blob: 831590ce3878b9da3e7cf8ad085052e8320adc54 [file] [log] [blame]
------------------------------------------------------------------------------
-- --
-- GNAT RUN-TIME COMPONENTS --
-- --
-- S Y S T E M . A R I T H _ D O U B L E --
-- --
-- B o d y --
-- --
-- Copyright (C) 1992-2023, Free Software Foundation, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 3, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. --
-- --
-- As a special exception under Section 7 of GPL version 3, you are granted --
-- additional permissions described in the GCC Runtime Library Exception, --
-- version 3.1, as published by the Free Software Foundation. --
-- --
-- You should have received a copy of the GNU General Public License and --
-- a copy of the GCC Runtime Library Exception along with this program; --
-- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
-- <http://www.gnu.org/licenses/>. --
-- --
-- GNAT was originally developed by the GNAT team at New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc. --
-- --
------------------------------------------------------------------------------
with Ada.Unchecked_Conversion;
with System.SPARK.Cut_Operations; use System.SPARK.Cut_Operations;
package body System.Arith_Double
with SPARK_Mode
is
-- Contracts, ghost code, loop invariants and assertions in this unit are
-- meant for analysis only, not for run-time checking, as it would be too
-- costly otherwise. This is enforced by setting the assertion policy to
-- Ignore.
pragma Assertion_Policy (Pre => Ignore,
Post => Ignore,
Contract_Cases => Ignore,
Ghost => Ignore,
Loop_Invariant => Ignore,
Assert => Ignore,
Assert_And_Cut => Ignore);
pragma Suppress (Overflow_Check);
pragma Suppress (Range_Check);
function To_Uns is new Ada.Unchecked_Conversion (Double_Int, Double_Uns);
function To_Int is new Ada.Unchecked_Conversion (Double_Uns, Double_Int);
Double_Size : constant Natural := Double_Int'Size;
Single_Size : constant Natural := Double_Int'Size / 2;
-- Log of Single_Size in base 2, so that Single_Size = 2 ** Log_Single_Size
Log_Single_Size : constant Natural :=
(case Single_Size is
when 32 => 5,
when 64 => 6,
when 128 => 7,
when others => raise Program_Error)
with Ghost;
-- Power-of-two constants
pragma Warnings
(Off, "non-preelaborable call not allowed in preelaborated unit",
Reason => "Ghost code is not compiled");
pragma Warnings
(Off, "non-static constant in preelaborated unit",
Reason => "Ghost code is not compiled");
Big_0 : constant Big_Integer :=
Big (Double_Uns'(0))
with Ghost;
Big_2xxSingle : constant Big_Integer :=
Big (Double_Int'(2 ** Single_Size))
with Ghost;
Big_2xxDouble_Minus_1 : constant Big_Integer :=
Big (Double_Uns'(2 ** (Double_Size - 1)))
with Ghost;
Big_2xxDouble : constant Big_Integer :=
Big (Double_Uns'(2 ** Double_Size - 1)) + 1
with Ghost;
pragma Warnings
(On, "non-preelaborable call not allowed in preelaborated unit");
pragma Warnings (On, "non-static constant in preelaborated unit");
-----------------------
-- Local Subprograms --
-----------------------
function "+" (A, B : Single_Uns) return Double_Uns is
(Double_Uns (A) + Double_Uns (B));
function "+" (A : Double_Uns; B : Single_Uns) return Double_Uns is
(A + Double_Uns (B));
-- Length doubling additions
function "*" (A, B : Single_Uns) return Double_Uns is
(Double_Uns (A) * Double_Uns (B));
-- Length doubling multiplication
function "/" (A : Double_Uns; B : Single_Uns) return Double_Uns is
(A / Double_Uns (B))
with
Pre => B /= 0;
-- Length doubling division
function "&" (Hi, Lo : Single_Uns) return Double_Uns is
(Shift_Left (Double_Uns (Hi), Single_Size) or Double_Uns (Lo));
-- Concatenate hi, lo values to form double result
function "abs" (X : Double_Int) return Double_Uns is
(if X = Double_Int'First
then Double_Uns'(2 ** (Double_Size - 1))
else Double_Uns (Double_Int'(abs X)));
-- Convert absolute value of X to unsigned. Note that we can't just use
-- the expression of the Else since it overflows for X = Double_Int'First.
function "rem" (A : Double_Uns; B : Single_Uns) return Double_Uns is
(A rem Double_Uns (B))
with
Pre => B /= 0;
-- Length doubling remainder
function Big_2xx (N : Natural) return Big_Positive is
(Big (Double_Uns'(2 ** N)))
with
Ghost,
Pre => N < Double_Size,
Post => Big_2xx'Result > 0;
-- 2**N as a big integer
function Big3 (X1, X2, X3 : Single_Uns) return Big_Natural is
(Big_2xxSingle * Big_2xxSingle * Big (Double_Uns (X1))
+ Big_2xxSingle * Big (Double_Uns (X2))
+ Big (Double_Uns (X3)))
with
Ghost,
Annotate => (GNATprove, Inline_For_Proof);
-- X1&X2&X3 as a big integer
function Le3 (X1, X2, X3, Y1, Y2, Y3 : Single_Uns) return Boolean
with
Post => Le3'Result = (Big3 (X1, X2, X3) <= Big3 (Y1, Y2, Y3));
-- Determines if (3 * Single_Size)-bit value X1&X2&X3 <= Y1&Y2&Y3
function Lo (A : Double_Uns) return Single_Uns is
(Single_Uns (A and (2 ** Single_Size - 1)));
-- Low order half of double value
function Hi (A : Double_Uns) return Single_Uns is
(Single_Uns (Shift_Right (A, Single_Size)));
-- High order half of double value
procedure Sub3 (X1, X2, X3 : in out Single_Uns; Y1, Y2, Y3 : Single_Uns)
with
Pre => Big3 (X1, X2, X3) >= Big3 (Y1, Y2, Y3),
Post => Big3 (X1, X2, X3) = Big3 (X1, X2, X3)'Old - Big3 (Y1, Y2, Y3);
-- Computes X1&X2&X3 := X1&X2&X3 - Y1&Y1&Y3 mod 2 ** (3 * Single_Size)
function To_Neg_Int (A : Double_Uns) return Double_Int
with
Pre => In_Double_Int_Range (-Big (A)),
Post => Big (To_Neg_Int'Result) = -Big (A);
-- Convert to negative integer equivalent. If the input is in the range
-- 0 .. 2 ** (Double_Size - 1), then the corresponding nonpositive signed
-- integer (obtained by negating the given value) is returned, otherwise
-- constraint error is raised.
function To_Pos_Int (A : Double_Uns) return Double_Int
with
Pre => In_Double_Int_Range (Big (A)),
Post => Big (To_Pos_Int'Result) = Big (A);
-- Convert to positive integer equivalent. If the input is in the range
-- 0 .. 2 ** (Double_Size - 1) - 1, then the corresponding non-negative
-- signed integer is returned, otherwise constraint error is raised.
procedure Raise_Error;
pragma No_Return (Raise_Error);
-- Raise constraint error with appropriate message
------------------
-- Local Lemmas --
------------------
procedure Inline_Le3 (X1, X2, X3, Y1, Y2, Y3 : Single_Uns)
with
Ghost,
Pre => Le3 (X1, X2, X3, Y1, Y2, Y3),
Post => Big3 (X1, X2, X3) <= Big3 (Y1, Y2, Y3);
procedure Lemma_Abs_Commutation (X : Double_Int)
with
Ghost,
Post => abs (Big (X)) = Big (Double_Uns'(abs X));
procedure Lemma_Abs_Div_Commutation (X, Y : Big_Integer)
with
Ghost,
Pre => Y /= 0,
Post => abs (X / Y) = abs X / abs Y;
procedure Lemma_Abs_Mult_Commutation (X, Y : Big_Integer)
with
Ghost,
Post => abs (X * Y) = abs X * abs Y;
procedure Lemma_Abs_Range (X : Big_Integer)
with
Ghost,
Pre => In_Double_Int_Range (X),
Post => abs (X) <= Big_2xxDouble_Minus_1
and then In_Double_Int_Range (-abs (X));
procedure Lemma_Abs_Rem_Commutation (X, Y : Big_Integer)
with
Ghost,
Pre => Y /= 0,
Post => abs (X rem Y) = (abs X) rem (abs Y);
procedure Lemma_Add_Commutation (X : Double_Uns; Y : Single_Uns)
with
Ghost,
Pre => X <= 2 ** Double_Size - 2 ** Single_Size,
Post => Big (X) + Big (Double_Uns (Y)) = Big (X + Double_Uns (Y));
procedure Lemma_Add_One (X : Double_Uns)
with
Ghost,
Pre => X /= Double_Uns'Last,
Post => Big (X + Double_Uns'(1)) = Big (X) + 1;
procedure Lemma_Big_Of_Double_Uns (X : Double_Uns)
with
Ghost,
Post => Big (X) < Big_2xxDouble;
procedure Lemma_Big_Of_Double_Uns_Of_Single_Uns (X : Single_Uns)
with
Ghost,
Post => Big (Double_Uns (X)) >= 0
and then Big (Double_Uns (X)) < Big_2xxSingle;
procedure Lemma_Bounded_Powers_Of_2_Increasing (M, N : Natural)
with
Ghost,
Pre => M < N and then N < Double_Size,
Post => Double_Uns'(2)**M < Double_Uns'(2)**N;
procedure Lemma_Concat_Definition (X, Y : Single_Uns)
with
Ghost,
Post => Big (X & Y) = Big_2xxSingle * Big (Double_Uns (X))
+ Big (Double_Uns (Y));
procedure Lemma_Deep_Mult_Commutation
(Factor : Big_Integer;
X, Y : Single_Uns)
with
Ghost,
Post =>
Factor * Big (Double_Uns (X)) * Big (Double_Uns (Y)) =
Factor * Big (Double_Uns (X) * Double_Uns (Y));
procedure Lemma_Div_Commutation (X, Y : Double_Uns)
with
Ghost,
Pre => Y /= 0,
Post => Big (X) / Big (Y) = Big (X / Y);
procedure Lemma_Div_Definition
(A : Double_Uns;
B : Single_Uns;
Q : Double_Uns;
R : Double_Uns)
with
Ghost,
Pre => B /= 0 and then Q = A / B and then R = A rem B,
Post => Big (A) = Big (Double_Uns (B)) * Big (Q) + Big (R);
procedure Lemma_Div_Ge (X, Y, Z : Big_Integer)
with
Ghost,
Pre => Z > 0 and then X >= Y * Z,
Post => X / Z >= Y;
procedure Lemma_Div_Lt (X, Y, Z : Big_Natural)
with
Ghost,
Pre => Z > 0 and then X < Y * Z,
Post => X / Z < Y;
procedure Lemma_Div_Eq (A, B, S, R : Big_Integer)
with
Ghost,
Pre => A * S = B * S + R and then S /= 0,
Post => A = B + R / S;
procedure Lemma_Double_Big_2xxSingle
with
Ghost,
Post => Big_2xxSingle * Big_2xxSingle = Big_2xxDouble;
procedure Lemma_Double_Shift (X : Double_Uns; S, S1 : Double_Uns)
with
Ghost,
Pre => S <= Double_Uns (Double_Size)
and then S1 <= Double_Uns (Double_Size),
Post => Shift_Left (Shift_Left (X, Natural (S)), Natural (S1)) =
Shift_Left (X, Natural (S + S1));
procedure Lemma_Double_Shift (X : Single_Uns; S, S1 : Natural)
with
Ghost,
Pre => S <= Single_Size - S1,
Post => Shift_Left (Shift_Left (X, S), S1) = Shift_Left (X, S + S1);
procedure Lemma_Double_Shift (X : Double_Uns; S, S1 : Natural)
with
Ghost,
Pre => S <= Double_Size - S1,
Post => Shift_Left (Shift_Left (X, S), S1) = Shift_Left (X, S + S1);
procedure Lemma_Double_Shift_Left (X : Double_Uns; S, S1 : Double_Uns)
with
Ghost,
Pre => S <= Double_Uns (Double_Size)
and then S1 <= Double_Uns (Double_Size),
Post => Shift_Left (Shift_Left (X, Natural (S)), Natural (S1)) =
Shift_Left (X, Natural (S + S1));
procedure Lemma_Double_Shift_Left (X : Double_Uns; S, S1 : Natural)
with
Ghost,
Pre => S <= Double_Size - S1,
Post => Shift_Left (Shift_Left (X, S), S1) = Shift_Left (X, S + S1);
procedure Lemma_Double_Shift_Right (X : Double_Uns; S, S1 : Double_Uns)
with
Ghost,
Pre => S <= Double_Uns (Double_Size)
and then S1 <= Double_Uns (Double_Size),
Post => Shift_Right (Shift_Right (X, Natural (S)), Natural (S1)) =
Shift_Right (X, Natural (S + S1));
procedure Lemma_Double_Shift_Right (X : Double_Uns; S, S1 : Natural)
with
Ghost,
Pre => S <= Double_Size - S1,
Post => Shift_Right (Shift_Right (X, S), S1) = Shift_Right (X, S + S1);
procedure Lemma_Ge_Commutation (A, B : Double_Uns)
with
Ghost,
Pre => A >= B,
Post => Big (A) >= Big (B);
procedure Lemma_Ge_Mult (A, B, C, D : Big_Integer)
with
Ghost,
Pre => A >= B and then B * C >= D and then C > 0,
Post => A * C >= D;
procedure Lemma_Gt_Commutation (A, B : Double_Uns)
with
Ghost,
Pre => A > B,
Post => Big (A) > Big (B);
procedure Lemma_Gt_Mult (A, B, C, D : Big_Integer)
with
Ghost,
Pre => A >= B and then B * C > D and then C > 0,
Post => A * C > D;
procedure Lemma_Hi_Lo (Xu : Double_Uns; Xhi, Xlo : Single_Uns)
with
Ghost,
Pre => Xhi = Hi (Xu) and Xlo = Lo (Xu),
Post => Big (Xu) =
Big_2xxSingle * Big (Double_Uns (Xhi)) + Big (Double_Uns (Xlo));
procedure Lemma_Hi_Lo_3 (Xu : Double_Uns; Xhi, Xlo : Single_Uns)
with
Ghost,
Pre => Xhi = Hi (Xu) and then Xlo = Lo (Xu),
Post => Big (Xu) = Big3 (0, Xhi, Xlo);
procedure Lemma_Lo_Is_Ident (X : Double_Uns)
with
Ghost,
Pre => Big (X) < Big_2xxSingle,
Post => Double_Uns (Lo (X)) = X;
procedure Lemma_Lt_Commutation (A, B : Double_Uns)
with
Ghost,
Pre => A < B,
Post => Big (A) < Big (B);
procedure Lemma_Lt_Mult (A, B, C, D : Big_Integer)
with
Ghost,
Pre => A < B and then B * C <= D and then C > 0,
Post => A * C < D;
procedure Lemma_Mult_Commutation (X, Y : Single_Uns)
with
Ghost,
Post =>
Big (Double_Uns (X)) * Big (Double_Uns (Y)) =
Big (Double_Uns (X) * Double_Uns (Y));
procedure Lemma_Mult_Commutation (X, Y : Double_Int)
with
Ghost,
Pre => In_Double_Int_Range (Big (X) * Big (Y)),
Post => Big (X) * Big (Y) = Big (X * Y);
procedure Lemma_Mult_Commutation (X, Y, Z : Double_Uns)
with
Ghost,
Pre => Big (X) * Big (Y) < Big_2xxDouble and then Z = X * Y,
Post => Big (X) * Big (Y) = Big (Z);
procedure Lemma_Mult_Decomposition
(Mult : Big_Integer;
Xu, Yu : Double_Uns;
Xhi, Xlo, Yhi, Ylo : Single_Uns)
with
Ghost,
Pre => Mult = Big (Xu) * Big (Yu)
and then Xhi = Hi (Xu)
and then Xlo = Lo (Xu)
and then Yhi = Hi (Yu)
and then Ylo = Lo (Yu),
Post => Mult =
Big_2xxSingle * Big_2xxSingle * (Big (Double_Uns'(Xhi * Yhi)))
+ Big_2xxSingle * (Big (Double_Uns'(Xhi * Ylo)))
+ Big_2xxSingle * (Big (Double_Uns'(Xlo * Yhi)))
+ (Big (Double_Uns'(Xlo * Ylo)));
procedure Lemma_Mult_Distribution (X, Y, Z : Big_Integer)
with
Ghost,
Post => X * (Y + Z) = X * Y + X * Z;
procedure Lemma_Mult_Div (A, B : Big_Integer)
with
Ghost,
Pre => B /= 0,
Post => A * B / B = A;
procedure Lemma_Mult_Non_Negative (X, Y : Big_Integer)
with
Ghost,
Pre => (X >= 0 and then Y >= 0)
or else (X <= 0 and then Y <= 0),
Post => X * Y >= 0;
procedure Lemma_Mult_Non_Positive (X, Y : Big_Integer)
with
Ghost,
Pre => (X <= Big_0 and then Y >= Big_0)
or else (X >= Big_0 and then Y <= Big_0),
Post => X * Y <= Big_0;
procedure Lemma_Mult_Positive (X, Y : Big_Integer)
with
Ghost,
Pre => (X > Big_0 and then Y > Big_0)
or else (X < Big_0 and then Y < Big_0),
Post => X * Y > Big_0;
procedure Lemma_Neg_Div (X, Y : Big_Integer)
with
Ghost,
Pre => Y /= 0,
Post => X / Y = (-X) / (-Y);
procedure Lemma_Neg_Rem (X, Y : Big_Integer)
with
Ghost,
Pre => Y /= 0,
Post => X rem Y = X rem (-Y);
procedure Lemma_Not_In_Range_Big2xx64
with
Post => not In_Double_Int_Range (Big_2xxDouble)
and then not In_Double_Int_Range (-Big_2xxDouble);
procedure Lemma_Powers (A : Big_Natural; B, C : Natural)
with
Ghost,
Pre => B <= Natural'Last - C,
Post => A**B * A**C = A**(B + C);
procedure Lemma_Powers_Of_2 (M, N : Natural)
with
Ghost,
Pre => M < Double_Size
and then N < Double_Size
and then M + N <= Double_Size,
Post =>
Big_2xx (M) * Big_2xx (N) =
(if M + N = Double_Size then Big_2xxDouble else Big_2xx (M + N));
procedure Lemma_Powers_Of_2_Commutation (M : Natural)
with
Ghost,
Subprogram_Variant => (Decreases => M),
Pre => M <= Double_Size,
Post => Big (Double_Uns'(2))**M =
(if M < Double_Size then Big_2xx (M) else Big_2xxDouble);
procedure Lemma_Powers_Of_2_Increasing (M, N : Natural)
with
Ghost,
Subprogram_Variant => (Increases => M),
Pre => M < N,
Post => Big (Double_Uns'(2))**M < Big (Double_Uns'(2))**N;
procedure Lemma_Rem_Abs (X, Y : Big_Integer)
with
Ghost,
Pre => Y /= 0,
Post => X rem Y = X rem (abs Y);
pragma Unreferenced (Lemma_Rem_Abs);
procedure Lemma_Rem_Commutation (X, Y : Double_Uns)
with
Ghost,
Pre => Y /= 0,
Post => Big (X) rem Big (Y) = Big (X rem Y);
procedure Lemma_Rem_Is_Ident (X, Y : Big_Integer)
with
Ghost,
Pre => abs X < abs Y,
Post => X rem Y = X;
pragma Unreferenced (Lemma_Rem_Is_Ident);
procedure Lemma_Rem_Sign (X, Y : Big_Integer)
with
Ghost,
Pre => Y /= 0,
Post => Same_Sign (X rem Y, X);
pragma Unreferenced (Lemma_Rem_Sign);
procedure Lemma_Rev_Div_Definition (A, B, Q, R : Big_Natural)
with
Ghost,
Pre => A = B * Q + R and then R < B,
Post => Q = A / B and then R = A rem B;
procedure Lemma_Shift_Left (X : Double_Uns; Shift : Natural)
with
Ghost,
Pre => Shift < Double_Size
and then Big (X) * Big_2xx (Shift) < Big_2xxDouble,
Post => Big (Shift_Left (X, Shift)) = Big (X) * Big_2xx (Shift);
procedure Lemma_Shift_Right (X : Double_Uns; Shift : Natural)
with
Ghost,
Pre => Shift < Double_Size,
Post => Big (Shift_Right (X, Shift)) = Big (X) / Big_2xx (Shift);
procedure Lemma_Shift_Without_Drop
(X, Y : Double_Uns;
Mask : Single_Uns;
Shift : Natural)
with
Ghost,
Pre => (Hi (X) and Mask) = 0 -- X has the first Shift bits off
and then Shift <= Single_Size
and then Mask = Shift_Left (Single_Uns'Last, Single_Size - Shift)
and then Y = Shift_Left (X, Shift),
Post => Big (Y) = Big_2xx (Shift) * Big (X);
procedure Lemma_Simplify (X, Y : Big_Integer)
with
Ghost,
Pre => Y /= 0,
Post => X * Y / Y = X;
procedure Lemma_Substitution (A, B, C, C1, D : Big_Integer)
with
Ghost,
Pre => C = C1 and then A = B * C + D,
Post => A = B * C1 + D;
procedure Lemma_Subtract_Commutation (X, Y : Double_Uns)
with
Ghost,
Pre => X >= Y,
Post => Big (X) - Big (Y) = Big (X - Y);
procedure Lemma_Subtract_Double_Uns (X, Y : Double_Int)
with
Ghost,
Pre => X >= 0 and then X <= Y,
Post => Double_Uns (Y - X) = Double_Uns (Y) - Double_Uns (X);
procedure Lemma_Word_Commutation (X : Single_Uns)
with
Ghost,
Post => Big_2xxSingle * Big (Double_Uns (X))
= Big (2**Single_Size * Double_Uns (X));
-----------------------------
-- Local lemma null bodies --
-----------------------------
procedure Inline_Le3 (X1, X2, X3, Y1, Y2, Y3 : Single_Uns) is null;
procedure Lemma_Abs_Commutation (X : Double_Int) is null;
procedure Lemma_Abs_Mult_Commutation (X, Y : Big_Integer) is null;
procedure Lemma_Abs_Range (X : Big_Integer) is null;
procedure Lemma_Add_Commutation (X : Double_Uns; Y : Single_Uns) is null;
procedure Lemma_Add_One (X : Double_Uns) is null;
procedure Lemma_Big_Of_Double_Uns (X : Double_Uns) is null;
procedure Lemma_Big_Of_Double_Uns_Of_Single_Uns (X : Single_Uns) is null;
procedure Lemma_Bounded_Powers_Of_2_Increasing (M, N : Natural) is null;
procedure Lemma_Deep_Mult_Commutation
(Factor : Big_Integer;
X, Y : Single_Uns)
is null;
procedure Lemma_Div_Commutation (X, Y : Double_Uns) is null;
procedure Lemma_Div_Definition
(A : Double_Uns;
B : Single_Uns;
Q : Double_Uns;
R : Double_Uns)
is null;
procedure Lemma_Div_Ge (X, Y, Z : Big_Integer) is null;
procedure Lemma_Div_Lt (X, Y, Z : Big_Natural) is null;
procedure Lemma_Double_Big_2xxSingle is null;
procedure Lemma_Double_Shift (X : Double_Uns; S, S1 : Double_Uns) is null;
procedure Lemma_Double_Shift (X : Single_Uns; S, S1 : Natural) is null;
procedure Lemma_Double_Shift_Left (X : Double_Uns; S, S1 : Double_Uns)
is null;
procedure Lemma_Double_Shift_Right (X : Double_Uns; S, S1 : Double_Uns)
is null;
procedure Lemma_Ge_Commutation (A, B : Double_Uns) is null;
procedure Lemma_Ge_Mult (A, B, C, D : Big_Integer) is null;
procedure Lemma_Gt_Commutation (A, B : Double_Uns) is null;
procedure Lemma_Gt_Mult (A, B, C, D : Big_Integer) is null;
procedure Lemma_Lo_Is_Ident (X : Double_Uns) is null;
procedure Lemma_Lt_Commutation (A, B : Double_Uns) is null;
procedure Lemma_Lt_Mult (A, B, C, D : Big_Integer) is null;
procedure Lemma_Mult_Commutation (X, Y : Single_Uns) is null;
procedure Lemma_Mult_Commutation (X, Y : Double_Int) is null;
procedure Lemma_Mult_Commutation (X, Y, Z : Double_Uns) is null;
procedure Lemma_Mult_Distribution (X, Y, Z : Big_Integer) is null;
procedure Lemma_Mult_Non_Negative (X, Y : Big_Integer) is null;
procedure Lemma_Mult_Non_Positive (X, Y : Big_Integer) is null;
procedure Lemma_Mult_Positive (X, Y : Big_Integer) is null;
procedure Lemma_Neg_Rem (X, Y : Big_Integer) is null;
procedure Lemma_Not_In_Range_Big2xx64 is null;
procedure Lemma_Powers (A : Big_Natural; B, C : Natural) is null;
procedure Lemma_Rem_Commutation (X, Y : Double_Uns) is null;
procedure Lemma_Rem_Is_Ident (X, Y : Big_Integer) is null;
procedure Lemma_Rem_Sign (X, Y : Big_Integer) is null;
procedure Lemma_Rev_Div_Definition (A, B, Q, R : Big_Natural) is null;
procedure Lemma_Simplify (X, Y : Big_Integer) is null;
procedure Lemma_Substitution (A, B, C, C1, D : Big_Integer) is null;
procedure Lemma_Subtract_Commutation (X, Y : Double_Uns) is null;
procedure Lemma_Subtract_Double_Uns (X, Y : Double_Int) is null;
procedure Lemma_Word_Commutation (X : Single_Uns) is null;
--------------------------
-- Add_With_Ovflo_Check --
--------------------------
function Add_With_Ovflo_Check (X, Y : Double_Int) return Double_Int is
R : constant Double_Int := To_Int (To_Uns (X) + To_Uns (Y));
-- Local lemmas
procedure Prove_Negative_X
with
Ghost,
Pre => X < 0 and then (Y > 0 or else R < 0),
Post => R = X + Y;
procedure Prove_Non_Negative_X
with
Ghost,
Pre => X >= 0 and then (Y < 0 or else R >= 0),
Post => R = X + Y;
procedure Prove_Overflow_Case
with
Ghost,
Pre =>
(if X >= 0 then Y >= 0 and then R < 0
else Y <= 0 and then R >= 0),
Post => not In_Double_Int_Range (Big (X) + Big (Y));
----------------------
-- Prove_Negative_X --
----------------------
procedure Prove_Negative_X is
begin
if X = Double_Int'First then
if Y > 0 then
null;
else
pragma Assert
(To_Uns (X) + To_Uns (Y) =
2 ** (Double_Size - 1) - Double_Uns (-Y));
pragma Assert -- as R < 0
(To_Uns (X) + To_Uns (Y) >= 2 ** (Double_Size - 1));
pragma Assert (Y = 0);
end if;
elsif Y = Double_Int'First then
pragma Assert
(To_Uns (X) + To_Uns (Y) =
2 ** (Double_Size - 1) - Double_Uns (-X));
pragma Assert (False);
elsif Y <= 0 then
pragma Assert
(To_Uns (X) + To_Uns (Y) = -Double_Uns (-X) - Double_Uns (-Y));
else -- Y > 0, 0 > X > Double_Int'First
declare
Ru : constant Double_Uns := To_Uns (X) + To_Uns (Y);
begin
pragma Assert (Ru = -Double_Uns (-X) + Double_Uns (Y));
if Ru < 2 ** (Double_Size - 1) then -- R >= 0
Lemma_Subtract_Double_Uns (-X, Y);
pragma Assert (Ru = Double_Uns (X + Y));
elsif Ru = 2 ** (Double_Size - 1) then
pragma Assert (Double_Uns (Y) < 2 ** (Double_Size - 1));
pragma Assert (Double_Uns (-X) < 2 ** (Double_Size - 1));
pragma Assert (False);
else
pragma Assert
(R = -Double_Int (-(-Double_Uns (-X) + Double_Uns (Y))));
pragma Assert
(R = -Double_Int (-Double_Uns (Y) + Double_Uns (-X)));
end if;
end;
end if;
end Prove_Negative_X;
--------------------------
-- Prove_Non_Negative_X --
--------------------------
procedure Prove_Non_Negative_X is
begin
if Y >= 0 or else Y = Double_Int'First then
null;
else
pragma Assert
(To_Uns (X) + To_Uns (Y) = Double_Uns (X) - Double_Uns (-Y));
end if;
end Prove_Non_Negative_X;
-------------------------
-- Prove_Overflow_Case --
-------------------------
procedure Prove_Overflow_Case is
begin
if X < 0 and then X /= Double_Int'First and then Y /= Double_Int'First
then
pragma Assert
(To_Uns (X) + To_Uns (Y) = -Double_Uns (-X) - Double_Uns (-Y));
end if;
end Prove_Overflow_Case;
-- Start of processing for Add_With_Ovflo_Check
begin
if X >= 0 then
if Y < 0 or else R >= 0 then
Prove_Non_Negative_X;
return R;
end if;
else -- X < 0
if Y > 0 or else R < 0 then
Prove_Negative_X;
return R;
end if;
end if;
Prove_Overflow_Case;
Raise_Error;
end Add_With_Ovflo_Check;
-------------------
-- Double_Divide --
-------------------
procedure Double_Divide
(X, Y, Z : Double_Int;
Q, R : out Double_Int;
Round : Boolean)
is
Xu : constant Double_Uns := abs X;
Yu : constant Double_Uns := abs Y;
Yhi : constant Single_Uns := Hi (Yu);
Ylo : constant Single_Uns := Lo (Yu);
Zu : constant Double_Uns := abs Z;
Zhi : constant Single_Uns := Hi (Zu);
Zlo : constant Single_Uns := Lo (Zu);
T1, T2 : Double_Uns;
Du, Qu, Ru : Double_Uns;
Den_Pos : constant Boolean := (Y < 0) = (Z < 0);
-- Local ghost variables
Mult : constant Big_Integer := abs (Big (Y) * Big (Z)) with Ghost;
Quot : Big_Integer with Ghost;
Big_R : Big_Integer with Ghost;
Big_Q : Big_Integer with Ghost;
-- Local lemmas
procedure Prove_Overflow_Case
with
Ghost,
Pre => X = Double_Int'First and then Big (Y) * Big (Z) = -1,
Post => not In_Double_Int_Range (Big (X) / (Big (Y) * Big (Z)))
and then not In_Double_Int_Range
(Round_Quotient (Big (X), Big (Y) * Big (Z),
Big (X) / (Big (Y) * Big (Z)),
Big (X) rem (Big (Y) * Big (Z))));
-- Proves the special case where -2**(Double_Size - 1) is divided by -1,
-- generating an overflow.
procedure Prove_Quotient_Zero
with
Ghost,
Pre => Mult >= Big_2xxDouble
and then
not (Mult = Big_2xxDouble
and then X = Double_Int'First
and then Round)
and then Q = 0
and then R = X,
Post => Big (R) = Big (X) rem (Big (Y) * Big (Z))
and then
(if Round then
Big (Q) = Round_Quotient (Big (X), Big (Y) * Big (Z),
Big (X) / (Big (Y) * Big (Z)),
Big (R))
else Big (Q) = Big (X) / (Big (Y) * Big (Z)));
-- Proves the general case where divisor doesn't fit in Double_Uns and
-- quotient is 0.
procedure Prove_Round_To_One
with
Ghost,
Pre => Mult = Big_2xxDouble
and then X = Double_Int'First
and then Q = (if Den_Pos then -1 else 1)
and then R = X
and then Round,
Post => Big (R) = Big (X) rem (Big (Y) * Big (Z))
and then Big (Q) = Round_Quotient (Big (X), Big (Y) * Big (Z),
Big (X) / (Big (Y) * Big (Z)),
Big (R));
-- Proves the special case where the divisor doesn't fit in Double_Uns
-- but quotient is still 1 or -1 due to rounding
-- (abs (Y*Z) = 2**Double_Size and X = -2**(Double_Size - 1) and Round).
procedure Prove_Rounding_Case
with
Ghost,
Pre => Mult /= 0
and then Quot = Big (X) / (Big (Y) * Big (Z))
and then Big_R = Big (X) rem (Big (Y) * Big (Z))
and then Big_Q =
Round_Quotient (Big (X), Big (Y) * Big (Z), Quot, Big_R)
and then Big (Ru) = abs Big_R
and then Big (Du) = Mult
and then Big (Qu) =
(if Ru > (Du - Double_Uns'(1)) / Double_Uns'(2)
then abs Quot + 1
else abs Quot),
Post => abs Big_Q = Big (Qu);
-- Proves correctness of the rounding of the unsigned quotient
procedure Prove_Sign_Quotient
with
Ghost,
Pre => Mult /= 0
and then Quot = Big (X) / (Big (Y) * Big (Z))
and then Big_R = Big (X) rem (Big (Y) * Big (Z))
and then Big_Q =
(if Round then
Round_Quotient (Big (X), Big (Y) * Big (Z), Quot, Big_R)
else Quot),
Post =>
(if X >= 0 then
(if Den_Pos then Big_Q >= 0 else Big_Q <= 0)
else
(if Den_Pos then Big_Q <= 0 else Big_Q >= 0));
-- Proves the correct sign of the signed quotient Big_Q
procedure Prove_Signs
with
Ghost,
Pre => Mult /= 0
and then Quot = Big (X) / (Big (Y) * Big (Z))
and then Big_R = Big (X) rem (Big (Y) * Big (Z))
and then Big_Q =
(if Round then
Round_Quotient (Big (X), Big (Y) * Big (Z), Quot, Big_R)
else Quot)
and then Big (Ru) = abs Big_R
and then Big (Qu) = abs Big_Q
and then R = (if X >= 0 then To_Int (Ru) else To_Int (-Ru))
and then
Q = (if (X >= 0) = Den_Pos then To_Int (Qu) else To_Int (-Qu))
and then not (X = Double_Int'First and then Big (Y) * Big (Z) = -1),
Post => Big (R) = Big (X) rem (Big (Y) * Big (Z))
and then
(if Round then
Big (Q) = Round_Quotient (Big (X), Big (Y) * Big (Z),
Big (X) / (Big (Y) * Big (Z)),
Big (R))
else Big (Q) = Big (X) / (Big (Y) * Big (Z)));
-- Proves final signs match the intended result after the unsigned
-- division is done.
-----------------------------
-- Local lemma null bodies --
-----------------------------
procedure Prove_Overflow_Case is null;
procedure Prove_Quotient_Zero is null;
procedure Prove_Round_To_One is null;
procedure Prove_Sign_Quotient is null;
-------------------------
-- Prove_Rounding_Case --
-------------------------
procedure Prove_Rounding_Case is
begin
if Same_Sign (Big (X), Big (Y) * Big (Z)) then
null;
end if;
end Prove_Rounding_Case;
-----------------
-- Prove_Signs --
-----------------
procedure Prove_Signs is
begin
if (X >= 0) = Den_Pos then
pragma Assert (Quot >= 0);
pragma Assert (Big_Q >= 0);
pragma Assert (Q >= 0);
pragma Assert (Big (Q) = Big_Q);
else
pragma Assert ((X >= 0) /= (Big (Y) * Big (Z) >= 0));
pragma Assert (Quot <= 0);
pragma Assert (Big_Q <= 0);
pragma Assert (if X >= 0 then R >= 0);
pragma Assert (if X < 0 then R <= 0);
pragma Assert (Big (R) = Big_R);
end if;
end Prove_Signs;
-- Start of processing for Double_Divide
begin
if Yu = 0 or else Zu = 0 then
Raise_Error;
end if;
pragma Assert (Mult /= 0);
pragma Assert (Den_Pos = (Big (Y) * Big (Z) > 0));
Quot := Big (X) / (Big (Y) * Big (Z));
Big_R := Big (X) rem (Big (Y) * Big (Z));
if Round then
Big_Q := Round_Quotient (Big (X), Big (Y) * Big (Z), Quot, Big_R);
else
Big_Q := Quot;
end if;
Lemma_Abs_Mult_Commutation (Big (Y), Big (Z));
Lemma_Mult_Decomposition (Mult, Yu, Zu, Yhi, Ylo, Zhi, Zlo);
-- Compute Y * Z. Note that if the result overflows Double_Uns, then
-- the rounded result is zero, except for the very special case where
-- X = -2 ** (Double_Size - 1) and abs (Y * Z) = 2 ** Double_Size, when
-- Round is True.
if Yhi /= 0 then
if Zhi /= 0 then
R := X;
-- Handle the special case when Round is True
if Yhi = 1
and then Zhi = 1
and then Ylo = 0
and then Zlo = 0
and then X = Double_Int'First
and then Round
then
Q := (if Den_Pos then -1 else 1);
Prove_Round_To_One;
else
Q := 0;
pragma Assert (Double_Uns'(Yhi * Zhi) >= Double_Uns (Yhi));
pragma Assert (Double_Uns'(Yhi * Zhi) >= Double_Uns (Zhi));
pragma Assert (Big (Double_Uns'(Yhi * Zhi)) >= 1);
if Yhi > 1 or else Zhi > 1 then
pragma Assert (Big (Double_Uns'(Yhi * Zhi)) > 1);
pragma Assert (if X = Double_Int'First and then Round then
Mult > Big_2xxDouble);
elsif Zlo > 0 then
pragma Assert (Big (Double_Uns'(Yhi * Zlo)) > 0);
pragma Assert (if X = Double_Int'First and then Round then
Mult > Big_2xxDouble);
elsif Ylo > 0 then
pragma Assert (Double_Uns'(Ylo * Zhi) > 0);
pragma Assert (Big (Double_Uns'(Ylo * Zhi)) > 0);
pragma Assert (if X = Double_Int'First and then Round then
Mult > Big_2xxDouble);
else
pragma Assert (not (X = Double_Int'First and then Round));
end if;
Prove_Quotient_Zero;
end if;
return;
else
T2 := Yhi * Zlo;
pragma Assert (Big (T2) = Big (Double_Uns'(Yhi * Zlo)));
pragma Assert (Big_0 = Big (Double_Uns'(Ylo * Zhi)));
end if;
else
T2 := Ylo * Zhi;
pragma Assert (Big (T2) = Big (Double_Uns'(Ylo * Zhi)));
pragma Assert (Big_0 = Big (Double_Uns'(Yhi * Zlo)));
end if;
T1 := Ylo * Zlo;
Lemma_Mult_Distribution (Big_2xxSingle,
Big (Double_Uns'(Yhi * Zlo)),
Big (Double_Uns'(Ylo * Zhi)));
Lemma_Hi_Lo (T1, Hi (T1), Lo (T1));
Lemma_Mult_Distribution (Big_2xxSingle,
Big (T2),
Big (Double_Uns (Hi (T1))));
Lemma_Add_Commutation (T2, Hi (T1));
T2 := T2 + Hi (T1);
Lemma_Hi_Lo (T2, Hi (T2), Lo (T2));
Lemma_Mult_Distribution (Big_2xxSingle,
Big (Double_Uns (Hi (T2))),
Big (Double_Uns (Lo (T2))));
Lemma_Double_Big_2xxSingle;
if Hi (T2) /= 0 then
R := X;
-- Handle the special case when Round is True
if Hi (T2) = 1
and then Lo (T2) = 0
and then Lo (T1) = 0
and then X = Double_Int'First
and then Round
then
Q := (if Den_Pos then -1 else 1);
Prove_Round_To_One;
else
Q := 0;
pragma Assert (Big (Double_Uns (Hi (T2))) >= 1);
pragma Assert (Big (Double_Uns (Lo (T2))) >= 0);
pragma Assert (Big (Double_Uns (Lo (T1))) >= 0);
pragma Assert (Big_2xxSingle * Big (Double_Uns (Lo (T2)))
+ Big (Double_Uns (Lo (T1))) >= 0);
pragma Assert (Mult >= Big_2xxDouble * Big (Double_Uns (Hi (T2))));
pragma Assert (Mult >= Big_2xxDouble);
if Hi (T2) > 1 then
pragma Assert (Big (Double_Uns (Hi (T2))) > 1);
pragma Assert (if X = Double_Int'First and then Round then
Mult > Big_2xxDouble);
elsif Lo (T2) > 0 then
pragma Assert (Big (Double_Uns (Lo (T2))) > 0);
pragma Assert (Big_2xxSingle > 0);
pragma Assert (Big_2xxSingle * Big (Double_Uns (Lo (T2))) > 0);
pragma Assert (Big_2xxSingle * Big (Double_Uns (Lo (T2)))
+ Big (Double_Uns (Lo (T1))) > 0);
pragma Assert (if X = Double_Int'First and then Round then
Mult > Big_2xxDouble);
elsif Lo (T1) > 0 then
pragma Assert (Double_Uns (Lo (T1)) > 0);
Lemma_Gt_Commutation (Double_Uns (Lo (T1)), 0);
pragma Assert (Big (Double_Uns (Lo (T1))) > 0);
pragma Assert (if X = Double_Int'First and then Round then
Mult > Big_2xxDouble);
else
pragma Assert (not (X = Double_Int'First and then Round));
end if;
Prove_Quotient_Zero;
end if;
return;
end if;
Du := Lo (T2) & Lo (T1);
Lemma_Hi_Lo (Du, Lo (T2), Lo (T1));
pragma Assert (Mult = Big (Du));
pragma Assert (Du /= 0);
-- Multiplication of 2-limb arguments Yu and Zu leads to 4-limb result
-- (where each limb is a single value). Cases where 4 limbs are needed
-- require Yhi /= 0 and Zhi /= 0 and lead to early exit. Remaining cases
-- where 3 limbs are needed correspond to Hi(T2) /= 0 and lead to early
-- exit. Thus, at this point, the result fits in 2 limbs which are
-- exactly Lo (T2) and Lo (T1), which corresponds to the value of Du.
-- As the case where one of Yu or Zu is null also led to early exit,
-- we have Du /= 0 here.
-- Check overflow case of largest negative number divided by -1
if X = Double_Int'First and then Du = 1 and then not Den_Pos then
Prove_Overflow_Case;
Raise_Error;
end if;
-- Perform the actual division
pragma Assert (Du /= 0);
-- Multiplication of 2-limb arguments Yu and Zu leads to 4-limb result
-- (where each limb is a single value). Cases where 4 limbs are needed
-- require Yhi/=0 and Zhi/=0 and lead to early exit. Remaining cases
-- where 3 limbs are needed correspond to Hi(T2)/=0 and lead to early
-- exit. Thus, at this point, the result fits in 2 limbs which are
-- exactly Lo(T2) and Lo(T1), which corresponds to the value of Du.
-- As the case where one of Yu or Zu is null also led to early exit,
-- we have Du/=0 here.
Qu := Xu / Du;
Ru := Xu rem Du;
Lemma_Div_Commutation (Xu, Du);
Lemma_Abs_Div_Commutation (Big (X), Big (Y) * Big (Z));
Lemma_Abs_Commutation (X);
pragma Assert (abs Quot = Big (Qu));
Lemma_Rem_Commutation (Xu, Du);
Lemma_Abs_Rem_Commutation (Big (X), Big (Y) * Big (Z));
pragma Assert (abs Big_R = Big (Ru));
-- Deal with rounding case
if Round then
if Ru > (Du - Double_Uns'(1)) / Double_Uns'(2) then
Lemma_Add_Commutation (Qu, 1);
Qu := Qu + Double_Uns'(1);
end if;
Prove_Rounding_Case;
end if;
pragma Assert (abs Big_Q = Big (Qu));
Prove_Sign_Quotient;
-- Set final signs (RM 4.5.5(27-30))
-- Case of dividend (X) sign positive
if X >= 0 then
R := To_Int (Ru);
Q := (if Den_Pos then To_Int (Qu) else To_Int (-Qu));
-- We perform the unary minus operation on the unsigned value
-- before conversion to signed, to avoid a possible overflow
-- for value -2 ** (Double_Size - 1), both for computing R and Q.
-- Case of dividend (X) sign negative
else
R := To_Int (-Ru);
Q := (if Den_Pos then To_Int (-Qu) else To_Int (Qu));
end if;
Prove_Signs;
end Double_Divide;
---------
-- Le3 --
---------
function Le3 (X1, X2, X3, Y1, Y2, Y3 : Single_Uns) return Boolean is
begin
if X1 < Y1 then
return True;
elsif X1 > Y1 then
return False;
elsif X2 < Y2 then
return True;
elsif X2 > Y2 then
return False;
else
return X3 <= Y3;
end if;
end Le3;
-------------------------------
-- Lemma_Abs_Div_Commutation --
-------------------------------
procedure Lemma_Abs_Div_Commutation (X, Y : Big_Integer) is
begin
if Y < 0 then
if X < 0 then
pragma Assert (abs (X / Y) = abs (X / (-Y)));
else
Lemma_Neg_Div (X, Y);
pragma Assert (abs (X / Y) = abs ((-X) / (-Y)));
end if;
end if;
end Lemma_Abs_Div_Commutation;
-------------------------------
-- Lemma_Abs_Rem_Commutation --
-------------------------------
procedure Lemma_Abs_Rem_Commutation (X, Y : Big_Integer) is
begin
if Y < 0 then
Lemma_Neg_Rem (X, Y);
if X < 0 then
pragma Assert (X rem Y = -((-X) rem (-Y)));
pragma Assert (abs (X rem Y) = (abs X) rem (abs Y));
else
pragma Assert (abs (X rem Y) = (abs X) rem (abs Y));
end if;
end if;
end Lemma_Abs_Rem_Commutation;
-----------------------------
-- Lemma_Concat_Definition --
-----------------------------
procedure Lemma_Concat_Definition (X, Y : Single_Uns) is
Hi : constant Double_Uns := Shift_Left (Double_Uns (X), Single_Size);
Lo : constant Double_Uns := Double_Uns (Y);
begin
pragma Assert (Hi = Double_Uns'(2 ** Single_Size) * Double_Uns (X));
pragma Assert ((Hi or Lo) = Hi + Lo);
end Lemma_Concat_Definition;
------------------
-- Lemma_Div_Eq --
------------------
procedure Lemma_Div_Eq (A, B, S, R : Big_Integer) is
begin
pragma Assert ((A - B) * S = R);
pragma Assert ((A - B) * S / S = R / S);
Lemma_Mult_Div (A - B, S);
pragma Assert (A - B = R / S);
end Lemma_Div_Eq;
------------------------
-- Lemma_Double_Shift --
------------------------
procedure Lemma_Double_Shift (X : Double_Uns; S, S1 : Natural) is
begin
Lemma_Double_Shift (X, Double_Uns (S), Double_Uns (S1));
pragma Assert (Shift_Left (Shift_Left (X, S), S1)
= Shift_Left (Shift_Left (X, S), Natural (Double_Uns (S1))));
pragma Assert (Shift_Left (X, S + S1)
= Shift_Left (X, Natural (Double_Uns (S + S1))));
end Lemma_Double_Shift;
-----------------------------
-- Lemma_Double_Shift_Left --
-----------------------------
procedure Lemma_Double_Shift_Left (X : Double_Uns; S, S1 : Natural) is
begin
Lemma_Double_Shift_Left (X, Double_Uns (S), Double_Uns (S1));
pragma Assert (Shift_Left (Shift_Left (X, S), S1)
= Shift_Left (Shift_Left (X, S), Natural (Double_Uns (S1))));
pragma Assert (Shift_Left (X, S + S1)
= Shift_Left (X, Natural (Double_Uns (S + S1))));
end Lemma_Double_Shift_Left;
------------------------------
-- Lemma_Double_Shift_Right --
------------------------------
procedure Lemma_Double_Shift_Right (X : Double_Uns; S, S1 : Natural) is
begin
Lemma_Double_Shift_Right (X, Double_Uns (S), Double_Uns (S1));
pragma Assert (Shift_Right (Shift_Right (X, S), S1)
= Shift_Right (Shift_Right (X, S), Natural (Double_Uns (S1))));
pragma Assert (Shift_Right (X, S + S1)
= Shift_Right (X, Natural (Double_Uns (S + S1))));
end Lemma_Double_Shift_Right;
-----------------
-- Lemma_Hi_Lo --
-----------------
procedure Lemma_Hi_Lo (Xu : Double_Uns; Xhi, Xlo : Single_Uns) is
begin
pragma Assert (Double_Uns (Xhi) = Xu / Double_Uns'(2 ** Single_Size));
pragma Assert (Double_Uns (Xlo) = Xu mod 2 ** Single_Size);
end Lemma_Hi_Lo;
-------------------
-- Lemma_Hi_Lo_3 --
-------------------
procedure Lemma_Hi_Lo_3 (Xu : Double_Uns; Xhi, Xlo : Single_Uns) is
begin
Lemma_Hi_Lo (Xu, Xhi, Xlo);
end Lemma_Hi_Lo_3;
------------------------------
-- Lemma_Mult_Decomposition --
------------------------------
procedure Lemma_Mult_Decomposition
(Mult : Big_Integer;
Xu, Yu : Double_Uns;
Xhi, Xlo, Yhi, Ylo : Single_Uns)
is
begin
Lemma_Hi_Lo (Xu, Xhi, Xlo);
Lemma_Hi_Lo (Yu, Yhi, Ylo);
pragma Assert
(Mult =
(Big_2xxSingle * Big (Double_Uns (Xhi)) + Big (Double_Uns (Xlo))) *
(Big_2xxSingle * Big (Double_Uns (Yhi)) + Big (Double_Uns (Ylo))));
pragma Assert (Mult =
Big_2xxSingle
* Big_2xxSingle * Big (Double_Uns (Xhi)) * Big (Double_Uns (Yhi))
+ Big_2xxSingle * Big (Double_Uns (Xhi)) * Big (Double_Uns (Ylo))
+ Big_2xxSingle * Big (Double_Uns (Xlo)) * Big (Double_Uns (Yhi))
+ Big (Double_Uns (Xlo)) * Big (Double_Uns (Ylo)));
Lemma_Deep_Mult_Commutation (Big_2xxSingle * Big_2xxSingle, Xhi, Yhi);
Lemma_Deep_Mult_Commutation (Big_2xxSingle, Xhi, Ylo);
Lemma_Deep_Mult_Commutation (Big_2xxSingle, Xlo, Yhi);
Lemma_Mult_Commutation (Xlo, Ylo);
pragma Assert (Mult =
Big_2xxSingle * Big_2xxSingle * Big (Double_Uns'(Xhi * Yhi))
+ Big_2xxSingle * Big (Double_Uns'(Xhi * Ylo))
+ Big_2xxSingle * Big (Double_Uns'(Xlo * Yhi))
+ Big (Double_Uns'(Xlo * Ylo)));
end Lemma_Mult_Decomposition;
--------------------
-- Lemma_Mult_Div --
--------------------
procedure Lemma_Mult_Div (A, B : Big_Integer) is
begin
if B > 0 then
pragma Assert (A * B / B = A);
else
pragma Assert (A * (-B) / (-B) = A);
end if;
end Lemma_Mult_Div;
-------------------
-- Lemma_Neg_Div --
-------------------
procedure Lemma_Neg_Div (X, Y : Big_Integer) is
begin
pragma Assert ((-X) / (-Y) = -(X / (-Y)));
pragma Assert (X / (-Y) = -(X / Y));
end Lemma_Neg_Div;
-----------------------
-- Lemma_Powers_Of_2 --
-----------------------
procedure Lemma_Powers_Of_2 (M, N : Natural) is
begin
if M + N < Double_Size then
pragma Assert (Double_Uns'(2**M) * Double_Uns'(2**N)
= Double_Uns'(2**(M + N)));
end if;
Lemma_Powers_Of_2_Commutation (M);
Lemma_Powers_Of_2_Commutation (N);
Lemma_Powers_Of_2_Commutation (M + N);
Lemma_Powers (Big (Double_Uns'(2)), M, N);
if M + N < Double_Size then
pragma Assert (Big (Double_Uns'(2))**M * Big (Double_Uns'(2))**N
= Big (Double_Uns'(2))**(M + N));
Lemma_Powers_Of_2_Increasing (M + N, Double_Size);
Lemma_Mult_Commutation (2 ** M, 2 ** N, 2 ** (M + N));
else
pragma Assert (Big (Double_Uns'(2))**M * Big (Double_Uns'(2))**N
= Big (Double_Uns'(2))**(M + N));
end if;
end Lemma_Powers_Of_2;
-----------------------------------
-- Lemma_Powers_Of_2_Commutation --
-----------------------------------
procedure Lemma_Powers_Of_2_Commutation (M : Natural) is
begin
if M > 0 then
Lemma_Powers_Of_2_Commutation (M - 1);
pragma Assert (Big (Double_Uns'(2))**(M - 1) = Big_2xx (M - 1));
pragma Assert (Big (Double_Uns'(2))**M = Big_2xx (M - 1) * 2);
if M < Double_Size then
Lemma_Powers_Of_2_Increasing (M - 1, Double_Size - 1);
Lemma_Bounded_Powers_Of_2_Increasing (M - 1, Double_Size - 1);
pragma Assert (Double_Uns'(2 ** (M - 1)) * 2 = Double_Uns'(2**M));
Lemma_Mult_Commutation
(Double_Uns'(2 ** (M - 1)), 2, Double_Uns'(2**M));
pragma Assert (Big (Double_Uns'(2))**M = Big_2xx (M));
end if;
end if;
end Lemma_Powers_Of_2_Commutation;
----------------------------------
-- Lemma_Powers_Of_2_Increasing --
----------------------------------
procedure Lemma_Powers_Of_2_Increasing (M, N : Natural) is
begin
if M + 1 < N then
Lemma_Powers_Of_2_Increasing (M + 1, N);
end if;
end Lemma_Powers_Of_2_Increasing;
-------------------
-- Lemma_Rem_Abs --
-------------------
procedure Lemma_Rem_Abs (X, Y : Big_Integer) is
begin
Lemma_Neg_Rem (X, Y);
end Lemma_Rem_Abs;
----------------------
-- Lemma_Shift_Left --
----------------------
procedure Lemma_Shift_Left (X : Double_Uns; Shift : Natural) is
procedure Lemma_Mult_Pow2 (X : Double_Uns; I : Natural)
with
Ghost,
Pre => I < Double_Size - 1,
Post => X * Double_Uns'(2) ** I * Double_Uns'(2)
= X * Double_Uns'(2) ** (I + 1);
procedure Lemma_Mult_Pow2 (X : Double_Uns; I : Natural) is
Mul1 : constant Double_Uns := Double_Uns'(2) ** I;
Mul2 : constant Double_Uns := Double_Uns'(2);
Left : constant Double_Uns := X * Mul1 * Mul2;
begin
pragma Assert (Left = X * (Mul1 * Mul2));
pragma Assert (Mul1 * Mul2 = Double_Uns'(2) ** (I + 1));
end Lemma_Mult_Pow2;
XX : Double_Uns := X;
begin
for J in 1 .. Shift loop
declare
Cur_XX : constant Double_Uns := XX;
begin
XX := Shift_Left (XX, 1);
pragma Assert (XX = Cur_XX * Double_Uns'(2));
Lemma_Mult_Pow2 (X, J - 1);
end;
Lemma_Double_Shift_Left (X, J - 1, 1);
pragma Loop_Invariant (XX = Shift_Left (X, J));
pragma Loop_Invariant (XX = X * Double_Uns'(2) ** J);
end loop;
end Lemma_Shift_Left;
-----------------------
-- Lemma_Shift_Right --
-----------------------
procedure Lemma_Shift_Right (X : Double_Uns; Shift : Natural) is
procedure Lemma_Div_Pow2 (X : Double_Uns; I : Natural)
with
Ghost,
Pre => I < Double_Size - 1,
Post => X / Double_Uns'(2) ** I / Double_Uns'(2)
= X / Double_Uns'(2) ** (I + 1);
procedure Lemma_Quot_Rem (X, Div, Q, R : Double_Uns)
with
Ghost,
Pre => Div /= 0
and then X = Q * Div + R
and then Q <= Double_Uns'Last / Div
and then R <= Double_Uns'Last - Q * Div
and then R < Div,
Post => Q = X / Div;
pragma Annotate (GNATprove, False_Positive, "postcondition might fail",
"Q is the quotient of X by Div");
procedure Lemma_Div_Pow2 (X : Double_Uns; I : Natural) is
Div1 : constant Double_Uns := Double_Uns'(2) ** I;
Div2 : constant Double_Uns := Double_Uns'(2);
Left : constant Double_Uns := X / Div1 / Div2;
R2 : constant Double_Uns := X / Div1 - Left * Div2;
pragma Assert (R2 <= Div2 - 1);
R1 : constant Double_Uns := X - X / Div1 * Div1;
pragma Assert (R1 < Div1);
begin
pragma Assert (X = Left * (Div1 * Div2) + R2 * Div1 + R1);
pragma Assert (R2 * Div1 + R1 < Div1 * Div2);
Lemma_Quot_Rem (X, Div1 * Div2, Left, R2 * Div1 + R1);
pragma Assert (Left = X / (Div1 * Div2));
pragma Assert (Div1 * Div2 = Double_Uns'(2) ** (I + 1));
end Lemma_Div_Pow2;
procedure Lemma_Quot_Rem (X, Div, Q, R : Double_Uns) is null;
XX : Double_Uns := X;
begin
for J in 1 .. Shift loop
declare
Cur_XX : constant Double_Uns := XX;
begin
XX := Shift_Right (XX, 1);
pragma Assert (XX = Cur_XX / Double_Uns'(2));
Lemma_Div_Pow2 (X, J - 1);
end;
Lemma_Double_Shift_Right (X, J - 1, 1);
pragma Loop_Invariant (XX = Shift_Right (X, J));
pragma Loop_Invariant (XX = X / Double_Uns'(2) ** J);
end loop;
end Lemma_Shift_Right;
------------------------------
-- Lemma_Shift_Without_Drop --
------------------------------
procedure Lemma_Shift_Without_Drop
(X, Y : Double_Uns;
Mask : Single_Uns;
Shift : Natural)
is
pragma Unreferenced (Mask);
procedure Lemma_Bound
with
Pre => Shift <= Single_Size
and then X <= 2**Single_Size
* Double_Uns'(2**(Single_Size - Shift) - 1)
+ Single_Uns'(2**Single_Size - 1),
Post => X <= 2**(Double_Size - Shift) - 1;
procedure Lemma_Exp_Pos (N : Integer)
with
Pre => N in 0 .. Double_Size - 1,
Post => Double_Uns'(2**N) > 0;
-----------------------------
-- Local lemma null bodies --
-----------------------------
procedure Lemma_Bound is null;
procedure Lemma_Exp_Pos (N : Integer) is null;
-- Start of processing for Lemma_Shift_Without_Drop
begin
if Shift = 0 then
pragma Assert (Big (Y) = Big_2xx (Shift) * Big (X));
return;
end if;
Lemma_Bound;
Lemma_Exp_Pos (Double_Size - Shift);
pragma Assert (X < 2**(Double_Size - Shift));
pragma Assert (Big (X) < Big_2xx (Double_Size - Shift));
pragma Assert (Y = 2**Shift * X);
Lemma_Lt_Mult (Big (X), Big_2xx (Double_Size - Shift), Big_2xx (Shift),
Big_2xx (Shift) * Big_2xx (Double_Size - Shift));
pragma Assert (Big_2xx (Shift) * Big (X)
< Big_2xx (Shift) * Big_2xx (Double_Size - Shift));
Lemma_Powers_Of_2 (Shift, Double_Size - Shift);
Lemma_Mult_Commutation (2**Shift, X, Y);
pragma Assert (Big (Y) = Big_2xx (Shift) * Big (X));
end Lemma_Shift_Without_Drop;
-------------------------------
-- Multiply_With_Ovflo_Check --
-------------------------------
function Multiply_With_Ovflo_Check (X, Y : Double_Int) return Double_Int is
Xu : constant Double_Uns := abs X;
Xhi : constant Single_Uns := Hi (Xu);
Xlo : constant Single_Uns := Lo (Xu);
Yu : constant Double_Uns := abs Y;
Yhi : constant Single_Uns := Hi (Yu);
Ylo : constant Single_Uns := Lo (Yu);
T1, T2 : Double_Uns;
-- Local ghost variables
Mult : constant Big_Integer := abs (Big (X) * Big (Y)) with Ghost;
-- Local lemmas
procedure Prove_Both_Too_Large
with
Ghost,
Pre => Xhi /= 0
and then Yhi /= 0
and then Mult =
Big_2xxSingle * Big_2xxSingle * (Big (Double_Uns'(Xhi * Yhi)))
+ Big_2xxSingle * (Big (Double_Uns'(Xhi * Ylo)))
+ Big_2xxSingle * (Big (Double_Uns'(Xlo * Yhi)))
+ (Big (Double_Uns'(Xlo * Ylo))),
Post => not In_Double_Int_Range (Big (X) * Big (Y));
procedure Prove_Final_Decomposition
with
Ghost,
Pre => In_Double_Int_Range (Big (X) * Big (Y))
and then Mult = Big_2xxSingle * Big (T2) + Big (Double_Uns (Lo (T1)))
and then Hi (T2) = 0,
Post => Mult = Big (Lo (T2) & Lo (T1));
procedure Prove_Neg_Int
with
Ghost,
Pre => In_Double_Int_Range (Big (X) * Big (Y))
and then Mult = Big (T2)
and then ((X >= 0 and then Y < 0) or else (X < 0 and then Y >= 0)),
Post => To_Neg_Int (T2) = X * Y;
procedure Prove_Pos_Int
with
Ghost,
Pre => In_Double_Int_Range (Big (X) * Big (Y))
and then Mult = Big (T2)
and then ((X >= 0 and then Y >= 0) or else (X < 0 and then Y < 0)),
Post => In_Double_Int_Range (Big (T2))
and then To_Pos_Int (T2) = X * Y;
procedure Prove_Result_Too_Large
with
Ghost,
Pre => Mult = Big_2xxSingle * Big (T2) + Big (Double_Uns (Lo (T1)))
and then Hi (T2) /= 0,
Post => not In_Double_Int_Range (Big (X) * Big (Y));
procedure Prove_Too_Large
with
Ghost,
Pre => abs (Big (X) * Big (Y)) >= Big_2xxDouble,
Post => not In_Double_Int_Range (Big (X) * Big (Y));
--------------------------
-- Prove_Both_Too_Large --
--------------------------
procedure Prove_Both_Too_Large is
begin
pragma Assert (Mult >=
Big_2xxSingle * Big_2xxSingle * Big (Double_Uns'(Xhi * Yhi)));
pragma Assert (Double_Uns (Xhi) * Double_Uns (Yhi) >= 1);
pragma Assert (Mult >= Big_2xxSingle * Big_2xxSingle);
Prove_Too_Large;
end Prove_Both_Too_Large;
-------------------------------
-- Prove_Final_Decomposition --
-------------------------------
procedure Prove_Final_Decomposition is
begin
Lemma_Hi_Lo (T2, Hi (T2), Lo (T2));
pragma Assert (Mult = Big_2xxSingle * Big (Double_Uns (Lo (T2)))
+ Big (Double_Uns (Lo (T1))));
pragma Assert (Mult <= Big_2xxDouble_Minus_1);
Lemma_Mult_Commutation (X, Y);
pragma Assert (Mult = abs (Big (X * Y)));
Lemma_Word_Commutation (Lo (T2));
pragma Assert (Mult = Big (Double_Uns'(2 ** Single_Size)
* Double_Uns (Lo (T2)))
+ Big (Double_Uns (Lo (T1))));
Lemma_Add_Commutation (Double_Uns'(2 ** Single_Size)
* Double_Uns (Lo (T2)),
Lo (T1));
pragma Assert (Mult = Big (Double_Uns'(2 ** Single_Size)
* Double_Uns (Lo (T2)) + Lo (T1)));
pragma Assert (Lo (T2) & Lo (T1) = Double_Uns'(2 ** Single_Size)
* Double_Uns (Lo (T2)) + Lo (T1));
end Prove_Final_Decomposition;
-------------------
-- Prove_Neg_Int --
-------------------
procedure Prove_Neg_Int is
begin
pragma Assert (X * Y <= 0);
pragma Assert (Mult = -Big (X * Y));
end Prove_Neg_Int;
-------------------
-- Prove_Pos_Int --
-------------------
procedure Prove_Pos_Int is
begin
pragma Assert (X * Y >= 0);
pragma Assert (Mult = Big (X * Y));
end Prove_Pos_Int;
----------------------------
-- Prove_Result_Too_Large --
----------------------------
procedure Prove_Result_Too_Large is
begin
pragma Assert (Mult >= Big_2xxSingle * Big (T2));
Lemma_Hi_Lo (T2, Hi (T2), Lo (T2));
pragma Assert (Mult >=
Big_2xxSingle * Big_2xxSingle * Big (Double_Uns (Hi (T2))));
pragma Assert (Double_Uns (Hi (T2)) >= 1);
pragma Assert (Mult >= Big_2xxSingle * Big_2xxSingle);
Prove_Too_Large;
end Prove_Result_Too_Large;
---------------------
-- Prove_Too_Large --
---------------------
procedure Prove_Too_Large is null;
-- Start of processing for Multiply_With_Ovflo_Check
begin
Lemma_Mult_Decomposition (Mult, Xu, Yu, Xhi, Xlo, Yhi, Ylo);
if Xhi /= 0 then
if Yhi /= 0 then
Prove_Both_Too_Large;
Raise_Error;
else
T2 := Xhi * Ylo;
pragma Assert (Big (T2) = Big (Double_Uns'(Xhi * Ylo))
+ Big (Double_Uns'(Xlo * Yhi)));
end if;
elsif Yhi /= 0 then
T2 := Xlo * Yhi;
pragma Assert (Big (T2) = Big (Double_Uns'(Xhi * Ylo))
+ Big (Double_Uns'(Xlo * Yhi)));
else -- Yhi = Xhi = 0
T2 := 0;
end if;
-- Here we have T2 set to the contribution to the upper half of the
-- result from the upper halves of the input values.
T1 := Xlo * Ylo;
pragma Assert (Big (T2) = Big (Double_Uns'(Xhi * Ylo))
+ Big (Double_Uns'(Xlo * Yhi)));
Lemma_Mult_Distribution (Big_2xxSingle, Big (Double_Uns'(Xhi * Ylo)),
Big (Double_Uns'(Xlo * Yhi)));
pragma Assert (Mult = Big_2xxSingle * Big (T2) + Big (T1));
Lemma_Add_Commutation (T2, Hi (T1));
pragma Assert
(Big (T2 + Hi (T1)) = Big (T2) + Big (Double_Uns (Hi (T1))));
T2 := T2 + Hi (T1);
Lemma_Hi_Lo (T1, Hi (T1), Lo (T1));
pragma Assert
(Mult = Big_2xxSingle * Big (T2) + Big (Double_Uns (Lo (T1))));
if Hi (T2) /= 0 then
Prove_Result_Too_Large;
Raise_Error;
end if;
Prove_Final_Decomposition;
T2 := Lo (T2) & Lo (T1);
pragma Assert (Mult = Big (T2));
if X >= 0 then
if Y >= 0 then
Prove_Pos_Int;
return To_Pos_Int (T2);
pragma Annotate (CodePeer, Intentional, "precondition",
"Intentional Unsigned->Signed conversion");
else
Prove_Neg_Int;
Lemma_Abs_Range (Big (X) * Big (Y));
return To_Neg_Int (T2);
end if;
else -- X < 0
if Y < 0 then
Prove_Pos_Int;
return To_Pos_Int (T2);
pragma Annotate (CodePeer, Intentional, "precondition",
"Intentional Unsigned->Signed conversion");
else
Prove_Neg_Int;
Lemma_Abs_Range (Big (X) * Big (Y));
return To_Neg_Int (T2);
end if;
end if;
end Multiply_With_Ovflo_Check;
-----------------
-- Raise_Error --
-----------------
procedure Raise_Error is
begin
raise Constraint_Error with "Double arithmetic overflow";
pragma Annotate
(GNATprove, Intentional, "exception might be raised",
"Procedure Raise_Error is called to signal input errors");
end Raise_Error;
-------------------
-- Scaled_Divide --
-------------------
procedure Scaled_Divide
(X, Y, Z : Double_Int;
Q, R : out Double_Int;
Round : Boolean)
is
Xu : constant Double_Uns := abs X;
Xhi : constant Single_Uns := Hi (Xu);
Xlo : constant Single_Uns := Lo (Xu);
Yu : constant Double_Uns := abs Y;
Yhi : constant Single_Uns := Hi (Yu);
Ylo : constant Single_Uns := Lo (Yu);
Zu : Double_Uns := abs Z;
Zhi : Single_Uns := Hi (Zu);
Zlo : Single_Uns := Lo (Zu);
D : array (1 .. 4) of Single_Uns with Relaxed_Initialization;
-- The dividend, four digits (D(1) is high order)
Qd : array (1 .. 2) of Single_Uns with Relaxed_Initialization;
-- The quotient digits, two digits (Qd(1) is high order)
S1, S2, S3 : Single_Uns;
-- Value to subtract, three digits (S1 is high order)
Qu : Double_Uns;
Ru : Double_Uns;
-- Unsigned quotient and remainder
Mask : Single_Uns;
-- Mask of bits used to compute the scaling factor below
Scale : Natural;
-- Scaling factor used for multiple-precision divide. Dividend and
-- Divisor are multiplied by 2 ** Scale, and the final remainder is
-- divided by the scaling factor. The reason for this scaling is to
-- allow more accurate estimation of quotient digits.
Shift : Natural;
-- Shift factor used to compute the scaling factor above
T1, T2, T3 : Double_Uns;
-- Temporary values
-- Local ghost variables
Mult : constant Big_Natural := abs (Big (X) * Big (Y)) with Ghost;
Quot : Big_Integer with Ghost;
Big_R : Big_Integer with Ghost;
Big_Q : Big_Integer with Ghost;
Inter : Natural with Ghost;
-- Local ghost functions
function Is_Mult_Decomposition
(D1, D2, D3, D4 : Big_Integer)
return Boolean
is
(Mult = Big_2xxSingle * Big_2xxSingle * Big_2xxSingle * D1
+ Big_2xxSingle * Big_2xxSingle * D2
+ Big_2xxSingle * D3
+ D4)
with
Ghost,
Annotate => (GNATprove, Inline_For_Proof);
function Is_Scaled_Mult_Decomposition
(D1, D2, D3, D4 : Big_Integer)
return Boolean
is
(Mult * Big_2xx (Scale)
= Big_2xxSingle * Big_2xxSingle * Big_2xxSingle * D1
+ Big_2xxSingle * Big_2xxSingle * D2
+ Big_2xxSingle * D3
+ D4)
with
Ghost,
Annotate => (GNATprove, Inline_For_Proof),
Pre => Scale < Double_Size;
-- Local lemmas
procedure Prove_Dividend_Scaling
with
Ghost,
Pre => D'Initialized
and then Scale <= Single_Size
and then Is_Mult_Decomposition (Big (Double_Uns (D (1))),
Big (Double_Uns (D (2))),
Big (Double_Uns (D (3))),
Big (Double_Uns (D (4))))
and then Big (D (1) & D (2)) * Big_2xx (Scale) < Big_2xxDouble
and then T1 = Shift_Left (D (1) & D (2), Scale)
and then T2 = Shift_Left (Double_Uns (D (3)), Scale)
and then T3 = Shift_Left (Double_Uns (D (4)), Scale),
Post => Is_Scaled_Mult_Decomposition
(Big (Double_Uns (Hi (T1))),
Big (Double_Uns (Lo (T1) or Hi (T2))),
Big (Double_Uns (Lo (T2) or Hi (T3))),
Big (Double_Uns (Lo (T3))));
-- Proves the scaling of the 4-digit dividend actually multiplies it by
-- 2**Scale.
procedure Prove_Multiplication (Q : Single_Uns)
with
Ghost,
Pre => T1 = Q * Lo (Zu)
and then T2 = Q * Hi (Zu)
and then S3 = Lo (T1)
and then T3 = Hi (T1) + Lo (T2)
and then S2 = Lo (T3)
and then S1 = Hi (T3) + Hi (T2),
Post => Big3 (S1, S2, S3) = Big (Double_Uns (Q)) * Big (Zu);
-- Proves correctness of the multiplication of divisor by quotient to
-- compute amount to subtract.
procedure Prove_Mult_Decomposition_Split3
(D1, D2, D3, D3_Hi, D3_Lo, D4 : Big_Integer)
with
Ghost,
Pre => Is_Mult_Decomposition (D1, D2, D3, D4)
and then D3 = Big_2xxSingle * D3_Hi + D3_Lo,
Post => Is_Mult_Decomposition (D1, D2 + D3_Hi, D3_Lo, D4);
-- Proves decomposition of Mult after splitting third component
procedure Prove_Negative_Dividend
with
Ghost,
Pre => Z /= 0
and then Big (Qu) = abs Big_Q
and then In_Double_Int_Range (Big_Q)
and then Big (Ru) = abs Big_R
and then ((X >= 0 and Y < 0) or (X < 0 and Y >= 0))
and then Big_Q =
(if Round then Round_Quotient (Big (X) * Big (Y), Big (Z),
Big (X) * Big (Y) / Big (Z),
Big (X) * Big (Y) rem Big (Z))
else Big (X) * Big (Y) / Big (Z))
and then Big_R = Big (X) * Big (Y) rem Big (Z),
Post =>
(if Z > 0 then Big_Q <= Big_0
and then In_Double_Int_Range (-Big (Qu))
else Big_Q >= Big_0
and then In_Double_Int_Range (Big (Qu)))
and then In_Double_Int_Range (-Big (Ru));
-- Proves the sign of rounded quotient when dividend is non-positive
procedure Prove_Overflow
with
Ghost,
Pre => Z /= 0
and then Mult >= Big_2xxDouble * Big (Double_Uns'(abs Z)),
Post => not In_Double_Int_Range (Big (X) * Big (Y) / Big (Z))
and then not In_Double_Int_Range
(Round_Quotient (Big (X) * Big (Y), Big (Z),
Big (X) * Big (Y) / Big (Z),
Big (X) * Big (Y) rem Big (Z)));
-- Proves overflow case when the quotient has at least 3 digits
procedure Prove_Positive_Dividend
with
Ghost,
Pre => Z /= 0
and then Big (Qu) = abs Big_Q
and then In_Double_Int_Range (Big_Q)
and then Big (Ru) = abs Big_R
and then ((X >= 0 and Y >= 0) or (X < 0 and Y < 0))
and then Big_Q =
(if Round then Round_Quotient (Big (X) * Big (Y), Big (Z),
Big (X) * Big (Y) / Big (Z),
Big (X) * Big (Y) rem Big (Z))
else Big (X) * Big (Y) / Big (Z))
and then Big_R = Big (X) * Big (Y) rem Big (Z),
Post =>
(if Z > 0 then Big_Q >= Big_0
and then In_Double_Int_Range (Big (Qu))
else Big_Q <= Big_0
and then In_Double_Int_Range (-Big (Qu)))
and then In_Double_Int_Range (Big (Ru));
-- Proves the sign of rounded quotient when dividend is non-negative
procedure Prove_Qd_Calculation_Part_1 (J : Integer)
with
Ghost,
Pre => J in 1 .. 2
and then D'Initialized
and then D (J) < Zhi
and then Hi (Zu) = Zhi
and then Qd (J)'Initialized
and then Qd (J) = Lo ((D (J) & D (J + 1)) / Zhi),
Post => Big (Double_Uns (Qd (J))) >=
Big3 (D (J), D (J + 1), D (J + 2)) / Big (Zu);
-- When dividing 3 digits by 2 digits, proves the initial calculation
-- of the quotient given by dividing the first 2 digits of the dividend
-- by the first digit of the divisor is not an underestimate (so
-- readjusting down works).
procedure Prove_Q_Too_Big
with
Ghost,
Pre => In_Double_Int_Range (Big_Q)
and then abs Big_Q = Big_2xxDouble,
Post => False;
-- Proves the inconsistency when Q is equal to Big_2xx64
procedure Prove_Rescaling
with
Ghost,
Pre => Scale <= Single_Size
and then Z /= 0
and then Mult * Big_2xx (Scale) = Big (Zu) * Big (Qu) + Big (Ru)
and then Big (Ru) < Big (Zu)
and then Big (Zu) = Big (Double_Uns'(abs Z)) * Big_2xx (Scale)
and then Quot = Big (X) * Big (Y) / Big (Z)
and then Big_R = Big (X) * Big (Y) rem Big (Z),
Post => abs Quot = Big (Qu)
and then abs Big_R = Big (Shift_Right (Ru, Scale));
-- Proves scaling back only the remainder is the right thing to do after
-- computing the scaled division.
procedure Prove_Rounding_Case
with
Ghost,
Pre => Z /= 0
and then Quot = Big (X) * Big (Y) / Big (Z)
and then Big_R = Big (X) * Big (Y) rem Big (Z)
and then Big_Q =
Round_Quotient (Big (X) * Big (Y), Big (Z), Quot, Big_R)
and then Big (Ru) = abs Big_R
and then Big (Zu) = Big (Double_Uns'(abs Z)),
Post => abs Big_Q =
(if Ru > (Zu - Double_Uns'(1)) / Double_Uns'(2)
then abs Quot + 1
else abs Quot);
-- Proves correctness of the rounding of the unsigned quotient
procedure Prove_Scaled_Mult_Decomposition_Regroup24
(D1, D2, D3, D4 : Big_Integer)
with
Ghost,
Pre => Scale < Double_Size
and then Is_Scaled_Mult_Decomposition (D1, D2, D3, D4),
Post => Is_Scaled_Mult_Decomposition
(0, Big_2xxSingle * D1 + D2, 0, Big_2xxSingle * D3 + D4);
-- Proves scaled decomposition of Mult after regrouping on second and
-- fourth component.
procedure Prove_Scaled_Mult_Decomposition_Regroup3
(D1, D2, D3, D4 : Single_Uns)
with
Ghost,
Pre => Scale < Double_Size
and then Is_Scaled_Mult_Decomposition
(Big (Double_Uns (D1)), Big (Double_Uns (D2)),
Big (Double_Uns (D3)), Big (Double_Uns (D4))),
Post => Is_Scaled_Mult_Decomposition (0, 0, Big3 (D1, D2, D3),
Big (Double_Uns (D4)));
-- Proves scaled decomposition of Mult after regrouping on third
-- component.
procedure Prove_Sign_R
with
Ghost,
Pre => Z /= 0 and then Big_R = Big (X) * Big (Y) rem Big (Z),
Post => In_Double_Int_Range (Big_R);
procedure Prove_Signs
with
Ghost,
Pre => Z /= 0
and then Quot = Big (X) * Big (Y) / Big (Z)
and then Big_R = Big (X) * Big (Y) rem Big (Z)
and then Big_Q =
(if Round then
Round_Quotient (Big (X) * Big (Y), Big (Z), Quot, Big_R)
else Quot)
and then Big (Ru) = abs Big_R
and then Big (Qu) = abs Big_Q
and then In_Double_Int_Range (Big_Q)
and then In_Double_Int_Range (Big_R)
and then R =
(if (X >= 0) = (Y >= 0) then To_Pos_Int (Ru) else To_Neg_Int (Ru))
and then Q =
(if ((X >= 0) = (Y >= 0)) = (Z >= 0) then To_Pos_Int (Qu)
else To_Neg_Int (Qu)), -- need to ensure To_Pos_Int precondition
Post => Big (R) = Big_R and then Big (Q) = Big_Q;
-- Proves final signs match the intended result after the unsigned
-- division is done.
procedure Prove_Z_Low
with
Ghost,
Pre => Z /= 0
and then D'Initialized
and then Hi (abs Z) = 0
and then Lo (abs Z) = Zlo
and then Mult =
Big_2xxSingle * Big_2xxSingle * Big (Double_Uns (D (2)))
+ Big_2xxSingle * Big (Double_Uns (D (3)))
+ Big (Double_Uns (D (4)))
and then D (2) < Zlo
and then Quot = (Big (X) * Big (Y)) / Big (Z)
and then Big_R = (Big (X) * Big (Y)) rem Big (Z)
and then T1 = D (2) & D (3)
and then T2 = Lo (T1 rem Zlo) & D (4)
and then Qu = Lo (T1 / Zlo) & Lo (T2 / Zlo)
and then Ru = T2 rem Zlo,
Post => Big (Qu) = abs Quot
and then Big (Ru) = abs Big_R;
-- Proves the case where the divisor is only one digit
----------------------------
-- Prove_Dividend_Scaling --
----------------------------
procedure Prove_Dividend_Scaling is
Big_D12 : constant Big_Integer :=
Big_2xx (Scale) * Big (D (1) & D (2));
Big_T1 : constant Big_Integer := Big (T1);
Big_D3 : constant Big_Integer :=
Big_2xx (Scale) * Big (Double_Uns (D (3)));
Big_T2 : constant Big_Integer := Big (T2);
Big_D4 : constant Big_Integer :=
Big_2xx (Scale) * Big (Double_Uns (D (4)));
Big_T3 : constant Big_Integer := Big (T3);
begin
Lemma_Shift_Left (D (1) & D (2), Scale);
Lemma_Ge_Mult (Big_2xxSingle, Big_2xx (Scale), Big_2xxSingle,
Big_2xxSingle * Big_2xx (Scale));
Lemma_Lt_Mult (Big (Double_Uns (D (3))), Big_2xxSingle,
Big_2xx (Scale), Big_2xxDouble);
Lemma_Shift_Left (Double_Uns (D (3)), Scale);
Lemma_Lt_Mult (Big (Double_Uns (D (4))), Big_2xxSingle,
Big_2xx (Scale), Big_2xxDouble);
Lemma_Shift_Left (Double_Uns (D (4)), Scale);
Lemma_Hi_Lo (D (1) & D (2), D (1), D (2));
pragma Assert (Mult * Big_2xx (Scale) =
Big_2xxSingle * Big_2xxSingle * Big_D12
+ Big_2xxSingle * Big_D3
+ Big_D4);
pragma Assert (Big_2xx (Scale) > 0);
declare
Two_xx_Scale : constant Double_Uns := Double_Uns'(2 ** Scale);
D12 : constant Double_Uns := D (1) & D (2);
begin
pragma Assert (Big_2xx (Scale) * Big (D12) < Big_2xxDouble);
pragma Assert (Big (Two_xx_Scale) * Big (D12) < Big_2xxDouble);
Lemma_Mult_Commutation (Two_xx_Scale, D12, T1);
end;
pragma Assert (Big_D12 = Big_T1);
pragma Assert (Big_2xxSingle * Big_2xxSingle * Big_D12
= Big_2xxSingle * Big_2xxSingle * Big_T1);
Lemma_Mult_Commutation (2 ** Scale, Double_Uns (D (3)), T2);
pragma Assert (Big_D3 = Big_T2);
pragma Assert (Big_2xxSingle * Big_D3 = Big_2xxSingle * Big_T2);
Lemma_Mult_Commutation (2 ** Scale, Double_Uns (D (4)), T3);
pragma Assert
(Is_Scaled_Mult_Decomposition (0, Big_T1, Big_T2, Big_T3));
Lemma_Hi_Lo (T1, Hi (T1), Lo (T1));
Lemma_Hi_Lo (T2, Hi (T2), Lo (T2));
Lemma_Hi_Lo (T3, Hi (T3), Lo (T3));
Lemma_Mult_Distribution (Big_2xxSingle * Big_2xxSingle,
Big_2xxSingle * Big (Double_Uns (Hi (T1))),
Big (Double_Uns (Lo (T1))));
Lemma_Mult_Distribution (Big_2xxSingle,
Big_2xxSingle * Big (Double_Uns (Hi (T2))),
Big (Double_Uns (Lo (T2))));
Lemma_Mult_Distribution (Big_2xxSingle * Big_2xxSingle,
Big (Double_Uns (Lo (T1))),
Big (Double_Uns (Hi (T2))));
Lemma_Mult_Distribution (Big_2xxSingle,
Big (Double_Uns (Lo (T2))),
Big (Double_Uns (Hi (T3))));
Lemma_Mult_Distribution (Big_2xxSingle * Big_2xxSingle,
Big (Double_Uns (Lo (T1))),
Big (Double_Uns (Hi (T2))));
pragma Assert (Double_Uns (Lo (T1) or Hi (T2)) =
Double_Uns (Lo (T1)) + Double_Uns (Hi (T2)));
pragma Assert (Double_Uns (Lo (T2) or Hi (T3)) =
Double_Uns (Lo (T2)) + Double_Uns (Hi (T3)));
Lemma_Add_Commutation (Double_Uns (Lo (T1)), Hi (T2));
Lemma_Add_Commutation (Double_Uns (Lo (T2)), Hi (T3));
end Prove_Dividend_Scaling;
--------------------------
-- Prove_Multiplication --
--------------------------
procedure Prove_Multiplication (Q : Single_Uns) is
begin
Lemma_Hi_Lo (Zu, Hi (Zu), Lo (Zu));
Lemma_Hi_Lo (T1, Hi (T1), S3);
Lemma_Hi_Lo (T2, Hi (T2), Lo (T2));
Lemma_Hi_Lo (T3, Hi (T3), S2);
Lemma_Mult_Commutation (Double_Uns (Q), Double_Uns (Lo (Zu)), T1);
Lemma_Mult_Commutation (Double_Uns (Q), Double_Uns (Hi (Zu)), T2);
Lemma_Mult_Distribution (Big (Double_Uns (Q)),
Big_2xxSingle * Big (Double_Uns (Hi (Zu))),
Big (Double_Uns (Lo (Zu))));
Lemma_Substitution
(Big (Double_Uns (Q)) * Big (Zu),
Big (Double_Uns (Q)),
Big (Zu),
Big_2xxSingle * Big (Double_Uns (Hi (Zu)))
+ Big (Double_Uns (Lo (Zu))),
Big_0);
pragma Assert (Big (Double_Uns (Q)) * Big (Zu) =
Big_2xxSingle * Big_2xxSingle * Big (Double_Uns (Hi (T2)))
+ Big_2xxSingle * Big (Double_Uns (Lo (T2)))
+ Big_2xxSingle * Big (Double_Uns (Hi (T1)))
+ Big (Double_Uns (S3)));
Lemma_Add_Commutation (Double_Uns (Lo (T2)), Hi (T1));
pragma Assert
(By (Big (Double_Uns (Q)) * Big (Zu) =
Big_2xxSingle * Big_2xxSingle * Big (Double_Uns (Hi (T2)))
+ Big_2xxSingle * Big (T3)
+ Big (Double_Uns (S3)),
Big_2xxSingle * Big (Double_Uns (Lo (T2)))
+ Big_2xxSingle * Big (Double_Uns (Hi (T1)))
= Big_2xxSingle * Big (T3)));
pragma Assert (Double_Uns (Hi (T3)) + Hi (T2) = Double_Uns (S1));
Lemma_Add_Commutation (Double_Uns (Hi (T3)), Hi (T2));
pragma Assert
(Big (Double_Uns (Hi (T3))) + Big (Double_Uns (Hi (T2))) =
Big (Double_Uns (S1)));
Lemma_Mult_Distribution (Big_2xxSingle * Big_2xxSingle,
Big (Double_Uns (Hi (T3))),
Big (Double_Uns (Hi (T2))));
end Prove_Multiplication;
-------------------------------------
-- Prove_Mult_Decomposition_Split3 --
-------------------------------------
procedure Prove_Mult_Decomposition_Split3
(D1, D2, D3, D3_Hi, D3_Lo, D4 : Big_Integer)
is null;
-----------------------------
-- Prove_Negative_Dividend --
-----------------------------
procedure Prove_Negative_Dividend is
begin
Lemma_Mult_Non_Positive (Big (X), Big (Y));
end Prove_Negative_Dividend;
--------------------
-- Prove_Overflow --
--------------------
procedure Prove_Overflow is
begin
Lemma_Div_Ge (Mult, Big_2xxDouble, Big (Double_Uns'(abs Z)));
Lemma_Abs_Commutation (Z);
Lemma_Abs_Div_Commutation (Big (X) * Big (Y), Big (Z));
end Prove_Overflow;
-----------------------------
-- Prove_Positive_Dividend --
-----------------------------
procedure Prove_Positive_Dividend is
begin
Lemma_Mult_Non_Negative (Big (X), Big (Y));
end Prove_Positive_Dividend;
---------------------------------
-- Prove_Qd_Calculation_Part_1 --
---------------------------------
procedure Prove_Qd_Calculation_Part_1 (J : Integer) is
begin
Lemma_Hi_Lo (D (J) & D (J + 1), D (J), D (J + 1));
Lemma_Lt_Commutation (Double_Uns (D (J)), Double_Uns (Zhi));
Lemma_Gt_Mult (Big (Double_Uns (Zhi)),
Big (Double_Uns (D (J))) + 1,
Big_2xxSingle, Big (D (J) & D (J + 1)));
Lemma_Div_Lt
(Big (D (J) & D (J + 1)), Big_2xxSingle, Big (Double_Uns (Zhi)));
Lemma_Div_Commutation (D (J) & D (J + 1), Double_Uns (Zhi));
Lemma_Lo_Is_Ident ((D (J) & D (J + 1)) / Zhi);
Lemma_Div_Definition (D (J) & D (J + 1), Zhi, Double_Uns (Qd (J)),
(D (J) & D (J + 1)) rem Zhi);
Lemma_Lt_Commutation
((D (J) & D (J + 1)) rem Zhi, Double_Uns (Zhi));
Lemma_Gt_Mult
((Big (Double_Uns (Qd (J))) + 1) * Big (Double_Uns (Zhi)),
Big (D (J) & D (J + 1)) + 1, Big_2xxSingle,
Big3 (D (J), D (J + 1), D (J + 2)));
Lemma_Hi_Lo (Zu, Zhi, Lo (Zu));
Lemma_Gt_Mult (Big (Zu), Big_2xxSingle * Big (Double_Uns (Zhi)),
Big (Double_Uns (Qd (J))) + 1,
Big3 (D (J), D (J + 1), D (J + 2)));
Lemma_Div_Lt (Big3 (D (J), D (J + 1), D (J + 2)),
Big (Double_Uns (Qd (J))) + 1, Big (Zu));
end Prove_Qd_Calculation_Part_1;
---------------------
-- Prove_Q_Too_Big --
---------------------
procedure Prove_Q_Too_Big is
begin
pragma Assert (Big_Q = Big_2xxDouble or Big_Q = -Big_2xxDouble);
Lemma_Not_In_Range_Big2xx64;
end Prove_Q_Too_Big;
---------------------
-- Prove_Rescaling --
---------------------
procedure Prove_Rescaling is
begin
Lemma_Div_Lt (Big (Ru), Big (Double_Uns'(abs Z)), Big_2xx (Scale));
Lemma_Div_Eq (Mult, Big (Double_Uns'(abs Z)) * Big (Qu),
Big_2xx (Scale), Big (Ru));
Lemma_Rev_Div_Definition (Mult, Big (Double_Uns'(abs Z)),
Big (Qu), Big (Ru) / Big_2xx (Scale));
Lemma_Abs_Div_Commutation (Big (X) * Big (Y), Big (Z));
Lemma_Abs_Rem_Commutation (Big (X) * Big (Y), Big (Z));
Lemma_Abs_Commutation (Z);
Lemma_Shift_Right (Ru, Scale);
end Prove_Rescaling;
-------------------------
-- Prove_Rounding_Case --
-------------------------
procedure Prove_Rounding_Case is
begin
if Same_Sign (Big (X) * Big (Y), Big (Z)) then
null;
end if;
end Prove_Rounding_Case;
-----------------------------------------------
-- Prove_Scaled_Mult_Decomposition_Regroup24 --
-----------------------------------------------
procedure Prove_Scaled_Mult_Decomposition_Regroup24
(D1, D2, D3, D4 : Big_Integer)
is null;
----------------------------------------------
-- Prove_Scaled_Mult_Decomposition_Regroup3 --
----------------------------------------------
procedure Prove_Scaled_Mult_Decomposition_Regroup3
(D1, D2, D3, D4 : Single_Uns)
is null;
------------------
-- Prove_Sign_R --
------------------
procedure Prove_Sign_R is
begin
pragma Assert (In_Double_Int_Range (Big (Z)));
end Prove_Sign_R;
-----------------
-- Prove_Signs --
-----------------
procedure Prove_Signs is null;
-----------------
-- Prove_Z_Low --
-----------------
procedure Prove_Z_Low is
begin
Lemma_Hi_Lo (T1, D (2), D (3));
Lemma_Add_Commutation (Double_Uns (D (2)), 1);
pragma Assert
(Big (Double_Uns (D (2))) + 1 <= Big (Double_Uns (Zlo)));
Lemma_Div_Definition (T1, Zlo, T1 / Zlo, T1 rem Zlo);
pragma Assert (Double_Uns (Lo (T1 rem Zlo)) = T1 rem Zlo);
Lemma_Hi_Lo (T2, Lo (T1 rem Zlo), D (4));
pragma Assert (T1 rem Zlo < Double_Uns (Zlo));
pragma Assert (T1 rem Zlo + Double_Uns'(1) <= Double_Uns (Zlo));
Lemma_Ge_Commutation (Double_Uns (Zlo), T1 rem Zlo + Double_Uns'(1));
Lemma_Add_Commutation (T1 rem Zlo, 1);
pragma Assert (Big (T1 rem Zlo) + 1 <= Big (Double_Uns (Zlo)));
Lemma_Div_Definition (T2, Zlo, T2 / Zlo, Ru);
pragma Assert
(Mult = Big (Double_Uns (Zlo)) *
(Big_2xxSingle * Big (T1 / Zlo) + Big (T2 / Zlo)) + Big (Ru));
pragma Assert (Big_2xxSingle * Big (Double_Uns (D (2)))
+ Big (Double_Uns (D (3)))
< Big_2xxSingle * (Big (Double_Uns (D (2))) + 1));
Lemma_Div_Lt (Big (T1), Big_2xxSingle, Big (Double_Uns (Zlo)));
Lemma_Div_Commutation (T1, Double_Uns (Zlo));
Lemma_Lo_Is_Ident (T1 / Zlo);
pragma Assert
(Big (T2) <= Big_2xxSingle * (Big (Double_Uns (Zlo)) - 1)
+ Big (Double_Uns (D (4))));
Lemma_Div_Lt (Big (T2), Big_2xxSingle, Big (Double_Uns (Zlo)));
Lemma_Div_Commutation (T2, Double_Uns (Zlo));
Lemma_Lo_Is_Ident (T2 / Zlo);
Lemma_Hi_Lo (Qu, Lo (T1 / Zlo), Lo (T2 / Zlo));
Lemma_Substitution (Mult, Big (Double_Uns (Zlo)),
Big_2xxSingle * Big (T1 / Zlo) + Big (T2 / Zlo),
Big (Qu), Big (Ru));
Lemma_Lt_Commutation (Ru, Double_Uns (Zlo));
Lemma_Rev_Div_Definition
(Mult, Big (Double_Uns (Zlo)), Big (Qu), Big (Ru));
pragma Assert (Double_Uns (Zlo) = abs Z);
Lemma_Abs_Commutation (Z);
Lemma_Abs_Div_Commutation (Big (X) * Big (Y), Big (Z));
Lemma_Abs_Rem_Commutation (Big (X) * Big (Y), Big (Z));
end Prove_Z_Low;
-- Start of processing for Scaled_Divide
begin
if Z = 0 then
Raise_Error;
end if;
Quot := Big (X) * Big (Y) / Big (Z);
Big_R := Big (X) * Big (Y) rem Big (Z);
if Round then
Big_Q := Round_Quotient (Big (X) * Big (Y), Big (Z), Quot, Big_R);
else
Big_Q := Quot;
end if;
-- First do the multiplication, giving the four digit dividend
Lemma_Abs_Mult_Commutation (Big (X), Big (Y));
Lemma_Abs_Commutation (X);
Lemma_Abs_Commutation (Y);
Lemma_Mult_Decomposition (Mult, Xu, Yu, Xhi, Xlo, Yhi, Ylo);
T1 := Xlo * Ylo;
D (4) := Lo (T1);
D (3) := Hi (T1);
Lemma_Hi_Lo (T1, D (3), D (4));
if Yhi /= 0 then
T1 := Xlo * Yhi;
Lemma_Hi_Lo (T1, Hi (T1), Lo (T1));
T2 := D (3) + Lo (T1);
Lemma_Add_Commutation (Double_Uns (Lo (T1)), D (3));
Lemma_Mult_Distribution (Big_2xxSingle,
Big (Double_Uns (D (3))),
Big (Double_Uns (Lo (T1))));
Lemma_Hi_Lo (T2, Hi (T2), Lo (T2));
D (3) := Lo (T2);
D (2) := Hi (T1) + Hi (T2);
pragma Assert (Double_Uns (Hi (T1)) + Hi (T2) = Double_Uns (D (2)));
Lemma_Add_Commutation (Double_Uns (Hi (T1)), Hi (T2));
pragma Assert
(Big (Double_Uns (Hi (T1))) + Big (Double_Uns (Hi (T2))) =
Big (Double_Uns (D (2))));
if Xhi /= 0 then
T1 := Xhi * Ylo;
Lemma_Hi_Lo (T1, Hi (T1), Lo (T1));
T2 := D (3) + Lo (T1);
Lemma_Add_Commutation (Double_Uns (D (3)), Lo (T1));
Lemma_Hi_Lo (T2, Hi (T2), Lo (T2));
Prove_Mult_Decomposition_Split3
(D1 => 0,
D2 => Big (Double_Uns'(Xhi * Yhi)) + Big (Double_Uns (D (2)))
+ Big (Double_Uns (Hi (T1))),
D3 => Big (T2),
D3_Hi => Big (Double_Uns (Hi (T2))),
D3_Lo => Big (Double_Uns (Lo (T2))),
D4 => Big (Double_Uns (D (4))));
D (3) := Lo (T2);
T3 := D (2) + Hi (T1);
Lemma_Add_Commutation (Double_Uns (D (2)), Hi (T1));
Lemma_Add_Commutation (T3, Hi (T2));
T3 := T3 + Hi (T2);
T2 := Double_Uns'(Xhi * Yhi);
Lemma_Hi_Lo (T2, Hi (T2), Lo (T2));
T1 := T3 + Lo (T2);
D (2) := Lo (T1);
Lemma_Add_Commutation (T3, Lo (T2));
Lemma_Hi_Lo (T1, Hi (T1), Lo (T1));
D (1) := Hi (T2) + Hi (T1);
pragma Assert
(Double_Uns (Hi (T2)) + Hi (T1) = Double_Uns (D (1)));
Lemma_Add_Commutation (Double_Uns (Hi (T2)), Hi (T1));
pragma Assert
(Big (Double_Uns (Hi (T2))) + Big (Double_Uns (Hi (T1))) =
Big (Double_Uns (D (1))));
pragma Assert
(Is_Mult_Decomposition (D1 => Big (Double_Uns (D (1))),
D2 => Big (Double_Uns (D (2))),
D3 => Big (Double_Uns (D (3))),
D4 => Big (Double_Uns (D (4)))));
else
D (1) := 0;
pragma Assert
(Is_Mult_Decomposition (D1 => Big (Double_Uns (D (1))),
D2 => Big (Double_Uns (D (2))),
D3 => Big (Double_Uns (D (3))),
D4 => Big (Double_Uns (D (4)))));
end if;
else
if Xhi /= 0 then
T1 := Xhi * Ylo;
Lemma_Hi_Lo (T1, Hi (T1), Lo (T1));
pragma Assert
(Is_Mult_Decomposition
(D1 => 0,
D2 => Big (Double_Uns (Hi (T1))),
D3 => Big (Double_Uns (Lo (T1))) + Big (Double_Uns (D (3))),
D4 => Big (Double_Uns (D (4)))));
T2 := D (3) + Lo (T1);
Lemma_Add_Commutation (Double_Uns (Lo (T1)), D (3));
pragma Assert
(Is_Mult_Decomposition
(D1 => 0,
D2 => Big (Double_Uns (Hi (T1))),
D3 => Big (T2),
D4 => Big (Double_Uns (D (4)))));
Lemma_Hi_Lo (T2, Hi (T2), Lo (T2));
D (3) := Lo (T2);
D (2) := Hi (T1) + Hi (T2);
pragma Assert
(Double_Uns (Hi (T1)) + Hi (T2) = Double_Uns (D (2)));
Lemma_Add_Commutation (Double_Uns (Hi (T1)), Hi (T2));
pragma Assert
(Big (Double_Uns (Hi (T1))) + Big (Double_Uns (Hi (T2))) =
Big (Double_Uns (D (2))));
pragma Assert
(Is_Mult_Decomposition
(D1 => 0,
D2 => Big (Double_Uns (D (2))),
D3 => Big (Double_Uns (D (3))),
D4 => Big (Double_Uns (D (4)))));
else
D (2) := 0;
pragma Assert
(Is_Mult_Decomposition
(D1 => 0,
D2 => Big (Double_Uns (D (2))),
D3 => Big (Double_Uns (D (3))),
D4 => Big (Double_Uns (D (4)))));
end if;
D (1) := 0;
end if;
pragma Assert_And_Cut
-- Restate the precondition
(Z /= 0
and then In_Double_Int_Range
(if Round then Round_Quotient (Big (X) * Big (Y), Big (Z),
Big (X) * Big (Y) / Big (Z),
Big (X) * Big (Y) rem Big (Z))
else Big (X) * Big (Y) / Big (Z))
-- Restate the value of local variables
and then Zu = abs Z
and then Zhi = Hi (Zu)
and then Zlo = Lo (Zu)
and then Mult = abs (Big (X) * Big (Y))
and then Quot = Big (X) * Big (Y) / Big (Z)
and then Big_R = Big (X) * Big (Y) rem Big (Z)
and then
(if Round then
Big_Q = Round_Quotient (Big (X) * Big (Y), Big (Z), Quot, Big_R)
else
Big_Q = Quot)
-- Summarize first part of the procedure
and then D'Initialized
and then Is_Mult_Decomposition (D1 => Big (Double_Uns (D (1))),
D2 => Big (Double_Uns (D (2))),
D3 => Big (Double_Uns (D (3))),
D4 => Big (Double_Uns (D (4)))));
-- Now it is time for the dreaded multiple precision division. First an
-- easy case, check for the simple case of a one digit divisor.
if Zhi = 0 then
if D (1) /= 0 or else D (2) >= Zlo then
if D (1) > 0 then
Lemma_Double_Big_2xxSingle;
Lemma_Mult_Positive (Big_2xxDouble, Big_2xxSingle);
Lemma_Ge_Mult (Big (Double_Uns (D (1))),
1,
Big_2xxDouble * Big_2xxSingle,
Big_2xxDouble * Big_2xxSingle);
Lemma_Mult_Positive (Big_2xxSingle, Big (Double_Uns (D (1))));
Lemma_Ge_Mult (Big_2xxSingle * Big_2xxSingle, Big_2xxDouble,
Big_2xxSingle * Big (Double_Uns (D (1))),
Big_2xxDouble * Big_2xxSingle);
pragma Assert (Mult >= Big_2xxDouble * Big_2xxSingle);
Lemma_Ge_Commutation (2 ** Single_Size, Zu);
Lemma_Ge_Mult (Big_2xxSingle, Big (Zu), Big_2xxDouble,
Big_2xxDouble * Big (Zu));
pragma Assert (Mult >= Big_2xxDouble * Big (Zu));
else
Lemma_Ge_Commutation (Double_Uns (D (2)), Zu);
pragma Assert (Mult >= Big_2xxDouble * Big (Zu));
end if;
Prove_Overflow;
Raise_Error;
-- Here we are dividing at most three digits by one digit
else
T1 := D (2) & D (3);
T2 := Lo (T1 rem Zlo) & D (4);
Qu := Lo (T1 / Zlo) & Lo (T2 / Zlo);
Ru := T2 rem Zlo;
Prove_Z_Low;
end if;
-- If divisor is double digit and dividend is too large, raise error
elsif (D (1) & D (2)) >= Zu then
Lemma_Hi_Lo (D (1) & D (2), D (1), D (2));
Lemma_Ge_Commutation (D (1) & D (2), Zu);
pragma Assert
(Mult >= Big_2xxSingle * Big_2xxSingle * Big (D (1) & D (2)));
Prove_Overflow;
Raise_Error;
-- This is the complex case where we definitely have a double digit
-- divisor and a dividend of at least three digits. We use the classical
-- multiple-precision division algorithm (see section (4.3.1) of Knuth's
-- "The Art of Computer Programming", Vol. 2 for a description
-- (algorithm D).
else
-- First normalize the divisor so that it has the leading bit on.
-- We do this by finding the appropriate left shift amount.
Lemma_Hi_Lo (D (1) & D (2), D (1), D (2));
Lemma_Lt_Commutation (D (1) & D (2), Zu);
pragma Assert
(Mult < Big_2xxDouble * Big (Zu));
Shift := Single_Size;
Mask := Single_Uns'Last;
Scale := 0;
Inter := 0;
pragma Assert (Big_2xx (Scale) = 1);
while Shift > 1 loop
pragma Loop_Invariant (Scale <= Single_Size - Shift);
pragma Loop_Invariant ((Hi (Zu) and Mask) /= 0);
pragma Loop_Invariant
(Mask = Shift_Left (Single_Uns'Last, Single_Size - Shift));
pragma Loop_Invariant (Zu = Shift_Left (abs Z, Scale));
pragma Loop_Invariant (Big (Zu) =
Big (Double_Uns'(abs Z)) * Big_2xx (Scale));
pragma Loop_Invariant (Inter in 0 .. Log_Single_Size - 1);
pragma Loop_Invariant (Shift = 2 ** (Log_Single_Size - Inter));
pragma Loop_Invariant (Shift mod 2 = 0);
declare
-- Local ghost variables
Shift_Prev : constant Natural := Shift with Ghost;
Mask_Prev : constant Single_Uns := Mask with Ghost;
Zu_Prev : constant Double_Uns := Zu with Ghost;
-- Local lemmas
procedure Prove_Power
with
Ghost,
Pre => Inter in 0 .. Log_Single_Size - 1
and then Shift = 2 ** (Log_Single_Size - Inter),
Post => Shift / 2 = 2 ** (Log_Single_Size - (Inter + 1))
and then (Shift = 2 or (Shift / 2) mod 2 = 0);
procedure Prove_Prev_And_Mask (Prev, Mask : Single_Uns)
with
Ghost,
Pre => Prev /= 0
and then (Prev and Mask) = 0,
Post => (Prev and not Mask) /= 0;
procedure Prove_Shift_Progress
with
Ghost,
Pre => Shift <= Single_Size / 2
and then Shift_Prev = 2 * Shift
and then Mask_Prev =
Shift_Left (Single_Uns'Last, Single_Size - Shift_Prev)
and then Mask =
Shift_Left (Single_Uns'Last,
Single_Size - Shift_Prev + Shift),
Post => Mask_Prev =
Shift_Left (Single_Uns'Last, Single_Size - 2 * Shift)
and then Mask =
Shift_Left (Single_Uns'Last, Single_Size - Shift);
procedure Prove_Shifting
with
Ghost,
Pre => Shift <= Single_Size / 2
and then Zu = Shift_Left (Zu_Prev, Shift)
and then Mask_Prev =
Shift_Left (Single_Uns'Last, Single_Size - 2 * Shift)
and then Mask =
Shift_Left (Single_Uns'Last, Single_Size - Shift)
and then (Hi (Zu_Prev) and Mask_Prev and not Mask) /= 0,
Post => (Hi (Zu) and Mask) /= 0;
-----------------------------
-- Local lemma null bodies --
-----------------------------
procedure Prove_Prev_And_Mask (Prev, Mask : Single_Uns) is null;
procedure Prove_Power is null;
procedure Prove_Shifting is null;
procedure Prove_Shift_Progress is null;
begin
pragma Assert (Mask = Shift_Left (Single_Uns'Last,
Single_Size - Shift_Prev));
Prove_Power;
Shift := Shift / 2;
Inter := Inter + 1;
pragma Assert (Shift_Prev = 2 * Shift);
Mask := Shift_Left (Mask, Shift);
Lemma_Double_Shift
(Single_Uns'Last, Single_Size - Shift_Prev, Shift);
Prove_Shift_Progress;
if (Hi (Zu) and Mask) = 0 then
Zu := Shift_Left (Zu, Shift);
pragma Assert ((Hi (Zu_Prev) and Mask_Prev) /= 0);
pragma Assert
(By ((Hi (Zu_Prev) and Mask_Prev and Mask) = 0,
(Hi (Zu_Prev) and Mask) = 0
and then
(Hi (Zu_Prev) and Mask_Prev and Mask)
= (Hi (Zu_Prev) and Mask and Mask_Prev)
));
Prove_Prev_And_Mask (Hi (Zu_Prev) and Mask_Prev, Mask);
Prove_Shifting;
pragma Assert (Big (Zu_Prev) =
Big (Double_Uns'(abs Z)) * Big_2xx (Scale));
Lemma_Shift_Without_Drop (Zu_Prev, Zu, Mask, Shift);
Lemma_Substitution
(Big (Zu), Big_2xx (Shift),
Big (Zu_Prev), Big (Double_Uns'(abs Z)) * Big_2xx (Scale),
0);
Lemma_Powers_Of_2 (Shift, Scale);
Lemma_Substitution
(Big (Zu), Big (Double_Uns'(abs Z)),
Big_2xx (Shift) * Big_2xx (Scale),
Big_2xx (Shift + Scale), 0);
Lemma_Double_Shift (abs Z, Scale, Shift);
Scale := Scale + Shift;
pragma Assert (Zu = Shift_Left (abs Z, Scale));
pragma Assert
(Big (Zu) = Big (Double_Uns'(abs Z)) * Big_2xx (Scale));
end if;
pragma Assert
(Big (Zu) = Big (Double_Uns'(abs Z)) * Big_2xx (Scale));
end;
end loop;
Zhi := Hi (Zu);
Zlo := Lo (Zu);
pragma Assert (Shift = 1);
pragma Assert (Mask = Shift_Left (Single_Uns'Last, Single_Size - 1));
pragma Assert ((Zhi and Mask) /= 0);
pragma Assert (Zhi >= 2 ** (Single_Size - 1));
pragma Assert (Big (Zu) = Big (Double_Uns'(abs Z)) * Big_2xx (Scale));
-- We have Hi (Zu) /= 0 before normalization. The sequence of
-- Shift_Left operations results in the leading bit of Zu being 1 by
-- moving the leftmost 1-bit in Zu to leading position, thus
-- Zhi = Hi (Zu) >= 2 ** (Single_Size - 1) here.
-- Note that when we scale up the dividend, it still fits in four
-- digits, since we already tested for overflow, and scaling does
-- not change the invariant that (D (1) & D (2)) < Zu.
Lemma_Lt_Commutation (D (1) & D (2), abs Z);
Lemma_Big_Of_Double_Uns (Zu);
Lemma_Lt_Mult (Big (D (1) & D (2)),
Big (Double_Uns'(abs Z)), Big_2xx (Scale),
Big_2xxDouble);
T1 := Shift_Left (D (1) & D (2), Scale);
T2 := Shift_Left (Double_Uns (D (3)), Scale);
T3 := Shift_Left (Double_Uns (D (4)), Scale);
Prove_Dividend_Scaling;
D (1) := Hi (T1);
D (2) := Lo (T1) or Hi (T2);
D (3) := Lo (T2) or Hi (T3);
D (4) := Lo (T3);
pragma Assert (Big (Double_Uns (Hi (T1))) = Big (Double_Uns (D (1))));
pragma Assert
(Big_2xxSingle * Big_2xxSingle * Big_2xxSingle
* Big (Double_Uns (Hi (T1)))
= Big_2xxSingle * Big_2xxSingle * Big_2xxSingle
* Big (Double_Uns (D (1))));
Lemma_Substitution (Big_2xxDouble * Big (Zu), Big_2xxDouble, Big (Zu),
Big (Double_Uns'(abs Z)) * Big_2xx (Scale), 0);
Lemma_Lt_Mult (Mult, Big_2xxDouble * Big (Double_Uns'(abs Z)),
Big_2xx (Scale), Big_2xxDouble * Big (Zu));
pragma Assert (Mult >= Big_0);
pragma Assert (Big_2xx (Scale) >= Big_0);
Lemma_Mult_Non_Negative (Mult, Big_2xx (Scale));
Lemma_Div_Lt (Mult * Big_2xx (Scale), Big (Zu), Big_2xxDouble);
Lemma_Concat_Definition (D (1), D (2));
Lemma_Double_Big_2xxSingle;
Prove_Scaled_Mult_Decomposition_Regroup24
(Big (Double_Uns (D (1))),
Big (Double_Uns (D (2))),
Big (Double_Uns (D (3))),
Big (Double_Uns (D (4))));
Lemma_Substitution
(Mult * Big_2xx (Scale), Big_2xxSingle * Big_2xxSingle,
Big_2xxSingle * Big (Double_Uns (D (1)))
+ Big (Double_Uns (D (2))),
Big (D (1) & D (2)),
Big_2xxSingle * Big (Double_Uns (D (3)))
+ Big (Double_Uns (D (4))));
pragma Assert
(Big (D (1) & D (2)) < Big (Zu));
-- Loop to compute quotient digits, runs twice for Qd (1) and Qd (2)
declare
-- Local lemmas
procedure Prove_First_Iteration (X1, X2, X3, X4 : Single_Uns)
with
Ghost,
Pre => X1 = 0,
Post =>
Big_2xxSingle * Big3 (X1, X2, X3) + Big (Double_Uns (X4))
= Big3 (X2, X3, X4);
---------------------------
-- Prove_First_Iteration --
---------------------------
procedure Prove_First_Iteration (X1, X2, X3, X4 : Single_Uns) is
null;
-- Local ghost variables
Qd1 : Single_Uns := 0 with Ghost;
D234 : Big_Integer with Ghost;
D123 : constant Big_Integer := Big3 (D (1), D (2), D (3))
with Ghost;
D4 : constant Big_Integer := Big (Double_Uns (D (4)))
with Ghost;
begin
Prove_Scaled_Mult_Decomposition_Regroup3
(D (1), D (2), D (3), D (4));
pragma Assert
(By (Mult * Big_2xx (Scale) = Big_2xxSingle * D123 + D4,
Is_Scaled_Mult_Decomposition (0, 0, D123, D4)));
for J in 1 .. 2 loop
Lemma_Hi_Lo (D (J) & D (J + 1), D (J), D (J + 1));
pragma Assert (Big (D (J) & D (J + 1)) < Big (Zu));
-- Compute next quotient digit. We have to divide three digits
-- by two digits. We estimate the quotient by dividing the
-- leading two digits by the leading digit. Given the scaling
-- we did above which ensured the first bit of the divisor is
-- set, this gives an estimate of the quotient that is at most
-- two too high.
if D (J) > Zhi then
Lemma_Lt_Commutation (Zu, D (J) & D (J + 1));
pragma Assert (False);
elsif D (J) = Zhi then
Qd (J) := Single_Uns'Last;
Lemma_Concat_Definition (D (J), D (J + 1));
Lemma_Big_Of_Double_Uns_Of_Single_Uns (D (J + 2));
pragma Assert (Big_2xxSingle > Big (Double_Uns (D (J + 2))));
pragma Assert (Big3 (D (J), D (J + 1), 0) + Big_2xxSingle
> Big3 (D (J), D (J + 1), D (J + 2)));
pragma Assert (Big (Double_Uns'(0)) = 0);
pragma Assert (Big (D (J) & D (J + 1)) * Big_2xxSingle =
Big_2xxSingle * (Big_2xxSingle * Big (Double_Uns (D (J)))
+ Big (Double_Uns (D (J + 1)))));
pragma Assert (Big (D (J) & D (J + 1)) * Big_2xxSingle =
Big_2xxSingle * Big_2xxSingle * Big (Double_Uns (D (J)))
+ Big_2xxSingle * Big (Double_Uns (D (J + 1))));
pragma Assert (Big (D (J) & D (J + 1)) * Big_2xxSingle
= Big3 (D (J), D (J + 1), 0));
pragma Assert ((Big (D (J) & D (J + 1)) + 1) * Big_2xxSingle
= Big3 (D (J), D (J + 1), 0) + Big_2xxSingle);
Lemma_Gt_Mult (Big (Zu), Big (D (J) & D (J + 1)) + 1,
Big_2xxSingle,
Big3 (D (J), D (J + 1), D (J + 2)));
Lemma_Div_Lt
(Big3 (D (J), D (J + 1), D (J + 2)),
Big_2xxSingle, Big (Zu));
pragma Assert (Big (Double_Uns (Qd (J))) >=
Big3 (D (J), D (J + 1), D (J + 2)) / Big (Zu));
else
Qd (J) := Lo ((D (J) & D (J + 1)) / Zhi);
Prove_Qd_Calculation_Part_1 (J);
end if;
pragma Assert (for all K in 1 .. J => Qd (K)'Initialized);
Lemma_Gt_Mult
(Big (Double_Uns (Qd (J))),
Big3 (D (J), D (J + 1), D (J + 2)) / Big (Zu),
Big (Zu), Big3 (D (J), D (J + 1), D (J + 2)) - Big (Zu));
-- Compute amount to subtract
T1 := Qd (J) * Zlo;
T2 := Qd (J) * Zhi;
S3 := Lo (T1);
T3 := Hi (T1) + Lo (T2);
S2 := Lo (T3);
S1 := Hi (T3) + Hi (T2);
Prove_Multiplication (Qd (J));
-- Adjust quotient digit if it was too high
-- We use the version of the algorithm in the 2nd Edition
-- of "The Art of Computer Programming". This had a bug not
-- discovered till 1995, see Vol 2 errata:
-- http://www-cs-faculty.stanford.edu/~uno/err2-2e.ps.gz.
-- Under rare circumstances the expression in the test could
-- overflow. This version was further corrected in 2005, see
-- Vol 2 errata:
-- http://www-cs-faculty.stanford.edu/~uno/all2-pre.ps.gz.
-- This implementation is not impacted by these bugs, due
-- to the use of a word-size comparison done in function Le3
-- instead of a comparison on two-word integer quantities in
-- the original algorithm.
Lemma_Hi_Lo_3 (Zu, Zhi, Zlo);
while not Le3 (S1, S2, S3, D (J), D (J + 1), D (J + 2)) loop
pragma Loop_Invariant
(for all K in 1 .. J => Qd (K)'Initialized);
pragma Loop_Invariant (if J = 2 then Qd (1) = Qd1);
pragma Loop_Invariant
(Big3 (S1, S2, S3) = Big (Double_Uns (Qd (J))) * Big (Zu));
pragma Loop_Invariant
(Big3 (S1, S2, S3) > Big3 (D (J), D (J + 1), D (J + 2)));
pragma Assert (Big3 (S1, S2, S3) > 0);
if Qd (J) = 0 then
pragma Assert (Big3 (S1, S2, S3) = 0);
pragma Assert (False);
end if;
Lemma_Ge_Commutation (Double_Uns (Qd (J)), 1);
Lemma_Ge_Mult
(Big (Double_Uns (Qd (J))), 1, Big (Zu), Big (Zu));
Sub3 (S1, S2, S3, 0, Zhi, Zlo);
pragma Assert
(Big3 (S1, S2, S3) >
Big3 (D (J), D (J + 1), D (J + 2)) - Big (Zu));
Lemma_Subtract_Commutation (Double_Uns (Qd (J)), 1);
pragma Assert (Double_Uns (Qd (J)) - Double_Uns'(1)
= Double_Uns (Qd (J) - 1));
pragma Assert (Big (Double_Uns'(1)) = 1);
Lemma_Substitution (Big3 (S1, S2, S3), Big (Zu),
Big (Double_Uns (Qd (J))) - 1,
Big (Double_Uns (Qd (J) - 1)), 0);
declare
Prev : constant Single_Uns := Qd (J) - 1 with Ghost;
begin
Qd (J) := Qd (J) - 1;
pragma Assert (Qd (J) = Prev);
end;
pragma Assert
(Big3 (S1, S2, S3) = Big (Double_Uns (Qd (J))) * Big (Zu));
end loop;
-- Now subtract S1&S2&S3 from D1&D2&D3 ready for next step
pragma Assert (for all K in 1 .. J => Qd (K)'Initialized);
pragma Assert
(Big3 (S1, S2, S3) = Big (Double_Uns (Qd (J))) * Big (Zu));
pragma Assert (Big3 (S1, S2, S3) >
Big3 (D (J), D (J + 1), D (J + 2)) - Big (Zu));
Inline_Le3 (S1, S2, S3, D (J), D (J + 1), D (J + 2));
Sub3 (D (J), D (J + 1), D (J + 2), S1, S2, S3);
pragma Assert (Big3 (D (J), D (J + 1), D (J + 2)) < Big (Zu));
if D (J) > 0 then
Lemma_Double_Big_2xxSingle;
pragma Assert (Big3 (D (J), D (J + 1), D (J + 2)) =
Big_2xxSingle
* Big_2xxSingle * Big (Double_Uns (D (J)))
+ Big_2xxSingle * Big (Double_Uns (D (J + 1)))
+ Big (Double_Uns (D (J + 2))));
pragma Assert (Big_2xxSingle >= 0);
Lemma_Big_Of_Double_Uns_Of_Single_Uns (D (J + 1));
pragma Assert (Big (Double_Uns (D (J + 1))) >= 0);
Lemma_Mult_Non_Negative
(Big_2xxSingle, Big (Double_Uns (D (J + 1))));
pragma Assert
(Big3 (D (J), D (J + 1), D (J + 2)) >=
Big_2xxSingle * Big_2xxSingle
* Big (Double_Uns (D (J))));
Lemma_Ge_Commutation (Double_Uns (D (J)), Double_Uns'(1));
Lemma_Ge_Mult (Big (Double_Uns (D (J))),
Big (Double_Uns'(1)),
Big_2xxDouble,
Big (Double_Uns'(1)) * Big_2xxDouble);
pragma Assert
(Big_2xxDouble * Big (Double_Uns'(1)) = Big_2xxDouble);
pragma Assert
(Big3 (D (J), D (J + 1), D (J + 2)) >= Big_2xxDouble);
pragma Assert (False);
end if;
if J = 1 then
Qd1 := Qd (1);
D234 := Big3 (D (2), D (3), D (4));
pragma Assert (D4 = Big (Double_Uns (D (4))));
Lemma_Substitution
(Mult * Big_2xx (Scale), Big_2xxSingle, D123,
Big3 (D (1), D (2), D (3)) + Big3 (S1, S2, S3),
Big (Double_Uns (D (4))));
Prove_First_Iteration (D (1), D (2), D (3), D (4));
Lemma_Substitution (Mult * Big_2xx (Scale), Big_2xxSingle,
Big3 (S1, S2, S3),
Big (Double_Uns (Qd1)) * Big (Zu),
D234);
else
pragma Assert (Qd1 = Qd (1));
pragma Assert
(Mult * Big_2xx (Scale) =
Big_2xxSingle * Big (Double_Uns (Qd (1))) * Big (Zu)
+ Big (Double_Uns (Qd (2))) * Big (Zu)
+ Big_2xxSingle * Big (Double_Uns (D (3)))
+ Big (Double_Uns (D (4))));
end if;
end loop;
end;
-- The two quotient digits are now set, and the remainder of the
-- scaled division is in D3&D4. To get the remainder for the
-- original unscaled division, we rescale this dividend.
-- We rescale the divisor as well, to make the proper comparison
-- for rounding below.
pragma Assert (for all K in 1 .. 2 => Qd (K)'Initialized);
Qu := Qd (1) & Qd (2);
Ru := D (3) & D (4);
pragma Assert
(Mult * Big_2xx (Scale) =
Big_2xxSingle * Big (Double_Uns (Qd (1))) * Big (Zu)
+ Big (Double_Uns (Qd (2))) * Big (Zu)
+ Big_2xxSingle * Big (Double_Uns (D (3)))
+ Big (Double_Uns (D (4))));
Lemma_Hi_Lo (Qu, Qd (1), Qd (2));
Lemma_Hi_Lo (Ru, D (3), D (4));
Lemma_Substitution
(Mult * Big_2xx (Scale), Big (Zu),
Big_2xxSingle * Big (Double_Uns (Qd (1)))
+ Big (Double_Uns (Qd (2))),
Big (Qu), Big (Ru));
Prove_Rescaling;
Ru := Shift_Right (Ru, Scale);
Lemma_Shift_Right (Zu, Scale);
Zu := Shift_Right (Zu, Scale);
Lemma_Simplify (Big (Double_Uns'(abs Z)), Big_2xx (Scale));
end if;
pragma Assert (Big (Ru) = abs Big_R);
pragma Assert (Big (Qu) = abs Quot);
pragma Assert (Big (Zu) = Big (Double_Uns'(abs Z)));
-- Deal with rounding case
if Round then
Prove_Rounding_Case;
if Ru > (Zu - Double_Uns'(1)) / Double_Uns'(2) then
pragma Assert (abs Big_Q = Big (Qu) + 1);
-- Protect against wrapping around when rounding, by signaling
-- an overflow when the quotient is too large.
if Qu = Double_Uns'Last then
Prove_Q_Too_Big;
Raise_Error;
end if;
Lemma_Add_One (Qu);
Qu := Qu + Double_Uns'(1);
end if;
end if;
pragma Assert (Big (Qu) = abs Big_Q);
-- Set final signs (RM 4.5.5(27-30))
-- Case of dividend (X * Y) sign positive
if (X >= 0 and then Y >= 0) or else (X < 0 and then Y < 0) then
Prove_Positive_Dividend;
R := To_Pos_Int (Ru);
Q := (if Z > 0 then To_Pos_Int (Qu) else To_Neg_Int (Qu));
-- Case of dividend (X * Y) sign negative
else
Prove_Negative_Dividend;
R := To_Neg_Int (Ru);
Q := (if Z > 0 then To_Neg_Int (Qu) else To_Pos_Int (Qu));
end if;
Prove_Sign_R;
Prove_Signs;
end Scaled_Divide;
----------
-- Sub3 --
----------
procedure Sub3 (X1, X2, X3 : in out Single_Uns; Y1, Y2, Y3 : Single_Uns) is
-- Local ghost variables
XX1 : constant Single_Uns := X1 with Ghost;
XX2 : constant Single_Uns := X2 with Ghost;
XX3 : constant Single_Uns := X3 with Ghost;
-- Local lemmas
procedure Lemma_Add3_No_Carry (X1, X2, X3, Y1, Y2, Y3 : Single_Uns)
with
Ghost,
Pre => X1 <= Single_Uns'Last - Y1
and then X2 <= Single_Uns'Last - Y2
and then X3 <= Single_Uns'Last - Y3,
Post => Big3 (X1 + Y1, X2 + Y2, X3 + Y3)
= Big3 (X1, X2, X3) + Big3 (Y1, Y2, Y3);
procedure Lemma_Ge_Expand (X1, X2, X3, Y1, Y2, Y3 : Single_Uns)
with
Ghost,
Pre => Big3 (X1, X2, X3) >= Big3 (Y1, Y2, Y3),
Post => X1 > Y1
or else (X1 = Y1 and then X2 > Y2)
or else (X1 = Y1 and then X2 = Y2 and then X3 >= Y3);
procedure Lemma_Sub3_No_Carry (X1, X2, X3, Y1, Y2, Y3 : Single_Uns)
with
Ghost,
Pre => X1 >= Y1 and then X2 >= Y2 and then X3 >= Y3,
Post => Big3 (X1 - Y1, X2 - Y2, X3 - Y3)
= Big3 (X1, X2, X3) - Big3 (Y1, Y2, Y3);
procedure Lemma_Sub3_With_Carry2 (X1, X2, X3, Y2 : Single_Uns)
with
Ghost,
Pre => X2 < Y2,
Post => Big3 (X1, X2 - Y2, X3)
= Big3 (X1, X2, X3) + Big3 (Single_Uns'(1), 0, 0) - Big3 (0, Y2, 0);
procedure Lemma_Sub3_With_Carry3 (X1, X2, X3, Y3 : Single_Uns)
with
Ghost,
Pre => X3 < Y3,
Post => Big3 (X1, X2, X3 - Y3)
= Big3 (X1, X2, X3) + Big3 (Single_Uns'(0), 1, 0) - Big3 (0, 0, Y3);
-------------------------
-- Lemma_Add3_No_Carry --
-------------------------
procedure Lemma_Add3_No_Carry (X1, X2, X3, Y1, Y2, Y3 : Single_Uns) is
begin
Lemma_Add_Commutation (Double_Uns (X1), Y1);
Lemma_Add_Commutation (Double_Uns (X2), Y2);
Lemma_Add_Commutation (Double_Uns (X3), Y3);
end Lemma_Add3_No_Carry;
---------------------
-- Lemma_Ge_Expand --
---------------------
procedure Lemma_Ge_Expand (X1, X2, X3, Y1, Y2, Y3 : Single_Uns) is null;
-------------------------
-- Lemma_Sub3_No_Carry --
-------------------------
procedure Lemma_Sub3_No_Carry (X1, X2, X3, Y1, Y2, Y3 : Single_Uns) is
begin
Lemma_Subtract_Commutation (Double_Uns (X1), Double_Uns (Y1));
Lemma_Subtract_Commutation (Double_Uns (X2), Double_Uns (Y2));
Lemma_Subtract_Commutation (Double_Uns (X3), Double_Uns (Y3));
end Lemma_Sub3_No_Carry;
----------------------------
-- Lemma_Sub3_With_Carry2 --
----------------------------
procedure Lemma_Sub3_With_Carry2 (X1, X2, X3, Y2 : Single_Uns) is
pragma Unreferenced (X1, X3);
begin
Lemma_Add_Commutation
(Double_Uns'(2 ** Single_Size) - Double_Uns (Y2), X2);
Lemma_Subtract_Commutation
(Double_Uns'(2 ** Single_Size), Double_Uns (Y2));
end Lemma_Sub3_With_Carry2;
----------------------------
-- Lemma_Sub3_With_Carry3 --
----------------------------
procedure Lemma_Sub3_With_Carry3 (X1, X2, X3, Y3 : Single_Uns) is
pragma Unreferenced (X1, X2);
begin
Lemma_Add_Commutation
(Double_Uns'(2 ** Single_Size) - Double_Uns (Y3), X3);
Lemma_Subtract_Commutation
(Double_Uns'(2 ** Single_Size), Double_Uns (Y3));
end Lemma_Sub3_With_Carry3;
-- Start of processing for Sub3
begin
Lemma_Ge_Expand (X1, X2, X3, Y1, Y2, Y3);
if Y3 > X3 then
if X2 = 0 then
pragma Assert (X1 >= 1);
Lemma_Sub3_No_Carry (X1, X2, X3, 1, 0, 0);
X1 := X1 - 1;
pragma Assert
(Big3 (X1, X2, X3) =
Big3 (XX1, XX2, XX3) - Big3 (Single_Uns'(1), 0, 0));
pragma Assert
(Big3 (X1, X2, X3) = Big3 (XX1, XX2, XX3)
- Big3 (Single_Uns'(0), Single_Uns'Last, 0)
- Big3 (Single_Uns'(0), 1, 0));
Lemma_Add3_No_Carry (X1, X2, X3, 0, Single_Uns'Last, 0);
else
Lemma_Sub3_No_Carry (X1, X2, X3, 0, 1, 0);
end if;
X2 := X2 - 1;
pragma Assert
(Big3 (X1, X2, X3) =
Big3 (XX1, XX2, XX3) - Big3 (Single_Uns'(0), 1, 0));
Lemma_Sub3_With_Carry3 (X1, X2, X3, Y3);
else
Lemma_Sub3_No_Carry (X1, X2, X3, 0, 0, Y3);
end if;
X3 := X3 - Y3;
pragma Assert
(Big3 (X1, X2, X3) = Big3 (XX1, XX2, XX3) - Big3 (0, 0, Y3));
if Y2 > X2 then
pragma Assert (X1 >= 1);
Lemma_Sub3_No_Carry (X1, X2, X3, 1, 0, 0);
X1 := X1 - 1;
pragma Assert
(Big3 (X1, X2, X3) = Big3 (XX1, XX2, XX3)
- Big3 (0, 0, Y3) - Big3 (Single_Uns'(1), 0, 0));
Lemma_Sub3_With_Carry2 (X1, X2, X3, Y2);
else
Lemma_Sub3_No_Carry (X1, X2, X3, 0, Y2, 0);
end if;
X2 := X2 - Y2;
pragma Assert
(Big3 (X1, X2, X3) = Big3 (XX1, XX2, XX3) - Big3 (0, Y2, Y3));
pragma Assert (X1 >= Y1);
Lemma_Sub3_No_Carry (X1, Y2, X3, Y1, 0, 0);
X1 := X1 - Y1;
pragma Assert
(Big3 (X1, X2, X3) = Big3 (XX1, XX2, XX3)
- Big3 (0, Y2, Y3) - Big3 (Y1, 0, 0));
Lemma_Add3_No_Carry (0, Y2, Y3, Y1, 0, 0);
pragma Assert
(Big3 (X1, X2, X3) = Big3 (XX1, XX2, XX3) - Big3 (Y1, Y2, Y3));
end Sub3;
-------------------------------
-- Subtract_With_Ovflo_Check --
-------------------------------
function Subtract_With_Ovflo_Check (X, Y : Double_Int) return Double_Int is
R : constant Double_Int := To_Int (To_Uns (X) - To_Uns (Y));
-- Local lemmas
procedure Prove_Negative_X
with
Ghost,
Pre => X < 0 and then (Y <= 0 or else R < 0),
Post => R = X - Y;
procedure Prove_Non_Negative_X
with
Ghost,
Pre => X >= 0 and then (Y > 0 or else R >= 0),
Post => R = X - Y;
procedure Prove_Overflow_Case
with
Ghost,
Pre =>
(if X >= 0 then Y <= 0 and then R < 0
else Y > 0 and then R >= 0),
Post => not In_Double_Int_Range (Big (X) - Big (Y));
----------------------
-- Prove_Negative_X --
----------------------
procedure Prove_Negative_X is
begin
if X = Double_Int'First then
if Y = Double_Int'First or else Y > 0 then
null;
else
pragma Assert
(To_Uns (X) - To_Uns (Y) =
2 ** (Double_Size - 1) + Double_Uns (-Y));
end if;
elsif Y >= 0 or else Y = Double_Int'First then
null;
else
pragma Assert
(To_Uns (X) - To_Uns (Y) = -Double_Uns (-X) + Double_Uns (-Y));
end if;
end Prove_Negative_X;
--------------------------
-- Prove_Non_Negative_X --
--------------------------
procedure Prove_Non_Negative_X is
begin
if Y > 0 then
declare
Ru : constant Double_Uns := To_Uns (X) - To_Uns (Y);
begin
pragma Assert (Ru = Double_Uns (X) - Double_Uns (Y));
if Ru < 2 ** (Double_Size - 1) then -- R >= 0
pragma Assert (To_Uns (Y) <= To_Uns (X));
Lemma_Subtract_Double_Uns (X => Y, Y => X);
pragma Assert (Ru = Double_Uns (X - Y));
elsif Ru = 2 ** (Double_Size - 1) then
pragma Assert (Double_Uns (Y) < 2 ** (Double_Size - 1));
pragma Assert (False);
else
pragma Assert
(R = -Double_Int (-(Double_Uns (X) - Double_Uns (Y))));
pragma Assert
(R = -Double_Int (-Double_Uns (X) + Double_Uns (Y)));
pragma Assert
(R = -Double_Int (Double_Uns (Y) - Double_Uns (X)));
end if;
end;
elsif Y = Double_Int'First then
pragma Assert
(To_Uns (X) - To_Uns (Y) =
Double_Uns (X) - 2 ** (Double_Size - 1));
pragma Assert (False);
else
pragma Assert
(To_Uns (X) - To_Uns (Y) = Double_Uns (X) + Double_Uns (-Y));
end if;
end Prove_Non_Negative_X;
-------------------------
-- Prove_Overflow_Case --
-------------------------
procedure Prove_Overflow_Case is
begin
if X >= 0 and then Y /= Double_Int'First then
pragma Assert
(To_Uns (X) - To_Uns (Y) = Double_Uns (X) + Double_Uns (-Y));
elsif X < 0 and then X /= Double_Int'First then
pragma Assert
(To_Uns (X) - To_Uns (Y) = -Double_Uns (-X) - Double_Uns (Y));
end if;
end Prove_Overflow_Case;
-- Start of processing for Subtract_With_Ovflo_Check
begin
if X >= 0 then
if Y > 0 or else R >= 0 then
Prove_Non_Negative_X;
return R;
end if;
else -- X < 0
if Y <= 0 or else R < 0 then
Prove_Negative_X;
return R;
end if;
end if;
Prove_Overflow_Case;
Raise_Error;
end Subtract_With_Ovflo_Check;
----------------
-- To_Neg_Int --
----------------
function To_Neg_Int (A : Double_Uns) return Double_Int is
R : constant Double_Int :=
(if A = 2 ** (Double_Size - 1) then Double_Int'First else -To_Int (A));
-- Note that we can't just use the expression of the Else, because it
-- overflows for A = 2 ** (Double_Size - 1).
begin
if R <= 0 then
return R;
else
Raise_Error;
end if;
end To_Neg_Int;
----------------
-- To_Pos_Int --
----------------
function To_Pos_Int (A : Double_Uns) return Double_Int is
R : constant Double_Int := To_Int (A);
begin
if R >= 0 then
return R;
else
Raise_Error;
end if;
end To_Pos_Int;
end System.Arith_Double;