| /* Translation of isl AST to Gimple. |
| Copyright (C) 2014-2017 Free Software Foundation, Inc. |
| Contributed by Roman Gareev <gareevroman@gmail.com>. |
| |
| This file is part of GCC. |
| |
| GCC is free software; you can redistribute it and/or modify |
| it under the terms of the GNU General Public License as published by |
| the Free Software Foundation; either version 3, or (at your option) |
| any later version. |
| |
| GCC is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| GNU General Public License for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with GCC; see the file COPYING3. If not see |
| <http://www.gnu.org/licenses/>. */ |
| |
| #define USES_ISL |
| |
| #include "config.h" |
| |
| #ifdef HAVE_isl |
| |
| #define INCLUDE_MAP |
| #include "system.h" |
| #include "coretypes.h" |
| #include "backend.h" |
| #include "cfghooks.h" |
| #include "tree.h" |
| #include "gimple.h" |
| #include "ssa.h" |
| #include "params.h" |
| #include "fold-const.h" |
| #include "gimple-fold.h" |
| #include "gimple-iterator.h" |
| #include "gimplify.h" |
| #include "gimplify-me.h" |
| #include "tree-eh.h" |
| #include "tree-ssa-loop.h" |
| #include "tree-ssa-operands.h" |
| #include "tree-ssa-propagate.h" |
| #include "tree-pass.h" |
| #include "cfgloop.h" |
| #include "tree-data-ref.h" |
| #include "tree-ssa-loop-manip.h" |
| #include "tree-scalar-evolution.h" |
| #include "gimple-ssa.h" |
| #include "tree-phinodes.h" |
| #include "tree-into-ssa.h" |
| #include "ssa-iterators.h" |
| #include "tree-cfg.h" |
| #include "gimple-pretty-print.h" |
| #include "cfganal.h" |
| #include "value-prof.h" |
| #include "tree-ssa.h" |
| #include "tree-vectorizer.h" |
| #include "graphite.h" |
| |
| struct ast_build_info |
| { |
| ast_build_info() |
| : is_parallelizable(false) |
| { } |
| bool is_parallelizable; |
| }; |
| |
| /* IVS_PARAMS maps isl's scattering and parameter identifiers |
| to corresponding trees. */ |
| |
| typedef std::map<isl_id *, tree> ivs_params; |
| |
| /* Free all memory allocated for isl's identifiers. */ |
| |
| static void ivs_params_clear (ivs_params &ip) |
| { |
| std::map<isl_id *, tree>::iterator it; |
| for (it = ip.begin (); |
| it != ip.end (); it++) |
| { |
| isl_id_free (it->first); |
| } |
| } |
| |
| /* Set the "separate" option for the schedule node. */ |
| |
| static isl_schedule_node * |
| set_separate_option (__isl_take isl_schedule_node *node, void *user) |
| { |
| if (user) |
| return node; |
| |
| if (isl_schedule_node_get_type (node) != isl_schedule_node_band) |
| return node; |
| |
| /* Set the "separate" option unless it is set earlier to another option. */ |
| if (isl_schedule_node_band_member_get_ast_loop_type (node, 0) |
| == isl_ast_loop_default) |
| return isl_schedule_node_band_member_set_ast_loop_type |
| (node, 0, isl_ast_loop_separate); |
| |
| return node; |
| } |
| |
| /* Print SCHEDULE under an AST form on file F. */ |
| |
| void |
| print_schedule_ast (FILE *f, __isl_keep isl_schedule *schedule, scop_p scop) |
| { |
| isl_set *set = isl_set_params (isl_set_copy (scop->param_context)); |
| isl_ast_build *context = isl_ast_build_from_context (set); |
| isl_ast_node *ast |
| = isl_ast_build_node_from_schedule (context, isl_schedule_copy (schedule)); |
| isl_ast_build_free (context); |
| print_isl_ast (f, ast); |
| isl_ast_node_free (ast); |
| } |
| |
| DEBUG_FUNCTION void |
| debug_schedule_ast (__isl_keep isl_schedule *s, scop_p scop) |
| { |
| print_schedule_ast (stderr, s, scop); |
| } |
| |
| enum phi_node_kind |
| { |
| unknown_phi, |
| loop_phi, |
| close_phi, |
| cond_phi |
| }; |
| |
| class translate_isl_ast_to_gimple |
| { |
| public: |
| translate_isl_ast_to_gimple (sese_info_p r); |
| edge translate_isl_ast (loop_p context_loop, __isl_keep isl_ast_node *node, |
| edge next_e, ivs_params &ip); |
| edge translate_isl_ast_node_for (loop_p context_loop, |
| __isl_keep isl_ast_node *node, |
| edge next_e, ivs_params &ip); |
| edge translate_isl_ast_for_loop (loop_p context_loop, |
| __isl_keep isl_ast_node *node_for, |
| edge next_e, |
| tree type, tree lb, tree ub, |
| ivs_params &ip); |
| edge translate_isl_ast_node_if (loop_p context_loop, |
| __isl_keep isl_ast_node *node, |
| edge next_e, ivs_params &ip); |
| edge translate_isl_ast_node_user (__isl_keep isl_ast_node *node, |
| edge next_e, ivs_params &ip); |
| edge translate_isl_ast_node_block (loop_p context_loop, |
| __isl_keep isl_ast_node *node, |
| edge next_e, ivs_params &ip); |
| tree unary_op_to_tree (tree type, __isl_take isl_ast_expr *expr, |
| ivs_params &ip); |
| tree binary_op_to_tree (tree type, __isl_take isl_ast_expr *expr, |
| ivs_params &ip); |
| tree ternary_op_to_tree (tree type, __isl_take isl_ast_expr *expr, |
| ivs_params &ip); |
| tree nary_op_to_tree (tree type, __isl_take isl_ast_expr *expr, |
| ivs_params &ip); |
| tree gcc_expression_from_isl_expression (tree type, |
| __isl_take isl_ast_expr *, |
| ivs_params &ip); |
| tree gcc_expression_from_isl_ast_expr_id (tree type, |
| __isl_keep isl_ast_expr *expr_id, |
| ivs_params &ip); |
| widest_int widest_int_from_isl_expr_int (__isl_keep isl_ast_expr *expr); |
| tree gcc_expression_from_isl_expr_int (tree type, |
| __isl_take isl_ast_expr *expr); |
| tree gcc_expression_from_isl_expr_op (tree type, |
| __isl_take isl_ast_expr *expr, |
| ivs_params &ip); |
| struct loop *graphite_create_new_loop (edge entry_edge, |
| __isl_keep isl_ast_node *node_for, |
| loop_p outer, tree type, |
| tree lb, tree ub, ivs_params &ip); |
| edge graphite_create_new_guard (edge entry_edge, |
| __isl_take isl_ast_expr *if_cond, |
| ivs_params &ip); |
| void build_iv_mapping (vec<tree> iv_map, gimple_poly_bb_p gbb, |
| __isl_keep isl_ast_expr *user_expr, ivs_params &ip, |
| sese_l ®ion); |
| void add_parameters_to_ivs_params (scop_p scop, ivs_params &ip); |
| __isl_give isl_ast_build *generate_isl_context (scop_p scop); |
| |
| __isl_give isl_ast_node * scop_to_isl_ast (scop_p scop); |
| |
| tree get_rename_from_scev (tree old_name, gimple_seq *stmts, loop_p loop, |
| vec<tree> iv_map); |
| void graphite_copy_stmts_from_block (basic_block bb, basic_block new_bb, |
| vec<tree> iv_map); |
| edge copy_bb_and_scalar_dependences (basic_block bb, edge next_e, |
| vec<tree> iv_map); |
| void set_rename (tree old_name, tree expr); |
| void gsi_insert_earliest (gimple_seq seq); |
| bool codegen_error_p () const { return codegen_error; } |
| |
| void set_codegen_error () |
| { |
| codegen_error = true; |
| gcc_assert (! flag_checking |
| || PARAM_VALUE (PARAM_GRAPHITE_ALLOW_CODEGEN_ERRORS)); |
| } |
| |
| bool is_constant (tree op) const |
| { |
| return TREE_CODE (op) == INTEGER_CST |
| || TREE_CODE (op) == REAL_CST |
| || TREE_CODE (op) == COMPLEX_CST |
| || TREE_CODE (op) == VECTOR_CST; |
| } |
| |
| private: |
| /* The region to be translated. */ |
| sese_info_p region; |
| |
| /* This flag is set when an error occurred during the translation of isl AST |
| to Gimple. */ |
| bool codegen_error; |
| |
| /* A vector of all the edges at if_condition merge points. */ |
| auto_vec<edge, 2> merge_points; |
| |
| tree graphite_expr_type; |
| }; |
| |
| translate_isl_ast_to_gimple::translate_isl_ast_to_gimple (sese_info_p r) |
| : region (r), codegen_error (false) |
| { |
| /* We always try to use signed 128 bit types, but fall back to smaller types |
| in case a platform does not provide types of these sizes. In the future we |
| should use isl to derive the optimal type for each subexpression. */ |
| int max_mode_int_precision |
| = GET_MODE_PRECISION (int_mode_for_size (MAX_FIXED_MODE_SIZE, 0).require ()); |
| int graphite_expr_type_precision |
| = 128 <= max_mode_int_precision ? 128 : max_mode_int_precision; |
| graphite_expr_type |
| = build_nonstandard_integer_type (graphite_expr_type_precision, 0); |
| } |
| |
| /* Return the tree variable that corresponds to the given isl ast identifier |
| expression (an isl_ast_expr of type isl_ast_expr_id). |
| |
| FIXME: We should replace blind conversion of id's type with derivation |
| of the optimal type when we get the corresponding isl support. Blindly |
| converting type sizes may be problematic when we switch to smaller |
| types. */ |
| |
| tree translate_isl_ast_to_gimple:: |
| gcc_expression_from_isl_ast_expr_id (tree type, |
| __isl_take isl_ast_expr *expr_id, |
| ivs_params &ip) |
| { |
| gcc_assert (isl_ast_expr_get_type (expr_id) == isl_ast_expr_id); |
| isl_id *tmp_isl_id = isl_ast_expr_get_id (expr_id); |
| std::map<isl_id *, tree>::iterator res; |
| res = ip.find (tmp_isl_id); |
| isl_id_free (tmp_isl_id); |
| gcc_assert (res != ip.end () && |
| "Could not map isl_id to tree expression"); |
| isl_ast_expr_free (expr_id); |
| tree t = res->second; |
| if (useless_type_conversion_p (type, TREE_TYPE (t))) |
| return t; |
| return fold_convert (type, t); |
| } |
| |
| /* Converts an isl_ast_expr_int expression E to a widest_int. |
| Raises a code generation error when the constant doesn't fit. */ |
| |
| widest_int translate_isl_ast_to_gimple:: |
| widest_int_from_isl_expr_int (__isl_keep isl_ast_expr *expr) |
| { |
| gcc_assert (isl_ast_expr_get_type (expr) == isl_ast_expr_int); |
| isl_val *val = isl_ast_expr_get_val (expr); |
| size_t n = isl_val_n_abs_num_chunks (val, sizeof (HOST_WIDE_INT)); |
| HOST_WIDE_INT *chunks = XALLOCAVEC (HOST_WIDE_INT, n); |
| if (n > WIDE_INT_MAX_ELTS |
| || isl_val_get_abs_num_chunks (val, sizeof (HOST_WIDE_INT), chunks) == -1) |
| { |
| isl_val_free (val); |
| set_codegen_error (); |
| return 0; |
| } |
| widest_int wi = widest_int::from_array (chunks, n, true); |
| if (isl_val_is_neg (val)) |
| wi = -wi; |
| isl_val_free (val); |
| return wi; |
| } |
| |
| /* Converts an isl_ast_expr_int expression E to a GCC expression tree of |
| type TYPE. Raises a code generation error when the constant doesn't fit. */ |
| |
| tree translate_isl_ast_to_gimple:: |
| gcc_expression_from_isl_expr_int (tree type, __isl_take isl_ast_expr *expr) |
| { |
| widest_int wi = widest_int_from_isl_expr_int (expr); |
| isl_ast_expr_free (expr); |
| if (codegen_error_p ()) |
| return NULL_TREE; |
| if (wi::min_precision (wi, TYPE_SIGN (type)) > TYPE_PRECISION (type)) |
| { |
| set_codegen_error (); |
| return NULL_TREE; |
| } |
| return wide_int_to_tree (type, wi); |
| } |
| |
| /* Converts a binary isl_ast_expr_op expression E to a GCC expression tree of |
| type TYPE. */ |
| |
| tree translate_isl_ast_to_gimple:: |
| binary_op_to_tree (tree type, __isl_take isl_ast_expr *expr, ivs_params &ip) |
| { |
| enum isl_ast_op_type expr_type = isl_ast_expr_get_op_type (expr); |
| isl_ast_expr *arg_expr = isl_ast_expr_get_op_arg (expr, 0); |
| tree tree_lhs_expr = gcc_expression_from_isl_expression (type, arg_expr, ip); |
| arg_expr = isl_ast_expr_get_op_arg (expr, 1); |
| isl_ast_expr_free (expr); |
| |
| /* From our constraint generation we may get modulo operations that |
| we cannot represent explicitely but that are no-ops for TYPE. |
| Elide those. */ |
| if (expr_type == isl_ast_op_pdiv_r |
| && isl_ast_expr_get_type (arg_expr) == isl_ast_expr_int |
| && (wi::exact_log2 (widest_int_from_isl_expr_int (arg_expr)) |
| >= TYPE_PRECISION (type))) |
| { |
| isl_ast_expr_free (arg_expr); |
| return tree_lhs_expr; |
| } |
| |
| tree tree_rhs_expr = gcc_expression_from_isl_expression (type, arg_expr, ip); |
| if (codegen_error_p ()) |
| return NULL_TREE; |
| |
| switch (expr_type) |
| { |
| case isl_ast_op_add: |
| return fold_build2 (PLUS_EXPR, type, tree_lhs_expr, tree_rhs_expr); |
| |
| case isl_ast_op_sub: |
| return fold_build2 (MINUS_EXPR, type, tree_lhs_expr, tree_rhs_expr); |
| |
| case isl_ast_op_mul: |
| return fold_build2 (MULT_EXPR, type, tree_lhs_expr, tree_rhs_expr); |
| |
| case isl_ast_op_div: |
| return fold_build2 (EXACT_DIV_EXPR, type, tree_lhs_expr, tree_rhs_expr); |
| |
| case isl_ast_op_pdiv_q: |
| return fold_build2 (TRUNC_DIV_EXPR, type, tree_lhs_expr, tree_rhs_expr); |
| |
| case isl_ast_op_zdiv_r: |
| case isl_ast_op_pdiv_r: |
| return fold_build2 (TRUNC_MOD_EXPR, type, tree_lhs_expr, tree_rhs_expr); |
| |
| case isl_ast_op_fdiv_q: |
| return fold_build2 (FLOOR_DIV_EXPR, type, tree_lhs_expr, tree_rhs_expr); |
| |
| case isl_ast_op_and: |
| return fold_build2 (TRUTH_ANDIF_EXPR, type, |
| tree_lhs_expr, tree_rhs_expr); |
| |
| case isl_ast_op_or: |
| return fold_build2 (TRUTH_ORIF_EXPR, type, tree_lhs_expr, tree_rhs_expr); |
| |
| case isl_ast_op_eq: |
| return fold_build2 (EQ_EXPR, type, tree_lhs_expr, tree_rhs_expr); |
| |
| case isl_ast_op_le: |
| return fold_build2 (LE_EXPR, type, tree_lhs_expr, tree_rhs_expr); |
| |
| case isl_ast_op_lt: |
| return fold_build2 (LT_EXPR, type, tree_lhs_expr, tree_rhs_expr); |
| |
| case isl_ast_op_ge: |
| return fold_build2 (GE_EXPR, type, tree_lhs_expr, tree_rhs_expr); |
| |
| case isl_ast_op_gt: |
| return fold_build2 (GT_EXPR, type, tree_lhs_expr, tree_rhs_expr); |
| |
| default: |
| gcc_unreachable (); |
| } |
| } |
| |
| /* Converts a ternary isl_ast_expr_op expression E to a GCC expression tree of |
| type TYPE. */ |
| |
| tree translate_isl_ast_to_gimple:: |
| ternary_op_to_tree (tree type, __isl_take isl_ast_expr *expr, ivs_params &ip) |
| { |
| enum isl_ast_op_type t = isl_ast_expr_get_op_type (expr); |
| gcc_assert (t == isl_ast_op_cond || t == isl_ast_op_select); |
| isl_ast_expr *arg_expr = isl_ast_expr_get_op_arg (expr, 0); |
| tree a = gcc_expression_from_isl_expression (type, arg_expr, ip); |
| arg_expr = isl_ast_expr_get_op_arg (expr, 1); |
| tree b = gcc_expression_from_isl_expression (type, arg_expr, ip); |
| arg_expr = isl_ast_expr_get_op_arg (expr, 2); |
| tree c = gcc_expression_from_isl_expression (type, arg_expr, ip); |
| isl_ast_expr_free (expr); |
| |
| if (codegen_error_p ()) |
| return NULL_TREE; |
| |
| return fold_build3 (COND_EXPR, type, a, b, c); |
| } |
| |
| /* Converts a unary isl_ast_expr_op expression E to a GCC expression tree of |
| type TYPE. */ |
| |
| tree translate_isl_ast_to_gimple:: |
| unary_op_to_tree (tree type, __isl_take isl_ast_expr *expr, ivs_params &ip) |
| { |
| gcc_assert (isl_ast_expr_get_op_type (expr) == isl_ast_op_minus); |
| isl_ast_expr *arg_expr = isl_ast_expr_get_op_arg (expr, 0); |
| tree tree_expr = gcc_expression_from_isl_expression (type, arg_expr, ip); |
| isl_ast_expr_free (expr); |
| return codegen_error_p () ? NULL_TREE |
| : fold_build1 (NEGATE_EXPR, type, tree_expr); |
| } |
| |
| /* Converts an isl_ast_expr_op expression E with unknown number of arguments |
| to a GCC expression tree of type TYPE. */ |
| |
| tree translate_isl_ast_to_gimple:: |
| nary_op_to_tree (tree type, __isl_take isl_ast_expr *expr, ivs_params &ip) |
| { |
| enum tree_code op_code; |
| switch (isl_ast_expr_get_op_type (expr)) |
| { |
| case isl_ast_op_max: |
| op_code = MAX_EXPR; |
| break; |
| |
| case isl_ast_op_min: |
| op_code = MIN_EXPR; |
| break; |
| |
| default: |
| gcc_unreachable (); |
| } |
| isl_ast_expr *arg_expr = isl_ast_expr_get_op_arg (expr, 0); |
| tree res = gcc_expression_from_isl_expression (type, arg_expr, ip); |
| |
| if (codegen_error_p ()) |
| { |
| isl_ast_expr_free (expr); |
| return NULL_TREE; |
| } |
| |
| int i; |
| for (i = 1; i < isl_ast_expr_get_op_n_arg (expr); i++) |
| { |
| arg_expr = isl_ast_expr_get_op_arg (expr, i); |
| tree t = gcc_expression_from_isl_expression (type, arg_expr, ip); |
| |
| if (codegen_error_p ()) |
| { |
| isl_ast_expr_free (expr); |
| return NULL_TREE; |
| } |
| |
| res = fold_build2 (op_code, type, res, t); |
| } |
| isl_ast_expr_free (expr); |
| return res; |
| } |
| |
| /* Converts an isl_ast_expr_op expression E to a GCC expression tree of |
| type TYPE. */ |
| |
| tree translate_isl_ast_to_gimple:: |
| gcc_expression_from_isl_expr_op (tree type, __isl_take isl_ast_expr *expr, |
| ivs_params &ip) |
| { |
| if (codegen_error_p ()) |
| { |
| isl_ast_expr_free (expr); |
| return NULL_TREE; |
| } |
| |
| gcc_assert (isl_ast_expr_get_type (expr) == isl_ast_expr_op); |
| switch (isl_ast_expr_get_op_type (expr)) |
| { |
| /* These isl ast expressions are not supported yet. */ |
| case isl_ast_op_error: |
| case isl_ast_op_call: |
| case isl_ast_op_and_then: |
| case isl_ast_op_or_else: |
| gcc_unreachable (); |
| |
| case isl_ast_op_max: |
| case isl_ast_op_min: |
| return nary_op_to_tree (type, expr, ip); |
| |
| case isl_ast_op_add: |
| case isl_ast_op_sub: |
| case isl_ast_op_mul: |
| case isl_ast_op_div: |
| case isl_ast_op_pdiv_q: |
| case isl_ast_op_pdiv_r: |
| case isl_ast_op_fdiv_q: |
| case isl_ast_op_zdiv_r: |
| case isl_ast_op_and: |
| case isl_ast_op_or: |
| case isl_ast_op_eq: |
| case isl_ast_op_le: |
| case isl_ast_op_lt: |
| case isl_ast_op_ge: |
| case isl_ast_op_gt: |
| return binary_op_to_tree (type, expr, ip); |
| |
| case isl_ast_op_minus: |
| return unary_op_to_tree (type, expr, ip); |
| |
| case isl_ast_op_cond: |
| case isl_ast_op_select: |
| return ternary_op_to_tree (type, expr, ip); |
| |
| default: |
| gcc_unreachable (); |
| } |
| |
| return NULL_TREE; |
| } |
| |
| /* Converts an isl AST expression E back to a GCC expression tree of |
| type TYPE. */ |
| |
| tree translate_isl_ast_to_gimple:: |
| gcc_expression_from_isl_expression (tree type, __isl_take isl_ast_expr *expr, |
| ivs_params &ip) |
| { |
| if (codegen_error_p ()) |
| { |
| isl_ast_expr_free (expr); |
| return NULL_TREE; |
| } |
| |
| switch (isl_ast_expr_get_type (expr)) |
| { |
| case isl_ast_expr_id: |
| return gcc_expression_from_isl_ast_expr_id (type, expr, ip); |
| |
| case isl_ast_expr_int: |
| return gcc_expression_from_isl_expr_int (type, expr); |
| |
| case isl_ast_expr_op: |
| return gcc_expression_from_isl_expr_op (type, expr, ip); |
| |
| default: |
| gcc_unreachable (); |
| } |
| |
| return NULL_TREE; |
| } |
| |
| /* Creates a new LOOP corresponding to isl_ast_node_for. Inserts an |
| induction variable for the new LOOP. New LOOP is attached to CFG |
| starting at ENTRY_EDGE. LOOP is inserted into the loop tree and |
| becomes the child loop of the OUTER_LOOP. NEWIVS_INDEX binds |
| isl's scattering name to the induction variable created for the |
| loop of STMT. The new induction variable is inserted in the NEWIVS |
| vector and is of type TYPE. */ |
| |
| struct loop *translate_isl_ast_to_gimple:: |
| graphite_create_new_loop (edge entry_edge, __isl_keep isl_ast_node *node_for, |
| loop_p outer, tree type, tree lb, tree ub, |
| ivs_params &ip) |
| { |
| isl_ast_expr *for_inc = isl_ast_node_for_get_inc (node_for); |
| tree stride = gcc_expression_from_isl_expression (type, for_inc, ip); |
| |
| /* To fail code generation, we generate wrong code until we discard it. */ |
| if (codegen_error_p ()) |
| stride = integer_zero_node; |
| |
| tree ivvar = create_tmp_var (type, "graphite_IV"); |
| tree iv, iv_after_increment; |
| loop_p loop = create_empty_loop_on_edge |
| (entry_edge, lb, stride, ub, ivvar, &iv, &iv_after_increment, |
| outer ? outer : entry_edge->src->loop_father); |
| |
| isl_ast_expr *for_iterator = isl_ast_node_for_get_iterator (node_for); |
| isl_id *id = isl_ast_expr_get_id (for_iterator); |
| std::map<isl_id *, tree>::iterator res; |
| res = ip.find (id); |
| if (ip.count (id)) |
| isl_id_free (res->first); |
| ip[id] = iv; |
| isl_ast_expr_free (for_iterator); |
| return loop; |
| } |
| |
| /* Create the loop for a isl_ast_node_for. |
| |
| - NEXT_E is the edge where new generated code should be attached. */ |
| |
| edge translate_isl_ast_to_gimple:: |
| translate_isl_ast_for_loop (loop_p context_loop, |
| __isl_keep isl_ast_node *node_for, edge next_e, |
| tree type, tree lb, tree ub, |
| ivs_params &ip) |
| { |
| gcc_assert (isl_ast_node_get_type (node_for) == isl_ast_node_for); |
| struct loop *loop = graphite_create_new_loop (next_e, node_for, context_loop, |
| type, lb, ub, ip); |
| edge last_e = single_exit (loop); |
| edge to_body = single_succ_edge (loop->header); |
| basic_block after = to_body->dest; |
| |
| /* Translate the body of the loop. */ |
| isl_ast_node *for_body = isl_ast_node_for_get_body (node_for); |
| next_e = translate_isl_ast (loop, for_body, to_body, ip); |
| isl_ast_node_free (for_body); |
| |
| /* Early return if we failed to translate loop body. */ |
| if (!next_e || codegen_error_p ()) |
| return NULL; |
| |
| if (next_e->dest != after) |
| redirect_edge_succ_nodup (next_e, after); |
| set_immediate_dominator (CDI_DOMINATORS, next_e->dest, next_e->src); |
| |
| if (flag_loop_parallelize_all) |
| { |
| isl_id *id = isl_ast_node_get_annotation (node_for); |
| gcc_assert (id); |
| ast_build_info *for_info = (ast_build_info *) isl_id_get_user (id); |
| loop->can_be_parallel = for_info->is_parallelizable; |
| free (for_info); |
| isl_id_free (id); |
| } |
| |
| return last_e; |
| } |
| |
| /* We use this function to get the upper bound because of the form, |
| which is used by isl to represent loops: |
| |
| for (iterator = init; cond; iterator += inc) |
| |
| { |
| |
| ... |
| |
| } |
| |
| The loop condition is an arbitrary expression, which contains the |
| current loop iterator. |
| |
| (e.g. iterator + 3 < B && C > iterator + A) |
| |
| We have to know the upper bound of the iterator to generate a loop |
| in Gimple form. It can be obtained from the special representation |
| of the loop condition, which is generated by isl, |
| if the ast_build_atomic_upper_bound option is set. In this case, |
| isl generates a loop condition that consists of the current loop |
| iterator, + an operator (< or <=) and an expression not involving |
| the iterator, which is processed and returned by this function. |
| |
| (e.g iterator <= upper-bound-expression-without-iterator) */ |
| |
| static __isl_give isl_ast_expr * |
| get_upper_bound (__isl_keep isl_ast_node *node_for) |
| { |
| gcc_assert (isl_ast_node_get_type (node_for) == isl_ast_node_for); |
| isl_ast_expr *for_cond = isl_ast_node_for_get_cond (node_for); |
| gcc_assert (isl_ast_expr_get_type (for_cond) == isl_ast_expr_op); |
| isl_ast_expr *res; |
| switch (isl_ast_expr_get_op_type (for_cond)) |
| { |
| case isl_ast_op_le: |
| res = isl_ast_expr_get_op_arg (for_cond, 1); |
| break; |
| |
| case isl_ast_op_lt: |
| { |
| /* (iterator < ub) => (iterator <= ub - 1). */ |
| isl_val *one = |
| isl_val_int_from_si (isl_ast_expr_get_ctx (for_cond), 1); |
| isl_ast_expr *ub = isl_ast_expr_get_op_arg (for_cond, 1); |
| res = isl_ast_expr_sub (ub, isl_ast_expr_from_val (one)); |
| break; |
| } |
| |
| default: |
| gcc_unreachable (); |
| } |
| isl_ast_expr_free (for_cond); |
| return res; |
| } |
| |
| /* Translates an isl_ast_node_for to Gimple. */ |
| |
| edge translate_isl_ast_to_gimple:: |
| translate_isl_ast_node_for (loop_p context_loop, __isl_keep isl_ast_node *node, |
| edge next_e, ivs_params &ip) |
| { |
| gcc_assert (isl_ast_node_get_type (node) == isl_ast_node_for); |
| tree type = graphite_expr_type; |
| |
| isl_ast_expr *for_init = isl_ast_node_for_get_init (node); |
| tree lb = gcc_expression_from_isl_expression (type, for_init, ip); |
| /* To fail code generation, we generate wrong code until we discard it. */ |
| if (codegen_error_p ()) |
| lb = integer_zero_node; |
| |
| isl_ast_expr *upper_bound = get_upper_bound (node); |
| tree ub = gcc_expression_from_isl_expression (type, upper_bound, ip); |
| /* To fail code generation, we generate wrong code until we discard it. */ |
| if (codegen_error_p ()) |
| ub = integer_zero_node; |
| |
| edge last_e = single_succ_edge (split_edge (next_e)); |
| translate_isl_ast_for_loop (context_loop, node, next_e, |
| type, lb, ub, ip); |
| return last_e; |
| } |
| |
| /* Inserts in iv_map a tuple (OLD_LOOP->num, NEW_NAME) for the induction |
| variables of the loops around GBB in SESE. |
| |
| FIXME: Instead of using a vec<tree> that maps each loop id to a possible |
| chrec, we could consider using a map<int, tree> that maps loop ids to the |
| corresponding tree expressions. */ |
| |
| void translate_isl_ast_to_gimple:: |
| build_iv_mapping (vec<tree> iv_map, gimple_poly_bb_p gbb, |
| __isl_keep isl_ast_expr *user_expr, ivs_params &ip, |
| sese_l ®ion) |
| { |
| gcc_assert (isl_ast_expr_get_type (user_expr) == isl_ast_expr_op && |
| isl_ast_expr_get_op_type (user_expr) == isl_ast_op_call); |
| int i; |
| isl_ast_expr *arg_expr; |
| for (i = 1; i < isl_ast_expr_get_op_n_arg (user_expr); i++) |
| { |
| arg_expr = isl_ast_expr_get_op_arg (user_expr, i); |
| tree type = graphite_expr_type; |
| tree t = gcc_expression_from_isl_expression (type, arg_expr, ip); |
| |
| /* To fail code generation, we generate wrong code until we discard it. */ |
| if (codegen_error_p ()) |
| t = integer_zero_node; |
| |
| loop_p old_loop = gbb_loop_at_index (gbb, region, i - 1); |
| iv_map[old_loop->num] = t; |
| } |
| } |
| |
| /* Translates an isl_ast_node_user to Gimple. |
| |
| FIXME: We should remove iv_map.create (loop->num + 1), if it is possible. */ |
| |
| edge translate_isl_ast_to_gimple:: |
| translate_isl_ast_node_user (__isl_keep isl_ast_node *node, |
| edge next_e, ivs_params &ip) |
| { |
| gcc_assert (isl_ast_node_get_type (node) == isl_ast_node_user); |
| |
| isl_ast_expr *user_expr = isl_ast_node_user_get_expr (node); |
| isl_ast_expr *name_expr = isl_ast_expr_get_op_arg (user_expr, 0); |
| gcc_assert (isl_ast_expr_get_type (name_expr) == isl_ast_expr_id); |
| |
| isl_id *name_id = isl_ast_expr_get_id (name_expr); |
| poly_bb_p pbb = (poly_bb_p) isl_id_get_user (name_id); |
| gcc_assert (pbb); |
| |
| gimple_poly_bb_p gbb = PBB_BLACK_BOX (pbb); |
| |
| isl_ast_expr_free (name_expr); |
| isl_id_free (name_id); |
| |
| gcc_assert (GBB_BB (gbb) != ENTRY_BLOCK_PTR_FOR_FN (cfun) && |
| "The entry block should not even appear within a scop"); |
| |
| const int nb_loops = number_of_loops (cfun); |
| vec<tree> iv_map; |
| iv_map.create (nb_loops); |
| iv_map.safe_grow_cleared (nb_loops); |
| |
| build_iv_mapping (iv_map, gbb, user_expr, ip, pbb->scop->scop_info->region); |
| isl_ast_expr_free (user_expr); |
| |
| basic_block old_bb = GBB_BB (gbb); |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| { |
| fprintf (dump_file, |
| "[codegen] copying from bb_%d on edge (bb_%d, bb_%d)\n", |
| old_bb->index, next_e->src->index, next_e->dest->index); |
| print_loops_bb (dump_file, GBB_BB (gbb), 0, 3); |
| } |
| |
| next_e = copy_bb_and_scalar_dependences (old_bb, next_e, iv_map); |
| |
| iv_map.release (); |
| |
| if (codegen_error_p ()) |
| return NULL; |
| |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| { |
| fprintf (dump_file, "[codegen] (after copy) new basic block\n"); |
| print_loops_bb (dump_file, next_e->src, 0, 3); |
| } |
| |
| return next_e; |
| } |
| |
| /* Translates an isl_ast_node_block to Gimple. */ |
| |
| edge translate_isl_ast_to_gimple:: |
| translate_isl_ast_node_block (loop_p context_loop, |
| __isl_keep isl_ast_node *node, |
| edge next_e, ivs_params &ip) |
| { |
| gcc_assert (isl_ast_node_get_type (node) == isl_ast_node_block); |
| isl_ast_node_list *node_list = isl_ast_node_block_get_children (node); |
| int i; |
| for (i = 0; i < isl_ast_node_list_n_ast_node (node_list); i++) |
| { |
| isl_ast_node *tmp_node = isl_ast_node_list_get_ast_node (node_list, i); |
| next_e = translate_isl_ast (context_loop, tmp_node, next_e, ip); |
| isl_ast_node_free (tmp_node); |
| } |
| isl_ast_node_list_free (node_list); |
| return next_e; |
| } |
| |
| /* Creates a new if region corresponding to isl's cond. */ |
| |
| edge translate_isl_ast_to_gimple:: |
| graphite_create_new_guard (edge entry_edge, __isl_take isl_ast_expr *if_cond, |
| ivs_params &ip) |
| { |
| tree type = graphite_expr_type; |
| tree cond_expr = gcc_expression_from_isl_expression (type, if_cond, ip); |
| |
| /* To fail code generation, we generate wrong code until we discard it. */ |
| if (codegen_error_p ()) |
| cond_expr = integer_zero_node; |
| |
| edge exit_edge = create_empty_if_region_on_edge (entry_edge, cond_expr); |
| return exit_edge; |
| } |
| |
| /* Translates an isl_ast_node_if to Gimple. */ |
| |
| edge translate_isl_ast_to_gimple:: |
| translate_isl_ast_node_if (loop_p context_loop, |
| __isl_keep isl_ast_node *node, |
| edge next_e, ivs_params &ip) |
| { |
| gcc_assert (isl_ast_node_get_type (node) == isl_ast_node_if); |
| isl_ast_expr *if_cond = isl_ast_node_if_get_cond (node); |
| edge last_e = graphite_create_new_guard (next_e, if_cond, ip); |
| edge true_e = get_true_edge_from_guard_bb (next_e->dest); |
| merge_points.safe_push (last_e); |
| |
| isl_ast_node *then_node = isl_ast_node_if_get_then (node); |
| translate_isl_ast (context_loop, then_node, true_e, ip); |
| isl_ast_node_free (then_node); |
| |
| edge false_e = get_false_edge_from_guard_bb (next_e->dest); |
| isl_ast_node *else_node = isl_ast_node_if_get_else (node); |
| if (isl_ast_node_get_type (else_node) != isl_ast_node_error) |
| translate_isl_ast (context_loop, else_node, false_e, ip); |
| |
| isl_ast_node_free (else_node); |
| return last_e; |
| } |
| |
| /* Translates an isl AST node NODE to GCC representation in the |
| context of a SESE. */ |
| |
| edge translate_isl_ast_to_gimple:: |
| translate_isl_ast (loop_p context_loop, __isl_keep isl_ast_node *node, |
| edge next_e, ivs_params &ip) |
| { |
| if (codegen_error_p ()) |
| return NULL; |
| |
| switch (isl_ast_node_get_type (node)) |
| { |
| case isl_ast_node_error: |
| gcc_unreachable (); |
| |
| case isl_ast_node_for: |
| return translate_isl_ast_node_for (context_loop, node, |
| next_e, ip); |
| |
| case isl_ast_node_if: |
| return translate_isl_ast_node_if (context_loop, node, |
| next_e, ip); |
| |
| case isl_ast_node_user: |
| return translate_isl_ast_node_user (node, next_e, ip); |
| |
| case isl_ast_node_block: |
| return translate_isl_ast_node_block (context_loop, node, |
| next_e, ip); |
| |
| case isl_ast_node_mark: |
| { |
| isl_ast_node *n = isl_ast_node_mark_get_node (node); |
| edge e = translate_isl_ast (context_loop, n, next_e, ip); |
| isl_ast_node_free (n); |
| return e; |
| } |
| |
| default: |
| gcc_unreachable (); |
| } |
| } |
| |
| /* Register in RENAME_MAP the rename tuple (OLD_NAME, EXPR). |
| When OLD_NAME and EXPR are the same we assert. */ |
| |
| void translate_isl_ast_to_gimple:: |
| set_rename (tree old_name, tree expr) |
| { |
| if (dump_file) |
| { |
| fprintf (dump_file, "[codegen] setting rename: old_name = "); |
| print_generic_expr (dump_file, old_name); |
| fprintf (dump_file, ", new decl = "); |
| print_generic_expr (dump_file, expr); |
| fprintf (dump_file, "\n"); |
| } |
| bool res = region->rename_map->put (old_name, expr); |
| gcc_assert (! res); |
| } |
| |
| /* Return an iterator to the instructions comes last in the execution order. |
| Either GSI1 and GSI2 should belong to the same basic block or one of their |
| respective basic blocks should dominate the other. */ |
| |
| gimple_stmt_iterator |
| later_of_the_two (gimple_stmt_iterator gsi1, gimple_stmt_iterator gsi2) |
| { |
| basic_block bb1 = gsi_bb (gsi1); |
| basic_block bb2 = gsi_bb (gsi2); |
| |
| /* Find the iterator which is the latest. */ |
| if (bb1 == bb2) |
| { |
| gimple *stmt1 = gsi_stmt (gsi1); |
| gimple *stmt2 = gsi_stmt (gsi2); |
| |
| if (stmt1 != NULL && stmt2 != NULL) |
| { |
| bool is_phi1 = gimple_code (stmt1) == GIMPLE_PHI; |
| bool is_phi2 = gimple_code (stmt2) == GIMPLE_PHI; |
| |
| if (is_phi1 != is_phi2) |
| return is_phi1 ? gsi2 : gsi1; |
| } |
| |
| /* For empty basic blocks gsis point to the end of the sequence. Since |
| there is no operator== defined for gimple_stmt_iterator and for gsis |
| not pointing to a valid statement gsi_next would assert. */ |
| gimple_stmt_iterator gsi = gsi1; |
| do { |
| if (gsi_stmt (gsi) == gsi_stmt (gsi2)) |
| return gsi2; |
| gsi_next (&gsi); |
| } while (!gsi_end_p (gsi)); |
| |
| return gsi1; |
| } |
| |
| /* Find the basic block closest to the basic block which defines stmt. */ |
| if (dominated_by_p (CDI_DOMINATORS, bb1, bb2)) |
| return gsi1; |
| |
| gcc_assert (dominated_by_p (CDI_DOMINATORS, bb2, bb1)); |
| return gsi2; |
| } |
| |
| /* Insert each statement from SEQ at its earliest insertion p. */ |
| |
| void translate_isl_ast_to_gimple:: |
| gsi_insert_earliest (gimple_seq seq) |
| { |
| update_modified_stmts (seq); |
| sese_l &codegen_region = region->if_region->true_region->region; |
| basic_block begin_bb = get_entry_bb (codegen_region); |
| |
| /* Inserting the gimple statements in a vector because gimple_seq behave |
| in strage ways when inserting the stmts from it into different basic |
| blocks one at a time. */ |
| auto_vec<gimple *, 3> stmts; |
| for (gimple_stmt_iterator gsi = gsi_start (seq); !gsi_end_p (gsi); |
| gsi_next (&gsi)) |
| stmts.safe_push (gsi_stmt (gsi)); |
| |
| int i; |
| gimple *use_stmt; |
| FOR_EACH_VEC_ELT (stmts, i, use_stmt) |
| { |
| gcc_assert (gimple_code (use_stmt) != GIMPLE_PHI); |
| gimple_stmt_iterator gsi_def_stmt = gsi_start_bb_nondebug (begin_bb); |
| |
| use_operand_p use_p; |
| ssa_op_iter op_iter; |
| FOR_EACH_SSA_USE_OPERAND (use_p, use_stmt, op_iter, SSA_OP_USE) |
| { |
| /* Iterator to the current def of use_p. For function parameters or |
| anything where def is not found, insert at the beginning of the |
| generated region. */ |
| gimple_stmt_iterator gsi_stmt = gsi_def_stmt; |
| |
| tree op = USE_FROM_PTR (use_p); |
| gimple *stmt = SSA_NAME_DEF_STMT (op); |
| if (stmt && (gimple_code (stmt) != GIMPLE_NOP)) |
| gsi_stmt = gsi_for_stmt (stmt); |
| |
| /* For region parameters, insert at the beginning of the generated |
| region. */ |
| if (!bb_in_sese_p (gsi_bb (gsi_stmt), codegen_region)) |
| gsi_stmt = gsi_def_stmt; |
| |
| gsi_def_stmt = later_of_the_two (gsi_stmt, gsi_def_stmt); |
| } |
| |
| if (!gsi_stmt (gsi_def_stmt)) |
| { |
| gimple_stmt_iterator gsi = gsi_after_labels (gsi_bb (gsi_def_stmt)); |
| gsi_insert_before (&gsi, use_stmt, GSI_NEW_STMT); |
| } |
| else if (gimple_code (gsi_stmt (gsi_def_stmt)) == GIMPLE_PHI) |
| { |
| gimple_stmt_iterator bsi |
| = gsi_start_bb_nondebug (gsi_bb (gsi_def_stmt)); |
| /* Insert right after the PHI statements. */ |
| gsi_insert_before (&bsi, use_stmt, GSI_NEW_STMT); |
| } |
| else |
| gsi_insert_after (&gsi_def_stmt, use_stmt, GSI_NEW_STMT); |
| |
| if (dump_file) |
| { |
| fprintf (dump_file, "[codegen] inserting statement in BB %d: ", |
| gimple_bb (use_stmt)->index); |
| print_gimple_stmt (dump_file, use_stmt, 0, TDF_VOPS | TDF_MEMSYMS); |
| } |
| } |
| } |
| |
| /* For ops which are scev_analyzeable, we can regenerate a new name from its |
| scalar evolution around LOOP. */ |
| |
| tree translate_isl_ast_to_gimple:: |
| get_rename_from_scev (tree old_name, gimple_seq *stmts, loop_p loop, |
| vec<tree> iv_map) |
| { |
| tree scev = scalar_evolution_in_region (region->region, loop, old_name); |
| |
| /* At this point we should know the exact scev for each |
| scalar SSA_NAME used in the scop: all the other scalar |
| SSA_NAMEs should have been translated out of SSA using |
| arrays with one element. */ |
| tree new_expr; |
| if (chrec_contains_undetermined (scev)) |
| { |
| set_codegen_error (); |
| return build_zero_cst (TREE_TYPE (old_name)); |
| } |
| |
| new_expr = chrec_apply_map (scev, iv_map); |
| |
| /* The apply should produce an expression tree containing |
| the uses of the new induction variables. We should be |
| able to use new_expr instead of the old_name in the newly |
| generated loop nest. */ |
| if (chrec_contains_undetermined (new_expr) |
| || tree_contains_chrecs (new_expr, NULL)) |
| { |
| set_codegen_error (); |
| return build_zero_cst (TREE_TYPE (old_name)); |
| } |
| |
| /* Replace the old_name with the new_expr. */ |
| return force_gimple_operand (unshare_expr (new_expr), stmts, |
| true, NULL_TREE); |
| } |
| |
| |
| /* Return true if STMT should be copied from region to the new code-generated |
| region. LABELs, CONDITIONS, induction-variables and region parameters need |
| not be copied. */ |
| |
| static bool |
| should_copy_to_new_region (gimple *stmt, sese_info_p region) |
| { |
| /* Do not copy labels or conditions. */ |
| if (gimple_code (stmt) == GIMPLE_LABEL |
| || gimple_code (stmt) == GIMPLE_COND) |
| return false; |
| |
| tree lhs; |
| /* Do not copy induction variables. */ |
| if (is_gimple_assign (stmt) |
| && (lhs = gimple_assign_lhs (stmt)) |
| && TREE_CODE (lhs) == SSA_NAME |
| && is_gimple_reg (lhs) |
| && scev_analyzable_p (lhs, region->region)) |
| return false; |
| |
| return true; |
| } |
| |
| /* Duplicates the statements of basic block BB into basic block NEW_BB |
| and compute the new induction variables according to the IV_MAP. */ |
| |
| void translate_isl_ast_to_gimple:: |
| graphite_copy_stmts_from_block (basic_block bb, basic_block new_bb, |
| vec<tree> iv_map) |
| { |
| /* Iterator poining to the place where new statement (s) will be inserted. */ |
| gimple_stmt_iterator gsi_tgt = gsi_last_bb (new_bb); |
| |
| for (gimple_stmt_iterator gsi = gsi_start_bb (bb); !gsi_end_p (gsi); |
| gsi_next (&gsi)) |
| { |
| gimple *stmt = gsi_stmt (gsi); |
| if (!should_copy_to_new_region (stmt, region)) |
| continue; |
| |
| /* Create a new copy of STMT and duplicate STMT's virtual |
| operands. */ |
| gimple *copy = gimple_copy (stmt); |
| |
| /* Rather than not copying debug stmts we reset them. |
| ??? Where we can rewrite uses without inserting new |
| stmts we could simply do that. */ |
| if (is_gimple_debug (copy)) |
| { |
| if (gimple_debug_bind_p (copy)) |
| gimple_debug_bind_reset_value (copy); |
| else if (gimple_debug_source_bind_p (copy)) |
| ; |
| else |
| gcc_unreachable (); |
| } |
| |
| maybe_duplicate_eh_stmt (copy, stmt); |
| gimple_duplicate_stmt_histograms (cfun, copy, cfun, stmt); |
| |
| /* Crete new names for each def in the copied stmt. */ |
| def_operand_p def_p; |
| ssa_op_iter op_iter; |
| FOR_EACH_SSA_DEF_OPERAND (def_p, copy, op_iter, SSA_OP_ALL_DEFS) |
| { |
| tree old_name = DEF_FROM_PTR (def_p); |
| create_new_def_for (old_name, copy, def_p); |
| } |
| |
| gsi_insert_after (&gsi_tgt, copy, GSI_NEW_STMT); |
| if (dump_file) |
| { |
| fprintf (dump_file, "[codegen] inserting statement: "); |
| print_gimple_stmt (dump_file, copy, 0); |
| } |
| |
| /* For each SCEV analyzable SSA_NAME, rename their usage. */ |
| ssa_op_iter iter; |
| use_operand_p use_p; |
| if (!is_gimple_debug (copy)) |
| { |
| bool changed = false; |
| FOR_EACH_SSA_USE_OPERAND (use_p, copy, iter, SSA_OP_USE) |
| { |
| tree old_name = USE_FROM_PTR (use_p); |
| |
| if (TREE_CODE (old_name) != SSA_NAME |
| || SSA_NAME_IS_DEFAULT_DEF (old_name) |
| || ! scev_analyzable_p (old_name, region->region)) |
| continue; |
| |
| gimple_seq stmts = NULL; |
| tree new_name = get_rename_from_scev (old_name, &stmts, |
| bb->loop_father, iv_map); |
| if (! codegen_error_p ()) |
| gsi_insert_earliest (stmts); |
| replace_exp (use_p, new_name); |
| changed = true; |
| } |
| if (changed) |
| fold_stmt_inplace (&gsi_tgt); |
| } |
| |
| update_stmt (copy); |
| } |
| } |
| |
| |
| /* Copies BB and includes in the copied BB all the statements that can |
| be reached following the use-def chains from the memory accesses, |
| and returns the next edge following this new block. */ |
| |
| edge translate_isl_ast_to_gimple:: |
| copy_bb_and_scalar_dependences (basic_block bb, edge next_e, vec<tree> iv_map) |
| { |
| basic_block new_bb = split_edge (next_e); |
| gimple_stmt_iterator gsi_tgt = gsi_last_bb (new_bb); |
| for (gphi_iterator psi = gsi_start_phis (bb); !gsi_end_p (psi); |
| gsi_next (&psi)) |
| { |
| gphi *phi = psi.phi (); |
| tree res = gimple_phi_result (phi); |
| if (virtual_operand_p (res) |
| || scev_analyzable_p (res, region->region)) |
| continue; |
| |
| tree new_phi_def; |
| tree *rename = region->rename_map->get (res); |
| if (! rename) |
| { |
| new_phi_def = create_tmp_reg (TREE_TYPE (res)); |
| set_rename (res, new_phi_def); |
| } |
| else |
| new_phi_def = *rename; |
| |
| gassign *ass = gimple_build_assign (NULL_TREE, new_phi_def); |
| create_new_def_for (res, ass, NULL); |
| gsi_insert_after (&gsi_tgt, ass, GSI_NEW_STMT); |
| } |
| |
| graphite_copy_stmts_from_block (bb, new_bb, iv_map); |
| |
| /* Insert out-of SSA copies on the original BB outgoing edges. */ |
| gsi_tgt = gsi_last_bb (new_bb); |
| basic_block bb_for_succs = bb; |
| if (bb_for_succs == bb_for_succs->loop_father->latch |
| && bb_in_sese_p (bb_for_succs, region->region) |
| && sese_trivially_empty_bb_p (bb_for_succs)) |
| bb_for_succs = NULL; |
| while (bb_for_succs) |
| { |
| basic_block latch = NULL; |
| edge_iterator ei; |
| edge e; |
| FOR_EACH_EDGE (e, ei, bb_for_succs->succs) |
| { |
| for (gphi_iterator psi = gsi_start_phis (e->dest); !gsi_end_p (psi); |
| gsi_next (&psi)) |
| { |
| gphi *phi = psi.phi (); |
| tree res = gimple_phi_result (phi); |
| if (virtual_operand_p (res) |
| || scev_analyzable_p (res, region->region)) |
| continue; |
| |
| tree new_phi_def; |
| tree *rename = region->rename_map->get (res); |
| if (! rename) |
| { |
| new_phi_def = create_tmp_reg (TREE_TYPE (res)); |
| set_rename (res, new_phi_def); |
| } |
| else |
| new_phi_def = *rename; |
| |
| tree arg = PHI_ARG_DEF_FROM_EDGE (phi, e); |
| if (TREE_CODE (arg) == SSA_NAME |
| && scev_analyzable_p (arg, region->region)) |
| { |
| gimple_seq stmts = NULL; |
| tree new_name = get_rename_from_scev (arg, &stmts, |
| bb->loop_father, |
| iv_map); |
| if (! codegen_error_p ()) |
| gsi_insert_earliest (stmts); |
| arg = new_name; |
| } |
| gassign *ass = gimple_build_assign (new_phi_def, arg); |
| gsi_insert_after (&gsi_tgt, ass, GSI_NEW_STMT); |
| } |
| if (e->dest == bb_for_succs->loop_father->latch |
| && bb_in_sese_p (e->dest, region->region) |
| && sese_trivially_empty_bb_p (e->dest)) |
| latch = e->dest; |
| } |
| bb_for_succs = latch; |
| } |
| |
| return single_succ_edge (new_bb); |
| } |
| |
| /* Add isl's parameter identifiers and corresponding trees to ivs_params. */ |
| |
| void translate_isl_ast_to_gimple:: |
| add_parameters_to_ivs_params (scop_p scop, ivs_params &ip) |
| { |
| sese_info_p region = scop->scop_info; |
| unsigned nb_parameters = isl_set_dim (scop->param_context, isl_dim_param); |
| gcc_assert (nb_parameters == sese_nb_params (region)); |
| unsigned i; |
| tree param; |
| FOR_EACH_VEC_ELT (region->params, i, param) |
| { |
| isl_id *tmp_id = isl_set_get_dim_id (scop->param_context, |
| isl_dim_param, i); |
| ip[tmp_id] = param; |
| } |
| } |
| |
| |
| /* Generates a build, which specifies the constraints on the parameters. */ |
| |
| __isl_give isl_ast_build *translate_isl_ast_to_gimple:: |
| generate_isl_context (scop_p scop) |
| { |
| isl_set *context_isl = isl_set_params (isl_set_copy (scop->param_context)); |
| return isl_ast_build_from_context (context_isl); |
| } |
| |
| /* This method is executed before the construction of a for node. */ |
| __isl_give isl_id * |
| ast_build_before_for (__isl_keep isl_ast_build *build, void *user) |
| { |
| isl_union_map *dependences = (isl_union_map *) user; |
| ast_build_info *for_info = XNEW (struct ast_build_info); |
| isl_union_map *schedule = isl_ast_build_get_schedule (build); |
| isl_space *schedule_space = isl_ast_build_get_schedule_space (build); |
| int dimension = isl_space_dim (schedule_space, isl_dim_out); |
| for_info->is_parallelizable = |
| !carries_deps (schedule, dependences, dimension); |
| isl_union_map_free (schedule); |
| isl_space_free (schedule_space); |
| isl_id *id = isl_id_alloc (isl_ast_build_get_ctx (build), "", for_info); |
| return id; |
| } |
| |
| /* Generate isl AST from schedule of SCOP. */ |
| |
| __isl_give isl_ast_node *translate_isl_ast_to_gimple:: |
| scop_to_isl_ast (scop_p scop) |
| { |
| int old_err = isl_options_get_on_error (scop->isl_context); |
| int old_max_operations = isl_ctx_get_max_operations (scop->isl_context); |
| int max_operations = PARAM_VALUE (PARAM_MAX_ISL_OPERATIONS); |
| if (max_operations) |
| isl_ctx_set_max_operations (scop->isl_context, max_operations); |
| isl_options_set_on_error (scop->isl_context, ISL_ON_ERROR_CONTINUE); |
| |
| gcc_assert (scop->transformed_schedule); |
| |
| /* Set the separate option to reduce control flow overhead. */ |
| isl_schedule *schedule = isl_schedule_map_schedule_node_bottom_up |
| (isl_schedule_copy (scop->transformed_schedule), set_separate_option, NULL); |
| isl_ast_build *context_isl = generate_isl_context (scop); |
| |
| if (flag_loop_parallelize_all) |
| { |
| scop_get_dependences (scop); |
| context_isl = |
| isl_ast_build_set_before_each_for (context_isl, ast_build_before_for, |
| scop->dependence); |
| } |
| |
| isl_ast_node *ast_isl = isl_ast_build_node_from_schedule |
| (context_isl, schedule); |
| isl_ast_build_free (context_isl); |
| |
| isl_options_set_on_error (scop->isl_context, old_err); |
| isl_ctx_reset_operations (scop->isl_context); |
| isl_ctx_set_max_operations (scop->isl_context, old_max_operations); |
| if (isl_ctx_last_error (scop->isl_context) != isl_error_none) |
| { |
| location_t loc = find_loop_location |
| (scop->scop_info->region.entry->dest->loop_father); |
| if (isl_ctx_last_error (scop->isl_context) == isl_error_quota) |
| dump_printf_loc (MSG_MISSED_OPTIMIZATION, loc, |
| "loop nest not optimized, AST generation timed out " |
| "after %d operations [--param max-isl-operations]\n", |
| max_operations); |
| else |
| dump_printf_loc (MSG_MISSED_OPTIMIZATION, loc, |
| "loop nest not optimized, ISL AST generation " |
| "signalled an error\n"); |
| isl_ast_node_free (ast_isl); |
| return NULL; |
| } |
| |
| return ast_isl; |
| } |
| |
| /* Generate out-of-SSA copies for the entry edge FALSE_ENTRY/TRUE_ENTRY |
| in REGION. */ |
| |
| static void |
| generate_entry_out_of_ssa_copies (edge false_entry, |
| edge true_entry, |
| sese_info_p region) |
| { |
| gimple_stmt_iterator gsi_tgt = gsi_start_bb (true_entry->dest); |
| for (gphi_iterator psi = gsi_start_phis (false_entry->dest); |
| !gsi_end_p (psi); gsi_next (&psi)) |
| { |
| gphi *phi = psi.phi (); |
| tree res = gimple_phi_result (phi); |
| if (virtual_operand_p (res)) |
| continue; |
| /* When there's no out-of-SSA var registered do not bother |
| to create one. */ |
| tree *rename = region->rename_map->get (res); |
| if (! rename) |
| continue; |
| tree new_phi_def = *rename; |
| gassign *ass = gimple_build_assign (new_phi_def, |
| PHI_ARG_DEF_FROM_EDGE (phi, |
| false_entry)); |
| gsi_insert_after (&gsi_tgt, ass, GSI_NEW_STMT); |
| } |
| } |
| |
| /* GIMPLE Loop Generator: generates loops in GIMPLE form for the given SCOP. |
| Return true if code generation succeeded. */ |
| |
| bool |
| graphite_regenerate_ast_isl (scop_p scop) |
| { |
| sese_info_p region = scop->scop_info; |
| translate_isl_ast_to_gimple t (region); |
| |
| ifsese if_region = NULL; |
| isl_ast_node *root_node; |
| ivs_params ip; |
| |
| timevar_push (TV_GRAPHITE_CODE_GEN); |
| t.add_parameters_to_ivs_params (scop, ip); |
| root_node = t.scop_to_isl_ast (scop); |
| if (! root_node) |
| { |
| ivs_params_clear (ip); |
| timevar_pop (TV_GRAPHITE_CODE_GEN); |
| return false; |
| } |
| |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| { |
| fprintf (dump_file, "[scheduler] original schedule:\n"); |
| print_isl_schedule (dump_file, scop->original_schedule); |
| fprintf (dump_file, "[scheduler] isl transformed schedule:\n"); |
| print_isl_schedule (dump_file, scop->transformed_schedule); |
| |
| fprintf (dump_file, "[scheduler] original ast:\n"); |
| print_schedule_ast (dump_file, scop->original_schedule, scop); |
| fprintf (dump_file, "[scheduler] AST generated by isl:\n"); |
| print_isl_ast (dump_file, root_node); |
| } |
| |
| if_region = move_sese_in_condition (region); |
| region->if_region = if_region; |
| |
| loop_p context_loop = region->region.entry->src->loop_father; |
| edge e = single_succ_edge (if_region->true_region->region.entry->dest); |
| basic_block bb = split_edge (e); |
| |
| /* Update the true_region exit edge. */ |
| region->if_region->true_region->region.exit = single_succ_edge (bb); |
| |
| t.translate_isl_ast (context_loop, root_node, e, ip); |
| if (! t.codegen_error_p ()) |
| { |
| generate_entry_out_of_ssa_copies (if_region->false_region->region.entry, |
| if_region->true_region->region.entry, |
| region); |
| sese_insert_phis_for_liveouts (region, |
| if_region->region->region.exit->src, |
| if_region->false_region->region.exit, |
| if_region->true_region->region.exit); |
| if (dump_file) |
| fprintf (dump_file, "[codegen] isl AST to Gimple succeeded.\n"); |
| } |
| |
| if (t.codegen_error_p ()) |
| { |
| location_t loc = find_loop_location |
| (scop->scop_info->region.entry->dest->loop_father); |
| dump_printf_loc (MSG_MISSED_OPTIMIZATION, loc, |
| "loop nest not optimized, code generation error\n"); |
| |
| /* Remove the unreachable region. */ |
| remove_edge_and_dominated_blocks (if_region->true_region->region.entry); |
| basic_block ifb = if_region->false_region->region.entry->src; |
| gimple_stmt_iterator gsi = gsi_last_bb (ifb); |
| gsi_remove (&gsi, true); |
| if_region->false_region->region.entry->flags &= ~EDGE_FALSE_VALUE; |
| if_region->false_region->region.entry->flags |= EDGE_FALLTHRU; |
| /* remove_edge_and_dominated_blocks marks loops for removal but |
| doesn't actually remove them (fix that...). */ |
| loop_p loop; |
| FOR_EACH_LOOP (loop, LI_FROM_INNERMOST) |
| if (! loop->header) |
| delete_loop (loop); |
| } |
| |
| /* We are delaying SSA update to after code-generating all SCOPs. |
| This is because we analyzed DRs and parameters on the unmodified |
| IL and thus rely on SSA update to pick up new dominating definitions |
| from for example SESE liveout PHIs. This is also for efficiency |
| as SSA update does work depending on the size of the function. */ |
| |
| free (if_region->true_region); |
| free (if_region->region); |
| free (if_region); |
| |
| ivs_params_clear (ip); |
| isl_ast_node_free (root_node); |
| timevar_pop (TV_GRAPHITE_CODE_GEN); |
| |
| return !t.codegen_error_p (); |
| } |
| |
| #endif /* HAVE_isl */ |