blob: 3389e3f6d1d3ba630a01977ce113663bba35437c [file] [log] [blame]
------------------------------------------------------------------------------
-- --
-- GNAT COMPILER COMPONENTS --
-- --
-- S Y S T E M . A R I T H _ 1 2 8 --
-- --
-- S p e c --
-- --
-- Copyright (C) 2020-2023, Free Software Foundation, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 3, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. --
-- --
-- As a special exception under Section 7 of GPL version 3, you are granted --
-- additional permissions described in the GCC Runtime Library Exception, --
-- version 3.1, as published by the Free Software Foundation. --
-- --
-- You should have received a copy of the GNU General Public License and --
-- a copy of the GCC Runtime Library Exception along with this program; --
-- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
-- <http://www.gnu.org/licenses/>. --
-- --
-- GNAT was originally developed by the GNAT team at New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc. --
-- --
------------------------------------------------------------------------------
-- This unit provides software routines for doing arithmetic on 128-bit
-- signed integer values in cases where either overflow checking is
-- required, or intermediate results are longer than 128 bits.
pragma Restrictions (No_Elaboration_Code);
-- Allow direct call from gigi generated code
-- Preconditions in this unit are meant for analysis only, not for run-time
-- checking, so that the expected exceptions are raised. This is enforced
-- by setting the corresponding assertion policy to Ignore. Postconditions
-- and contract cases should not be executed at runtime as well, in order
-- not to slow down the execution of these functions.
pragma Assertion_Policy (Pre => Ignore,
Post => Ignore,
Contract_Cases => Ignore,
Ghost => Ignore);
with Ada.Numerics.Big_Numbers.Big_Integers_Ghost;
with Interfaces;
package System.Arith_128
with Pure, SPARK_Mode
is
use type Ada.Numerics.Big_Numbers.Big_Integers_Ghost.Big_Integer;
use type Interfaces.Integer_128;
subtype Int128 is Interfaces.Integer_128;
subtype Big_Integer is
Ada.Numerics.Big_Numbers.Big_Integers_Ghost.Big_Integer
with Ghost;
package Signed_Conversion is new
Ada.Numerics.Big_Numbers.Big_Integers_Ghost.Signed_Conversions
(Int => Int128);
function Big (Arg : Int128) return Big_Integer is
(Signed_Conversion.To_Big_Integer (Arg))
with Ghost;
function In_Int128_Range (Arg : Big_Integer) return Boolean is
(Ada.Numerics.Big_Numbers.Big_Integers_Ghost.In_Range
(Arg, Big (Int128'First), Big (Int128'Last)))
with Ghost;
function Add_With_Ovflo_Check128 (X, Y : Int128) return Int128
with
Pre => In_Int128_Range (Big (X) + Big (Y)),
Post => Add_With_Ovflo_Check128'Result = X + Y;
-- Raises Constraint_Error if sum of operands overflows 128 bits,
-- otherwise returns the 128-bit signed integer sum.
function Subtract_With_Ovflo_Check128 (X, Y : Int128) return Int128
with
Pre => In_Int128_Range (Big (X) - Big (Y)),
Post => Subtract_With_Ovflo_Check128'Result = X - Y;
-- Raises Constraint_Error if difference of operands overflows 128
-- bits, otherwise returns the 128-bit signed integer difference.
function Multiply_With_Ovflo_Check128 (X, Y : Int128) return Int128
with
Pre => In_Int128_Range (Big (X) * Big (Y)),
Post => Multiply_With_Ovflo_Check128'Result = X * Y;
pragma Export (C, Multiply_With_Ovflo_Check128, "__gnat_mulv128");
-- Raises Constraint_Error if product of operands overflows 128
-- bits, otherwise returns the 128-bit signed integer product.
-- Gigi may also call this routine directly.
function Same_Sign (X, Y : Big_Integer) return Boolean is
(X = Big (Int128'(0))
or else Y = Big (Int128'(0))
or else (X < Big (Int128'(0))) = (Y < Big (Int128'(0))))
with Ghost;
function Round_Quotient (X, Y, Q, R : Big_Integer) return Big_Integer is
(if abs R > (abs Y - Big (Int128'(1))) / Big (Int128'(2)) then
(if Same_Sign (X, Y) then Q + Big (Int128'(1))
else Q - Big (Int128'(1)))
else
Q)
with
Ghost,
Pre => Y /= 0 and then Q = X / Y and then R = X rem Y;
procedure Scaled_Divide128
(X, Y, Z : Int128;
Q, R : out Int128;
Round : Boolean)
with
Pre => Z /= 0
and then In_Int128_Range
(if Round then Round_Quotient (Big (X) * Big (Y), Big (Z),
Big (X) * Big (Y) / Big (Z),
Big (X) * Big (Y) rem Big (Z))
else Big (X) * Big (Y) / Big (Z)),
Post => Big (R) = Big (X) * Big (Y) rem Big (Z)
and then
(if Round then
Big (Q) = Round_Quotient (Big (X) * Big (Y), Big (Z),
Big (X) * Big (Y) / Big (Z), Big (R))
else
Big (Q) = Big (X) * Big (Y) / Big (Z));
-- Performs the division of (X * Y) / Z, storing the quotient in Q
-- and the remainder in R. Constraint_Error is raised if Z is zero,
-- or if the quotient does not fit in 128 bits. Round indicates if
-- the result should be rounded. If Round is False, then Q, R are
-- the normal quotient and remainder from a truncating division.
-- If Round is True, then Q is the rounded quotient. The remainder
-- R is not affected by the setting of the Round flag.
procedure Double_Divide128
(X, Y, Z : Int128;
Q, R : out Int128;
Round : Boolean)
with
Pre => Y /= 0
and then Z /= 0
and then In_Int128_Range
(if Round then Round_Quotient (Big (X), Big (Y) * Big (Z),
Big (X) / (Big (Y) * Big (Z)),
Big (X) rem (Big (Y) * Big (Z)))
else Big (X) / (Big (Y) * Big (Z))),
Post => Big (R) = Big (X) rem (Big (Y) * Big (Z))
and then
(if Round then
Big (Q) = Round_Quotient (Big (X), Big (Y) * Big (Z),
Big (X) / (Big (Y) * Big (Z)), Big (R))
else
Big (Q) = Big (X) / (Big (Y) * Big (Z)));
-- Performs the division X / (Y * Z), storing the quotient in Q and
-- the remainder in R. Constraint_Error is raised if Y or Z is zero,
-- or if the quotient does not fit in 128 bits. Round indicates if the
-- result should be rounded. If Round is False, then Q, R are the normal
-- quotient and remainder from a truncating division. If Round is True,
-- then Q is the rounded quotient. The remainder R is not affected by the
-- setting of the Round flag.
end System.Arith_128;