blob: e270abf1402cddd92ae611d10f3825ca40d58eb3 [file] [log] [blame]
------------------------------------------------------------------------------
-- --
-- GNAT LIBRARY COMPONENTS --
-- --
-- ADA.CONTAINERS.RED_BLACK_TREES.GENERIC_BOUNDED_KEYS --
-- --
-- B o d y --
-- --
-- Copyright (C) 2004-2011, Free Software Foundation, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 3, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. --
-- --
-- As a special exception under Section 7 of GPL version 3, you are granted --
-- additional permissions described in the GCC Runtime Library Exception, --
-- version 3.1, as published by the Free Software Foundation. --
-- --
-- You should have received a copy of the GNU General Public License and --
-- a copy of the GCC Runtime Library Exception along with this program; --
-- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
-- <http://www.gnu.org/licenses/>. --
-- --
-- This unit was originally developed by Matthew J Heaney. --
------------------------------------------------------------------------------
package body Ada.Containers.Red_Black_Trees.Generic_Bounded_Keys is
package Ops renames Tree_Operations;
-------------
-- Ceiling --
-------------
-- AKA Lower_Bound
function Ceiling
(Tree : Tree_Type'Class;
Key : Key_Type) return Count_Type
is
Y : Count_Type;
X : Count_Type;
N : Nodes_Type renames Tree.Nodes;
begin
Y := 0;
X := Tree.Root;
while X /= 0 loop
if Is_Greater_Key_Node (Key, N (X)) then
X := Ops.Right (N (X));
else
Y := X;
X := Ops.Left (N (X));
end if;
end loop;
return Y;
end Ceiling;
----------
-- Find --
----------
function Find
(Tree : Tree_Type'Class;
Key : Key_Type) return Count_Type
is
Y : Count_Type;
X : Count_Type;
N : Nodes_Type renames Tree.Nodes;
begin
Y := 0;
X := Tree.Root;
while X /= 0 loop
if Is_Greater_Key_Node (Key, N (X)) then
X := Ops.Right (N (X));
else
Y := X;
X := Ops.Left (N (X));
end if;
end loop;
if Y = 0 then
return 0;
end if;
if Is_Less_Key_Node (Key, N (Y)) then
return 0;
end if;
return Y;
end Find;
-----------
-- Floor --
-----------
function Floor
(Tree : Tree_Type'Class;
Key : Key_Type) return Count_Type
is
Y : Count_Type;
X : Count_Type;
N : Nodes_Type renames Tree.Nodes;
begin
Y := 0;
X := Tree.Root;
while X /= 0 loop
if Is_Less_Key_Node (Key, N (X)) then
X := Ops.Left (N (X));
else
Y := X;
X := Ops.Right (N (X));
end if;
end loop;
return Y;
end Floor;
--------------------------------
-- Generic_Conditional_Insert --
--------------------------------
procedure Generic_Conditional_Insert
(Tree : in out Tree_Type'Class;
Key : Key_Type;
Node : out Count_Type;
Inserted : out Boolean)
is
Y : Count_Type;
X : Count_Type;
N : Nodes_Type renames Tree.Nodes;
begin
-- This is a "conditional" insertion, meaning that the insertion request
-- can "fail" in the sense that no new node is created. If the Key is
-- equivalent to an existing node, then we return the existing node and
-- Inserted is set to False. Otherwise, we allocate a new node (via
-- Insert_Post) and Inserted is set to True.
-- Note that we are testing for equivalence here, not equality. Key must
-- be strictly less than its next neighbor, and strictly greater than
-- its previous neighbor, in order for the conditional insertion to
-- succeed.
-- We search the tree to find the nearest neighbor of Key, which is
-- either the smallest node greater than Key (Inserted is True), or the
-- largest node less or equivalent to Key (Inserted is False).
Y := 0;
X := Tree.Root;
Inserted := True;
while X /= 0 loop
Y := X;
Inserted := Is_Less_Key_Node (Key, N (X));
X := (if Inserted then Ops.Left (N (X)) else Ops.Right (N (X)));
end loop;
if Inserted then
-- Either Tree is empty, or Key is less than Y. If Y is the first
-- node in the tree, then there are no other nodes that we need to
-- search for, and we insert a new node into the tree.
if Y = Tree.First then
Insert_Post (Tree, Y, True, Node);
return;
end if;
-- Y is the next nearest-neighbor of Key. We know that Key is not
-- equivalent to Y (because Key is strictly less than Y), so we move
-- to the previous node, the nearest-neighbor just smaller or
-- equivalent to Key.
Node := Ops.Previous (Tree, Y);
else
-- Y is the previous nearest-neighbor of Key. We know that Key is not
-- less than Y, which means either that Key is equivalent to Y, or
-- greater than Y.
Node := Y;
end if;
-- Key is equivalent to or greater than Node. We must resolve which is
-- the case, to determine whether the conditional insertion succeeds.
if Is_Greater_Key_Node (Key, N (Node)) then
-- Key is strictly greater than Node, which means that Key is not
-- equivalent to Node. In this case, the insertion succeeds, and we
-- insert a new node into the tree.
Insert_Post (Tree, Y, Inserted, Node);
Inserted := True;
return;
end if;
-- Key is equivalent to Node. This is a conditional insertion, so we do
-- not insert a new node in this case. We return the existing node and
-- report that no insertion has occurred.
Inserted := False;
end Generic_Conditional_Insert;
------------------------------------------
-- Generic_Conditional_Insert_With_Hint --
------------------------------------------
procedure Generic_Conditional_Insert_With_Hint
(Tree : in out Tree_Type'Class;
Position : Count_Type;
Key : Key_Type;
Node : out Count_Type;
Inserted : out Boolean)
is
N : Nodes_Type renames Tree.Nodes;
begin
-- The purpose of a hint is to avoid a search from the root of
-- tree. If we have it hint it means we only need to traverse the
-- subtree rooted at the hint to find the nearest neighbor. Note
-- that finding the neighbor means merely walking the tree; this
-- is not a search and the only comparisons that occur are with
-- the hint and its neighbor.
-- If Position is 0, this is interpreted to mean that Key is
-- large relative to the nodes in the tree. If the tree is empty,
-- or Key is greater than the last node in the tree, then we're
-- done; otherwise the hint was "wrong" and we must search.
if Position = 0 then -- largest
if Tree.Last = 0
or else Is_Greater_Key_Node (Key, N (Tree.Last))
then
Insert_Post (Tree, Tree.Last, False, Node);
Inserted := True;
else
Conditional_Insert_Sans_Hint (Tree, Key, Node, Inserted);
end if;
return;
end if;
pragma Assert (Tree.Length > 0);
-- A hint can either name the node that immediately follows Key,
-- or immediately precedes Key. We first test whether Key is
-- less than the hint, and if so we compare Key to the node that
-- precedes the hint. If Key is both less than the hint and
-- greater than the hint's preceding neighbor, then we're done;
-- otherwise we must search.
-- Note also that a hint can either be an anterior node or a leaf
-- node. A new node is always inserted at the bottom of the tree
-- (at least prior to rebalancing), becoming the new left or
-- right child of leaf node (which prior to the insertion must
-- necessarily be null, since this is a leaf). If the hint names
-- an anterior node then its neighbor must be a leaf, and so
-- (here) we insert after the neighbor. If the hint names a leaf
-- then its neighbor must be anterior and so we insert before the
-- hint.
if Is_Less_Key_Node (Key, N (Position)) then
declare
Before : constant Count_Type := Ops.Previous (Tree, Position);
begin
if Before = 0 then
Insert_Post (Tree, Tree.First, True, Node);
Inserted := True;
elsif Is_Greater_Key_Node (Key, N (Before)) then
if Ops.Right (N (Before)) = 0 then
Insert_Post (Tree, Before, False, Node);
else
Insert_Post (Tree, Position, True, Node);
end if;
Inserted := True;
else
Conditional_Insert_Sans_Hint (Tree, Key, Node, Inserted);
end if;
end;
return;
end if;
-- We know that Key isn't less than the hint so we try again,
-- this time to see if it's greater than the hint. If so we
-- compare Key to the node that follows the hint. If Key is both
-- greater than the hint and less than the hint's next neighbor,
-- then we're done; otherwise we must search.
if Is_Greater_Key_Node (Key, N (Position)) then
declare
After : constant Count_Type := Ops.Next (Tree, Position);
begin
if After = 0 then
Insert_Post (Tree, Tree.Last, False, Node);
Inserted := True;
elsif Is_Less_Key_Node (Key, N (After)) then
if Ops.Right (N (Position)) = 0 then
Insert_Post (Tree, Position, False, Node);
else
Insert_Post (Tree, After, True, Node);
end if;
Inserted := True;
else
Conditional_Insert_Sans_Hint (Tree, Key, Node, Inserted);
end if;
end;
return;
end if;
-- We know that Key is neither less than the hint nor greater
-- than the hint, and that's the definition of equivalence.
-- There's nothing else we need to do, since a search would just
-- reach the same conclusion.
Node := Position;
Inserted := False;
end Generic_Conditional_Insert_With_Hint;
-------------------------
-- Generic_Insert_Post --
-------------------------
procedure Generic_Insert_Post
(Tree : in out Tree_Type'Class;
Y : Count_Type;
Before : Boolean;
Z : out Count_Type)
is
N : Nodes_Type renames Tree.Nodes;
begin
if Tree.Length >= Tree.Capacity then
raise Capacity_Error with "not enough capacity to insert new item";
end if;
if Tree.Busy > 0 then
raise Program_Error with
"attempt to tamper with cursors (container is busy)";
end if;
Z := New_Node;
pragma Assert (Z /= 0);
if Y = 0 then
pragma Assert (Tree.Length = 0);
pragma Assert (Tree.Root = 0);
pragma Assert (Tree.First = 0);
pragma Assert (Tree.Last = 0);
Tree.Root := Z;
Tree.First := Z;
Tree.Last := Z;
elsif Before then
pragma Assert (Ops.Left (N (Y)) = 0);
Ops.Set_Left (N (Y), Z);
if Y = Tree.First then
Tree.First := Z;
end if;
else
pragma Assert (Ops.Right (N (Y)) = 0);
Ops.Set_Right (N (Y), Z);
if Y = Tree.Last then
Tree.Last := Z;
end if;
end if;
Ops.Set_Color (N (Z), Red);
Ops.Set_Parent (N (Z), Y);
Ops.Rebalance_For_Insert (Tree, Z);
Tree.Length := Tree.Length + 1;
end Generic_Insert_Post;
-----------------------
-- Generic_Iteration --
-----------------------
procedure Generic_Iteration
(Tree : Tree_Type'Class;
Key : Key_Type)
is
procedure Iterate (Index : Count_Type);
-------------
-- Iterate --
-------------
procedure Iterate (Index : Count_Type) is
J : Count_Type;
N : Nodes_Type renames Tree.Nodes;
begin
J := Index;
while J /= 0 loop
if Is_Less_Key_Node (Key, N (J)) then
J := Ops.Left (N (J));
elsif Is_Greater_Key_Node (Key, N (J)) then
J := Ops.Right (N (J));
else
Iterate (Ops.Left (N (J)));
Process (J);
J := Ops.Right (N (J));
end if;
end loop;
end Iterate;
-- Start of processing for Generic_Iteration
begin
Iterate (Tree.Root);
end Generic_Iteration;
-------------------------------
-- Generic_Reverse_Iteration --
-------------------------------
procedure Generic_Reverse_Iteration
(Tree : Tree_Type'Class;
Key : Key_Type)
is
procedure Iterate (Index : Count_Type);
-------------
-- Iterate --
-------------
procedure Iterate (Index : Count_Type) is
J : Count_Type;
N : Nodes_Type renames Tree.Nodes;
begin
J := Index;
while J /= 0 loop
if Is_Less_Key_Node (Key, N (J)) then
J := Ops.Left (N (J));
elsif Is_Greater_Key_Node (Key, N (J)) then
J := Ops.Right (N (J));
else
Iterate (Ops.Right (N (J)));
Process (J);
J := Ops.Left (N (J));
end if;
end loop;
end Iterate;
-- Start of processing for Generic_Reverse_Iteration
begin
Iterate (Tree.Root);
end Generic_Reverse_Iteration;
----------------------------------
-- Generic_Unconditional_Insert --
----------------------------------
procedure Generic_Unconditional_Insert
(Tree : in out Tree_Type'Class;
Key : Key_Type;
Node : out Count_Type)
is
Y : Count_Type;
X : Count_Type;
N : Nodes_Type renames Tree.Nodes;
Before : Boolean;
begin
Y := 0;
Before := False;
X := Tree.Root;
while X /= 0 loop
Y := X;
Before := Is_Less_Key_Node (Key, N (X));
X := (if Before then Ops.Left (N (X)) else Ops.Right (N (X)));
end loop;
Insert_Post (Tree, Y, Before, Node);
end Generic_Unconditional_Insert;
--------------------------------------------
-- Generic_Unconditional_Insert_With_Hint --
--------------------------------------------
procedure Generic_Unconditional_Insert_With_Hint
(Tree : in out Tree_Type'Class;
Hint : Count_Type;
Key : Key_Type;
Node : out Count_Type)
is
N : Nodes_Type renames Tree.Nodes;
begin
-- There are fewer constraints for an unconditional insertion
-- than for a conditional insertion, since we allow duplicate
-- keys. So instead of having to check (say) whether Key is
-- (strictly) greater than the hint's previous neighbor, here we
-- allow Key to be equal to or greater than the previous node.
-- There is the issue of what to do if Key is equivalent to the
-- hint. Does the new node get inserted before or after the hint?
-- We decide that it gets inserted after the hint, reasoning that
-- this is consistent with behavior for non-hint insertion, which
-- inserts a new node after existing nodes with equivalent keys.
-- First we check whether the hint is null, which is interpreted
-- to mean that Key is large relative to existing nodes.
-- Following our rule above, if Key is equal to or greater than
-- the last node, then we insert the new node immediately after
-- last. (We don't have an operation for testing whether a key is
-- "equal to or greater than" a node, so we must say instead "not
-- less than", which is equivalent.)
if Hint = 0 then -- largest
if Tree.Last = 0 then
Insert_Post (Tree, 0, False, Node);
elsif Is_Less_Key_Node (Key, N (Tree.Last)) then
Unconditional_Insert_Sans_Hint (Tree, Key, Node);
else
Insert_Post (Tree, Tree.Last, False, Node);
end if;
return;
end if;
pragma Assert (Tree.Length > 0);
-- We decide here whether to insert the new node prior to the
-- hint. Key could be equivalent to the hint, so in theory we
-- could write the following test as "not greater than" (same as
-- "less than or equal to"). If Key were equivalent to the hint,
-- that would mean that the new node gets inserted before an
-- equivalent node. That wouldn't break any container invariants,
-- but our rule above says that new nodes always get inserted
-- after equivalent nodes. So here we test whether Key is both
-- less than the hint and equal to or greater than the hint's
-- previous neighbor, and if so insert it before the hint.
if Is_Less_Key_Node (Key, N (Hint)) then
declare
Before : constant Count_Type := Ops.Previous (Tree, Hint);
begin
if Before = 0 then
Insert_Post (Tree, Hint, True, Node);
elsif Is_Less_Key_Node (Key, N (Before)) then
Unconditional_Insert_Sans_Hint (Tree, Key, Node);
elsif Ops.Right (N (Before)) = 0 then
Insert_Post (Tree, Before, False, Node);
else
Insert_Post (Tree, Hint, True, Node);
end if;
end;
return;
end if;
-- We know that Key isn't less than the hint, so it must be equal
-- or greater. So we just test whether Key is less than or equal
-- to (same as "not greater than") the hint's next neighbor, and
-- if so insert it after the hint.
declare
After : constant Count_Type := Ops.Next (Tree, Hint);
begin
if After = 0 then
Insert_Post (Tree, Hint, False, Node);
elsif Is_Greater_Key_Node (Key, N (After)) then
Unconditional_Insert_Sans_Hint (Tree, Key, Node);
elsif Ops.Right (N (Hint)) = 0 then
Insert_Post (Tree, Hint, False, Node);
else
Insert_Post (Tree, After, True, Node);
end if;
end;
end Generic_Unconditional_Insert_With_Hint;
-----------------
-- Upper_Bound --
-----------------
function Upper_Bound
(Tree : Tree_Type'Class;
Key : Key_Type) return Count_Type
is
Y : Count_Type;
X : Count_Type;
N : Nodes_Type renames Tree.Nodes;
begin
Y := 0;
X := Tree.Root;
while X /= 0 loop
if Is_Less_Key_Node (Key, N (X)) then
Y := X;
X := Ops.Left (N (X));
else
X := Ops.Right (N (X));
end if;
end loop;
return Y;
end Upper_Bound;
end Ada.Containers.Red_Black_Trees.Generic_Bounded_Keys;