blob: ee37c1a636b6799102bfbd96d7377f885e8d6ed7 [file] [log] [blame]
------------------------------------------------------------------------------
-- --
-- GNAT COMPILER COMPONENTS --
-- --
-- S Y S T E M . V A L _ U T I L --
-- --
-- B o d y --
-- --
-- Copyright (C) 1992-2023, Free Software Foundation, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 3, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. --
-- --
-- As a special exception under Section 7 of GPL version 3, you are granted --
-- additional permissions described in the GCC Runtime Library Exception, --
-- version 3.1, as published by the Free Software Foundation. --
-- --
-- You should have received a copy of the GNU General Public License and --
-- a copy of the GCC Runtime Library Exception along with this program; --
-- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
-- <http://www.gnu.org/licenses/>. --
-- --
-- GNAT was originally developed by the GNAT team at New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc. --
-- --
------------------------------------------------------------------------------
-- Ghost code, loop invariants and assertions in this unit are meant for
-- analysis only, not for run-time checking, as it would be too costly
-- otherwise. This is enforced by setting the assertion policy to Ignore.
pragma Assertion_Policy (Ghost => Ignore,
Loop_Invariant => Ignore,
Assert => Ignore);
with System.Case_Util; use System.Case_Util;
package body System.Val_Util
with SPARK_Mode
is
---------------
-- Bad_Value --
---------------
procedure Bad_Value (S : String) is
pragma Annotate (GNATprove, Intentional, "exception might be raised",
"Intentional exception from Bad_Value");
begin
-- Bad_Value might be called with very long strings allocated on the
-- heap. Limit the size of the message so that we avoid creating a
-- Storage_Error during error handling.
if S'Length > 127 then
raise Constraint_Error with "bad input for 'Value: """
& S (S'First .. S'First + 127) & "...""";
else
raise Constraint_Error with "bad input for 'Value: """ & S & '"';
end if;
end Bad_Value;
---------------------------
-- First_Non_Space_Ghost --
---------------------------
function First_Non_Space_Ghost
(S : String;
From, To : Integer) return Positive
is
begin
for J in From .. To loop
if S (J) /= ' ' then
return J;
end if;
pragma Loop_Invariant (for all K in From .. J => S (K) = ' ');
end loop;
raise Program_Error;
end First_Non_Space_Ghost;
-----------------------
-- Last_Number_Ghost --
-----------------------
function Last_Number_Ghost (Str : String) return Positive is
begin
for J in Str'Range loop
if Str (J) not in '0' .. '9' | '_' then
return J - 1;
end if;
pragma Loop_Invariant
(for all K in Str'First .. J => Str (K) in '0' .. '9' | '_');
end loop;
return Str'Last;
end Last_Number_Ghost;
----------------------
-- Normalize_String --
----------------------
procedure Normalize_String
(S : in out String;
F, L : out Integer)
is
begin
F := S'First;
L := S'Last;
-- Case of empty string
if F > L then
return;
end if;
-- Scan for leading spaces
while F < L and then S (F) = ' ' loop
pragma Loop_Invariant (F in S'First .. L - 1);
pragma Loop_Invariant (for all J in S'First .. F => S (J) = ' ');
pragma Loop_Variant (Increases => F);
F := F + 1;
end loop;
-- Case of no nonspace characters found. Decrease L to ensure L < F
-- without risking an overflow if F is Integer'Last.
if S (F) = ' ' then
L := L - 1;
return;
end if;
-- Scan for trailing spaces
while S (L) = ' ' loop
pragma Loop_Invariant (L in F + 1 .. S'Last);
pragma Loop_Invariant (for all J in L .. S'Last => S (J) = ' ');
pragma Loop_Variant (Decreases => L);
L := L - 1;
end loop;
-- Except in the case of a character literal, convert to upper case
if S (F) /= ''' then
for J in F .. L loop
S (J) := To_Upper (S (J));
pragma Loop_Invariant
(for all K in F .. J => S (K) = To_Upper (S'Loop_Entry (K)));
end loop;
end if;
end Normalize_String;
-------------------
-- Scan_Exponent --
-------------------
procedure Scan_Exponent
(Str : String;
Ptr : not null access Integer;
Max : Integer;
Exp : out Integer;
Real : Boolean := False)
is
P : Integer := Ptr.all;
M : Boolean;
X : Integer;
begin
if P >= Max
or else (Str (P) /= 'E' and then Str (P) /= 'e')
then
Exp := 0;
return;
end if;
pragma Annotate
(CodePeer, False_Positive, "test always false",
"the slice might be empty or not start with an 'e'");
-- We have an E/e, see if sign follows
P := P + 1;
if Str (P) = '+' then
P := P + 1;
if P > Max then
Exp := 0;
return;
else
M := False;
end if;
elsif Str (P) = '-' then
P := P + 1;
if P > Max or else not Real then
Exp := 0;
return;
else
M := True;
end if;
else
M := False;
end if;
if Str (P) not in '0' .. '9' then
Exp := 0;
return;
end if;
-- Scan out the exponent value as an unsigned integer. Values larger
-- than (Integer'Last / 10) are simply considered large enough here.
-- This assumption is correct for all machines we know of (e.g. in the
-- case of 16 bit integers it allows exponents up to 3276, which is
-- large enough for the largest floating types in base 2.)
X := 0;
declare
Rest : constant String := Str (P .. Max) with Ghost;
Last : constant Natural := Last_Number_Ghost (Rest) with Ghost;
begin
pragma Assert (Is_Natural_Format_Ghost (Rest));
loop
pragma Assert (Str (P) in '0' .. '9');
if X < (Integer'Last / 10) then
X := X * 10 + (Character'Pos (Str (P)) - Character'Pos ('0'));
end if;
pragma Loop_Invariant (X >= 0);
pragma Loop_Invariant (P in Rest'First .. Last);
pragma Loop_Invariant (Str (P) in '0' .. '9');
pragma Loop_Invariant
(Scan_Natural_Ghost (Rest, Rest'First, 0)
= Scan_Natural_Ghost (Rest, P + 1, X));
P := P + 1;
exit when P > Max;
if Str (P) = '_' then
Scan_Underscore (Str, P, Ptr, Max, False);
else
exit when Str (P) not in '0' .. '9';
end if;
end loop;
pragma Assert (P = Last + 1);
end;
if M then
X := -X;
end if;
Ptr.all := P;
Exp := X;
end Scan_Exponent;
--------------------
-- Scan_Plus_Sign --
--------------------
procedure Scan_Plus_Sign
(Str : String;
Ptr : not null access Integer;
Max : Integer;
Start : out Positive)
is
P : Integer := Ptr.all;
begin
if P > Max then
Bad_Value (Str);
end if;
-- Scan past initial blanks
while Str (P) = ' ' loop
P := P + 1;
pragma Loop_Invariant (Ptr.all = Ptr.all'Loop_Entry);
pragma Loop_Invariant (P in Ptr.all .. Max);
pragma Loop_Invariant (for some J in P .. Max => Str (J) /= ' ');
pragma Loop_Invariant
(for all J in Ptr.all .. P - 1 => Str (J) = ' ');
if P > Max then
Ptr.all := P;
Bad_Value (Str);
end if;
end loop;
Start := P;
pragma Assert (Start = First_Non_Space_Ghost (Str, Ptr.all, Max));
-- Skip past an initial plus sign
if Str (P) = '+' then
P := P + 1;
if P > Max then
Ptr.all := Start;
Bad_Value (Str);
end if;
end if;
Ptr.all := P;
end Scan_Plus_Sign;
---------------
-- Scan_Sign --
---------------
procedure Scan_Sign
(Str : String;
Ptr : not null access Integer;
Max : Integer;
Minus : out Boolean;
Start : out Positive)
is
P : Integer := Ptr.all;
begin
-- Deal with case of null string (all blanks). As per spec, we raise
-- constraint error, with Ptr unchanged, and thus > Max.
if P > Max then
Bad_Value (Str);
end if;
-- Scan past initial blanks
while Str (P) = ' ' loop
P := P + 1;
pragma Loop_Invariant (Ptr.all = Ptr.all'Loop_Entry);
pragma Loop_Invariant (P in Ptr.all .. Max);
pragma Loop_Invariant (for some J in P .. Max => Str (J) /= ' ');
pragma Loop_Invariant
(for all J in Ptr.all .. P - 1 => Str (J) = ' ');
if P > Max then
Ptr.all := P;
Bad_Value (Str);
end if;
end loop;
Start := P;
pragma Assert (Start = First_Non_Space_Ghost (Str, Ptr.all, Max));
-- Remember an initial minus sign
if Str (P) = '-' then
Minus := True;
P := P + 1;
if P > Max then
Ptr.all := Start;
Bad_Value (Str);
end if;
-- Skip past an initial plus sign
elsif Str (P) = '+' then
Minus := False;
P := P + 1;
if P > Max then
Ptr.all := Start;
Bad_Value (Str);
end if;
else
Minus := False;
end if;
Ptr.all := P;
end Scan_Sign;
--------------------------
-- Scan_Trailing_Blanks --
--------------------------
procedure Scan_Trailing_Blanks (Str : String; P : Positive) is
begin
for J in P .. Str'Last loop
if Str (J) /= ' ' then
Bad_Value (Str);
end if;
pragma Loop_Invariant (for all K in P .. J => Str (K) = ' ');
end loop;
end Scan_Trailing_Blanks;
---------------------
-- Scan_Underscore --
---------------------
procedure Scan_Underscore
(Str : String;
P : in out Natural;
Ptr : not null access Integer;
Max : Integer;
Ext : Boolean)
is
C : Character;
begin
P := P + 1;
-- If underscore is at the end of string, then this is an error and we
-- raise Constraint_Error, leaving the pointer past the underscore. This
-- seems a bit strange. It means e.g. that if the field is:
-- 345_
-- that Constraint_Error is raised. You might think that the RM in this
-- case would scan out the 345 as a valid integer, leaving the pointer
-- at the underscore, but the ACVC suite clearly requires an error in
-- this situation (see for example CE3704M).
if P > Max then
Ptr.all := P;
Bad_Value (Str);
end if;
-- Similarly, if no digit follows the underscore raise an error. This
-- also catches the case of double underscore which is also an error.
C := Str (P);
if C in '0' .. '9'
or else (Ext and then (C in 'A' .. 'F' or else C in 'a' .. 'f'))
then
return;
else
Ptr.all := P;
Bad_Value (Str);
end if;
end Scan_Underscore;
end System.Val_Util;