blob: f6ea33827fe3782153001d8a030d76ee43ac56f2 [file] [log] [blame]
/* Gimple ranger SSA cache implementation.
Copyright (C) 2017-2020 Free Software Foundation, Inc.
Contributed by Andrew MacLeod <amacleod@redhat.com>.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "insn-codes.h"
#include "tree.h"
#include "gimple.h"
#include "ssa.h"
#include "gimple-pretty-print.h"
#include "gimple-range.h"
// During contructor, allocate the vector of ssa_names.
non_null_ref::non_null_ref ()
{
m_nn.create (0);
m_nn.safe_grow_cleared (num_ssa_names);
}
// Free any bitmaps which were allocated,a swell as the vector itself.
non_null_ref::~non_null_ref ()
{
unsigned x;
for (x = 0; x< m_nn.length (); x++)
if (m_nn[x])
BITMAP_FREE (m_nn[x]);
}
// Return true if NAME has a non-null dereference in block bb. If this is the
// first query for NAME, calculate the summary first.
bool
non_null_ref::non_null_deref_p (tree name, basic_block bb)
{
if (!POINTER_TYPE_P (TREE_TYPE (name)))
return false;
unsigned v = SSA_NAME_VERSION (name);
if (!m_nn[v])
process_name (name);
return bitmap_bit_p (m_nn[v], bb->index);
}
// Allocate an populate the bitmap for NAME. An ON bit for a block
// index indicates there is a non-null reference in that block. In
// order to populate the bitmap, a quick run of all the immediate uses
// are made and the statement checked to see if a non-null dereference
// is made on that statement.
void
non_null_ref::process_name (tree name)
{
unsigned v = SSA_NAME_VERSION (name);
use_operand_p use_p;
imm_use_iterator iter;
bitmap b;
// Only tracked for pointers.
if (!POINTER_TYPE_P (TREE_TYPE (name)))
return;
// Already processed if a bitmap has been allocated.
if (m_nn[v])
return;
b = BITMAP_ALLOC (NULL);
// Loop over each immediate use and see if it implies a non-null value.
FOR_EACH_IMM_USE_FAST (use_p, iter, name)
{
gimple *s = USE_STMT (use_p);
unsigned index = gimple_bb (s)->index;
tree value;
enum tree_code comp_code;
// If bit is already set for this block, dont bother looking again.
if (bitmap_bit_p (b, index))
continue;
// If we can infer a != 0 range, then set the bit for this BB
if (infer_value_range (s, name, &comp_code, &value))
{
if (comp_code == NE_EXPR && integer_zerop (value))
bitmap_set_bit (b, index);
}
}
m_nn[v] = b;
}
// This class implements a cache of ranges indexed by basic block. It
// represents all that is known about an SSA_NAME on entry to each
// block. It caches a range-for-type varying range so it doesn't need
// to be reformed all the time. If a range is ever always associated
// with a type, we can use that instead. Whenever varying is being
// set for a block, the cache simply points to this cached one rather
// than create a new one each time.
class ssa_block_ranges
{
public:
ssa_block_ranges (tree t);
~ssa_block_ranges ();
void set_bb_range (const basic_block bb, const irange &r);
void set_bb_varying (const basic_block bb);
bool get_bb_range (irange &r, const basic_block bb);
bool bb_range_p (const basic_block bb);
void dump(FILE *f);
private:
vec<irange_storage *> m_tab;
irange_storage *m_type_range;
tree m_type;
};
// Initialize a block cache for an ssa_name of type T
ssa_block_ranges::ssa_block_ranges (tree t)
{
irange_storage tr;
gcc_assert (TYPE_P (t));
m_type = t;
m_tab.create (0);
m_tab.safe_grow_cleared (last_basic_block_for_fn (cfun));
// Create the cached type range.
tr.set_varying (t);
m_type_range = new irange_storage (tr);
m_tab[ENTRY_BLOCK_PTR_FOR_FN (cfun)->index] = m_type_range;
}
// Destruct block range.
ssa_block_ranges::~ssa_block_ranges ()
{
m_tab.release ();
}
// Set the range for block BB to be R.
void
ssa_block_ranges::set_bb_range (const basic_block bb, const irange &r)
{
irange_storage *m = m_tab[bb->index];
// If there is already range memory for this block, kill it.
// Look into reuse.
//
// right now we're losing memory.
//
// if (m && m != m_type_range)
// delete m;
m = new irange_storage (r);
m_tab[bb->index] = m;
}
// Set the range for block BB to the range for the type.
void
ssa_block_ranges::set_bb_varying (const basic_block bb)
{
m_tab[bb->index] = m_type_range;
}
// Return the range associated with block BB in R. Return false if
// there is no range.
bool
ssa_block_ranges::get_bb_range (irange &r, const basic_block bb)
{
irange_storage *m = m_tab[bb->index];
if (m)
{
r = irange_storage (*m);
return true;
}
return false;
}
// Returns true if a range is present
bool
ssa_block_ranges::bb_range_p (const basic_block bb)
{
return m_tab[bb->index] != NULL;
}
// Print the list of known ranges for file F in a nice format.
void
ssa_block_ranges::dump (FILE *f)
{
basic_block bb;
widest_irange r;
FOR_EACH_BB_FN (bb, cfun)
if (get_bb_range (r, bb))
{
fprintf (f, "BB%d -> ", bb->index);
r.dump (f);
fprintf (f, "\n");
}
}
// -------------------------------------------------------------------------
// Initialize the block cache.
block_range_cache::block_range_cache ()
{
m_ssa_ranges.create (0);
m_ssa_ranges.safe_grow_cleared (num_ssa_names);
}
// Remove any m_block_caches which have been created.
block_range_cache::~block_range_cache ()
{
unsigned x;
for (x = 0; x < m_ssa_ranges.length (); ++x)
{
if (m_ssa_ranges[x])
delete m_ssa_ranges[x];
}
// Release the vector itself.
m_ssa_ranges.release ();
}
// Return a reference to the m_block_cache for NAME. If it has not been
// accessed yet, allocate it.
ssa_block_ranges &
block_range_cache::get_block_ranges (tree name)
{
unsigned v = SSA_NAME_VERSION (name);
if (v >= m_ssa_ranges.length ())
m_ssa_ranges.safe_grow_cleared (num_ssa_names + 1);
if (!m_ssa_ranges[v])
m_ssa_ranges[v] = new ssa_block_ranges (TREE_TYPE (name));
return *(m_ssa_ranges[v]);
}
// Set the range for NAME on entry to block BB to R.
void
block_range_cache::set_bb_range (tree name, const basic_block bb,
const irange &r)
{
return get_block_ranges (name).set_bb_range (bb, r);
}
// Set the range for NAME on entry to block BB to varying..
void
block_range_cache::set_bb_varying (tree name, const basic_block bb)
{
return get_block_ranges (name).set_bb_varying (bb);
}
// Return the range for NAME on entry to BB in R. Return true if here
// is one.
bool
block_range_cache::get_bb_range (irange &r, tree name, const basic_block bb)
{
return get_block_ranges (name).get_bb_range (r, bb);
}
// Return true if NAME has a range set in block BB.
bool
block_range_cache::bb_range_p (tree name, const basic_block bb)
{
return get_block_ranges (name).bb_range_p (bb);
}
// Print all known block caches to file F.
void
block_range_cache::dump (FILE *f)
{
unsigned x;
for (x = 0; x < m_ssa_ranges.length (); ++x)
{
if (m_ssa_ranges[x])
{
fprintf (f, " Ranges for ");
print_generic_expr (f, ssa_name (x), TDF_NONE);
fprintf (f, ":\n");
m_ssa_ranges[x]->dump (f);
fprintf (f, "\n");
}
}
}
// Print all known ranges on entry to blobk BB to file F.
void
block_range_cache::dump (FILE *f, basic_block bb, bool print_varying)
{
unsigned x;
widest_irange r;
bool summarize_varying = false;
for (x = 1; x < m_ssa_ranges.length (); ++x)
{
if (!gimple_range_ssa_p (ssa_name (x)))
continue;
if (m_ssa_ranges[x] && m_ssa_ranges[x]->get_bb_range (r, bb))
{
if (!print_varying && r.varying_p ())
{
summarize_varying = true;
continue;
}
print_generic_expr (f, ssa_name (x), TDF_NONE);
fprintf (f, "\t");
r.dump(f);
fprintf (f, "\n");
}
}
// If there were any varying entries, lump them all together.
if (summarize_varying)
{
fprintf (f, "VARYING_P on entry : ");
for (x = 1; x < num_ssa_names; ++x)
{
if (!gimple_range_ssa_p (ssa_name (x)))
continue;
if (m_ssa_ranges[x] && m_ssa_ranges[x]->get_bb_range (r, bb))
{
if (r.varying_p ())
{
print_generic_expr (f, ssa_name (x), TDF_NONE);
fprintf (f, " ");
}
}
}
fprintf (f, "\n");
}
}
// -------------------------------------------------------------------------
// Initialize a global cache.
ssa_global_cache::ssa_global_cache ()
{
m_tab.create (0);
m_tab.safe_grow_cleared (num_ssa_names);
}
// Deconstruct a global cache.
ssa_global_cache::~ssa_global_cache ()
{
m_tab.release ();
}
// Retrieve the global range of NAME from cache memory if it exists.
// Return the value in R.
bool
ssa_global_cache::get_global_range (irange &r, tree name) const
{
unsigned v = SSA_NAME_VERSION (name);
if (v >= m_tab.length ())
return false;
irange_storage *stow = m_tab[v];
if (!stow)
return false;
r = irange_storage (*stow);
return true;
}
// Set the range for NAME to R in the global cache.
void
ssa_global_cache::set_global_range (tree name, const irange &r)
{
unsigned v = SSA_NAME_VERSION (name);
if (v >= m_tab.length ())
m_tab.safe_grow_cleared (num_ssa_names + 1);
irange_storage *m = m_tab[v];
// Fixme update in place it if fits.
// if (m && m->update (r, TREE_TYPE (name)))
// ;
// else
{
// m = irange_storage::alloc (r, TREE_TYPE (name));
m = new irange_storage (r);
m_tab[SSA_NAME_VERSION (name)] = m;
}
}
// Set the range for NAME to R in the glonbal cache.
void
ssa_global_cache::clear_global_range (tree name)
{
unsigned v = SSA_NAME_VERSION (name);
if (v >= m_tab.length ())
m_tab.safe_grow_cleared (num_ssa_names + 1);
m_tab[v] = NULL;
}
// Clear the global cache.
void
ssa_global_cache::clear ()
{
memset (m_tab.address(), 0, m_tab.length () * sizeof (irange_storage *));
}
// Dump the contents of the global cache to F.
void
ssa_global_cache::dump (FILE *f)
{
unsigned x;
widest_irange r;
fprintf (f, "Non-varying global ranges:\n");
fprintf (f, "=========================:\n");
for ( x = 1; x < num_ssa_names; x++)
if (gimple_range_ssa_p (ssa_name (x)) &&
get_global_range (r, ssa_name (x)) && !r.varying_p ())
{
print_generic_expr (f, ssa_name (x), TDF_NONE);
fprintf (f, " : ");
r.dump (f);
fprintf (f, "\n");
}
fputc ('\n', f);
}
// --------------------------------------------------------------------------
ranger_cache::ranger_cache ()
{
m_workback.create (0);
m_workback.safe_grow_cleared (last_basic_block_for_fn (cfun));
m_update_list.create (0);
m_update_list.safe_grow_cleared (last_basic_block_for_fn (cfun));
m_update_list.truncate (0);
}
ranger_cache::~ranger_cache ()
{
m_workback.release ();
m_update_list.release ();
}
// Provide lookup for the gori-computes class to access the best known range
// of an ssa_name in any given basic block. NOte this does no additonal
// lookups, just accesses the data that is already known.
void
ranger_cache::ssa_range_in_bb (irange &r, tree name, basic_block bb)
{
gimple *s = SSA_NAME_DEF_STMT (name);
basic_block def_bb = ((s && gimple_bb (s)) ? gimple_bb (s) :
ENTRY_BLOCK_PTR_FOR_FN (cfun));
if (bb == def_bb || !m_on_entry.get_bb_range (r, name, bb))
{
// Try to pick up any known value first.
if (!m_globals.get_global_range (r, name))
r = gimple_range_global (name);
}
// Check if pointers have any non-null dereferences. Non-call
// exceptions mean we could throw in the middle of he block, so just
// punt for now on those.
if (r.varying_p () && m_non_null.non_null_deref_p (name, bb) &&
!cfun->can_throw_non_call_exceptions)
r = range_nonzero (TREE_TYPE (name));
}
// Return a static range for NAME on entry to basic block BB in R. If
// calc is true, fill any cache entries required between BB and the
// def block for NAME. Otherwise, return false if the cache is empty.
bool
ranger_cache::block_range (irange &r, basic_block bb, tree name, bool calc)
{
gcc_checking_assert (gimple_range_ssa_p (name));
if (calc)
{
gimple *def_stmt = SSA_NAME_DEF_STMT (name);
basic_block def_bb = NULL;
if (def_stmt)
def_bb = gimple_bb (def_stmt);;
if (!def_bb)
{
// If we get to the entry block, this better be a default def
// or range_on_entry was called for a block not dominated by
// the def. This would be a bug.
gcc_checking_assert (SSA_NAME_IS_DEFAULT_DEF (name));
def_bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
}
// There is no range on entry for the defintion block.
if (def_bb == bb)
return false;
// Otherwise, go figure out what is known in predecessor blocks.
fill_block_cache (name, bb, def_bb);
gcc_checking_assert (m_on_entry.bb_range_p (name, bb));
}
return m_on_entry.get_bb_range (r, name, bb);
}
void
ranger_cache::add_to_update (basic_block bb)
{
if (!m_update_list.contains (bb))
m_update_list.quick_push (bb);
}
#define DEBUG_CACHE (0 && dump_file)
// If there is anything in the iterative update_list, continue
// processing NAME until the list of blocks is empty.
void
ranger_cache::iterative_cache_update (tree name)
{
basic_block bb;
edge_iterator ei;
edge e;
widest_irange new_range;
widest_irange current_range;
widest_irange e_range;
// Process each block by seeing if it's calculated range on entry is
// the same as it's cached value. IF there is a difference, update
// the cache to reflect the new value, and check to see if any
// successors have cache entries which may need to be checked for
// updates.
while (m_update_list.length () > 0)
{
bb = m_update_list.pop ();
if (DEBUG_CACHE) fprintf (dump_file, "FWD visiting block %d\n", bb->index);
gcc_assert (m_on_entry.get_bb_range (current_range, name, bb));
// Calculate the "new" range on entry by unioning the pred edges..
new_range.set_undefined ();
FOR_EACH_EDGE (e, ei, bb->preds)
{
// Get whatever range we can for this edge
if (!outgoing_edge_range_p (e_range, e, name))
ssa_range_in_bb (e_range, name, e->src);
new_range.union_ (e_range);
if (new_range.varying_p ())
break;
}
// If the range on entry has changed, update it.
if (new_range != current_range)
{
if (DEBUG_CACHE) { fprintf (dump_file, "updating range from/to "); current_range.dump (dump_file); new_range.dump (dump_file); }
m_on_entry.set_bb_range (name, bb, new_range);
// Mark each successor that has a range to re-check it's range
FOR_EACH_EDGE (e, ei, bb->succs)
if (m_on_entry.bb_range_p (name, e->dest))
add_to_update (e->dest);
}
}
if (DEBUG_CACHE) fprintf (dump_file, "DONE visiting blocks \n\n");
}
// Make sure that the range-on-entry cache for NAME is set for block BB.
// Work back thourgh the CFG to DEF_BB ensuring the range is calculated
// on the block/edges leading back to that point.
void
ranger_cache::fill_block_cache (tree name, basic_block bb, basic_block def_bb)
{
edge_iterator ei;
edge e;
widest_irange block_result;
widest_irange undefined;
// At this point we shouldnt be looking at the def, entry or exit block.
gcc_checking_assert (bb != def_bb && bb != ENTRY_BLOCK_PTR_FOR_FN (cfun) &&
bb != EXIT_BLOCK_PTR_FOR_FN (cfun));
// If the block cache is set, then we've already visited this block.
if (m_on_entry.bb_range_p (name, bb))
return;
// Visit each block back to the DEF. Initialize each one to UNDEFINED.
// m_visited at the end will contain all the blocks that we needed to set
// the range_on_entry cache for.
m_workback.truncate (0);
m_workback.quick_push (bb);
undefined.set_undefined ();
m_on_entry.set_bb_range (name, bb, undefined);
gcc_checking_assert (m_update_list.length () == 0);
if (DEBUG_CACHE) { fprintf (dump_file, "\n"); print_generic_expr (dump_file, name, TDF_SLIM); fprintf (dump_file, " : "); }
while (m_workback.length () > 0)
{
basic_block node = m_workback.pop ();
if (DEBUG_CACHE) fprintf (dump_file, "BACK visiting block %d\n", node->index);
FOR_EACH_EDGE (e, ei, node->preds)
{
basic_block pred = e->src;
widest_irange r;
// If the pred block is the def block add this BB to update list.
if (pred == def_bb)
{
add_to_update (node);
continue;
}
// If the pred is entry but NOT def, then it is used before
// defined, it'll get set to []. and no need to update it.
if (pred == ENTRY_BLOCK_PTR_FOR_FN (cfun))
continue;
// Regardless of whther we have visited pred or not, if the pred has
// a non-null reference, revisit this block.
if (m_non_null.non_null_deref_p (name, pred))
add_to_update (node);
// If the pred block already has a range, or if it can contribute
// something new. Ie, the edge generates a range of some sort.
if (m_on_entry.get_bb_range (r, name, pred))
{
if (!r.undefined_p () || has_edge_range_p (e, name))
add_to_update (node);
continue;
}
// If the pred hasn't been visited (has no range), add it to
// the list.
gcc_checking_assert (!m_on_entry.bb_range_p (name, pred));
m_on_entry.set_bb_range (name, pred, undefined);
m_workback.quick_push (pred);
}
}
iterative_cache_update (name);
}