blob: 2a59f0a452adadc612e045a538c8d98553a067bd [file] [log] [blame]
/* Gimple range GORI functions.
Copyright (C) 2017-2020 Free Software Foundation, Inc.
Contributed by Andrew MacLeod <amacleod@redhat.com>
and Aldy Hernandez <aldyh@redhat.com>.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#define DEBUG_CACHE (1 && getenv("DEBUG_CACHE"))
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "tree.h"
#include "gimple.h"
#include "ssa.h"
#include "gimple-pretty-print.h"
#include "gimple-range.h"
/* RANGE_DEF_CHAIN is used to determine what SSA names in a block can
have range information calculated for them, and what the
dependencies on each other are.
Information for a basic block is calculated once and stored. It is
only calculated the first time a query is made, so if no queries
are made, there is little overhead.
The def_chain bitmap is indexed by SSA_NAME_VERSION. Bits are set
within this bitmap to indicate SSA names that are defined in the
SAME block and used to calculate this SSA name.
One import is maintained per def-chain. An IMPORT is defined as an
SSA name in the def chain which occurs outside the basic block. A
change in the value of this SSA name can change the value of any
name in the chain.
If there is more than one import, or an ssa_name originates WITHIN
the same basic block, but is defined by a statement that the range
engine does not know how to calculate, then there is no import for
the entire chain.
<bb 2> :
_1 = x_4(D) + -2;
_2 = _1 * 4;
j_7 = foo ();
q_5 = _2 + 3;
if (q_5 <= 13)
_1 : (import : x_4(D)) :x_4(D)
_2 : (import : x_4(D)) :_1 x_4(D)
q_5 : (import : x_4(D)) :_1 _2 x_4(D)
This dump indicates the bits set in the def_chain vector and their
import, as well as demonstrates the def_chain bits for the related
ssa_names.
Checking the chain for _2 indicates that _1 and x_4 are used in
its evaluation, and with x_4 being an import.
For the purpose of defining an import, PHI node defintions are
considered imports as they don't really reside in the block, but
are accumulators of values from incoming edges.
Def chains also only include statements which are valid gimple
so a def chain will only span statements for which the range
engine implements operations for. */
class range_def_chain
{
public:
range_def_chain ();
~range_def_chain ();
tree terminal_name (tree name);
bool has_def_chain (tree name);
bitmap get_def_chain (tree name);
bool in_chain_p (tree name, tree def);
private:
vec<bitmap> m_def_chain; // SSA_NAME : def chain components.
vec<tree> m_terminal; // SSA_NAME : chain terminal name.
tree build_def_chain (tree name, bitmap result, basic_block bb);
};
// Construct a range_def_chain
range_def_chain::range_def_chain ()
{
m_def_chain.create (0);
m_def_chain.safe_grow_cleared (num_ssa_names);
m_terminal.create (0);
m_terminal.safe_grow_cleared (num_ssa_names);
}
// Destruct a range_def_chain
range_def_chain::~range_def_chain ()
{
unsigned x;
for (x = 0; x < m_def_chain.length (); ++x)
if (m_def_chain[x])
BITMAP_FREE (m_def_chain[x]);
m_def_chain.release ();
m_terminal.release ();
}
// Return true if NAME is in the def chain of DEF. If BB is provided,
// only return true if the defining statement of DEF is in BB.
bool
range_def_chain::in_chain_p (tree name, tree def)
{
gcc_checking_assert (gimple_range_ssa_p (def));
gcc_checking_assert (gimple_range_ssa_p (name));
// Get the defintion chain for DEF
bitmap chain = get_def_chain (def);
if (chain == NULL)
return false;
return bitmap_bit_p (chain, SSA_NAME_VERSION (name));
}
// If NAME has a definition chain, and the chain has a single import
// into the block, return the name of that import.
tree
range_def_chain::terminal_name (tree name)
{
// Ensure the def chain has been calculated.
get_def_chain (name);
return m_terminal[SSA_NAME_VERSION (name)];
}
// Given up to 3 ssa names, return the common name or NULL_TREE.
// NULL_TREE's passed in can be ignored, but all specified ssa-names
// must be the same name.
static inline tree
pick_import (tree ssa1, tree ssa2, tree ssa3)
{
if (ssa1)
{
if (ssa2 && ssa1 != ssa2)
return NULL_TREE; // No match.
// Either ssa2 is NULL, or it is the same as ssa1.
if (!ssa3 || ssa1 == ssa3)
return ssa1; // ssa1 is the import.
return NULL_TREE;
}
if (ssa2)
{
// If there is no ssa3 or ssa3 is the same as ssa2, thats the import.
if (!ssa3 || ssa2 == ssa3)
return ssa2;
// They must both be different, so no import.
return NULL_TREE;
}
return ssa3;
}
// Build def_chains for NAME if it is in BB.. copy the def chain into
// RESULT. Return the import for name, or NAME if it is an import.
tree
range_def_chain::build_def_chain (tree name, bitmap result, basic_block bb)
{
bitmap b;
gimple *def_stmt = SSA_NAME_DEF_STMT (name);
// Add this operand into the result.
bitmap_set_bit (result, SSA_NAME_VERSION (name));
if (gimple_bb (def_stmt) == bb && !is_a<gphi *>(def_stmt))
{
// Get the def chain for the operand
b = get_def_chain (name);
// If there was one, copy it into result and return the terminal name.
if (b)
{
bitmap_ior_into (result, b);
return m_terminal [SSA_NAME_VERSION (name)];
}
// If there is no def chain, this terminal is within the same BB.
}
return name; // This is an import.
}
// Return TRUE if NAME has been processed for a def_chain.
inline bool
range_def_chain::has_def_chain (tree name)
{
unsigned v = SSA_NAME_VERSION (name);
if (v >= m_def_chain.length ())
{
m_def_chain.safe_grow_cleared (num_ssa_names + 1);
m_terminal.safe_grow_cleared (num_ssa_names + 1);
}
return (m_def_chain[v] != NULL);
}
// Calculate the def chain for NAME and all of its dependent
// operands. Only using names in the same BB. Return the bitmap of
// all names in the m_def_chain. This only works for supported range
// statements.
bitmap
range_def_chain::get_def_chain (tree name)
{
tree ssa1, ssa2, ssa3;
unsigned v = SSA_NAME_VERSION (name);
// If it has already been processed, just return the cached value.
if (has_def_chain (name))
return m_def_chain[v];
// No definition chain for default defs.
if (SSA_NAME_IS_DEFAULT_DEF (name))
return NULL;
gimple *stmt = SSA_NAME_DEF_STMT (name);
if (gimple_range_handler (stmt))
{
ssa1 = gimple_range_ssa_p (gimple_range_operand1 (stmt));
ssa2 = gimple_range_ssa_p (gimple_range_operand2 (stmt));
ssa3 = NULL_TREE;
}
else if (is_a<gassign *> (stmt)
&& gimple_assign_rhs_code (stmt) == COND_EXPR)
{
gassign *st = as_a<gassign *> (stmt);
ssa1 = gimple_range_ssa_p (gimple_assign_rhs1 (st));
ssa2 = gimple_range_ssa_p (gimple_assign_rhs2 (st));
ssa3 = gimple_range_ssa_p (gimple_assign_rhs3 (st));
}
else
return NULL;
basic_block bb = gimple_bb (stmt);
// Allocate a new bitmap and initialize it.
m_def_chain[v] = BITMAP_ALLOC (NULL);
// build_def_chain returns the terminal name. If we have more than
// one unique terminal name, then this statement will have no
// terminal.
bool has_term = true;
m_terminal[v] = NULL_TREE;
if (ssa1)
{
ssa1 = build_def_chain (ssa1, m_def_chain[v], bb);
// if this chain has no terminal, root cannot either.
if (!ssa1)
has_term = false;
}
if (ssa2)
{
ssa2 = build_def_chain (ssa2, m_def_chain[v], bb);
if (!ssa2)
has_term = false;
}
if (ssa3)
{
ssa3 = build_def_chain (ssa3, m_def_chain[v], bb);
if (!ssa3)
has_term = false;
}
if (has_term)
m_terminal[v] = pick_import (ssa1, ssa2, ssa3);
else
m_terminal[v] = NULL_TREE;
// If we run into pathological cases where the defintion chains are
// huge (I'm thinking fppp for instance.. huge basic block fully
// unrolled) we might be able to limit this by deciding here that if
// there is no import AND 2 or more ssa names, we change the
// def_chain back to be just the ssa-names. that should prevent a_2
// = b_6 + a_8 from creating a pathological case yet allow us to
// still handle it when b_6 and a_8 are derived from the same base
// name. thoughts?
return m_def_chain[v];
}
// -------------------------------------------------------------------
/* GORI_MAP is used to accumulate what SSA names in a block can
generate range information, and provides tools for the block ranger
to enable it to efficiently calculate these ranges.
GORI stands for "Generates Outgoing Range Information."
It utilizes the range_def_chain class to contruct def_chains.
Information for a basic block is calculated once and stored. It is
only calculated the first time a query is made. If no queries are
made, there is little overhead.
2 bitmaps are maintained for each basic block:
m_outgoing : a set bit indicates a range can be generated for a name.
m_incoming : a set bit means a this name come from outside the
block and is used in the calculation of some outgoing
range.
Generally speaking, the m_outgoing vector is the union of the
entire def_chain of all SSA names used in the last statement of the
block which generate ranges. The m_incoming vector is the union of
all the terminal names of those def chains. They act as a one-stop
summary for the block. */
class gori_map : public range_def_chain
{
public:
gori_map ();
~gori_map ();
bool is_export_p (tree name, basic_block bb);
bool def_chain_in_export_p (tree name, basic_block bb);
bool is_import_p (tree name, basic_block bb);
void dump (FILE *f);
void dump (FILE *f, basic_block bb);
private:
bitmap_obstack m_bitmaps;
vec<bitmap> m_outgoing; // BB: Outgoing ranges calculatable on edges
vec<bitmap> m_incoming; // BB: block imports
void maybe_add_gori (tree name, basic_block bb);
void calculate_gori (basic_block bb);
bitmap imports (basic_block bb);
bitmap exports (basic_block bb);
};
// Initialize a gori-map structure.
gori_map::gori_map ()
{
m_outgoing.create (0);
m_outgoing.safe_grow_cleared (last_basic_block_for_fn (cfun));
m_incoming.create (0);
m_incoming.safe_grow_cleared (last_basic_block_for_fn (cfun));
bitmap_obstack_initialize (&m_bitmaps);
}
// Free any memory the GORI map allocated.
gori_map::~gori_map ()
{
bitmap_obstack_release (&m_bitmaps);
m_incoming.release ();
m_outgoing.release ();
}
// Return the bitmap vector of all imports to BB. Calculate if necessary.
bitmap
gori_map::imports (basic_block bb)
{
if (!m_incoming[bb->index])
calculate_gori (bb);
return m_incoming[bb->index];
}
// Return true if NAME is an import to basic block BB
bool
gori_map::is_import_p (tree name, basic_block bb)
{
return bitmap_bit_p (imports (bb), SSA_NAME_VERSION (name));
}
// Return the bitmap vector of all export from BB. Calculate if necessary.
bitmap
gori_map::exports (basic_block bb)
{
if (!m_outgoing[bb->index])
calculate_gori (bb);
return m_outgoing[bb->index];
}
// Return true if NAME is can have ranges generated for it from basic
// block BB.
bool
gori_map::is_export_p (tree name, basic_block bb)
{
return bitmap_bit_p (exports (bb), SSA_NAME_VERSION (name));
}
// Return true if any element in the def chain of NAME is in the
// export list for BB.
bool
gori_map::def_chain_in_export_p (tree name, basic_block bb)
{
bitmap a = exports (bb);
bitmap b = get_def_chain (name);
if (a && b)
return bitmap_intersect_p (a, b);
return false;
}
// If NAME is non-NULL and defined in block BB, calculate the def
// chain and add it to m_outgoing, and any imports to m_incoming.
void
gori_map::maybe_add_gori (tree name, basic_block bb)
{
if (name)
{
gimple *s = SSA_NAME_DEF_STMT (name);
bitmap r = get_def_chain (name);
// Check if there is a def chain, and it is in this block.
if (r && gimple_bb (s) == bb)
{
bitmap_copy (m_outgoing[bb->index], r);
tree im = terminal_name (name);
if (im)
bitmap_set_bit (m_incoming[bb->index], SSA_NAME_VERSION (im));
}
else
{
// If there is no def chain, and name originates outside
// this block then this name is also an import.
if (!s || gimple_bb (s) != bb)
bitmap_set_bit (m_incoming[bb->index], SSA_NAME_VERSION (name));
}
// Def chain doesn't include itself, and even if there isn't a
// def chain, this name should be added to exports.
bitmap_set_bit (m_outgoing[bb->index], SSA_NAME_VERSION (name));
}
}
// Calculate all the required information for BB.
void
gori_map::calculate_gori (basic_block bb)
{
tree name;
if (bb->index >= (signed int)m_outgoing.length ())
{
m_outgoing.safe_grow_cleared (last_basic_block_for_fn (cfun));
m_incoming.safe_grow_cleared (last_basic_block_for_fn (cfun));
}
gcc_assert (m_outgoing[bb->index] == NULL);
m_outgoing[bb->index] = BITMAP_ALLOC (&m_bitmaps);
m_incoming[bb->index] = BITMAP_ALLOC (&m_bitmaps);
// If this block's last statement may generate range informaiton, go
// calculate it.
gimple *stmt = gimple_outgoing_range_stmt_p (bb);
if (!stmt)
return;
if (is_a<gcond *> (stmt))
{
gcond *gc = as_a<gcond *>(stmt);
name = gimple_range_ssa_p (gimple_cond_lhs (gc));
maybe_add_gori (name, gimple_bb (stmt));
name = gimple_range_ssa_p (gimple_cond_rhs (gc));
maybe_add_gori (name, gimple_bb (stmt));
}
else
{
gswitch *gs = as_a<gswitch *>(stmt);
name = gimple_range_ssa_p (gimple_switch_index (gs));
maybe_add_gori (name, gimple_bb (stmt));
}
}
// Dump the table information for BB to file F.
void
gori_map::dump(FILE *f, basic_block bb)
{
tree t;
bool header = false;
const char *header_string = "bb%-4d ";
const char *header2 = " ";
bool printed_something = false;;
unsigned x, y;
bitmap_iterator bi;
// BB was not processed.
if (!m_outgoing[bb->index])
return;
// Dump the def chain for each SSA_NAME defined in BB.
for (x = 1; x < num_ssa_names; x++)
{
tree name = ssa_name (x);
if (!name)
continue;
gimple *stmt = SSA_NAME_DEF_STMT (name);
bitmap chain = (has_def_chain (name) ? get_def_chain (name) : NULL);
if (stmt && gimple_bb (stmt) == bb && chain && !bitmap_empty_p (chain))
{
fprintf (f, header_string, bb->index);
header_string = header2;
header = true;
print_generic_expr (f, name, TDF_SLIM);
if ((t = terminal_name (name)))
{
fprintf (f, " : (terminal ");
print_generic_expr (f, t, TDF_SLIM);
fprintf (f, ")");
}
fprintf (f, " : ");
EXECUTE_IF_SET_IN_BITMAP (chain, 0, y, bi)
{
print_generic_expr (f, ssa_name (y), TDF_SLIM);
fprintf (f, " ");
}
fprintf (f, "\n");
}
}
printed_something |= header;
// Now dump the incoming vector.
header = false;
EXECUTE_IF_SET_IN_BITMAP (m_incoming[bb->index], 0, y, bi)
{
if (!header)
{
fprintf (f, header_string, bb->index);
fprintf (f, "imports: ");
header_string = header2;
header = true;
}
print_generic_expr (f, ssa_name (y), TDF_SLIM);
fprintf (f, " ");
}
if (header)
fputc ('\n', f);
// Now dump the export vector.
printed_something |= header;
header = false;
EXECUTE_IF_SET_IN_BITMAP (m_outgoing[bb->index], 0, y, bi)
{
if (!header)
{
fprintf (f, header_string, bb->index);
fprintf (f, "exports: ");
header_string = header2;
header = true;
}
print_generic_expr (f, ssa_name (y), TDF_SLIM);
fprintf (f, " ");
}
if (header)
fputc ('\n', f);
printed_something |= header;
if (printed_something)
fprintf (f, "\n");
}
// Dump the entire GORI map structure to file F.
//
void
gori_map::dump(FILE *f)
{
basic_block bb;
FOR_EACH_BB_FN (bb, cfun)
{
dump (f, bb);
if (m_outgoing[bb->index])
fprintf (f, "\n");
}
}
DEBUG_FUNCTION void
debug (gori_map &g)
{
g.dump (stderr);
}
// -------------------------------------------------------------------
void
gori_compute::expr_range_in_bb (irange &r, tree expr, basic_block bb)
{
if (gimple_range_ssa_p (expr))
ssa_range_in_bb (r, expr, bb);
else
get_tree_range (r, expr);
}
// Calculate the range for NAME if the lhs of statement S has the
// range LHS. If present, NAME_RANGE is any known range for NAME
// coming into this stmt. Return the result in R. Return false if no
// range can be calculated.
bool
gori_compute::compute_name_range_op (irange &r, gimple *stmt,
const irange &lhs, tree name)
{
widest_irange op1_range, op2_range;
tree op1 = gimple_range_operand1 (stmt);
tree op2 = gimple_range_operand2 (stmt);
// Operand 1 is the name being looked for, evaluate it.
if (op1 == name)
{
expr_range_in_bb (op1_range, op1, gimple_bb (stmt));
if (!op2)
{
// The second parameter to a unary operation is the range
// for the type of operand1, but if it can be reduced
// further, the results will be better. Start with what we
// know of the range of OP1 instead of the full type.
return gimple_range_calc_op1 (r, stmt, lhs, op1_range);
}
// If we need the second operand, get a value and evaluate.
expr_range_in_bb (op2_range, op2, gimple_bb (stmt));
if (gimple_range_calc_op1 (r, stmt, lhs, op2_range))
r.intersect (op1_range);
else
r = op1_range;
return true;
}
if (op2 == name)
{
expr_range_in_bb (op1_range, op1, gimple_bb (stmt));
expr_range_in_bb (r, op2, gimple_bb (stmt));
if (gimple_range_calc_op2 (op2_range, stmt, lhs, op1_range))
r.intersect (op2_range);
return true;
}
return false;
}
// Construct a gori_compute object.
gori_compute::gori_compute ()
{
// Create a boolean_type true and false range.
m_bool_zero = int_range<1> (boolean_false_node, boolean_false_node);
m_bool_one = int_range<1> (boolean_true_node, boolean_true_node);
m_gori_map = new gori_map;
}
// Destruct a gori_compute_object
gori_compute::~gori_compute ()
{
delete m_gori_map;
}
// Given the switch S, return an evaluation in R for NAME when the lhs
// evaluates to LHS. Returning false means the name being looked for
// was not resolvable. If present, NAME_RANGE is any known range for
// NAME coming into S.
bool
gori_compute::compute_operand_range_switch (irange &r, gswitch *s,
const irange &lhs,
tree name)
{
tree op1 = gimple_switch_index (s);
// If name matches, the range is simply the range from the edge.
// Empty ranges are viral as they are on a path which isn't
// executable.
if (op1 == name || lhs.undefined_p ())
{
r = lhs;
return true;
}
// If op1 is in the defintion chain, pass lhs back.
if (gimple_range_ssa_p (op1) && m_gori_map->in_chain_p (name, op1))
return compute_operand_range (r, SSA_NAME_DEF_STMT (op1), lhs, name);
return false;
}
// Return TRUE if GS is a logical && or || expression.
static inline bool
is_gimple_logical_p (const gimple *gs)
{
/* Look for boolean and/or condition. */
if (gimple_code (gs) == GIMPLE_ASSIGN)
switch (gimple_expr_code (gs))
{
case TRUTH_AND_EXPR:
case TRUTH_OR_EXPR:
return true;
case BIT_AND_EXPR:
case BIT_IOR_EXPR:
// Bitwise operations on single bits are logical too.
if (types_compatible_p (TREE_TYPE (gimple_assign_rhs1 (gs)),
boolean_type_node))
return true;
break;
default:
break;
}
return false;
}
// Return an evaluation for NAME as it would appear in STMT when the
// statement's lhs evaluates to LHS. If successful, return TRUE and
// store the evaluation in R, otherwise return FALSE.
//
// If present, NAME_RANGE is any known range for NAME coming into STMT.
bool
gori_compute::compute_operand_range (irange &r, gimple *stmt,
const irange &lhs, tree name)
{
// Empty ranges are viral as they are on an unexecutable path.
if (lhs.undefined_p ())
{
r.set_undefined ();
return true;
}
if (is_a<gswitch *> (stmt))
return compute_operand_range_switch (r, as_a<gswitch *> (stmt), lhs, name);
if (!gimple_range_handler (stmt))
return false;
tree op1 = gimple_range_ssa_p (gimple_range_operand1 (stmt));
tree op2 = gimple_range_ssa_p (gimple_range_operand2 (stmt));
// The base ranger handles NAME on this statement.
if (op1 == name || op2 == name)
return compute_name_range_op (r, stmt, lhs, name);
if (is_gimple_logical_p (stmt))
return compute_logical_operands (r, stmt, lhs, name);
// NAME is not in this stmt, but one of the names in it ought to be
// derived from it.
bool op1_in_chain = op1 && m_gori_map->in_chain_p (name, op1);
bool op2_in_chain = op2 && m_gori_map->in_chain_p (name, op2);
if (op1_in_chain && op2_in_chain)
return compute_operand1_and_operand2_range (r, stmt, lhs, name);
if (op1_in_chain)
return compute_operand1_range (r, stmt, lhs, name);
if (op2_in_chain)
return compute_operand2_range (r, stmt, lhs, name);
// If neither operand is derived, this statement tells us nothing.
return false;
}
static bool
range_is_either_true_or_false (const irange &r)
{
if (r.undefined_p ())
return false;
// This is complicated by the fact that Ada has multi-bit booleans,
// so true can be ~[0, 0] (i.e. [1,MAX]).
tree type = r.type ();
gcc_checking_assert (types_compatible_p (type, boolean_type_node));
return (r.singleton_p () || !r.contains_p (build_zero_cst (type)));
}
struct tf_range
{
tf_range () { }
tf_range (const irange &t_range, const irange &f_range)
: true_range (t_range), false_range (f_range) { }
widest_irange true_range, false_range;
};
// Evaluate a binary logical expression by combining the true and
// false ranges for each of the operands based on the result value in
// the LHS.
bool
gori_compute::logical_combine (irange &r, enum tree_code code,
const irange &lhs,
const tf_range &op1, const tf_range &op2)
{
if (op1.true_range.varying_p ()
&& op1.false_range.varying_p ()
&& op2.true_range.varying_p ()
&& op2.false_range.varying_p ())
return false;
// This is not a simple fold of a logical expression, rather it
// determines ranges which flow through the logical expression.
//
// Assuming x_8 is an unsigned char, and relational statements:
// b_1 = x_8 < 20
// b_2 = x_8 > 5
// consider the logical expression and branch:
// c_2 = b_1 && b_2
// if (c_2)
//
// To determine the range of x_8 on either edge of the branch, one
// must first determine what the range of x_8 is when the boolean
// values of b_1 and b_2 are both true and false.
// b_1 TRUE x_8 = [0, 19]
// b_1 FALSE x_8 = [20, 255]
// b_2 TRUE x_8 = [6, 255]
// b_2 FALSE x_8 = [0,5].
//
// These ranges are then combined based on the expected outcome of
// the branch. The range on the TRUE side of the branch must satisfy
// b_1 == true && b_2 == true
//
// In terms of x_8, that means both x_8 == [0, 19] and x_8 = [6, 255]
// must be true. The range of x_8 on the true side must be the
// intersection of both ranges since both must be true. Thus the
// range of x_8 on the true side is [6, 19].
//
// To determine the ranges on the FALSE side, all 3 combinations of
// failing ranges must be considered, and combined as any of them
// can cause the false result.
//
// If the LHS can be TRUE or FALSE, then evaluate both a TRUE and
// FALSE results and combine them. If we fell back to VARYING any
// range restrictions that have been discovered up to this point
// would be lost.
if (!range_is_either_true_or_false (lhs))
{
widest_irange r1;
if (logical_combine (r1, code, m_bool_zero, op1, op2)
&& logical_combine (r, code, m_bool_one, op1, op2))
{
r.union_ (r1);
return true;
}
return false;
}
switch (code)
{
// A logical AND combines ranges from 2 boolean conditions.
// c_2 = b_1 && b_2
case TRUTH_AND_EXPR:
case BIT_AND_EXPR:
if (!lhs.zero_p ())
{
// The TRUE side is the intersection of the the 2 true ranges.
r = op1.true_range;
r.intersect (op2.true_range);
}
else
{
// The FALSE side is the union of the other 3 cases.
widest_irange ff (op1.false_range);
ff.intersect (op2.false_range);
widest_irange tf (op1.true_range);
tf.intersect (op2.false_range);
widest_irange ft (op1.false_range);
ft.intersect (op2.true_range);
r = ff;
r.union_ (tf);
r.union_ (ft);
}
break;
// A logical OR combines ranges from 2 boolean conditons.
// c_2 = b_1 || b_2
case TRUTH_OR_EXPR:
case BIT_IOR_EXPR:
if (lhs.zero_p ())
{
// An OR operation will only take the FALSE path if both
// operands are false, so [20, 255] intersect [0, 5] is the
// union: [0,5][20,255].
r = op1.false_range;
r.intersect (op2.false_range);
}
else
{
// The TRUE side of an OR operation will be the union of
// the other three combinations.
widest_irange tt (op1.true_range);
tt.intersect (op2.true_range);
widest_irange tf (op1.true_range);
tf.intersect (op2.false_range);
widest_irange ft (op1.false_range);
ft.intersect (op2.true_range);
r = tt;
r.union_ (tf);
r.union_ (ft);
}
break;
default:
gcc_unreachable ();
}
return true;
}
bool
gori_compute::optimize_logical_operands (tf_range &range,
gimple *stmt,
const irange &lhs,
tree name,
tree op)
{
enum tree_code code = gimple_expr_code (stmt);
// Optimize [0 = x | y], since neither operand can ever be non-zero.
if ((code == BIT_IOR_EXPR || code == TRUTH_OR_EXPR) && lhs.zero_p ())
{
if (!compute_operand_range (range.false_range, SSA_NAME_DEF_STMT (op),
m_bool_zero, name))
expr_range_in_bb (range.false_range, name, gimple_bb (stmt));
range.true_range = range.false_range;
return true;
}
// Optimize [1 = x & y], since neither operand can ever be zero.
if ((code == BIT_AND_EXPR || code == TRUTH_AND_EXPR) && lhs == m_bool_one)
{
if (!compute_operand_range (range.true_range, SSA_NAME_DEF_STMT (op),
m_bool_one, name))
expr_range_in_bb (range.true_range, name, gimple_bb (stmt));
range.false_range = range.true_range;
return true;
}
return false;
}
// Given a logical STMT, calculate TRUE_RANGE and FALSE_RANGE for each
// potential path of NAME, assuming NAME came through the OP chain if
// OP_IN_CHAIN is true. If present, NAME_RANGE is any known range for
// NAME coming into STMT.
void
gori_compute::compute_logical_operands_in_chain (tf_range &range,
gimple *stmt,
const irange &lhs,
tree name,
tree op, bool op_in_chain)
{
if (!op_in_chain)
{
// If op is not in chain, use its known value.
expr_range_in_bb (range.true_range, name, gimple_bb (stmt));
range.false_range = range.true_range;
return;
}
if (optimize_logical_operands (range, stmt, lhs, name, op))
return;
// Calulate ranges for true and false on both sides, since the false
// path is not always a simple inversion of the true side.
if (!compute_operand_range (range.true_range, SSA_NAME_DEF_STMT (op),
m_bool_one, name))
expr_range_in_bb (range.true_range, name, gimple_bb (stmt));
if (!compute_operand_range (range.false_range, SSA_NAME_DEF_STMT (op),
m_bool_zero, name))
expr_range_in_bb (range.false_range, name, gimple_bb (stmt));
}
// Given a logical STMT, calculate true and false for each potential
// path using NAME, and resolve the outcome based on the logical
// operator. If present, NAME_RANGE is any known range for NAME
// coming into STMT.
bool
gori_compute::compute_logical_operands (irange &r, gimple *stmt,
const irange &lhs,
tree name)
{
// Reaching this point means NAME is not in this stmt, but one of
// the names in it ought to be derived from it. */
tree op1 = gimple_range_operand1 (stmt);
tree op2 = gimple_range_operand2 (stmt);
gcc_checking_assert (op1 != name && op2 != name);
bool op1_in_chain = (gimple_range_ssa_p (op1)
&& m_gori_map->in_chain_p (name, op1));
bool op2_in_chain = (gimple_range_ssa_p (op2)
&& m_gori_map->in_chain_p (name, op2));
// If neither operand is derived, then this stmt tells us nothing.
if (!op1_in_chain && !op2_in_chain)
return false;
tf_range op1_range, op2_range;
compute_logical_operands_in_chain (op1_range, stmt, lhs,
name, op1, op1_in_chain);
compute_logical_operands_in_chain (op2_range, stmt, lhs,
name, op2, op2_in_chain);
return logical_combine (r, gimple_expr_code (stmt), lhs,
op1_range, op2_range);
}
// Calculate a range for NAME from the operand 1 position of STMT
// assuming the result of the statement is LHS. Return the range in
// R, or false if no range could be calculated. If present,
// NAME_RANGE is any known range for NAME coming into STMT.
bool
gori_compute::compute_operand1_range (irange &r, gimple *stmt,
const irange &lhs, tree name)
{
widest_irange op1_range, op2_range;
tree op1 = gimple_range_operand1 (stmt);
tree op2 = gimple_range_operand2 (stmt);
expr_range_in_bb (op1_range, op1, gimple_bb (stmt));
// Now calcuated the operand and put that result in r.
if (op2)
{
expr_range_in_bb (op2_range, op2, gimple_bb (stmt));
if (!gimple_range_calc_op1 (r, stmt, lhs, op2_range))
return false;
}
else
{
// We pass op1_range to the unary operation. Nomally it's a
// hidden range_for_type parameter, but sometimes having the
// actual range can result in better information.
if (!gimple_range_calc_op1 (r, stmt, lhs, op1_range))
return false;
}
// Intersect the calculated result with the known result.
op1_range.intersect (r);
gimple *src_stmt = SSA_NAME_DEF_STMT (op1);
// If defstmt is outside of this BB, then name must be an import.
if (!src_stmt || (gimple_bb (src_stmt) != gimple_bb (stmt)))
{
// IF this isn't the right import statement, then abort calculation
if (!src_stmt || gimple_get_lhs (src_stmt) != name)
return false;
return compute_name_range_op (r, src_stmt, op1_range, name);
}
else
// Then feed this range back as the LHS of the defining statement.
return compute_operand_range (r, src_stmt, op1_range, name);
}
// Calculate a range for NAME from the operand 2 position of S
// assuming the result of the statement is LHS. Return the range in
// R, or false if no range could be calculated. If present,
// NAME_RANGE is any known range for NAME coming into S.
bool
gori_compute::compute_operand2_range (irange &r, gimple *stmt,
const irange &lhs, tree name)
{
widest_irange op1_range, op2_range;
tree op1 = gimple_range_operand1 (stmt);
tree op2 = gimple_range_operand2 (stmt);
expr_range_in_bb (op1_range, op1, gimple_bb (stmt));
expr_range_in_bb (op2_range, op2, gimple_bb (stmt));
// INtersect with range for op2 based on lhs and op1.
if (gimple_range_calc_op2 (r, stmt, lhs, op1_range))
op2_range.intersect (r);
gimple *src_stmt = SSA_NAME_DEF_STMT (op2);
// If defstmt is outside of this BB, then name must be an import.
if (!src_stmt || (gimple_bb (src_stmt) != gimple_bb (stmt)))
{
// IF this isn't the right src statement, then abort calculation
if (!src_stmt || gimple_get_lhs (src_stmt) != name)
return false;
return compute_name_range_op (r, src_stmt, op2_range, name);
}
else
// Then feed this range back as the LHS of the defining statement.
return compute_operand_range (r, src_stmt, op2_range, name);
}
// Calculate a range for NAME from both operand positions of S
// assuming the result of the statement is LHS. Return the range in
// R, or false if no range could be calculated. If present,
// NAME_RANGE is any known range for NAME coming into S.
bool
gori_compute::compute_operand1_and_operand2_range
(irange &r,
gimple *stmt,
const irange &lhs,
tree name)
{
widest_irange op_range;
// Calculate a good a range for op2. Since op1 == op2, this will
// have already included whatever the actual range of name is.
if (!compute_operand2_range (op_range, stmt, lhs, name))
return false;
// Now get the range thru op1...
if (!compute_operand1_range (r, stmt, lhs, name))
return false;
// Whichever range is the most permissive is the one we need to
// use. (?) OR is that true? Maybe this should be intersection?
r.union_ (op_range);
return true;
}
bool
gori_compute::has_edge_range_p (edge e, tree name)
{
return (m_gori_map->is_export_p (name, e->src)
|| m_gori_map->def_chain_in_export_p (name, e->src));
}
void
gori_compute::dump (FILE *f)
{
m_gori_map->dump (f);
}
// Calculate a range on edge E and return it in R. Try to evaluate a
// range for NAME on this edge. Return FALSE if this is either not a
// control edge or NAME is not defined by this edge.
bool
gori_compute::outgoing_edge_range_p (irange &r, edge e, tree name)
{
widest_irange lhs;
gcc_checking_assert (gimple_range_ssa_p (name));
// Determine if there is an outgoing edge.
gimple *stmt = gimple_outgoing_edge_range_p (lhs, e);
if (!stmt)
return false;
// If NAME can be calculated on the edge, use that.
if (m_gori_map->is_export_p (name, e->src))
return compute_operand_range (r, stmt, lhs, name);
// Otherwise see if NAME is derived from something that can be
// calculated. This performs no dynamic lookups whatsover, so it is
// low cost.
return false;
}
class logical_stmt_cache
{
public:
logical_stmt_cache ();
~logical_stmt_cache ();
void set_range (tree carrier, tree name, const tf_range &);
bool get_range (tf_range &r, tree carrier, tree name) const;
bool cacheable_p (gimple *, const irange *lhs_range = NULL) const;
void dump (FILE *, gimple *stmt) const;
tree same_cached_name (tree op1, tree op2) const;
private:
tree cached_name (tree carrier) const;
void slot_diagnostics (tree carrier, const tf_range &range) const;
struct cache_entry
{
cache_entry (tree name, const irange &t_range, const irange &f_range);
void dump (FILE *out) const;
tree name;
tf_range range;
};
vec<cache_entry *> m_ssa_cache;
};
logical_stmt_cache::cache_entry::cache_entry (tree name,
const irange &t_range,
const irange &f_range)
: name (name), range (t_range, f_range)
{
}
logical_stmt_cache::logical_stmt_cache ()
{
m_ssa_cache.create (num_ssa_names + num_ssa_names / 10);
m_ssa_cache.safe_grow_cleared (num_ssa_names);
}
logical_stmt_cache::~logical_stmt_cache ()
{
for (unsigned i = 0; i < m_ssa_cache.length (); ++i)
if (m_ssa_cache[i])
delete m_ssa_cache[i];
m_ssa_cache.release ();
}
void
logical_stmt_cache::cache_entry::dump (FILE *out) const
{
fprintf (out, "name=");
print_generic_expr (out, name, TDF_SLIM);
fprintf (out, " ");
range.true_range.dump (out);
fprintf (out, ", ");
range.false_range.dump (out);
fprintf (out, "\n");
}
void
logical_stmt_cache::set_range (tree carrier, tree name, const tf_range &range)
{
unsigned version = SSA_NAME_VERSION (carrier);
if (version >= m_ssa_cache.length ())
m_ssa_cache.safe_grow_cleared (num_ssa_names + num_ssa_names / 10);
cache_entry *slot = m_ssa_cache[version];
slot_diagnostics (carrier, range);
if (slot)
{
// The IL must have changed. Update the carried SSA name for
// consistency. Testcase is libgomp.fortran/doacross1.f90.
if (slot->name != name)
slot->name = name;
return;
}
m_ssa_cache[version]
= new cache_entry (name, range.true_range, range.false_range);
}
void
logical_stmt_cache::slot_diagnostics (tree carrier,
const tf_range &range) const
{
gimple *stmt = SSA_NAME_DEF_STMT (carrier);
unsigned version = SSA_NAME_VERSION (carrier);
cache_entry *slot = m_ssa_cache[version];
if (!slot)
{
if (DEBUG_CACHE)
{
fprintf (dump_file ? dump_file : stderr, "registering range for: ");
dump (dump_file ? dump_file : stderr, stmt);
}
return;
}
if (DEBUG_CACHE)
fprintf (dump_file ? dump_file : stderr,
"reusing range for SSA #%d\n", version);
if (CHECKING_P && (slot->range.true_range != range.true_range
|| slot->range.false_range != range.false_range))
{
fprintf (stderr, "FATAL: range altered for cached: ");
dump (stderr, stmt);
fprintf (stderr, "Attempt to change to:\n");
fprintf (stderr, "TRUE=");
range.true_range.dump (stderr);
fprintf (stderr, ", FALSE=");
range.false_range.dump (stderr);
fprintf (stderr, "\n");
gcc_unreachable ();
}
}
bool
logical_stmt_cache::get_range (tf_range &r, tree carrier, tree name) const
{
gcc_checking_assert (cacheable_p (SSA_NAME_DEF_STMT (carrier)));
if (cached_name (carrier) == name)
{
unsigned version = SSA_NAME_VERSION (carrier);
if (m_ssa_cache[version])
{
r = m_ssa_cache[version]->range;
return true;
}
}
return false;
}
tree
logical_stmt_cache::cached_name (tree carrier) const
{
unsigned version = SSA_NAME_VERSION (carrier);
if (version >= m_ssa_cache.length ())
return NULL;
if (m_ssa_cache[version])
return m_ssa_cache[version]->name;
return NULL;
}
tree
logical_stmt_cache::same_cached_name (tree op1, tree op2) const
{
tree name = cached_name (op1);
if (name && name == cached_name (op2))
return name;
return NULL;
}
bool
logical_stmt_cache::cacheable_p (gimple *stmt, const irange *lhs_range) const
{
if (gimple_code (stmt) == GIMPLE_ASSIGN
&& types_compatible_p (TREE_TYPE (gimple_assign_lhs (stmt)),
boolean_type_node)
&& TREE_CODE (gimple_assign_rhs1 (stmt)) == SSA_NAME)
{
switch (gimple_expr_code (stmt))
{
case LT_EXPR:
case LE_EXPR:
case GT_EXPR:
case GE_EXPR:
case EQ_EXPR:
case NE_EXPR:
case TRUTH_AND_EXPR:
case BIT_AND_EXPR:
case TRUTH_OR_EXPR:
case BIT_IOR_EXPR:
return !lhs_range || range_is_either_true_or_false (*lhs_range);
default:
return false;
}
}
return false;
}
void
logical_stmt_cache::dump (FILE *out, gimple *stmt) const
{
tree carrier = gimple_assign_lhs (stmt);
cache_entry *entry = m_ssa_cache[SSA_NAME_VERSION (carrier)];
print_gimple_stmt (out, stmt, 0, TDF_SLIM);
if (entry)
{
fprintf (out, "\tname = ");
print_generic_expr (out, entry->name);
fprintf (out, " carrier(%d)= ", SSA_NAME_VERSION (carrier));
print_generic_expr (out, carrier);
fprintf (out, "\n\tTRUE=");
entry->range.true_range.dump (out);
fprintf (out, ", FALSE=");
entry->range.false_range.dump (out);
fprintf (out, "\n");
}
else
fprintf (out, "[EMPTY]\n");
}
gori_compute_cache::gori_compute_cache ()
{
m_cache = new logical_stmt_cache;
}
gori_compute_cache::~gori_compute_cache ()
{
delete m_cache;
}
bool
gori_compute_cache::compute_operand_range (irange &r, gimple *stmt,
const irange &lhs,
tree name)
{
bool cacheable = m_cache->cacheable_p (stmt, &lhs);
if (cacheable)
{
tree carrier = gimple_assign_lhs (stmt);
tf_range range;
if (m_cache->get_range (range, carrier, name))
{
if (lhs.zero_p ())
r = range.false_range;
else
r = range.true_range;
return true;
}
}
if (super::compute_operand_range (r, stmt, lhs, name))
{
if (cacheable)
cache_comparison (stmt);
return true;
}
return false;
}
void
gori_compute_cache::cache_comparison (gimple *stmt)
{
gcc_checking_assert (m_cache->cacheable_p (stmt));
enum tree_code code = gimple_expr_code (stmt);
tree op1 = gimple_range_operand1 (stmt);
tree op2 = gimple_range_operand2 (stmt);
if (TREE_CODE (op2) == INTEGER_CST)
cache_comparison_with_int (stmt, code, op1, op2);
else if (m_cache->same_cached_name (op1, op2))
cache_comparison_with_ssa (stmt, code, op1, op2);
}
void
gori_compute_cache::cache_comparison_with_int (gimple *stmt,
enum tree_code code,
tree op1, tree op2)
{
widest_irange r_true_side, r_false_side;
tree lhs = gimple_assign_lhs (stmt);
range_operator *handler = range_op_handler (code, TREE_TYPE (lhs));
widest_irange op2_range;
expr_range_in_bb (op2_range, op2, gimple_bb (stmt));
tree type = TREE_TYPE (op1);
handler->op1_range (r_true_side, type, m_bool_one, op2_range);
handler->op1_range (r_false_side, type, m_bool_zero, op2_range);
m_cache->set_range (lhs, op1, tf_range (r_true_side, r_false_side));
}
void
gori_compute_cache::cache_comparison_with_ssa (gimple *stmt,
enum tree_code code,
tree op1, tree op2)
{
tree cached_name = m_cache->same_cached_name (op1, op2);
widest_irange r_true_side, r_false_side;
tf_range op1_range, op2_range;
gcc_assert (m_cache->get_range (op1_range, op1, cached_name));
gcc_assert (m_cache->get_range (op2_range, op2, cached_name));
gcc_checking_assert (logical_combine (r_true_side, code, m_bool_one,
op1_range, op2_range));
gcc_checking_assert (logical_combine (r_false_side, code, m_bool_zero,
op1_range, op2_range));
tree carrier = gimple_assign_lhs (stmt);
m_cache->set_range (carrier, cached_name,
tf_range (r_true_side, r_false_side));
}