blob: 7bfd64160f4e4bf8aae5c704fa30b80d80edb13f [file] [log] [blame]
/* Language-independent node constructors for parse phase of GNU compiler.
Copyright (C) 1987-2021 Free Software Foundation, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
/* This file contains the low level primitives for operating on tree nodes,
including allocation, list operations, interning of identifiers,
construction of data type nodes and statement nodes,
and construction of type conversion nodes. It also contains
tables index by tree code that describe how to take apart
nodes of that code.
It is intended to be language-independent but can occasionally
calls language-dependent routines. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "target.h"
#include "tree.h"
#include "gimple.h"
#include "tree-pass.h"
#include "ssa.h"
#include "cgraph.h"
#include "diagnostic.h"
#include "flags.h"
#include "alias.h"
#include "fold-const.h"
#include "stor-layout.h"
#include "calls.h"
#include "attribs.h"
#include "toplev.h" /* get_random_seed */
#include "output.h"
#include "common/common-target.h"
#include "langhooks.h"
#include "tree-inline.h"
#include "tree-iterator.h"
#include "internal-fn.h"
#include "gimple-iterator.h"
#include "gimplify.h"
#include "tree-dfa.h"
#include "langhooks-def.h"
#include "tree-diagnostic.h"
#include "except.h"
#include "builtins.h"
#include "print-tree.h"
#include "ipa-utils.h"
#include "selftest.h"
#include "stringpool.h"
#include "attribs.h"
#include "rtl.h"
#include "regs.h"
#include "tree-vector-builder.h"
#include "gimple-fold.h"
#include "escaped_string.h"
#include "gimple-range.h"
/* Tree code classes. */
#define DEFTREECODE(SYM, NAME, TYPE, LENGTH) TYPE,
#define END_OF_BASE_TREE_CODES tcc_exceptional,
const enum tree_code_class tree_code_type[] = {
#include "all-tree.def"
};
#undef DEFTREECODE
#undef END_OF_BASE_TREE_CODES
/* Table indexed by tree code giving number of expression
operands beyond the fixed part of the node structure.
Not used for types or decls. */
#define DEFTREECODE(SYM, NAME, TYPE, LENGTH) LENGTH,
#define END_OF_BASE_TREE_CODES 0,
const unsigned char tree_code_length[] = {
#include "all-tree.def"
};
#undef DEFTREECODE
#undef END_OF_BASE_TREE_CODES
/* Names of tree components.
Used for printing out the tree and error messages. */
#define DEFTREECODE(SYM, NAME, TYPE, LEN) NAME,
#define END_OF_BASE_TREE_CODES "@dummy",
static const char *const tree_code_name[] = {
#include "all-tree.def"
};
#undef DEFTREECODE
#undef END_OF_BASE_TREE_CODES
/* Each tree code class has an associated string representation.
These must correspond to the tree_code_class entries. */
const char *const tree_code_class_strings[] =
{
"exceptional",
"constant",
"type",
"declaration",
"reference",
"comparison",
"unary",
"binary",
"statement",
"vl_exp",
"expression"
};
/* obstack.[ch] explicitly declined to prototype this. */
extern int _obstack_allocated_p (struct obstack *h, void *obj);
/* Statistics-gathering stuff. */
static uint64_t tree_code_counts[MAX_TREE_CODES];
uint64_t tree_node_counts[(int) all_kinds];
uint64_t tree_node_sizes[(int) all_kinds];
/* Keep in sync with tree.h:enum tree_node_kind. */
static const char * const tree_node_kind_names[] = {
"decls",
"types",
"blocks",
"stmts",
"refs",
"exprs",
"constants",
"identifiers",
"vecs",
"binfos",
"ssa names",
"constructors",
"random kinds",
"lang_decl kinds",
"lang_type kinds",
"omp clauses",
};
/* Unique id for next decl created. */
static GTY(()) int next_decl_uid;
/* Unique id for next type created. */
static GTY(()) unsigned next_type_uid = 1;
/* Unique id for next debug decl created. Use negative numbers,
to catch erroneous uses. */
static GTY(()) int next_debug_decl_uid;
/* Since we cannot rehash a type after it is in the table, we have to
keep the hash code. */
struct GTY((for_user)) type_hash {
unsigned long hash;
tree type;
};
/* Initial size of the hash table (rounded to next prime). */
#define TYPE_HASH_INITIAL_SIZE 1000
struct type_cache_hasher : ggc_cache_ptr_hash<type_hash>
{
static hashval_t hash (type_hash *t) { return t->hash; }
static bool equal (type_hash *a, type_hash *b);
static int
keep_cache_entry (type_hash *&t)
{
return ggc_marked_p (t->type);
}
};
/* Now here is the hash table. When recording a type, it is added to
the slot whose index is the hash code. Note that the hash table is
used for several kinds of types (function types, array types and
array index range types, for now). While all these live in the
same table, they are completely independent, and the hash code is
computed differently for each of these. */
static GTY ((cache)) hash_table<type_cache_hasher> *type_hash_table;
/* Hash table and temporary node for larger integer const values. */
static GTY (()) tree int_cst_node;
struct int_cst_hasher : ggc_cache_ptr_hash<tree_node>
{
static hashval_t hash (tree t);
static bool equal (tree x, tree y);
};
static GTY ((cache)) hash_table<int_cst_hasher> *int_cst_hash_table;
/* Class and variable for making sure that there is a single POLY_INT_CST
for a given value. */
struct poly_int_cst_hasher : ggc_cache_ptr_hash<tree_node>
{
typedef std::pair<tree, const poly_wide_int *> compare_type;
static hashval_t hash (tree t);
static bool equal (tree x, const compare_type &y);
};
static GTY ((cache)) hash_table<poly_int_cst_hasher> *poly_int_cst_hash_table;
/* Hash table for optimization flags and target option flags. Use the same
hash table for both sets of options. Nodes for building the current
optimization and target option nodes. The assumption is most of the time
the options created will already be in the hash table, so we avoid
allocating and freeing up a node repeatably. */
static GTY (()) tree cl_optimization_node;
static GTY (()) tree cl_target_option_node;
struct cl_option_hasher : ggc_cache_ptr_hash<tree_node>
{
static hashval_t hash (tree t);
static bool equal (tree x, tree y);
};
static GTY ((cache)) hash_table<cl_option_hasher> *cl_option_hash_table;
/* General tree->tree mapping structure for use in hash tables. */
static GTY ((cache))
hash_table<tree_decl_map_cache_hasher> *debug_expr_for_decl;
static GTY ((cache))
hash_table<tree_decl_map_cache_hasher> *value_expr_for_decl;
struct tree_vec_map_cache_hasher : ggc_cache_ptr_hash<tree_vec_map>
{
static hashval_t hash (tree_vec_map *m) { return DECL_UID (m->base.from); }
static bool
equal (tree_vec_map *a, tree_vec_map *b)
{
return a->base.from == b->base.from;
}
static int
keep_cache_entry (tree_vec_map *&m)
{
return ggc_marked_p (m->base.from);
}
};
static GTY ((cache))
hash_table<tree_vec_map_cache_hasher> *debug_args_for_decl;
static void set_type_quals (tree, int);
static void print_type_hash_statistics (void);
static void print_debug_expr_statistics (void);
static void print_value_expr_statistics (void);
tree global_trees[TI_MAX];
tree integer_types[itk_none];
bool int_n_enabled_p[NUM_INT_N_ENTS];
struct int_n_trees_t int_n_trees [NUM_INT_N_ENTS];
bool tree_contains_struct[MAX_TREE_CODES][64];
/* Number of operands for each OMP clause. */
unsigned const char omp_clause_num_ops[] =
{
0, /* OMP_CLAUSE_ERROR */
1, /* OMP_CLAUSE_PRIVATE */
1, /* OMP_CLAUSE_SHARED */
1, /* OMP_CLAUSE_FIRSTPRIVATE */
2, /* OMP_CLAUSE_LASTPRIVATE */
5, /* OMP_CLAUSE_REDUCTION */
5, /* OMP_CLAUSE_TASK_REDUCTION */
5, /* OMP_CLAUSE_IN_REDUCTION */
1, /* OMP_CLAUSE_COPYIN */
1, /* OMP_CLAUSE_COPYPRIVATE */
3, /* OMP_CLAUSE_LINEAR */
1, /* OMP_CLAUSE_AFFINITY */
2, /* OMP_CLAUSE_ALIGNED */
3, /* OMP_CLAUSE_ALLOCATE */
1, /* OMP_CLAUSE_DEPEND */
1, /* OMP_CLAUSE_NONTEMPORAL */
1, /* OMP_CLAUSE_UNIFORM */
1, /* OMP_CLAUSE_TO_DECLARE */
1, /* OMP_CLAUSE_LINK */
1, /* OMP_CLAUSE_DETACH */
1, /* OMP_CLAUSE_USE_DEVICE_PTR */
1, /* OMP_CLAUSE_USE_DEVICE_ADDR */
1, /* OMP_CLAUSE_IS_DEVICE_PTR */
1, /* OMP_CLAUSE_INCLUSIVE */
1, /* OMP_CLAUSE_EXCLUSIVE */
2, /* OMP_CLAUSE_FROM */
2, /* OMP_CLAUSE_TO */
2, /* OMP_CLAUSE_MAP */
2, /* OMP_CLAUSE__CACHE_ */
2, /* OMP_CLAUSE_GANG */
1, /* OMP_CLAUSE_ASYNC */
1, /* OMP_CLAUSE_WAIT */
0, /* OMP_CLAUSE_AUTO */
0, /* OMP_CLAUSE_SEQ */
1, /* OMP_CLAUSE__LOOPTEMP_ */
1, /* OMP_CLAUSE__REDUCTEMP_ */
1, /* OMP_CLAUSE__CONDTEMP_ */
1, /* OMP_CLAUSE__SCANTEMP_ */
1, /* OMP_CLAUSE_IF */
1, /* OMP_CLAUSE_NUM_THREADS */
1, /* OMP_CLAUSE_SCHEDULE */
0, /* OMP_CLAUSE_NOWAIT */
1, /* OMP_CLAUSE_ORDERED */
0, /* OMP_CLAUSE_DEFAULT */
3, /* OMP_CLAUSE_COLLAPSE */
0, /* OMP_CLAUSE_UNTIED */
1, /* OMP_CLAUSE_FINAL */
0, /* OMP_CLAUSE_MERGEABLE */
1, /* OMP_CLAUSE_DEVICE */
1, /* OMP_CLAUSE_DIST_SCHEDULE */
0, /* OMP_CLAUSE_INBRANCH */
0, /* OMP_CLAUSE_NOTINBRANCH */
1, /* OMP_CLAUSE_NUM_TEAMS */
1, /* OMP_CLAUSE_THREAD_LIMIT */
0, /* OMP_CLAUSE_PROC_BIND */
1, /* OMP_CLAUSE_SAFELEN */
1, /* OMP_CLAUSE_SIMDLEN */
0, /* OMP_CLAUSE_DEVICE_TYPE */
0, /* OMP_CLAUSE_FOR */
0, /* OMP_CLAUSE_PARALLEL */
0, /* OMP_CLAUSE_SECTIONS */
0, /* OMP_CLAUSE_TASKGROUP */
1, /* OMP_CLAUSE_PRIORITY */
1, /* OMP_CLAUSE_GRAINSIZE */
1, /* OMP_CLAUSE_NUM_TASKS */
0, /* OMP_CLAUSE_NOGROUP */
0, /* OMP_CLAUSE_THREADS */
0, /* OMP_CLAUSE_SIMD */
1, /* OMP_CLAUSE_HINT */
0, /* OMP_CLAUSE_DEFAULTMAP */
0, /* OMP_CLAUSE_ORDER */
0, /* OMP_CLAUSE_BIND */
1, /* OMP_CLAUSE_FILTER */
1, /* OMP_CLAUSE__SIMDUID_ */
0, /* OMP_CLAUSE__SIMT_ */
0, /* OMP_CLAUSE_INDEPENDENT */
1, /* OMP_CLAUSE_WORKER */
1, /* OMP_CLAUSE_VECTOR */
1, /* OMP_CLAUSE_NUM_GANGS */
1, /* OMP_CLAUSE_NUM_WORKERS */
1, /* OMP_CLAUSE_VECTOR_LENGTH */
3, /* OMP_CLAUSE_TILE */
0, /* OMP_CLAUSE_IF_PRESENT */
0, /* OMP_CLAUSE_FINALIZE */
0, /* OMP_CLAUSE_NOHOST */
};
const char * const omp_clause_code_name[] =
{
"error_clause",
"private",
"shared",
"firstprivate",
"lastprivate",
"reduction",
"task_reduction",
"in_reduction",
"copyin",
"copyprivate",
"linear",
"affinity",
"aligned",
"allocate",
"depend",
"nontemporal",
"uniform",
"to",
"link",
"detach",
"use_device_ptr",
"use_device_addr",
"is_device_ptr",
"inclusive",
"exclusive",
"from",
"to",
"map",
"_cache_",
"gang",
"async",
"wait",
"auto",
"seq",
"_looptemp_",
"_reductemp_",
"_condtemp_",
"_scantemp_",
"if",
"num_threads",
"schedule",
"nowait",
"ordered",
"default",
"collapse",
"untied",
"final",
"mergeable",
"device",
"dist_schedule",
"inbranch",
"notinbranch",
"num_teams",
"thread_limit",
"proc_bind",
"safelen",
"simdlen",
"device_type",
"for",
"parallel",
"sections",
"taskgroup",
"priority",
"grainsize",
"num_tasks",
"nogroup",
"threads",
"simd",
"hint",
"defaultmap",
"order",
"bind",
"filter",
"_simduid_",
"_simt_",
"independent",
"worker",
"vector",
"num_gangs",
"num_workers",
"vector_length",
"tile",
"if_present",
"finalize",
"nohost",
};
/* Return the tree node structure used by tree code CODE. */
static inline enum tree_node_structure_enum
tree_node_structure_for_code (enum tree_code code)
{
switch (TREE_CODE_CLASS (code))
{
case tcc_declaration:
switch (code)
{
case CONST_DECL: return TS_CONST_DECL;
case DEBUG_EXPR_DECL: return TS_DECL_WRTL;
case FIELD_DECL: return TS_FIELD_DECL;
case FUNCTION_DECL: return TS_FUNCTION_DECL;
case LABEL_DECL: return TS_LABEL_DECL;
case PARM_DECL: return TS_PARM_DECL;
case RESULT_DECL: return TS_RESULT_DECL;
case TRANSLATION_UNIT_DECL: return TS_TRANSLATION_UNIT_DECL;
case TYPE_DECL: return TS_TYPE_DECL;
case VAR_DECL: return TS_VAR_DECL;
default: return TS_DECL_NON_COMMON;
}
case tcc_type: return TS_TYPE_NON_COMMON;
case tcc_binary:
case tcc_comparison:
case tcc_expression:
case tcc_reference:
case tcc_statement:
case tcc_unary:
case tcc_vl_exp: return TS_EXP;
default: /* tcc_constant and tcc_exceptional */
break;
}
switch (code)
{
/* tcc_constant cases. */
case COMPLEX_CST: return TS_COMPLEX;
case FIXED_CST: return TS_FIXED_CST;
case INTEGER_CST: return TS_INT_CST;
case POLY_INT_CST: return TS_POLY_INT_CST;
case REAL_CST: return TS_REAL_CST;
case STRING_CST: return TS_STRING;
case VECTOR_CST: return TS_VECTOR;
case VOID_CST: return TS_TYPED;
/* tcc_exceptional cases. */
case BLOCK: return TS_BLOCK;
case CONSTRUCTOR: return TS_CONSTRUCTOR;
case ERROR_MARK: return TS_COMMON;
case IDENTIFIER_NODE: return TS_IDENTIFIER;
case OMP_CLAUSE: return TS_OMP_CLAUSE;
case OPTIMIZATION_NODE: return TS_OPTIMIZATION;
case PLACEHOLDER_EXPR: return TS_COMMON;
case SSA_NAME: return TS_SSA_NAME;
case STATEMENT_LIST: return TS_STATEMENT_LIST;
case TARGET_OPTION_NODE: return TS_TARGET_OPTION;
case TREE_BINFO: return TS_BINFO;
case TREE_LIST: return TS_LIST;
case TREE_VEC: return TS_VEC;
default:
gcc_unreachable ();
}
}
/* Initialize tree_contains_struct to describe the hierarchy of tree
nodes. */
static void
initialize_tree_contains_struct (void)
{
unsigned i;
for (i = ERROR_MARK; i < LAST_AND_UNUSED_TREE_CODE; i++)
{
enum tree_code code;
enum tree_node_structure_enum ts_code;
code = (enum tree_code) i;
ts_code = tree_node_structure_for_code (code);
/* Mark the TS structure itself. */
tree_contains_struct[code][ts_code] = 1;
/* Mark all the structures that TS is derived from. */
switch (ts_code)
{
case TS_TYPED:
case TS_BLOCK:
case TS_OPTIMIZATION:
case TS_TARGET_OPTION:
MARK_TS_BASE (code);
break;
case TS_COMMON:
case TS_INT_CST:
case TS_POLY_INT_CST:
case TS_REAL_CST:
case TS_FIXED_CST:
case TS_VECTOR:
case TS_STRING:
case TS_COMPLEX:
case TS_SSA_NAME:
case TS_CONSTRUCTOR:
case TS_EXP:
case TS_STATEMENT_LIST:
MARK_TS_TYPED (code);
break;
case TS_IDENTIFIER:
case TS_DECL_MINIMAL:
case TS_TYPE_COMMON:
case TS_LIST:
case TS_VEC:
case TS_BINFO:
case TS_OMP_CLAUSE:
MARK_TS_COMMON (code);
break;
case TS_TYPE_WITH_LANG_SPECIFIC:
MARK_TS_TYPE_COMMON (code);
break;
case TS_TYPE_NON_COMMON:
MARK_TS_TYPE_WITH_LANG_SPECIFIC (code);
break;
case TS_DECL_COMMON:
MARK_TS_DECL_MINIMAL (code);
break;
case TS_DECL_WRTL:
case TS_CONST_DECL:
MARK_TS_DECL_COMMON (code);
break;
case TS_DECL_NON_COMMON:
MARK_TS_DECL_WITH_VIS (code);
break;
case TS_DECL_WITH_VIS:
case TS_PARM_DECL:
case TS_LABEL_DECL:
case TS_RESULT_DECL:
MARK_TS_DECL_WRTL (code);
break;
case TS_FIELD_DECL:
MARK_TS_DECL_COMMON (code);
break;
case TS_VAR_DECL:
MARK_TS_DECL_WITH_VIS (code);
break;
case TS_TYPE_DECL:
case TS_FUNCTION_DECL:
MARK_TS_DECL_NON_COMMON (code);
break;
case TS_TRANSLATION_UNIT_DECL:
MARK_TS_DECL_COMMON (code);
break;
default:
gcc_unreachable ();
}
}
/* Basic consistency checks for attributes used in fold. */
gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_NON_COMMON]);
gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_NON_COMMON]);
gcc_assert (tree_contains_struct[CONST_DECL][TS_DECL_COMMON]);
gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_COMMON]);
gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_COMMON]);
gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_COMMON]);
gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_COMMON]);
gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_COMMON]);
gcc_assert (tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_COMMON]);
gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_COMMON]);
gcc_assert (tree_contains_struct[FIELD_DECL][TS_DECL_COMMON]);
gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_WRTL]);
gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_WRTL]);
gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_WRTL]);
gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_WRTL]);
gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_WRTL]);
gcc_assert (tree_contains_struct[CONST_DECL][TS_DECL_MINIMAL]);
gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_MINIMAL]);
gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_MINIMAL]);
gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_MINIMAL]);
gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_MINIMAL]);
gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_MINIMAL]);
gcc_assert (tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_MINIMAL]);
gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_MINIMAL]);
gcc_assert (tree_contains_struct[FIELD_DECL][TS_DECL_MINIMAL]);
gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_WITH_VIS]);
gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_WITH_VIS]);
gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_WITH_VIS]);
gcc_assert (tree_contains_struct[VAR_DECL][TS_VAR_DECL]);
gcc_assert (tree_contains_struct[FIELD_DECL][TS_FIELD_DECL]);
gcc_assert (tree_contains_struct[PARM_DECL][TS_PARM_DECL]);
gcc_assert (tree_contains_struct[LABEL_DECL][TS_LABEL_DECL]);
gcc_assert (tree_contains_struct[RESULT_DECL][TS_RESULT_DECL]);
gcc_assert (tree_contains_struct[CONST_DECL][TS_CONST_DECL]);
gcc_assert (tree_contains_struct[TYPE_DECL][TS_TYPE_DECL]);
gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_FUNCTION_DECL]);
gcc_assert (tree_contains_struct[IMPORTED_DECL][TS_DECL_MINIMAL]);
gcc_assert (tree_contains_struct[IMPORTED_DECL][TS_DECL_COMMON]);
gcc_assert (tree_contains_struct[NAMELIST_DECL][TS_DECL_MINIMAL]);
gcc_assert (tree_contains_struct[NAMELIST_DECL][TS_DECL_COMMON]);
}
/* Init tree.c. */
void
init_ttree (void)
{
/* Initialize the hash table of types. */
type_hash_table
= hash_table<type_cache_hasher>::create_ggc (TYPE_HASH_INITIAL_SIZE);
debug_expr_for_decl
= hash_table<tree_decl_map_cache_hasher>::create_ggc (512);
value_expr_for_decl
= hash_table<tree_decl_map_cache_hasher>::create_ggc (512);
int_cst_hash_table = hash_table<int_cst_hasher>::create_ggc (1024);
poly_int_cst_hash_table = hash_table<poly_int_cst_hasher>::create_ggc (64);
int_cst_node = make_int_cst (1, 1);
cl_option_hash_table = hash_table<cl_option_hasher>::create_ggc (64);
cl_optimization_node = make_node (OPTIMIZATION_NODE);
cl_target_option_node = make_node (TARGET_OPTION_NODE);
/* Initialize the tree_contains_struct array. */
initialize_tree_contains_struct ();
lang_hooks.init_ts ();
}
/* The name of the object as the assembler will see it (but before any
translations made by ASM_OUTPUT_LABELREF). Often this is the same
as DECL_NAME. It is an IDENTIFIER_NODE. */
tree
decl_assembler_name (tree decl)
{
if (!DECL_ASSEMBLER_NAME_SET_P (decl))
lang_hooks.set_decl_assembler_name (decl);
return DECL_ASSEMBLER_NAME_RAW (decl);
}
/* The DECL_ASSEMBLER_NAME_RAW of DECL is being explicitly set to NAME
(either of which may be NULL). Inform the FE, if this changes the
name. */
void
overwrite_decl_assembler_name (tree decl, tree name)
{
if (DECL_ASSEMBLER_NAME_RAW (decl) != name)
lang_hooks.overwrite_decl_assembler_name (decl, name);
}
/* Return true if DECL may need an assembler name to be set. */
static inline bool
need_assembler_name_p (tree decl)
{
/* We use DECL_ASSEMBLER_NAME to hold mangled type names for One Definition
Rule merging. This makes type_odr_p to return true on those types during
LTO and by comparing the mangled name, we can say what types are intended
to be equivalent across compilation unit.
We do not store names of type_in_anonymous_namespace_p.
Record, union and enumeration type have linkage that allows use
to check type_in_anonymous_namespace_p. We do not mangle compound types
that always can be compared structurally.
Similarly for builtin types, we compare properties of their main variant.
A special case are integer types where mangling do make differences
between char/signed char/unsigned char etc. Storing name for these makes
e.g. -fno-signed-char/-fsigned-char mismatches to be handled well.
See cp/mangle.c:write_builtin_type for details. */
if (TREE_CODE (decl) == TYPE_DECL)
{
if (DECL_NAME (decl)
&& decl == TYPE_NAME (TREE_TYPE (decl))
&& TYPE_MAIN_VARIANT (TREE_TYPE (decl)) == TREE_TYPE (decl)
&& !TYPE_ARTIFICIAL (TREE_TYPE (decl))
&& ((TREE_CODE (TREE_TYPE (decl)) != RECORD_TYPE
&& TREE_CODE (TREE_TYPE (decl)) != UNION_TYPE)
|| TYPE_CXX_ODR_P (TREE_TYPE (decl)))
&& (type_with_linkage_p (TREE_TYPE (decl))
|| TREE_CODE (TREE_TYPE (decl)) == INTEGER_TYPE)
&& !variably_modified_type_p (TREE_TYPE (decl), NULL_TREE))
return !DECL_ASSEMBLER_NAME_SET_P (decl);
return false;
}
/* Only FUNCTION_DECLs and VAR_DECLs are considered. */
if (!VAR_OR_FUNCTION_DECL_P (decl))
return false;
/* If DECL already has its assembler name set, it does not need a
new one. */
if (!HAS_DECL_ASSEMBLER_NAME_P (decl)
|| DECL_ASSEMBLER_NAME_SET_P (decl))
return false;
/* Abstract decls do not need an assembler name. */
if (DECL_ABSTRACT_P (decl))
return false;
/* For VAR_DECLs, only static, public and external symbols need an
assembler name. */
if (VAR_P (decl)
&& !TREE_STATIC (decl)
&& !TREE_PUBLIC (decl)
&& !DECL_EXTERNAL (decl))
return false;
if (TREE_CODE (decl) == FUNCTION_DECL)
{
/* Do not set assembler name on builtins. Allow RTL expansion to
decide whether to expand inline or via a regular call. */
if (fndecl_built_in_p (decl)
&& DECL_BUILT_IN_CLASS (decl) != BUILT_IN_FRONTEND)
return false;
/* Functions represented in the callgraph need an assembler name. */
if (cgraph_node::get (decl) != NULL)
return true;
/* Unused and not public functions don't need an assembler name. */
if (!TREE_USED (decl) && !TREE_PUBLIC (decl))
return false;
}
return true;
}
/* If T needs an assembler name, have one created for it. */
void
assign_assembler_name_if_needed (tree t)
{
if (need_assembler_name_p (t))
{
/* When setting DECL_ASSEMBLER_NAME, the C++ mangler may emit
diagnostics that use input_location to show locus
information. The problem here is that, at this point,
input_location is generally anchored to the end of the file
(since the parser is long gone), so we don't have a good
position to pin it to.
To alleviate this problem, this uses the location of T's
declaration. Examples of this are
testsuite/g++.dg/template/cond2.C and
testsuite/g++.dg/template/pr35240.C. */
location_t saved_location = input_location;
input_location = DECL_SOURCE_LOCATION (t);
decl_assembler_name (t);
input_location = saved_location;
}
}
/* When the target supports COMDAT groups, this indicates which group the
DECL is associated with. This can be either an IDENTIFIER_NODE or a
decl, in which case its DECL_ASSEMBLER_NAME identifies the group. */
tree
decl_comdat_group (const_tree node)
{
struct symtab_node *snode = symtab_node::get (node);
if (!snode)
return NULL;
return snode->get_comdat_group ();
}
/* Likewise, but make sure it's been reduced to an IDENTIFIER_NODE. */
tree
decl_comdat_group_id (const_tree node)
{
struct symtab_node *snode = symtab_node::get (node);
if (!snode)
return NULL;
return snode->get_comdat_group_id ();
}
/* When the target supports named section, return its name as IDENTIFIER_NODE
or NULL if it is in no section. */
const char *
decl_section_name (const_tree node)
{
struct symtab_node *snode = symtab_node::get (node);
if (!snode)
return NULL;
return snode->get_section ();
}
/* Set section name of NODE to VALUE (that is expected to be
identifier node) */
void
set_decl_section_name (tree node, const char *value)
{
struct symtab_node *snode;
if (value == NULL)
{
snode = symtab_node::get (node);
if (!snode)
return;
}
else if (VAR_P (node))
snode = varpool_node::get_create (node);
else
snode = cgraph_node::get_create (node);
snode->set_section (value);
}
/* Set section name of NODE to match the section name of OTHER.
set_decl_section_name (decl, other) is equivalent to
set_decl_section_name (decl, DECL_SECTION_NAME (other)), but possibly more
efficient. */
void
set_decl_section_name (tree decl, const_tree other)
{
struct symtab_node *other_node = symtab_node::get (other);
if (other_node)
{
struct symtab_node *decl_node;
if (VAR_P (decl))
decl_node = varpool_node::get_create (decl);
else
decl_node = cgraph_node::get_create (decl);
decl_node->set_section (*other_node);
}
else
{
struct symtab_node *decl_node = symtab_node::get (decl);
if (!decl_node)
return;
decl_node->set_section (NULL);
}
}
/* Return TLS model of a variable NODE. */
enum tls_model
decl_tls_model (const_tree node)
{
struct varpool_node *snode = varpool_node::get (node);
if (!snode)
return TLS_MODEL_NONE;
return snode->tls_model;
}
/* Set TLS model of variable NODE to MODEL. */
void
set_decl_tls_model (tree node, enum tls_model model)
{
struct varpool_node *vnode;
if (model == TLS_MODEL_NONE)
{
vnode = varpool_node::get (node);
if (!vnode)
return;
}
else
vnode = varpool_node::get_create (node);
vnode->tls_model = model;
}
/* Compute the number of bytes occupied by a tree with code CODE.
This function cannot be used for nodes that have variable sizes,
including TREE_VEC, INTEGER_CST, STRING_CST, and CALL_EXPR. */
size_t
tree_code_size (enum tree_code code)
{
switch (TREE_CODE_CLASS (code))
{
case tcc_declaration: /* A decl node */
switch (code)
{
case FIELD_DECL: return sizeof (tree_field_decl);
case PARM_DECL: return sizeof (tree_parm_decl);
case VAR_DECL: return sizeof (tree_var_decl);
case LABEL_DECL: return sizeof (tree_label_decl);
case RESULT_DECL: return sizeof (tree_result_decl);
case CONST_DECL: return sizeof (tree_const_decl);
case TYPE_DECL: return sizeof (tree_type_decl);
case FUNCTION_DECL: return sizeof (tree_function_decl);
case DEBUG_EXPR_DECL: return sizeof (tree_decl_with_rtl);
case TRANSLATION_UNIT_DECL: return sizeof (tree_translation_unit_decl);
case NAMESPACE_DECL:
case IMPORTED_DECL:
case NAMELIST_DECL: return sizeof (tree_decl_non_common);
default:
gcc_checking_assert (code >= NUM_TREE_CODES);
return lang_hooks.tree_size (code);
}
case tcc_type: /* a type node */
switch (code)
{
case OFFSET_TYPE:
case ENUMERAL_TYPE:
case BOOLEAN_TYPE:
case INTEGER_TYPE:
case REAL_TYPE:
case OPAQUE_TYPE:
case POINTER_TYPE:
case REFERENCE_TYPE:
case NULLPTR_TYPE:
case FIXED_POINT_TYPE:
case COMPLEX_TYPE:
case VECTOR_TYPE:
case ARRAY_TYPE:
case RECORD_TYPE:
case UNION_TYPE:
case QUAL_UNION_TYPE:
case VOID_TYPE:
case FUNCTION_TYPE:
case METHOD_TYPE:
case LANG_TYPE: return sizeof (tree_type_non_common);
default:
gcc_checking_assert (code >= NUM_TREE_CODES);
return lang_hooks.tree_size (code);
}
case tcc_reference: /* a reference */
case tcc_expression: /* an expression */
case tcc_statement: /* an expression with side effects */
case tcc_comparison: /* a comparison expression */
case tcc_unary: /* a unary arithmetic expression */
case tcc_binary: /* a binary arithmetic expression */
return (sizeof (struct tree_exp)
+ (TREE_CODE_LENGTH (code) - 1) * sizeof (tree));
case tcc_constant: /* a constant */
switch (code)
{
case VOID_CST: return sizeof (tree_typed);
case INTEGER_CST: gcc_unreachable ();
case POLY_INT_CST: return sizeof (tree_poly_int_cst);
case REAL_CST: return sizeof (tree_real_cst);
case FIXED_CST: return sizeof (tree_fixed_cst);
case COMPLEX_CST: return sizeof (tree_complex);
case VECTOR_CST: gcc_unreachable ();
case STRING_CST: gcc_unreachable ();
default:
gcc_checking_assert (code >= NUM_TREE_CODES);
return lang_hooks.tree_size (code);
}
case tcc_exceptional: /* something random, like an identifier. */
switch (code)
{
case IDENTIFIER_NODE: return lang_hooks.identifier_size;
case TREE_LIST: return sizeof (tree_list);
case ERROR_MARK:
case PLACEHOLDER_EXPR: return sizeof (tree_common);
case TREE_VEC: gcc_unreachable ();
case OMP_CLAUSE: gcc_unreachable ();
case SSA_NAME: return sizeof (tree_ssa_name);
case STATEMENT_LIST: return sizeof (tree_statement_list);
case BLOCK: return sizeof (struct tree_block);
case CONSTRUCTOR: return sizeof (tree_constructor);
case OPTIMIZATION_NODE: return sizeof (tree_optimization_option);
case TARGET_OPTION_NODE: return sizeof (tree_target_option);
default:
gcc_checking_assert (code >= NUM_TREE_CODES);
return lang_hooks.tree_size (code);
}
default:
gcc_unreachable ();
}
}
/* Compute the number of bytes occupied by NODE. This routine only
looks at TREE_CODE, except for those nodes that have variable sizes. */
size_t
tree_size (const_tree node)
{
const enum tree_code code = TREE_CODE (node);
switch (code)
{
case INTEGER_CST:
return (sizeof (struct tree_int_cst)
+ (TREE_INT_CST_EXT_NUNITS (node) - 1) * sizeof (HOST_WIDE_INT));
case TREE_BINFO:
return (offsetof (struct tree_binfo, base_binfos)
+ vec<tree, va_gc>
::embedded_size (BINFO_N_BASE_BINFOS (node)));
case TREE_VEC:
return (sizeof (struct tree_vec)
+ (TREE_VEC_LENGTH (node) - 1) * sizeof (tree));
case VECTOR_CST:
return (sizeof (struct tree_vector)
+ (vector_cst_encoded_nelts (node) - 1) * sizeof (tree));
case STRING_CST:
return TREE_STRING_LENGTH (node) + offsetof (struct tree_string, str) + 1;
case OMP_CLAUSE:
return (sizeof (struct tree_omp_clause)
+ (omp_clause_num_ops[OMP_CLAUSE_CODE (node)] - 1)
* sizeof (tree));
default:
if (TREE_CODE_CLASS (code) == tcc_vl_exp)
return (sizeof (struct tree_exp)
+ (VL_EXP_OPERAND_LENGTH (node) - 1) * sizeof (tree));
else
return tree_code_size (code);
}
}
/* Return tree node kind based on tree CODE. */
static tree_node_kind
get_stats_node_kind (enum tree_code code)
{
enum tree_code_class type = TREE_CODE_CLASS (code);
switch (type)
{
case tcc_declaration: /* A decl node */
return d_kind;
case tcc_type: /* a type node */
return t_kind;
case tcc_statement: /* an expression with side effects */
return s_kind;
case tcc_reference: /* a reference */
return r_kind;
case tcc_expression: /* an expression */
case tcc_comparison: /* a comparison expression */
case tcc_unary: /* a unary arithmetic expression */
case tcc_binary: /* a binary arithmetic expression */
return e_kind;
case tcc_constant: /* a constant */
return c_kind;
case tcc_exceptional: /* something random, like an identifier. */
switch (code)
{
case IDENTIFIER_NODE:
return id_kind;
case TREE_VEC:
return vec_kind;
case TREE_BINFO:
return binfo_kind;
case SSA_NAME:
return ssa_name_kind;
case BLOCK:
return b_kind;
case CONSTRUCTOR:
return constr_kind;
case OMP_CLAUSE:
return omp_clause_kind;
default:
return x_kind;
}
break;
case tcc_vl_exp:
return e_kind;
default:
gcc_unreachable ();
}
}
/* Record interesting allocation statistics for a tree node with CODE
and LENGTH. */
static void
record_node_allocation_statistics (enum tree_code code, size_t length)
{
if (!GATHER_STATISTICS)
return;
tree_node_kind kind = get_stats_node_kind (code);
tree_code_counts[(int) code]++;
tree_node_counts[(int) kind]++;
tree_node_sizes[(int) kind] += length;
}
/* Allocate and return a new UID from the DECL_UID namespace. */
int
allocate_decl_uid (void)
{
return next_decl_uid++;
}
/* Return a newly allocated node of code CODE. For decl and type
nodes, some other fields are initialized. The rest of the node is
initialized to zero. This function cannot be used for TREE_VEC,
INTEGER_CST or OMP_CLAUSE nodes, which is enforced by asserts in
tree_code_size.
Achoo! I got a code in the node. */
tree
make_node (enum tree_code code MEM_STAT_DECL)
{
tree t;
enum tree_code_class type = TREE_CODE_CLASS (code);
size_t length = tree_code_size (code);
record_node_allocation_statistics (code, length);
t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
TREE_SET_CODE (t, code);
switch (type)
{
case tcc_statement:
if (code != DEBUG_BEGIN_STMT)
TREE_SIDE_EFFECTS (t) = 1;
break;
case tcc_declaration:
if (CODE_CONTAINS_STRUCT (code, TS_DECL_COMMON))
{
if (code == FUNCTION_DECL)
{
SET_DECL_ALIGN (t, FUNCTION_ALIGNMENT (FUNCTION_BOUNDARY));
SET_DECL_MODE (t, FUNCTION_MODE);
}
else
SET_DECL_ALIGN (t, 1);
}
DECL_SOURCE_LOCATION (t) = input_location;
if (TREE_CODE (t) == DEBUG_EXPR_DECL)
DECL_UID (t) = --next_debug_decl_uid;
else
{
DECL_UID (t) = allocate_decl_uid ();
SET_DECL_PT_UID (t, -1);
}
if (TREE_CODE (t) == LABEL_DECL)
LABEL_DECL_UID (t) = -1;
break;
case tcc_type:
TYPE_UID (t) = next_type_uid++;
SET_TYPE_ALIGN (t, BITS_PER_UNIT);
TYPE_USER_ALIGN (t) = 0;
TYPE_MAIN_VARIANT (t) = t;
TYPE_CANONICAL (t) = t;
/* Default to no attributes for type, but let target change that. */
TYPE_ATTRIBUTES (t) = NULL_TREE;
targetm.set_default_type_attributes (t);
/* We have not yet computed the alias set for this type. */
TYPE_ALIAS_SET (t) = -1;
break;
case tcc_constant:
TREE_CONSTANT (t) = 1;
break;
case tcc_expression:
switch (code)
{
case INIT_EXPR:
case MODIFY_EXPR:
case VA_ARG_EXPR:
case PREDECREMENT_EXPR:
case PREINCREMENT_EXPR:
case POSTDECREMENT_EXPR:
case POSTINCREMENT_EXPR:
/* All of these have side-effects, no matter what their
operands are. */
TREE_SIDE_EFFECTS (t) = 1;
break;
default:
break;
}
break;
case tcc_exceptional:
switch (code)
{
case TARGET_OPTION_NODE:
TREE_TARGET_OPTION(t)
= ggc_cleared_alloc<struct cl_target_option> ();
break;
case OPTIMIZATION_NODE:
TREE_OPTIMIZATION (t)
= ggc_cleared_alloc<struct cl_optimization> ();
break;
default:
break;
}
break;
default:
/* Other classes need no special treatment. */
break;
}
return t;
}
/* Free tree node. */
void
free_node (tree node)
{
enum tree_code code = TREE_CODE (node);
if (GATHER_STATISTICS)
{
enum tree_node_kind kind = get_stats_node_kind (code);
gcc_checking_assert (tree_code_counts[(int) TREE_CODE (node)] != 0);
gcc_checking_assert (tree_node_counts[(int) kind] != 0);
gcc_checking_assert (tree_node_sizes[(int) kind] >= tree_size (node));
tree_code_counts[(int) TREE_CODE (node)]--;
tree_node_counts[(int) kind]--;
tree_node_sizes[(int) kind] -= tree_size (node);
}
if (CODE_CONTAINS_STRUCT (code, TS_CONSTRUCTOR))
vec_free (CONSTRUCTOR_ELTS (node));
else if (code == BLOCK)
vec_free (BLOCK_NONLOCALIZED_VARS (node));
else if (code == TREE_BINFO)
vec_free (BINFO_BASE_ACCESSES (node));
else if (code == OPTIMIZATION_NODE)
cl_optimization_option_free (TREE_OPTIMIZATION (node));
else if (code == TARGET_OPTION_NODE)
cl_target_option_free (TREE_TARGET_OPTION (node));
ggc_free (node);
}
/* Return a new node with the same contents as NODE except that its
TREE_CHAIN, if it has one, is zero and it has a fresh uid. */
tree
copy_node (tree node MEM_STAT_DECL)
{
tree t;
enum tree_code code = TREE_CODE (node);
size_t length;
gcc_assert (code != STATEMENT_LIST);
length = tree_size (node);
record_node_allocation_statistics (code, length);
t = ggc_alloc_tree_node_stat (length PASS_MEM_STAT);
memcpy (t, node, length);
if (CODE_CONTAINS_STRUCT (code, TS_COMMON))
TREE_CHAIN (t) = 0;
TREE_ASM_WRITTEN (t) = 0;
TREE_VISITED (t) = 0;
if (TREE_CODE_CLASS (code) == tcc_declaration)
{
if (code == DEBUG_EXPR_DECL)
DECL_UID (t) = --next_debug_decl_uid;
else
{
DECL_UID (t) = allocate_decl_uid ();
if (DECL_PT_UID_SET_P (node))
SET_DECL_PT_UID (t, DECL_PT_UID (node));
}
if ((TREE_CODE (node) == PARM_DECL || VAR_P (node))
&& DECL_HAS_VALUE_EXPR_P (node))
{
SET_DECL_VALUE_EXPR (t, DECL_VALUE_EXPR (node));
DECL_HAS_VALUE_EXPR_P (t) = 1;
}
/* DECL_DEBUG_EXPR is copied explicitly by callers. */
if (VAR_P (node))
{
DECL_HAS_DEBUG_EXPR_P (t) = 0;
t->decl_with_vis.symtab_node = NULL;
}
if (VAR_P (node) && DECL_HAS_INIT_PRIORITY_P (node))
{
SET_DECL_INIT_PRIORITY (t, DECL_INIT_PRIORITY (node));
DECL_HAS_INIT_PRIORITY_P (t) = 1;
}
if (TREE_CODE (node) == FUNCTION_DECL)
{
DECL_STRUCT_FUNCTION (t) = NULL;
t->decl_with_vis.symtab_node = NULL;
}
}
else if (TREE_CODE_CLASS (code) == tcc_type)
{
TYPE_UID (t) = next_type_uid++;
/* The following is so that the debug code for
the copy is different from the original type.
The two statements usually duplicate each other
(because they clear fields of the same union),
but the optimizer should catch that. */
TYPE_SYMTAB_ADDRESS (t) = 0;
TYPE_SYMTAB_DIE (t) = 0;
/* Do not copy the values cache. */
if (TYPE_CACHED_VALUES_P (t))
{
TYPE_CACHED_VALUES_P (t) = 0;
TYPE_CACHED_VALUES (t) = NULL_TREE;
}
}
else if (code == TARGET_OPTION_NODE)
{
TREE_TARGET_OPTION (t) = ggc_alloc<struct cl_target_option>();
memcpy (TREE_TARGET_OPTION (t), TREE_TARGET_OPTION (node),
sizeof (struct cl_target_option));
}
else if (code == OPTIMIZATION_NODE)
{
TREE_OPTIMIZATION (t) = ggc_alloc<struct cl_optimization>();
memcpy (TREE_OPTIMIZATION (t), TREE_OPTIMIZATION (node),
sizeof (struct cl_optimization));
}
return t;
}
/* Return a copy of a chain of nodes, chained through the TREE_CHAIN field.
For example, this can copy a list made of TREE_LIST nodes. */
tree
copy_list (tree list)
{
tree head;
tree prev, next;
if (list == 0)
return 0;
head = prev = copy_node (list);
next = TREE_CHAIN (list);
while (next)
{
TREE_CHAIN (prev) = copy_node (next);
prev = TREE_CHAIN (prev);
next = TREE_CHAIN (next);
}
return head;
}
/* Return the value that TREE_INT_CST_EXT_NUNITS should have for an
INTEGER_CST with value CST and type TYPE. */
static unsigned int
get_int_cst_ext_nunits (tree type, const wide_int &cst)
{
gcc_checking_assert (cst.get_precision () == TYPE_PRECISION (type));
/* We need extra HWIs if CST is an unsigned integer with its
upper bit set. */
if (TYPE_UNSIGNED (type) && wi::neg_p (cst))
return cst.get_precision () / HOST_BITS_PER_WIDE_INT + 1;
return cst.get_len ();
}
/* Return a new INTEGER_CST with value CST and type TYPE. */
static tree
build_new_int_cst (tree type, const wide_int &cst)
{
unsigned int len = cst.get_len ();
unsigned int ext_len = get_int_cst_ext_nunits (type, cst);
tree nt = make_int_cst (len, ext_len);
if (len < ext_len)
{
--ext_len;
TREE_INT_CST_ELT (nt, ext_len)
= zext_hwi (-1, cst.get_precision () % HOST_BITS_PER_WIDE_INT);
for (unsigned int i = len; i < ext_len; ++i)
TREE_INT_CST_ELT (nt, i) = -1;
}
else if (TYPE_UNSIGNED (type)
&& cst.get_precision () < len * HOST_BITS_PER_WIDE_INT)
{
len--;
TREE_INT_CST_ELT (nt, len)
= zext_hwi (cst.elt (len),
cst.get_precision () % HOST_BITS_PER_WIDE_INT);
}
for (unsigned int i = 0; i < len; i++)
TREE_INT_CST_ELT (nt, i) = cst.elt (i);
TREE_TYPE (nt) = type;
return nt;
}
/* Return a new POLY_INT_CST with coefficients COEFFS and type TYPE. */
static tree
build_new_poly_int_cst (tree type, tree (&coeffs)[NUM_POLY_INT_COEFFS]
CXX_MEM_STAT_INFO)
{
size_t length = sizeof (struct tree_poly_int_cst);
record_node_allocation_statistics (POLY_INT_CST, length);
tree t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
TREE_SET_CODE (t, POLY_INT_CST);
TREE_CONSTANT (t) = 1;
TREE_TYPE (t) = type;
for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
POLY_INT_CST_COEFF (t, i) = coeffs[i];
return t;
}
/* Create a constant tree that contains CST sign-extended to TYPE. */
tree
build_int_cst (tree type, poly_int64 cst)
{
/* Support legacy code. */
if (!type)
type = integer_type_node;
return wide_int_to_tree (type, wi::shwi (cst, TYPE_PRECISION (type)));
}
/* Create a constant tree that contains CST zero-extended to TYPE. */
tree
build_int_cstu (tree type, poly_uint64 cst)
{
return wide_int_to_tree (type, wi::uhwi (cst, TYPE_PRECISION (type)));
}
/* Create a constant tree that contains CST sign-extended to TYPE. */
tree
build_int_cst_type (tree type, poly_int64 cst)
{
gcc_assert (type);
return wide_int_to_tree (type, wi::shwi (cst, TYPE_PRECISION (type)));
}
/* Constructs tree in type TYPE from with value given by CST. Signedness
of CST is assumed to be the same as the signedness of TYPE. */
tree
double_int_to_tree (tree type, double_int cst)
{
return wide_int_to_tree (type, widest_int::from (cst, TYPE_SIGN (type)));
}
/* We force the wide_int CST to the range of the type TYPE by sign or
zero extending it. OVERFLOWABLE indicates if we are interested in
overflow of the value, when >0 we are only interested in signed
overflow, for <0 we are interested in any overflow. OVERFLOWED
indicates whether overflow has already occurred. CONST_OVERFLOWED
indicates whether constant overflow has already occurred. We force
T's value to be within range of T's type (by setting to 0 or 1 all
the bits outside the type's range). We set TREE_OVERFLOWED if,
OVERFLOWED is nonzero,
or OVERFLOWABLE is >0 and signed overflow occurs
or OVERFLOWABLE is <0 and any overflow occurs
We return a new tree node for the extended wide_int. The node
is shared if no overflow flags are set. */
tree
force_fit_type (tree type, const poly_wide_int_ref &cst,
int overflowable, bool overflowed)
{
signop sign = TYPE_SIGN (type);
/* If we need to set overflow flags, return a new unshared node. */
if (overflowed || !wi::fits_to_tree_p (cst, type))
{
if (overflowed
|| overflowable < 0
|| (overflowable > 0 && sign == SIGNED))
{
poly_wide_int tmp = poly_wide_int::from (cst, TYPE_PRECISION (type),
sign);
tree t;
if (tmp.is_constant ())
t = build_new_int_cst (type, tmp.coeffs[0]);
else
{
tree coeffs[NUM_POLY_INT_COEFFS];
for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
{
coeffs[i] = build_new_int_cst (type, tmp.coeffs[i]);
TREE_OVERFLOW (coeffs[i]) = 1;
}
t = build_new_poly_int_cst (type, coeffs);
}
TREE_OVERFLOW (t) = 1;
return t;
}
}
/* Else build a shared node. */
return wide_int_to_tree (type, cst);
}
/* These are the hash table functions for the hash table of INTEGER_CST
nodes of a sizetype. */
/* Return the hash code X, an INTEGER_CST. */
hashval_t
int_cst_hasher::hash (tree x)
{
const_tree const t = x;
hashval_t code = TYPE_UID (TREE_TYPE (t));
int i;
for (i = 0; i < TREE_INT_CST_NUNITS (t); i++)
code = iterative_hash_host_wide_int (TREE_INT_CST_ELT(t, i), code);
return code;
}
/* Return nonzero if the value represented by *X (an INTEGER_CST tree node)
is the same as that given by *Y, which is the same. */
bool
int_cst_hasher::equal (tree x, tree y)
{
const_tree const xt = x;
const_tree const yt = y;
if (TREE_TYPE (xt) != TREE_TYPE (yt)
|| TREE_INT_CST_NUNITS (xt) != TREE_INT_CST_NUNITS (yt)
|| TREE_INT_CST_EXT_NUNITS (xt) != TREE_INT_CST_EXT_NUNITS (yt))
return false;
for (int i = 0; i < TREE_INT_CST_NUNITS (xt); i++)
if (TREE_INT_CST_ELT (xt, i) != TREE_INT_CST_ELT (yt, i))
return false;
return true;
}
/* Cache wide_int CST into the TYPE_CACHED_VALUES cache for TYPE.
SLOT is the slot entry to store it in, and MAX_SLOTS is the maximum
number of slots that can be cached for the type. */
static inline tree
cache_wide_int_in_type_cache (tree type, const wide_int &cst,
int slot, int max_slots)
{
gcc_checking_assert (slot >= 0);
/* Initialize cache. */
if (!TYPE_CACHED_VALUES_P (type))
{
TYPE_CACHED_VALUES_P (type) = 1;
TYPE_CACHED_VALUES (type) = make_tree_vec (max_slots);
}
tree t = TREE_VEC_ELT (TYPE_CACHED_VALUES (type), slot);
if (!t)
{
/* Create a new shared int. */
t = build_new_int_cst (type, cst);
TREE_VEC_ELT (TYPE_CACHED_VALUES (type), slot) = t;
}
return t;
}
/* Create an INT_CST node of TYPE and value CST.
The returned node is always shared. For small integers we use a
per-type vector cache, for larger ones we use a single hash table.
The value is extended from its precision according to the sign of
the type to be a multiple of HOST_BITS_PER_WIDE_INT. This defines
the upper bits and ensures that hashing and value equality based
upon the underlying HOST_WIDE_INTs works without masking. */
static tree
wide_int_to_tree_1 (tree type, const wide_int_ref &pcst)
{
tree t;
int ix = -1;
int limit = 0;
gcc_assert (type);
unsigned int prec = TYPE_PRECISION (type);
signop sgn = TYPE_SIGN (type);
/* Verify that everything is canonical. */
int l = pcst.get_len ();
if (l > 1)
{
if (pcst.elt (l - 1) == 0)
gcc_checking_assert (pcst.elt (l - 2) < 0);
if (pcst.elt (l - 1) == HOST_WIDE_INT_M1)
gcc_checking_assert (pcst.elt (l - 2) >= 0);
}
wide_int cst = wide_int::from (pcst, prec, sgn);
unsigned int ext_len = get_int_cst_ext_nunits (type, cst);
enum tree_code code = TREE_CODE (type);
if (code == POINTER_TYPE || code == REFERENCE_TYPE)
{
/* Cache NULL pointer and zero bounds. */
if (cst == 0)
ix = 0;
/* Cache upper bounds of pointers. */
else if (cst == wi::max_value (prec, sgn))
ix = 1;
/* Cache 1 which is used for a non-zero range. */
else if (cst == 1)
ix = 2;
if (ix >= 0)
{
t = cache_wide_int_in_type_cache (type, cst, ix, 3);
/* Make sure no one is clobbering the shared constant. */
gcc_checking_assert (TREE_TYPE (t) == type
&& cst == wi::to_wide (t));
return t;
}
}
if (ext_len == 1)
{
/* We just need to store a single HOST_WIDE_INT. */
HOST_WIDE_INT hwi;
if (TYPE_UNSIGNED (type))
hwi = cst.to_uhwi ();
else
hwi = cst.to_shwi ();
switch (code)
{
case NULLPTR_TYPE:
gcc_assert (hwi == 0);
/* Fallthru. */
case POINTER_TYPE:
case REFERENCE_TYPE:
/* Ignore pointers, as they were already handled above. */
break;
case BOOLEAN_TYPE:
/* Cache false or true. */
limit = 2;
if (IN_RANGE (hwi, 0, 1))
ix = hwi;
break;
case INTEGER_TYPE:
case OFFSET_TYPE:
if (TYPE_SIGN (type) == UNSIGNED)
{
/* Cache [0, N). */
limit = param_integer_share_limit;
if (IN_RANGE (hwi, 0, param_integer_share_limit - 1))
ix = hwi;
}
else
{
/* Cache [-1, N). */
limit = param_integer_share_limit + 1;
if (IN_RANGE (hwi, -1, param_integer_share_limit - 1))
ix = hwi + 1;
}
break;
case ENUMERAL_TYPE:
break;
default:
gcc_unreachable ();
}
if (ix >= 0)
{
t = cache_wide_int_in_type_cache (type, cst, ix, limit);
/* Make sure no one is clobbering the shared constant. */
gcc_checking_assert (TREE_TYPE (t) == type
&& TREE_INT_CST_NUNITS (t) == 1
&& TREE_INT_CST_OFFSET_NUNITS (t) == 1
&& TREE_INT_CST_EXT_NUNITS (t) == 1
&& TREE_INT_CST_ELT (t, 0) == hwi);
return t;
}
else
{
/* Use the cache of larger shared ints, using int_cst_node as
a temporary. */
TREE_INT_CST_ELT (int_cst_node, 0) = hwi;
TREE_TYPE (int_cst_node) = type;
tree *slot = int_cst_hash_table->find_slot (int_cst_node, INSERT);
t = *slot;
if (!t)
{
/* Insert this one into the hash table. */
t = int_cst_node;
*slot = t;
/* Make a new node for next time round. */
int_cst_node = make_int_cst (1, 1);
}
}
}
else
{
/* The value either hashes properly or we drop it on the floor
for the gc to take care of. There will not be enough of them
to worry about. */
tree nt = build_new_int_cst (type, cst);
tree *slot = int_cst_hash_table->find_slot (nt, INSERT);
t = *slot;
if (!t)
{
/* Insert this one into the hash table. */
t = nt;
*slot = t;
}
else
ggc_free (nt);
}
return t;
}
hashval_t
poly_int_cst_hasher::hash (tree t)
{
inchash::hash hstate;
hstate.add_int (TYPE_UID (TREE_TYPE (t)));
for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
hstate.add_wide_int (wi::to_wide (POLY_INT_CST_COEFF (t, i)));
return hstate.end ();
}
bool
poly_int_cst_hasher::equal (tree x, const compare_type &y)
{
if (TREE_TYPE (x) != y.first)
return false;
for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
if (wi::to_wide (POLY_INT_CST_COEFF (x, i)) != y.second->coeffs[i])
return false;
return true;
}
/* Build a POLY_INT_CST node with type TYPE and with the elements in VALUES.
The elements must also have type TYPE. */
tree
build_poly_int_cst (tree type, const poly_wide_int_ref &values)
{
unsigned int prec = TYPE_PRECISION (type);
gcc_assert (prec <= values.coeffs[0].get_precision ());
poly_wide_int c = poly_wide_int::from (values, prec, SIGNED);
inchash::hash h;
h.add_int (TYPE_UID (type));
for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
h.add_wide_int (c.coeffs[i]);
poly_int_cst_hasher::compare_type comp (type, &c);
tree *slot = poly_int_cst_hash_table->find_slot_with_hash (comp, h.end (),
INSERT);
if (*slot == NULL_TREE)
{
tree coeffs[NUM_POLY_INT_COEFFS];
for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
coeffs[i] = wide_int_to_tree_1 (type, c.coeffs[i]);
*slot = build_new_poly_int_cst (type, coeffs);
}
return *slot;
}
/* Create a constant tree with value VALUE in type TYPE. */
tree
wide_int_to_tree (tree type, const poly_wide_int_ref &value)
{
if (value.is_constant ())
return wide_int_to_tree_1 (type, value.coeffs[0]);
return build_poly_int_cst (type, value);
}
/* Insert INTEGER_CST T into a cache of integer constants. And return
the cached constant (which may or may not be T). If MIGHT_DUPLICATE
is false, and T falls into the type's 'smaller values' range, there
cannot be an existing entry. Otherwise, if MIGHT_DUPLICATE is true,
or the value is large, should an existing entry exist, it is
returned (rather than inserting T). */
tree
cache_integer_cst (tree t, bool might_duplicate ATTRIBUTE_UNUSED)
{
tree type = TREE_TYPE (t);
int ix = -1;
int limit = 0;
int prec = TYPE_PRECISION (type);
gcc_assert (!TREE_OVERFLOW (t));
/* The caching indices here must match those in
wide_int_to_type_1. */
switch (TREE_CODE (type))
{
case NULLPTR_TYPE:
gcc_checking_assert (integer_zerop (t));
/* Fallthru. */
case POINTER_TYPE:
case REFERENCE_TYPE:
{
if (integer_zerop (t))
ix = 0;
else if (integer_onep (t))
ix = 2;
if (ix >= 0)
limit = 3;
}
break;
case BOOLEAN_TYPE:
/* Cache false or true. */
limit = 2;
if (wi::ltu_p (wi::to_wide (t), 2))
ix = TREE_INT_CST_ELT (t, 0);
break;
case INTEGER_TYPE:
case OFFSET_TYPE:
if (TYPE_UNSIGNED (type))
{
/* Cache 0..N */
limit = param_integer_share_limit;
/* This is a little hokie, but if the prec is smaller than
what is necessary to hold param_integer_share_limit, then the
obvious test will not get the correct answer. */
if (prec < HOST_BITS_PER_WIDE_INT)
{
if (tree_to_uhwi (t)
< (unsigned HOST_WIDE_INT) param_integer_share_limit)
ix = tree_to_uhwi (t);
}
else if (wi::ltu_p (wi::to_wide (t), param_integer_share_limit))
ix = tree_to_uhwi (t);
}
else
{
/* Cache -1..N */
limit = param_integer_share_limit + 1;
if (integer_minus_onep (t))
ix = 0;
else if (!wi::neg_p (wi::to_wide (t)))
{
if (prec < HOST_BITS_PER_WIDE_INT)
{
if (tree_to_shwi (t) < param_integer_share_limit)
ix = tree_to_shwi (t) + 1;
}
else if (wi::ltu_p (wi::to_wide (t), param_integer_share_limit))
ix = tree_to_shwi (t) + 1;
}
}
break;
case ENUMERAL_TYPE:
/* The slot used by TYPE_CACHED_VALUES is used for the enum
members. */
break;
default:
gcc_unreachable ();
}
if (ix >= 0)
{
/* Look for it in the type's vector of small shared ints. */
if (!TYPE_CACHED_VALUES_P (type))
{
TYPE_CACHED_VALUES_P (type) = 1;
TYPE_CACHED_VALUES (type) = make_tree_vec (limit);
}
if (tree r = TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix))
{
gcc_checking_assert (might_duplicate);
t = r;
}
else
TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix) = t;
}
else
{
/* Use the cache of larger shared ints. */
tree *slot = int_cst_hash_table->find_slot (t, INSERT);
if (tree r = *slot)
{
/* If there is already an entry for the number verify it's the
same value. */
gcc_checking_assert (wi::to_wide (tree (r)) == wi::to_wide (t));
/* And return the cached value. */
t = r;
}
else
/* Otherwise insert this one into the hash table. */
*slot = t;
}
return t;
}
/* Builds an integer constant in TYPE such that lowest BITS bits are ones
and the rest are zeros. */
tree
build_low_bits_mask (tree type, unsigned bits)
{
gcc_assert (bits <= TYPE_PRECISION (type));
return wide_int_to_tree (type, wi::mask (bits, false,
TYPE_PRECISION (type)));
}
/* Checks that X is integer constant that can be expressed in (unsigned)
HOST_WIDE_INT without loss of precision. */
bool
cst_and_fits_in_hwi (const_tree x)
{
return (TREE_CODE (x) == INTEGER_CST
&& (tree_fits_shwi_p (x) || tree_fits_uhwi_p (x)));
}
/* Build a newly constructed VECTOR_CST with the given values of
(VECTOR_CST_)LOG2_NPATTERNS and (VECTOR_CST_)NELTS_PER_PATTERN. */
tree
make_vector (unsigned log2_npatterns,
unsigned int nelts_per_pattern MEM_STAT_DECL)
{
gcc_assert (IN_RANGE (nelts_per_pattern, 1, 3));
tree t;
unsigned npatterns = 1 << log2_npatterns;
unsigned encoded_nelts = npatterns * nelts_per_pattern;
unsigned length = (sizeof (struct tree_vector)
+ (encoded_nelts - 1) * sizeof (tree));
record_node_allocation_statistics (VECTOR_CST, length);
t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
TREE_SET_CODE (t, VECTOR_CST);
TREE_CONSTANT (t) = 1;
VECTOR_CST_LOG2_NPATTERNS (t) = log2_npatterns;
VECTOR_CST_NELTS_PER_PATTERN (t) = nelts_per_pattern;
return t;
}
/* Return a new VECTOR_CST node whose type is TYPE and whose values
are extracted from V, a vector of CONSTRUCTOR_ELT. */
tree
build_vector_from_ctor (tree type, const vec<constructor_elt, va_gc> *v)
{
if (vec_safe_length (v) == 0)
return build_zero_cst (type);
unsigned HOST_WIDE_INT idx, nelts;
tree value;
/* We can't construct a VECTOR_CST for a variable number of elements. */
nelts = TYPE_VECTOR_SUBPARTS (type).to_constant ();
tree_vector_builder vec (type, nelts, 1);
FOR_EACH_CONSTRUCTOR_VALUE (v, idx, value)
{
if (TREE_CODE (value) == VECTOR_CST)
{
/* If NELTS is constant then this must be too. */
unsigned int sub_nelts = VECTOR_CST_NELTS (value).to_constant ();
for (unsigned i = 0; i < sub_nelts; ++i)
vec.quick_push (VECTOR_CST_ELT (value, i));
}
else
vec.quick_push (value);
}
while (vec.length () < nelts)
vec.quick_push (build_zero_cst (TREE_TYPE (type)));
return vec.build ();
}
/* Build a vector of type VECTYPE where all the elements are SCs. */
tree
build_vector_from_val (tree vectype, tree sc)
{
unsigned HOST_WIDE_INT i, nunits;
if (sc == error_mark_node)
return sc;
/* Verify that the vector type is suitable for SC. Note that there
is some inconsistency in the type-system with respect to restrict
qualifications of pointers. Vector types always have a main-variant
element type and the qualification is applied to the vector-type.
So TREE_TYPE (vector-type) does not return a properly qualified
vector element-type. */
gcc_checking_assert (types_compatible_p (TYPE_MAIN_VARIANT (TREE_TYPE (sc)),
TREE_TYPE (vectype)));
if (CONSTANT_CLASS_P (sc))
{
tree_vector_builder v (vectype, 1, 1);
v.quick_push (sc);
return v.build ();
}
else if (!TYPE_VECTOR_SUBPARTS (vectype).is_constant (&nunits))
return fold_build1 (VEC_DUPLICATE_EXPR, vectype, sc);
else
{
vec<constructor_elt, va_gc> *v;
vec_alloc (v, nunits);
for (i = 0; i < nunits; ++i)
CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, sc);
return build_constructor (vectype, v);
}
}
/* If TYPE is not a vector type, just return SC, otherwise return
build_vector_from_val (TYPE, SC). */
tree
build_uniform_cst (tree type, tree sc)
{
if (!VECTOR_TYPE_P (type))
return sc;
return build_vector_from_val (type, sc);
}
/* Build a vector series of type TYPE in which element I has the value
BASE + I * STEP. The result is a constant if BASE and STEP are constant
and a VEC_SERIES_EXPR otherwise. */
tree
build_vec_series (tree type, tree base, tree step)
{
if (integer_zerop (step))
return build_vector_from_val (type, base);
if (TREE_CODE (base) == INTEGER_CST && TREE_CODE (step) == INTEGER_CST)
{
tree_vector_builder builder (type, 1, 3);
tree elt1 = wide_int_to_tree (TREE_TYPE (base),
wi::to_wide (base) + wi::to_wide (step));
tree elt2 = wide_int_to_tree (TREE_TYPE (base),
wi::to_wide (elt1) + wi::to_wide (step));
builder.quick_push (base);
builder.quick_push (elt1);
builder.quick_push (elt2);
return builder.build ();
}
return build2 (VEC_SERIES_EXPR, type, base, step);
}
/* Return a vector with the same number of units and number of bits
as VEC_TYPE, but in which the elements are a linear series of unsigned
integers { BASE, BASE + STEP, BASE + STEP * 2, ... }. */
tree
build_index_vector (tree vec_type, poly_uint64 base, poly_uint64 step)
{
tree index_vec_type = vec_type;
tree index_elt_type = TREE_TYPE (vec_type);
poly_uint64 nunits = TYPE_VECTOR_SUBPARTS (vec_type);
if (!INTEGRAL_TYPE_P (index_elt_type) || !TYPE_UNSIGNED (index_elt_type))
{
index_elt_type = build_nonstandard_integer_type
(GET_MODE_BITSIZE (SCALAR_TYPE_MODE (index_elt_type)), true);
index_vec_type = build_vector_type (index_elt_type, nunits);
}
tree_vector_builder v (index_vec_type, 1, 3);
for (unsigned int i = 0; i < 3; ++i)
v.quick_push (build_int_cstu (index_elt_type, base + i * step));
return v.build ();
}
/* Return a VECTOR_CST of type VEC_TYPE in which the first NUM_A
elements are A and the rest are B. */
tree
build_vector_a_then_b (tree vec_type, unsigned int num_a, tree a, tree b)
{
gcc_assert (known_le (num_a, TYPE_VECTOR_SUBPARTS (vec_type)));
unsigned int count = constant_lower_bound (TYPE_VECTOR_SUBPARTS (vec_type));
/* Optimize the constant case. */
if ((count & 1) == 0 && TYPE_VECTOR_SUBPARTS (vec_type).is_constant ())
count /= 2;
tree_vector_builder builder (vec_type, count, 2);
for (unsigned int i = 0; i < count * 2; ++i)
builder.quick_push (i < num_a ? a : b);
return builder.build ();
}
/* Something has messed with the elements of CONSTRUCTOR C after it was built;
calculate TREE_CONSTANT and TREE_SIDE_EFFECTS. */
void
recompute_constructor_flags (tree c)
{
unsigned int i;
tree val;
bool constant_p = true;
bool side_effects_p = false;
vec<constructor_elt, va_gc> *vals = CONSTRUCTOR_ELTS (c);
FOR_EACH_CONSTRUCTOR_VALUE (vals, i, val)
{
/* Mostly ctors will have elts that don't have side-effects, so
the usual case is to scan all the elements. Hence a single
loop for both const and side effects, rather than one loop
each (with early outs). */
if (!TREE_CONSTANT (val))
constant_p = false;
if (TREE_SIDE_EFFECTS (val))
side_effects_p = true;
}
TREE_SIDE_EFFECTS (c) = side_effects_p;
TREE_CONSTANT (c) = constant_p;
}
/* Make sure that TREE_CONSTANT and TREE_SIDE_EFFECTS are correct for
CONSTRUCTOR C. */
void
verify_constructor_flags (tree c)
{
unsigned int i;
tree val;
bool constant_p = TREE_CONSTANT (c);
bool side_effects_p = TREE_SIDE_EFFECTS (c);
vec<constructor_elt, va_gc> *vals = CONSTRUCTOR_ELTS (c);
FOR_EACH_CONSTRUCTOR_VALUE (vals, i, val)
{
if (constant_p && !TREE_CONSTANT (val))
internal_error ("non-constant element in constant CONSTRUCTOR");
if (!side_effects_p && TREE_SIDE_EFFECTS (val))
internal_error ("side-effects element in no-side-effects CONSTRUCTOR");
}
}
/* Return a new CONSTRUCTOR node whose type is TYPE and whose values
are in the vec pointed to by VALS. */
tree
build_constructor (tree type, vec<constructor_elt, va_gc> *vals MEM_STAT_DECL)
{
tree c = make_node (CONSTRUCTOR PASS_MEM_STAT);
TREE_TYPE (c) = type;
CONSTRUCTOR_ELTS (c) = vals;
recompute_constructor_flags (c);
return c;
}
/* Build a CONSTRUCTOR node made of a single initializer, with the specified
INDEX and VALUE. */
tree
build_constructor_single (tree type, tree index, tree value)
{
vec<constructor_elt, va_gc> *v;
constructor_elt elt = {index, value};
vec_alloc (v, 1);
v->quick_push (elt);
return build_constructor (type, v);
}
/* Return a new CONSTRUCTOR node whose type is TYPE and whose values
are in a list pointed to by VALS. */
tree
build_constructor_from_list (tree type, tree vals)
{
tree t;
vec<constructor_elt, va_gc> *v = NULL;
if (vals)
{
vec_alloc (v, list_length (vals));
for (t = vals; t; t = TREE_CHAIN (t))
CONSTRUCTOR_APPEND_ELT (v, TREE_PURPOSE (t), TREE_VALUE (t));
}
return build_constructor (type, v);
}
/* Return a new CONSTRUCTOR node whose type is TYPE and whose values
are in a vector pointed to by VALS. Note that the TREE_PURPOSE
fields in the constructor remain null. */
tree
build_constructor_from_vec (tree type, const vec<tree, va_gc> *vals)
{
vec<constructor_elt, va_gc> *v = NULL;
for (tree t : vals)
CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, t);
return build_constructor (type, v);
}
/* Return a new CONSTRUCTOR node whose type is TYPE. NELTS is the number
of elements, provided as index/value pairs. */
tree
build_constructor_va (tree type, int nelts, ...)
{
vec<constructor_elt, va_gc> *v = NULL;
va_list p;
va_start (p, nelts);
vec_alloc (v, nelts);
while (nelts--)
{
tree index = va_arg (p, tree);
tree value = va_arg (p, tree);
CONSTRUCTOR_APPEND_ELT (v, index, value);
}
va_end (p);
return build_constructor (type, v);
}
/* Return a node of type TYPE for which TREE_CLOBBER_P is true. */
tree
build_clobber (tree type)
{
tree clobber = build_constructor (type, NULL);
TREE_THIS_VOLATILE (clobber) = true;
return clobber;
}
/* Return a new FIXED_CST node whose type is TYPE and value is F. */
tree
build_fixed (tree type, FIXED_VALUE_TYPE f)
{
tree v;
FIXED_VALUE_TYPE *fp;
v = make_node (FIXED_CST);
fp = ggc_alloc<fixed_value> ();
memcpy (fp, &f, sizeof (FIXED_VALUE_TYPE));
TREE_TYPE (v) = type;
TREE_FIXED_CST_PTR (v) = fp;
return v;
}
/* Return a new REAL_CST node whose type is TYPE and value is D. */
tree
build_real (tree type, REAL_VALUE_TYPE d)
{
tree v;
REAL_VALUE_TYPE *dp;
int overflow = 0;
/* ??? Used to check for overflow here via CHECK_FLOAT_TYPE.
Consider doing it via real_convert now. */
v = make_node (REAL_CST);
dp = ggc_alloc<real_value> ();
memcpy (dp, &d, sizeof (REAL_VALUE_TYPE));
TREE_TYPE (v) = type;
TREE_REAL_CST_PTR (v) = dp;
TREE_OVERFLOW (v) = overflow;
return v;
}
/* Like build_real, but first truncate D to the type. */
tree
build_real_truncate (tree type, REAL_VALUE_TYPE d)
{
return build_real (type, real_value_truncate (TYPE_MODE (type), d));
}
/* Return a new REAL_CST node whose type is TYPE
and whose value is the integer value of the INTEGER_CST node I. */
REAL_VALUE_TYPE
real_value_from_int_cst (const_tree type, const_tree i)
{
REAL_VALUE_TYPE d;
/* Clear all bits of the real value type so that we can later do
bitwise comparisons to see if two values are the same. */
memset (&d, 0, sizeof d);
real_from_integer (&d, type ? TYPE_MODE (type) : VOIDmode, wi::to_wide (i),
TYPE_SIGN (TREE_TYPE (i)));
return d;
}
/* Given a tree representing an integer constant I, return a tree
representing the same value as a floating-point constant of type TYPE. */
tree
build_real_from_int_cst (tree type, const_tree i)
{
tree v;
int overflow = TREE_OVERFLOW (i);
v = build_real (type, real_value_from_int_cst (type, i));
TREE_OVERFLOW (v) |= overflow;
return v;
}
/* Return a new REAL_CST node whose type is TYPE
and whose value is the integer value I which has sign SGN. */
tree
build_real_from_wide (tree type, const wide_int_ref &i, signop sgn)
{
REAL_VALUE_TYPE d;
/* Clear all bits of the real value type so that we can later do
bitwise comparisons to see if two values are the same. */
memset (&d, 0, sizeof d);
real_from_integer (&d, TYPE_MODE (type), i, sgn);
return build_real (type, d);
}
/* Return a newly constructed STRING_CST node whose value is the LEN
characters at STR when STR is nonnull, or all zeros otherwise.
Note that for a C string literal, LEN should include the trailing NUL.
The TREE_TYPE is not initialized. */
tree
build_string (unsigned len, const char *str /*= NULL */)
{
/* Do not waste bytes provided by padding of struct tree_string. */
unsigned size = len + offsetof (struct tree_string, str) + 1;
record_node_allocation_statistics (STRING_CST, size);
tree s = (tree) ggc_internal_alloc (size);
memset (s, 0, sizeof (struct tree_typed));
TREE_SET_CODE (s, STRING_CST);
TREE_CONSTANT (s) = 1;
TREE_STRING_LENGTH (s) = len;
if (str)
memcpy (s->string.str, str, len);
else
memset (s->string.str, 0, len);
s->string.str[len] = '\0';
return s;
}
/* Return a newly constructed COMPLEX_CST node whose value is
specified by the real and imaginary parts REAL and IMAG.
Both REAL and IMAG should be constant nodes. TYPE, if specified,
will be the type of the COMPLEX_CST; otherwise a new type will be made. */
tree
build_complex (tree type, tree real, tree imag)
{
gcc_assert (CONSTANT_CLASS_P (real));
gcc_assert (CONSTANT_CLASS_P (imag));
tree t = make_node (COMPLEX_CST);
TREE_REALPART (t) = real;
TREE_IMAGPART (t) = imag;
TREE_TYPE (t) = type ? type : build_complex_type (TREE_TYPE (real));
TREE_OVERFLOW (t) = TREE_OVERFLOW (real) | TREE_OVERFLOW (imag);
return t;
}
/* Build a complex (inf +- 0i), such as for the result of cproj.
TYPE is the complex tree type of the result. If NEG is true, the
imaginary zero is negative. */
tree
build_complex_inf (tree type, bool neg)
{
REAL_VALUE_TYPE rinf, rzero = dconst0;
real_inf (&rinf);
rzero.sign = neg;
return build_complex (type, build_real (TREE_TYPE (type), rinf),
build_real (TREE_TYPE (type), rzero));
}
/* Return the constant 1 in type TYPE. If TYPE has several elements, each
element is set to 1. In particular, this is 1 + i for complex types. */
tree
build_each_one_cst (tree type)
{
if (TREE_CODE (type) == COMPLEX_TYPE)
{
tree scalar = build_one_cst (TREE_TYPE (type));
return build_complex (type, scalar, scalar);
}
else
return build_one_cst (type);
}
/* Return a constant of arithmetic type TYPE which is the
multiplicative identity of the set TYPE. */
tree
build_one_cst (tree type)
{
switch (TREE_CODE (type))
{
case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
case POINTER_TYPE: case REFERENCE_TYPE:
case OFFSET_TYPE:
return build_int_cst (type, 1);
case REAL_TYPE:
return build_real (type, dconst1);
case FIXED_POINT_TYPE:
/* We can only generate 1 for accum types. */
gcc_assert (ALL_SCALAR_ACCUM_MODE_P (TYPE_MODE (type)));
return build_fixed (type, FCONST1 (TYPE_MODE (type)));
case VECTOR_TYPE:
{
tree scalar = build_one_cst (TREE_TYPE (type));
return build_vector_from_val (type, scalar);
}
case COMPLEX_TYPE:
return build_complex (type,
build_one_cst (TREE_TYPE (type)),
build_zero_cst (TREE_TYPE (type)));
default:
gcc_unreachable ();
}
}
/* Return an integer of type TYPE containing all 1's in as much precision as
it contains, or a complex or vector whose subparts are such integers. */
tree
build_all_ones_cst (tree type)
{
if (TREE_CODE (type) == COMPLEX_TYPE)
{
tree scalar = build_all_ones_cst (TREE_TYPE (type));
return build_complex (type, scalar, scalar);
}
else
return build_minus_one_cst (type);
}
/* Return a constant of arithmetic type TYPE which is the
opposite of the multiplicative identity of the set TYPE. */
tree
build_minus_one_cst (tree type)
{
switch (TREE_CODE (type))
{
case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
case POINTER_TYPE: case REFERENCE_TYPE:
case OFFSET_TYPE:
return build_int_cst (type, -1);
case REAL_TYPE:
return build_real (type, dconstm1);
case FIXED_POINT_TYPE:
/* We can only generate 1 for accum types. */
gcc_assert (ALL_SCALAR_ACCUM_MODE_P (TYPE_MODE (type)));
return build_fixed (type,
fixed_from_double_int (double_int_minus_one,
SCALAR_TYPE_MODE (type)));
case VECTOR_TYPE:
{
tree scalar = build_minus_one_cst (TREE_TYPE (type));
return build_vector_from_val (type, scalar);
}
case COMPLEX_TYPE:
return build_complex (type,
build_minus_one_cst (TREE_TYPE (type)),
build_zero_cst (TREE_TYPE (type)));
default:
gcc_unreachable ();
}
}
/* Build 0 constant of type TYPE. This is used by constructor folding
and thus the constant should be represented in memory by
zero(es). */
tree
build_zero_cst (tree type)
{
switch (TREE_CODE (type))
{
case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
case POINTER_TYPE: case REFERENCE_TYPE:
case OFFSET_TYPE: case NULLPTR_TYPE:
return build_int_cst (type, 0);
case REAL_TYPE:
return build_real (type, dconst0);
case FIXED_POINT_TYPE:
return build_fixed (type, FCONST0 (TYPE_MODE (type)));
case VECTOR_TYPE:
{
tree scalar = build_zero_cst (TREE_TYPE (type));
return build_vector_from_val (type, scalar);
}
case COMPLEX_TYPE:
{
tree zero = build_zero_cst (TREE_TYPE (type));
return build_complex (type, zero, zero);
}
default:
if (!AGGREGATE_TYPE_P (type))
return fold_convert (type, integer_zero_node);
return build_constructor (type, NULL);
}
}
/* Build a BINFO with LEN language slots. */
tree
make_tree_binfo (unsigned base_binfos MEM_STAT_DECL)
{
tree t;
size_t length = (offsetof (struct tree_binfo, base_binfos)
+ vec<tree, va_gc>::embedded_size (base_binfos));
record_node_allocation_statistics (TREE_BINFO, length);
t = ggc_alloc_tree_node_stat (length PASS_MEM_STAT);
memset (t, 0, offsetof (struct tree_binfo, base_binfos));
TREE_SET_CODE (t, TREE_BINFO);
BINFO_BASE_BINFOS (t)->embedded_init (base_binfos);
return t;
}
/* Create a CASE_LABEL_EXPR tree node and return it. */
tree
build_case_label (tree low_value, tree high_value, tree label_decl)
{
tree t = make_node (CASE_LABEL_EXPR);
TREE_TYPE (t) = void_type_node;
SET_EXPR_LOCATION (t, DECL_SOURCE_LOCATION (label_decl));
CASE_LOW (t) = low_value;
CASE_HIGH (t) = high_value;
CASE_LABEL (t) = label_decl;
CASE_CHAIN (t) = NULL_TREE;
return t;
}
/* Build a newly constructed INTEGER_CST node. LEN and EXT_LEN are the
values of TREE_INT_CST_NUNITS and TREE_INT_CST_EXT_NUNITS respectively.
The latter determines the length of the HOST_WIDE_INT vector. */
tree
make_int_cst (int len, int ext_len MEM_STAT_DECL)
{
tree t;
int length = ((ext_len - 1) * sizeof (HOST_WIDE_INT)
+ sizeof (struct tree_int_cst));
gcc_assert (len);
record_node_allocation_statistics (INTEGER_CST, length);
t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
TREE_SET_CODE (t, INTEGER_CST);
TREE_INT_CST_NUNITS (t) = len;
TREE_INT_CST_EXT_NUNITS (t) = ext_len;
/* to_offset can only be applied to trees that are offset_int-sized
or smaller. EXT_LEN is correct if it fits, otherwise the constant
must be exactly the precision of offset_int and so LEN is correct. */
if (ext_len <= OFFSET_INT_ELTS)
TREE_INT_CST_OFFSET_NUNITS (t) = ext_len;
else
TREE_INT_CST_OFFSET_NUNITS (t) = len;
TREE_CONSTANT (t) = 1;
return t;
}
/* Build a newly constructed TREE_VEC node of length LEN. */
tree
make_tree_vec (int len MEM_STAT_DECL)
{
tree t;
size_t length = (len - 1) * sizeof (tree) + sizeof (struct tree_vec);
record_node_allocation_statistics (TREE_VEC, length);
t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
TREE_SET_CODE (t, TREE_VEC);
TREE_VEC_LENGTH (t) = len;
return t;
}
/* Grow a TREE_VEC node to new length LEN. */
tree
grow_tree_vec (tree v, int len MEM_STAT_DECL)
{
gcc_assert (TREE_CODE (v) == TREE_VEC);
int oldlen = TREE_VEC_LENGTH (v);
gcc_assert (len > oldlen);
size_t oldlength = (oldlen - 1) * sizeof (tree) + sizeof (struct tree_vec);
size_t length = (len - 1) * sizeof (tree) + sizeof (struct tree_vec);
record_node_allocation_statistics (TREE_VEC, length - oldlength);
v = (tree) ggc_realloc (v, length PASS_MEM_STAT);
TREE_VEC_LENGTH (v) = len;
return v;
}
/* Return 1 if EXPR is the constant zero, whether it is integral, float or
fixed, and scalar, complex or vector. */
bool
zerop (const_tree expr)
{
return (integer_zerop (expr)
|| real_zerop (expr)
|| fixed_zerop (expr));
}
/* Return 1 if EXPR is the integer constant zero or a complex constant
of zero, or a location wrapper for such a constant. */
bool
integer_zerop (const_tree expr)
{
STRIP_ANY_LOCATION_WRAPPER (expr);
switch (TREE_CODE (expr))
{
case INTEGER_CST:
return wi::to_wide (expr) == 0;
case COMPLEX_CST:
return (integer_zerop (TREE_REALPART (expr))
&& integer_zerop (TREE_IMAGPART (expr)));
case VECTOR_CST:
return (VECTOR_CST_NPATTERNS (expr) == 1
&& VECTOR_CST_DUPLICATE_P (expr)
&& integer_zerop (VECTOR_CST_ENCODED_ELT (expr, 0)));
default:
return false;
}
}
/* Return 1 if EXPR is the integer constant one or the corresponding
complex constant, or a location wrapper for such a constant. */
bool
integer_onep (const_tree expr)
{
STRIP_ANY_LOCATION_WRAPPER (expr);
switch (TREE_CODE (expr))
{
case INTEGER_CST:
return wi::eq_p (wi::to_widest (expr), 1);
case COMPLEX_CST:
return (integer_onep (TREE_REALPART (expr))
&& integer_zerop (TREE_IMAGPART (expr)));
case VECTOR_CST:
return (VECTOR_CST_NPATTERNS (expr) == 1
&& VECTOR_CST_DUPLICATE_P (expr)
&& integer_onep (VECTOR_CST_ENCODED_ELT (expr, 0)));
default:
return false;
}
}
/* Return 1 if EXPR is the integer constant one. For complex and vector,
return 1 if every piece is the integer constant one.
Also return 1 for location wrappers for such a constant. */
bool
integer_each_onep (const_tree expr)
{
STRIP_ANY_LOCATION_WRAPPER (expr);
if (TREE_CODE (expr) == COMPLEX_CST)
return (integer_onep (TREE_REALPART (expr))
&& integer_onep (TREE_IMAGPART (expr)));
else
return integer_onep (expr);
}
/* Return 1 if EXPR is an integer containing all 1's in as much precision as
it contains, or a complex or vector whose subparts are such integers,
or a location wrapper for such a constant. */
bool
integer_all_onesp (const_tree expr)
{
STRIP_ANY_LOCATION_WRAPPER (expr);
if (TREE_CODE (expr) == COMPLEX_CST
&& integer_all_onesp (TREE_REALPART (expr))
&& integer_all_onesp (TREE_IMAGPART (expr)))
return true;
else if (TREE_CODE (expr) == VECTOR_CST)
return (VECTOR_CST_NPATTERNS (expr) == 1
&& VECTOR_CST_DUPLICATE_P (expr)
&& integer_all_onesp (VECTOR_CST_ENCODED_ELT (expr, 0)));
else if (TREE_CODE (expr) != INTEGER_CST)
return false;
return (wi::max_value (TYPE_PRECISION (TREE_TYPE (expr)), UNSIGNED)
== wi::to_wide (expr));
}
/* Return 1 if EXPR is the integer constant minus one, or a location wrapper
for such a constant. */
bool
integer_minus_onep (const_tree expr)
{
STRIP_ANY_LOCATION_WRAPPER (expr);
if (TREE_CODE (expr) == COMPLEX_CST)
return (integer_all_onesp (TREE_REALPART (expr))
&& integer_zerop (TREE_IMAGPART (expr)));
else
return integer_all_onesp (expr);
}
/* Return 1 if EXPR is an integer constant that is a power of 2 (i.e., has only
one bit on), or a location wrapper for such a constant. */
bool
integer_pow2p (const_tree expr)
{
STRIP_ANY_LOCATION_WRAPPER (expr);
if (TREE_CODE (expr) == COMPLEX_CST
&& integer_pow2p (TREE_REALPART (expr))
&& integer_zerop (TREE_IMAGPART (expr)))
return true;
if (TREE_CODE (expr) != INTEGER_CST)
return false;
return wi::popcount (wi::to_wide (expr)) == 1;
}
/* Return 1 if EXPR is an integer constant other than zero or a
complex constant other than zero, or a location wrapper for such a
constant. */
bool
integer_nonzerop (const_tree expr)
{
STRIP_ANY_LOCATION_WRAPPER (expr);
return ((TREE_CODE (expr) == INTEGER_CST
&& wi::to_wide (expr) != 0)
|| (TREE_CODE (expr) == COMPLEX_CST
&& (integer_nonzerop (