blob: e6cbb3a5d60326a60152d0f1fff45946b995136f [file] [log] [blame]
/* Code for GIMPLE range related routines.
Copyright (C) 2019-2020 Free Software Foundation, Inc.
Contributed by Andrew MacLeod <amacleod@redhat.com>
and Aldy Hernandez <aldyh@redhat.com>.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "insn-codes.h"
#include "rtl.h"
#include "tree.h"
#include "gimple.h"
#include "ssa.h"
#include "gimple-pretty-print.h"
#include "gimple-iterator.h"
#include "optabs-tree.h"
#include "gimple-fold.h"
#include "tree-cfg.h"
#include "fold-const.h"
#include "tree-cfg.h"
#include "wide-int.h"
#include "fold-const.h"
#include "case-cfn-macros.h"
#include "omp-general.h"
#include "cfgloop.h"
#include "tree-ssa-loop.h"
#include "tree-scalar-evolution.h"
#include "dbgcnt.h"
#include "alloc-pool.h"
#include "vr-values.h"
#include "gimple-range.h"
// Adjust the range for a pointer difference where the operands came
// from a memchr.
//
// This notices the following sequence:
//
// def = __builtin_memchr (arg, 0, sz)
// n = def - arg
//
// The range for N can be narrowed to [0, PTRDIFF_MAX - 1].
static void
adjust_pointer_diff_expr (irange &res, const gimple *diff_stmt)
{
tree op0 = gimple_assign_rhs1 (diff_stmt);
tree op1 = gimple_assign_rhs2 (diff_stmt);
tree op0_ptype = TREE_TYPE (TREE_TYPE (op0));
tree op1_ptype = TREE_TYPE (TREE_TYPE (op1));
gimple *call;
if (TREE_CODE (op0) == SSA_NAME
&& TREE_CODE (op1) == SSA_NAME
&& (call = SSA_NAME_DEF_STMT (op0))
&& is_gimple_call (call)
&& gimple_call_builtin_p (call, BUILT_IN_MEMCHR)
&& TYPE_MODE (op0_ptype) == TYPE_MODE (char_type_node)
&& TYPE_PRECISION (op0_ptype) == TYPE_PRECISION (char_type_node)
&& TYPE_MODE (op1_ptype) == TYPE_MODE (char_type_node)
&& TYPE_PRECISION (op1_ptype) == TYPE_PRECISION (char_type_node)
&& gimple_call_builtin_p (call, BUILT_IN_MEMCHR)
&& vrp_operand_equal_p (op1, gimple_call_arg (call, 0))
&& integer_zerop (gimple_call_arg (call, 1)))
{
tree max = vrp_val_max (ptrdiff_type_node);
wide_int wmax = wi::to_wide (max, TYPE_PRECISION (TREE_TYPE (max)));
tree expr_type = gimple_expr_type (diff_stmt);
tree range_min = build_zero_cst (expr_type);
tree range_max = wide_int_to_tree (expr_type, wmax - 1);
int_range<1> r (range_min, range_max);
res.intersect (r);
}
}
// This function looks for situations when walking the use/def chains
// may provide additonal contextual range information not exposed on
// this statement. Like knowing the IMAGPART return value from a
// builtin function is a boolean result.
// We should rework how we're called, as we have an op_unknown entry
// for IMAGPART_EXPR and POINTER_DIFF_EXPR in range-ops just so this
// function gets called.
static void
gimple_range_adjustment (irange &res, const gimple *stmt)
{
switch (gimple_expr_code (stmt))
{
case POINTER_DIFF_EXPR:
adjust_pointer_diff_expr (res, stmt);
return;
case IMAGPART_EXPR:
{
tree name = TREE_OPERAND (gimple_assign_rhs1 (stmt), 0);
if (TREE_CODE (name) == SSA_NAME)
{
gimple *def_stmt = SSA_NAME_DEF_STMT (name);
if (def_stmt && is_gimple_call (def_stmt)
&& gimple_call_internal_p (def_stmt))
{
switch (gimple_call_internal_fn (def_stmt))
{
case IFN_ADD_OVERFLOW:
case IFN_SUB_OVERFLOW:
case IFN_MUL_OVERFLOW:
case IFN_ATOMIC_COMPARE_EXCHANGE:
{
int_range<1> r;
r.set_varying (boolean_type_node);
tree type = TREE_TYPE (gimple_assign_lhs (stmt));
range_cast (r, type);
res.intersect (r);
}
default:
break;
}
}
}
break;
}
default:
break;
}
}
// ------------------------------------------------------------------------
// This function will calculate the "constant" range on edge E from
// switch SW returning it in R, and return the switch statement
// itself. This is currently not very efficent as the way we
// represent switches in GIMPLE does not map well to this calculation.
static gimple *
calc_range_for_switch_on_edge (irange &r, gswitch *sw, edge e)
{
unsigned x, lim;
lim = gimple_switch_num_labels (sw);
tree type = TREE_TYPE (gimple_switch_index (sw));
// ADA and FORTRAN currently have cases where the index is 64 bits
// and the case arguments are 32 bit, causing a trap when we create
// a case_range. Until this is resolved
// (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=87798) punt on
// these switches. Furthermore, cfamily fails during a bootstrap
// due to a signed index and unsigned cases. So punting unless
// types_compatible_p () for now.
tree case_type = TREE_TYPE (CASE_LOW (gimple_switch_label (sw, 1)));
if (lim > 1 && !types_compatible_p (type, case_type))
return NULL;
edge default_edge = gimple_switch_default_edge (cfun, sw);
if (e != default_edge)
{
r.set_undefined ();
// Union all the ranges for each switch edge, ignoring the
// default edge.
for (x = 1; x < lim; x++)
{
if (gimple_switch_edge (cfun, sw, x) != e)
continue;
tree low = CASE_LOW (gimple_switch_label (sw, x));
tree high = CASE_HIGH (gimple_switch_label (sw, x));
if (!high)
high = low;
int_range<1> case_range (low, high);
r.union_ (case_range);
}
}
else
{
r.set_varying (type);
// Loop through all the switches edges, ignoring the default
// edge, while intersecting the ranges not covered by the case.
for (x = 1; x < lim; x++)
{
// Some other edge could still point to the default edge
// destination. Ignore it.
if (gimple_switch_edge (cfun, sw, x) == default_edge)
continue;
tree low = CASE_LOW (gimple_switch_label (sw, x));
tree high = CASE_HIGH (gimple_switch_label (sw, x));
if (!high)
high = low;
int_range<1> case_range (low, high, VR_ANTI_RANGE);
r.intersect (case_range);
}
}
return sw;
}
// If there is a range control statment at the end of block BB, return it.
gimple_stmt_iterator
gsi_outgoing_range_stmt (basic_block bb)
{
gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
if (!gsi_end_p (gsi))
{
gimple *s = gsi_stmt (gsi);
if (is_a<gcond *> (s) || is_a<gswitch *> (s))
return gsi;
}
return gsi_none ();
}
// If there is a range control statment at the end of block BB, return it.
gimple *
gimple_outgoing_range_stmt_p (basic_block bb)
{
// This will return NULL if there is not a branch statement.
return gsi_stmt (gsi_outgoing_range_stmt (bb));
}
// Calculate the range forced on on edge E by control flow, return it
// in R. Return the statment which defines the range, otherwise
// return NULL
gimple *
gimple_outgoing_edge_range_p (irange &r, edge e)
{
// Determine if there is an outgoing edge.
gimple *s = gimple_outgoing_range_stmt_p (e->src);
if (!s)
return NULL;
if (is_a<gcond *> (s))
{
if (e->flags & EDGE_TRUE_VALUE)
r = int_range<1> (boolean_true_node, boolean_true_node);
else if (e->flags & EDGE_FALSE_VALUE)
r = int_range<1> (boolean_false_node, boolean_false_node);
else
gcc_unreachable ();
return s;
}
gcc_checking_assert (is_a<gswitch *> (s));
gswitch *sw = as_a<gswitch *> (s);
tree type = TREE_TYPE (gimple_switch_index (sw));
if (!irange::supports_type_p (type))
return NULL;
return calc_range_for_switch_on_edge (r, sw, e);
}
// Return a range in R for the tree EXPR. Return true if a range is
// representable.
bool
get_tree_range (irange &r, tree expr)
{
tree type;
if (TYPE_P (expr))
type = expr;
else
type = TREE_TYPE (expr);
// Return false if the type isn't suported.
if (!irange::supports_type_p (type))
return false;
switch (TREE_CODE (expr))
{
case INTEGER_CST:
r.set (expr, expr);
return true;
case SSA_NAME:
r = gimple_range_global (expr);
return true;
case ADDR_EXPR:
{
// Handle &var which can show up in phi arguments.
bool ov;
if (tree_single_nonzero_warnv_p (expr, &ov))
{
r = range_nonzero (type);
return true;
}
break;
}
default:
break;
}
r.set_varying (type);
return true;
}
// Fold this unary statement using R1 as operand1's range, returning
// the result in RES. Return false if the operation fails.
bool
gimple_range_fold (irange &res, const gimple *stmt, const irange &r1)
{
gcc_checking_assert (gimple_range_handler (stmt));
tree type = gimple_expr_type (stmt);
// Unary SSA operations require the LHS type as the second range.
int_range<1> r2 (type);
return gimple_range_fold (res, stmt, r1, r2);
}
// Fold this binary statement using R1 and R2 as the operands ranges,
// returning the result in RES. Return false if the operation fails.
bool
gimple_range_fold (irange &res, const gimple *stmt,
const irange &r1, const irange &r2)
{
gcc_checking_assert (gimple_range_handler (stmt));
gimple_range_handler (stmt)->fold_range (res, gimple_expr_type (stmt),
r1, r2);
// If there are any gimple lookups, do those now.
gimple_range_adjustment (res, stmt);
return true;
}
// Return the base of the RHS of an assignment.
tree
gimple_range_base_of_assignment (const gimple *stmt)
{
gcc_checking_assert (gimple_code (stmt) == GIMPLE_ASSIGN);
tree op1 = gimple_assign_rhs1 (stmt);
if (gimple_assign_rhs_code (stmt) == ADDR_EXPR)
return get_base_address (TREE_OPERAND (op1, 0));
return op1;
}
// Return the first operand of this statement if it is a valid operand
// supported by ranges, otherwise return NULL_TREE. Special case is
// &(SSA_NAME expr), return the SSA_NAME instead of the ADDR expr.
tree
gimple_range_operand1 (const gimple *stmt)
{
gcc_checking_assert (gimple_range_handler (stmt));
switch (gimple_code (stmt))
{
case GIMPLE_COND:
return gimple_cond_lhs (stmt);
case GIMPLE_ASSIGN:
{
tree base = gimple_range_base_of_assignment (stmt);
if (base && TREE_CODE (base) == MEM_REF)
{
// If the base address is an SSA_NAME, we return it
// here. This allows processing of the range of that
// name, while the rest of the expression is simply
// ignored. The code in range_ops will see the
// ADDR_EXPR and do the right thing.
tree ssa = TREE_OPERAND (base, 0);
if (TREE_CODE (ssa) == SSA_NAME)
return ssa;
}
return base;
}
default:
break;
}
return NULL;
}
// Return the second operand of statement STMT, otherwise return NULL_TREE.
tree
gimple_range_operand2 (const gimple *stmt)
{
gcc_checking_assert (gimple_range_handler (stmt));
switch (gimple_code (stmt))
{
case GIMPLE_COND:
return gimple_cond_rhs (stmt);
case GIMPLE_ASSIGN:
if (gimple_num_ops (stmt) >= 3)
return gimple_assign_rhs2 (stmt);
default:
break;
}
return NULL_TREE;
}
// Calculate what we can determine of the range of this unary
// statement's operand if the lhs of the expression has the range
// LHS_RANGE. Return false if nothing can be determined.
bool
gimple_range_calc_op1 (irange &r, const gimple *stmt, const irange &lhs_range)
{
gcc_checking_assert (gimple_num_ops (stmt) < 3);
// An empty range is viral, so return an empty range.
tree type = TREE_TYPE (gimple_range_operand1 (stmt));
if (lhs_range.undefined_p ())
{
r.set_undefined ();
return true;
}
// Unary operations require the type of the first operand in the
// second range position.
int_range<1> type_range (type);
return gimple_range_handler (stmt)->op1_range (r, type, lhs_range,
type_range);
}
// Calculate what we can determine of the range of this statement's
// first operand if the lhs of the expression has the range LHS_RANGE
// and the second operand has the range OP2_RANGE. Return false if
// nothing can be determined.
bool
gimple_range_calc_op1 (irange &r, const gimple *stmt,
const irange &lhs_range, const irange &op2_range)
{
// Unary operation are allowed to pass a range in for second operand
// as there are often additional restrictions beyond the type which
// can be imposed. See operator_cast::op1_range.()
tree type = TREE_TYPE (gimple_range_operand1 (stmt));
// An empty range is viral, so return an empty range.
if (op2_range.undefined_p () || lhs_range.undefined_p ())
{
r.set_undefined ();
return true;
}
return gimple_range_handler (stmt)->op1_range (r, type, lhs_range,
op2_range);
}
// Calculate what we can determine of the range of this statement's
// second operand if the lhs of the expression has the range LHS_RANGE
// and the first operand has the range OP1_RANGE. Return false if
// nothing can be determined.
bool
gimple_range_calc_op2 (irange &r, const gimple *stmt,
const irange &lhs_range, const irange &op1_range)
{
tree type = TREE_TYPE (gimple_range_operand2 (stmt));
// An empty range is viral, so return an empty range.
if (op1_range.undefined_p () || lhs_range.undefined_p ())
{
r.set_undefined ();
return true;
}
return gimple_range_handler (stmt)->op2_range (r, type, lhs_range,
op1_range);
}
// Calculate a range for statement S and return it in R. If NAME is provided it
// represents the SSA_NAME on the LHS of the statement. It is only required
// if there is more than one lhs/output. If a range cannot
// be calculated, return false.
bool
gimple_ranger::calc_stmt (irange &r, gimple *s, tree name)
{
bool res = false;
// If name is specified, make sure it is a LHS of S.
gcc_checking_assert (name ? SSA_NAME_DEF_STMT (name) == s : true);
if (gimple_range_handler (s))
res = range_of_range_op (r, s);
else if (is_a<gphi *>(s))
res = range_of_phi (r, as_a<gphi *> (s));
else if (is_a<gcall *>(s))
res = range_of_call (r, as_a<gcall *> (s));
else if (is_a<gassign *> (s) && gimple_assign_rhs_code (s) == COND_EXPR)
res = range_of_cond_expr (r, as_a<gassign *> (s));
else
{
// If no name is specified, try the expression kind.
if (!name)
{
tree t = gimple_expr_type (s);
if (!irange::supports_type_p (t))
return false;
r.set_varying (t);
return true;
}
// We don't understand the stmt, so return the global range.
r = gimple_range_global (name);
return true;
}
if (res)
{
if (r.undefined_p ())
return true;
if (name && TREE_TYPE (name) != r.type ())
range_cast (r, TREE_TYPE (name));
return true;
}
return false;
}
// Calculate a range for range_op statement S and return it in R. If any
// If a range cannot be calculated, return false.
bool
gimple_ranger::range_of_range_op (irange &r, gimple *s)
{
widest_irange range1, range2;
tree type = gimple_expr_type (s);
gcc_checking_assert (irange::supports_type_p (type));
tree op1 = gimple_range_operand1 (s);
tree op2 = gimple_range_operand2 (s);
if (range_of_non_trivial_assignment (r, s))
return true;
if (range_of_expr (range1, op1, s))
{
if (!op2)
return gimple_range_fold (r, s, range1);
if (range_of_expr (range2, op2, s))
return gimple_range_fold (r, s, range1, range2);
}
r.set_varying (type);
return true;
}
// Calculate the range of a non-trivial assignment. That is, is one
// inolving arithmetic on an SSA name (for example, an ADDR_EXPR).
// Return the range in R.
//
// If a range cannot be calculated, return false.
bool
gimple_ranger::range_of_non_trivial_assignment (irange &r, gimple *stmt)
{
if (gimple_code (stmt) != GIMPLE_ASSIGN)
return false;
tree base = gimple_range_base_of_assignment (stmt);
if (base && TREE_CODE (base) == MEM_REF
&& TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
{
widest_irange range1;
tree ssa = TREE_OPERAND (base, 0);
if (range_of_expr (range1, ssa, stmt))
{
tree type = TREE_TYPE (ssa);
range_operator *op = range_op_handler (POINTER_PLUS_EXPR, type);
int_range<1> offset (TREE_OPERAND (base, 1), TREE_OPERAND (base, 1));
op->fold_range (r, type, range1, offset);
return true;
}
}
return false;
}
// Calculate a range for phi statement S and return it in R.
// If a range cannot be calculated, return false.
bool
gimple_ranger::range_of_phi (irange &r, gphi *phi)
{
tree phi_def = gimple_phi_result (phi);
tree type = TREE_TYPE (phi_def);
widest_irange phi_range;
unsigned x;
if (!irange::supports_type_p (type))
return false;
// And start with an empty range, unioning in each argument's range.
r.set_undefined ();
for (x = 0; x < gimple_phi_num_args (phi); x++)
{
widest_irange arg_range;
tree arg = gimple_phi_arg_def (phi, x);
edge e = gimple_phi_arg_edge (phi, x);
range_on_edge (arg_range, e, arg);
r.union_ (arg_range);
// Once the value reaches varying, stop looking.
if (r.varying_p ())
break;
}
return true;
}
// Calculate a range for call statement S and return it in R.
// If a range cannot be calculated, return false.
bool
gimple_ranger::range_of_call (irange &r, gcall *call)
{
tree type = gimple_call_return_type (call);
tree lhs = gimple_call_lhs (call);
bool strict_overflow_p;
if (!irange::supports_type_p (type))
return false;
if (range_of_builtin_call (r, call))
;
else if (gimple_stmt_nonnegative_warnv_p (call, &strict_overflow_p))
r.set (build_int_cst (type, 0), TYPE_MAX_VALUE (type));
else if (gimple_call_nonnull_result_p (call)
|| gimple_call_nonnull_arg (call))
r = range_nonzero (type);
else
r.set_varying (type);
// If there is a lHS, intersect that with what is known.
if (lhs)
{
value_range def;
def = gimple_range_global (lhs);
r.intersect (def);
}
return true;
}
void
gimple_ranger::range_of_builtin_ubsan_call (irange &r, gcall *call,
tree_code code)
{
gcc_checking_assert (code == PLUS_EXPR || code == MINUS_EXPR
|| code == MULT_EXPR);
tree type = gimple_call_return_type (call);
range_operator *op = range_op_handler (code, type);
gcc_checking_assert (op);
widest_irange ir0, ir1;
tree arg0 = gimple_call_arg (call, 0);
tree arg1 = gimple_call_arg (call, 1);
gcc_assert (range_of_expr (ir0, arg0, call));
gcc_assert (range_of_expr (ir1, arg1, call));
bool saved_flag_wrapv = flag_wrapv;
/* Pretend the arithmetics is wrapping. If there is
any overflow, we'll complain, but will actually do
wrapping operation. */
flag_wrapv = 1;
op->fold_range (r, type, ir0, ir1);
flag_wrapv = saved_flag_wrapv;
/* If for both arguments vrp_valueize returned non-NULL,
this should have been already folded and if not, it
wasn't folded because of overflow. Avoid removing the
UBSAN_CHECK_* calls in that case. */
if (r.singleton_p ())
r.set_varying (type);
}
bool
gimple_ranger::range_of_builtin_call (irange &r, gcall *call)
{
combined_fn func = gimple_call_combined_fn (call);
if (func == CFN_LAST)
return false;
tree type = gimple_call_return_type (call);
tree arg;
int mini, maxi, zerov, prec;
scalar_int_mode mode;
switch (func)
{
case CFN_BUILT_IN_CONSTANT_P:
if (cfun->after_inlining)
{
r.set_zero (type);
// r.equiv_clear ();
return true;
}
arg = gimple_call_arg (call, 0);
if (range_of_expr (r, arg, call) && r.singleton_p ())
{
r.set (build_one_cst (type), build_one_cst (type));
return true;
}
break;
CASE_CFN_FFS:
CASE_CFN_POPCOUNT:
// __builtin_ffs* and __builtin_popcount* return [0, prec].
arg = gimple_call_arg (call, 0);
prec = TYPE_PRECISION (TREE_TYPE (arg));
mini = 0;
maxi = prec;
gcc_assert (range_of_expr (r, arg, call));
// If arg is non-zero, then ffs or popcount are non-zero.
if (!range_includes_zero_p (&r))
mini = 1;
// If some high bits are known to be zero, decrease the maximum.
if (!r.undefined_p ())
{
wide_int max = r.upper_bound ();
maxi = wi::floor_log2 (max) + 1;
}
r.set (build_int_cst (type, mini), build_int_cst (type, maxi));
return true;
CASE_CFN_PARITY:
r.set (build_zero_cst (type), build_one_cst (type));
return true;
CASE_CFN_CLZ:
// __builtin_c[lt]z* return [0, prec-1], except when the
// argument is 0, but that is undefined behavior.
//
// On many targets where the CLZ RTL or optab value is defined
// for 0, the value is prec, so include that in the range by
// default.
arg = gimple_call_arg (call, 0);
prec = TYPE_PRECISION (TREE_TYPE (arg));
mini = 0;
maxi = prec;
mode = SCALAR_INT_TYPE_MODE (TREE_TYPE (arg));
if (optab_handler (clz_optab, mode) != CODE_FOR_nothing
&& CLZ_DEFINED_VALUE_AT_ZERO (mode, zerov)
// Only handle the single common value.
&& zerov != prec)
// Magic value to give up, unless we can prove arg is non-zero.
mini = -2;
gcc_assert (range_of_expr (r, arg, call));
// From clz of minimum we can compute result maximum.
if (r.constant_p ())
{
maxi = prec - 1 - wi::floor_log2 (r.lower_bound ());
if (maxi != prec)
mini = 0;
}
else if (!range_includes_zero_p (&r))
{
maxi = prec - 1;
mini = 0;
}
if (mini == -2)
break;
// From clz of maximum we can compute result minimum.
if (r.constant_p ())
{
mini = prec - 1 - wi::floor_log2 (r.upper_bound ());
if (mini == prec)
break;
}
if (mini == -2)
break;
r.set (build_int_cst (type, mini), build_int_cst (type, maxi));
return true;
CASE_CFN_CTZ:
// __builtin_ctz* return [0, prec-1], except for when the
// argument is 0, but that is undefined behavior.
//
// If there is a ctz optab for this mode and
// CTZ_DEFINED_VALUE_AT_ZERO, include that in the range,
// otherwise just assume 0 won't be seen.
arg = gimple_call_arg (call, 0);
prec = TYPE_PRECISION (TREE_TYPE (arg));
mini = 0;
maxi = prec - 1;
mode = SCALAR_INT_TYPE_MODE (TREE_TYPE (arg));
if (optab_handler (ctz_optab, mode) != CODE_FOR_nothing
&& CTZ_DEFINED_VALUE_AT_ZERO (mode, zerov))
{
// Handle only the two common values.
if (zerov == -1)
mini = -1;
else if (zerov == prec)
maxi = prec;
else
// Magic value to give up, unless we can prove arg is non-zero.
mini = -2;
}
gcc_assert (range_of_expr (r, arg, call));
if (!r.undefined_p ())
{
if (r.lower_bound () != 0)
{
mini = 0;
maxi = prec - 1;
}
// If some high bits are known to be zero, we can decrease
// the maximum.
wide_int max = r.upper_bound ();
if (max == 0)
break;
maxi = wi::floor_log2 (max);
}
if (mini == -2)
break;
r.set (build_int_cst (type, mini), build_int_cst (type, maxi));
return true;
CASE_CFN_CLRSB:
arg = gimple_call_arg (call, 0);
prec = TYPE_PRECISION (TREE_TYPE (arg));
r.set (build_int_cst (type, 0), build_int_cst (type, prec - 1));
return true;
case CFN_UBSAN_CHECK_ADD:
range_of_builtin_ubsan_call (r, call, PLUS_EXPR);
return true;
case CFN_UBSAN_CHECK_SUB:
range_of_builtin_ubsan_call (r, call, MINUS_EXPR);
return true;
case CFN_UBSAN_CHECK_MUL:
range_of_builtin_ubsan_call (r, call, MULT_EXPR);
return true;
case CFN_GOACC_DIM_SIZE:
case CFN_GOACC_DIM_POS:
// Optimizing these two internal functions helps the loop
// optimizer eliminate outer comparisons. Size is [1,N]
// and pos is [0,N-1].
{
bool is_pos = func == CFN_GOACC_DIM_POS;
int axis = oacc_get_ifn_dim_arg (call);
int size = oacc_get_fn_dim_size (current_function_decl, axis);
if (!size)
// If it's dynamic, the backend might know a hardware limitation.
size = targetm.goacc.dim_limit (axis);
r.set (build_int_cst (type, is_pos ? 0 : 1),
size
? build_int_cst (type, size - is_pos) : vrp_val_max (type));
return true;
}
case CFN_BUILT_IN_STRLEN:
if (tree lhs = gimple_call_lhs (call))
if (ptrdiff_type_node
&& (TYPE_PRECISION (ptrdiff_type_node)
== TYPE_PRECISION (TREE_TYPE (lhs))))
{
tree type = TREE_TYPE (lhs);
tree max = vrp_val_max (ptrdiff_type_node);
wide_int wmax
= wi::to_wide (max, TYPE_PRECISION (TREE_TYPE (max)));
tree range_min = build_zero_cst (type);
// To account for the terminating NULL, the maximum length
// is one less than the maximum array size, which in turn
// is one less than PTRDIFF_MAX (or SIZE_MAX where it's
// smaller than the former type).
// FIXME: Use max_object_size() - 1 here.
tree range_max = wide_int_to_tree (type, wmax - 2);
r.set (range_min, range_max);
return true;
}
break;
default:
break;
}
return false;
}
// Calculate a range for COND_EXPR statement S and return it in R.
// If a range cannot be calculated, return false.
bool
gimple_ranger::range_of_cond_expr (irange &r, gassign *s)
{
widest_irange cond_range, range1, range2;
tree cond = gimple_assign_rhs1 (s);
tree op1 = gimple_assign_rhs2 (s);
tree op2 = gimple_assign_rhs3 (s);
gcc_checking_assert (gimple_assign_rhs_code (s) == COND_EXPR);
gcc_checking_assert (useless_type_conversion_p (TREE_TYPE (op1),
TREE_TYPE (op2)));
if (!irange::supports_type_p (TREE_TYPE (op1)))
return false;
gcc_assert (range_of_expr (cond_range, cond, s));
gcc_assert (range_of_expr (range1, op1, s));
gcc_assert (range_of_expr (range2, op2, s));
// If the condition is known, choose the appropriate expression.
if (cond_range.singleton_p ())
{
// False, pick second operand
if (cond_range.zero_p ())
r = range2;
else
r = range1;
}
else
{
r = range1;
r.union_ (range2);
}
return true;
}
bool
gimple_ranger::range_of_expr (irange &r, tree expr, gimple *stmt)
{
if (!gimple_range_ssa_p (expr))
return get_tree_range (r, expr);
// If there is no statement, just get the global value.
if (!stmt)
{
if (!m_cache.m_globals.get_global_range (r, expr))
r = gimple_range_global (expr);
return true;
}
basic_block bb = gimple_bb (stmt);
gimple *def_stmt = SSA_NAME_DEF_STMT (expr);
// If name is defined in this block, try to get an range from S.
if (def_stmt && gimple_bb (def_stmt) == bb)
gcc_assert (range_of_stmt (r, def_stmt, expr));
else
// Otherwise OP comes from outside this block, use range on entry.
range_on_entry (r, bb, expr);
// No range yet, see if there is a dereference in the block.
// We don't care if it's between the def and a use within a block
// because the entire block must be executed anyway.
// FIXME:?? For non-call exceptions we could have a statement throw
// which causes an early block exit.
// in which case we may need to walk from S back to the def/top of block
// to make sure the deref happens between S and there before claiming
// there is a deref. Punt for now.
if (!cfun->can_throw_non_call_exceptions && r.varying_p () &&
m_cache.m_non_null.non_null_deref_p (expr, bb))
r = range_nonzero (TREE_TYPE (expr));
return true;
}
// Return the range of NAME on entry to block BB in R.
void
gimple_ranger::range_on_entry (irange &r, basic_block bb, tree name)
{
widest_irange entry_range;
gcc_checking_assert (gimple_range_ssa_p (name));
// Start with any known range
gcc_assert (range_of_stmt (r, SSA_NAME_DEF_STMT (name), name));
// Now see if there is any on_entry value which may refine it.
if (m_cache.block_range (entry_range, bb, name))
r.intersect (entry_range);
}
// Calculate the range for NAME at the end of block BB and return it in R.
// Return false if no range can be calculated.
void
gimple_ranger::range_on_exit (irange &r, basic_block bb, tree name)
{
// on-exit from the exit block?
gcc_checking_assert (bb != EXIT_BLOCK_PTR_FOR_FN (cfun));
gimple *s = last_stmt (bb);
// If there is no statement in the block and this isn't the entry
// block, go get the range_on_entry for this block. For the entry
// block, a NULL stmt will return the global value for NAME.
if (!s && bb != ENTRY_BLOCK_PTR_FOR_FN (cfun))
range_on_entry (r, bb, name);
else
gcc_assert (range_of_expr (r, name, s));
gcc_checking_assert (r.undefined_p ()
|| types_compatible_p (r.type(), TREE_TYPE (name)));
}
// Calculate a range for NAME on edge E and return it in R.
void
gimple_ranger::range_on_edge (irange &r, edge e, tree name)
{
widest_irange edge_range;
gcc_checking_assert (irange::supports_type_p (TREE_TYPE (name)));
// PHI arguments can be constants, catch these here.
if (!gimple_range_ssa_p (name))
{
gcc_assert (range_of_expr (r, name));
return;
}
range_on_exit (r, e->src, name);
gcc_checking_assert (r.undefined_p ()
|| types_compatible_p (r.type(), TREE_TYPE (name)));
// Check to see if NAME is defined on edge e.
if (m_cache.outgoing_edge_range_p (edge_range, e, name))
r.intersect (edge_range);
}
// Calculate a range for statement S and return it in R. If NAME is
// provided it represents the SSA_NAME on the LHS of the statement.
// It is only required if there is more than one lhs/output. Check
// the global cache for NAME first to see if the evaluation can be
// avoided. If a range cannot be calculated, return false.
bool
gimple_ranger::range_of_stmt (irange &r, gimple *s, tree name)
{
// If no name, simply call the base routine.
if (!name)
name = gimple_get_lhs (s);
if (!name)
return calc_stmt (r, s, NULL_TREE);
gcc_checking_assert (TREE_CODE (name) == SSA_NAME &&
irange::supports_type_p (TREE_TYPE (name)));
// If this STMT has already been processed, return that value.
if (m_cache.m_globals.get_global_range (r, name))
return true;
// Avoid infinite recursion by initializing global cache
widest_irange tmp = gimple_range_global (name);
m_cache.m_globals.set_global_range (name, tmp);
gcc_assert (calc_stmt (r, s, name));
if (is_a<gphi *> (s))
r.intersect (tmp);
m_cache.m_globals.set_global_range (name, r);
return true;
}
// This routine will export whatever global ranges are known to GCC
// SSA_RANGE_NAME_INFO fields.
void
gimple_ranger::export_global_ranges ()
{
unsigned x;
widest_irange r;
if (dump_file)
{
fprintf (dump_file, "Exported global range table\n");
fprintf (dump_file, "===========================\n");
}
for ( x = 1; x < num_ssa_names; x++)
{
tree name = ssa_name (x);
if (name && !SSA_NAME_IN_FREE_LIST (name)
&& gimple_range_ssa_p (name)
&& m_cache.m_globals.get_global_range (r, name)
&& !r.varying_p())
{
// Make sure the new range is a subset of the old range.
widest_irange old_range;
old_range = gimple_range_global (name);
old_range.intersect (r);
/* Disable this while we fix tree-ssa/pr61743-2.c. */
//gcc_checking_assert (old_range == r);
// WTF? Can't write non-null pointer ranges?? stupid set_range_info!
if (!POINTER_TYPE_P (TREE_TYPE (name)) && !r.undefined_p ())
{
value_range vr = r;
set_range_info (name, vr);
if (dump_file)
{
print_generic_expr (dump_file, name , TDF_SLIM);
fprintf (dump_file, " --> ");
vr.dump (dump_file);
fprintf (dump_file, "\n");
fprintf (dump_file, " irange : ");
r.dump (dump_file);
fprintf (dump_file, "\n");
}
}
}
}
}
// Print the known table values to file F.
void
gimple_ranger::dump (FILE *f)
{
basic_block bb;
FOR_EACH_BB_FN (bb, cfun)
{
unsigned x;
edge_iterator ei;
edge e;
widest_irange range;
fprintf (f, "\n=========== BB %d ============\n", bb->index);
m_cache.m_on_entry.dump (f, bb);
dump_bb (f, bb, 4, TDF_NONE);
// Now find any globals defined in this block
for (x = 1; x < num_ssa_names; x++)
{
tree name = ssa_name (x);
if (gimple_range_ssa_p (name) && SSA_NAME_DEF_STMT (name) &&
gimple_bb (SSA_NAME_DEF_STMT (name)) == bb &&
m_cache.m_globals.get_global_range (range, name))
{
if (!range.varying_p ())
{
print_generic_expr (f, name, TDF_SLIM);
fprintf (f, " : ");
range.dump (f);
fprintf (f, "\n");
}
}
}
// And now outgoing edges, if they define anything.
FOR_EACH_EDGE (e, ei, bb->succs)
{
for (x = 1; x < num_ssa_names; x++)
{
tree name = gimple_range_ssa_p (ssa_name (x));
if (name && m_cache.outgoing_edge_range_p (range, e, name))
{
gimple *s = SSA_NAME_DEF_STMT (name);
// Only print the range if this is the def block, or
// the on entry cache for either end of the edge is
// set.
if ((s && bb == gimple_bb (s)) ||
m_cache.block_range (range, bb, name, false) ||
m_cache.block_range (range, e->dest, name, false))
{
range_on_edge (range, e, name);
if (!range.varying_p ())
{
fprintf (f, "%d->%d ", e->src->index,
e->dest->index);
char c = ' ';
if (e->flags & EDGE_TRUE_VALUE)
fprintf (f, " (T)%c", c);
else if (e->flags & EDGE_FALSE_VALUE)
fprintf (f, " (F)%c", c);
else
fprintf (f, " ");
print_generic_expr (f, name, TDF_SLIM);
fprintf(f, " : \t");
range.dump(f);
fprintf (f, "\n");
}
}
}
}
}
}
m_cache.m_globals.dump (dump_file);
fprintf (f, "\n");
if (dump_flags & TDF_DETAILS)
{
fprintf (f, "\nDUMPING GORI MAP\n");
m_cache.dump (f);
fprintf (f, "\n");
}
}
// loop_ranger implementation.
loop_ranger::loop_ranger ()
{
m_vr_values = new vr_values;
}
loop_ranger::~loop_ranger ()
{
delete m_vr_values;
}
void
loop_ranger::range_of_ssa_name_with_loop_info (irange &r, tree name,
class loop *l, gphi *phi)
{
gcc_checking_assert (TREE_CODE (name) == SSA_NAME);
value_range_equiv vr;
vr.set_varying (TREE_TYPE (name));
m_vr_values->adjust_range_with_scev (&vr, l, phi, name);
vr.normalize_symbolics ();
r = vr;
}
// If NAME is either a PHI result or a PHI argument, see if we can
// determine range information by querying loop info. If so, return
// TRUE and set the range in R.
bool
loop_ranger::range_with_loop_info (irange &r, tree name)
{
if (!scev_initialized_p ())
return false;
gimple *def = SSA_NAME_DEF_STMT (name);
class loop *l = loop_containing_stmt (def);
if (!l)
return false;
basic_block header = l->header;
for (gphi_iterator iter = gsi_start_phis (header);
!gsi_end_p (iter); gsi_next (&iter))
{
gphi *phi = iter.phi ();
if (PHI_RESULT (phi) == name)
{
range_of_ssa_name_with_loop_info (r, name, l, phi);
return true;
}
for (size_t i = 0; i < gimple_phi_num_args (phi); ++i)
if (PHI_ARG_DEF (phi, i) == name)
{
range_of_ssa_name_with_loop_info (r, name, l, phi);
return true;
}
}
return false;
}
bool
loop_ranger::range_of_stmt (irange &r, gimple *stmt, tree name)
{
// If there is no global range for a PHI, start the party with
// whatever information SCEV may have.
if (gphi *phi = dyn_cast<gphi *> (stmt))
{
tree phi_result = PHI_RESULT (phi);
if (!POINTER_TYPE_P (TREE_TYPE (phi_result))
&& !m_cache.m_globals.get_global_range (r, phi_result)
&& range_with_loop_info (r, phi_result))
{
value_range loop_range;
get_range_info (phi_result, loop_range);
r.intersect (loop_range);
if (!r.varying_p ())
set_range_info (phi_result, r);
}
}
return super::range_of_stmt (r, stmt, name);
}
void
loop_ranger::range_on_edge (irange &r, edge e, tree name)
{
super::range_on_edge (r, e, name);
if (TREE_CODE (name) == SSA_NAME)
{
value_range loop_range;
if (range_with_loop_info (loop_range, name))
r.intersect (loop_range);
}
}