blob: 3b59741df6e3659da57524de29888adcea0c62f7 [file] [log] [blame]
//===-- hwasan_allocator.cpp ------------------------ ---------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file is a part of HWAddressSanitizer.
//
// HWAddressSanitizer allocator.
//===----------------------------------------------------------------------===//
#include "sanitizer_common/sanitizer_atomic.h"
#include "sanitizer_common/sanitizer_errno.h"
#include "sanitizer_common/sanitizer_stackdepot.h"
#include "hwasan.h"
#include "hwasan_allocator.h"
#include "hwasan_checks.h"
#include "hwasan_mapping.h"
#include "hwasan_malloc_bisect.h"
#include "hwasan_thread.h"
#include "hwasan_report.h"
#include "lsan/lsan_common.h"
namespace __hwasan {
static Allocator allocator;
static AllocatorCache fallback_allocator_cache;
static SpinMutex fallback_mutex;
static atomic_uint8_t hwasan_allocator_tagging_enabled;
static constexpr tag_t kFallbackAllocTag = 0xBB & kTagMask;
static constexpr tag_t kFallbackFreeTag = 0xBC;
enum {
// Either just allocated by underlying allocator, but AsanChunk is not yet
// ready, or almost returned to undelying allocator and AsanChunk is already
// meaningless.
CHUNK_INVALID = 0,
// The chunk is allocated and not yet freed.
CHUNK_ALLOCATED = 1,
};
// Initialized in HwasanAllocatorInit, an never changed.
static ALIGNED(16) u8 tail_magic[kShadowAlignment - 1];
static uptr max_malloc_size;
bool HwasanChunkView::IsAllocated() const {
return metadata_ && metadata_->IsAllocated();
}
uptr HwasanChunkView::Beg() const {
return block_;
}
uptr HwasanChunkView::End() const {
return Beg() + UsedSize();
}
uptr HwasanChunkView::UsedSize() const {
return metadata_->GetRequestedSize();
}
u32 HwasanChunkView::GetAllocStackId() const {
return metadata_->GetAllocStackId();
}
u32 HwasanChunkView::GetAllocThreadId() const {
return metadata_->GetAllocThreadId();
}
uptr HwasanChunkView::ActualSize() const {
return allocator.GetActuallyAllocatedSize(reinterpret_cast<void *>(block_));
}
bool HwasanChunkView::FromSmallHeap() const {
return allocator.FromPrimary(reinterpret_cast<void *>(block_));
}
bool HwasanChunkView::AddrIsInside(uptr addr) const {
return (addr >= Beg()) && (addr < Beg() + UsedSize());
}
inline void Metadata::SetAllocated(u32 stack, u64 size) {
Thread *t = GetCurrentThread();
u64 context = t ? t->unique_id() : kMainTid;
context <<= 32;
context += stack;
requested_size_low = size & ((1ul << 32) - 1);
requested_size_high = size >> 32;
atomic_store(&alloc_context_id, context, memory_order_relaxed);
atomic_store(&chunk_state, CHUNK_ALLOCATED, memory_order_release);
}
inline void Metadata::SetUnallocated() {
atomic_store(&chunk_state, CHUNK_INVALID, memory_order_release);
requested_size_low = 0;
requested_size_high = 0;
atomic_store(&alloc_context_id, 0, memory_order_relaxed);
}
inline bool Metadata::IsAllocated() const {
return atomic_load(&chunk_state, memory_order_relaxed) == CHUNK_ALLOCATED;
}
inline u64 Metadata::GetRequestedSize() const {
return (static_cast<u64>(requested_size_high) << 32) + requested_size_low;
}
inline u32 Metadata::GetAllocStackId() const {
return atomic_load(&alloc_context_id, memory_order_relaxed);
}
inline u32 Metadata::GetAllocThreadId() const {
u64 context = atomic_load(&alloc_context_id, memory_order_relaxed);
u32 tid = context >> 32;
return tid;
}
void GetAllocatorStats(AllocatorStatCounters s) {
allocator.GetStats(s);
}
inline void Metadata::SetLsanTag(__lsan::ChunkTag tag) {
lsan_tag = tag;
}
inline __lsan::ChunkTag Metadata::GetLsanTag() const {
return static_cast<__lsan::ChunkTag>(lsan_tag);
}
uptr GetAliasRegionStart() {
#if defined(HWASAN_ALIASING_MODE)
constexpr uptr kAliasRegionOffset = 1ULL << (kTaggableRegionCheckShift - 1);
uptr AliasRegionStart =
__hwasan_shadow_memory_dynamic_address + kAliasRegionOffset;
CHECK_EQ(AliasRegionStart >> kTaggableRegionCheckShift,
__hwasan_shadow_memory_dynamic_address >> kTaggableRegionCheckShift);
CHECK_EQ(
(AliasRegionStart + kAliasRegionOffset - 1) >> kTaggableRegionCheckShift,
__hwasan_shadow_memory_dynamic_address >> kTaggableRegionCheckShift);
return AliasRegionStart;
#else
return 0;
#endif
}
void HwasanAllocatorInit() {
atomic_store_relaxed(&hwasan_allocator_tagging_enabled,
!flags()->disable_allocator_tagging);
SetAllocatorMayReturnNull(common_flags()->allocator_may_return_null);
allocator.Init(common_flags()->allocator_release_to_os_interval_ms,
GetAliasRegionStart());
for (uptr i = 0; i < sizeof(tail_magic); i++)
tail_magic[i] = GetCurrentThread()->GenerateRandomTag();
if (common_flags()->max_allocation_size_mb) {
max_malloc_size = common_flags()->max_allocation_size_mb << 20;
max_malloc_size = Min(max_malloc_size, kMaxAllowedMallocSize);
} else {
max_malloc_size = kMaxAllowedMallocSize;
}
}
void HwasanAllocatorLock() { allocator.ForceLock(); }
void HwasanAllocatorUnlock() { allocator.ForceUnlock(); }
void AllocatorSwallowThreadLocalCache(AllocatorCache *cache) {
allocator.SwallowCache(cache);
}
static uptr TaggedSize(uptr size) {
if (!size) size = 1;
uptr new_size = RoundUpTo(size, kShadowAlignment);
CHECK_GE(new_size, size);
return new_size;
}
static void *HwasanAllocate(StackTrace *stack, uptr orig_size, uptr alignment,
bool zeroise) {
// Keep this consistent with LSAN and ASAN behavior.
if (UNLIKELY(orig_size == 0))
orig_size = 1;
if (UNLIKELY(orig_size > max_malloc_size)) {
if (AllocatorMayReturnNull()) {
Report("WARNING: HWAddressSanitizer failed to allocate 0x%zx bytes\n",
orig_size);
return nullptr;
}
ReportAllocationSizeTooBig(orig_size, max_malloc_size, stack);
}
if (UNLIKELY(IsRssLimitExceeded())) {
if (AllocatorMayReturnNull())
return nullptr;
ReportRssLimitExceeded(stack);
}
alignment = Max(alignment, kShadowAlignment);
uptr size = TaggedSize(orig_size);
Thread *t = GetCurrentThread();
void *allocated;
if (t) {
allocated = allocator.Allocate(t->allocator_cache(), size, alignment);
} else {
SpinMutexLock l(&fallback_mutex);
AllocatorCache *cache = &fallback_allocator_cache;
allocated = allocator.Allocate(cache, size, alignment);
}
if (UNLIKELY(!allocated)) {
SetAllocatorOutOfMemory();
if (AllocatorMayReturnNull())
return nullptr;
ReportOutOfMemory(size, stack);
}
if (zeroise) {
// The secondary allocator mmaps memory, which should be zero-inited so we
// don't need to explicitly clear it.
if (allocator.FromPrimary(allocated))
internal_memset(allocated, 0, size);
} else if (flags()->max_malloc_fill_size > 0) {
uptr fill_size = Min(size, (uptr)flags()->max_malloc_fill_size);
internal_memset(allocated, flags()->malloc_fill_byte, fill_size);
}
if (size != orig_size) {
u8 *tail = reinterpret_cast<u8 *>(allocated) + orig_size;
uptr tail_length = size - orig_size;
internal_memcpy(tail, tail_magic, tail_length - 1);
// Short granule is excluded from magic tail, so we explicitly untag.
tail[tail_length - 1] = 0;
}
void *user_ptr = allocated;
// Tagging can only be skipped when both tag_in_malloc and tag_in_free are
// false. When tag_in_malloc = false and tag_in_free = true malloc needs to
// retag to 0.
if (InTaggableRegion(reinterpret_cast<uptr>(user_ptr)) &&
(flags()->tag_in_malloc || flags()->tag_in_free) &&
atomic_load_relaxed(&hwasan_allocator_tagging_enabled)) {
if (flags()->tag_in_malloc && malloc_bisect(stack, orig_size)) {
tag_t tag = t ? t->GenerateRandomTag() : kFallbackAllocTag;
uptr tag_size = orig_size ? orig_size : 1;
uptr full_granule_size = RoundDownTo(tag_size, kShadowAlignment);
user_ptr =
(void *)TagMemoryAligned((uptr)user_ptr, full_granule_size, tag);
if (full_granule_size != tag_size) {
u8 *short_granule =
reinterpret_cast<u8 *>(allocated) + full_granule_size;
TagMemoryAligned((uptr)short_granule, kShadowAlignment,
tag_size % kShadowAlignment);
short_granule[kShadowAlignment - 1] = tag;
}
} else {
user_ptr = (void *)TagMemoryAligned((uptr)user_ptr, size, 0);
}
}
Metadata *meta =
reinterpret_cast<Metadata *>(allocator.GetMetaData(allocated));
#if CAN_SANITIZE_LEAKS
meta->SetLsanTag(__lsan::DisabledInThisThread() ? __lsan::kIgnored
: __lsan::kDirectlyLeaked);
#endif
meta->SetAllocated(StackDepotPut(*stack), orig_size);
RunMallocHooks(user_ptr, size);
return user_ptr;
}
static bool PointerAndMemoryTagsMatch(void *tagged_ptr) {
CHECK(tagged_ptr);
uptr tagged_uptr = reinterpret_cast<uptr>(tagged_ptr);
if (!InTaggableRegion(tagged_uptr))
return true;
tag_t mem_tag = *reinterpret_cast<tag_t *>(
MemToShadow(reinterpret_cast<uptr>(UntagPtr(tagged_ptr))));
return PossiblyShortTagMatches(mem_tag, tagged_uptr, 1);
}
static bool CheckInvalidFree(StackTrace *stack, void *untagged_ptr,
void *tagged_ptr) {
// This function can return true if halt_on_error is false.
if (!MemIsApp(reinterpret_cast<uptr>(untagged_ptr)) ||
!PointerAndMemoryTagsMatch(tagged_ptr)) {
ReportInvalidFree(stack, reinterpret_cast<uptr>(tagged_ptr));
return true;
}
return false;
}
static void HwasanDeallocate(StackTrace *stack, void *tagged_ptr) {
CHECK(tagged_ptr);
RunFreeHooks(tagged_ptr);
void *untagged_ptr = UntagPtr(tagged_ptr);
if (CheckInvalidFree(stack, untagged_ptr, tagged_ptr))
return;
void *aligned_ptr = reinterpret_cast<void *>(
RoundDownTo(reinterpret_cast<uptr>(untagged_ptr), kShadowAlignment));
tag_t pointer_tag = GetTagFromPointer(reinterpret_cast<uptr>(tagged_ptr));
Metadata *meta =
reinterpret_cast<Metadata *>(allocator.GetMetaData(aligned_ptr));
if (!meta) {
ReportInvalidFree(stack, reinterpret_cast<uptr>(tagged_ptr));
return;
}
uptr orig_size = meta->GetRequestedSize();
u32 free_context_id = StackDepotPut(*stack);
u32 alloc_context_id = meta->GetAllocStackId();
u32 alloc_thread_id = meta->GetAllocThreadId();
bool in_taggable_region =
InTaggableRegion(reinterpret_cast<uptr>(tagged_ptr));
// Check tail magic.
uptr tagged_size = TaggedSize(orig_size);
if (flags()->free_checks_tail_magic && orig_size &&
tagged_size != orig_size) {
uptr tail_size = tagged_size - orig_size - 1;
CHECK_LT(tail_size, kShadowAlignment);
void *tail_beg = reinterpret_cast<void *>(
reinterpret_cast<uptr>(aligned_ptr) + orig_size);
tag_t short_granule_memtag = *(reinterpret_cast<tag_t *>(
reinterpret_cast<uptr>(tail_beg) + tail_size));
if (tail_size &&
(internal_memcmp(tail_beg, tail_magic, tail_size) ||
(in_taggable_region && pointer_tag != short_granule_memtag)))
ReportTailOverwritten(stack, reinterpret_cast<uptr>(tagged_ptr),
orig_size, tail_magic);
}
// TODO(kstoimenov): consider meta->SetUnallocated(free_context_id).
meta->SetUnallocated();
// This memory will not be reused by anyone else, so we are free to keep it
// poisoned.
Thread *t = GetCurrentThread();
if (flags()->max_free_fill_size > 0) {
uptr fill_size =
Min(TaggedSize(orig_size), (uptr)flags()->max_free_fill_size);
internal_memset(aligned_ptr, flags()->free_fill_byte, fill_size);
}
if (in_taggable_region && flags()->tag_in_free && malloc_bisect(stack, 0) &&
atomic_load_relaxed(&hwasan_allocator_tagging_enabled)) {
// Always store full 8-bit tags on free to maximize UAF detection.
tag_t tag;
if (t) {
// Make sure we are not using a short granule tag as a poison tag. This
// would make us attempt to read the memory on a UaF.
// The tag can be zero if tagging is disabled on this thread.
do {
tag = t->GenerateRandomTag(/*num_bits=*/8);
} while (
UNLIKELY((tag < kShadowAlignment || tag == pointer_tag) && tag != 0));
} else {
static_assert(kFallbackFreeTag >= kShadowAlignment,
"fallback tag must not be a short granule tag.");
tag = kFallbackFreeTag;
}
TagMemoryAligned(reinterpret_cast<uptr>(aligned_ptr), TaggedSize(orig_size),
tag);
}
if (t) {
allocator.Deallocate(t->allocator_cache(), aligned_ptr);
if (auto *ha = t->heap_allocations())
ha->push({reinterpret_cast<uptr>(tagged_ptr), alloc_thread_id,
alloc_context_id, free_context_id,
static_cast<u32>(orig_size)});
} else {
SpinMutexLock l(&fallback_mutex);
AllocatorCache *cache = &fallback_allocator_cache;
allocator.Deallocate(cache, aligned_ptr);
}
}
static void *HwasanReallocate(StackTrace *stack, void *tagged_ptr_old,
uptr new_size, uptr alignment) {
void *untagged_ptr_old = UntagPtr(tagged_ptr_old);
if (CheckInvalidFree(stack, untagged_ptr_old, tagged_ptr_old))
return nullptr;
void *tagged_ptr_new =
HwasanAllocate(stack, new_size, alignment, false /*zeroise*/);
if (tagged_ptr_old && tagged_ptr_new) {
Metadata *meta =
reinterpret_cast<Metadata *>(allocator.GetMetaData(untagged_ptr_old));
void *untagged_ptr_new = UntagPtr(tagged_ptr_new);
internal_memcpy(untagged_ptr_new, untagged_ptr_old,
Min(new_size, static_cast<uptr>(meta->GetRequestedSize())));
HwasanDeallocate(stack, tagged_ptr_old);
}
return tagged_ptr_new;
}
static void *HwasanCalloc(StackTrace *stack, uptr nmemb, uptr size) {
if (UNLIKELY(CheckForCallocOverflow(size, nmemb))) {
if (AllocatorMayReturnNull())
return nullptr;
ReportCallocOverflow(nmemb, size, stack);
}
return HwasanAllocate(stack, nmemb * size, sizeof(u64), true);
}
HwasanChunkView FindHeapChunkByAddress(uptr address) {
if (!allocator.PointerIsMine(reinterpret_cast<void *>(address)))
return HwasanChunkView();
void *block = allocator.GetBlockBegin(reinterpret_cast<void*>(address));
if (!block)
return HwasanChunkView();
Metadata *metadata =
reinterpret_cast<Metadata*>(allocator.GetMetaData(block));
return HwasanChunkView(reinterpret_cast<uptr>(block), metadata);
}
static const void *AllocationBegin(const void *p) {
const void *untagged_ptr = UntagPtr(p);
if (!untagged_ptr)
return nullptr;
const void *beg = allocator.GetBlockBegin(untagged_ptr);
if (!beg)
return nullptr;
Metadata *b = (Metadata *)allocator.GetMetaData(beg);
if (b->GetRequestedSize() == 0)
return nullptr;
tag_t tag = GetTagFromPointer((uptr)p);
return (const void *)AddTagToPointer((uptr)beg, tag);
}
static uptr AllocationSize(const void *p) {
const void *untagged_ptr = UntagPtr(p);
if (!untagged_ptr) return 0;
const void *beg = allocator.GetBlockBegin(untagged_ptr);
if (!beg)
return 0;
Metadata *b = (Metadata *)allocator.GetMetaData(beg);
return b->GetRequestedSize();
}
void *hwasan_malloc(uptr size, StackTrace *stack) {
return SetErrnoOnNull(HwasanAllocate(stack, size, sizeof(u64), false));
}
void *hwasan_calloc(uptr nmemb, uptr size, StackTrace *stack) {
return SetErrnoOnNull(HwasanCalloc(stack, nmemb, size));
}
void *hwasan_realloc(void *ptr, uptr size, StackTrace *stack) {
if (!ptr)
return SetErrnoOnNull(HwasanAllocate(stack, size, sizeof(u64), false));
if (size == 0) {
HwasanDeallocate(stack, ptr);
return nullptr;
}
return SetErrnoOnNull(HwasanReallocate(stack, ptr, size, sizeof(u64)));
}
void *hwasan_reallocarray(void *ptr, uptr nmemb, uptr size, StackTrace *stack) {
if (UNLIKELY(CheckForCallocOverflow(size, nmemb))) {
errno = errno_ENOMEM;
if (AllocatorMayReturnNull())
return nullptr;
ReportReallocArrayOverflow(nmemb, size, stack);
}
return hwasan_realloc(ptr, nmemb * size, stack);
}
void *hwasan_valloc(uptr size, StackTrace *stack) {
return SetErrnoOnNull(
HwasanAllocate(stack, size, GetPageSizeCached(), false));
}
void *hwasan_pvalloc(uptr size, StackTrace *stack) {
uptr PageSize = GetPageSizeCached();
if (UNLIKELY(CheckForPvallocOverflow(size, PageSize))) {
errno = errno_ENOMEM;
if (AllocatorMayReturnNull())
return nullptr;
ReportPvallocOverflow(size, stack);
}
// pvalloc(0) should allocate one page.
size = size ? RoundUpTo(size, PageSize) : PageSize;
return SetErrnoOnNull(HwasanAllocate(stack, size, PageSize, false));
}
void *hwasan_aligned_alloc(uptr alignment, uptr size, StackTrace *stack) {
if (UNLIKELY(!CheckAlignedAllocAlignmentAndSize(alignment, size))) {
errno = errno_EINVAL;
if (AllocatorMayReturnNull())
return nullptr;
ReportInvalidAlignedAllocAlignment(size, alignment, stack);
}
return SetErrnoOnNull(HwasanAllocate(stack, size, alignment, false));
}
void *hwasan_memalign(uptr alignment, uptr size, StackTrace *stack) {
if (UNLIKELY(!IsPowerOfTwo(alignment))) {
errno = errno_EINVAL;
if (AllocatorMayReturnNull())
return nullptr;
ReportInvalidAllocationAlignment(alignment, stack);
}
return SetErrnoOnNull(HwasanAllocate(stack, size, alignment, false));
}
int hwasan_posix_memalign(void **memptr, uptr alignment, uptr size,
StackTrace *stack) {
if (UNLIKELY(!CheckPosixMemalignAlignment(alignment))) {
if (AllocatorMayReturnNull())
return errno_EINVAL;
ReportInvalidPosixMemalignAlignment(alignment, stack);
}
void *ptr = HwasanAllocate(stack, size, alignment, false);
if (UNLIKELY(!ptr))
// OOM error is already taken care of by HwasanAllocate.
return errno_ENOMEM;
CHECK(IsAligned((uptr)ptr, alignment));
*memptr = ptr;
return 0;
}
void hwasan_free(void *ptr, StackTrace *stack) {
return HwasanDeallocate(stack, ptr);
}
} // namespace __hwasan
// --- Implementation of LSan-specific functions --- {{{1
namespace __lsan {
void LockAllocator() {
__hwasan::HwasanAllocatorLock();
}
void UnlockAllocator() {
__hwasan::HwasanAllocatorUnlock();
}
void GetAllocatorGlobalRange(uptr *begin, uptr *end) {
*begin = (uptr)&__hwasan::allocator;
*end = *begin + sizeof(__hwasan::allocator);
}
uptr PointsIntoChunk(void *p) {
p = UntagPtr(p);
uptr addr = reinterpret_cast<uptr>(p);
uptr chunk =
reinterpret_cast<uptr>(__hwasan::allocator.GetBlockBeginFastLocked(p));
if (!chunk)
return 0;
__hwasan::Metadata *metadata = reinterpret_cast<__hwasan::Metadata *>(
__hwasan::allocator.GetMetaData(reinterpret_cast<void *>(chunk)));
if (!metadata || !metadata->IsAllocated())
return 0;
if (addr < chunk + metadata->GetRequestedSize())
return chunk;
if (IsSpecialCaseOfOperatorNew0(chunk, metadata->GetRequestedSize(), addr))
return chunk;
return 0;
}
uptr GetUserBegin(uptr chunk) {
CHECK_EQ(UntagAddr(chunk), chunk);
void *block = __hwasan::allocator.GetBlockBeginFastLocked(
reinterpret_cast<void *>(chunk));
if (!block)
return 0;
__hwasan::Metadata *metadata = reinterpret_cast<__hwasan::Metadata *>(
__hwasan::allocator.GetMetaData(block));
if (!metadata || !metadata->IsAllocated())
return 0;
return reinterpret_cast<uptr>(block);
}
uptr GetUserAddr(uptr chunk) {
if (!InTaggableRegion(chunk))
return chunk;
tag_t mem_tag = *(tag_t *)__hwasan::MemToShadow(chunk);
return AddTagToPointer(chunk, mem_tag);
}
LsanMetadata::LsanMetadata(uptr chunk) {
CHECK_EQ(UntagAddr(chunk), chunk);
metadata_ =
chunk ? __hwasan::allocator.GetMetaData(reinterpret_cast<void *>(chunk))
: nullptr;
}
bool LsanMetadata::allocated() const {
if (!metadata_)
return false;
__hwasan::Metadata *m = reinterpret_cast<__hwasan::Metadata *>(metadata_);
return m->IsAllocated();
}
ChunkTag LsanMetadata::tag() const {
__hwasan::Metadata *m = reinterpret_cast<__hwasan::Metadata *>(metadata_);
return m->GetLsanTag();
}
void LsanMetadata::set_tag(ChunkTag value) {
__hwasan::Metadata *m = reinterpret_cast<__hwasan::Metadata *>(metadata_);
m->SetLsanTag(value);
}
uptr LsanMetadata::requested_size() const {
__hwasan::Metadata *m = reinterpret_cast<__hwasan::Metadata *>(metadata_);
return m->GetRequestedSize();
}
u32 LsanMetadata::stack_trace_id() const {
__hwasan::Metadata *m = reinterpret_cast<__hwasan::Metadata *>(metadata_);
return m->GetAllocStackId();
}
void ForEachChunk(ForEachChunkCallback callback, void *arg) {
__hwasan::allocator.ForEachChunk(callback, arg);
}
IgnoreObjectResult IgnoreObject(const void *p) {
p = UntagPtr(p);
uptr addr = reinterpret_cast<uptr>(p);
uptr chunk = reinterpret_cast<uptr>(__hwasan::allocator.GetBlockBegin(p));
if (!chunk)
return kIgnoreObjectInvalid;
__hwasan::Metadata *metadata = reinterpret_cast<__hwasan::Metadata *>(
__hwasan::allocator.GetMetaData(reinterpret_cast<void *>(chunk)));
if (!metadata || !metadata->IsAllocated())
return kIgnoreObjectInvalid;
if (addr >= chunk + metadata->GetRequestedSize())
return kIgnoreObjectInvalid;
if (metadata->GetLsanTag() == kIgnored)
return kIgnoreObjectAlreadyIgnored;
metadata->SetLsanTag(kIgnored);
return kIgnoreObjectSuccess;
}
} // namespace __lsan
using namespace __hwasan;
void __hwasan_enable_allocator_tagging() {
atomic_store_relaxed(&hwasan_allocator_tagging_enabled, 1);
}
void __hwasan_disable_allocator_tagging() {
atomic_store_relaxed(&hwasan_allocator_tagging_enabled, 0);
}
uptr __sanitizer_get_current_allocated_bytes() {
uptr stats[AllocatorStatCount];
allocator.GetStats(stats);
return stats[AllocatorStatAllocated];
}
uptr __sanitizer_get_heap_size() {
uptr stats[AllocatorStatCount];
allocator.GetStats(stats);
return stats[AllocatorStatMapped];
}
uptr __sanitizer_get_free_bytes() { return 1; }
uptr __sanitizer_get_unmapped_bytes() { return 1; }
uptr __sanitizer_get_estimated_allocated_size(uptr size) { return size; }
int __sanitizer_get_ownership(const void *p) { return AllocationSize(p) != 0; }
const void *__sanitizer_get_allocated_begin(const void *p) {
return AllocationBegin(p);
}
uptr __sanitizer_get_allocated_size(const void *p) { return AllocationSize(p); }
void __sanitizer_purge_allocator() { allocator.ForceReleaseToOS(); }