the argument is not null
if L = null then
return False;
end if;
-- Check that L is not frozen
if L.Frozen then
return False;
end if;
-- Check that caller is abort-deferred
if Self_ID.Deferral_Level = 0 then
return False;
end if;
-- Check that caller is not holding this lock already
if L.Owner = To_Owner_ID (To_Address (Self_ID)) then
return False;
end if;
-- Check that TCB lock order rules are satisfied
P := Self_ID.Common.LL.Locks;
if P /= null then
if P.Level >= L.Level
and then (P.Level > 2 or else L.Level > 2)
then
return False;
end if;
end if;
return True;
end Check_Lock;
-----------------
-- Record_Lock --
-----------------
function Record_Lock (L : Lock_Ptr) return Boolean is
Self_ID : constant Task_Id := Self;
P : Lock_Ptr;
begin
Lock_Count := Lock_Count + 1;
-- There should be no owner for this lock at this point
if L.Owner /= null then
return False;
end if;
-- Record new owner
L.Owner := To_Owner_ID (To_Address (Self_ID));
-- Check that TCB lock order rules are satisfied
P := Self_ID.Common.LL.Locks;
if P /= null then
L.Next := P;
end if;
Self_ID.Common.LL.Locking := null;
Self_ID.Common.LL.Locks := L;
return True;
end Record_Lock;
-----------------
-- Check_Sleep --
-----------------
function Check_Sleep (Reason : Task_States) return Boolean is
pragma Unreferenced (Reason);
Self_ID : constant Task_Id := Self;
P : Lock_Ptr;
begin
-- Check that caller is abort-deferred
if Self_ID.Deferral_Level = 0 then
return False;
end if;
-- Check that caller is holding own lock, on top of list
if Self_ID.Common.LL.Locks /=
To_Lock_Ptr (Self_ID.Common.LL.L'Access)
then
return False;
end if;
-- Check that TCB lock order rules are satisfied
if Self_ID.Common.LL.Locks.Next /= null then
return False;
end if;
Self_ID.Common.LL.L.Owner := null;
P := Self_ID.Common.LL.Locks;
Self_ID.Common.LL.Locks := Self_ID.Common.LL.Locks.Next;
P.Next := null;
return True;
end Check_Sleep;
-------------------
-- Record_Wakeup --
-------------------
function Record_Wakeup
(L : Lock_Ptr;
Reason : Task_States) return Boolean
is
pragma Unreferenced (Reason);
Self_ID : constant Task_Id := Self;
P : Lock_Ptr;
begin
-- Record new owner
L.Owner := To_Owner_ID (To_Address (Self_ID));
-- Check that TCB lock order rules are satisfied
P := Self_ID.Common.LL.Locks;
if P /= null then
L.Next := P;
end if;
Self_ID.Common.LL.Locking := null;
Self_ID.Common.LL.Locks := L;
return True;
end Record_Wakeup;
------------------
-- Check_Wakeup --
------------------
function Check_Wakeup
(T : Task_Id;
Reason : Task_States) return Boolean
is
Self_ID : constant Task_Id := Self;
begin
-- Is caller holding T's lock?
if T.Common.LL.L.Owner /= To_Owner_ID (To_Address (Self_ID)) then
return False;
end if;
-- Are reasons for wakeup and sleep consistent?
if T.Common.State /= Reason then
return False;
end if;
return True;
end Check_Wakeup;
------------------
-- Check_Unlock --
------------------
function Check_Unlock (L : Lock_Ptr) return Boolean is
Self_ID : constant Task_Id := Self;
P : Lock_Ptr;
begin
Unlock_Count := Unlock_Count + 1;
if L = null then
return False;
end if;
if L.Buddy /= null then
return False;
end if;
-- Magic constant 4???
if L.Level = 4 then
Check_Count := Unlock_Count;
end if;
-- Magic constant 1000???
if Unlock_Count - Check_Count > 1000 then
Check_Count := Unlock_Count;
end if;
-- Check that caller is abort-deferred
if Self_ID.Deferral_Level = 0 then
return False;
end if;
-- Check that caller is holding this lock, on top of list
if Self_ID.Common.LL.Locks /= L then
return False;
end if;
-- Record there is no owner now
L.Owner := null;
P := Self_ID.Common.LL.Locks;
Self_ID.Common.LL.Locks := Self_ID.Common.LL.Locks.Next;
P.Next := null;
return True;
end Check_Unlock;
-------------------------
-- Check_Finalize_Lock --
-------------------------
function Check_Finalize_Lock (L : Lock_Ptr) return Boolean is
Self_ID : constant Task_Id := Self;
begin
-- Check that caller is abort-deferred
if Self_ID.Deferral_Level = 0 then
return False;
end if;
-- Check that no one is holding this lock
if L.Owner /= null then
return False;
end if;
L.Frozen := True;
return True;
end Check_Finalize_Lock;
----------------
-- Initialize --
----------------
procedure Initialize (S : in out Suspension_Object) is
Result : Interfaces.C.int;
begin
-- Initialize internal state (always to zero (RM D.10(6)))
S.State := False;
S.Waiting := False;
-- Initialize internal mutex
Result := mutex_init (S.L'Access, USYNC_THREAD, System.Null_Address);
pragma Assert (Result = 0 or else Result = ENOMEM);
if Result = ENOMEM then
raise Storage_Error with "Failed to allocate a lock";
end if;
-- Initialize internal condition variable
Result := cond_init (S.CV'Access, USYNC_THREAD, 0);
pragma Assert (Result = 0 or else Result = ENOMEM);
if Result /= 0 then
Result := mutex_destroy (S.L'Access);
pragma Assert (Result = 0);
if Result = ENOMEM then
raise Storage_Error;
end if;
end if;
end Initialize;
--------------
-- Finalize --
--------------
procedure Finalize (S : in out Suspension_Object) is
Result : Interfaces.C.int;
begin
-- Destroy internal mutex
Result := mutex_destroy (S.L'Access);
pragma Assert (Result = 0);
-- Destroy internal condition variable
Result := cond_destroy (S.CV'Access);
pragma Assert (Result = 0);
end Finalize;
-------------------
-- Current_State --
-------------------
function Current_State (S : Suspension_Object) return Boolean is
begin
-- We do not want to use lock on this read operation. State is marked
-- as Atomic so that we ensure that the value retrieved is correct.
return S.State;
end Current_State;
---------------
-- Set_False --
---------------
procedure Set_False (S : in out Suspension_Object) is
Result : Interfaces.C.int;
begin
SSL.Abort_Defer.all;
Result := mutex_lock (S.L'Access);
pragma Assert (Result = 0);
S.State := False;
Result := mutex_unlock (S.L'Access);
pragma Assert (Result = 0);
SSL.Abort_Undefer.all;
end Set_False;
--------------
-- Set_True --
--------------
procedure Set_True (S : in out Suspension_Object) is
Result : Interfaces.C.int;
begin
SSL.Abort_Defer.all;
Result := mutex_lock (S.L'Access);
pragma Assert (Result = 0);
-- If there is already a task waiting on this suspension object then
-- we resume it, leaving the state of the suspension object to False,
-- as it is specified in ARM D.10 par. 9. Otherwise, it just leaves
-- the state to True.
if S.Waiting then
S.Waiting := False;
S.State := False;
Result := cond_signal (S.CV'Access);
pragma Assert (Result = 0);
else
S.State := True;
end if;
Result := mutex_unlock (S.L'Access);
pragma Assert (Result = 0);
SSL.Abort_Undefer.all;
end Set_True;
------------------------
-- Suspend_Until_True --
------------------------
procedure Suspend_Until_True (S : in out Suspension_Object) is
Result : Interfaces.C.int;
begin
SSL.Abort_Defer.all;
Result := mutex_lock (S.L'Access);
pragma Assert (Result = 0);
if S.Waiting then
-- Program_Error must be raised upon calling Suspend_Until_True
-- if another task is already waiting on that suspension object
-- (RM D.10(10)).
Result := mutex_unlock (S.L'Access);
pragma Assert (Result = 0);
SSL.Abort_Undefer.all;
raise Program_Error;
else
-- Suspend the task if the state is False. Otherwise, the task
-- continues its execution, and the state of the suspension object
-- is set to False (ARM D.10 par. 9).
if S.State then
S.State := False;
else
S.Waiting := True;
loop
-- Loop in case pthread_cond_wait returns earlier than expected
-- (e.g. in case of EINTR caused by a signal).
Result := cond_wait (S.CV'Access, S.L'Access);
pragma Assert (Result = 0 or else Result = EINTR);
exit when not S.Waiting;
end loop;
end if;
Result := mutex_unlock (S.L'Access);
pragma Assert (Result = 0);
SSL.Abort_Undefer.all;
end if;
end Suspend_Until_True;
----------------
-- Check_Exit --
----------------
function Check_Exit (Self_ID : Task_Id) return Boolean is
begin
-- Check that caller is just holding Global_Task_Lock and no other locks
if Self_ID.Common.LL.Locks = null then
return False;
end if;
-- 2 = Global_Task_Level
if Self_ID.Common.LL.Locks.Level /= 2 then
return False;
end if;
if Self_ID.Common.LL.Locks.Next /= null then
return False;
end if;
-- Check that caller is abort-deferred
if Self_ID.Deferral_Level = 0 then
return False;
end if;
return True;
end Check_Exit;
--------------------
-- Check_No_Locks --
--------------------
function Check_No_Locks (Self_ID : Task_Id) return Boolean is
begin
return Self_ID.Common.LL.Locks = null;
end Check_No_Locks;
----------------------
-- Environment_Task --
----------------------
function Environment_Task return Task_Id is
begin
return Environment_Task_Id;
end Environment_Task;
--------------
-- Lock_RTS --
--------------
procedure Lock_RTS is
begin
Write_Lock (Single_RTS_Lock'Access);
end Lock_RTS;
----------------
-- Unlock_RTS --
----------------
procedure Unlock_RTS is
begin
Unlock (Single_RTS_Lock'Access);
end Unlock_RTS;
------------------
-- Suspend_Task --
------------------
function Suspend_Task
(T : ST.Task_Id;
Thread_Self : Thread_Id) return Boolean
is
begin
if T.Common.LL.Thread /= Thread_Self then
return thr_suspend (T.Common.LL.Thread) = 0;
else
return True;
end if;
end Suspend_Task;
-----------------
-- Resume_Task --
-----------------
function Resume_Task
(T : ST.Task_Id;
Thread_Self : Thread_Id) return Boolean
is
begin
if T.Common.LL.Thread /= Thread_Self then
return thr_continue (T.Common.LL.Thread) = 0;
else
return True;
end if;
end Resume_Task;
--------------------
-- Stop_All_Tasks --
--------------------
procedure Stop_All_Tasks is
begin
null;
end Stop_All_Tasks;
---------------
-- Stop_Task --
---------------
function Stop_Task (T : ST.Task_Id) return Boolean is
pragma Unreferenced (T);
begin
return False;
end Stop_Task;
-------------------
-- Continue_Task --
-------------------
function Continue_Task (T : ST.Task_Id) return Boolean is
pragma Unreferenced (T);
begin
return False;
end Continue_Task;
-----------------------
-- Set_Task_Affinity --
-----------------------
procedure Set_Task_Affinity (T : ST.Task_Id) is
Result : Interfaces.C.int;
Proc : processorid_t; -- User processor #
Last_Proc : processorid_t; -- Last processor #
use System.Task_Info;
use type System.Multiprocessors.CPU_Range;
begin
-- Do nothing if the underlying thread has not yet been created. If the
-- thread has not yet been created then the proper affinity will be set
-- during its creation.
if T.Common.LL.Thread = Null_Thread_Id then
null;
-- pragma CPU
elsif T.Common.Base_CPU /=
System.Multiprocessors.Not_A_Specific_CPU
then
-- The CPU numbering in pragma CPU starts at 1 while the subprogram
-- to set the affinity starts at 0, therefore we must substract 1.
Result :=
processor_bind
(P_LWPID, id_t (T.Common.LL.LWP),
processorid_t (T.Common.Base_CPU) - 1, null);
pragma Assert (Result = 0);
-- Task_Info
elsif T.Common.Task_Info /= null then
if T.Common.Task_Info.New_LWP
and then T.Common.Task_Info.CPU /= CPU_UNCHANGED
then
Last_Proc := Num_Procs - 1;
if T.Common.Task_Info.CPU = ANY_CPU then
Result := 0;
Proc := 0;
while Proc < Last_Proc loop
Result := p_online (Proc, PR_STATUS);
exit when Result = PR_ONLINE;
Proc := Proc + 1;
end loop;
Result :=
processor_bind
(P_LWPID, id_t (T.Common.LL.LWP), Proc, null);
pragma Assert (Result = 0);
else
-- Use specified processor
if T.Common.Task_Info.CPU < 0
or else T.Common.Task_Info.CPU > Last_Proc
then
raise Invalid_CPU_Number;
end if;
Result :=
processor_bind
(P_LWPID, id_t (T.Common.LL.LWP),
T.Common.Task_Info.CPU, null);
pragma Assert (Result = 0);
end if;
end if;
-- Handle dispatching domains
elsif T.Common.Domain /= null
and then (T.Common.Domain /= ST.System_Domain
or else T.Common.Domain.all /=
(Multiprocessors.CPU'First ..
Multiprocessors.Number_Of_CPUs => True))
then
declare
CPU_Set : aliased psetid_t;
Result : int;
begin
Result := pset_create (CPU_Set'Access);
pragma Assert (Result = 0);
-- Set the affinity to all the processors belonging to the
-- dispatching domain.
for Proc in T.Common.Domain'Range loop
-- The Ada CPU numbering starts at 1 while the subprogram to
-- set the affinity starts at 0, therefore we must substract 1.
if T.Common.Domain (Proc) then
Result :=
pset_assign (CPU_Set, processorid_t (Proc) - 1, null);
pragma Assert (Result = 0);
end if;
end loop;
Result :=
pset_bind (CPU_Set, P_LWPID, id_t (T.Common.LL.LWP), null);
pragma Assert (Result = 0);
end;
end if;
end Set_Task_Affinity;
end System.Task_Primitives.Operations;