blob: 0c26fd0e62fa1f7cb4a108f64600498a08cf4410 [file] [log] [blame]
// 2002-01-23 Loren J. Rittle <rittle@labs.mot.com> <ljrittle@acm.org>
//
// Copyright (C) 2002-2023 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License along
// with this library; see the file COPYING3. If not see
// <http://www.gnu.org/licenses/>.
// { dg-do run }
// { dg-options "-pthread" }
// { dg-require-effective-target pthread }
// This multi-threading C++/STL/POSIX code adheres to rules outlined here:
// http://www.sgi.com/tech/stl/thread_safety.html
//
// It is believed to exercise the allocation code in a manner that
// should reveal memory leaks (and, under rare cases, race conditions,
// if the STL threading support is fubar'd).
#include <list>
#include <cstdlib>
#include <pthread.h>
const int thread_cycles = 10;
const int thread_pairs = 10;
const unsigned max_size = 100;
const int iters = 10000;
class task_queue
{
typedef std::list<int> list_type;
public:
task_queue ()
{
pthread_mutex_init (&fooLock, 0);
pthread_cond_init (&fooCond1, 0);
pthread_cond_init (&fooCond2, 0);
}
~task_queue ()
{
pthread_mutex_destroy (&fooLock);
pthread_cond_destroy (&fooCond1);
pthread_cond_destroy (&fooCond2);
}
list_type foo;
pthread_mutex_t fooLock;
pthread_cond_t fooCond1;
pthread_cond_t fooCond2;
};
void*
produce(void* t)
{
task_queue& tq = *(static_cast<task_queue*> (t));
int num = 0;
while (num < iters)
{
pthread_mutex_lock (&tq.fooLock);
while (tq.foo.size () >= max_size)
pthread_cond_wait (&tq.fooCond1, &tq.fooLock);
tq.foo.push_back (num++);
pthread_cond_signal (&tq.fooCond2);
pthread_mutex_unlock (&tq.fooLock);
}
return 0;
}
void*
consume(void* t)
{
task_queue& tq = *(static_cast<task_queue*> (t));
int num = 0;
while (num < iters)
{
pthread_mutex_lock (&tq.fooLock);
while (tq.foo.size () == 0)
pthread_cond_wait (&tq.fooCond2, &tq.fooLock);
if (tq.foo.front () != num++)
abort ();
tq.foo.pop_front ();
pthread_cond_signal (&tq.fooCond1);
pthread_mutex_unlock (&tq.fooLock);
}
return 0;
}
int
main()
{
pthread_t prod[thread_pairs];
pthread_t cons[thread_pairs];
task_queue* tq[thread_pairs];
#if defined(__sun) && defined(__svr4__) && _XOPEN_VERSION >= 500
pthread_setconcurrency (thread_pairs * 2);
#endif
for (int j = 0; j < thread_cycles; j++)
{
for (int i = 0; i < thread_pairs; i++)
{
tq[i] = new task_queue;
pthread_create (&prod[i], 0, produce, static_cast<void*> (tq[i]));
pthread_create (&cons[i], 0, consume, static_cast<void*> (tq[i]));
}
for (int i = 0; i < thread_pairs; i++)
{
pthread_join (prod[i], 0);
pthread_join (cons[i], 0);
delete tq[i];
}
}
return 0;
}