blob: ac6892d041ca3bf3d656589e2e7ee3c4a00f2b5f [file] [log] [blame]
/* Convert RTL to assembler code and output it, for GNU compiler.
Copyright (C) 1987-2021 Free Software Foundation, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
/* This is the final pass of the compiler.
It looks at the rtl code for a function and outputs assembler code.
Call `final_start_function' to output the assembler code for function entry,
`final' to output assembler code for some RTL code,
`final_end_function' to output assembler code for function exit.
If a function is compiled in several pieces, each piece is
output separately with `final'.
Some optimizations are also done at this level.
Move instructions that were made unnecessary by good register allocation
are detected and omitted from the output. (Though most of these
are removed by the last jump pass.)
Instructions to set the condition codes are omitted when it can be
seen that the condition codes already had the desired values.
In some cases it is sufficient if the inherited condition codes
have related values, but this may require the following insn
(the one that tests the condition codes) to be modified.
The code for the function prologue and epilogue are generated
directly in assembler by the target functions function_prologue and
function_epilogue. Those instructions never exist as rtl. */
#include "config.h"
#define INCLUDE_ALGORITHM /* reverse */
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "target.h"
#include "rtl.h"
#include "tree.h"
#include "cfghooks.h"
#include "df.h"
#include "memmodel.h"
#include "tm_p.h"
#include "insn-config.h"
#include "regs.h"
#include "emit-rtl.h"
#include "recog.h"
#include "cgraph.h"
#include "tree-pretty-print.h" /* for dump_function_header */
#include "varasm.h"
#include "insn-attr.h"
#include "conditions.h"
#include "flags.h"
#include "output.h"
#include "except.h"
#include "rtl-error.h"
#include "toplev.h" /* exact_log2, floor_log2 */
#include "reload.h"
#include "intl.h"
#include "cfgrtl.h"
#include "debug.h"
#include "tree-pass.h"
#include "tree-ssa.h"
#include "cfgloop.h"
#include "stringpool.h"
#include "attribs.h"
#include "asan.h"
#include "rtl-iter.h"
#include "print-rtl.h"
#include "function-abi.h"
#include "common/common-target.h"
#ifdef XCOFF_DEBUGGING_INFO
#include "xcoffout.h" /* Needed for external data declarations. */
#endif
#include "dwarf2out.h"
#ifdef DBX_DEBUGGING_INFO
#include "dbxout.h"
#endif
/* Most ports don't need to define CC_STATUS_INIT.
So define a null default for it to save conditionalization later. */
#ifndef CC_STATUS_INIT
#define CC_STATUS_INIT
#endif
/* Is the given character a logical line separator for the assembler? */
#ifndef IS_ASM_LOGICAL_LINE_SEPARATOR
#define IS_ASM_LOGICAL_LINE_SEPARATOR(C, STR) ((C) == ';')
#endif
#ifndef JUMP_TABLES_IN_TEXT_SECTION
#define JUMP_TABLES_IN_TEXT_SECTION 0
#endif
/* Bitflags used by final_scan_insn. */
#define SEEN_NOTE 1
#define SEEN_EMITTED 2
#define SEEN_NEXT_VIEW 4
/* Last insn processed by final_scan_insn. */
static rtx_insn *debug_insn;
rtx_insn *current_output_insn;
/* Line number of last NOTE. */
static int last_linenum;
/* Column number of last NOTE. */
static int last_columnnum;
/* Discriminator written to assembly. */
static int last_discriminator;
/* Discriminator to be written to assembly for current instruction.
Note: actual usage depends on loc_discriminator_kind setting. */
static int discriminator;
static inline int compute_discriminator (location_t loc);
/* Discriminator identifying current basic block among others sharing
the same locus. */
static int bb_discriminator;
/* Basic block discriminator for previous instruction. */
static int last_bb_discriminator;
/* Highest line number in current block. */
static int high_block_linenum;
/* Likewise for function. */
static int high_function_linenum;
/* Filename of last NOTE. */
static const char *last_filename;
/* Override filename, line and column number. */
static const char *override_filename;
static int override_linenum;
static int override_columnnum;
static int override_discriminator;
/* Whether to force emission of a line note before the next insn. */
static bool force_source_line = false;
extern const int length_unit_log; /* This is defined in insn-attrtab.c. */
/* Nonzero while outputting an `asm' with operands.
This means that inconsistencies are the user's fault, so don't die.
The precise value is the insn being output, to pass to error_for_asm. */
const rtx_insn *this_is_asm_operands;
/* Number of operands of this insn, for an `asm' with operands. */
static unsigned int insn_noperands;
/* Compare optimization flag. */
static rtx last_ignored_compare = 0;
/* Assign a unique number to each insn that is output.
This can be used to generate unique local labels. */
static int insn_counter = 0;
/* Number of unmatched NOTE_INSN_BLOCK_BEG notes we have seen. */
static int block_depth;
/* Nonzero if have enabled APP processing of our assembler output. */
static int app_on;
/* If we are outputting an insn sequence, this contains the sequence rtx.
Zero otherwise. */
rtx_sequence *final_sequence;
#ifdef ASSEMBLER_DIALECT
/* Number of the assembler dialect to use, starting at 0. */
static int dialect_number;
#endif
/* Nonnull if the insn currently being emitted was a COND_EXEC pattern. */
rtx current_insn_predicate;
/* True if printing into -fdump-final-insns= dump. */
bool final_insns_dump_p;
/* True if profile_function should be called, but hasn't been called yet. */
static bool need_profile_function;
static int asm_insn_count (rtx);
static void profile_function (FILE *);
static void profile_after_prologue (FILE *);
static bool notice_source_line (rtx_insn *, bool *);
static rtx walk_alter_subreg (rtx *, bool *);
static void output_asm_name (void);
static void output_alternate_entry_point (FILE *, rtx_insn *);
static tree get_mem_expr_from_op (rtx, int *);
static void output_asm_operand_names (rtx *, int *, int);
#ifdef LEAF_REGISTERS
static void leaf_renumber_regs (rtx_insn *);
#endif
static int align_fuzz (rtx, rtx, int, unsigned);
static void collect_fn_hard_reg_usage (void);
/* Initialize data in final at the beginning of a compilation. */
void
init_final (const char *filename ATTRIBUTE_UNUSED)
{
app_on = 0;
final_sequence = 0;
#ifdef ASSEMBLER_DIALECT
dialect_number = ASSEMBLER_DIALECT;
#endif
}
/* Default target function prologue and epilogue assembler output.
If not overridden for epilogue code, then the function body itself
contains return instructions wherever needed. */
void
default_function_pro_epilogue (FILE *)
{
}
void
default_function_switched_text_sections (FILE *file ATTRIBUTE_UNUSED,
tree decl ATTRIBUTE_UNUSED,
bool new_is_cold ATTRIBUTE_UNUSED)
{
}
/* Default target hook that outputs nothing to a stream. */
void
no_asm_to_stream (FILE *file ATTRIBUTE_UNUSED)
{
}
/* Enable APP processing of subsequent output.
Used before the output from an `asm' statement. */
void
app_enable (void)
{
if (! app_on)
{
fputs (ASM_APP_ON, asm_out_file);
app_on = 1;
}
}
/* Disable APP processing of subsequent output.
Called from varasm.c before most kinds of output. */
void
app_disable (void)
{
if (app_on)
{
fputs (ASM_APP_OFF, asm_out_file);
app_on = 0;
}
}
/* Return the number of slots filled in the current
delayed branch sequence (we don't count the insn needing the
delay slot). Zero if not in a delayed branch sequence. */
int
dbr_sequence_length (void)
{
if (final_sequence != 0)
return XVECLEN (final_sequence, 0) - 1;
else
return 0;
}
/* The next two pages contain routines used to compute the length of an insn
and to shorten branches. */
/* Arrays for insn lengths, and addresses. The latter is referenced by
`insn_current_length'. */
static int *insn_lengths;
vec<int> insn_addresses_;
/* Max uid for which the above arrays are valid. */
static int insn_lengths_max_uid;
/* Address of insn being processed. Used by `insn_current_length'. */
int insn_current_address;
/* Address of insn being processed in previous iteration. */
int insn_last_address;
/* known invariant alignment of insn being processed. */
int insn_current_align;
/* After shorten_branches, for any insn, uid_align[INSN_UID (insn)]
gives the next following alignment insn that increases the known
alignment, or NULL_RTX if there is no such insn.
For any alignment obtained this way, we can again index uid_align with
its uid to obtain the next following align that in turn increases the
alignment, till we reach NULL_RTX; the sequence obtained this way
for each insn we'll call the alignment chain of this insn in the following
comments. */
static rtx *uid_align;
static int *uid_shuid;
static vec<align_flags> label_align;
/* Indicate that branch shortening hasn't yet been done. */
void
init_insn_lengths (void)
{
if (uid_shuid)
{
free (uid_shuid);
uid_shuid = 0;
}
if (insn_lengths)
{
free (insn_lengths);
insn_lengths = 0;
insn_lengths_max_uid = 0;
}
if (HAVE_ATTR_length)
INSN_ADDRESSES_FREE ();
if (uid_align)
{
free (uid_align);
uid_align = 0;
}
}
/* Obtain the current length of an insn. If branch shortening has been done,
get its actual length. Otherwise, use FALLBACK_FN to calculate the
length. */
static int
get_attr_length_1 (rtx_insn *insn, int (*fallback_fn) (rtx_insn *))
{
rtx body;
int i;
int length = 0;
if (!HAVE_ATTR_length)
return 0;
if (insn_lengths_max_uid > INSN_UID (insn))
return insn_lengths[INSN_UID (insn)];
else
switch (GET_CODE (insn))
{
case NOTE:
case BARRIER:
case CODE_LABEL:
case DEBUG_INSN:
return 0;
case CALL_INSN:
case JUMP_INSN:
length = fallback_fn (insn);
break;
case INSN:
body = PATTERN (insn);
if (GET_CODE (body) == USE || GET_CODE (body) == CLOBBER)
return 0;
else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
length = asm_insn_count (body) * fallback_fn (insn);
else if (rtx_sequence *seq = dyn_cast <rtx_sequence *> (body))
for (i = 0; i < seq->len (); i++)
length += get_attr_length_1 (seq->insn (i), fallback_fn);
else
length = fallback_fn (insn);
break;
default:
break;
}
#ifdef ADJUST_INSN_LENGTH
ADJUST_INSN_LENGTH (insn, length);
#endif
return length;
}
/* Obtain the current length of an insn. If branch shortening has been done,
get its actual length. Otherwise, get its maximum length. */
int
get_attr_length (rtx_insn *insn)
{
return get_attr_length_1 (insn, insn_default_length);
}
/* Obtain the current length of an insn. If branch shortening has been done,
get its actual length. Otherwise, get its minimum length. */
int
get_attr_min_length (rtx_insn *insn)
{
return get_attr_length_1 (insn, insn_min_length);
}
/* Code to handle alignment inside shorten_branches. */
/* Here is an explanation how the algorithm in align_fuzz can give
proper results:
Call a sequence of instructions beginning with alignment point X
and continuing until the next alignment point `block X'. When `X'
is used in an expression, it means the alignment value of the
alignment point.
Call the distance between the start of the first insn of block X, and
the end of the last insn of block X `IX', for the `inner size of X'.
This is clearly the sum of the instruction lengths.
Likewise with the next alignment-delimited block following X, which we
shall call block Y.
Call the distance between the start of the first insn of block X, and
the start of the first insn of block Y `OX', for the `outer size of X'.
The estimated padding is then OX - IX.
OX can be safely estimated as
if (X >= Y)
OX = round_up(IX, Y)
else
OX = round_up(IX, X) + Y - X
Clearly est(IX) >= real(IX), because that only depends on the
instruction lengths, and those being overestimated is a given.
Clearly round_up(foo, Z) >= round_up(bar, Z) if foo >= bar, so
we needn't worry about that when thinking about OX.
When X >= Y, the alignment provided by Y adds no uncertainty factor
for branch ranges starting before X, so we can just round what we have.
But when X < Y, we don't know anything about the, so to speak,
`middle bits', so we have to assume the worst when aligning up from an
address mod X to one mod Y, which is Y - X. */
#ifndef LABEL_ALIGN
#define LABEL_ALIGN(LABEL) align_labels
#endif
#ifndef LOOP_ALIGN
#define LOOP_ALIGN(LABEL) align_loops
#endif
#ifndef LABEL_ALIGN_AFTER_BARRIER
#define LABEL_ALIGN_AFTER_BARRIER(LABEL) 0
#endif
#ifndef JUMP_ALIGN
#define JUMP_ALIGN(LABEL) align_jumps
#endif
#ifndef ADDR_VEC_ALIGN
static int
final_addr_vec_align (rtx_jump_table_data *addr_vec)
{
int align = GET_MODE_SIZE (addr_vec->get_data_mode ());
if (align > BIGGEST_ALIGNMENT / BITS_PER_UNIT)
align = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
return exact_log2 (align);
}
#define ADDR_VEC_ALIGN(ADDR_VEC) final_addr_vec_align (ADDR_VEC)
#endif
#ifndef INSN_LENGTH_ALIGNMENT
#define INSN_LENGTH_ALIGNMENT(INSN) length_unit_log
#endif
#define INSN_SHUID(INSN) (uid_shuid[INSN_UID (INSN)])
static int min_labelno, max_labelno;
#define LABEL_TO_ALIGNMENT(LABEL) \
(label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno])
/* For the benefit of port specific code do this also as a function. */
align_flags
label_to_alignment (rtx label)
{
if (CODE_LABEL_NUMBER (label) <= max_labelno)
return LABEL_TO_ALIGNMENT (label);
return align_flags ();
}
/* The differences in addresses
between a branch and its target might grow or shrink depending on
the alignment the start insn of the range (the branch for a forward
branch or the label for a backward branch) starts out on; if these
differences are used naively, they can even oscillate infinitely.
We therefore want to compute a 'worst case' address difference that
is independent of the alignment the start insn of the range end
up on, and that is at least as large as the actual difference.
The function align_fuzz calculates the amount we have to add to the
naively computed difference, by traversing the part of the alignment
chain of the start insn of the range that is in front of the end insn
of the range, and considering for each alignment the maximum amount
that it might contribute to a size increase.
For casesi tables, we also want to know worst case minimum amounts of
address difference, in case a machine description wants to introduce
some common offset that is added to all offsets in a table.
For this purpose, align_fuzz with a growth argument of 0 computes the
appropriate adjustment. */
/* Compute the maximum delta by which the difference of the addresses of
START and END might grow / shrink due to a different address for start
which changes the size of alignment insns between START and END.
KNOWN_ALIGN_LOG is the alignment known for START.
GROWTH should be ~0 if the objective is to compute potential code size
increase, and 0 if the objective is to compute potential shrink.
The return value is undefined for any other value of GROWTH. */
static int
align_fuzz (rtx start, rtx end, int known_align_log, unsigned int growth)
{
int uid = INSN_UID (start);
rtx align_label;
int known_align = 1 << known_align_log;
int end_shuid = INSN_SHUID (end);
int fuzz = 0;
for (align_label = uid_align[uid]; align_label; align_label = uid_align[uid])
{
int align_addr, new_align;
uid = INSN_UID (align_label);
align_addr = INSN_ADDRESSES (uid) - insn_lengths[uid];
if (uid_shuid[uid] > end_shuid)
break;
align_flags alignment = LABEL_TO_ALIGNMENT (align_label);
new_align = 1 << alignment.levels[0].log;
if (new_align < known_align)
continue;
fuzz += (-align_addr ^ growth) & (new_align - known_align);
known_align = new_align;
}
return fuzz;
}
/* Compute a worst-case reference address of a branch so that it
can be safely used in the presence of aligned labels. Since the
size of the branch itself is unknown, the size of the branch is
not included in the range. I.e. for a forward branch, the reference
address is the end address of the branch as known from the previous
branch shortening pass, minus a value to account for possible size
increase due to alignment. For a backward branch, it is the start
address of the branch as known from the current pass, plus a value
to account for possible size increase due to alignment.
NB.: Therefore, the maximum offset allowed for backward branches needs
to exclude the branch size. */
int
insn_current_reference_address (rtx_insn *branch)
{
rtx dest;
int seq_uid;
if (! INSN_ADDRESSES_SET_P ())
return 0;
rtx_insn *seq = NEXT_INSN (PREV_INSN (branch));
seq_uid = INSN_UID (seq);
if (!jump_to_label_p (branch))
/* This can happen for example on the PA; the objective is to know the
offset to address something in front of the start of the function.
Thus, we can treat it like a backward branch.
We assume here that FUNCTION_BOUNDARY / BITS_PER_UNIT is larger than
any alignment we'd encounter, so we skip the call to align_fuzz. */
return insn_current_address;
dest = JUMP_LABEL (branch);
/* BRANCH has no proper alignment chain set, so use SEQ.
BRANCH also has no INSN_SHUID. */
if (INSN_SHUID (seq) < INSN_SHUID (dest))
{
/* Forward branch. */
return (insn_last_address + insn_lengths[seq_uid]
- align_fuzz (seq, dest, length_unit_log, ~0));
}
else
{
/* Backward branch. */
return (insn_current_address
+ align_fuzz (dest, seq, length_unit_log, ~0));
}
}
/* Compute branch alignments based on CFG profile. */
unsigned int
compute_alignments (void)
{
basic_block bb;
align_flags max_alignment;
label_align.truncate (0);
max_labelno = max_label_num ();
min_labelno = get_first_label_num ();
label_align.safe_grow_cleared (max_labelno - min_labelno + 1, true);
/* If not optimizing or optimizing for size, don't assign any alignments. */
if (! optimize || optimize_function_for_size_p (cfun))
return 0;
if (dump_file)
{
dump_reg_info (dump_file);
dump_flow_info (dump_file, TDF_DETAILS);
flow_loops_dump (dump_file, NULL, 1);
}
loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
profile_count count_threshold = cfun->cfg->count_max.apply_scale
(1, param_align_threshold);
if (dump_file)
{
fprintf (dump_file, "count_max: ");
cfun->cfg->count_max.dump (dump_file);
fprintf (dump_file, "\n");
}
FOR_EACH_BB_FN (bb, cfun)
{
rtx_insn *label = BB_HEAD (bb);
bool has_fallthru = 0;
edge e;
edge_iterator ei;
if (!LABEL_P (label)
|| optimize_bb_for_size_p (bb))
{
if (dump_file)
fprintf (dump_file,
"BB %4i loop %2i loop_depth %2i skipped.\n",
bb->index,
bb->loop_father->num,
bb_loop_depth (bb));
continue;
}
max_alignment = LABEL_ALIGN (label);
profile_count fallthru_count = profile_count::zero ();
profile_count branch_count = profile_count::zero ();
FOR_EACH_EDGE (e, ei, bb->preds)
{
if (e->flags & EDGE_FALLTHRU)
has_fallthru = 1, fallthru_count += e->count ();
else
branch_count += e->count ();
}
if (dump_file)
{
fprintf (dump_file, "BB %4i loop %2i loop_depth"
" %2i fall ",
bb->index, bb->loop_father->num,
bb_loop_depth (bb));
fallthru_count.dump (dump_file);
fprintf (dump_file, " branch ");
branch_count.dump (dump_file);
if (!bb->loop_father->inner && bb->loop_father->num)
fprintf (dump_file, " inner_loop");
if (bb->loop_father->header == bb)
fprintf (dump_file, " loop_header");
fprintf (dump_file, "\n");
}
if (!fallthru_count.initialized_p () || !branch_count.initialized_p ())
continue;
/* There are two purposes to align block with no fallthru incoming edge:
1) to avoid fetch stalls when branch destination is near cache boundary
2) to improve cache efficiency in case the previous block is not executed
(so it does not need to be in the cache).
We to catch first case, we align frequently executed blocks.
To catch the second, we align blocks that are executed more frequently
than the predecessor and the predecessor is likely to not be executed
when function is called. */
if (!has_fallthru
&& (branch_count > count_threshold
|| (bb->count > bb->prev_bb->count.apply_scale (10, 1)
&& (bb->prev_bb->count
<= ENTRY_BLOCK_PTR_FOR_FN (cfun)
->count.apply_scale (1, 2)))))
{
align_flags alignment = JUMP_ALIGN (label);
if (dump_file)
fprintf (dump_file, " jump alignment added.\n");
max_alignment = align_flags::max (max_alignment, alignment);
}
/* In case block is frequent and reached mostly by non-fallthru edge,
align it. It is most likely a first block of loop. */
if (has_fallthru
&& !(single_succ_p (bb)
&& single_succ (bb) == EXIT_BLOCK_PTR_FOR_FN (cfun))
&& optimize_bb_for_speed_p (bb)
&& branch_count + fallthru_count > count_threshold
&& (branch_count
> fallthru_count.apply_scale
(param_align_loop_iterations, 1)))
{
align_flags alignment = LOOP_ALIGN (label);
if (dump_file)
fprintf (dump_file, " internal loop alignment added.\n");
max_alignment = align_flags::max (max_alignment, alignment);
}
LABEL_TO_ALIGNMENT (label) = max_alignment;
}
loop_optimizer_finalize ();
free_dominance_info (CDI_DOMINATORS);
return 0;
}
/* Grow the LABEL_ALIGN array after new labels are created. */
static void
grow_label_align (void)
{
int old = max_labelno;
int n_labels;
int n_old_labels;
max_labelno = max_label_num ();
n_labels = max_labelno - min_labelno + 1;
n_old_labels = old - min_labelno + 1;
label_align.safe_grow_cleared (n_labels, true);
/* Range of labels grows monotonically in the function. Failing here
means that the initialization of array got lost. */
gcc_assert (n_old_labels <= n_labels);
}
/* Update the already computed alignment information. LABEL_PAIRS is a vector
made up of pairs of labels for which the alignment information of the first
element will be copied from that of the second element. */
void
update_alignments (vec<rtx> &label_pairs)
{
unsigned int i = 0;
rtx iter, label = NULL_RTX;
if (max_labelno != max_label_num ())
grow_label_align ();
FOR_EACH_VEC_ELT (label_pairs, i, iter)
if (i & 1)
LABEL_TO_ALIGNMENT (label) = LABEL_TO_ALIGNMENT (iter);
else
label = iter;
}
namespace {
const pass_data pass_data_compute_alignments =
{
RTL_PASS, /* type */
"alignments", /* name */
OPTGROUP_NONE, /* optinfo_flags */
TV_NONE, /* tv_id */
0, /* properties_required */
0, /* properties_provided */
0, /* properties_destroyed */
0, /* todo_flags_start */
0, /* todo_flags_finish */
};
class pass_compute_alignments : public rtl_opt_pass
{
public:
pass_compute_alignments (gcc::context *ctxt)
: rtl_opt_pass (pass_data_compute_alignments, ctxt)
{}
/* opt_pass methods: */
virtual unsigned int execute (function *) { return compute_alignments (); }
}; // class pass_compute_alignments
} // anon namespace
rtl_opt_pass *
make_pass_compute_alignments (gcc::context *ctxt)
{
return new pass_compute_alignments (ctxt);
}
/* Make a pass over all insns and compute their actual lengths by shortening
any branches of variable length if possible. */
/* shorten_branches might be called multiple times: for example, the SH
port splits out-of-range conditional branches in MACHINE_DEPENDENT_REORG.
In order to do this, it needs proper length information, which it obtains
by calling shorten_branches. This cannot be collapsed with
shorten_branches itself into a single pass unless we also want to integrate
reorg.c, since the branch splitting exposes new instructions with delay
slots. */
void
shorten_branches (rtx_insn *first)
{
rtx_insn *insn;
int max_uid;
int i;
rtx_insn *seq;
int something_changed = 1;
char *varying_length;
rtx body;
int uid;
rtx align_tab[MAX_CODE_ALIGN + 1];
/* Compute maximum UID and allocate label_align / uid_shuid. */
max_uid = get_max_uid ();
/* Free uid_shuid before reallocating it. */
free (uid_shuid);
uid_shuid = XNEWVEC (int, max_uid);
if (max_labelno != max_label_num ())
grow_label_align ();
/* Initialize label_align and set up uid_shuid to be strictly
monotonically rising with insn order. */
/* We use alignment here to keep track of the maximum alignment we want to
impose on the next CODE_LABEL (or the current one if we are processing
the CODE_LABEL itself). */
align_flags max_alignment;
for (insn = get_insns (), i = 1; insn; insn = NEXT_INSN (insn))
{
INSN_SHUID (insn) = i++;
if (INSN_P (insn))
continue;
if (rtx_code_label *label = dyn_cast <rtx_code_label *> (insn))
{
/* Merge in alignments computed by compute_alignments. */
align_flags alignment = LABEL_TO_ALIGNMENT (label);
max_alignment = align_flags::max (max_alignment, alignment);
rtx_jump_table_data *table = jump_table_for_label (label);
if (!table)
{
align_flags alignment = LABEL_ALIGN (label);
max_alignment = align_flags::max (max_alignment, alignment);
}
/* ADDR_VECs only take room if read-only data goes into the text
section. */
if ((JUMP_TABLES_IN_TEXT_SECTION
|| readonly_data_section == text_section)
&& table)
{
align_flags alignment = align_flags (ADDR_VEC_ALIGN (table));
max_alignment = align_flags::max (max_alignment, alignment);
}
LABEL_TO_ALIGNMENT (label) = max_alignment;
max_alignment = align_flags ();
}
else if (BARRIER_P (insn))
{
rtx_insn *label;
for (label = insn; label && ! INSN_P (label);
label = NEXT_INSN (label))
if (LABEL_P (label))
{
align_flags alignment
= align_flags (LABEL_ALIGN_AFTER_BARRIER (insn));
max_alignment = align_flags::max (max_alignment, alignment);
break;
}
}
}
if (!HAVE_ATTR_length)
return;
/* Allocate the rest of the arrays. */
insn_lengths = XNEWVEC (int, max_uid);
insn_lengths_max_uid = max_uid;
/* Syntax errors can lead to labels being outside of the main insn stream.
Initialize insn_addresses, so that we get reproducible results. */
INSN_ADDRESSES_ALLOC (max_uid);
varying_length = XCNEWVEC (char, max_uid);
/* Initialize uid_align. We scan instructions
from end to start, and keep in align_tab[n] the last seen insn
that does an alignment of at least n+1, i.e. the successor
in the alignment chain for an insn that does / has a known
alignment of n. */
uid_align = XCNEWVEC (rtx, max_uid);
for (i = MAX_CODE_ALIGN + 1; --i >= 0;)
align_tab[i] = NULL_RTX;
seq = get_last_insn ();
for (; seq; seq = PREV_INSN (seq))
{
int uid = INSN_UID (seq);
int log;
log = (LABEL_P (seq) ? LABEL_TO_ALIGNMENT (seq).levels[0].log : 0);
uid_align[uid] = align_tab[0];
if (log)
{
/* Found an alignment label. */
gcc_checking_assert (log < MAX_CODE_ALIGN + 1);
uid_align[uid] = align_tab[log];
for (i = log - 1; i >= 0; i--)
align_tab[i] = seq;
}
}
/* When optimizing, we start assuming minimum length, and keep increasing
lengths as we find the need for this, till nothing changes.
When not optimizing, we start assuming maximum lengths, and
do a single pass to update the lengths. */
bool increasing = optimize != 0;
#ifdef CASE_VECTOR_SHORTEN_MODE
if (optimize)
{
/* Look for ADDR_DIFF_VECs, and initialize their minimum and maximum
label fields. */
int min_shuid = INSN_SHUID (get_insns ()) - 1;
int max_shuid = INSN_SHUID (get_last_insn ()) + 1;
int rel;
for (insn = first; insn != 0; insn = NEXT_INSN (insn))
{
rtx min_lab = NULL_RTX, max_lab = NULL_RTX, pat;
int len, i, min, max, insn_shuid;
int min_align;
addr_diff_vec_flags flags;
if (! JUMP_TABLE_DATA_P (insn)
|| GET_CODE (PATTERN (insn)) != ADDR_DIFF_VEC)
continue;
pat = PATTERN (insn);
len = XVECLEN (pat, 1);
gcc_assert (len > 0);
min_align = MAX_CODE_ALIGN;
for (min = max_shuid, max = min_shuid, i = len - 1; i >= 0; i--)
{
rtx lab = XEXP (XVECEXP (pat, 1, i), 0);
int shuid = INSN_SHUID (lab);
if (shuid < min)
{
min = shuid;
min_lab = lab;
}
if (shuid > max)
{
max = shuid;
max_lab = lab;
}
int label_alignment = LABEL_TO_ALIGNMENT (lab).levels[0].log;
if (min_align > label_alignment)
min_align = label_alignment;
}
XEXP (pat, 2) = gen_rtx_LABEL_REF (Pmode, min_lab);
XEXP (pat, 3) = gen_rtx_LABEL_REF (Pmode, max_lab);
insn_shuid = INSN_SHUID (insn);
rel = INSN_SHUID (XEXP (XEXP (pat, 0), 0));
memset (&flags, 0, sizeof (flags));
flags.min_align = min_align;
flags.base_after_vec = rel > insn_shuid;
flags.min_after_vec = min > insn_shuid;
flags.max_after_vec = max > insn_shuid;
flags.min_after_base = min > rel;
flags.max_after_base = max > rel;
ADDR_DIFF_VEC_FLAGS (pat) = flags;
if (increasing)
PUT_MODE (pat, CASE_VECTOR_SHORTEN_MODE (0, 0, pat));
}
}
#endif /* CASE_VECTOR_SHORTEN_MODE */
/* Compute initial lengths, addresses, and varying flags for each insn. */
int (*length_fun) (rtx_insn *) = increasing ? insn_min_length : insn_default_length;
for (insn_current_address = 0, insn = first;
insn != 0;
insn_current_address += insn_lengths[uid], insn = NEXT_INSN (insn))
{
uid = INSN_UID (insn);
insn_lengths[uid] = 0;
if (LABEL_P (insn))
{
int log = LABEL_TO_ALIGNMENT (insn).levels[0].log;
if (log)
{
int align = 1 << log;
int new_address = (insn_current_address + align - 1) & -align;
insn_lengths[uid] = new_address - insn_current_address;
}
}
INSN_ADDRESSES (uid) = insn_current_address + insn_lengths[uid];
if (NOTE_P (insn) || BARRIER_P (insn)
|| LABEL_P (insn) || DEBUG_INSN_P (insn))
continue;
if (insn->deleted ())
continue;
body = PATTERN (insn);
if (rtx_jump_table_data *table = dyn_cast <rtx_jump_table_data *> (insn))
{
/* This only takes room if read-only data goes into the text
section. */
if (JUMP_TABLES_IN_TEXT_SECTION
|| readonly_data_section == text_section)
insn_lengths[uid] = (XVECLEN (body,
GET_CODE (body) == ADDR_DIFF_VEC)
* GET_MODE_SIZE (table->get_data_mode ()));
/* Alignment is handled by ADDR_VEC_ALIGN. */
}
else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
insn_lengths[uid] = asm_insn_count (body) * insn_default_length (insn);
else if (rtx_sequence *body_seq = dyn_cast <rtx_sequence *> (body))
{
int i;
int const_delay_slots;
if (DELAY_SLOTS)
const_delay_slots = const_num_delay_slots (body_seq->insn (0));
else
const_delay_slots = 0;
int (*inner_length_fun) (rtx_insn *)
= const_delay_slots ? length_fun : insn_default_length;
/* Inside a delay slot sequence, we do not do any branch shortening
if the shortening could change the number of delay slots
of the branch. */
for (i = 0; i < body_seq->len (); i++)
{
rtx_insn *inner_insn = body_seq->insn (i);
int inner_uid = INSN_UID (inner_insn);
int inner_length;
if (GET_CODE (PATTERN (inner_insn)) == ASM_INPUT
|| asm_noperands (PATTERN (inner_insn)) >= 0)
inner_length = (asm_insn_count (PATTERN (inner_insn))
* insn_default_length (inner_insn));
else
inner_length = inner_length_fun (inner_insn);
insn_lengths[inner_uid] = inner_length;
if (const_delay_slots)
{
if ((varying_length[inner_uid]
= insn_variable_length_p (inner_insn)) != 0)
varying_length[uid] = 1;
INSN_ADDRESSES (inner_uid) = (insn_current_address
+ insn_lengths[uid]);
}
else
varying_length[inner_uid] = 0;
insn_lengths[uid] += inner_length;
}
}
else if (GET_CODE (body) != USE && GET_CODE (body) != CLOBBER)
{
insn_lengths[uid] = length_fun (insn);
varying_length[uid] = insn_variable_length_p (insn);
}
/* If needed, do any adjustment. */
#ifdef ADJUST_INSN_LENGTH
ADJUST_INSN_LENGTH (insn, insn_lengths[uid]);
if (insn_lengths[uid] < 0)
fatal_insn ("negative insn length", insn);
#endif
}
/* Now loop over all the insns finding varying length insns. For each,
get the current insn length. If it has changed, reflect the change.
When nothing changes for a full pass, we are done. */
while (something_changed)
{
something_changed = 0;
insn_current_align = MAX_CODE_ALIGN - 1;
for (insn_current_address = 0, insn = first;
insn != 0;
insn = NEXT_INSN (insn))
{
int new_length;
#ifdef ADJUST_INSN_LENGTH
int tmp_length;
#endif
int length_align;
uid = INSN_UID (insn);
if (rtx_code_label *label = dyn_cast <rtx_code_label *> (insn))
{
int log = LABEL_TO_ALIGNMENT (label).levels[0].log;
#ifdef CASE_VECTOR_SHORTEN_MODE
/* If the mode of a following jump table was changed, we
may need to update the alignment of this label. */
if (JUMP_TABLES_IN_TEXT_SECTION
|| readonly_data_section == text_section)
{
rtx_jump_table_data *table = jump_table_for_label (label);
if (table)
{
int newlog = ADDR_VEC_ALIGN (table);
if (newlog != log)
{
log = newlog;
LABEL_TO_ALIGNMENT (insn) = log;
something_changed = 1;
}
}
}
#endif
if (log > insn_current_align)
{
int align = 1 << log;
int new_address= (insn_current_address + align - 1) & -align;
insn_lengths[uid] = new_address - insn_current_address;
insn_current_align = log;
insn_current_address = new_address;
}
else
insn_lengths[uid] = 0;
INSN_ADDRESSES (uid) = insn_current_address;
continue;
}
length_align = INSN_LENGTH_ALIGNMENT (insn);
if (length_align < insn_current_align)
insn_current_align = length_align;
insn_last_address = INSN_ADDRESSES (uid);
INSN_ADDRESSES (uid) = insn_current_address;
#ifdef CASE_VECTOR_SHORTEN_MODE
if (optimize
&& JUMP_TABLE_DATA_P (insn)
&& GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
{
rtx_jump_table_data *table = as_a <rtx_jump_table_data *> (insn);
rtx body = PATTERN (insn);
int old_length = insn_lengths[uid];
rtx_insn *rel_lab =
safe_as_a <rtx_insn *> (XEXP (XEXP (body, 0), 0));
rtx min_lab = XEXP (XEXP (body, 2), 0);
rtx max_lab = XEXP (XEXP (body, 3), 0);
int rel_addr = INSN_ADDRESSES (INSN_UID (rel_lab));
int min_addr = INSN_ADDRESSES (INSN_UID (min_lab));
int max_addr = INSN_ADDRESSES (INSN_UID (max_lab));
rtx_insn *prev;
int rel_align = 0;
addr_diff_vec_flags flags;
scalar_int_mode vec_mode;
/* Avoid automatic aggregate initialization. */
flags = ADDR_DIFF_VEC_FLAGS (body);
/* Try to find a known alignment for rel_lab. */
for (prev = rel_lab;
prev
&& ! insn_lengths[INSN_UID (prev)]
&& ! (varying_length[INSN_UID (prev)] & 1);
prev = PREV_INSN (prev))
if (varying_length[INSN_UID (prev)] & 2)
{
rel_align = LABEL_TO_ALIGNMENT (prev).levels[0].log;
break;
}
/* See the comment on addr_diff_vec_flags in rtl.h for the
meaning of the flags values. base: REL_LAB vec: INSN */
/* Anything after INSN has still addresses from the last
pass; adjust these so that they reflect our current
estimate for this pass. */
if (flags.base_after_vec)
rel_addr += insn_current_address - insn_last_address;
if (flags.min_after_vec)
min_addr += insn_current_address - insn_last_address;
if (flags.max_after_vec)
max_addr += insn_current_address - insn_last_address;
/* We want to know the worst case, i.e. lowest possible value
for the offset of MIN_LAB. If MIN_LAB is after REL_LAB,
its offset is positive, and we have to be wary of code shrink;
otherwise, it is negative, and we have to be vary of code
size increase. */
if (flags.min_after_base)
{
/* If INSN is between REL_LAB and MIN_LAB, the size
changes we are about to make can change the alignment
within the observed offset, therefore we have to break
it up into two parts that are independent. */
if (! flags.base_after_vec && flags.min_after_vec)
{
min_addr -= align_fuzz (rel_lab, insn, rel_align, 0);
min_addr -= align_fuzz (insn, min_lab, 0, 0);
}
else
min_addr -= align_fuzz (rel_lab, min_lab, rel_align, 0);
}
else
{
if (flags.base_after_vec && ! flags.min_after_vec)
{
min_addr -= align_fuzz (min_lab, insn, 0, ~0);
min_addr -= align_fuzz (insn, rel_lab, 0, ~0);
}
else
min_addr -= align_fuzz (min_lab, rel_lab, 0, ~0);
}
/* Likewise, determine the highest lowest possible value
for the offset of MAX_LAB. */
if (flags.max_after_base)
{
if (! flags.base_after_vec && flags.max_after_vec)
{
max_addr += align_fuzz (rel_lab, insn, rel_align, ~0);
max_addr += align_fuzz (insn, max_lab, 0, ~0);
}
else
max_addr += align_fuzz (rel_lab, max_lab, rel_align, ~0);
}
else
{
if (flags.base_after_vec && ! flags.max_after_vec)
{
max_addr += align_fuzz (max_lab, insn, 0, 0);
max_addr += align_fuzz (insn, rel_lab, 0, 0);
}
else
max_addr += align_fuzz (max_lab, rel_lab, 0, 0);
}
vec_mode = CASE_VECTOR_SHORTEN_MODE (min_addr - rel_addr,
max_addr - rel_addr, body);
if (!increasing
|| (GET_MODE_SIZE (vec_mode)
>= GET_MODE_SIZE (table->get_data_mode ())))
PUT_MODE (body, vec_mode);
if (JUMP_TABLES_IN_TEXT_SECTION
|| readonly_data_section == text_section)
{
insn_lengths[uid]
= (XVECLEN (body, 1)
* GET_MODE_SIZE (table->get_data_mode ()));
insn_current_address += insn_lengths[uid];
if (insn_lengths[uid] != old_length)
something_changed = 1;
}
continue;
}
#endif /* CASE_VECTOR_SHORTEN_MODE */
if (! (varying_length[uid]))
{
if (NONJUMP_INSN_P (insn)
&& GET_CODE (PATTERN (insn)) == SEQUENCE)
{
int i;
body = PATTERN (insn);
for (i = 0; i < XVECLEN (body, 0); i++)
{
rtx inner_insn = XVECEXP (body, 0, i);
int inner_uid = INSN_UID (inner_insn);
INSN_ADDRESSES (inner_uid) = insn_current_address;
insn_current_address += insn_lengths[inner_uid];
}
}
else
insn_current_address += insn_lengths[uid];
continue;
}
if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
{
rtx_sequence *seqn = as_a <rtx_sequence *> (PATTERN (insn));
int i;
body = PATTERN (insn);
new_length = 0;
for (i = 0; i < seqn->len (); i++)
{
rtx_insn *inner_insn = seqn->insn (i);
int inner_uid = INSN_UID (inner_insn);
int inner_length;
INSN_ADDRESSES (inner_uid) = insn_current_address;
/* insn_current_length returns 0 for insns with a
non-varying length. */
if (! varying_length[inner_uid])
inner_length = insn_lengths[inner_uid];
else
inner_length = insn_current_length (inner_insn);
if (inner_length != insn_lengths[inner_uid])
{
if (!increasing || inner_length > insn_lengths[inner_uid])
{
insn_lengths[inner_uid] = inner_length;
something_changed = 1;
}
else
inner_length = insn_lengths[inner_uid];
}
insn_current_address += inner_length;
new_length += inner_length;
}
}
else
{
new_length = insn_current_length (insn);
insn_current_address += new_length;
}
#ifdef ADJUST_INSN_LENGTH
/* If needed, do any adjustment. */
tmp_length = new_length;
ADJUST_INSN_LENGTH (insn, new_length);
insn_current_address += (new_length - tmp_length);
#endif
if (new_length != insn_lengths[uid]
&& (!increasing || new_length > insn_lengths[uid]))
{
insn_lengths[uid] = new_length;
something_changed = 1;
}
else
insn_current_address += insn_lengths[uid] - new_length;
}
/* For a non-optimizing compile, do only a single pass. */
if (!increasing)
break;
}
crtl->max_insn_address = insn_current_address;
free (varying_length);
}
/* Given the body of an INSN known to be generated by an ASM statement, return
the number of machine instructions likely to be generated for this insn.
This is used to compute its length. */
static int
asm_insn_count (rtx body)
{
const char *templ;
if (GET_CODE (body) == ASM_INPUT)
templ = XSTR (body, 0);
else
templ = decode_asm_operands (body, NULL, NULL, NULL, NULL, NULL);
return asm_str_count (templ);
}
/* Return the number of machine instructions likely to be generated for the
inline-asm template. */
int
asm_str_count (const char *templ)
{
int count = 1;
if (!*templ)
return 0;
for (; *templ; templ++)
if (IS_ASM_LOGICAL_LINE_SEPARATOR (*templ, templ)
|| *templ == '\n')
count++;
return count;
}
/* Return true if DWARF2 debug info can be emitted for DECL. */
static bool
dwarf2_debug_info_emitted_p (tree decl)
{
/* When DWARF2 debug info is not generated internally. */
if (!dwarf_debuginfo_p () && !dwarf_based_debuginfo_p ())
return false;
if (DECL_IGNORED_P (decl))
return false;
return true;
}
/* Return scope resulting from combination of S1 and S2. */
static tree
choose_inner_scope (tree s1, tree s2)
{
if (!s1)
return s2;
if (!s2)
return s1;
if (BLOCK_NUMBER (s1) > BLOCK_NUMBER (s2))
return s1;
return s2;
}
/* Emit lexical block notes needed to change scope from S1 to S2. */
static void
change_scope (rtx_insn *orig_insn, tree s1, tree s2)
{
rtx_insn *insn = orig_insn;
tree com = NULL_TREE;
tree ts1 = s1, ts2 = s2;
tree s;
while (ts1 != ts2)
{
gcc_assert (ts1 && ts2);
if (BLOCK_NUMBER (ts1) > BLOCK_NUMBER (ts2))
ts1 = BLOCK_SUPERCONTEXT (ts1);
else if (BLOCK_NUMBER (ts1) < BLOCK_NUMBER (ts2))
ts2 = BLOCK_SUPERCONTEXT (ts2);
else
{
ts1 = BLOCK_SUPERCONTEXT (ts1);
ts2 = BLOCK_SUPERCONTEXT (ts2);
}
}
com = ts1;
/* Close scopes. */
s = s1;
while (s != com)
{
rtx_note *note = emit_note_before (NOTE_INSN_BLOCK_END, insn);
NOTE_BLOCK (note) = s;
s = BLOCK_SUPERCONTEXT (s);
}
/* Open scopes. */
s = s2;
while (s != com)
{
insn = emit_note_before (NOTE_INSN_BLOCK_BEG, insn);
NOTE_BLOCK (insn) = s;
s = BLOCK_SUPERCONTEXT (s);
}
}
/* Rebuild all the NOTE_INSN_BLOCK_BEG and NOTE_INSN_BLOCK_END notes based
on the scope tree and the newly reordered instructions. */
static void
reemit_insn_block_notes (void)
{
tree cur_block = DECL_INITIAL (cfun->decl);
rtx_insn *insn;
insn = get_insns ();
for (; insn; insn = NEXT_INSN (insn))
{
tree this_block;
/* Prevent lexical blocks from straddling section boundaries. */
if (NOTE_P (insn))
switch (NOTE_KIND (insn))
{
case NOTE_INSN_SWITCH_TEXT_SECTIONS:
{
for (tree s = cur_block; s != DECL_INITIAL (cfun->decl);
s = BLOCK_SUPERCONTEXT (s))
{
rtx_note *note = emit_note_before (NOTE_INSN_BLOCK_END, insn);
NOTE_BLOCK (note) = s;
note = emit_note_after (NOTE_INSN_BLOCK_BEG, insn);
NOTE_BLOCK (note) = s;
}
}
break;
case NOTE_INSN_BEGIN_STMT:
case NOTE_INSN_INLINE_ENTRY:
this_block = LOCATION_BLOCK (NOTE_MARKER_LOCATION (insn));
goto set_cur_block_to_this_block;
default:
continue;
}
if (!active_insn_p (insn))
continue;
/* Avoid putting scope notes between jump table and its label. */
if (JUMP_TABLE_DATA_P (insn))
continue;
this_block = insn_scope (insn);
/* For sequences compute scope resulting from merging all scopes
of instructions nested inside. */
if (rtx_sequence *body = dyn_cast <rtx_sequence *> (PATTERN (insn)))
{
int i;
this_block = NULL;
for (i = 0; i < body->len (); i++)
this_block = choose_inner_scope (this_block,
insn_scope (body->insn (i)));
}
set_cur_block_to_this_block:
if (! this_block)
{
if (INSN_LOCATION (insn) == UNKNOWN_LOCATION)
continue;
else
this_block = DECL_INITIAL (cfun->decl);
}
if (this_block != cur_block)
{
change_scope (insn, cur_block, this_block);
cur_block = this_block;
}
}
/* change_scope emits before the insn, not after. */
rtx_note *note = emit_note (NOTE_INSN_DELETED);
change_scope (note, cur_block, DECL_INITIAL (cfun->decl));
delete_insn (note);
reorder_blocks ();
}
static const char *some_local_dynamic_name;
/* Locate some local-dynamic symbol still in use by this function
so that we can print its name in local-dynamic base patterns.
Return null if there are no local-dynamic references. */
const char *
get_some_local_dynamic_name ()
{
subrtx_iterator::array_type array;
rtx_insn *insn;
if (some_local_dynamic_name)
return some_local_dynamic_name;
for (insn = get_insns (); insn ; insn = NEXT_INSN (insn))
if (NONDEBUG_INSN_P (insn))
FOR_EACH_SUBRTX (iter, array, PATTERN (insn), ALL)
{
const_rtx x = *iter;
if (GET_CODE (x) == SYMBOL_REF)
{
if (SYMBOL_REF_TLS_MODEL (x) == TLS_MODEL_LOCAL_DYNAMIC)
return some_local_dynamic_name = XSTR (x, 0);
if (CONSTANT_POOL_ADDRESS_P (x))
iter.substitute (get_pool_constant (x));
}
}
return 0;
}
/* Arrange for us to emit a source location note before any further
real insns or section changes, by setting the SEEN_NEXT_VIEW bit in
*SEEN, as long as we are keeping track of location views. The bit
indicates we have referenced the next view at the current PC, so we
have to emit it. This should be called next to the var_location
debug hook. */
static inline void
set_next_view_needed (int *seen)
{
if (debug_variable_location_views)
*seen |= SEEN_NEXT_VIEW;
}
/* Clear the flag in *SEEN indicating we need to emit the next view.
This should be called next to the source_line debug hook. */
static inline void
clear_next_view_needed (int *seen)
{
*seen &= ~SEEN_NEXT_VIEW;
}
/* Test whether we have a pending request to emit the next view in
*SEEN, and emit it if needed, clearing the request bit. */
static inline void
maybe_output_next_view (int *seen)
{
if ((*seen & SEEN_NEXT_VIEW) != 0)
{
clear_next_view_needed (seen);
(*debug_hooks->source_line) (last_linenum, last_columnnum,
last_filename, last_discriminator,
false);
}
}
/* We want to emit param bindings (before the first begin_stmt) in the
initial view, if we are emitting views. To that end, we may
consume initial notes in the function, processing them in
final_start_function, before signaling the beginning of the
prologue, rather than in final.
We don't test whether the DECLs are PARM_DECLs: the assumption is
that there will be a NOTE_INSN_BEGIN_STMT marker before any
non-parameter NOTE_INSN_VAR_LOCATION. It's ok if the marker is not
there, we'll just have more variable locations bound in the initial
view, which is consistent with their being bound without any code
that would give them a value. */
static inline bool
in_initial_view_p (rtx_insn *insn)
{
return (!DECL_IGNORED_P (current_function_decl)
&& debug_variable_location_views
&& insn && GET_CODE (insn) == NOTE
&& (NOTE_KIND (insn) == NOTE_INSN_VAR_LOCATION
|| NOTE_KIND (insn) == NOTE_INSN_DELETED));
}
/* Output assembler code for the start of a function,
and initialize some of the variables in this file
for the new function. The label for the function and associated
assembler pseudo-ops have already been output in `assemble_start_function'.
FIRST is the first insn of the rtl for the function being compiled.
FILE is the file to write assembler code to.
SEEN should be initially set to zero, and it may be updated to
indicate we have references to the next location view, that would
require us to emit it at the current PC.
OPTIMIZE_P is nonzero if we should eliminate redundant
test and compare insns. */
static void
final_start_function_1 (rtx_insn **firstp, FILE *file, int *seen,
int optimize_p ATTRIBUTE_UNUSED)
{
block_depth = 0;
this_is_asm_operands = 0;
need_profile_function = false;
last_filename = LOCATION_FILE (prologue_location);
last_linenum = LOCATION_LINE (prologue_location);
last_columnnum = LOCATION_COLUMN (prologue_location);
last_discriminator = discriminator = 0;
last_bb_discriminator = bb_discriminator = 0;
force_source_line = false;
high_block_linenum = high_function_linenum = last_linenum;
if (flag_sanitize & SANITIZE_ADDRESS)
asan_function_start ();
rtx_insn *first = *firstp;
if (in_initial_view_p (first))
{
do
{
final_scan_insn (first, file, 0, 0, seen);
first = NEXT_INSN (first);
}
while (in_initial_view_p (first));
*firstp = first;
}
if (!DECL_IGNORED_P (current_function_decl))
debug_hooks->begin_prologue (last_linenum, last_columnnum,
last_filename);
if (!dwarf2_debug_info_emitted_p (current_function_decl))
dwarf2out_begin_prologue (0, 0, NULL);
if (DECL_IGNORED_P (current_function_decl) && last_linenum && last_filename)
debug_hooks->set_ignored_loc (last_linenum, last_columnnum, last_filename);
#ifdef LEAF_REG_REMAP
if (crtl->uses_only_leaf_regs)
leaf_renumber_regs (first);
#endif
/* The Sun386i and perhaps other machines don't work right
if the profiling code comes after the prologue. */
if (targetm.profile_before_prologue () && crtl->profile)
{
if (targetm.asm_out.function_prologue == default_function_pro_epilogue
&& targetm.have_prologue ())
{
rtx_insn *insn;
for (insn = first; insn; insn = NEXT_INSN (insn))
if (!NOTE_P (insn))
{
insn = NULL;
break;
}
else if (NOTE_KIND (insn) == NOTE_INSN_BASIC_BLOCK
|| NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG)
break;
else if (NOTE_KIND (insn) == NOTE_INSN_DELETED
|| NOTE_KIND (insn) == NOTE_INSN_VAR_LOCATION)
continue;
else
{
insn = NULL;
break;
}
if (insn)
need_profile_function = true;
else
profile_function (file);
}
else
profile_function (file);
}
/* If debugging, assign block numbers to all of the blocks in this
function. */
if (write_symbols)
{
reemit_insn_block_notes ();
number_blocks (current_function_decl);
/* We never actually put out begin/end notes for the top-level
block in the function. But, conceptually, that block is
always needed. */
TREE_ASM_WRITTEN (DECL_INITIAL (current_function_decl)) = 1;
}
unsigned HOST_WIDE_INT min_frame_size
= constant_lower_bound (get_frame_size ());
if (min_frame_size > (unsigned HOST_WIDE_INT) warn_frame_larger_than_size)
{
/* Issue a warning */
warning (OPT_Wframe_larger_than_,
"the frame size of %wu bytes is larger than %wu bytes",
min_frame_size, warn_frame_larger_than_size);
}
/* First output the function prologue: code to set up the stack frame. */
targetm.asm_out.function_prologue (file);
/* If the machine represents the prologue as RTL, the profiling code must
be emitted when NOTE_INSN_PROLOGUE_END is scanned. */
if (! targetm.have_prologue ())
profile_after_prologue (file);
}
/* This is an exported final_start_function_1, callable without SEEN. */
void
final_start_function (rtx_insn *first, FILE *file,
int optimize_p ATTRIBUTE_UNUSED)
{
int seen = 0;
final_start_function_1 (&first, file, &seen, optimize_p);
gcc_assert (seen == 0);
}
static void
profile_after_prologue (FILE *file ATTRIBUTE_UNUSED)
{
if (!targetm.profile_before_prologue () && crtl->profile)
profile_function (file);
}
static void
profile_function (FILE *file ATTRIBUTE_UNUSED)
{
#ifndef NO_PROFILE_COUNTERS
# define NO_PROFILE_COUNTERS 0
#endif
#ifdef ASM_OUTPUT_REG_PUSH
rtx sval = NULL, chain = NULL;
if (cfun->returns_struct)
sval = targetm.calls.struct_value_rtx (TREE_TYPE (current_function_decl),
true);
if (cfun->static_chain_decl)
chain = targetm.calls.static_chain (current_function_decl, true);
#endif /* ASM_OUTPUT_REG_PUSH */
if (! NO_PROFILE_COUNTERS)
{
int align = MIN (BIGGEST_ALIGNMENT, LONG_TYPE_SIZE);
switch_to_section (data_section);
ASM_OUTPUT_ALIGN (file, floor_log2 (align / BITS_PER_UNIT));
targetm.asm_out.internal_label (file, "LP", current_function_funcdef_no);
assemble_integer (const0_rtx, LONG_TYPE_SIZE / BITS_PER_UNIT, align, 1);
}
switch_to_section (current_function_section ());
#ifdef ASM_OUTPUT_REG_PUSH
if (sval && REG_P (sval))
ASM_OUTPUT_REG_PUSH (file, REGNO (sval));
if (chain && REG_P (chain))
ASM_OUTPUT_REG_PUSH (file, REGNO (chain));
#endif
FUNCTION_PROFILER (file, current_function_funcdef_no);
#ifdef ASM_OUTPUT_REG_PUSH
if (chain && REG_P (chain))
ASM_OUTPUT_REG_POP (file, REGNO (chain));
if (sval && REG_P (sval))
ASM_OUTPUT_REG_POP (file, REGNO (sval));
#endif
}
/* Output assembler code for the end of a function.
For clarity, args are same as those of `final_start_function'
even though not all of them are needed. */
void
final_end_function (void)
{
app_disable ();
if (!DECL_IGNORED_P (current_function_decl))
debug_hooks->end_function (high_function_linenum);
/* Finally, output the function epilogue:
code to restore the stack frame and return to the caller. */
targetm.asm_out.function_epilogue (asm_out_file);
/* And debug output. */
if (!DECL_IGNORED_P (current_function_decl))
debug_hooks->end_epilogue (last_linenum, last_filename);
if (!dwarf2_debug_info_emitted_p (current_function_decl)
&& dwarf2out_do_frame ())
dwarf2out_end_epilogue (last_linenum, last_filename);
some_local_dynamic_name = 0;
}
/* Dumper helper for basic block information. FILE is the assembly
output file, and INSN is the instruction being emitted. */
static void
dump_basic_block_info (FILE *file, rtx_insn *insn, basic_block *start_to_bb,
basic_block *end_to_bb, int bb_map_size, int *bb_seqn)
{
basic_block bb;
if (!flag_debug_asm)
return;
if (INSN_UID (insn) < bb_map_size
&& (bb = start_to_bb[INSN_UID (insn)]) != NULL)
{
edge e;
edge_iterator ei;
fprintf (file, "%s BLOCK %d", ASM_COMMENT_START, bb->index);
if (bb->count.initialized_p ())
{
fprintf (file, ", count:");
bb->count.dump (file);
}
fprintf (file, " seq:%d", (*bb_seqn)++);
fprintf (file, "\n%s PRED:", ASM_COMMENT_START);
FOR_EACH_EDGE (e, ei, bb->preds)
{
dump_edge_info (file, e, TDF_DETAILS, 0);
}
fprintf (file, "\n");
}
if (INSN_UID (insn) < bb_map_size
&& (bb = end_to_bb[INSN_UID (insn)]) != NULL)
{
edge e;
edge_iterator ei;
fprintf (asm_out_file, "%s SUCC:", ASM_COMMENT_START);
FOR_EACH_EDGE (e, ei, bb->succs)
{
dump_edge_info (asm_out_file, e, TDF_DETAILS, 1);
}
fprintf (file, "\n");
}
}
/* Output assembler code for some insns: all or part of a function.
For description of args, see `final_start_function', above. */
static void
final_1 (rtx_insn *first, FILE *file, int seen, int optimize_p)
{
rtx_insn *insn, *next;
/* Used for -dA dump. */
basic_block *start_to_bb = NULL;
basic_block *end_to_bb = NULL;
int bb_map_size = 0;
int bb_seqn = 0;
last_ignored_compare = 0;
init_recog ();
CC_STATUS_INIT;
if (flag_debug_asm)
{
basic_block bb;
bb_map_size = get_max_uid () + 1;
start_to_bb = XCNEWVEC (basic_block, bb_map_size);
end_to_bb = XCNEWVEC (basic_block, bb_map_size);
/* There is no cfg for a thunk. */
if (!cfun->is_thunk)
FOR_EACH_BB_REVERSE_FN (bb, cfun)
{
start_to_bb[INSN_UID (BB_HEAD (bb))] = bb;
end_to_bb[INSN_UID (BB_END (bb))] = bb;
}
}
/* Output the insns. */
for (insn = first; insn;)
{
if (HAVE_ATTR_length)
{
if ((unsigned) INSN_UID (insn) >= INSN_ADDRESSES_SIZE ())
{
/* This can be triggered by bugs elsewhere in the compiler if
new insns are created after init_insn_lengths is called. */
gcc_assert (NOTE_P (insn));
insn_current_address = -1;
}
else
insn_current_address = INSN_ADDRESSES (INSN_UID (insn));
/* final can be seen as an iteration of shorten_branches that
does nothing (since a fixed point has already been reached). */
insn_last_address = insn_current_address;
}
dump_basic_block_info (file, insn, start_to_bb, end_to_bb,
bb_map_size, &bb_seqn);
insn = final_scan_insn (insn, file, optimize_p, 0, &seen);
}
maybe_output_next_view (&seen);
if (flag_debug_asm)
{
free (start_to_bb);
free (end_to_bb);
}
/* Remove CFI notes, to avoid compare-debug failures. */
for (insn = first; insn; insn = next)
{
next = NEXT_INSN (insn);
if (NOTE_P (insn)
&& (NOTE_KIND (insn) == NOTE_INSN_CFI
|| NOTE_KIND (insn) == NOTE_INSN_CFI_LABEL))
delete_insn (insn);
}
}
/* This is an exported final_1, callable without SEEN. */
void
final (rtx_insn *first, FILE *file, int optimize_p)
{
/* Those that use the internal final_start_function_1/final_1 API
skip initial debug bind notes in final_start_function_1, and pass
the modified FIRST to final_1. But those that use the public
final_start_function/final APIs, final_start_function can't move
FIRST because it's not passed by reference, so if they were
skipped there, skip them again here. */
while (in_initial_view_p (first))
first = NEXT_INSN (first);
final_1 (first, file, 0, optimize_p);
}
const char *
get_insn_template (int code, rtx_insn *insn)
{
switch (insn_data[code].output_format)
{
case INSN_OUTPUT_FORMAT_SINGLE:
return insn_data[code].output.single;
case INSN_OUTPUT_FORMAT_MULTI:
return insn_data[code].output.multi[which_alternative];
case INSN_OUTPUT_FORMAT_FUNCTION:
gcc_assert (insn);
return (*insn_data[code].output.function) (recog_data.operand, insn);
default:
gcc_unreachable ();
}
}
/* Emit the appropriate declaration for an alternate-entry-point
symbol represented by INSN, to FILE. INSN is a CODE_LABEL with
LABEL_KIND != LABEL_NORMAL.
The case fall-through in this function is intentional. */
static void
output_alternate_entry_point (FILE *file, rtx_insn *insn)
{
const char *name = LABEL_NAME (insn);
switch (LABEL_KIND (insn))
{
case LABEL_WEAK_ENTRY:
#ifdef ASM_WEAKEN_LABEL
ASM_WEAKEN_LABEL (file, name);
gcc_fallthrough ();
#endif
case LABEL_GLOBAL_ENTRY:
targetm.asm_out.globalize_label (file, name);
gcc_fallthrough ();
case LABEL_STATIC_ENTRY:
#ifdef ASM_OUTPUT_TYPE_DIRECTIVE
ASM_OUTPUT_TYPE_DIRECTIVE (file, name, "function");
#endif
ASM_OUTPUT_LABEL (file, name);
break;
case LABEL_NORMAL:
default:
gcc_unreachable ();
}
}
/* Given a CALL_INSN, find and return the nested CALL. */
static rtx
call_from_call_insn (rtx_call_insn *insn)
{
rtx x;
gcc_assert (CALL_P (insn));
x = PATTERN (insn);
while (GET_CODE (x) != CALL)
{
switch (GET_CODE (x))
{
default:
gcc_unreachable ();
case COND_EXEC:
x = COND_EXEC_CODE (x);
break;
case PARALLEL:
x = XVECEXP (x, 0, 0);
break;
case SET:
x = XEXP (x, 1);
break;
}
}
return x;
}
/* Print a comment into the asm showing FILENAME, LINENUM, and the
corresponding source line, if available. */
static void
asm_show_source (const char *filename, int linenum)
{
if (!filename)
return;
char_span line = location_get_source_line (filename, linenum);
if (!line)
return;
fprintf (asm_out_file, "%s %s:%i: ", ASM_COMMENT_START, filename, linenum);
/* "line" is not 0-terminated, so we must use its length. */
fwrite (line.get_buffer (), 1, line.length (), asm_out_file);
fputc ('\n', asm_out_file);
}
/* Judge if an absolute jump table is relocatable. */
bool
jumptable_relocatable (void)
{
bool relocatable = false;
if (!CASE_VECTOR_PC_RELATIVE
&& !targetm.asm_out.generate_pic_addr_diff_vec ()
&& targetm_common.have_named_sections)
relocatable = targetm.asm_out.reloc_rw_mask ();
return relocatable;
}
/* The final scan for one insn, INSN.
Args are same as in `final', except that INSN
is the insn being scanned.
Value returned is the next insn to be scanned.
NOPEEPHOLES is the flag to disallow peephole processing (currently
used for within delayed branch sequence output).
SEEN is used to track the end of the prologue, for emitting
debug information. We force the emission of a line note after
both NOTE_INSN_PROLOGUE_END and NOTE_INSN_FUNCTION_BEG. */
static rtx_insn *
final_scan_insn_1 (rtx_insn *insn, FILE *file, int optimize_p ATTRIBUTE_UNUSED,
int nopeepholes ATTRIBUTE_UNUSED, int *seen)
{
rtx_insn *next;
rtx_jump_table_data *table;
insn_counter++;
/* Ignore deleted insns. These can occur when we split insns (due to a
template of "#") while not optimizing. */
if (insn->deleted ())
return NEXT_INSN (insn);
switch (GET_CODE (insn))
{
case NOTE:
switch (NOTE_KIND (insn))
{
case NOTE_INSN_DELETED:
case NOTE_INSN_UPDATE_SJLJ_CONTEXT:
break;
case NOTE_INSN_SWITCH_TEXT_SECTIONS:
maybe_output_next_view (seen);
output_function_exception_table (0);
if (targetm.asm_out.unwind_emit)
targetm.asm_out.unwind_emit (asm_out_file, insn);
in_cold_section_p = !in_cold_section_p;
gcc_checking_assert (in_cold_section_p);
if (in_cold_section_p)
cold_function_name
= clone_function_name (current_function_decl, "cold");
if (dwarf2out_do_frame ())
{
dwarf2out_switch_text_section ();
if (!dwarf2_debug_info_emitted_p (current_function_decl)
&& !DECL_IGNORED_P (current_function_decl))
debug_hooks->switch_text_section ();
}
else if (!DECL_IGNORED_P (current_function_decl))
debug_hooks->switch_text_section ();
if (DECL_IGNORED_P (current_function_decl) && last_linenum
&& last_filename)
debug_hooks->set_ignored_loc (last_linenum, last_columnnum,
last_filename);
switch_to_section (current_function_section ());
targetm.asm_out.function_switched_text_sections (asm_out_file,
current_function_decl,
in_cold_section_p);
/* Emit a label for the split cold section. Form label name by
suffixing "cold" to the original function's name. */
if (in_cold_section_p)
{
#ifdef ASM_DECLARE_COLD_FUNCTION_NAME
ASM_DECLARE_COLD_FUNCTION_NAME (asm_out_file,
IDENTIFIER_POINTER
(cold_function_name),
current_function_decl);
#else
ASM_OUTPUT_LABEL (asm_out_file,
IDENTIFIER_POINTER (cold_function_name));
#endif
if (dwarf2out_do_frame ()
&& cfun->fde->dw_fde_second_begin != NULL)
ASM_OUTPUT_LABEL (asm_out_file, cfun->fde->dw_fde_second_begin);
}
break;
case NOTE_INSN_BASIC_BLOCK:
if (need_profile_function)
{
profile_function (asm_out_file);
need_profile_function = false;
}
if (targetm.asm_out.unwind_emit)
targetm.asm_out.unwind_emit (asm_out_file, insn);
bb_discriminator = NOTE_BASIC_BLOCK (insn)->discriminator;
break;
case NOTE_INSN_EH_REGION_BEG:
ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHB",
NOTE_EH_HANDLER (insn));
break;
case NOTE_INSN_EH_REGION_END:
ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHE",
NOTE_EH_HANDLER (insn));
break;
case NOTE_INSN_PROLOGUE_END:
targetm.asm_out.function_end_prologue (file);
profile_after_prologue (file);
if ((*seen & (SEEN_EMITTED | SEEN_NOTE)) == SEEN_NOTE)
{
*seen |= SEEN_EMITTED;
force_source_line = true;
}
else
*seen |= SEEN_NOTE;
break;
case NOTE_INSN_EPILOGUE_BEG:
if (!DECL_IGNORED_P (current_function_decl))
(*debug_hooks->begin_epilogue) (last_linenum, last_filename);
targetm.asm_out.function_begin_epilogue (file);
break;
case NOTE_INSN_CFI:
dwarf2out_emit_cfi (NOTE_CFI (insn));
break;
case NOTE_INSN_CFI_LABEL:
ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LCFI",
NOTE_LABEL_NUMBER (insn));
break;
case NOTE_INSN_FUNCTION_BEG:
if (need_profile_function)
{
profile_function (asm_out_file);
need_profile_function = false;
}
app_disable ();
if (!DECL_IGNORED_P (current_function_decl))
debug_hooks->end_prologue (last_linenum, last_filename);
if ((*seen & (SEEN_EMITTED | SEEN_NOTE)) == SEEN_NOTE)
{
*seen |= SEEN_EMITTED;
force_source_line = true;
}
else
*seen |= SEEN_NOTE;
break;
case NOTE_INSN_BLOCK_BEG:
if (debug_info_level >= DINFO_LEVEL_NORMAL
|| dwarf_debuginfo_p ()
|| write_symbols == VMS_DEBUG)
{
int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
app_disable ();
++block_depth;
high_block_linenum = last_linenum;
/* Output debugging info about the symbol-block beginning. */
if (!DECL_IGNORED_P (current_function_decl))
debug_hooks->begin_block (last_linenum, n);
/* Mark this block as output. */
TREE_ASM_WRITTEN (NOTE_BLOCK (insn)) = 1;
BLOCK_IN_COLD_SECTION_P (NOTE_BLOCK (insn)) = in_cold_section_p;
}
if (write_symbols == DBX_DEBUG)
{
location_t *locus_ptr
= block_nonartificial_location (NOTE_BLOCK (insn));
if (locus_ptr != NULL)
{
override_filename = LOCATION_FILE (*locus_ptr);
override_linenum = LOCATION_LINE (*locus_ptr);
override_columnnum = LOCATION_COLUMN (*locus_ptr);
override_discriminator = compute_discriminator (*locus_ptr);
}
}
break;
case NOTE_INSN_BLOCK_END:
maybe_output_next_view (seen);
if (debug_info_level >= DINFO_LEVEL_NORMAL
|| dwarf_debuginfo_p ()
|| write_symbols == VMS_DEBUG)
{
int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
app_disable ();
/* End of a symbol-block. */
--block_depth;
gcc_assert (block_depth >= 0);
if (!DECL_IGNORED_P (current_function_decl))
debug_hooks->end_block (high_block_linenum, n);
gcc_assert (BLOCK_IN_COLD_SECTION_P (NOTE_BLOCK (insn))
== in_cold_section_p);
}
if (write_symbols == DBX_DEBUG)
{
tree outer_block = BLOCK_SUPERCONTEXT (NOTE_BLOCK (insn));
location_t *locus_ptr
= block_nonartificial_location (outer_block);
if (locus_ptr != NULL)
{
override_filename = LOCATION_FILE (*locus_ptr);
override_linenum = LOCATION_LINE (*locus_ptr);
override_columnnum = LOCATION_COLUMN (*locus_ptr);
override_discriminator = compute_discriminator (*locus_ptr);
}
else
{
override_filename = NULL;
override_linenum = 0;
override_columnnum = 0;
override_discriminator = 0;
}
}
break;
case NOTE_INSN_DELETED_LABEL:
/* Emit the label. We may have deleted the CODE_LABEL because
the label could be proved to be unreachable, though still
referenced (in the form of having its address taken. */
ASM_OUTPUT_DEBUG_LABEL (file, "L", CODE_LABEL_NUMBER (insn));
break;
case NOTE_INSN_DELETED_DEBUG_LABEL:
/* Similarly, but need to use different namespace for it. */
if (CODE_LABEL_NUMBER (insn) != -1)
ASM_OUTPUT_DEBUG_LABEL (file, "LDL", CODE_LABEL_NUMBER (insn));
break;
case NOTE_INSN_VAR_LOCATION:
if (!DECL_IGNORED_P (current_function_decl))
{
debug_hooks->var_location (insn);
set_next_view_needed (seen);
}
break;
case NOTE_INSN_BEGIN_STMT:
gcc_checking_assert (cfun->debug_nonbind_markers);
if (!DECL_IGNORED_P (current_function_decl)
&& notice_source_line (insn, NULL))
{
output_source_line:
(*debug_hooks->source_line) (last_linenum, last_columnnum,
last_filename, last_discriminator,
true);
clear_next_view_needed (seen);
}
break;
case NOTE_INSN_INLINE_ENTRY:
gcc_checking_assert (cfun->debug_nonbind_markers);
if (!DECL_IGNORED_P (current_function_decl)
&& notice_source_line (insn, NULL))
{
(*debug_hooks->inline_entry) (LOCATION_BLOCK
(NOTE_MARKER_LOCATION (insn)));
goto output_source_line;
}
break;
default:
gcc_unreachable ();
break;
}
break;
case BARRIER:
break;
case CODE_LABEL:
/* The target port might emit labels in the output function for
some insn, e.g. sh.c output_branchy_insn. */
if (CODE_LABEL_NUMBER (insn) <= max_labelno)
{
align_flags alignment = LABEL_TO_ALIGNMENT (insn);
if (alignment.levels[0].log && NEXT_INSN (insn))
{
#ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
/* Output both primary and secondary alignment. */
ASM_OUTPUT_MAX_SKIP_ALIGN (file, alignment.levels[0].log,
alignment.levels[0].maxskip);
ASM_OUTPUT_MAX_SKIP_ALIGN (file, alignment.levels[1].log,
alignment.levels[1].maxskip);
#else
#ifdef ASM_OUTPUT_ALIGN_WITH_NOP
ASM_OUTPUT_ALIGN_WITH_NOP (file, alignment.levels[0].log);
#else
ASM_OUTPUT_ALIGN (file, alignment.levels[0].log);
#endif
#endif
}
}
CC_STATUS_INIT;
if (!DECL_IGNORED_P (current_function_decl) && LABEL_NAME (insn))
debug_hooks->label (as_a <rtx_code_label *> (insn));
app_disable ();
/* If this label is followed by a jump-table, make sure we put
the label in the read-only section. Also possibly write the
label and jump table together. */
table = jump_table_for_label (as_a <rtx_code_label *> (insn));
if (table)
{
#if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
/* In this case, the case vector is being moved by the
target, so don't output the label at all. Leave that
to the back end macros. */
#else
if (! JUMP_TABLES_IN_TEXT_SECTION)
{
int log_align;
switch_to_section (targetm.asm_out.function_rodata_section
(current_function_decl,
jumptable_relocatable ()));
#ifdef ADDR_VEC_ALIGN
log_align = ADDR_VEC_ALIGN (table);
#else
log_align = exact_log2 (BIGGEST_ALIGNMENT / BITS_PER_UNIT);
#endif
ASM_OUTPUT_ALIGN (file, log_align);
}
else
switch_to_section (current_function_section ());
#ifdef ASM_OUTPUT_CASE_LABEL
ASM_OUTPUT_CASE_LABEL (file, "L", CODE_LABEL_NUMBER (insn), table);
#else
targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (insn));
#endif
#endif
break;
}
if (LABEL_ALT_ENTRY_P (insn))
output_alternate_entry_point (file, insn);
else
targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (insn));
break;
default:
{
rtx body = PATTERN (insn);
int insn_code_number;
const char *templ;
bool is_stmt, *is_stmt_p;
if (MAY_HAVE_DEBUG_MARKER_INSNS && cfun->debug_nonbind_markers)
{
is_stmt = false;
is_stmt_p = NULL;
}
else
is_stmt_p = &is_stmt;
/* Reset this early so it is correct for ASM statements. */
current_insn_predicate = NULL_RTX;
/* An INSN, JUMP_INSN or CALL_INSN.
First check for special kinds that recog doesn't recognize. */
if (GET_CODE (body) == USE /* These are just declarations. */
|| GET_CODE (body) == CLOBBER)
break;
/* Detect insns that are really jump-tables
and output them as such. */
if (JUMP_TABLE_DATA_P (insn))
{
#if !(defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC))
int vlen, idx;
#endif
if (! JUMP_TABLES_IN_TEXT_SECTION)
switch_to_section (targetm.asm_out.function_rodata_section
(current_function_decl,
jumptable_relocatable ()));
else
switch_to_section (current_function_section ());
app_disable ();
#if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
if (GET_CODE (body) == ADDR_VEC)
{
#ifdef ASM_OUTPUT_ADDR_VEC
ASM_OUTPUT_ADDR_VEC (PREV_INSN (insn), body);
#else
gcc_unreachable ();
#endif
}
else
{
#ifdef ASM_OUTPUT_ADDR_DIFF_VEC
ASM_OUTPUT_ADDR_DIFF_VEC (PREV_INSN (insn), body);
#else
gcc_unreachable ();
#endif
}
#else
vlen = XVECLEN (body, GET_CODE (body) == ADDR_DIFF_VEC);
for (idx = 0; idx < vlen; idx++)
{
if (GET_CODE (body) == ADDR_VEC)
{
#ifdef ASM_OUTPUT_ADDR_VEC_ELT
ASM_OUTPUT_ADDR_VEC_ELT
(file, CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 0, idx), 0)));
#else
gcc_unreachable ();
#endif
}
else
{
#ifdef ASM_OUTPUT_ADDR_DIFF_ELT
ASM_OUTPUT_ADDR_DIFF_ELT
(file,
body,
CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 1, idx), 0)),
CODE_LABEL_NUMBER (XEXP (XEXP (body, 0), 0)));
#else
gcc_unreachable ();
#endif
}
}
#ifdef ASM_OUTPUT_CASE_END
ASM_OUTPUT_CASE_END (file,
CODE_LABEL_NUMBER (PREV_INSN (insn)),
insn);
#endif
#endif
switch_to_section (current_function_section ());
if (debug_variable_location_views
&& !DECL_IGNORED_P (current_function_decl))
debug_hooks->var_location (insn);
break;
}
/* Output this line note if it is the first or the last line
note in a row. */
if (!DECL_IGNORED_P (current_function_decl)
&& notice_source_line (insn, is_stmt_p))
{
if (flag_verbose_asm)
asm_show_source (last_filename, last_linenum);
(*debug_hooks->source_line) (last_linenum, last_columnnum,
last_filename, last_discriminator,
is_stmt);
clear_next_view_needed (seen);
}
else
maybe_output_next_view (seen);
gcc_checking_assert (!DEBUG_INSN_P (insn));
if (GET_CODE (body) == PARALLEL
&& GET_CODE (XVECEXP (body, 0, 0)) == ASM_INPUT)
body = XVECEXP (body, 0, 0);
if (GET_CODE (body) == ASM_INPUT)
{
const char *string = XSTR (body, 0);
/* There's no telling what that did to the condition codes. */
CC_STATUS_INIT;
if (string[0])
{
expanded_location loc;
app_enable ();
loc = expand_location (ASM_INPUT_SOURCE_LOCATION (body));
if (*loc.file && loc.line)
fprintf (asm_out_file, "%s %i \"%s\" 1\n",
ASM_COMMENT_START, loc.line, loc.file);
fprintf (asm_out_file, "\t%s\n", string);
#if HAVE_AS_LINE_ZERO
if (*loc.file && loc.line)
fprintf (asm_out_file, "%s 0 \"\" 2\n", ASM_COMMENT_START);
#endif
}
break;
}
/* Detect `asm' construct with operands. */
if (asm_noperands (body) >= 0)
{
unsigned int noperands = asm_noperands (body);
rtx *ops = XALLOCAVEC (rtx, noperands);
const char *string;
location_t loc;
expanded_location expanded;
/* There's no telling what that did to the condition codes. */
CC_STATUS_INIT;
/* Get out the operand values. */
string = decode_asm_operands (body, ops, NULL, NULL, NULL, &loc);
/* Inhibit dying on what would otherwise be compiler bugs. */
insn_noperands = noperands;
this_is_asm_operands = insn;
expanded = expand_location (loc);
#ifdef FINAL_PRESCAN_INSN
FINAL_PRESCAN_INSN (insn, ops, insn_noperands);
#endif
/* Output the insn using them. */
if (string[0])
{
app_enable ();
if (expanded.file && expanded.line)
fprintf (asm_out_file, "%s %i \"%s\" 1\n",
ASM_COMMENT_START, expanded.line, expanded.file);
output_asm_insn (string, ops);
#if HAVE_AS_LINE_ZERO
if (expanded.file && expanded.line)
fprintf (asm_out_file, "%s 0 \"\" 2\n", ASM_COMMENT_START);
#endif
}
if (targetm.asm_out.final_postscan_insn)
targetm.asm_out.final_postscan_insn (file, insn, ops,
insn_noperands);
this_is_asm_operands = 0;
break;
}
app_disable ();
if (rtx_sequence *seq = dyn_cast <rtx_sequence *> (body))
{
/* A delayed-branch sequence */
int i;
final_sequence = seq;
/* The first insn in this SEQUENCE might be a JUMP_INSN that will
force the restoration of a comparison that was previously
thought unnecessary. If that happens, cancel this sequence
and cause that insn to be restored. */
next = final_scan_insn (seq->insn (0), file, 0, 1, seen);
if (next != seq->insn (1))
{
final_sequence = 0;
return next;
}
for (i = 1; i < seq->len (); i++)
{
rtx_insn *insn = seq->insn (i);
rtx_insn *next = NEXT_INSN (insn);
/* We loop in case any instruction in a delay slot gets
split. */
do
insn = final_scan_insn (insn, file, 0, 1, seen);
while (insn != next);
}
#ifdef DBR_OUTPUT_SEQEND
DBR_OUTPUT_SEQEND (file);
#endif
final_sequence = 0;
/* If the insn requiring the delay slot was a CALL_INSN, the
insns in the delay slot are actually executed before the
called function. Hence we don't preserve any CC-setting
actions in these insns and the CC must be marked as being
clobbered by the function. */
if (CALL_P (seq->insn (0)))
{
CC_STATUS_INIT;
}
break;
}
/* We have a real machine instruction as rtl. */
body = PATTERN (insn);
/* Do machine-specific peephole optimizations if desired. */
if (HAVE_peephole && optimize_p && !flag_no_peephole && !nopeepholes)
{
rtx_insn *next = peephole (insn);
/* When peepholing, if there were notes within the peephole,
emit them before the peephole. */
if (next != 0 && next != NEXT_INSN (insn))
{
rtx_insn *note, *prev = PREV_INSN (insn);
for (note = NEXT_INSN (insn); note != next;
note = NEXT_INSN (note))
final_scan_insn (note, file, optimize_p, nopeepholes, seen);
/* Put the notes in the proper position for a later
rescan. For example, the SH target can do this
when generating a far jump in a delayed branch
sequence. */
note = NEXT_INSN (insn);
SET_PREV_INSN (note) = prev;
SET_NEXT_INSN (prev) = note;
SET_NEXT_INSN (PREV_INSN (next)) = insn;
SET_PREV_INSN (insn) = PREV_INSN (next);
SET_NEXT_INSN (insn) = next;
SET_PREV_INSN (next) = insn;
}
/* PEEPHOLE might have changed this. */
body = PATTERN (insn);
}
/* Try to recognize the instruction.
If successful, verify that the operands satisfy the
constraints for the instruction. Crash if they don't,
since `reload' should have changed them so that they do. */
insn_code_number = recog_memoized (insn);
cleanup_subreg_operands (insn);
/* Dump the insn in the assembly for debugging (-dAP).
If the final dump is requested as slim RTL, dump slim
RTL to the assembly file also. */
if (flag_dump_rtl_in_asm)
{
print_rtx_head = ASM_COMMENT_START;
if (! (dump_flags & TDF_SLIM))
print_rtl_single (asm_out_file, insn);
else
dump_insn_slim (asm_out_file, insn);
print_rtx_head = "";
}
if (! constrain_operands_cached (insn, 1))
fatal_insn_not_found (insn);
/* Some target machines need to prescan each insn before
it is output. */
#ifdef FINAL_PRESCAN_INSN
FINAL_PRESCAN_INSN (insn, recog_data.operand, recog_data.n_operands);
#endif
if (targetm.have_conditional_execution ()
&& GET_CODE (PATTERN (insn)) == COND_EXEC)
current_insn_predicate = COND_EXEC_TEST (PATTERN (insn));
current_output_insn = debug_insn = insn;
/* Find the proper template for this insn. */
templ = get_insn_template (insn_code_number, insn);
/* If the C code returns 0, it means that it is a jump insn
which follows a deleted test insn, and that test insn
needs to be reinserted. */
if (templ == 0)
{
rtx_insn *prev;
gcc_assert (prev_nonnote_insn (insn) == last_ignored_compare);
/* We have already processed the notes between the setter and
the user. Make sure we don't process them again, this is
particularly important if one of the notes is a block
scope note or an EH note. */
for (prev = insn;
prev != last_ignored_compare;
prev = PREV_INSN (prev))
{
if (NOTE_P (prev))
delete_insn (prev); /* Use delete_note. */
}
return prev;
}
/* If the template is the string "#", it means that this insn must
be split. */
if (templ[0] == '#' && templ[1] == '\0')
{
rtx_insn *new_rtx = try_split (body, insn, 0);
/* If we didn't split the insn, go away. */
if (new_rtx == insn && PATTERN (new_rtx) == body)
fatal_insn ("could not split insn", insn);
/* If we have a length attribute, this instruction should have
been split in shorten_branches, to ensure that we would have
valid length info for the splitees. */
gcc_assert (!HAVE_ATTR_length);
return new_rtx;
}
/* ??? This will put the directives in the wrong place if
get_insn_template outputs assembly directly. However calling it
before get_insn_template breaks if the insns is split. */
if (targetm.asm_out.unwind_emit_before_insn
&& targetm.asm_out.unwind_emit)
targetm.asm_out.unwind_emit (asm_out_file, insn);
rtx_call_insn *call_insn = dyn_cast <rtx_call_insn *> (insn);
if (call_insn != NULL)
{
rtx x = call_from_call_insn (call_insn);
x = XEXP (x, 0);
if (x && MEM_P (x) && GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
{
tree t;
x = XEXP (x, 0);
t = SYMBOL_REF_DECL (x);
if (t)
assemble_external (t);
}
}
/* Output assembler code from the template. */
output_asm_insn (templ, recog_data.operand);
/* Some target machines need to postscan each insn after
it is output. */
if (targetm.asm_out.final_postscan_insn)
targetm.asm_out.final_postscan_insn (file, insn, recog_data.operand,
recog_data.n_operands);
if (!targetm.asm_out.unwind_emit_before_insn
&& targetm.asm_out.unwind_emit)
targetm.asm_out.unwind_emit (asm_out_file, insn);
/* Let the debug info back-end know about this call. We do this only
after the instruction has been emitted because labels that may be
created to reference the call instruction must appear after it. */
if ((debug_variable_location_views || call_insn != NULL)
&& !DECL_IGNORED_P (current_function_decl))
debug_hooks->var_location (insn);
current_output_insn = debug_insn = 0;
}
}
return NEXT_INSN (insn);
}
/* This is a wrapper around final_scan_insn_1 that allows ports to
call it recursively without a known value for SEEN. The value is
saved at the outermost call, and recovered for recursive calls.
Recursive calls MUST pass NULL, or the same pointer if they can
otherwise get to it. */
rtx_insn *
final_scan_insn (rtx_insn *insn, FILE *file, int optimize_p,
int nopeepholes, int *seen)
{
static int *enclosing_seen;
static int recursion_counter;
gcc_assert (seen || recursion_counter);
gcc_assert (!recursion_counter || !seen || seen == enclosing_seen);
if (!recursion_counter++)
enclosing_seen