blob: 32b5130f79782158956736b9de433255041ac787 [file] [log] [blame]
------------------------------------------------------------------------------
-- --
-- GNAT COMPILER COMPONENTS --
-- --
-- S E M _ P R A G --
-- --
-- B o d y --
-- --
-- Copyright (C) 1992-2013, Free Software Foundation, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 3, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
-- for more details. You should have received a copy of the GNU General --
-- Public License distributed with GNAT; see file COPYING3. If not, go to --
-- http://www.gnu.org/licenses for a complete copy of the license. --
-- --
-- GNAT was originally developed by the GNAT team at New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc. --
-- --
------------------------------------------------------------------------------
-- This unit contains the semantic processing for all pragmas, both language
-- and implementation defined. For most pragmas, the parser only does the
-- most basic job of checking the syntax, so Sem_Prag also contains the code
-- to complete the syntax checks. Certain pragmas are handled partially or
-- completely by the parser (see Par.Prag for further details).
with Aspects; use Aspects;
with Atree; use Atree;
with Casing; use Casing;
with Checks; use Checks;
with Csets; use Csets;
with Debug; use Debug;
with Einfo; use Einfo;
with Elists; use Elists;
with Errout; use Errout;
with Exp_Dist; use Exp_Dist;
with Exp_Util; use Exp_Util;
with Freeze; use Freeze;
with Lib; use Lib;
with Lib.Writ; use Lib.Writ;
with Lib.Xref; use Lib.Xref;
with Namet.Sp; use Namet.Sp;
with Nlists; use Nlists;
with Nmake; use Nmake;
with Opt; use Opt;
with Output; use Output;
with Par_SCO; use Par_SCO;
with Restrict; use Restrict;
with Rident; use Rident;
with Rtsfind; use Rtsfind;
with Sem; use Sem;
with Sem_Aux; use Sem_Aux;
with Sem_Ch3; use Sem_Ch3;
with Sem_Ch6; use Sem_Ch6;
with Sem_Ch8; use Sem_Ch8;
with Sem_Ch12; use Sem_Ch12;
with Sem_Ch13; use Sem_Ch13;
with Sem_Disp; use Sem_Disp;
with Sem_Dist; use Sem_Dist;
with Sem_Elim; use Sem_Elim;
with Sem_Eval; use Sem_Eval;
with Sem_Intr; use Sem_Intr;
with Sem_Mech; use Sem_Mech;
with Sem_Res; use Sem_Res;
with Sem_Type; use Sem_Type;
with Sem_Util; use Sem_Util;
with Sem_VFpt; use Sem_VFpt;
with Sem_Warn; use Sem_Warn;
with Stand; use Stand;
with Sinfo; use Sinfo;
with Sinfo.CN; use Sinfo.CN;
with Sinput; use Sinput;
with Snames; use Snames;
with Stringt; use Stringt;
with Stylesw; use Stylesw;
with Table;
with Targparm; use Targparm;
with Tbuild; use Tbuild;
with Ttypes;
with Uintp; use Uintp;
with Uname; use Uname;
with Urealp; use Urealp;
with Validsw; use Validsw;
with Warnsw; use Warnsw;
package body Sem_Prag is
----------------------------------------------
-- Common Handling of Import-Export Pragmas --
----------------------------------------------
-- In the following section, a number of Import_xxx and Export_xxx pragmas
-- are defined by GNAT. These are compatible with the DEC pragmas of the
-- same name, and all have the following common form and processing:
-- pragma Export_xxx
-- [Internal =>] LOCAL_NAME
-- [, [External =>] EXTERNAL_SYMBOL]
-- [, other optional parameters ]);
-- pragma Import_xxx
-- [Internal =>] LOCAL_NAME
-- [, [External =>] EXTERNAL_SYMBOL]
-- [, other optional parameters ]);
-- EXTERNAL_SYMBOL ::=
-- IDENTIFIER
-- | static_string_EXPRESSION
-- The internal LOCAL_NAME designates the entity that is imported or
-- exported, and must refer to an entity in the current declarative
-- part (as required by the rules for LOCAL_NAME).
-- The external linker name is designated by the External parameter if
-- given, or the Internal parameter if not (if there is no External
-- parameter, the External parameter is a copy of the Internal name).
-- If the External parameter is given as a string, then this string is
-- treated as an external name (exactly as though it had been given as an
-- External_Name parameter for a normal Import pragma).
-- If the External parameter is given as an identifier (or there is no
-- External parameter, so that the Internal identifier is used), then
-- the external name is the characters of the identifier, translated
-- to all upper case letters for OpenVMS versions of GNAT, and to all
-- lower case letters for all other versions
-- Note: the external name specified or implied by any of these special
-- Import_xxx or Export_xxx pragmas override an external or link name
-- specified in a previous Import or Export pragma.
-- Note: these and all other DEC-compatible GNAT pragmas allow full use of
-- named notation, following the standard rules for subprogram calls, i.e.
-- parameters can be given in any order if named notation is used, and
-- positional and named notation can be mixed, subject to the rule that all
-- positional parameters must appear first.
-- Note: All these pragmas are implemented exactly following the DEC design
-- and implementation and are intended to be fully compatible with the use
-- of these pragmas in the DEC Ada compiler.
--------------------------------------------
-- Checking for Duplicated External Names --
--------------------------------------------
-- It is suspicious if two separate Export pragmas use the same external
-- name. The following table is used to diagnose this situation so that
-- an appropriate warning can be issued.
-- The Node_Id stored is for the N_String_Literal node created to hold
-- the value of the external name. The Sloc of this node is used to
-- cross-reference the location of the duplication.
package Externals is new Table.Table (
Table_Component_Type => Node_Id,
Table_Index_Type => Int,
Table_Low_Bound => 0,
Table_Initial => 100,
Table_Increment => 100,
Table_Name => "Name_Externals");
-------------------------------------
-- Local Subprograms and Variables --
-------------------------------------
function Adjust_External_Name_Case (N : Node_Id) return Node_Id;
-- This routine is used for possible casing adjustment of an explicit
-- external name supplied as a string literal (the node N), according to
-- the casing requirement of Opt.External_Name_Casing. If this is set to
-- As_Is, then the string literal is returned unchanged, but if it is set
-- to Uppercase or Lowercase, then a new string literal with appropriate
-- casing is constructed.
function Get_Base_Subprogram (Def_Id : Entity_Id) return Entity_Id;
-- If Def_Id refers to a renamed subprogram, then the base subprogram (the
-- original one, following the renaming chain) is returned. Otherwise the
-- entity is returned unchanged. Should be in Einfo???
procedure Preanalyze_CTC_Args (N, Arg_Req, Arg_Ens : Node_Id);
-- Preanalyze the boolean expressions in the Requires and Ensures arguments
-- of a Contract_Case or Test_Case pragma if present (possibly Empty). We
-- treat these as spec expressions (i.e. similar to a default expression).
procedure rv;
-- This is a dummy function called by the processing for pragma Reviewable.
-- It is there for assisting front end debugging. By placing a Reviewable
-- pragma in the source program, a breakpoint on rv catches this place in
-- the source, allowing convenient stepping to the point of interest.
procedure Set_Unit_Name (N : Node_Id; With_Item : Node_Id);
-- Place semantic information on the argument of an Elaborate/Elaborate_All
-- pragma. Entity name for unit and its parents is taken from item in
-- previous with_clause that mentions the unit.
-------------------------------
-- Adjust_External_Name_Case --
-------------------------------
function Adjust_External_Name_Case (N : Node_Id) return Node_Id is
CC : Char_Code;
begin
-- Adjust case of literal if required
if Opt.External_Name_Exp_Casing = As_Is then
return N;
else
-- Copy existing string
Start_String;
-- Set proper casing
for J in 1 .. String_Length (Strval (N)) loop
CC := Get_String_Char (Strval (N), J);
if Opt.External_Name_Exp_Casing = Uppercase
and then CC >= Get_Char_Code ('a')
and then CC <= Get_Char_Code ('z')
then
Store_String_Char (CC - 32);
elsif Opt.External_Name_Exp_Casing = Lowercase
and then CC >= Get_Char_Code ('A')
and then CC <= Get_Char_Code ('Z')
then
Store_String_Char (CC + 32);
else
Store_String_Char (CC);
end if;
end loop;
return
Make_String_Literal (Sloc (N),
Strval => End_String);
end if;
end Adjust_External_Name_Case;
------------------------------
-- Analyze_CTC_In_Decl_Part --
------------------------------
procedure Analyze_CTC_In_Decl_Part (N : Node_Id; S : Entity_Id) is
begin
-- Install formals and push subprogram spec onto scope stack so that we
-- can see the formals from the pragma.
Install_Formals (S);
Push_Scope (S);
-- Preanalyze the boolean expressions, we treat these as spec
-- expressions (i.e. similar to a default expression).
Preanalyze_CTC_Args
(N,
Get_Requires_From_CTC_Pragma (N),
Get_Ensures_From_CTC_Pragma (N));
-- Remove the subprogram from the scope stack now that the pre-analysis
-- of the expressions in the contract case or test case is done.
End_Scope;
end Analyze_CTC_In_Decl_Part;
------------------------------
-- Analyze_PPC_In_Decl_Part --
------------------------------
procedure Analyze_PPC_In_Decl_Part (N : Node_Id; S : Entity_Id) is
Arg1 : constant Node_Id := First (Pragma_Argument_Associations (N));
begin
-- Install formals and push subprogram spec onto scope stack so that we
-- can see the formals from the pragma.
Install_Formals (S);
Push_Scope (S);
-- Preanalyze the boolean expression, we treat this as a spec expression
-- (i.e. similar to a default expression).
Preanalyze_Assert_Expression (Get_Pragma_Arg (Arg1), Standard_Boolean);
-- In ASIS mode, for a pragma generated from a source aspect, also
-- analyze the original aspect expression.
if ASIS_Mode
and then Present (Corresponding_Aspect (N))
then
Preanalyze_Assert_Expression
(Expression (Corresponding_Aspect (N)), Standard_Boolean);
end if;
-- For a class-wide condition, a reference to a controlling formal must
-- be interpreted as having the class-wide type (or an access to such)
-- so that the inherited condition can be properly applied to any
-- overriding operation (see ARM12 6.6.1 (7)).
if Class_Present (N) then
Class_Wide_Condition : declare
T : constant Entity_Id := Find_Dispatching_Type (S);
ACW : Entity_Id := Empty;
-- Access to T'class, created if there is a controlling formal
-- that is an access parameter.
function Get_ACW return Entity_Id;
-- If the expression has a reference to an controlling access
-- parameter, create an access to T'class for the necessary
-- conversions if one does not exist.
function Process (N : Node_Id) return Traverse_Result;
-- ARM 6.1.1: Within the expression for a Pre'Class or Post'Class
-- aspect for a primitive subprogram of a tagged type T, a name
-- that denotes a formal parameter of type T is interpreted as
-- having type T'Class. Similarly, a name that denotes a formal
-- accessparameter of type access-to-T is interpreted as having
-- type access-to-T'Class. This ensures the expression is well-
-- defined for a primitive subprogram of a type descended from T.
-------------
-- Get_ACW --
-------------
function Get_ACW return Entity_Id is
Loc : constant Source_Ptr := Sloc (N);
Decl : Node_Id;
begin
if No (ACW) then
Decl := Make_Full_Type_Declaration (Loc,
Defining_Identifier => Make_Temporary (Loc, 'T'),
Type_Definition =>
Make_Access_To_Object_Definition (Loc,
Subtype_Indication =>
New_Occurrence_Of (Class_Wide_Type (T), Loc),
All_Present => True));
Insert_Before (Unit_Declaration_Node (S), Decl);
Analyze (Decl);
ACW := Defining_Identifier (Decl);
Freeze_Before (Unit_Declaration_Node (S), ACW);
end if;
return ACW;
end Get_ACW;
-------------
-- Process --
-------------
function Process (N : Node_Id) return Traverse_Result is
Loc : constant Source_Ptr := Sloc (N);
Typ : Entity_Id;
begin
if Is_Entity_Name (N)
and then Is_Formal (Entity (N))
and then Nkind (Parent (N)) /= N_Type_Conversion
then
if Etype (Entity (N)) = T then
Typ := Class_Wide_Type (T);
elsif Is_Access_Type (Etype (Entity (N)))
and then Designated_Type (Etype (Entity (N))) = T
then
Typ := Get_ACW;
else
Typ := Empty;
end if;
if Present (Typ) then
Rewrite (N,
Make_Type_Conversion (Loc,
Subtype_Mark =>
New_Occurrence_Of (Typ, Loc),
Expression => New_Occurrence_Of (Entity (N), Loc)));
Set_Etype (N, Typ);
end if;
end if;
return OK;
end Process;
procedure Replace_Type is new Traverse_Proc (Process);
-- Start of processing for Class_Wide_Condition
begin
if not Present (T) then
Error_Msg_Name_1 :=
Chars (Identifier (Corresponding_Aspect (N)));
Error_Msg_Name_2 := Name_Class;
Error_Msg_N
("aspect `%''%` can only be specified for a primitive " &
"operation of a tagged type",
Corresponding_Aspect (N));
end if;
Replace_Type (Get_Pragma_Arg (Arg1));
end Class_Wide_Condition;
end if;
-- Remove the subprogram from the scope stack now that the pre-analysis
-- of the precondition/postcondition is done.
End_Scope;
end Analyze_PPC_In_Decl_Part;
--------------------
-- Analyze_Pragma --
--------------------
procedure Analyze_Pragma (N : Node_Id) is
Loc : constant Source_Ptr := Sloc (N);
Prag_Id : Pragma_Id;
Pname : Name_Id;
-- Name of the source pragma, or name of the corresponding aspect for
-- pragmas which originate in a source aspect. In the latter case, the
-- name may be different from the pragma name.
Pragma_Exit : exception;
-- This exception is used to exit pragma processing completely. It is
-- used when an error is detected, and no further processing is
-- required. It is also used if an earlier error has left the tree in
-- a state where the pragma should not be processed.
Arg_Count : Nat;
-- Number of pragma argument associations
Arg1 : Node_Id;
Arg2 : Node_Id;
Arg3 : Node_Id;
Arg4 : Node_Id;
-- First four pragma arguments (pragma argument association nodes, or
-- Empty if the corresponding argument does not exist).
type Name_List is array (Natural range <>) of Name_Id;
type Args_List is array (Natural range <>) of Node_Id;
-- Types used for arguments to Check_Arg_Order and Gather_Associations
procedure Ada_2005_Pragma;
-- Called for pragmas defined in Ada 2005, that are not in Ada 95. In
-- Ada 95 mode, these are implementation defined pragmas, so should be
-- caught by the No_Implementation_Pragmas restriction.
procedure Ada_2012_Pragma;
-- Called for pragmas defined in Ada 2012, that are not in Ada 95 or 05.
-- In Ada 95 or 05 mode, these are implementation defined pragmas, so
-- should be caught by the No_Implementation_Pragmas restriction.
procedure Check_Ada_83_Warning;
-- Issues a warning message for the current pragma if operating in Ada
-- 83 mode (used for language pragmas that are not a standard part of
-- Ada 83). This procedure does not raise Error_Pragma. Also notes use
-- of 95 pragma.
procedure Check_Arg_Count (Required : Nat);
-- Check argument count for pragma is equal to given parameter. If not,
-- then issue an error message and raise Pragma_Exit.
-- Note: all routines whose name is Check_Arg_Is_xxx take an argument
-- Arg which can either be a pragma argument association, in which case
-- the check is applied to the expression of the association or an
-- expression directly.
procedure Check_Arg_Is_External_Name (Arg : Node_Id);
-- Check that an argument has the right form for an EXTERNAL_NAME
-- parameter of an extended import/export pragma. The rule is that the
-- name must be an identifier or string literal (in Ada 83 mode) or a
-- static string expression (in Ada 95 mode).
procedure Check_Arg_Is_Identifier (Arg : Node_Id);
-- Check the specified argument Arg to make sure that it is an
-- identifier. If not give error and raise Pragma_Exit.
procedure Check_Arg_Is_Integer_Literal (Arg : Node_Id);
-- Check the specified argument Arg to make sure that it is an integer
-- literal. If not give error and raise Pragma_Exit.
procedure Check_Arg_Is_Library_Level_Local_Name (Arg : Node_Id);
-- Check the specified argument Arg to make sure that it has the proper
-- syntactic form for a local name and meets the semantic requirements
-- for a local name. The local name is analyzed as part of the
-- processing for this call. In addition, the local name is required
-- to represent an entity at the library level.
procedure Check_Arg_Is_Local_Name (Arg : Node_Id);
-- Check the specified argument Arg to make sure that it has the proper
-- syntactic form for a local name and meets the semantic requirements
-- for a local name. The local name is analyzed as part of the
-- processing for this call.
procedure Check_Arg_Is_Locking_Policy (Arg : Node_Id);
-- Check the specified argument Arg to make sure that it is a valid
-- locking policy name. If not give error and raise Pragma_Exit.
procedure Check_Arg_Is_Partition_Elaboration_Policy (Arg : Node_Id);
-- Check the specified argument Arg to make sure that it is a valid
-- elaboration policy name. If not give error and raise Pragma_Exit.
procedure Check_Arg_Is_One_Of
(Arg : Node_Id;
N1, N2 : Name_Id);
procedure Check_Arg_Is_One_Of
(Arg : Node_Id;
N1, N2, N3 : Name_Id);
procedure Check_Arg_Is_One_Of
(Arg : Node_Id;
N1, N2, N3, N4 : Name_Id);
procedure Check_Arg_Is_One_Of
(Arg : Node_Id;
N1, N2, N3, N4, N5 : Name_Id);
-- Check the specified argument Arg to make sure that it is an
-- identifier whose name matches either N1 or N2 (or N3, N4, N5 if
-- present). If not then give error and raise Pragma_Exit.
procedure Check_Arg_Is_Queuing_Policy (Arg : Node_Id);
-- Check the specified argument Arg to make sure that it is a valid
-- queuing policy name. If not give error and raise Pragma_Exit.
procedure Check_Arg_Is_Static_Expression
(Arg : Node_Id;
Typ : Entity_Id := Empty);
-- Check the specified argument Arg to make sure that it is a static
-- expression of the given type (i.e. it will be analyzed and resolved
-- using this type, which can be any valid argument to Resolve, e.g.
-- Any_Integer is OK). If not, given error and raise Pragma_Exit. If
-- Typ is left Empty, then any static expression is allowed.
procedure Check_Arg_Is_Task_Dispatching_Policy (Arg : Node_Id);
-- Check the specified argument Arg to make sure that it is a valid task
-- dispatching policy name. If not give error and raise Pragma_Exit.
procedure Check_Arg_Order (Names : Name_List);
-- Checks for an instance of two arguments with identifiers for the
-- current pragma which are not in the sequence indicated by Names,
-- and if so, generates a fatal message about bad order of arguments.
procedure Check_At_Least_N_Arguments (N : Nat);
-- Check there are at least N arguments present
procedure Check_At_Most_N_Arguments (N : Nat);
-- Check there are no more than N arguments present
procedure Check_Component
(Comp : Node_Id;
UU_Typ : Entity_Id;
In_Variant_Part : Boolean := False);
-- Examine an Unchecked_Union component for correct use of per-object
-- constrained subtypes, and for restrictions on finalizable components.
-- UU_Typ is the related Unchecked_Union type. Flag In_Variant_Part
-- should be set when Comp comes from a record variant.
procedure Check_Contract_Or_Test_Case;
-- Called to process a contract-case or test-case pragma. It
-- starts with checking pragma arguments, and the rest of the
-- treatment is similar to the one for pre- and postcondition in
-- Check_Precondition_Postcondition, except the placement rules for the
-- contract-case and test-case pragmas are stricter. These pragmas may
-- only occur after a subprogram spec declared directly in a package
-- spec unit. In this case, the pragma is chained to the subprogram in
-- question (using Spec_CTC_List and Next_Pragma) and analysis of the
-- pragma is delayed till the end of the spec. In all other cases, an
-- error message for bad placement is given.
procedure Check_Duplicate_Pragma (E : Entity_Id);
-- Check if a rep item of the same name as the current pragma is already
-- chained as a rep pragma to the given entity. If so give a message
-- about the duplicate, and then raise Pragma_Exit so does not return.
procedure Check_Duplicated_Export_Name (Nam : Node_Id);
-- Nam is an N_String_Literal node containing the external name set by
-- an Import or Export pragma (or extended Import or Export pragma).
-- This procedure checks for possible duplications if this is the export
-- case, and if found, issues an appropriate error message.
procedure Check_Expr_Is_Static_Expression
(Expr : Node_Id;
Typ : Entity_Id := Empty);
-- Check the specified expression Expr to make sure that it is a static
-- expression of the given type (i.e. it will be analyzed and resolved
-- using this type, which can be any valid argument to Resolve, e.g.
-- Any_Integer is OK). If not, given error and raise Pragma_Exit. If
-- Typ is left Empty, then any static expression is allowed.
procedure Check_First_Subtype (Arg : Node_Id);
-- Checks that Arg, whose expression is an entity name, references a
-- first subtype.
procedure Check_Identifier (Arg : Node_Id; Id : Name_Id);
-- Checks that the given argument has an identifier, and if so, requires
-- it to match the given identifier name. If there is no identifier, or
-- a non-matching identifier, then an error message is given and
-- Pragma_Exit is raised.
procedure Check_Identifier_Is_One_Of (Arg : Node_Id; N1, N2 : Name_Id);
-- Checks that the given argument has an identifier, and if so, requires
-- it to match one of the given identifier names. If there is no
-- identifier, or a non-matching identifier, then an error message is
-- given and Pragma_Exit is raised.
procedure Check_In_Main_Program;
-- Common checks for pragmas that appear within a main program
-- (Priority, Main_Storage, Time_Slice, Relative_Deadline, CPU).
procedure Check_Interrupt_Or_Attach_Handler;
-- Common processing for first argument of pragma Interrupt_Handler or
-- pragma Attach_Handler.
procedure Check_Loop_Pragma_Placement;
-- Verify whether pragma Loop_Invariant or Loop_Optimize or Loop_Variant
-- appear immediately within a construct restricted to loops.
procedure Check_Is_In_Decl_Part_Or_Package_Spec;
-- Check that pragma appears in a declarative part, or in a package
-- specification, i.e. that it does not occur in a statement sequence
-- in a body.
procedure Check_No_Identifier (Arg : Node_Id);
-- Checks that the given argument does not have an identifier. If
-- an identifier is present, then an error message is issued, and
-- Pragma_Exit is raised.
procedure Check_No_Identifiers;
-- Checks that none of the arguments to the pragma has an identifier.
-- If any argument has an identifier, then an error message is issued,
-- and Pragma_Exit is raised.
procedure Check_No_Link_Name;
-- Checks that no link name is specified
procedure Check_Optional_Identifier (Arg : Node_Id; Id : Name_Id);
-- Checks if the given argument has an identifier, and if so, requires
-- it to match the given identifier name. If there is a non-matching
-- identifier, then an error message is given and Pragma_Exit is raised.
procedure Check_Optional_Identifier (Arg : Node_Id; Id : String);
-- Checks if the given argument has an identifier, and if so, requires
-- it to match the given identifier name. If there is a non-matching
-- identifier, then an error message is given and Pragma_Exit is raised.
-- In this version of the procedure, the identifier name is given as
-- a string with lower case letters.
procedure Check_Precondition_Postcondition (In_Body : out Boolean);
-- Called to process a precondition or postcondition pragma. There are
-- three cases:
--
-- The pragma appears after a subprogram spec
--
-- If the corresponding check is not enabled, the pragma is analyzed
-- but otherwise ignored and control returns with In_Body set False.
--
-- If the check is enabled, then the first step is to analyze the
-- pragma, but this is skipped if the subprogram spec appears within
-- a package specification (because this is the case where we delay
-- analysis till the end of the spec). Then (whether or not it was
-- analyzed), the pragma is chained to the subprogram in question
-- (using Spec_PPC_List and Next_Pragma) and control returns to the
-- caller with In_Body set False.
--
-- The pragma appears at the start of subprogram body declarations
--
-- In this case an immediate return to the caller is made with
-- In_Body set True, and the pragma is NOT analyzed.
--
-- In all other cases, an error message for bad placement is given
procedure Check_Static_Constraint (Constr : Node_Id);
-- Constr is a constraint from an N_Subtype_Indication node from a
-- component constraint in an Unchecked_Union type. This routine checks
-- that the constraint is static as required by the restrictions for
-- Unchecked_Union.
procedure Check_Valid_Configuration_Pragma;
-- Legality checks for placement of a configuration pragma
procedure Check_Valid_Library_Unit_Pragma;
-- Legality checks for library unit pragmas. A special case arises for
-- pragmas in generic instances that come from copies of the original
-- library unit pragmas in the generic templates. In the case of other
-- than library level instantiations these can appear in contexts which
-- would normally be invalid (they only apply to the original template
-- and to library level instantiations), and they are simply ignored,
-- which is implemented by rewriting them as null statements.
procedure Check_Variant (Variant : Node_Id; UU_Typ : Entity_Id);
-- Check an Unchecked_Union variant for lack of nested variants and
-- presence of at least one component. UU_Typ is the related Unchecked_
-- Union type.
procedure Error_Pragma (Msg : String);
pragma No_Return (Error_Pragma);
-- Outputs error message for current pragma. The message contains a %
-- that will be replaced with the pragma name, and the flag is placed
-- on the pragma itself. Pragma_Exit is then raised. Note: this routine
-- calls Fix_Error (see spec of that function for details).
procedure Error_Pragma_Arg (Msg : String; Arg : Node_Id);
pragma No_Return (Error_Pragma_Arg);
-- Outputs error message for current pragma. The message may contain
-- a % that will be replaced with the pragma name. The parameter Arg
-- may either be a pragma argument association, in which case the flag
-- is placed on the expression of this association, or an expression,
-- in which case the flag is placed directly on the expression. The
-- message is placed using Error_Msg_N, so the message may also contain
-- an & insertion character which will reference the given Arg value.
-- After placing the message, Pragma_Exit is raised. Note: this routine
-- calls Fix_Error (see spec of that function for details).
procedure Error_Pragma_Arg (Msg1, Msg2 : String; Arg : Node_Id);
pragma No_Return (Error_Pragma_Arg);
-- Similar to above form of Error_Pragma_Arg except that two messages
-- are provided, the second is a continuation comment starting with \.
procedure Error_Pragma_Arg_Ident (Msg : String; Arg : Node_Id);
pragma No_Return (Error_Pragma_Arg_Ident);
-- Outputs error message for current pragma. The message may contain
-- a % that will be replaced with the pragma name. The parameter Arg
-- must be a pragma argument association with a non-empty identifier
-- (i.e. its Chars field must be set), and the error message is placed
-- on the identifier. The message is placed using Error_Msg_N so
-- the message may also contain an & insertion character which will
-- reference the identifier. After placing the message, Pragma_Exit
-- is raised. Note: this routine calls Fix_Error (see spec of that
-- function for details).
procedure Error_Pragma_Ref (Msg : String; Ref : Entity_Id);
pragma No_Return (Error_Pragma_Ref);
-- Outputs error message for current pragma. The message may contain
-- a % that will be replaced with the pragma name. The parameter Ref
-- must be an entity whose name can be referenced by & and sloc by #.
-- After placing the message, Pragma_Exit is raised. Note: this routine
-- calls Fix_Error (see spec of that function for details).
function Find_Lib_Unit_Name return Entity_Id;
-- Used for a library unit pragma to find the entity to which the
-- library unit pragma applies, returns the entity found.
procedure Find_Program_Unit_Name (Id : Node_Id);
-- If the pragma is a compilation unit pragma, the id must denote the
-- compilation unit in the same compilation, and the pragma must appear
-- in the list of preceding or trailing pragmas. If it is a program
-- unit pragma that is not a compilation unit pragma, then the
-- identifier must be visible.
function Find_Unique_Parameterless_Procedure
(Name : Entity_Id;
Arg : Node_Id) return Entity_Id;
-- Used for a procedure pragma to find the unique parameterless
-- procedure identified by Name, returns it if it exists, otherwise
-- errors out and uses Arg as the pragma argument for the message.
procedure Fix_Error (Msg : in out String);
-- This is called prior to issuing an error message. Msg is a string
-- that typically contains the substring "pragma". If the current pragma
-- comes from an aspect, each such "pragma" substring is replaced with
-- the characters "aspect", and if Error_Msg_Name_1 is Name_Precondition
-- (resp Name_Postcondition) it is changed to Name_Pre (resp Name_Post).
procedure Gather_Associations
(Names : Name_List;
Args : out Args_List);
-- This procedure is used to gather the arguments for a pragma that
-- permits arbitrary ordering of parameters using the normal rules
-- for named and positional parameters. The Names argument is a list
-- of Name_Id values that corresponds to the allowed pragma argument
-- association identifiers in order. The result returned in Args is
-- a list of corresponding expressions that are the pragma arguments.
-- Note that this is a list of expressions, not of pragma argument
-- associations (Gather_Associations has completely checked all the
-- optional identifiers when it returns). An entry in Args is Empty
-- on return if the corresponding argument is not present.
procedure GNAT_Pragma;
-- Called for all GNAT defined pragmas to check the relevant restriction
-- (No_Implementation_Pragmas).
procedure S14_Pragma;
-- Called for all pragmas defined for formal verification to check that
-- the S14_Extensions flag is set.
-- This name needs fixing ??? There is no such thing as an
-- "S14_Extensions" flag ???
function Is_Before_First_Decl
(Pragma_Node : Node_Id;
Decls : List_Id) return Boolean;
-- Return True if Pragma_Node is before the first declarative item in
-- Decls where Decls is the list of declarative items.
function Is_Configuration_Pragma return Boolean;
-- Determines if the placement of the current pragma is appropriate
-- for a configuration pragma.
function Is_In_Context_Clause return Boolean;
-- Returns True if pragma appears within the context clause of a unit,
-- and False for any other placement (does not generate any messages).
function Is_Static_String_Expression (Arg : Node_Id) return Boolean;
-- Analyzes the argument, and determines if it is a static string
-- expression, returns True if so, False if non-static or not String.
procedure Pragma_Misplaced;
pragma No_Return (Pragma_Misplaced);
-- Issue fatal error message for misplaced pragma
procedure Process_Atomic_Shared_Volatile;
-- Common processing for pragmas Atomic, Shared, Volatile. Note that
-- Shared is an obsolete Ada 83 pragma, treated as being identical
-- in effect to pragma Atomic.
procedure Process_Compile_Time_Warning_Or_Error;
-- Common processing for Compile_Time_Error and Compile_Time_Warning
procedure Process_Convention
(C : out Convention_Id;
Ent : out Entity_Id);
-- Common processing for Convention, Interface, Import and Export.
-- Checks first two arguments of pragma, and sets the appropriate
-- convention value in the specified entity or entities. On return
-- C is the convention, Ent is the referenced entity.
procedure Process_Disable_Enable_Atomic_Sync (Nam : Name_Id);
-- Common processing for Disable/Enable_Atomic_Synchronization. Nam is
-- Name_Suppress for Disable and Name_Unsuppress for Enable.
procedure Process_Extended_Import_Export_Exception_Pragma
(Arg_Internal : Node_Id;
Arg_External : Node_Id;
Arg_Form : Node_Id;
Arg_Code : Node_Id);
-- Common processing for the pragmas Import/Export_Exception. The three
-- arguments correspond to the three named parameters of the pragma. An
-- argument is empty if the corresponding parameter is not present in
-- the pragma.
procedure Process_Extended_Import_Export_Object_Pragma
(Arg_Internal : Node_Id;
Arg_External : Node_Id;
Arg_Size : Node_Id);
-- Common processing for the pragmas Import/Export_Object. The three
-- arguments correspond to the three named parameters of the pragmas. An
-- argument is empty if the corresponding parameter is not present in
-- the pragma.
procedure Process_Extended_Import_Export_Internal_Arg
(Arg_Internal : Node_Id := Empty);
-- Common processing for all extended Import and Export pragmas. The
-- argument is the pragma parameter for the Internal argument. If
-- Arg_Internal is empty or inappropriate, an error message is posted.
-- Otherwise, on normal return, the Entity_Field of Arg_Internal is
-- set to identify the referenced entity.
procedure Process_Extended_Import_Export_Subprogram_Pragma
(Arg_Internal : Node_Id;
Arg_External : Node_Id;
Arg_Parameter_Types : Node_Id;
Arg_Result_Type : Node_Id := Empty;
Arg_Mechanism : Node_Id;
Arg_Result_Mechanism : Node_Id := Empty;
Arg_First_Optional_Parameter : Node_Id := Empty);
-- Common processing for all extended Import and Export pragmas applying
-- to subprograms. The caller omits any arguments that do not apply to
-- the pragma in question (for example, Arg_Result_Type can be non-Empty
-- only in the Import_Function and Export_Function cases). The argument
-- names correspond to the allowed pragma association identifiers.
procedure Process_Generic_List;
-- Common processing for Share_Generic and Inline_Generic
procedure Process_Import_Or_Interface;
-- Common processing for Import of Interface
procedure Process_Import_Predefined_Type;
-- Processing for completing a type with pragma Import. This is used
-- to declare types that match predefined C types, especially for cases
-- without corresponding Ada predefined type.
type Inline_Status is (Suppressed, Disabled, Enabled);
-- Inline status of a subprogram, indicated as follows:
-- Suppressed: inlining is suppressed for the subprogram
-- Disabled: no inlining is requested for the subprogram
-- Enabled: inlining is requested/required for the subprogram
procedure Process_Inline (Status : Inline_Status);
-- Common processing for Inline, Inline_Always and No_Inline. Parameter
-- indicates the inline status specified by the pragma.
procedure Process_Interface_Name
(Subprogram_Def : Entity_Id;
Ext_Arg : Node_Id;
Link_Arg : Node_Id);
-- Given the last two arguments of pragma Import, pragma Export, or
-- pragma Interface_Name, performs validity checks and sets the
-- Interface_Name field of the given subprogram entity to the
-- appropriate external or link name, depending on the arguments given.
-- Ext_Arg is always present, but Link_Arg may be missing. Note that
-- Ext_Arg may represent the Link_Name if Link_Arg is missing, and
-- appropriate named notation is used for Ext_Arg. If neither Ext_Arg
-- nor Link_Arg is present, the interface name is set to the default
-- from the subprogram name.
procedure Process_Interrupt_Or_Attach_Handler;
-- Common processing for Interrupt and Attach_Handler pragmas
procedure Process_Restrictions_Or_Restriction_Warnings (Warn : Boolean);
-- Common processing for Restrictions and Restriction_Warnings pragmas.
-- Warn is True for Restriction_Warnings, or for Restrictions if the
-- flag Treat_Restrictions_As_Warnings is set, and False if this flag
-- is not set in the Restrictions case.
procedure Process_Suppress_Unsuppress (Suppress_Case : Boolean);
-- Common processing for Suppress and Unsuppress. The boolean parameter
-- Suppress_Case is True for the Suppress case, and False for the
-- Unsuppress case.
procedure Set_Exported (E : Entity_Id; Arg : Node_Id);
-- This procedure sets the Is_Exported flag for the given entity,
-- checking that the entity was not previously imported. Arg is
-- the argument that specified the entity. A check is also made
-- for exporting inappropriate entities.
procedure Set_Extended_Import_Export_External_Name
(Internal_Ent : Entity_Id;
Arg_External : Node_Id);
-- Common processing for all extended import export pragmas. The first
-- argument, Internal_Ent, is the internal entity, which has already
-- been checked for validity by the caller. Arg_External is from the
-- Import or Export pragma, and may be null if no External parameter
-- was present. If Arg_External is present and is a non-null string
-- (a null string is treated as the default), then the Interface_Name
-- field of Internal_Ent is set appropriately.
procedure Set_Imported (E : Entity_Id);
-- This procedure sets the Is_Imported flag for the given entity,
-- checking that it is not previously exported or imported.
procedure Set_Mechanism_Value (Ent : Entity_Id; Mech_Name : Node_Id);
-- Mech is a parameter passing mechanism (see Import_Function syntax
-- for MECHANISM_NAME). This routine checks that the mechanism argument
-- has the right form, and if not issues an error message. If the
-- argument has the right form then the Mechanism field of Ent is
-- set appropriately.
procedure Set_Rational_Profile;
-- Activate the set of configuration pragmas and permissions that make
-- up the Rational profile.
procedure Set_Ravenscar_Profile (N : Node_Id);
-- Activate the set of configuration pragmas and restrictions that make
-- up the Ravenscar Profile. N is the corresponding pragma node, which
-- is used for error messages on any constructs that violate the
-- profile.
---------------------
-- Ada_2005_Pragma --
---------------------
procedure Ada_2005_Pragma is
begin
if Ada_Version <= Ada_95 then
Check_Restriction (No_Implementation_Pragmas, N);
end if;
end Ada_2005_Pragma;
---------------------
-- Ada_2012_Pragma --
---------------------
procedure Ada_2012_Pragma is
begin
if Ada_Version <= Ada_2005 then
Check_Restriction (No_Implementation_Pragmas, N);
end if;
end Ada_2012_Pragma;
--------------------------
-- Check_Ada_83_Warning --
--------------------------
procedure Check_Ada_83_Warning is
begin
if Ada_Version = Ada_83 and then Comes_From_Source (N) then
Error_Msg_N ("(Ada 83) pragma& is non-standard??", N);
end if;
end Check_Ada_83_Warning;
---------------------
-- Check_Arg_Count --
---------------------
procedure Check_Arg_Count (Required : Nat) is
begin
if Arg_Count /= Required then
Error_Pragma ("wrong number of arguments for pragma%");
end if;
end Check_Arg_Count;
--------------------------------
-- Check_Arg_Is_External_Name --
--------------------------------
procedure Check_Arg_Is_External_Name (Arg : Node_Id) is
Argx : constant Node_Id := Get_Pragma_Arg (Arg);
begin
if Nkind (Argx) = N_Identifier then
return;
else
Analyze_And_Resolve (Argx, Standard_String);
if Is_OK_Static_Expression (Argx) then
return;
elsif Etype (Argx) = Any_Type then
raise Pragma_Exit;
-- An interesting special case, if we have a string literal and
-- we are in Ada 83 mode, then we allow it even though it will
-- not be flagged as static. This allows expected Ada 83 mode
-- use of external names which are string literals, even though
-- technically these are not static in Ada 83.
elsif Ada_Version = Ada_83
and then Nkind (Argx) = N_String_Literal
then
return;
-- Static expression that raises Constraint_Error. This has
-- already been flagged, so just exit from pragma processing.
elsif Is_Static_Expression (Argx) then
raise Pragma_Exit;
-- Here we have a real error (non-static expression)
else
Error_Msg_Name_1 := Pname;
declare
Msg : String :=
"argument for pragma% must be a identifier or "
& "static string expression!";
begin
Fix_Error (Msg);
Flag_Non_Static_Expr (Msg, Argx);
raise Pragma_Exit;
end;
end if;
end if;
end Check_Arg_Is_External_Name;
-----------------------------
-- Check_Arg_Is_Identifier --
-----------------------------
procedure Check_Arg_Is_Identifier (Arg : Node_Id) is
Argx : constant Node_Id := Get_Pragma_Arg (Arg);
begin
if Nkind (Argx) /= N_Identifier then
Error_Pragma_Arg
("argument for pragma% must be identifier", Argx);
end if;
end Check_Arg_Is_Identifier;
----------------------------------
-- Check_Arg_Is_Integer_Literal --
----------------------------------
procedure Check_Arg_Is_Integer_Literal (Arg : Node_Id) is
Argx : constant Node_Id := Get_Pragma_Arg (Arg);
begin
if Nkind (Argx) /= N_Integer_Literal then
Error_Pragma_Arg
("argument for pragma% must be integer literal", Argx);
end if;
end Check_Arg_Is_Integer_Literal;
-------------------------------------------
-- Check_Arg_Is_Library_Level_Local_Name --
-------------------------------------------
-- LOCAL_NAME ::=
-- DIRECT_NAME
-- | DIRECT_NAME'ATTRIBUTE_DESIGNATOR
-- | library_unit_NAME
procedure Check_Arg_Is_Library_Level_Local_Name (Arg : Node_Id) is
begin
Check_Arg_Is_Local_Name (Arg);
if not Is_Library_Level_Entity (Entity (Get_Pragma_Arg (Arg)))
and then Comes_From_Source (N)
then
Error_Pragma_Arg
("argument for pragma% must be library level entity", Arg);
end if;
end Check_Arg_Is_Library_Level_Local_Name;
-----------------------------
-- Check_Arg_Is_Local_Name --
-----------------------------
-- LOCAL_NAME ::=
-- DIRECT_NAME
-- | DIRECT_NAME'ATTRIBUTE_DESIGNATOR
-- | library_unit_NAME
procedure Check_Arg_Is_Local_Name (Arg : Node_Id) is
Argx : constant Node_Id := Get_Pragma_Arg (Arg);
begin
Analyze (Argx);
if Nkind (Argx) not in N_Direct_Name
and then (Nkind (Argx) /= N_Attribute_Reference
or else Present (Expressions (Argx))
or else Nkind (Prefix (Argx)) /= N_Identifier)
and then (not Is_Entity_Name (Argx)
or else not Is_Compilation_Unit (Entity (Argx)))
then
Error_Pragma_Arg ("argument for pragma% must be local name", Argx);
end if;
-- No further check required if not an entity name
if not Is_Entity_Name (Argx) then
null;
else
declare
OK : Boolean;
Ent : constant Entity_Id := Entity (Argx);
Scop : constant Entity_Id := Scope (Ent);
begin
-- Case of a pragma applied to a compilation unit: pragma must
-- occur immediately after the program unit in the compilation.
if Is_Compilation_Unit (Ent) then
declare
Decl : constant Node_Id := Unit_Declaration_Node (Ent);
begin
-- Case of pragma placed immediately after spec
if Parent (N) = Aux_Decls_Node (Parent (Decl)) then
OK := True;
-- Case of pragma placed immediately after body
elsif Nkind (Decl) = N_Subprogram_Declaration
and then Present (Corresponding_Body (Decl))
then
OK := Parent (N) =
Aux_Decls_Node
(Parent (Unit_Declaration_Node
(Corresponding_Body (Decl))));
-- All other cases are illegal
else
OK := False;
end if;
end;
-- Special restricted placement rule from 10.2.1(11.8/2)
elsif Is_Generic_Formal (Ent)
and then Prag_Id = Pragma_Preelaborable_Initialization
then
OK := List_Containing (N) =
Generic_Formal_Declarations
(Unit_Declaration_Node (Scop));
-- Default case, just check that the pragma occurs in the scope
-- of the entity denoted by the name.
else
OK := Current_Scope = Scop;
end if;
if not OK then
Error_Pragma_Arg
("pragma% argument must be in same declarative part", Arg);
end if;
end;
end if;
end Check_Arg_Is_Local_Name;
---------------------------------
-- Check_Arg_Is_Locking_Policy --
---------------------------------
procedure Check_Arg_Is_Locking_Policy (Arg : Node_Id) is
Argx : constant Node_Id := Get_Pragma_Arg (Arg);
begin
Check_Arg_Is_Identifier (Argx);
if not Is_Locking_Policy_Name (Chars (Argx)) then
Error_Pragma_Arg ("& is not a valid locking policy name", Argx);
end if;
end Check_Arg_Is_Locking_Policy;
-----------------------------------------------
-- Check_Arg_Is_Partition_Elaboration_Policy --
-----------------------------------------------
procedure Check_Arg_Is_Partition_Elaboration_Policy (Arg : Node_Id) is
Argx : constant Node_Id := Get_Pragma_Arg (Arg);
begin
Check_Arg_Is_Identifier (Argx);
if not Is_Partition_Elaboration_Policy_Name (Chars (Argx)) then
Error_Pragma_Arg
("& is not a valid partition elaboration policy name", Argx);
end if;
end Check_Arg_Is_Partition_Elaboration_Policy;
-------------------------
-- Check_Arg_Is_One_Of --
-------------------------
procedure Check_Arg_Is_One_Of (Arg : Node_Id; N1, N2 : Name_Id) is
Argx : constant Node_Id := Get_Pragma_Arg (Arg);
begin
Check_Arg_Is_Identifier (Argx);
if Chars (Argx) /= N1 and then Chars (Argx) /= N2 then
Error_Msg_Name_2 := N1;
Error_Msg_Name_3 := N2;
Error_Pragma_Arg ("argument for pragma% must be% or%", Argx);
end if;
end Check_Arg_Is_One_Of;
procedure Check_Arg_Is_One_Of
(Arg : Node_Id;
N1, N2, N3 : Name_Id)
is
Argx : constant Node_Id := Get_Pragma_Arg (Arg);
begin
Check_Arg_Is_Identifier (Argx);
if Chars (Argx) /= N1
and then Chars (Argx) /= N2
and then Chars (Argx) /= N3
then
Error_Pragma_Arg ("invalid argument for pragma%", Argx);
end if;
end Check_Arg_Is_One_Of;
procedure Check_Arg_Is_One_Of
(Arg : Node_Id;
N1, N2, N3, N4 : Name_Id)
is
Argx : constant Node_Id := Get_Pragma_Arg (Arg);
begin
Check_Arg_Is_Identifier (Argx);
if Chars (Argx) /= N1
and then Chars (Argx) /= N2
and then Chars (Argx) /= N3
and then Chars (Argx) /= N4
then
Error_Pragma_Arg ("invalid argument for pragma%", Argx);
end if;
end Check_Arg_Is_One_Of;
procedure Check_Arg_Is_One_Of
(Arg : Node_Id;
N1, N2, N3, N4, N5 : Name_Id)
is
Argx : constant Node_Id := Get_Pragma_Arg (Arg);
begin
Check_Arg_Is_Identifier (Argx);
if Chars (Argx) /= N1
and then Chars (Argx) /= N2
and then Chars (Argx) /= N3
and then Chars (Argx) /= N4
and then Chars (Argx) /= N5
then
Error_Pragma_Arg ("invalid argument for pragma%", Argx);
end if;
end Check_Arg_Is_One_Of;
---------------------------------
-- Check_Arg_Is_Queuing_Policy --
---------------------------------
procedure Check_Arg_Is_Queuing_Policy (Arg : Node_Id) is
Argx : constant Node_Id := Get_Pragma_Arg (Arg);
begin
Check_Arg_Is_Identifier (Argx);
if not Is_Queuing_Policy_Name (Chars (Argx)) then
Error_Pragma_Arg ("& is not a valid queuing policy name", Argx);
end if;
end Check_Arg_Is_Queuing_Policy;
------------------------------------
-- Check_Arg_Is_Static_Expression --
------------------------------------
procedure Check_Arg_Is_Static_Expression
(Arg : Node_Id;
Typ : Entity_Id := Empty)
is
begin
Check_Expr_Is_Static_Expression (Get_Pragma_Arg (Arg), Typ);
end Check_Arg_Is_Static_Expression;
------------------------------------------
-- Check_Arg_Is_Task_Dispatching_Policy --
------------------------------------------
procedure Check_Arg_Is_Task_Dispatching_Policy (Arg : Node_Id) is
Argx : constant Node_Id := Get_Pragma_Arg (Arg);
begin
Check_Arg_Is_Identifier (Argx);
if not Is_Task_Dispatching_Policy_Name (Chars (Argx)) then
Error_Pragma_Arg
("& is not a valid task dispatching policy name", Argx);
end if;
end Check_Arg_Is_Task_Dispatching_Policy;
---------------------
-- Check_Arg_Order --
---------------------
procedure Check_Arg_Order (Names : Name_List) is
Arg : Node_Id;
Highest_So_Far : Natural := 0;
-- Highest index in Names seen do far
begin
Arg := Arg1;
for J in 1 .. Arg_Count loop
if Chars (Arg) /= No_Name then
for K in Names'Range loop
if Chars (Arg) = Names (K) then
if K < Highest_So_Far then
Error_Msg_Name_1 := Pname;
Error_Msg_N
("parameters out of order for pragma%", Arg);
Error_Msg_Name_1 := Names (K);
Error_Msg_Name_2 := Names (Highest_So_Far);
Error_Msg_N ("\% must appear before %", Arg);
raise Pragma_Exit;
else
Highest_So_Far := K;
end if;
end if;
end loop;
end if;
Arg := Next (Arg);
end loop;
end Check_Arg_Order;
--------------------------------
-- Check_At_Least_N_Arguments --
--------------------------------
procedure Check_At_Least_N_Arguments (N : Nat) is
begin
if Arg_Count < N then
Error_Pragma ("too few arguments for pragma%");
end if;
end Check_At_Least_N_Arguments;
-------------------------------
-- Check_At_Most_N_Arguments --
-------------------------------
procedure Check_At_Most_N_Arguments (N : Nat) is
Arg : Node_Id;
begin
if Arg_Count > N then
Arg := Arg1;
for J in 1 .. N loop
Next (Arg);
Error_Pragma_Arg ("too many arguments for pragma%", Arg);
end loop;
end if;
end Check_At_Most_N_Arguments;
---------------------
-- Check_Component --
---------------------
procedure Check_Component
(Comp : Node_Id;
UU_Typ : Entity_Id;
In_Variant_Part : Boolean := False)
is
Comp_Id : constant Entity_Id := Defining_Identifier (Comp);
Sindic : constant Node_Id :=
Subtype_Indication (Component_Definition (Comp));
Typ : constant Entity_Id := Etype (Comp_Id);
begin
-- Ada 2005 (AI-216): If a component subtype is subject to a per-
-- object constraint, then the component type shall be an Unchecked_
-- Union.
if Nkind (Sindic) = N_Subtype_Indication
and then Has_Per_Object_Constraint (Comp_Id)
and then not Is_Unchecked_Union (Etype (Subtype_Mark (Sindic)))
then
Error_Msg_N
("component subtype subject to per-object constraint " &
"must be an Unchecked_Union", Comp);
-- Ada 2012 (AI05-0026): For an unchecked union type declared within
-- the body of a generic unit, or within the body of any of its
-- descendant library units, no part of the type of a component
-- declared in a variant_part of the unchecked union type shall be of
-- a formal private type or formal private extension declared within
-- the formal part of the generic unit.
elsif Ada_Version >= Ada_2012
and then In_Generic_Body (UU_Typ)
and then In_Variant_Part
and then Is_Private_Type (Typ)
and then Is_Generic_Type (Typ)
then
Error_Msg_N
("component of unchecked union cannot be of generic type", Comp);
elsif Needs_Finalization (Typ) then
Error_Msg_N
("component of unchecked union cannot be controlled", Comp);
elsif Has_Task (Typ) then
Error_Msg_N
("component of unchecked union cannot have tasks", Comp);
end if;
end Check_Component;
---------------------------------
-- Check_Contract_Or_Test_Case --
---------------------------------
procedure Check_Contract_Or_Test_Case is
P : Node_Id;
PO : Node_Id;
procedure Chain_CTC (PO : Node_Id);
-- If PO is a [generic] subprogram declaration node, then the
-- contract-case or test-case applies to this subprogram and the
-- processing for the pragma is completed. Otherwise the pragma
-- is misplaced.
---------------
-- Chain_CTC --
---------------
procedure Chain_CTC (PO : Node_Id) is
S : Entity_Id;
begin
if Nkind (PO) = N_Abstract_Subprogram_Declaration then
Error_Pragma
("pragma% cannot be applied to abstract subprogram");
elsif Nkind (PO) = N_Entry_Declaration then
Error_Pragma ("pragma% cannot be applied to entry");
elsif not Nkind_In (PO, N_Subprogram_Declaration,
N_Generic_Subprogram_Declaration)
then
Pragma_Misplaced;
end if;
-- Here if we have [generic] subprogram declaration
S := Defining_Unit_Name (Specification (PO));
-- Note: we do not analyze the pragma at this point. Instead we
-- delay this analysis until the end of the declarative part in
-- which the pragma appears. This implements the required delay
-- in this analysis, allowing forward references. The analysis
-- happens at the end of Analyze_Declarations.
-- There should not be another contract-case or test-case with the
-- same name associated to this subprogram.
declare
Name : constant String_Id := Get_Name_From_CTC_Pragma (N);
CTC : Node_Id;
begin
CTC := Spec_CTC_List (Contract (S));
while Present (CTC) loop
-- Omit pragma Contract_Cases because it does not introduce
-- a unique case name and it does not follow the syntax of
-- Contract_Case and Test_Case.
if Pragma_Name (CTC) = Name_Contract_Cases then
null;
elsif String_Equal
(Name, Get_Name_From_CTC_Pragma (CTC))
then
Error_Msg_Sloc := Sloc (CTC);
Error_Pragma ("name for pragma% is already used#");
end if;
CTC := Next_Pragma (CTC);
end loop;
end;
-- Chain spec CTC pragma to list for subprogram
Set_Next_Pragma (N, Spec_CTC_List (Contract (S)));
Set_Spec_CTC_List (Contract (S), N);
end Chain_CTC;
-- Start of processing for Check_Contract_Or_Test_Case
begin
-- First check pragma arguments
GNAT_Pragma;
Check_At_Least_N_Arguments (2);
Check_At_Most_N_Arguments (4);
Check_Arg_Order
((Name_Name, Name_Mode, Name_Requires, Name_Ensures));
Check_Optional_Identifier (Arg1, Name_Name);
Check_Arg_Is_Static_Expression (Arg1, Standard_String);
-- In ASIS mode, for a pragma generated from a source aspect, also
-- analyze the original aspect expression.
if ASIS_Mode
and then Present (Corresponding_Aspect (N))
then
Check_Expr_Is_Static_Expression
(Original_Node (Get_Pragma_Arg (Arg1)), Standard_String);
end if;
Check_Optional_Identifier (Arg2, Name_Mode);
Check_Arg_Is_One_Of (Arg2, Name_Nominal, Name_Robustness);
if Arg_Count = 4 then
Check_Identifier (Arg3, Name_Requires);
Check_Identifier (Arg4, Name_Ensures);
elsif Arg_Count = 3 then
Check_Identifier_Is_One_Of (Arg3, Name_Requires, Name_Ensures);
end if;
-- Check pragma placement
if not Is_List_Member (N) then
Pragma_Misplaced;
end if;
-- Contract-case or test-case should only appear in package spec unit
if Get_Source_Unit (N) = No_Unit
or else not Nkind_In (Sinfo.Unit (Cunit (Get_Source_Unit (N))),
N_Package_Declaration,
N_Generic_Package_Declaration)
then
Pragma_Misplaced;
end if;
-- Search prior declarations
P := N;
while Present (Prev (P)) loop
P := Prev (P);
-- If the previous node is a generic subprogram, do not go to to
-- the original node, which is the unanalyzed tree: we need to
-- attach the contract-case or test-case to the analyzed version
-- at this point. They get propagated to the original tree when
-- analyzing the corresponding body.
if Nkind (P) not in N_Generic_Declaration then
PO := Original_Node (P);
else
PO := P;
end if;
-- Skip past prior pragma
if Nkind (PO) = N_Pragma then
null;
-- Skip stuff not coming from source
elsif not Comes_From_Source (PO) then
null;
-- Only remaining possibility is subprogram declaration. First
-- check that it is declared directly in a package declaration.
-- This may be either the package declaration for the current unit
-- being defined or a local package declaration.
elsif not Present (Parent (Parent (PO)))
or else not Present (Parent (Parent (Parent (PO))))
or else not Nkind_In (Parent (Parent (PO)),
N_Package_Declaration,
N_Generic_Package_Declaration)
then
Pragma_Misplaced;
else
Chain_CTC (PO);
return;
end if;
end loop;
-- If we fall through, pragma was misplaced
Pragma_Misplaced;
end Check_Contract_Or_Test_Case;
----------------------------
-- Check_Duplicate_Pragma --
----------------------------
procedure Check_Duplicate_Pragma (E : Entity_Id) is
Id : Entity_Id := E;
P : Node_Id;
begin
-- Nothing to do if this pragma comes from an aspect specification,
-- since we could not be duplicating a pragma, and we dealt with the
-- case of duplicated aspects in Analyze_Aspect_Specifications.
if From_Aspect_Specification (N) then
return;
end if;
-- Otherwise current pragma may duplicate previous pragma or a
-- previously given aspect specification or attribute definition
-- clause for the same pragma.
P := Get_Rep_Item (E, Pragma_Name (N), Check_Parents => False);
if Present (P) then
Error_Msg_Name_1 := Pragma_Name (N);
Error_Msg_Sloc := Sloc (P);
-- For a single protected or a single task object, the error is
-- issued on the original entity.
if Ekind_In (Id, E_Task_Type, E_Protected_Type) then
Id := Defining_Identifier (Original_Node (Parent (Id)));
end if;
if Nkind (P) = N_Aspect_Specification
or else From_Aspect_Specification (P)
then
Error_Msg_NE ("aspect% for & previously given#", N, Id);
else
Error_Msg_NE ("pragma% for & duplicates pragma#", N, Id);
end if;
raise Pragma_Exit;
end if;
end Check_Duplicate_Pragma;
----------------------------------
-- Check_Duplicated_Export_Name --
----------------------------------
procedure Check_Duplicated_Export_Name (Nam : Node_Id) is
String_Val : constant String_Id := Strval (Nam);
begin
-- We are only interested in the export case, and in the case of
-- generics, it is the instance, not the template, that is the
-- problem (the template will generate a warning in any case).
if not Inside_A_Generic
and then (Prag_Id = Pragma_Export
or else
Prag_Id = Pragma_Export_Procedure
or else
Prag_Id = Pragma_Export_Valued_Procedure
or else
Prag_Id = Pragma_Export_Function)
then
for J in Externals.First .. Externals.Last loop
if String_Equal (String_Val, Strval (Externals.Table (J))) then
Error_Msg_Sloc := Sloc (Externals.Table (J));
Error_Msg_N ("external name duplicates name given#", Nam);
exit;
end if;
end loop;
Externals.Append (Nam);
end if;
end Check_Duplicated_Export_Name;
-------------------------------------
-- Check_Expr_Is_Static_Expression --
-------------------------------------
procedure Check_Expr_Is_Static_Expression
(Expr : Node_Id;
Typ : Entity_Id := Empty)
is
begin
if Present (Typ) then
Analyze_And_Resolve (Expr, Typ);
else
Analyze_And_Resolve (Expr);
end if;
if Is_OK_Static_Expression (Expr) then
return;
elsif Etype (Expr) = Any_Type then
raise Pragma_Exit;
-- An interesting special case, if we have a string literal and we
-- are in Ada 83 mode, then we allow it even though it will not be
-- flagged as static. This allows the use of Ada 95 pragmas like
-- Import in Ada 83 mode. They will of course be flagged with
-- warnings as usual, but will not cause errors.
elsif Ada_Version = Ada_83
and then Nkind (Expr) = N_String_Literal
then
return;
-- Static expression that raises Constraint_Error. This has already
-- been flagged, so just exit from pragma processing.
elsif Is_Static_Expression (Expr) then
raise Pragma_Exit;
-- Finally, we have a real error
else
Error_Msg_Name_1 := Pname;
declare
Msg : String :=
"argument for pragma% must be a static expression!";
begin
Fix_Error (Msg);
Flag_Non_Static_Expr (Msg, Expr);
end;
raise Pragma_Exit;
end if;
end Check_Expr_Is_Static_Expression;
-------------------------
-- Check_First_Subtype --
-------------------------
procedure Check_First_Subtype (Arg : Node_Id) is
Argx : constant Node_Id := Get_Pragma_Arg (Arg);
Ent : constant Entity_Id := Entity (Argx);
begin
if Is_First_Subtype (Ent) then
null;
elsif Is_Type (Ent) then
Error_Pragma_Arg
("pragma% cannot apply to subtype", Argx);
elsif Is_Object (Ent) then
Error_Pragma_Arg
("pragma% cannot apply to object, requires a type", Argx);
else
Error_Pragma_Arg
("pragma% cannot apply to&, requires a type", Argx);
end if;
end Check_First_Subtype;
----------------------
-- Check_Identifier --
----------------------
procedure Check_Identifier (Arg : Node_Id; Id : Name_Id) is
begin
if Present (Arg)
and then Nkind (Arg) = N_Pragma_Argument_Association
then
if Chars (Arg) = No_Name or else Chars (Arg) /= Id then
Error_Msg_Name_1 := Pname;
Error_Msg_Name_2 := Id;
Error_Msg_N ("pragma% argument expects identifier%", Arg);
raise Pragma_Exit;
end if;
end if;
end Check_Identifier;
--------------------------------
-- Check_Identifier_Is_One_Of --
--------------------------------
procedure Check_Identifier_Is_One_Of (Arg : Node_Id; N1, N2 : Name_Id) is
begin
if Present (Arg)
and then Nkind (Arg) = N_Pragma_Argument_Association
then
if Chars (Arg) = No_Name then
Error_Msg_Name_1 := Pname;
Error_Msg_N ("pragma% argument expects an identifier", Arg);
raise Pragma_Exit;
elsif Chars (Arg) /= N1
and then Chars (Arg) /= N2
then
Error_Msg_Name_1 := Pname;
Error_Msg_N ("invalid identifier for pragma% argument", Arg);
raise Pragma_Exit;
end if;
end if;
end Check_Identifier_Is_One_Of;
---------------------------
-- Check_In_Main_Program --
---------------------------
procedure Check_In_Main_Program is
P : constant Node_Id := Parent (N);
begin
-- Must be at in subprogram body
if Nkind (P) /= N_Subprogram_Body then
Error_Pragma ("% pragma allowed only in subprogram");
-- Otherwise warn if obviously not main program
elsif Present (Parameter_Specifications (Specification (P)))
or else not Is_Compilation_Unit (Defining_Entity (P))
then
Error_Msg_Name_1 := Pname;
Error_Msg_N
("??pragma% is only effective in main program", N);
end if;
end Check_In_Main_Program;
---------------------------------------
-- Check_Interrupt_Or_Attach_Handler --
---------------------------------------
procedure Check_Interrupt_Or_Attach_Handler is
Arg1_X : constant Node_Id := Get_Pragma_Arg (Arg1);
Handler_Proc, Proc_Scope : Entity_Id;
begin
Analyze (Arg1_X);
if Prag_Id = Pragma_Interrupt_Handler then
Check_Restriction (No_Dynamic_Attachment, N);
end if;
Handler_Proc := Find_Unique_Parameterless_Procedure (Arg1_X, Arg1);
Proc_Scope := Scope (Handler_Proc);
-- On AAMP only, a pragma Interrupt_Handler is supported for
-- nonprotected parameterless procedures.
if not AAMP_On_Target
or else Prag_Id = Pragma_Attach_Handler
then
if Ekind (Proc_Scope) /= E_Protected_Type then
Error_Pragma_Arg
("argument of pragma% must be protected procedure", Arg1);
end if;
if Parent (N) /= Protected_Definition (Parent (Proc_Scope)) then
Error_Pragma ("pragma% must be in protected definition");
end if;
end if;
if not Is_Library_Level_Entity (Proc_Scope)
or else (AAMP_On_Target
and then not Is_Library_Level_Entity (Handler_Proc))
then
Error_Pragma_Arg
("argument for pragma% must be library level entity", Arg1);
end if;
-- AI05-0033: A pragma cannot appear within a generic body, because
-- instance can be in a nested scope. The check that protected type
-- is itself a library-level declaration is done elsewhere.
-- Note: we omit this check in Codepeer mode to properly handle code
-- prior to AI-0033 (pragmas don't matter to codepeer in any case).
if Inside_A_Generic then
if Ekind (Scope (Current_Scope)) = E_Generic_Package
and then In_Package_Body (Scope (Current_Scope))
and then not CodePeer_Mode
then
Error_Pragma ("pragma% cannot be used inside a generic");
end if;
end if;
end Check_Interrupt_Or_Attach_Handler;
---------------------------------
-- Check_Loop_Pragma_Placement --
---------------------------------
procedure Check_Loop_Pragma_Placement is
procedure Placement_Error (Constr : Node_Id);
pragma No_Return (Placement_Error);
-- Node Constr denotes the last loop restricted construct before we
-- encountered an illegal relation between enclosing constructs. Emit
-- an error depending on what Constr was.
---------------------
-- Placement_Error --
---------------------
procedure Placement_Error (Constr : Node_Id) is
begin
if Nkind (Constr) = N_Pragma then
Error_Pragma
("pragma % must appear immediately within the statements " &
"of a loop");
else
Error_Pragma_Arg
("block containing pragma % must appear immediately within " &
"the statements of a loop", Constr);
end if;
end Placement_Error;
-- Local declarations
Prev : Node_Id;
Stmt : Node_Id;
-- Start of processing for Check_Loop_Pragma_Placement
begin
Prev := N;
Stmt := Parent (N);
while Present (Stmt) loop
-- The pragma or previous block must appear immediately within the
-- current block's declarative or statement part.
if Nkind (Stmt) = N_Block_Statement then
if (No (Declarations (Stmt))
or else List_Containing (Prev) /= Declarations (Stmt))
and then
List_Containing (Prev) /=
Statements (Handled_Statement_Sequence (Stmt))
then
Placement_Error (Prev);
return;
-- Keep inspecting the parents because we are now within a
-- chain of nested blocks.
else
Prev := Stmt;
Stmt := Parent (Stmt);
end if;
-- The pragma or previous block must appear immediately within the
-- statements of the loop.
elsif Nkind (Stmt) = N_Loop_Statement then
if List_Containing (Prev) /= Statements (Stmt) then
Placement_Error (Prev);
end if;
-- Stop the traversal because we reached the innermost loop
-- regardless of whether we encountered an error or not.
return;
-- Ignore a handled statement sequence. Note that this node may
-- be related to a subprogram body in which case we will emit an
-- error on the next iteration of the search.
elsif Nkind (Stmt) = N_Handled_Sequence_Of_Statements then
Stmt := Parent (Stmt);
-- Any other statement breaks the chain from the pragma to the
-- loop.
else
Placement_Error (Prev);
return;
end if;
end loop;
end Check_Loop_Pragma_Placement;
-------------------------------------------
-- Check_Is_In_Decl_Part_Or_Package_Spec --
-------------------------------------------
procedure Check_Is_In_Decl_Part_Or_Package_Spec is
P : Node_Id;
begin
P := Parent (N);
loop
if No (P) then
exit;
elsif Nkind (P) = N_Handled_Sequence_Of_Statements then
exit;
elsif Nkind_In (P, N_Package_Specification,
N_Block_Statement)
then
return;
-- Note: the following tests seem a little peculiar, because
-- they test for bodies, but if we were in the statement part
-- of the body, we would already have hit the handled statement
-- sequence, so the only way we get here is by being in the
-- declarative part of the body.
elsif Nkind_In (P, N_Subprogram_Body,
N_Package_Body,
N_Task_Body,
N_Entry_Body)
then
return;
end if;
P := Parent (P);
end loop;
Error_Pragma ("pragma% is not in declarative part or package spec");
end Check_Is_In_Decl_Part_Or_Package_Spec;
-------------------------
-- Check_No_Identifier --
-------------------------
procedure Check_No_Identifier (Arg : Node_Id) is
begin
if Nkind (Arg) = N_Pragma_Argument_Association
and then Chars (Arg) /= No_Name
then
Error_Pragma_Arg_Ident
("pragma% does not permit identifier& here", Arg);
end if;
end Check_No_Identifier;
--------------------------
-- Check_No_Identifiers --
--------------------------
procedure Check_No_Identifiers is
Arg_Node : Node_Id;
begin
if Arg_Count > 0 then
Arg_Node := Arg1;
while Present (Arg_Node) loop
Check_No_Identifier (Arg_Node);
Next (Arg_Node);
end loop;
end if;
end Check_No_Identifiers;
------------------------
-- Check_No_Link_Name --
------------------------
procedure Check_No_Link_Name is
begin
if Present (Arg3)
and then Chars (Arg3) = Name_Link_Name
then
Arg4 := Arg3;
end if;
if Present (Arg4) then
Error_Pragma_Arg
("Link_Name argument not allowed for Import Intrinsic", Arg4);
end if;
end Check_No_Link_Name;
-------------------------------
-- Check_Optional_Identifier --
-------------------------------
procedure Check_Optional_Identifier (Arg : Node_Id; Id : Name_Id) is
begin
if Present (Arg)
and then Nkind (Arg) = N_Pragma_Argument_Association
and then Chars (Arg) /= No_Name
then
if Chars (Arg) /= Id then
Error_Msg_Name_1 := Pname;
Error_Msg_Name_2 := Id;
Error_Msg_N ("pragma% argument expects identifier%", Arg);
raise Pragma_Exit;
end if;
end if;
end Check_Optional_Identifier;
procedure Check_Optional_Identifier (Arg : Node_Id; Id : String) is
begin
Name_Buffer (1 .. Id'Length) := Id;
Name_Len := Id'Length;
Check_Optional_Identifier (Arg, Name_Find);
end Check_Optional_Identifier;
--------------------------------------
-- Check_Precondition_Postcondition --
--------------------------------------
procedure Check_Precondition_Postcondition (In_Body : out Boolean) is
P : Node_Id;
PO : Node_Id;
procedure Chain_PPC (PO : Node_Id);
-- If PO is an entry or a [generic] subprogram declaration node, then
-- the precondition/postcondition applies to this subprogram and the
-- processing for the pragma is completed. Otherwise the pragma is
-- misplaced.
---------------
-- Chain_PPC --
---------------
procedure Chain_PPC (PO : Node_Id) is
S : Entity_Id;
begin
if Nkind (PO) = N_Abstract_Subprogram_Declaration then
if not From_Aspect_Specification (N) then
Error_Pragma
("pragma% cannot be applied to abstract subprogram");
elsif Class_Present (N) then
null;
else
Error_Pragma
("aspect % requires ''Class for abstract subprogram");
end if;
-- AI05-0230: The same restriction applies to null procedures. For
-- compatibility with earlier uses of the Ada pragma, apply this
-- rule only to aspect specifications.
-- The above discrpency needs documentation. Robert is dubious
-- about whether it is a good idea ???
elsif Nkind (PO) = N_Subprogram_Declaration
and then Nkind (Specification (PO)) = N_Procedure_Specification
and then Null_Present (Specification (PO))
and then From_Aspect_Specification (N)
and then not Class_Present (N)
then
Error_Pragma
("aspect % requires ''Class for null procedure");
-- Pre/postconditions are legal on a subprogram body if it is not
-- a completion of a declaration.
elsif Nkind (PO) = N_Subprogram_Body
and then Acts_As_Spec (PO)
then
null;
elsif not Nkind_In (PO, N_Subprogram_Declaration,
N_Expression_Function,
N_Generic_Subprogram_Declaration,
N_Entry_Declaration)
then
Pragma_Misplaced;
end if;
-- Here if we have [generic] subprogram or entry declaration
if Nkind (PO) = N_Entry_Declaration then
S := Defining_Entity (PO);
else
S := Defining_Unit_Name (Specification (PO));
if Nkind (S) = N_Defining_Program_Unit_Name then
S := Defining_Identifier (S);
end if;
end if;
-- Note: we do not analyze the pragma at this point. Instead we
-- delay this analysis until the end of the declarative part in
-- which the pragma appears. This implements the required delay
-- in this analysis, allowing forward references. The analysis
-- happens at the end of Analyze_Declarations.
-- Chain spec PPC pragma to list for subprogram
Set_Next_Pragma (N, Spec_PPC_List (Contract (S)));
Set_Spec_PPC_List (Contract (S), N);
-- Return indicating spec case
In_Body := False;
return;
end Chain_PPC;
-- Start of processing for Check_Precondition_Postcondition
begin
if not Is_List_Member (N) then
Pragma_Misplaced;
end if;
-- Preanalyze message argument if present. Visibility in this
-- argument is established at the point of pragma occurrence.
if Arg_Count = 2 then
Check_Optional_Identifier (Arg2, Name_Message);
Preanalyze_Spec_Expression
(Get_Pragma_Arg (Arg2), Standard_String);
end if;
-- For a pragma PPC in the extended main source unit, record enabled
-- status in SCO.
-- This may seem redundant with the call to Check_Enabled occurring
-- later on when the pragma is rewritten into a pragma Check but
-- is actually required in the case of a postcondition within a
-- generic.
if Check_Enabled (Pname) and then not Split_PPC (N) then
Set_SCO_Pragma_Enabled (Loc);
end if;
-- If we are within an inlined body, the legality of the pragma
-- has been checked already.
if In_Inlined_Body then
In_Body := True;
return;
end if;
-- Search prior declarations
P := N;
while Present (Prev (P)) loop
P := Prev (P);
-- If the previous node is a generic subprogram, do not go to to
-- the original node, which is the unanalyzed tree: we need to
-- attach the pre/postconditions to the analyzed version at this
-- point. They get propagated to the original tree when analyzing
-- the corresponding body.
if Nkind (P) not in N_Generic_Declaration then
PO := Original_Node (P);
else
PO := P;
end if;
-- Skip past prior pragma
if Nkind (PO) = N_Pragma then
null;
-- Skip stuff not coming from source
elsif not Comes_From_Source (PO) then
-- The condition may apply to a subprogram instantiation
if Nkind (PO) = N_Subprogram_Declaration
and then Present (Generic_Parent (Specification (PO)))
then
Chain_PPC (PO);
return;
elsif Nkind (PO) = N_Subprogram_Declaration
and then In_Instance
then
Chain_PPC (PO);
return;
-- For all other cases of non source code, do nothing
else
null;
end if;
-- Only remaining possibility is subprogram declaration
else
Chain_PPC (PO);
return;
end if;
end loop;
-- If we fall through loop, pragma is at start of list, so see if it
-- is at the start of declarations of a subprogram body.
if Nkind (Parent (N)) = N_Subprogram_Body
and then List_Containing (N) = Declarations (Parent (N))
then
if Operating_Mode /= Generate_Code
or else Inside_A_Generic
then
-- Analyze pragma expression for correctness and for ASIS use
Preanalyze_Assert_Expression
(Get_Pragma_Arg (Arg1), Standard_Boolean);
-- In ASIS mode, for a pragma generated from a source aspect,
-- also analyze the original aspect expression.
if ASIS_Mode
and then Present (Corresponding_Aspect (N))
then
Preanalyze_Assert_Expression
(Expression (Corresponding_Aspect (N)), Standard_Boolean);
end if;
end if;
In_Body := True;
return;
-- See if it is in the pragmas after a library level subprogram
elsif Nkind (Parent (N)) = N_Compilation_Unit_Aux then
-- In formal verification mode, analyze pragma expression for
-- correctness, as it is not expanded later.
if Alfa_Mode then
Analyze_PPC_In_Decl_Part
(N, Defining_Entity (Unit (Parent (Parent (N)))));
end if;
Chain_PPC (Unit (Parent (Parent (N))));
return;
end if;
-- If we fall through, pragma was misplaced
Pragma_Misplaced;
end Check_Precondition_Postcondition;
-----------------------------
-- Check_Static_Constraint --
-----------------------------
-- Note: for convenience in writing this procedure, in addition to
-- the officially (i.e. by spec) allowed argument which is always a
-- constraint, it also allows ranges and discriminant associations.
-- Above is not clear ???
procedure Check_Static_Constraint (Constr : Node_Id) is
procedure Require_Static (E : Node_Id);
-- Require given expression to be static expression
--------------------
-- Require_Static --
--------------------
procedure Require_Static (E : Node_Id) is
begin
if not Is_OK_Static_Expression (E) then
Flag_Non_Static_Expr
("non-static constraint not allowed in Unchecked_Union!", E);
raise Pragma_Exit;
end if;
end Require_Static;
-- Start of processing for Check_Static_Constraint
begin
case Nkind (Constr) is
when N_Discriminant_Association =>
Require_Static (Expression (Constr));
when N_Range =>
Require_Static (Low_Bound (Constr));
Require_Static (High_Bound (Constr));
when N_Attribute_Reference =>
Require_Static (Type_Low_Bound (Etype (Prefix (Constr))));
Require_Static (Type_High_Bound (Etype (Prefix (Constr))));
when N_Range_Constraint =>
Check_Static_Constraint (Range_Expression (Constr));
when N_Index_Or_Discriminant_Constraint =>
declare
IDC : Entity_Id;
begin
IDC := First (Constraints (Constr));
while Present (IDC) loop
Check_Static_Constraint (IDC);
Next (IDC);
end loop;
end;
when others =>
null;
end case;
end Check_Static_Constraint;
--------------------------------------
-- Check_Valid_Configuration_Pragma --
--------------------------------------
-- A configuration pragma must appear in the context clause of a
-- compilation unit, and only other pragmas may precede it. Note that
-- the test also allows use in a configuration pragma file.
procedure Check_Valid_Configuration_Pragma is
begin
if not Is_Configuration_Pragma then
Error_Pragma ("incorrect placement for configuration pragma%");
end if;
end Check_Valid_Configuration_Pragma;
-------------------------------------
-- Check_Valid_Library_Unit_Pragma --
-------------------------------------
procedure Check_Valid_Library_Unit_Pragma is
Plist : List_Id;
Parent_Node : Node_Id;
Unit_Name : Entity_Id;
Unit_Kind : Node_Kind;
Unit_Node : Node_Id;
Sindex : Source_File_Index;
begin
if not Is_List_Member (N) then
Pragma_Misplaced;
else
Plist := List_Containing (N);
Parent_Node := Parent (Plist);
if Parent_Node = Empty then
Pragma_Misplaced;
-- Case of pragma appearing after a compilation unit. In this case
-- it must have an argument with the corresponding name and must
-- be part of the following pragmas of its parent.
elsif Nkind (Parent_Node) = N_Compilation_Unit_Aux then
if Plist /= Pragmas_After (Parent_Node) then
Pragma_Misplaced;
elsif Arg_Count = 0 then
Error_Pragma
("argument required if outside compilation unit");
else
Check_No_Identifiers;
Check_Arg_Count (1);
Unit_Node := Unit (Parent (Parent_Node));
Unit_Kind := Nkind (Unit_Node);
Analyze (Get_Pragma_Arg (Arg1));
if Unit_Kind = N_Generic_Subprogram_Declaration
or else Unit_Kind = N_Subprogram_Declaration
then
Unit_Name := Defining_Entity (Unit_Node);
elsif Unit_Kind in N_Generic_Instantiation then
Unit_Name := Defining_Entity (Unit_Node);
else
Unit_Name := Cunit_Entity (Current_Sem_Unit);
end if;
if Chars (Unit_Name) /=
Chars (Entity (Get_Pragma_Arg (Arg1)))
then
Error_Pragma_Arg
("pragma% argument is not current unit name", Arg1);
end if;
if Ekind (Unit_Name) = E_Package
and then Present (Renamed_Entity (Unit_Name))
then
Error_Pragma ("pragma% not allowed for renamed package");
end if;
end if;
-- Pragma appears other than after a compilation unit
else
-- Here we check for the generic instantiation case and also
-- for the case of processing a generic formal package. We
-- detect these cases by noting that the Sloc on the node
-- does not belong to the current compilation unit.
Sindex := Source_Index (Current_Sem_Unit);
if Loc not in Source_First (Sindex) .. Source_Last (Sindex) then
Rewrite (N, Make_Null_Statement (Loc));
return;
-- If before first declaration, the pragma applies to the
-- enclosing unit, and the name if present must be this name.
elsif Is_Before_First_Decl (N, Plist) then
Unit_Node := Unit_Declaration_Node (Current_Scope);
Unit_Kind := Nkind (Unit_Node);
if Nkind (Parent (Unit_Node)) /= N_Compilation_Unit then
Pragma_Misplaced;
elsif Unit_Kind = N_Subprogram_Body
and then not Acts_As_Spec (Unit_Node)
then
Pragma_Misplaced;
elsif Nkind (Parent_Node) = N_Package_Body then
Pragma_Misplaced;
elsif Nkind (Parent_Node) = N_Package_Specification
and then Plist = Private_Declarations (Parent_Node)
then
Pragma_Misplaced;
elsif (Nkind (Parent_Node) = N_Generic_Package_Declaration
or else Nkind (Parent_Node) =
N_Generic_Subprogram_Declaration)
and then Plist = Generic_Formal_Declarations (Parent_Node)
then
Pragma_Misplaced;
elsif Arg_Count > 0 then
Analyze (Get_Pragma_Arg (Arg1));
if Entity (Get_Pragma_Arg (Arg1)) /= Current_Scope then
Error_Pragma_Arg
("name in pragma% must be enclosing unit", Arg1);
end if;
-- It is legal to have no argument in this context
else
return;
end if;
-- Error if not before first declaration. This is because a
-- library unit pragma argument must be the name of a library
-- unit (RM 10.1.5(7)), but the only names permitted in this
-- context are (RM 10.1.5(6)) names of subprogram declarations,
-- generic subprogram declarations or generic instantiations.
else
Error_Pragma
("pragma% misplaced, must be before first declaration");
end if;
end if;
end if;
end Check_Valid_Library_Unit_Pragma;
-------------------
-- Check_Variant --
-------------------
procedure Check_Variant (Variant : Node_Id; UU_Typ : Entity_Id) is
Clist : constant Node_Id := Component_List (Variant);
Comp : Node_Id;
begin
Comp := First (Component_Items (Clist));
while Present (Comp) loop
Check_Component (Comp, UU_Typ, In_Variant_Part => True);
Next (Comp);
end loop;
end Check_Variant;
------------------
-- Error_Pragma --
------------------
procedure Error_Pragma (Msg : String) is
MsgF : String := Msg;
begin
Error_Msg_Name_1 := Pname;
Fix_Error (MsgF);
Error_Msg_N (MsgF, N);
raise Pragma_Exit;
end Error_Pragma;
----------------------
-- Error_Pragma_Arg --
----------------------
procedure Error_Pragma_Arg (Msg : String; Arg : Node_Id) is
MsgF : String := Msg;
begin
Error_Msg_Name_1 := Pname;
Fix_Error (MsgF);
Error_Msg_N (MsgF, Get_Pragma_Arg (Arg));
raise Pragma_Exit;
end Error_Pragma_Arg;
procedure Error_Pragma_Arg (Msg1, Msg2 : String; Arg : Node_Id) is
MsgF : String := Msg1;
begin
Error_Msg_Name_1 := Pname;
Fix_Error (MsgF);
Error_Msg_N (MsgF, Get_Pragma_Arg (Arg));
Error_Pragma_Arg (Msg2, Arg);
end Error_Pragma_Arg;
----------------------------
-- Error_Pragma_Arg_Ident --
----------------------------
procedure Error_Pragma_Arg_Ident (Msg : String; Arg : Node_Id) is
MsgF : String := Msg;
begin
Error_Msg_Name_1 := Pname;
Fix_Error (MsgF);
Error_Msg_N (MsgF, Arg);
raise Pragma_Exit;
end Error_Pragma_Arg_Ident;
----------------------
-- Error_Pragma_Ref --
----------------------
procedure Error_Pragma_Ref (Msg : String; Ref : Entity_Id) is
MsgF : String := Msg;
begin
Error_Msg_Name_1 := Pname;
Fix_Error (MsgF);
Error_Msg_Sloc := Sloc (Ref);
Error_Msg_NE (MsgF, N, Ref);
raise Pragma_Exit;
end Error_Pragma_Ref;
------------------------
-- Find_Lib_Unit_Name --
------------------------
function Find_Lib_Unit_Name return Entity_Id is
begin
-- Return inner compilation unit entity, for case of nested
-- categorization pragmas. This happens in generic unit.
if Nkind (Parent (N)) = N_Package_Specification
and then Defining_Entity (Parent (N)) /= Current_Scope
then
return Defining_Entity (Parent (N));
else
return Current_Scope;
end if;
end Find_Lib_Unit_Name;
----------------------------
-- Find_Program_Unit_Name --
----------------------------
procedure Find_Program_Unit_Name (Id : Node_Id) is
Unit_Name : Entity_Id;
Unit_Kind : Node_Kind;
P : constant Node_Id := Parent (N);
begin
if Nkind (P) = N_Compilation_Unit then
Unit_Kind := Nkind (Unit (P));
if Unit_Kind = N_Subprogram_Declaration
or else Unit_Kind = N_Package_Declaration
or else Unit_Kind in N_Generic_Declaration
then
Unit_Name := Defining_Entity (Unit (P));
if Chars (Id) = Chars (Unit_Name) then
Set_Entity (Id, Unit_Name);
Set_Etype (Id, Etype (Unit_Name));
else
Set_Etype (Id, Any_Type);
Error_Pragma
("cannot find program unit referenced by pragma%");
end if;
else
Set_Etype (Id, Any_Type);
Error_Pragma ("pragma% inapplicable to this unit");
end if;
else
Analyze (Id);
end if;
end Find_Program_Unit_Name;
-----------------------------------------
-- Find_Unique_Parameterless_Procedure --
-----------------------------------------
function Find_Unique_Parameterless_Procedure
(Name : Entity_Id;
Arg : Node_Id) return Entity_Id
is
Proc : Entity_Id := Empty;
begin
-- The body of this procedure needs some comments ???
if not Is_Entity_Name (Name) then
Error_Pragma_Arg
("argument of pragma% must be entity name", Arg);
elsif not Is_Overloaded (Name) then
Proc := Entity (Name);
if Ekind (Proc) /= E_Procedure
or else Present (First_Formal (Proc))
then
Error_Pragma_Arg
("argument of pragma% must be parameterless procedure", Arg);
end if;
else
declare
Found : Boolean := False;
It : Interp;
Index : Interp_Index;
begin
Get_First_Interp (Name, Index, It);
while Present (It.Nam) loop
Proc := It.Nam;
if Ekind (Proc) = E_Procedure
and then No (First_Formal (Proc))
then
if not Found then
Found := True;
Set_Entity (Name, Proc);
Set_Is_Overloaded (Name, False);
else
Error_Pragma_Arg
("ambiguous handler name for pragma% ", Arg);
end if;
end if;
Get_Next_Interp (Index, It);
end loop;
if not Found then
Error_Pragma_Arg
("argument of pragma% must be parameterless procedure",
Arg);
else
Proc := Entity (Name);
end if;
end;
end if;
return Proc;
end Find_Unique_Parameterless_Procedure;
---------------
-- Fix_Error --
---------------
procedure Fix_Error (Msg : in out String) is
begin
if From_Aspect_Specification (N) then
for J in Msg'First .. Msg'Last - 5 loop
if Msg (J .. J + 5) = "pragma" then
Msg (J .. J + 5) := "aspect";
end if;
end loop;
if Error_Msg_Name_1 = Name_Precondition then
Error_Msg_Name_1 := Name_Pre;
elsif Error_Msg_Name_1 = Name_Postcondition then
Error_Msg_Name_1 := Name_Post;
end if;
end if;
end Fix_Error;
-------------------------
-- Gather_Associations --
-------------------------
procedure Gather_Associations
(Names : Name_List;
Args : out Args_List)
is
Arg : Node_Id;
begin
-- Initialize all parameters to Empty
for J in Args'Range loop
Args (J) := Empty;
end loop;
-- That's all we have to do if there are no argument associations
if No (Pragma_Argument_Associations (N)) then
return;
end if;
-- Otherwise first deal with any positional parameters present
Arg := First (Pragma_Argument_Associations (N));
for Index in Args'Range loop
exit when No (Arg) or else Chars (Arg) /= No_Name;
Args (Index) := Get_Pragma_Arg (Arg);
Next (Arg);
end loop;
-- Positional parameters all processed, if any left, then we
-- have too many positional parameters.
if Present (Arg) and then Chars (Arg) = No_Name then
Error_Pragma_Arg
("too many positional associations for pragma%", Arg);
end if;
-- Process named parameters if any are present
while Present (Arg) loop
if Chars (Arg) = No_Name then
Error_Pragma_Arg
("positional association cannot follow named association",
Arg);
else
for Index in Names'Range loop
if Names (Index) = Chars (Arg) then
if Present (Args (Index)) then
Error_Pragma_Arg
("duplicate argument association for pragma%", Arg);
else
Args (Index) := Get_Pragma_Arg (Arg);
exit;
end if;
end if;
if Index = Names'Last then
Error_Msg_Name_1 := Pname;
Error_Msg_N ("pragma% does not allow & argument", Arg);
-- Check for possible misspelling
for Index1 in Names'Range loop
if Is_Bad_Spelling_Of
(Chars (Arg), Names (Index1))
then
Error_Msg_Name_1 := Names (Index1);
Error_Msg_N -- CODEFIX
("\possible misspelling of%", Arg);
exit;
end if;
end loop;
raise Pragma_Exit;
end if;
end loop;
end if;
Next (Arg);
end loop;
end Gather_Associations;
-----------------
-- GNAT_Pragma --
-----------------
procedure GNAT_Pragma is
begin
-- We need to check the No_Implementation_Pragmas restriction for
-- the case of a pragma from source. Note that the case of aspects
-- generating corresponding pragmas marks these pragmas as not being
-- from source, so this test also catches that case.
if Comes_From_Source (N) then
Check_Restriction (No_Implementation_Pragmas, N);
end if;
end GNAT_Pragma;
--------------------------
-- Is_Before_First_Decl --
--------------------------
function Is_Before_First_Decl
(Pragma_Node : Node_Id;
Decls : List_Id) return Boolean
is
Item : Node_Id := First (Decls);
begin
-- Only other pragmas can come before this pragma
loop
if No (Item) or else Nkind (Item) /= N_Pragma then
return False;
elsif Item = Pragma_Node then
return True;
end if;
Next (Item);
end loop;
end Is_Before_First_Decl;
-----------------------------
-- Is_Configuration_Pragma --
-----------------------------
-- A configuration pragma must appear in the context clause of a
-- compilation unit, and only other pragmas may precede it. Note that
-- the test below also permits use in a configuration pragma file.
function Is_Configuration_Pragma return Boolean is
Lis : constant List_Id := List_Containing (N);
Par : constant Node_Id := Parent (N);
Prg : Node_Id;
begin
-- If no parent, then we are in the configuration pragma file,
-- so the placement is definitely appropriate.
if No (Par) then
return True;
-- Otherwise we must be in the context clause of a compilation unit
-- and the only thing allowed before us in the context list is more
-- configuration pragmas.
elsif Nkind (Par) = N_Compilation_Unit
and then Context_Items (Par) = Lis
then
Prg := First (Lis);
loop
if Prg = N then
return True;
elsif Nkind (Prg) /= N_Pragma then
return False;
end if;
Next (Prg);
end loop;
else
return False;
end if;
end Is_Configuration_Pragma;
--------------------------
-- Is_In_Context_Clause --
--------------------------
function Is_In_Context_Clause return Boolean is
Plist : List_Id;
Parent_Node : Node_Id;
begin
if not Is_List_Member (N) then
return False;
else
Plist := List_Containing (N);
Parent_Node := Parent (Plist);
if Parent_Node = Empty
or else Nkind (Parent_Node) /= N_Compilation_Unit
or else Context_Items (Parent_Node) /= Plist
then
return False;
end if;
end if;
return True;
end Is_In_Context_Clause;
---------------------------------
-- Is_Static_String_Expression --
---------------------------------
function Is_Static_String_Expression (Arg : Node_Id) return Boolean is
Argx : constant Node_Id := Get_Pragma_Arg (Arg);
begin
Analyze_And_Resolve (Argx);
return Is_OK_Static_Expression (Argx)
and then Nkind (Argx) = N_String_Literal;
end Is_Static_String_Expression;
----------------------
-- Pragma_Misplaced --
----------------------
procedure Pragma_Misplaced is
begin
Error_Pragma ("incorrect placement of pragma%");
end Pragma_Misplaced;
------------------------------------
-- Process_Atomic_Shared_Volatile --
------------------------------------
procedure Process_Atomic_Shared_Volatile is
E_Id : Node_Id;
E : Entity_Id;
D : Node_Id;
K : Node_Kind;
Utyp : Entity_Id;
procedure Set_Atomic (E : Entity_Id);
-- Set given type as atomic, and if no explicit alignment was given,
-- set alignment to unknown, since back end knows what the alignment
-- requirements are for atomic arrays. Note: this step is necessary
-- for derived types.
----------------
-- Set_Atomic --
----------------
procedure Set_Atomic (E : Entity_Id) is
begin
Set_Is_Atomic (E);
if not Has_Alignment_Clause (E) then
Set_Alignment (E, Uint_0);
end if;
end Set_Atomic;
-- Start of processing for Process_Atomic_Shared_Volatile
begin
Check_Ada_83_Warning;
Check_No_Identifiers;
Check_Arg_Count (1);
Check_Arg_Is_Local_Name (Arg1);
E_Id := Get_Pragma_Arg (Arg1);
if Etype (E_Id) = Any_Type then
return;
end if;
E := Entity (E_Id);
D := Declaration_Node (E);
K := Nkind (D);
-- Check duplicate before we chain ourselves!
Check_Duplicate_Pragma (E);
-- Now check appropriateness of the entity
if Is_Type (E) then
if Rep_Item_Too_Early (E, N)
or else
Rep_Item_Too_Late (E, N)
then
return;
else
Check_First_Subtype (Arg1);
end if;
if Prag_Id /= Pragma_Volatile then
Set_Atomic (E);
Set_Atomic (Underlying_Type (E));
Set_Atomic (Base_Type (E));
end if;
-- Attribute belongs on the base type. If the view of the type is
-- currently private, it also belongs on the underlying type.
Set_Is_Volatile (Base_Type (E));
Set_Is_Volatile (Underlying_Type (E));
Set_Treat_As_Volatile (E);
Set_Treat_As_Volatile (Underlying_Type (E));
elsif K = N_Object_Declaration
or else (K = N_Component_Declaration
and then Original_Record_Component (E) = E)
then
if Rep_Item_Too_Late (E, N) then
return;
end if;
if Prag_Id /= Pragma_Volatile then
Set_Is_Atomic (E);
-- If the object declaration has an explicit initialization, a
-- temporary may have to be created to hold the expression, to
-- ensure that access to the object remain atomic.
if Nkind (Parent (E)) = N_Object_Declaration
and then Present (Expression (Parent (E)))
then
Set_Has_Delayed_Freeze (E);
end if;
-- An interesting improvement here. If an object of composite
-- type X is declared atomic, and the type X isn't, that's a
-- pity, since it may not have appropriate alignment etc. We
-- can rescue this in the special case where the object and
-- type are in the same unit by just setting the type as
-- atomic, so that the back end will process it as atomic.
-- Note: we used to do this for elementary types as well,
-- but that turns out to be a bad idea and can have unwanted
-- effects, most notably if the type is elementary, the object
-- a simple component within a record, and both are in a spec:
-- every object of this type in the entire program will be
-- treated as atomic, thus incurring a potentially costly
-- synchronization operation for every access.
-- Of course it would be best if the back end could just adjust
-- the alignment etc for the specific object, but that's not
-- something we are capable of doing at this point.
Utyp := Underlying_Type (Etype (E));
if Present (Utyp)
and then Is_Composite_Type (Utyp)
and then Sloc (E) > No_Location
and then Sloc (Utyp) > No_Location
and then
Get_Source_File_Index (Sloc (E)) =
Get_Source_File_Index (Sloc (Underlying_Type (Etype (E))))
then
Set_Is_Atomic (Underlying_Type (Etype (E)));
end if;
end if;
Set_Is_Volatile (E);
Set_Treat_As_Volatile (E);
else
Error_Pragma_Arg
("inappropriate entity for pragma%", Arg1);
end if;
end Process_Atomic_Shared_Volatile;
-------------------------------------------
-- Process_Compile_Time_Warning_Or_Error --
-------------------------------------------
procedure Process_Compile_Time_Warning_Or_Error is
Arg1x : constant Node_Id := Get_Pragma_Arg (Arg1);
begin
Check_Arg_Count (2);
Check_No_Identifiers;
Check_Arg_Is_Static_Expression (Arg2, Standard_String);
Analyze_And_Resolve (Arg1x, Standard_Boolean);
if Compile_Time_Known_Value (Arg1x) then
if Is_True (Expr_Value (Get_Pragma_Arg (Arg1))) then
declare
Str : constant String_Id :=
Strval (Get_Pragma_Arg (Arg2));
Len : constant Int := String_Length (Str);
Cont : Boolean;
Ptr : Nat;
CC : Char_Code;
C : Character;
Cent : constant Entity_Id :=
Cunit_Entity (Current_Sem_Unit);
Force : constant Boolean :=
Prag_Id = Pragma_Compile_Time_Warning
and then
Is_Spec_Name (Unit_Name (Current_Sem_Unit))
and then (Ekind (Cent) /= E_Package
or else not In_Private_Part (Cent));
-- Set True if this is the warning case, and we are in the
-- visible part of a package spec, or in a subprogram spec,
-- in which case we want to force the client to see the
-- warning, even though it is not in the main unit.
begin
-- Loop through segments of message separated by line feeds.
-- We output these segments as separate messages with
-- continuation marks for all but the first.
Cont := False;
Ptr := 1;
loop
Error_Msg_Strlen := 0;
-- Loop to copy characters from argument to error message
-- string buffer.
loop
exit when Ptr > Len;
CC := Get_String_Char (Str, Ptr);
Ptr := Ptr + 1;
-- Ignore wide chars ??? else store character
if In_Character_Range (CC) then
C := Get_Character (CC);
exit when C = ASCII.LF;
Error_Msg_Strlen := Error_Msg_Strlen + 1;
Error_Msg_String (Error_Msg_Strlen) := C;
end if;
end loop;
-- Here with one line ready to go
Error_Msg_Warn := Prag_Id = Pragma_Compile_Time_Warning;
-- If this is a warning in a spec, then we want clients
-- to see the warning, so mark the message with the
-- special sequence !! to force the warning. In the case
-- of a package spec, we do not force this if we are in
-- the private part of the spec.
if Force then
if Cont = False then
Error_Msg_N ("<~!!", Arg1);
Cont := True;
else
Error_Msg_N ("\<~!!", Arg1);
end if;
-- Error, rather than warning, or in a body, so we do not
-- need to force visibility for client (error will be
-- output in any case, and this is the situation in which
-- we do not want a client to get a warning, since the
-- warning is in the body or the spec private part).
else
if Cont = False then
Error_Msg_N ("<~", Arg1);
Cont := True;
else
Error_Msg_N ("\<~", Arg1);
end if;
end if;
exit when Ptr > Len;
end loop;
end;
end if;
end if;
end Process_Compile_Time_Warning_Or_Error;
------------------------
-- Process_Convention --
------------------------
procedure Process_Convention
(C : out Convention_Id;
Ent : out Entity_Id)
is
Id : Node_Id;
E : Entity_Id;
E1 : Entity_Id;
Cname : Name_Id;
Comp_Unit : Unit_Number_Type;
procedure Diagnose_Multiple_Pragmas (S : Entity_Id);
-- Called if we have more than one Export/Import/Convention pragma.
-- This is generally illegal, but we have a special case of allowing
-- Import and Interface to coexist if they specify the convention in
-- a consistent manner. We are allowed to do this, since Interface is
-- an implementation defined pragma, and we choose to do it since we
-- know Rational allows this combination. S is the entity id of the
-- subprogram in question. This procedure also sets the special flag
-- Import_Interface_Present in both pragmas in the case where we do
-- have matching Import and Interface pragmas.
procedure Set_Convention_From_Pragma (E : Entity_Id);
-- Set convention in entity E, and also flag that the entity has a
-- convention pragma. If entity is for a private or incomplete type,
-- also set convention and flag on underlying type. This procedure
-- also deals with the special case of C_Pass_By_Copy convention.
-------------------------------
-- Diagnose_Multiple_Pragmas --
-------------------------------
procedure Diagnose_Multiple_Pragmas (S : Entity_Id) is
Pdec : constant Node_Id := Declaration_Node (S);
Decl : Node_Id;
Err : Boolean;
function Same_Convention (Decl : Node_Id) return Boolean;
-- Decl is a pragma node. This function returns True if this
-- pragma has a first argument that is an identifier with a
-- Chars field corresponding to the Convention_Id C.
function Same_Name (Decl : Node_Id) return Boolean;
-- Decl is a pragma node. This function returns True if this
-- pragma has a second argument that is an identifier with a
-- Chars field that matches the Chars of the current subprogram.
---------------------
-- Same_Convention --
---------------------
function Same_Convention (Decl : Node_Id) return Boolean is
Arg1 : constant Node_Id :=
First (Pragma_Argument_Associations (Decl));
begin
if Present (Arg1) then
declare
Arg : constant Node_Id := Get_Pragma_Arg (Arg1);
begin
if Nkind (Arg) = N_Identifier
and then Is_Convention_Name (Chars (Arg))
and then Get_Convention_Id (Chars (Arg)) = C
then
return True;
end if;
end;
end if;
return False;
end Same_Convention;
---------------
-- Same_Name --
---------------
function Same_Name (Decl : Node_Id) return Boolean is
Arg1 : constant Node_Id :=
First (Pragma_Argument_Associations (Decl));
Arg2 : Node_Id;
begin
if No (Arg1) then
return False;
end if;
Arg2 := Next (Arg1);
if No (Arg2) then
return False;
end if;
declare
Arg : constant Node_Id := Get_Pragma_Arg (Arg2);
begin
if Nkind (Arg) = N_Identifier
and then Chars (Arg) = Chars (S)
then
return True;
end if;
end;
return False;
end Same_Name;
-- Start of processing for Diagnose_Multiple_Pragmas
begin
Err := True;
-- Definitely give message if we have Convention/Export here
if Prag_Id = Pragma_Convention or else Prag_Id = Pragma_Export then
null;
-- If we have an Import or Export, scan back from pragma to
-- find any previous pragma applying to the same procedure.
-- The scan will be terminated by the start of the list, or
-- hitting the subprogram declaration. This won't allow one
-- pragma to appear in the public part and one in the private
-- part, but that seems very unlikely in practice.
else
Decl := Prev (N);
while Present (Decl) and then Decl /= Pdec loop
-- Look for pragma with same name as us
if Nkind (Decl) = N_Pragma
and then Same_Name (Decl)
then
-- Give error if same as our pragma or Export/Convention
if Pragma_Name (Decl) = Name_Export
or else
Pragma_Name (Decl) = Name_Convention
or else
Pragma_Name (Decl) = Pragma_Name (N)
then
exit;
-- Case of Import/Interface or the other way round
elsif Pragma_Name (Decl) = Name_Interface
or else
Pragma_Name (Decl) = Name_Import
then
-- Here we know that we have Import and Interface. It
-- doesn't matter which way round they are. See if
-- they specify the same convention. If so, all OK,
-- and set special flags to stop other messages
if Same_Convention (Decl) then
Set_Import_Interface_Present (N);
Set_Import_Interface_Present (Decl);
Err := False;
-- If different conventions, special message
else
Error_Msg_Sloc := Sloc (Decl);
Error_Pragma_Arg
("convention differs from that given#", Arg1);
return;
end if;
end if;
end if;
Next (Decl);
end loop;
end if;
-- Give message if needed if we fall through those tests
if Err then
Error_Pragma_Arg
("at most one Convention/Export/Import pragma is allowed",
Arg2);
end if;
end Diagnose_Multiple_Pragmas;
--------------------------------
-- Set_Convention_From_Pragma --
--------------------------------
procedure Set_Convention_From_Pragma (E : Entity_Id) is
begin
-- Ada 2005 (AI-430): Check invalid attempt to change convention
-- for an overridden dispatching operation. Technically this is
-- an amendment and should only be done in Ada 2005 mode. However,
-- this is clearly a mistake, since the problem that is addressed
-- by this AI is that there is a clear gap in the RM!
if Is_Dispatching_Operation (E)
and then Present (Overridden_Operation (E))
and then C /= Convention (Overridden_Operation (E))
then
Error_Pragma_Arg
("cannot change convention for " &
"overridden dispatching operation",
Arg1);
end if;
-- Set the convention
Set_Convention (E, C);
Set_Has_Convention_Pragma (E);
if Is_Incomplete_Or_Private_Type (E)
and then Present (Underlying_Type (E))
then
Set_Convention (Underlying_Type (E), C);
Set_Has_Convention_Pragma (Underlying_Type (E), True);
end if;
-- A class-wide type should inherit the convention of the specific
-- root type (although this isn't specified clearly by the RM).
if Is_Type (E) and then Present (Class_Wide_Type (E)) then
Set_Convention (Class_Wide_Type (E), C);
end if;
-- If the entity is a record type, then check for special case of
-- C_Pass_By_Copy, which is treated the same as C except that the
-- special record flag is set. This convention is only permitted
-- on record types (see AI95-00131).
if Cname = Name_C_Pass_By_Copy then
if Is_Record_Type (E) then
Set_C_Pass_By_Copy (Base_Type (E));
elsif Is_Incomplete_Or_Private_Type (E)
and then Is_Record_Type (Underlying_Type (E))
then
Set_C_Pass_By_Copy (Base_Type (Underlying_Type (E)));
else
Error_Pragma_Arg
("C_Pass_By_Copy convention allowed only for record type",
Arg2);
end if;
end if;
-- If the entity is a derived boolean type, check for the special
-- case of convention C, C++, or Fortran, where we consider any
-- nonzero value to represent true.
if Is_Discrete_Type (E)
and then Root_Type (Etype (E)) = Standard_Boolean
and then
(C = Convention_C
or else
C = Convention_CPP
or else
C = Convention_Fortran)
then
Set_Nonzero_Is_True (Base_Type (E));
end if;
end Set_Convention_From_Pragma;
-- Start of processing for Process_Convention
begin
Check_At_Least_N_Arguments (2);
Check_Optional_Identifier (Arg1, Name_Convention);
Check_Arg_Is_Identifier (Arg1);
Cname := Chars (Get_Pragma_Arg (Arg1));
-- C_Pass_By_Copy is treated as a synonym for convention C (this is
-- tested again below to set the critical flag).
if Cname = Name_C_Pass_By_Copy then
C := Convention_C;
-- Otherwise we must have something in the standard convention list
elsif Is_Convention_Name (Cname) then
C := Get_Convention_Id (Chars (Get_Pragma_Arg (Arg1)));
-- In DEC VMS, it seems that there is an undocumented feature that
-- any unrecognized convention is treated as the default, which for
-- us is convention C. It does not seem so terrible to do this
-- unconditionally, silently in the VMS case, and with a warning
-- in the non-VMS case.
else
if Warn_On_Export_Import and not OpenVMS_On_Target then
Error_Msg_N
("??unrecognized convention name, C assumed",
Get_Pragma_Arg (Arg1));
end if;
C := Convention_C;
end if;
Check_Optional_Identifier (Arg2, Name_Entity);
Check_Arg_Is_Local_Name (Arg2);
Id := Get_Pragma_Arg (Arg2);
Analyze (Id);
if not Is_Entity_Name (Id) then
Error_Pragma_Arg ("entity name required", Arg2);
end if;
E := Entity (Id);
-- Set entity to return
Ent := E;
-- Ada_Pass_By_Copy special checking
if C = Convention_Ada_Pass_By_Copy then
if not Is_First_Subtype (E) then
Error_Pragma_Arg
("convention `Ada_Pass_By_Copy` only "
& "allowed for types", Arg2);
end if;
if Is_By_Reference_Type (E) then
Error_Pragma_Arg
("convention `Ada_Pass_By_Copy` not allowed for "
& "by-reference type", Arg1);
end if;
end if;
-- Ada_Pass_By_Reference special checking
if C = Convention_Ada_Pass_By_Reference then
if not Is_First_Subtype (E) then
Error_Pragma_Arg
("convention `Ada_Pass_By_Reference` only "
& "allowed for types", Arg2);
end if;
if Is_By_Copy_Type (E) then
Error_Pragma_Arg
("convention `Ada_Pass_By_Reference` not allowed for "
& "by-copy type", Arg1);
end if;
end if;
-- Go to renamed subprogram if present, since convention applies to
-- the actual renamed entity, not to the renaming entity. If the
-- subprogram is inherited, go to parent subprogram.
if Is_Subprogram (E)
and then Present (Alias (E))
then
if Nkind (Parent (Declaration_Node (E))) =
N_Subprogram_Renaming_Declaration
then
if Scope (E) /= Scope (Alias (E)) then
Error_Pragma_Ref
("cannot apply pragma% to non-local entity&#", E);
end if;
E := Alias (E);
elsif Nkind_In (Parent (E), N_Full_Type_Declaration,
N_Private_Extension_Declaration)
and then Scope (E) = Scope (Alias (E))
then
E := Alias (E);
-- Return the parent subprogram the entity was inherited from
Ent := E;
end if;
end if;
-- Check that we are not applying this to a specless body
if Is_Subprogram (E)
and then Nkind (Parent (Declaration_Node (E))) = N_Subprogram_Body
then
Error_Pragma
("pragma% requires separate spec and must come before body");
end if;
-- Check that we are not applying this to a named constant
if Ekind_In (E, E_Named_Integer, E_Named_Real) then
Error_Msg_Name_1 := Pname;
Error_Msg_N
("cannot apply pragma% to named constant!",
Get_Pragma_Arg (Arg2));
Error_Pragma_Arg
("\supply appropriate type for&!", Arg2);
end if;
if Ekind (E) = E_Enumeration_Literal then
Error_Pragma ("enumeration literal not allowed for pragma%");
end if;
-- Check for rep item appearing too early or too late
if Etype (E) = Any_Type
or else Rep_Item_Too_Early (E, N)
then
raise Pragma_Exit;
elsif Present (Underlying_Type (E)) then
E := Underlying_Type (E);
end if;
if Rep_Item_Too_Late (E, N) then
raise Pragma_Exit;
end if;
if Has_Convention_Pragma (E) then
Diagnose_Multiple_Pragmas (E);
elsif Convention (E) = Convention_Protected
or else Ekind (Scope (E)) = E_Protected_Type
then
Error_Pragma_Arg
("a protected operation cannot be given a different convention",
Arg2);
end if;
-- For Intrinsic, a subprogram is required
if C = Convention_Intrinsic
and then not Is_Subprogram (E)
and then not Is_Generic_Subprogram (E)
then
Error_Pragma_Arg
("second argument of pragma% must be a subprogram", Arg2);
end if;
-- Stdcall case
if C = Convention_Stdcall then
-- A dispatching call is not allowed. A dispatching subprogram
-- cannot be used to interface to the Win32 API, so in fact this
-- check does not impose any effective restriction.
if Is_Dispatching_Operation (E) then
Error_Pragma
("dispatching subprograms cannot use Stdcall convention");
-- Subprogram is allowed, but not a generic subprogram, and not a
-- dispatching operation.
elsif not Is_Subprogram (E)
and then not Is_Generic_Subprogram (E)
-- A variable is OK
and then Ekind (E) /= E_Variable
-- An access to subprogram is also allowed
and then not
(Is_Access_Type (E)
and then Ekind (Designated_Type (E)) = E_Subprogram_Type)
then
Error_Pragma_Arg
("second argument of pragma% must be subprogram (type)",
Arg2);
end if;
end if;
if not Is_Subprogram (E)
and then not Is_Generic_Subprogram (E)
then
Set_Convention_From_Pragma (E);
if Is_Type (E) then
Check_First_Subtype (Arg2);
Set_Convention_From_Pragma (Base_Type (E));
-- For subprograms, we must set the convention on the
-- internally generated directly designated type as well.
if Ekind (E) = E_Access_Subprogram_Type then
Set_Convention_From_Pragma (Directly_Designated_Type (E));
end if;
end if;
-- For the subprogram case, set proper convention for all homonyms
-- in same scope and the same declarative part, i.e. the same
-- compilation unit.
else
Comp_Unit := Get_Source_Unit (E);
Set_Convention_From_Pragma (E);
-- Treat a pragma Import as an implicit body, and pragma import
-- as implicit reference (for navigation in GPS).
if Prag_Id = Pragma_Import then
Generate_Reference (E, Id, 'b');
-- For exported entities we restrict the generation of references
-- to entities exported to foreign languages since entities
-- exported to Ada do not provide further information to GPS and
-- add undesired references to the output of the gnatxref tool.
elsif Prag_Id = Pragma_Export
and then Convention (E) /= Convention_Ada
then
Generate_Reference (E, Id, 'i');
end if;
-- If the pragma comes from from an aspect, it only applies
-- to the given entity, not its homonyms.
if From_Aspect_Specification (N) then
return;
end if;
-- Otherwise Loop through the homonyms of the pragma argument's
-- entity, an apply convention to those in the current scope.
E1 := Ent;
loop
E1 := Homonym (E1);
exit when No (E1) or else Scope (E1) /= Current_Scope;
-- Do not set the pragma on inherited operations or on formal
-- subprograms.
if Comes_From_Source (E1)
and then Comp_Unit = Get_Source_Unit (E1)
and then not Is_Formal_Subprogram (E1)
and then Nkind (Original_Node (Parent (E1))) /=
N_Full_Type_Declaration
then
if Present (Alias (E1))
and then Scope (E1) /= Scope (Alias (E1))
then
Error_Pragma_Ref
("cannot apply pragma% to non-local entity& declared#",
E1);
end if;
Set_Convention_From_Pragma (E1);
if Prag_Id = Pragma_Import then
Generate_Reference (E1, Id, 'b');
end if;
end if;
end loop;
end if;
end Process_Convention;
----------------------------------------
-- Process_Disable_Enable_Atomic_Sync --
----------------------------------------
procedure Process_Disable_Enable_Atomic_Sync (Nam : Name_Id) is
begin
GNAT_Pragma;
Check_No_Identifiers;
Check_At_Most_N_Arguments (1);
-- Modeled internally as
-- pragma Suppress/Unsuppress (Atomic_Synchronization [,Entity])
Rewrite (N,
Make_Pragma (Loc,
Pragma_Identifier =>
Make_Identifier (Loc, Nam),
Pragma_Argument_Associations => New_List (
Make_Pragma_Argument_Association (Loc,
Expression =>
Make_Identifier (Loc, Name_Atomic_Synchronization)))));
if Present (Arg1) then
Append_To (Pragma_Argument_Associations (N), New_Copy (Arg1));
end if;
Analyze (N);
end Process_Disable_Enable_Atomic_Sync;
-----------------------------------------------------
-- Process_Extended_Import_Export_Exception_Pragma --
-----------------------------------------------------
procedure Process_Extended_Import_Export_Exception_Pragma
(Arg_Internal : Node_Id;
Arg_External : Node_Id;
Arg_Form : Node_Id;
Arg_Code : Node_Id)
is
Def_Id : Entity_Id;
Code_Val : Uint;
begin
if not OpenVMS_On_Target then
Error_Pragma
("??pragma% ignored (applies only to Open'V'M'S)");
end if;
Process_Extended_Import_Export_Internal_Arg (Arg_Internal);
Def_Id := Entity (Arg_Internal);
if Ekind (Def_Id) /= E_Exception then
Error_Pragma_Arg
("pragma% must refer to declared exception", Arg_Internal);
end if;
Set_Extended_Import_Export_External_Name (Def_Id, Arg_External);
if Present (Arg_Form) then
Check_Arg_Is_One_Of (Arg_Form, Name_Ada, Name_VMS);
end if;
if Present (Arg_Form)
and then Chars (Arg_Form) = Name_Ada
then
null;
else
Set_Is_VMS_Exception (Def_Id);
Set_Exception_Code (Def_Id, No_Uint);
end if;
if Present (Arg_Code) then
if not Is_VMS_Exception (Def_Id) then
Error_Pragma_Arg
("Code option for pragma% not allowed for Ada case",
Arg_Code);
end if;
Check_Arg_Is_Static_Expression (Arg_Code, Any_Integer);
Code_Val := Expr_Value (Arg_Code);
if not UI_Is_In_Int_Range (Code_Val) then
Error_Pragma_Arg
("Code option for pragma% must be in 32-bit range",
Arg_Code);
else
Set_Exception_Code (Def_Id, Code_Val);
end if;
end if;
end Process_Extended_Import_Export_Exception_Pragma;
-------------------------------------------------
-- Process_Extended_Import_Export_Internal_Arg --
-------------------------------------------------
procedure Process_Extended_Import_Export_Internal_Arg
(Arg_Internal : Node_Id := Empty)
is
begin
if No (Arg_Internal) then
Error_Pragma ("Internal parameter required for pragma%");
end if;
if Nkind (Arg_Internal) = N_Identifier then
null;
elsif Nkind (Arg_Internal) = N_Operator_Symbol
and then (Prag_Id = Pragma_Import_Function
or else
Prag_Id = Pragma_Export_Function)
then
null;
else
Error_Pragma_Arg
("wrong form for Internal parameter for pragma%", Arg_Internal);
end if;
Check_Arg_Is_Local_Name (Arg_Internal);
end Process_Extended_Import_Export_Internal_Arg;
--------------------------------------------------
-- Process_Extended_Import_Export_Object_Pragma --
--------------------------------------------------
procedure Process_Extended_Import_Export_Object_Pragma
(Arg_Internal : Node_Id;
Arg_External : Node_Id;
Arg_Size : Node_Id)
is
Def_Id : Entity_Id;
begin
Process_Extended_Import_Export_Internal_Arg (Arg_Internal);
Def_Id := Entity (Arg_Internal);
if not Ekind_In (Def_Id, E_Constant, E_Variable) then
Error_Pragma_Arg
("pragma% must designate an object", Arg_Internal);
end if;
if Has_Rep_Pragma (Def_Id, Name_Common_Object)
or else
Has_Rep_Pragma (Def_Id, Name_Psect_Object)
then
Error_Pragma_Arg
("previous Common/Psect_Object applies, pragma % not permitted",
Arg_Internal);
end if;
if Rep_Item_Too_Late (Def_Id, N) then
raise Pragma_Exit;
end if;
Set_Extended_Import_Export_External_Name (Def_Id, Arg_External);
if Present (Arg_Size) then
Check_Arg_Is_External_Name (Arg_Size);
end if;
-- Export_Object case
if Prag_Id = Pragma_Export_Object then
if not Is_Library_Level_Entity (Def_Id) then
Error_Pragma_Arg
("argument for pragma% must be library level entity",
Arg_Internal);
end if;
if Ekind (Current_Scope) = E_Generic_Package then
Error_Pragma ("pragma& cannot appear in a generic unit");
end if;
if not Size_Known_At_Compile_Time (Etype (Def_Id)) then
Error_Pragma_Arg
("exported object must have compile time known size",
Arg_Internal);
end if;
if Warn_On_Export_Import and then Is_Exported (Def_Id) then
Error_Msg_N ("??duplicate Export_Object pragma", N);
else
Set_Exported (Def_Id, Arg_Internal);
end if;
-- Import_Object case
else
if Is_Concurrent_Type (Etype (Def_Id)) then
Error_Pragma_Arg
("cannot use pragma% for task/protected object",
Arg_Internal);
end if;
if Ekind (Def_Id) = E_Constant then
Error_Pragma_Arg
("cannot import a constant", Arg_Internal);
end if;
if Warn_On_Export_Import
and then Has_Discriminants (Etype (Def_Id))
then
Error_Msg_N
("imported value must be initialized??", Arg_Internal);
end if;
if Warn_On_Export_Import
and then Is_Access_Type (Etype (Def_Id))
then
Error_Pragma_Arg
("cannot import object of an access type??", Arg_Internal);
end if;
if Warn_On_Export_Import
and then Is_Imported (Def_Id)
then
Error_Msg_N ("??duplicate Import_Object pragma", N);
-- Check for explicit initialization present. Note that an
-- initialization generated by the code generator, e.g. for an
-- access type, does not count here.
elsif Present (Expression (Parent (Def_Id)))
and then
Comes_From_Source
(Original_Node (Expression (Parent (Def_Id))))
then
Error_Msg_Sloc := Sloc (Def_Id);
Error_Pragma_Arg
("imported entities cannot be initialized (RM B.1(24))",
"\no initialization allowed for & declared#", Arg1);
else
Set_Imported (Def_Id);
Note_Possible_Modification (Arg_Internal, Sure => False);
end if;
end if;
end Process_Extended_Import_Export_Object_Pragma;
------------------------------------------------------
-- Process_Extended_Import_Export_Subprogram_Pragma --
------------------------------------------------------
procedure Process_Extended_Import_Export_Subprogram_Pragma
(Arg_Internal : Node_Id;
Arg_External : Node_Id;
Arg_Parameter_Types : Node_Id;
Arg_Result_Type : Node_Id := Empty;
Arg_Mechanism : Node_Id;
Arg_Result_Mechanism : Node_Id := Empty;
Arg_First_Optional_Parameter : Node_Id := Empty)
is
Ent : Entity_Id;
Def_Id : Entity_Id;
Hom_Id : Entity_Id;
Formal : Entity_Id;
Ambiguous : Boolean;
Match : Boolean;
Dval : Node_Id;
function Same_Base_Type
(Ptype : Node_Id;
Formal : Entity_Id) return Boolean;
-- Determines if Ptype references the type of Formal. Note that only
-- the base types need to match according to the spec. Ptype here is
-- the argument from the pragma, which is either a type name, or an
-- access attribute.
--------------------
-- Same_Base_Type --
--------------------
function Same_Base_Type
(Ptype : Node_Id;
Formal : Entity_Id) return Boolean
is
Ftyp : constant Entity_Id := Base_Type (Etype (Formal));
Pref : Node_Id;
begin
-- Case where pragma argument is typ'Access
if Nkind (Ptype) = N_Attribute_Reference
and then Attribute_Name (Ptype) = Name_Access
then
Pref := Prefix (Ptype);
Find_Type (Pref);
if not Is_Entity_Name (Pref)
or else Entity (Pref) = Any_Type
then
raise Pragma_Exit;
end if;
-- We have a match if the corresponding argument is of an
-- anonymous access type, and its designated type matches the
-- type of the prefix of the access attribute
return Ekind (Ftyp) = E_Anonymous_Access_Type
and then Base_Type (Entity (Pref)) =
Base_Type (Etype (Designated_Type (Ftyp)));
-- Case where pragma argument is a type name
else
Find_Type (Ptype);
if not Is_Entity_Name (Ptype)
or else Entity (Ptype) = Any_Type
then
raise Pragma_Exit;
end if;
-- We have a match if the corresponding argument is of the type
-- given in the pragma (comparing base types)
return Base_Type (Entity (Ptype)) = Ftyp;
end if;
end Same_Base_Type;
-- Start of processing for
-- Process_Extended_Import_Export_Subprogram_Pragma
begin
Process_Extended_Import_Export_Internal_Arg (Arg_Internal);
Ent := Empty;
Ambiguous := False;
-- Loop through homonyms (overloadings) of the entity
Hom_Id := Entity (Arg_Internal);
while Present (Hom_Id) loop
Def_Id := Get_Base_Subprogram (Hom_Id);
-- We need a subprogram in the current scope
if not Is_Subprogram (Def_Id)
or else Scope (Def_Id) /= Current_Scope
then
null;
else
Match := True;
-- Pragma cannot apply to subprogram body
if Is_Subprogram (Def_Id)
and then Nkind (Parent (Declaration_Node (Def_Id))) =
N_Subprogram_Body
then
Error_Pragma
("pragma% requires separate spec"
& " and must come before body");
end if;
-- Test result type if given, note that the result type
-- parameter can only be present for the function cases.
if Present (Arg_Result_Type)
and then not Same_Base_Type (Arg_Result_Type, Def_Id)
then
Match := False;
elsif Etype (Def_Id) /= Standard_Void_Type
and then
(Pname = Name_Export_Procedure
or else
Pname = Name_Import_Procedure)
then
Match := False;
-- Test parameter types if given. Note that this parameter
-- has not been analyzed (and must not be, since it is
-- semantic nonsense), so we get it as the parser left it.
elsif Present (Arg_Parameter_Types) then
Check_Matching_Types : declare
Formal : Entity_Id;
Ptype : Node_Id;
begin
Formal := First_Formal (Def_Id);
if Nkind (Arg_Parameter_Types) = N_Null then
if Present (Formal) then
Match := False;
end if;
-- A list of one type, e.g. (List) is parsed as
-- a parenthesized expression.
elsif Nkind (Arg_Parameter_Types) /= N_Aggregate
and then Paren_Count (Arg_Parameter_Types) = 1
then
if No (Formal)
or else Present (Next_Formal (Formal))
then
Match := False;
else
Match :=
Same_Base_Type (Arg_Parameter_Types, Formal);
end if;
-- A list of more than one type is parsed as a aggregate
elsif Nkind (Arg_Parameter_Types) = N_Aggregate
and then Paren_Count (Arg_Parameter_Types) = 0
then
Ptype := First (Expressions (Arg_Parameter_Types));
while Present (Ptype) or else Present (Formal) loop
if No (Ptype)
or else No (Formal)
or else not Same_Base_Type (Ptype, Formal)
then
Match := False;
exit;
else
Next_Formal (Formal);
Next (Ptype);
end if;
end loop;
-- Anything else is of the wrong form
else
Error_Pragma_Arg
("wrong form for Parameter_Types parameter",
Arg_Parameter_Types);
end if;
end Check_Matching_Types;
end if;
-- Match is now False if the entry we found did not match
-- either a supplied Parameter_Types or Result_Types argument
if Match then
if No (Ent) then
Ent := Def_Id;
-- Ambiguous case, the flag Ambiguous shows if we already
-- detected this and output the initial messages.
else
if not Ambiguous then
Ambiguous := True;
Error_Msg_Name_1 := Pname;
Error_Msg_N
("pragma% does not uniquely identify subprogram!",
N);
Error_Msg_Sloc := Sloc (Ent);
Error_Msg_N ("matching subprogram #!", N);
Ent := Empty;
end if;
Error_Msg_Sloc := Sloc (Def_Id);
Error_Msg_N ("matching subprogram #!", N);
end if;
end if;
end if;
Hom_Id := Homonym (Hom_Id);
end loop;
-- See if we found an entry
if No (Ent) then
if not Ambiguous then
if Is_Generic_Subprogram (Entity (Arg_Internal)) then
Error_Pragma
("pragma% cannot be given for generic subprogram");
else
Error_Pragma
("pragma% does not identify local subprogram");
end if;
end if;
return;
end if;
-- Import pragmas must be for imported entities
if Prag_Id = Pragma_Import_Function
or else
Prag_Id = Pragma_Import_Procedure
or else
Prag_Id = Pragma_Import_Valued_Procedure
then
if not Is_Imported (Ent) then
Error_Pragma
("pragma Import or Interface must precede pragma%");
end if;
-- Here we have the Export case which can set the entity as exported
-- But does not do so if the specified external name is null, since
-- that is taken as a signal in DEC Ada 83 (with which we want to be
-- compatible) to request no external name.
elsif Nkind (Arg_External) = N_String_Literal
and then String_Length (Strval (Arg_External)) = 0
then
null;
-- In all other cases, set entity as exported
else
Set_Exported (Ent, Arg_Internal);
end if;
-- Special processing for Valued_Procedure cases
if Prag_Id = Pragma_Import_Valued_Procedure
or else
Prag_Id = Pragma_Export_Valued_Procedure
then
Formal := First_Formal (Ent);
if No (Formal) then
Error_Pragma ("at least one parameter required for pragma%");
elsif Ekind (Formal) /= E_Out_Parameter then
Error_Pragma ("first parameter must have mode out for pragma%");
else
Set_Is_Valued_Procedure (Ent);
end if;
end if;
Set_Extended_Import_Export_External_Name (Ent, Arg_External);
-- Process Result_Mechanism argument if present. We have already
-- checked that this is only allowed for the function case.
if Present (Arg_Result_Mechanism) then
Set_Mechanism_Value (Ent, Arg_Result_Mechanism);
end if;
-- Process Mechanism parameter if present. Note that this parameter
-- is not analyzed, and must not be analyzed since it is semantic
-- nonsense, so we get it in exactly as the parser left it.
if Present (Arg_Mechanism) then
declare
Formal : Entity_Id;
Massoc : Node_Id;
Mname : Node_Id;
Choice : Node_Id;
begin
-- A single mechanism association without a formal parameter
-- name is parsed as a parenthesized expression. All other
-- cases are parsed as aggregates, so we rewrite the single
-- parameter case as an aggregate for consistency.
if Nkind (Arg_Mechanism) /= N_Aggregate
and then Paren_Count (Arg_Mechanism) = 1
then
Rewrite (Arg_Mechanism,
Make_Aggregate (Sloc (Arg_Mechanism),
Expressions => New_List (
Relocate_Node (Arg_Mechanism))));
end if;
-- Case of only mechanism name given, applies to all formals
if Nkind (Arg_Mechanism) /= N_Aggregate then
Formal := First_Formal (Ent);
while Present (Formal) loop
Set_Mechanism_Value (Formal, Arg_Mechanism);
Next_Formal (Formal);
end loop;
-- Case of list of mechanism associations given
else
if Null_Record_Present (Arg_Mechanism) then
Error_Pragma_Arg
("inappropriate form for Mechanism parameter",
Arg_Mechanism);
end if;
-- Deal with positional ones first
Formal := First_Formal (Ent);
if Present (Expressions (Arg_Mechanism)) then
Mname := First (Expressions (Arg_Mechanism));
while Present (Mname) loop
if No (Formal) then
Error_Pragma_Arg
("too many mechanism associations", Mname);
end if;
Set_Mechanism_Value (Formal, Mname);
Next_Formal (Formal);
Next (Mname);
end loop;
end if;
-- Deal with named entries
if Present (Component_Associations (Arg_Mechanism)) then
Massoc := First (Component_Associations (Arg_Mechanism));
while Present (Massoc) loop
Choice := First (Choices (Massoc));
if Nkind (Choice) /= N_Identifier
or else Present (Next (Choice))
then
Error_Pragma_Arg
("incorrect form for mechanism association",
Massoc);
end if;
Formal := First_Formal (Ent);
loop
if No (Formal) then
Error_Pragma_Arg
("parameter name & not present", Choice);
end if;
if Chars (Choice) = Chars (Formal) then
Set_Mechanism_Value
(Formal, Expression (Massoc));
-- Set entity on identifier (needed by ASIS)
Set_Entity (Choice, Formal);
exit;
end if;
Next_Formal (Formal);
end loop;
Next (Massoc);
end loop;
end if;
end if;
end;
end if;
-- Process First_Optional_Parameter argument if present. We have
-- already checked that this is only allowed for the Import case.
if Present (Arg_First_Optional_Parameter) then
if Nkind (Arg_First_Optional_Parameter) /= N_Identifier then
Error_Pragma_Arg
("first optional parameter must be formal parameter name",
Arg_First_Optional_Parameter);
end if;
Formal := First_Formal (Ent);
loop
if No (Formal) then
Error_Pragma_Arg
("specified formal parameter& not found",
Arg_First_Optional_Parameter);
end if;
exit when Chars (Formal) =
Chars (Arg_First_Optional_Parameter);
Next_Formal (Formal);
end loop;
Set_First_Optional_Parameter (Ent, Formal);
-- Check specified and all remaining formals have right form
while Present (Formal) loop
if Ekind (Formal) /= E_In_Parameter then
Error_Msg_NE
("optional formal& is not of mode in!",
Arg_First_Optional_Parameter, Formal);
else
Dval := Default_Value (Formal);
if No (Dval) then
Error_Msg_NE
("optional formal& does not have default value!",
Arg_First_Optional_Parameter, Formal);
elsif Compile_Time_Known_Value_Or_Aggr (Dval) then
null;
else
Error_Msg_FE
("default value for optional formal& is non-static!",
Arg_First_Optional_Parameter, Formal);
end if;
end if;
Set_Is_Optional_Parameter (Formal);
Next_Formal (Formal);
end loop;
end if;
end Process_Extended_Import_Export_Subprogram_Pragma;
--------------------------
-- Process_Generic_List --
--------------------------
procedure Process_Generic_List is
Arg : Node_Id;
Exp : Node_Id;
begin
Check_No_Identifiers;
Check_At_Least_N_Arguments (1);
Arg := Arg1;
while Present (Arg) loop
Exp := Get_Pragma_Arg (Arg);
Analyze (Exp);
if not Is_Entity_Name (Exp)
or else
(not Is_Generic_Instance (Entity (Exp))
and then
not Is_Generic_Unit (Entity (Exp)))
then
Error_Pragma_Arg
("pragma% argument must be name of generic unit/instance",
Arg);
end if;
Next (Arg);
end loop;
end Process_Generic_List;
------------------------------------
-- Process_Import_Predefined_Type --
------------------------------------
procedure Process_Import_Predefined_Type is
Loc : constant Source_Ptr := Sloc (N);
Elmt : Elmt_Id;
Ftyp : Node_Id := Empty;
Decl : Node_Id;
Def : Node_Id;
Nam : Name_Id;
begin
String_To_Name_Buffer (Strval (Expression (Arg3)));
Nam := Name_Find;
Elmt := First_Elmt (Predefined_Float_Types);
while Present (Elmt) and then Chars (Node (Elmt)) /= Nam loop
Next_Elmt (Elmt);
end loop;
Ftyp := Node (Elmt);
if Present (Ftyp) then
-- Don't build a derived type declaration, because predefined C
-- types have no declaration anywhere, so cannot really be named.
-- Instead build a full type declaration, starting with an
-- appropriate type definition is built
if Is_Floating_Point_Type (Ftyp) then
Def := Make_Floating_Point_Definition (Loc,
Make_Integer_Literal (Loc, Digits_Value (Ftyp)),
Make_Real_Range_Specification (Loc,
Make_Real_Literal (Loc, Realval (Type_Low_Bound (Ftyp))),
Make_Real_Literal (Loc, Realval (Type_High_Bound (Ftyp)))));
-- Should never have a predefined type we cannot handle
else
raise Program_Error;
end if;
-- Build and insert a Full_Type_Declaration, which will be
-- analyzed as soon as this list entry has been analyzed.
Decl := Make_Full_Type_Declaration (Loc,
Make_Defining_Identifier (Loc, Chars (Expression (Arg2))),
Type_Definition => Def);
Insert_After (N, Decl);
Mark_Rewrite_Insertion (Decl);
else
Error_Pragma_Arg ("no matching type found for pragma%",
Arg2);
end if;
end Process_Import_Predefined_Type;
---------------------------------
-- Process_Import_Or_Interface --
---------------------------------
procedure Process_Import_Or_Interface is
C : Convention_Id;
Def_Id : Entity_Id;
Hom_Id : Entity_Id;
begin
Process_Convention (C, Def_Id);
Kill_Size_Check_Code (Def_Id);
Note_Possible_Modification (Get_Pragma_Arg (Arg2), Sure => False);
if Ekind_In (Def_Id, E_Variable, E_Constant) then
-- We do not permit Import to apply to a renaming declaration
if Present (Renamed_Object (Def_Id)) then
Error_Pragma_Arg
("pragma% not allowed for object renaming", Arg2);
-- User initialization is not allowed for imported object, but
-- the object declaration may contain a default initialization,
-- that will be discarded. Note that an explicit initialization
-- only counts if it comes from source, otherwise it is simply
-- the code generator making an implicit initialization explicit.
elsif Present (Expression (Parent (Def_Id)))
and then Comes_From_Source (Expression (Parent (Def_Id)))
then
Error_Msg_Sloc := Sloc (Def_Id);
Error_Pragma_Arg
("no initialization allowed for declaration of& #",
"\imported entities cannot be initialized (RM B.1(24))",
Arg2);
else
Set_Imported (Def_Id);
Process_Interface_Name (Def_Id, Arg3, Arg4);
-- Note that we do not set Is_Public here. That's because we
-- only want to set it if there is no address clause, and we
-- don't know that yet, so we delay that processing till
-- freeze time.
-- pragma Import completes deferred constants
if Ekind (Def_Id) = E_Constant then
Set_Has_Completion (Def_Id);
end if;
-- It is not possible to import a constant of an unconstrained
-- array type (e.g. string) because there is no simple way to
-- write a meaningful subtype for it.
if Is_Array_Type (Etype (Def_Id))
and then not Is_Constrained (Etype (Def_Id))
then
Error_Msg_NE
("imported constant& must have a constrained subtype",
N, Def_Id);
end if;
end if;
elsif Is_Subprogram (Def_Id)
or else Is_Generic_Subprogram (Def_Id)
then
-- If the name is overloaded, pragma applies to all of the denoted
-- entities in the same declarative part, unless the pragma comes
-- from an aspect specification.
Hom_Id := Def_Id;
while Present (Hom_Id) loop
Def_Id := Get_Base_Subprogram (Hom_Id);
-- Ignore inherited subprograms because the pragma will apply
-- to the parent operation, which is the one called.
if Is_Overloadable (Def_Id)
and then Present (Alias (Def_Id))
then
null;
-- If it is not a subprogram, it must be in an outer scope and
-- pragma does not apply.
elsif not Is_Subprogram (Def_Id)
and then not Is_Generic_Subprogram (Def_Id)
then
null;
-- The pragma does not apply to primitives of interfaces
elsif Is_Dispatching_Operation (Def_Id)
and then Present (Find_Dispatching_Type (Def_Id))
and then Is_Interface (Find_Dispatching_Type (Def_Id))
then
null;
-- Verify that the homonym is in the same declarative part (not
-- just the same scope). If the pragma comes from an aspect
-- specification we know that it is part of the declaration.
elsif Parent (Unit_Declaration_Node (Def_Id)) /= Parent (N)
and then Nkind (Parent (N)) /= N_Compilation_Unit_Aux
and then not From_Aspect_Specification (N)
then
exit;
else
Set_Imported (Def_Id);
-- Reject an Import applied to an abstract subprogram
if Is_Subprogram (Def_Id)
and then Is_Abstract_Subprogram (Def_Id)
then
Error_Msg_Sloc := Sloc (Def_Id);
Error_Msg_NE
("cannot import abstract subprogram& declared#",
Arg2, Def_Id);
end if;
-- Special processing for Convention_Intrinsic
if C = Convention_Intrinsic then
-- Link_Name argument not allowed for intrinsic
Check_No_Link_Name;
Set_Is_Intrinsic_Subprogram (Def_Id);
-- If no external name is present, then check that this
-- is a valid intrinsic subprogram. If an external name
-- is present, then this is handled by the back end.
if No (Arg3) then
Check_Intrinsic_Subprogram
(Def_Id, Get_Pragma_Arg (Arg2));
end if;
end if;
-- All interfaced procedures need an external symbol created
-- for them since they are always referenced from another
-- object file.
Set_Is_Public (Def_Id);
-- Verify that the subprogram does not have a completion
-- through a renaming declaration. For other completions the
-- pragma appears as a too late representation.
declare
Decl : constant Node_Id := Unit_Declaration_Node (Def_Id);
begin
if Present (Decl)
and then Nkind (Decl) = N_Subprogram_Declaration
and then Present (Corresponding_Body (Decl))
and then Nkind (Unit_Declaration_Node
(Corresponding_Body (Decl))) =
N_Subprogram_Renaming_Declaration
then
Error_Msg_Sloc := Sloc (Def_Id);
Error_Msg_NE
("cannot import&, renaming already provided for " &
"declaration #", N, Def_Id);
end if;
end;
Set_Has_Completion (Def_Id);
Process_Interface_Name (Def_Id, Arg3, Arg4);
end if;
if Is_Compilation_Unit (Hom_Id) then
-- Its possible homonyms are not affected by the pragma.
-- Such homonyms might be present in the context of other
-- units being compiled.
exit;
elsif From_Aspect_Specification (N) then
exit;
else
Hom_Id := Homonym (Hom_Id);
end if;
end loop;
-- When the convention is Java or CIL, we also allow Import to be
-- given for packages, generic packages, exceptions, record
-- components, and access to subprograms.
elsif (C = Convention_Java or else C = Convention_CIL)
and then
(Is_Package_Or_Generic_Package (Def_Id)
or else Ekind (Def_Id) = E_Exception
or else Ekind (Def_Id) = E_Access_Subprogram_Type
or else Nkind (Parent (Def_Id)) = N_Component_Declaration)
then
Set_Imported (Def_Id);
Set_Is_Public (Def_Id);
Process_Interface_Name (Def_Id, Arg3, Arg4);
-- Import a CPP class
elsif C = Convention_CPP
and then (Is_Record_Type (Def_Id)
or else Ekind (Def_Id) = E_Incomplete_Type)
then
if Ekind (Def_Id) = E_Incomplete_Type then
if Present (Full_View (Def_Id)) then
Def_Id := Full_View (Def_Id);
else
Error_Msg_N
("cannot import 'C'P'P type before full declaration seen",
Get_Pragma_Arg (Arg2));
-- Although we have reported the error we decorate it as
-- CPP_Class to avoid reporting spurious errors
Set_Is_CPP_Class (Def_Id);
return;
end if;
end if;
-- Types treated as CPP classes must be declared limited (note:
-- this used to be a warning but there is no real benefit to it
-- since we did effectively intend to treat the type as limited
-- anyway).
if not Is_Limited_Type (Def_Id) then
Error_Msg_N
("imported 'C'P'P type must be limited",
Get_Pragma_Arg (Arg2));
end if;
if Etype (Def_Id) /= Def_Id
and then not Is_CPP_Class (Root_Type (Def_Id))
then
Error_Msg_N ("root type must be a 'C'P'P type", Arg1);
end if;
Set_Is_CPP_Class (Def_Id);
-- Imported CPP types must not have discriminants (because C++
-- classes do not have discriminants).
if Has_Discriminants (Def_Id) then
Error_Msg_N
("imported 'C'P'P type cannot have discriminants",
First (Discriminant_Specifications
(Declaration_Node (Def_Id))));
end if;
-- Check that components of imported CPP types do not have default
-- expressions. For private types this check is performed when the
-- full view is analyzed (see Process_Full_View).
if not Is_Private_Type (Def_Id) then
Check_CPP_Type_Has_No_Defaults (Def_Id);
end if;
elsif Nkind (Parent (Def_Id)) = N_Incomplete_Type_Declaration then
Check_No_Link_Name;
Check_Arg_Count (3);
Check_Arg_Is_Static_Expression (Arg3, Standard_String);
Process_Import_Predefined_Type;
else
Error_Pragma_Arg
("second argument of pragma% must be object, subprogram "
& "or incomplete type",
Arg2);
end if;
-- If this pragma applies to a compilation unit, then the unit, which
-- is a subprogram, does not require (or allow) a body. We also do
-- not need to elaborate imported procedures.
if Nkind (Parent (N)) = N_Compilation_Unit_Aux then
declare
Cunit : constant Node_Id := Parent (Parent (N));
begin
Set_Body_Required (Cunit, False);
end;
end if;
end Process_Import_Or_Interface;
--------------------
-- Process_Inline --
--------------------
procedure Process_Inline (Status : Inline_Status) is
Assoc : Node_Id;
Decl : Node_Id;
Subp_Id : Node_Id;
Subp : Entity_Id;
Applies : Boolean;
Effective : Boolean := False;
-- Set True if inline has some effect, i.e. if there is at least one
-- subprogram set as inlined as a result of the use of the pragma.
procedure Make_Inline (Subp : Entity_Id);
-- Subp is the defining unit name of the subprogram declaration. Set
-- the flag, as well as the flag in the corresponding body, if there
-- is one present.
procedure Set_Inline_Flags (Subp : Entity_Id);
-- Sets Is_Inlined and Has_Pragma_Inline flags for Subp and also
-- Has_Pragma_Inline_Always for the Inline_Always case.
function Inlining_Not_Possible (Subp : Entity_Id) return Boolean;
-- Returns True if it can be determined at this stage that inlining
-- is not possible, for example if the body is available and contains
-- exception handlers, we prevent inlining, since otherwise we can
-- get undefined symbols at link time. This function also emits a
-- warning if front-end inlining is enabled and the pragma appears
-- too late.
--
-- ??? is business with link symbols still valid, or does it relate
-- to front end ZCX which is being phased out ???
---------------------------
-- Inlining_Not_Possible --
---------------------------
function Inlining_Not_Possible (Subp : Entity_Id) return Boolean is
Decl : constant Node_Id := Unit_Declaration_Node (Subp);
Stats : Node_Id;
begin
if Nkind (Decl) = N_Subprogram_Body then
Stats := Handled_Statement_Sequence (Decl);
return Present (Exception_Handlers (Stats))
or else Present (At_End_Proc (Stats));
elsif Nkind (Decl) = N_Subprogram_Declaration
and then Present (Corresponding_Body (Decl))
then
if Front_End_Inlining
and then Analyzed (Corresponding_Body (Decl))
then
Error_Msg_N ("pragma appears too late, ignored??", N);
return True;
-- If the subprogram is a renaming as body, the body is just a
-- call to the renamed subprogram, and inlining is trivially
-- possible.
elsif
Nkind (Unit_Declaration_Node (Corresponding_Body (Decl))) =
N_Subprogram_Renaming_Declaration
then
return False;
else
Stats :=
Handled_Statement_Sequence
(Unit_Declaration_Node (Corresponding_Body (Decl)));
return
Present (Exception_Handlers (Stats))
or else Present (At_End_Proc (Stats));
end if;
else
-- If body is not available, assume the best, the check is
-- performed again when compiling enclosing package bodies.
return False;
end if;
end Inlining_Not_Possible;
-----------------
-- Make_Inline --
-----------------
procedure Make_Inline (Subp : Entity_Id) is
Kind : constant Entity_Kind := Ekind (Subp);
Inner_Subp : Entity_Id := Subp;
begin
-- Ignore if bad type, avoid cascaded error
if Etype (Subp) = Any_Type then
Applies := True;
return;
-- Ignore if all inlining is suppressed
elsif Suppress_All_Inlining then
Applies := True;
return;
-- If inlining is not possible, for now do not treat as an error
elsif Status /= Suppressed
and then Inlining_Not_Possible (Subp)
then
Applies := True;
return;
-- Here we have a candidate for inlining, but we must exclude
-- derived operations. Otherwise we would end up trying to inline
-- a phantom declaration, and the result would be to drag in a
-- body which has no direct inlining associated with it. That
-- would not only be inefficient but would also result in the
-- backend doing cross-unit inlining in cases where it was
-- definitely inappropriate to do so.
-- However, a simple Comes_From_Source test is insufficient, since
-- we do want to allow inlining of generic instances which also do
-- not come from source. We also need to recognize specs generated
-- by the front-end for bodies that carry the pragma. Finally,
-- predefined operators do not come from source but are not
-- inlineable either.
elsif Is_Generic_Instance (Subp)
or else Nkind (Parent (Parent (Subp))) = N_Subprogram_Declaration
then
null;
elsif not Comes_From_Source (Subp)
and then Scope (Subp) /= Standard_Standard
then
Applies := True;
return;
end if;
-- The referenced entity must either be the enclosing entity, or
-- an entity declared within the current open scope.
if Present (Scope (Subp))
and then Scope (Subp) /= Current_Scope
and then Subp /= Current_Scope
then
Error_Pragma_Arg
("argument of% must be entity in current scope", Assoc);
return;
end if;
-- Processing for procedure, operator or function. If subprogram
-- is aliased (as for an instance) indicate that the renamed
-- entity (if declared in the same unit) is inlined.
if Is_Subprogram (Subp) then
Inner_Subp := Ultimate_Alias (Inner_Subp);
if In_Same_Source_Unit (Subp, Inner_Subp) then
Set_Inline_Flags (Inner_Subp);
Decl := Parent (Parent (Inner_Subp));
if Nkind (Decl) = N_Subprogram_Declaration
and then Present (Corresponding_Body (Decl))
then
Set_Inline_Flags (Corresponding_Body (Decl));
elsif Is_Generic_Instance (Subp) then
-- Indicate that the body needs to be created for
-- inlining subsequent calls. The instantiation node
-- follows the declaration of the wrapper package
-- created for it.
if Scope (Subp) /= Standard_Standard
and then
Need_Subprogram_Instance_Body
(Next (Unit_Declaration_Node (Scope (Alias (Subp)))),
Subp)
then
null;
end if;
-- Inline is a program unit pragma (RM 10.1.5) and cannot
-- appear in a formal part to apply to a formal subprogram.
-- Do not apply check within an instance or a formal package
-- the test will have been applied to the original generic.
elsif Nkind (Decl) in N_Formal_Subprogram_Declaration
and then List_Containing (Decl) = List_Containing (N)
and then not In_Instance
then
Error_Msg_N
("Inline cannot apply to a formal subprogram", N);
-- If Subp is a renaming, it is the renamed entity that
-- will appear in any call, and be inlined. However, for
-- ASIS uses it is convenient to indicate that the renaming
-- itself is an inlined subprogram, so that some gnatcheck
-- rules can be applied in the absence of expansion.
elsif Nkind (Decl) = N_Subprogram_Renaming_Declaration then
Set_Inline_Flags (Subp);
end if;
end if;
Applies := True;
-- For a generic subprogram set flag as well, for use at the point
-- of instantiation, to determine whether the body should be
-- generated.
elsif Is_Generic_Subprogram (Subp) then
Set_Inline_Flags (Subp);
Applies := True;
-- Literals are by definition inlined
elsif Kind = E_Enumeration_Literal then
null;
-- Anything else is an error
else
Error_Pragma_Arg
("expect subprogram name for pragma%", Assoc);
end if;
end Make_Inline;
----------------------
-- Set_Inline_Flags --
----------------------
procedure Set_Inline_Flags (Subp : Entity_Id) is
begin
-- First set the Has_Pragma_XXX flags and issue the appropriate
-- errors and warnings for suspicious combinations.
if Prag_Id = Pragma_No_Inline then
if Has_Pragma_Inline_Always (Subp) then
Error_Msg_N
("Inline_Always and No_Inline are mutually exclusive", N);
elsif Has_Pragma_Inline (Subp) then
Error_Msg_NE
("Inline and No_Inline both specified for& ??",
N, Entity (Subp_Id));
end if;
Set_Has_Pragma_No_Inline (Subp);
else
if Prag_Id = Pragma_Inline_Always then
if Has_Pragma_No_Inline (Subp) then
Error_Msg_N
("Inline_Always and No_Inline are mutually exclusive",
N);
end if;
Set_Has_Pragma_Inline_Always (Subp);
else
if Has_Pragma_No_Inline (Subp) then
Error_Msg_NE
("Inline and No_Inline both specified for& ??",
N, Entity (Subp_Id));
end if;
end if;
if not Has_Pragma_Inline (Subp) then
Set_Has_Pragma_Inline (Subp);
Effective := True;
end if;
end if;
-- Then adjust the Is_Inlined flag. It can never be set if the
-- subprogram is subject to pragma No_Inline.
case Status is
when Suppressed =>
Set_Is_Inlined (Subp, False);
when Disabled =>
null;
when Enabled =>
if not Has_Pragma_No_Inline (Subp) then
Set_Is_Inlined (Subp, True);
end if;
end case;
end Set_Inline_Flags;
-- Start of processing for Process_Inline
begin
Check_No_Identifiers;
Check_At_Least_N_Arguments (1);
if Status = Enabled then
Inline_Processing_Required := True;
end if;
Assoc := Arg1;
while Present (Assoc) loop
Subp_Id := Get_Pragma_Arg (Assoc);
Analyze (Subp_Id);
Applies := False;
if Is_Entity_Name (Subp_Id) then
Subp := Entity (Subp_Id);
if Subp = Any_Id then
-- If previous error, avoid cascaded errors
Check_Error_Detected;
Applies := True;
Effective := True;
else
Make_Inline (Subp);
-- For the pragma case, climb homonym chain. This is
-- what implements allowing the pragma in the renaming
-- case, with the result applying to the ancestors, and
-- also allows Inline to apply to all previous homonyms.
if not From_Aspect_Specification (N) then
while Present (Homonym (Subp))
and then Scope (Homonym (Subp)) = Current_Scope
loop
Make_Inline (Homonym (Subp));
Subp := Homonym (Subp);
end loop;
end if;
end if;
end if;
if not Applies then
Error_Pragma_Arg
("inappropriate argument for pragma%", Assoc);
elsif not Effective
and then Warn_On_Redundant_Constructs
and then not (Status = Suppressed or Suppress_All_Inlining)
then
if Inlining_Not_Possible (Subp) then
Error_Msg_NE
("pragma Inline for& is ignored?r?",
N, Entity (Subp_Id));
else
Error_Msg_NE
("pragma Inline for& is redundant?r?",
N, Entity (Subp_Id));
end if;
end if;
Next (Assoc);
end loop;
end Process_Inline;
----------------------------
-- Process_Interface_Name --
----------------------------
procedure Process_Interface_Name
(Subprogram_Def : Entity_Id;
Ext_Arg : Node_Id;
Link_Arg : Node_Id)
is
Ext_Nam : Node_Id;
Link_Nam : Node_Id;
String_Val : String_Id;
procedure Check_Form_Of_Interface_Name
(SN : Node_Id;
Ext_Name_Case : Boolean);
-- SN is a string literal node for an interface name. This routine
-- performs some minimal checks that the name is reasonable. In
-- particular that no spaces or other obviously incorrect characters
-- appear. This is only a warning, since any characters are allowed.
-- Ext_Name_Case is True for an External_Name, False for a Link_Name.
----------------------------------
-- Check_Form_Of_Interface_Name --
----------------------------------
procedure Check_Form_Of_Interface_Name
(SN : Node_Id;
Ext_Name_Case : Boolean)
is
S : constant String_Id := Strval (Expr_Value_S (SN));
SL : constant Nat := String_Length (S);
C : Char_Code;
begin
if SL = 0 then
Error_Msg_N ("interface name cannot be null string", SN);
end if;
for J in 1 .. SL loop
C := Get_String_Char (S, J);
-- Look for dubious character and issue unconditional warning.
-- Definitely dubious if not in character range.
if not In_Character_Range (C)
-- For all cases except CLI target,
-- commas, spaces and slashes are dubious (in CLI, we use
-- commas and backslashes in external names to specify
-- assembly version and public key, while slashes and spaces
-- can be used in names to mark nested classes and
-- valuetypes).
or else ((not Ext_Name_Case or else VM_Target /= CLI_Target)
and then (Get_Character (C) = ','
or else
Get_Character (C) = '\'))
or else (VM_Target /= CLI_Target
and then (Get_Character (C) = ' '
or else
Get_Character (C) = '/'))
then
Error_Msg
("??interface name contains illegal character",
Sloc (SN) + Source_Ptr (J));
end if;
end loop;
end Check_Form_Of_Interface_Name;
-- Start of processing for Process_Interface_Name
begin
if No (Link_Arg) then
if No (Ext_Arg) then
if VM_Target = CLI_Target
and then Ekind (Subprogram_Def) = E_Package
and then Nkind (Parent (Subprogram_Def)) =
N_Package_Specification
and then Present (Generic_Parent (Parent (Subprogram_Def)))
then
Set_Interface_Name
(Subprogram_Def,
Interface_Name
(Generic_Parent (Parent (Subprogram_Def))));
end if;
return;
elsif Chars (Ext_Arg) = Name_Link_Name then
Ext_Nam := Empty;
Link_Nam := Expression (Ext_Arg);
else
Check_Optional_Identifier (Ext_Arg, Name_External_Name);
Ext_Nam := Expression (Ext_Arg);
Link_Nam := Empty;
end if;
else
Check_Optional_Identifier (Ext_Arg, Name_External_Name);
Check_Optional_Identifier (Link_Arg, Name_Link_Name);
Ext_Nam := Expression (Ext_Arg);
Link_Nam := Expression (Link_Arg);
end if;
-- Check expressions for external name and link name are static
if Present (Ext_Nam) then
Check_Arg_Is_Static_Expression (Ext_Nam, Standard_String);
Check_Form_Of_Interface_Name (Ext_Nam, Ext_Name_Case => True);
-- Verify that external name is not the name of a local entity,
-- which would hide the imported one and could lead to run-time
-- surprises. The problem can only arise for entities declared in
-- a package body (otherwise the external name is fully qualified
-- and will not conflict).
declare
Nam : Name_Id;
E : Entity_Id;
Par : Node_Id;
begin
if Prag_Id = Pragma_Import then
String_To_Name_Buffer (Strval (Expr_Value_S (Ext_Nam)));
Nam := Name_Find;
E := Entity_Id (Get_Name_Table_Info (Nam));
if Nam /= Chars (Subprogram_Def)
and then Present (E)
and then not Is_Overloadable (E)
and then Is_Immediately_Visible (E)
and then not Is_Imported (E)
and then Ekind (Scope (E)) = E_Package
then
Par := Parent (E);
while Present (Par) loop
if Nkind (Par) = N_Package_Body then
Error_Msg_Sloc := Sloc (E);
Error_Msg_NE
("imported entity is hidden by & declared#",
Ext_Arg, E);
exit;
end if;
Par := Parent (Par);
end loop;
end if;
end if;
end;
end if;
if Present (Link_Nam) then
Check_Arg_Is_Static_Expression (Link_Nam, Standard_String);
Check_Form_Of_Interface_Name (Link_Nam, Ext_Name_Case => False);
end if;
-- If there is no link name, just set the external name
if No (Link_Nam) then
Link_Nam := Adjust_External_Name_Case (Expr_Value_S (Ext_Nam));
-- For the Link_Name case, the given literal is preceded by an
-- asterisk, which indicates to GCC that the given name should be
-- taken literally, and in particular that no prepending of
-- underlines should occur, even in systems where this is the
-- normal default.
else
Start_String;
if VM_Target = No_VM then
Store_String_Char (Get_Char_Code ('*'));
end if;
String_Val := Strval (Expr_Value_S (Link_Nam));
Store_String_Chars (String_Val);
Link_Nam :=
Make_String_Literal (Sloc (Link_Nam),
Strval => End_String);
end if;
-- Set the interface name. If the entity is a generic instance, use
-- its alias, which is the callable entity.
if Is_Generic_Instance (Subprogram_Def) then
Set_Encoded_Interface_Name
(Alias (Get_Base_Subprogram (Subprogram_Def)), Link_Nam);
else
Set_Encoded_Interface_Name
(Get_Base_Subprogram (Subprogram_Def), Link_Nam);
end if;
-- We allow duplicated export names in CIL/Java, as they are always
-- enclosed in a namespace that differentiates them, and overloaded
-- entities are supported by the VM.
if Convention (Subprogram_Def) /= Convention_CIL
and then
Convention (Subprogram_Def) /= Convention_Java
then
Check_Duplicated_Export_Name (Link_Nam);
end if;
end Process_Interface_Name;
-----------------------------------------
-- Process_Interrupt_Or_Attach_Handler --
-----------------------------------------
procedure Process_Interrupt_Or_Attach_Handler is
Arg1_X : constant Node_Id := Get_Pragma_Arg (Arg1);
Handler_Proc : constant Entity_Id := Entity (Arg1_X);
Proc_Scope : constant Entity_Id := Scope (Handler_Proc);
begin
Set_Is_Interrupt_Handler (Handler_Proc);
-- If the pragma is not associated with a handler procedure within a
-- protected type, then it must be for a nonprotected procedure for
-- the AAMP target, in which case we don't associate a representation
-- item with the procedure's scope.
if Ekind (Proc_Scope) = E_Protected_Type then
if Prag_Id = Pragma_Interrupt_Handler
or else
Prag_Id = Pragma_Attach_Handler
then
Record_Rep_Item (Proc_Scope, N);
end if;
end if;
end Process_Interrupt_Or_Attach_Handler;
--------------------------------------------------
-- Process_Restrictions_Or_Restriction_Warnings --
--------------------------------------------------
-- Note: some of the simple identifier cases were handled in par-prag,
-- but it is harmless (and more straightforward) to simply handle all
-- cases here, even if it means we repeat a bit of work in some cases.
procedure Process_Restrictions_Or_Restriction_Warnings
(Warn : Boolean)
is
Arg : Node_Id;
R_Id : Restriction_Id;
Id : Name_Id;
Expr : Node_Id;
Val : Uint;
procedure Check_Unit_Name (N : Node_Id);
-- Checks unit name parameter for No_Dependence. Returns if it has
-- an appropriate form, otherwise raises pragma argument error.
---------------------
-- Check_Unit_Name --
---------------------
procedure Check_Unit_Name (N : Node_Id) is
begin
if Nkind (N) = N_Selected_Component then
Check_Unit_Name (Prefix (N));
Check_Unit_Name (Selector_Name (N));
elsif Nkind (N) = N_Identifier then
return;
else
Error_Pragma_Arg
("wrong form for unit name for No_Dependence", N);
end if;
end Check_Unit_Name;
-- Start of processing for Process_Restrictions_Or_Restriction_Warnings
begin
-- Ignore all Restrictions pragma in CodePeer mode
if CodePeer_Mode then
return;
end if;
Check_Ada_83_Warning;
Check_At_Least_N_Arguments (1);
Check_Valid_Configuration_Pragma;
Arg := Arg1;
while Present (Arg) loop
Id := Chars (Arg);
Expr := Get_Pragma_Arg (Arg);
-- Case of no restriction identifier present
if Id = No_Name then
if Nkind (Expr) /= N_Identifier then
Error_Pragma_Arg
("invalid form for restriction", Arg);
end if;
R_Id :=
Get_Restriction_Id
(Process_Restriction_Synonyms (Expr));
if R_Id not in All_Boolean_Restrictions then
Error_Msg_Name_1 := Pname;
Error_Msg_N
("invalid restriction identifier&", Get_Pragma_Arg (Arg));
-- Check for possible misspelling
for J in Restriction_Id loop
declare
Rnm : constant String := Restriction_Id'Image (J);
begin
Name_Buffer (1 .. Rnm'Length) := Rnm;
Name_Len := Rnm'Length;
Set_Casing (All_Lower_Case);
if Is_Bad_Spelling_Of (Chars (Expr), Name_Enter) then
Set_Casing
(Identifier_Casing (Current_Source_File));
Error_Msg_String (1 .. Rnm'Length) :=
Name_Buffer (1 .. Name_Len);
Error_Msg_Strlen := Rnm'Length;
Error_Msg_N -- CODEFIX
("\possible misspelling of ""~""",
Get_Pragma_Arg (Arg));
exit;
end if;
end;
end loop;
raise Pragma_Exit;
end if;
if Implementation_Restriction (R_Id) then
Check_Restriction (No_Implementation_Restrictions, Arg);
end if;
-- Special processing for No_Elaboration_Code restriction
if R_Id = No_Elaboration_Code then
-- Restriction is only recognized within a configuration
-- pragma file, or within a unit of the main extended
-- program. Note: the test for Main_Unit is needed to
-- properly include the case of configuration pragma files.
if not (Current_Sem_Unit = Main_Unit
or else In_Extended_Main_Source_Unit (N))
then
return;
-- Don't allow in a subunit unless already specified in
-- body or spec.
elsif Nkind (Parent (N)) = N_Compilation_Unit
and then Nkind (Unit (Parent (N))) = N_Subunit
and then not Restriction_Active (No_Elaboration_Code)
then
Error_Msg_N
("invalid specification of ""No_Elaboration_Code""",
N);
Error_Msg_N
("\restriction cannot be specified in a subunit", N);
Error_Msg_N
("\unless also specified in body or spec", N);
return;
-- If we have a No_Elaboration_Code pragma that we
-- accept, then it needs to be added to the configuration
-- restrcition set so that we get proper application to
-- other units in the main extended source as required.
else
Add_To_Config_Boolean_Restrictions (No_Elaboration_Code);
end if;
end if;
-- If this is a warning, then set the warning unless we already
-- have a real restriction active (we never want a warning to
-- override a real restriction).
if Warn then
if not Restriction_Active (R_Id) then
Set_Restriction (R_Id, N);
Restriction_Warnings (R_Id) := True;
end if;
-- If real restriction case, then set it and make sure that the
-- restriction warning flag is off, since a real restriction
-- always overrides a warning.
else
Set_Restriction (R_Id, N);
Restriction_Warnings (R_Id) := False;
end if;
-- Check for obsolescent restrictions in Ada 2005 mode
if not Warn
and then Ada_Version >= Ada_2005
and then (R_Id = No_Asynchronous_Control
or else
R_Id = No_Unchecked_Deallocation
or else
R_Id = No_Unchecked_Conversion)
then
Check_Restriction (No_Obsolescent_Features, N);
end if;
-- A very special case that must be processed here: pragma
-- Restrictions (No_Exceptions) turns off all run-time
-- checking. This is a bit dubious in terms of the formal
-- language definition, but it is what is intended by RM
-- H.4(12). Restriction_Warnings never affects generated code
-- so this is done only in the real restriction case.
-- Atomic_Synchronization is not a real check, so it is not
-- affected by this processing).
if R_Id = No_Exceptions and then not Warn then
for J in Scope_Suppress.Suppress'Range loop
if J /= Atomic_Synchronization then
Scope_Suppress.Suppress (J) := True;
end if;
end loop;
end if;
-- Case of No_Dependence => unit-name. Note that the parser
-- already made the necessary entry in the No_Dependence table.
elsif Id = Name_No_Dependence then
Check_Unit_Name (Expr);
-- Case of No_Specification_Of_Aspect => Identifier.
elsif Id = Name_No_Specification_Of_Aspect then
declare
A_Id : Aspect_Id;
begin
if Nkind (Expr) /= N_Identifier then
A_Id := No_Aspect;
else
A_Id := Get_Aspect_Id (Chars (Expr));
end if;
if A_Id = No_Aspect then
Error_Pragma_Arg ("invalid restriction name", Arg);
else
Set_Restriction_No_Specification_Of_Aspect (Expr, Warn);
end if;
end;
-- All other cases of restriction identifier present
else
R_Id := Get_Restriction_Id (Process_Restriction_Synonyms (Arg));
Analyze_And_Resolve (Expr, Any_Integer);
if R_Id not in All_Parameter_Restrictions then
Error_Pragma_Arg
("invalid restriction parameter identifier", Arg);
elsif not Is_OK_Static_Expression (Expr) then
Flag_Non_Static_Expr
("value must be static expression!", Expr);
raise Pragma_Exit;
elsif not Is_Integer_Type (Etype (Expr))
or else Expr_Value (Expr) < 0
then
Error_Pragma_Arg
("value must be non-negative integer", Arg);
end if;
-- Restriction pragma is active
Val := Expr_Value (Expr);
if not UI_Is_In_Int_Range (Val) then
Error_Pragma_Arg
("pragma ignored, value too large??", Arg);
end if;
-- Warning case. If the real restriction is active, then we
-- ignore the request, since warning never overrides a real
-- restriction. Otherwise we set the proper warning. Note that
-- this circuit sets the warning again if it is already set,
-- which is what we want, since the constant may have changed.
if Warn then
if not Restriction_Active (R_Id) then
Set_Restriction
(R_Id, N, Integer (UI_To_Int (Val)));
Restriction_Warnings (R_Id) := True;
end if;
-- Real restriction case, set restriction and make sure warning
-- flag is off since real restriction always overrides warning.
else
Set_Restriction (R_Id, N, Integer (UI_To_Int (Val)));
Restriction_Warnings (R_Id) := False;
end if;
end if;
Next (Arg);
end loop;
end Process_Restrictions_Or_Restriction_Warnings;
---------------------------------
-- Process_Suppress_Unsuppress --
---------------------------------
-- Note: this procedure makes entries in the check suppress data
-- structures managed by Sem. See spec of package Sem for full
-- details on how we handle recording of check suppression.
procedure Process_Suppress_Unsuppress (Suppress_Case : Boolean) is
C : Check_Id;
E_Id : Node_Id;
E : Entity_Id;
In_Package_Spec : constant Boolean :=
Is_Package_Or_Generic_Package (Current_Scope)
and then not In_Package_Body (Current_Scope);
procedure Suppress_Unsuppress_Echeck (E : Entity_Id; C : Check_Id);
-- Used to suppress a single check on the given entity
--------------------------------
-- Suppress_Unsuppress_Echeck --
--------------------------------
procedure Suppress_Unsuppress_Echeck (E : Entity_Id; C : Check_Id) is
begin
-- Check for error of trying to set atomic synchronization for
-- a non-atomic variable.
if C = Atomic_Synchronization
and then not (Is_Atomic (E) or else Has_Atomic_Components (E))
then
Error_Msg_N
("pragma & requires atomic type or variable",
Pragma_Identifier (Original_Node (N)));
end if;
Set_Checks_May_Be_Suppressed (E);
if In_Package_Spec then
Push_Global_Suppress_Stack_Entry
(Entity => E,
Check => C,
Suppress => Suppress_Case);
else
Push_Local_Suppress_Stack_Entry
(Entity => E,
Check => C,
Suppress => Suppress_Case);
end if;
-- If this is a first subtype, and the base type is distinct,
-- then also set the suppress flags on the base type.
if Is_First_Subtype (E) and then Etype (E) /= E then
Suppress_Unsuppress_Echeck (Etype (E), C);
end if;
end Suppress_Unsuppress_Echeck;
-- Start of processing for Process_Suppress_Unsuppress
begin
-- Ignore pragma Suppress/Unsuppress in CodePeer and Alfa modes on
-- user code: we want to generate checks for analysis purposes, as
-- set respectively by -gnatC and -gnatd.F
if (CodePeer_Mode or Alfa_Mode) and then Comes_From_Source (N) then
return;
end if;
-- Suppress/Unsuppress can appear as a configuration pragma, or in a
-- declarative part or a package spec (RM 11.5(5)).
if not Is_Configuration_Pragma then
Check_Is_In_Decl_Part_Or_Package_Spec;
end if;
Check_At_Least_N_Arguments (1);
Check_At_Most_N_Arguments (2);
Check_No_Identifier (Arg1);
Check_Arg_Is_Identifier (Arg1);
C := Get_Check_Id (Chars (Get_Pragma_Arg (Arg1)));
if C = No_Check_Id then
Error_Pragma_Arg
("argument of pragma% is not valid check name", Arg1);
end if;
if Arg_Count = 1 then
-- Make an entry in the local scope suppress table. This is the
-- table that directly shows the current value of the scope
-- suppress check for any check id value.
if C = All_Checks then
-- For All_Checks, we set all specific predefined checks with
-- the exception of Elaboration_Check, which is handled
-- specially because of not wanting All_Checks to have the
-- effect of deactivating static elaboration order processing.
-- Atomic_Synchronization is also not affected, since this is
-- not a real check.
for J in Scope_Suppress.Suppress'Range loop
if J /= Elaboration_Check
and then
J /= Atomic_Synchronization
then
Scope_Suppress.Suppress (J) := Suppress_Case;
end if;
end loop;
-- If not All_Checks, and predefined check, then set appropriate
-- scope entry. Note that we will set Elaboration_Check if this
-- is explicitly specified. Atomic_Synchronization is allowed
-- only if internally generated and entity is atomic.
elsif C in Predefined_Check_Id
and then (not Comes_From_Source (N)
or else C /= Atomic_Synchronization)
then
Scope_Suppress.Suppress (C) := Suppress_Case;
end if;
-- Also make an entry in the Local_Entity_Suppress table
Push_Local_Suppress_Stack_Entry
(Entity => Empty,
Check => C,
Suppress => Suppress_Case);
-- Case of two arguments present, where the check is suppressed for
-- a specified entity (given as the second argument of the pragma)
else
-- This is obsolescent in Ada 2005 mode
if Ada_Version >= Ada_2005 then
Check_Restriction (No_Obsolescent_Features, Arg2);
end if;
Check_Optional_Identifier (Arg2, Name_On);
E_Id := Get_Pragma_Arg (Arg2);
Analyze (E_Id);
if not Is_Entity_Name (E_Id) then
Error_Pragma_Arg
("second argument of pragma% must be entity name", Arg2);
end if;
E := Entity (E_Id);
if E = Any_Id then
return;
end if;
-- Enforce RM 11.5(7) which requires that for a pragma that
-- appears within a package spec, the named entity must be
-- within the package spec. We allow the package name itself
-- to be mentioned since that makes sense, although it is not
-- strictly allowed by 11.5(7).
if In_Package_Spec
and then E /= Current_Scope
and then Scope (E) /= Current_Scope
then
Error_Pragma_Arg
("entity in pragma% is not in package spec (RM 11.5(7))",
Arg2);
end if;
-- Loop through homonyms. As noted below, in the case of a package
-- spec, only homonyms within the package spec are considered.
loop
Suppress_Unsuppress_Echeck (E, C);
if Is_Generic_Instance (E)
and then Is_Subprogram (E)
and then Present (Alias (E))
then
Suppress_Unsuppress_Echeck (Alias (E), C);
end if;
-- Move to next homonym if not aspect spec case
exit when From_Aspect_Specification (N);
E := Homonym (E);
exit when No (E);
-- If we are within a package specification, the pragma only
-- applies to homonyms in the same scope.
exit when In_Package_Spec
and then Scope (E) /= Current_Scope;
end loop;
end if;
end Process_Suppress_Unsuppress;
------------------
-- Set_Exported --
------------------
procedure Set_Exported (E : Entity_Id; Arg : Node_Id) is
begin
if Is_Imported (E) then
Error_Pragma_Arg
("cannot export entity& that was previously imported", Arg);
elsif Present (Address_Clause (E)) and then not CodePeer_Mode then
Error_Pragma_Arg
("cannot export entity& that has an address clause", Arg);
end if;
Set_Is_Exported (E);
-- Generate a reference for entity explicitly, because the
-- identifier may be overloaded and name resolution will not
-- generate one.
Generate_Reference (E, Arg);
-- Deal with exporting non-library level entity
if not Is_Library_Level_Entity (E) then
-- Not allowed at all for subprograms
if Is_Subprogram (E) then
Error_Pragma_Arg ("local subprogram& cannot be exported", Arg);
-- Otherwise set public and statically allocated
else
Set_Is_Public (E);
Set_Is_Statically_Allocated (E);
-- Warn if the corresponding W flag is set and the pragma comes
-- from source. The latter may not be true e.g. on VMS where we
-- expand export pragmas for exception codes associated with
-- imported or exported exceptions. We do not want to generate
-- a warning for something that the user did not write.
if Warn_On_Export_Import
and then Comes_From_Source (Arg)
then
Error_Msg_NE
("?x?& has been made static as a result of Export",
Arg, E);
Error_Msg_N
("\?x?this usage is non-standard and non-portable",
Arg);
end if;
end if;
end if;
if Warn_On_Export_Import and then Is_Type (E) then
Error_Msg_NE ("exporting a type has no effect?x?", Arg, E);
end if;
if Warn_On_Export_Import and Inside_A_Generic then
Error_Msg_NE
("all instances of& will have the same external name?x?",
Arg, E);
end if;
end Set_Exported;
----------------------------------------------
-- Set_Extended_Import_Export_External_Name --
----------------------------------------------
procedure Set_Extended_Import_Export_External_Name
(Internal_Ent : Entity_Id;
Arg_External : Node_Id)
is
Old_Name : constant Node_Id := Interface_Name (Internal_Ent);
New_Name : Node_Id;
begin
if No (Arg_External) then
return;
end if;
Check_Arg_Is_External_Name (Arg_External);
if Nkind (Arg_External) = N_String_Literal then
if String_Length (Strval (Arg_External)) = 0 then
return;
else
New_Name := Adjust_External_Name_Case (Arg_External);
end if;
elsif Nkind (Arg_External) = N_Identifier then
New_Name := Get_Default_External_Name (Arg_External);
-- Check_Arg_Is_External_Name should let through only identifiers and
-- string literals or static string expressions (which are folded to
-- string literals).
else
raise Program_Error;
end if;
-- If we already have an external name set (by a prior normal Import
-- or Export pragma), then the external names must match
if Present (Interface_Name (Internal_Ent)) then
Check_Matching_Internal_Names : declare
S1 : constant String_Id := Strval (Old_Name);
S2 : constant String_Id := Strval (New_Name);
procedure Mismatch;
pragma No_Return (Mismatch);
-- Called if names do not match
--------------
-- Mismatch --
--------------
procedure Mismatch is
begin
Error_Msg_Sloc := Sloc (Old_Name);
Error_Pragma_Arg
("external name does not match that given #",
Arg_External);
end Mismatch;
-- Start of processing for Check_Matching_Internal_Names
begin
if String_Length (S1) /= String_Length (S2) then
Mismatch;
else
for J in 1 .. String_Length (S1) loop
if Get_String_Char (S1, J) /= Get_String_Char (S2, J) then
Mismatch;
end if;
end loop;
end if;
end Check_Matching_Internal_Names;
-- Otherwise set the given name
else
Set_Encoded_Interface_Name (Internal_Ent, New_Name);
Check_Duplicated_Export_Name (New_Name);
end if;
end Set_Extended_Import_Export_External_Name;
------------------
-- Set_Imported --
------------------
procedure Set_Imported (E : Entity_Id) is
begin
-- Error message if already imported or exported
if Is_Exported (E) or else Is_Imported (E) then
-- Error if being set Exported twice
if Is_Exported (E) then
Error_Msg_NE ("entity& was previously exported", N, E);
-- OK if Import/Interface case
elsif Import_Interface_Present (N) then
goto OK;
-- Error if being set Imported twice
else
Error_Msg_NE ("entity& was previously imported", N, E);
end if;
Error_Msg_Name_1 := Pname;
Error_Msg_N
("\(pragma% applies to all previous entities)", N);
Error_Msg_Sloc := Sloc (E);
Error_Msg_NE ("\import not allowed for& declared#", N, E);
-- Here if not previously imported or exported, OK to import
else
Set_Is_Imported (E);
-- If the entity is an object that is not at the library level,
-- then it is statically allocated. We do not worry about objects
-- with address clauses in this context since they are not really
-- imported in the linker sense.
if Is_Object (E)
and then not Is_Library_Level_Entity (E)
and then No (Address_Clause (E))
then
Set_Is_Statically_Allocated (E);
end if;
end if;
<<OK>> null;
end Set_Imported;
-------------------------
-- Set_Mechanism_Value --
-------------------------
-- Note: the mechanism name has not been analyzed (and cannot indeed be
-- analyzed, since it is semantic nonsense), so we get it in the exact
-- form created by the parser.
procedure Set_Mechanism_Value (Ent : Entity_Id; Mech_Name : Node_Id) is
Class : Node_Id;
Param : Node_Id;
Mech_Name_Id : Name_Id;
procedure Bad_Class;
pragma No_Return (Bad_Class);
-- Signal bad descriptor class name
procedure Bad_Mechanism;
pragma No_Return (Bad_Mechanism);
-- Signal bad mechanism name
---------------
-- Bad_Class --
---------------
procedure Bad_Class is
begin
Error_Pragma_Arg ("unrecognized descriptor class name", Class);
end Bad_Class;
-------------------------
-- Bad_Mechanism_Value --
-------------------------
procedure Bad_Mechanism is
begin
Error_Pragma_Arg ("unrecognized mechanism name", Mech_Name);
end Bad_Mechanism;
-- Start of processing for Set_Mechanism_Value
begin
if Mechanism (Ent) /= Default_Mechanism then
Error_Msg_NE
("mechanism for & has already been set", Mech_Name, Ent);
end if;
-- MECHANISM_NAME ::= value | reference | descriptor |
-- short_descriptor
if Nkind (Mech_Name) = N_Identifier then
if Chars (Mech_Name) = Name_Value then
Set_Mechanism (Ent, By_Copy);
return;
elsif Chars (Mech_Name) = Name_Reference then
Set_Mechanism (Ent, By_Reference);
return;
elsif Chars (Mech_Name) = Name_Descriptor then
Check_VMS (Mech_Name);
-- Descriptor => Short_Descriptor if pragma was given
if Short_Descriptors then
Set_Mechanism (Ent, By_Short_Descriptor);
else
Set_Mechanism (Ent, By_Descriptor);
end if;
return;
elsif Chars (Mech_Name) = Name_Short_Descriptor then
Check_VMS (Mech_Name);
Set_Mechanism (Ent, By_Short_Descriptor);
return;
elsif Chars (Mech_Name) = Name_Copy then
Error_Pragma_Arg
("bad mechanism name, Value assumed", Mech_Name);
else
Bad_Mechanism;
end if;
-- MECHANISM_NAME ::= descriptor (CLASS_NAME) |
-- short_descriptor (CLASS_NAME)
-- CLASS_NAME ::= ubs | ubsb | uba | s | sb | a | nca
-- Note: this form is parsed as an indexed component
elsif Nkind (Mech_Name) = N_Indexed_Component then
Class := First (Expressions (Mech_Name));
if Nkind (Prefix (Mech_Name)) /= N_Identifier
or else not (Chars (Prefix (Mech_Name)) = Name_Descriptor or else
Chars (Prefix (Mech_Name)) = Name_Short_Descriptor)
or else Present (Next (Class))
then
Bad_Mechanism;
else
Mech_Name_Id := Chars (Prefix (Mech_Name));
-- Change Descriptor => Short_Descriptor if pragma was given
if Mech_Name_Id = Name_Descriptor
and then Short_Descriptors
then
Mech_Name_Id := Name_Short_Descriptor;
end if;
end if;
-- MECHANISM_NAME ::= descriptor (Class => CLASS_NAME) |
-- short_descriptor (Class => CLASS_NAME)
-- CLASS_NAME ::= ubs | ubsb | uba | s | sb | a | nca
-- Note: this form is parsed as a function call
elsif Nkind (Mech_Name) = N_Function_Call then
Param := First (Parameter_Associations (Mech_Name));
if Nkind (Name (Mech_Name)) /= N_Identifier
or else not (Chars (Name (Mech_Name)) = Name_Descriptor or else
Chars (Name (Mech_Name)) = Name_Short_Descriptor)
or else Present (Next (Param))
or else No (Selector_Name (Param))
or else Chars (Selector_Name (Param)) /= Name_Class
then
Bad_Mechanism;
else
Class := Explicit_Actual_Parameter (Param);
Mech_Name_Id := Chars (Name (Mech_Name));
end if;
else
Bad_Mechanism;
end if;
-- Fall through here with Class set to descriptor class name
Check_VMS (Mech_Name);
if Nkind (Class) /= N_Identifier then
Bad_Class;
elsif Mech_Name_Id = Name_Descriptor
and then Chars (Class) = Name_UBS
then
Set_Mechanism (Ent, By_Descriptor_UBS);
elsif Mech_Name_Id = Name_Descriptor
and then Chars (Class) = Name_UBSB
then
Set_Mechanism (Ent, By_Descriptor_UBSB);
elsif Mech_Name_Id = Name_Descriptor
and then Chars (Class) = Name_UBA
then
Set_Mechanism (Ent, By_Descriptor_UBA);
elsif Mech_Name_Id = Name_Descriptor
and then Chars (Class) = Name_S
then
Set_Mechanism (Ent, By_Descriptor_S);
elsif Mech_Name_Id = Name_Descriptor
and then Chars (Class) = Name_SB
then
Set_Mechanism (Ent, By_Descriptor_SB);
elsif Mech_Name_Id = Name_Descriptor
and then Chars (Class) = Name_A
then
Set_Mechanism (Ent, By_Descriptor_A);
elsif Mech_Name_Id = Name_Descriptor
and then Chars (Class) = Name_NCA
then
Set_Mechanism (Ent, By_Descriptor_NCA);
elsif Mech_Name_Id = Name_Short_Descriptor
and then Chars (Class) = Name_UBS
then
Set_Mechanism (Ent, By_Short_Descriptor_UBS);
elsif Mech_Name_Id = Name_Short_Descriptor
and then Chars (Class) = Name_UBSB
then
Set_Mechanism (Ent, By_Short_Descriptor_UBSB);
elsif Mech_Name_Id = Name_Short_Descriptor
and then Chars (Class) = Name_UBA
then
Set_Mechanism (Ent, By_Short_Descriptor_UBA);
elsif Mech_Name_Id = Name_Short_Descriptor
and then Chars (Class) = Name_S
then
Set_Mechanism (Ent, By_Short_Descriptor_S);
elsif Mech_Name_Id = Name_Short_Descriptor
and then Chars (Class) = Name_SB
then
Set_Mechanism (Ent, By_Short_Descriptor_SB);
elsif Mech_Name_Id = Name_Short_Descriptor
and then Chars (Class) = Name_A
then
Set_Mechanism (Ent, By_Short_Descriptor_A);
elsif Mech_Name_Id = Name_Short_Descriptor
and then Chars (Class) = Name_NCA
then
Set_Mechanism (Ent, By_Short_Descriptor_NCA);
else
Bad_Class;
end if;
end Set_Mechanism_Value;
--------------------------
-- Set_Rational_Profile --
--------------------------
-- The Rational profile includes Implicit_Packing, Use_Vads_Size, and
-- and extension to the semantics of renaming declarations.
procedure Set_Rational_Profile is
begin
Implicit_Packing := True;
Overriding_Renamings := True;
Use_VADS_Size := True;
end Set_Rational_Profile;
---------------------------
-- Set_Ravenscar_Profile --
---------------------------
-- The tasks to be done here are
-- Set required policies
-- pragma Task_Dispatching_Policy (FIFO_Within_Priorities)
-- pragma Locking_Policy (Ceiling_Locking)
-- Set Detect_Blocking mode
-- Set required restrictions (see System.Rident for detailed list)
-- Set the No_Dependence rules
-- No_Dependence => Ada.Asynchronous_Task_Control
-- No_Dependence => Ada.Calendar
-- No_Dependence => Ada.Execution_Time.Group_Budget
-- No_Dependence => Ada.Execution_Time.Timers
-- No_Dependence => Ada.Task_Attributes
-- No_Dependence => System.Multiprocessors.Dispatching_Domains
procedure Set_Ravenscar_Profile (N : Node_Id) is
Prefix_Entity : Entity_Id;
Selector_Entity : Entity_Id;
Prefix_Node : Node_Id;
Node : Node_Id;
begin
-- pragma Task_Dispatching_Policy (FIFO_Within_Priorities)
if Task_Dispatching_Policy /= ' '
and then Task_Dispatching_Policy /= 'F'
then
Error_Msg_Sloc := Task_Dispatching_Policy_Sloc;
Error_Pragma ("Profile (Ravenscar) incompatible with policy#");
-- Set the FIFO_Within_Priorities policy, but always preserve
-- System_Location since we like the error message with the run time
-- name.
else
Task_Dispatching_Policy := 'F';
if Task_Dispatching_Policy_Sloc /= System_Location then
Task_Dispatching_Policy_Sloc := Loc;
end if;
end if;
-- pragma Locking_Policy (Ceiling_Locking)
if Locking_Policy /= ' '
and then Locking_Policy /= 'C'
then
Error_Msg_Sloc := Locking_Policy_Sloc;
Error_Pragma ("Profile (Ravenscar) incompatible with policy#");
-- Set the Ceiling_Locking policy, but preserve System_Location since
-- we like the error message with the run time name.
else
Locking_Policy := 'C';
if Locking_Policy_Sloc /= System_Location then
Locking_Policy_Sloc := Loc;
end if;
end if;
-- pragma Detect_Blocking
Detect_Blocking := True;
-- Set the corresponding restrictions
Set_Profile_Restrictions
(Ravenscar, N, Warn => Treat_Restrictions_As_Warnings);
-- Set the No_Dependence restrictions
-- The following No_Dependence restrictions:
-- No_Dependence => Ada.Asynchronous_Task_Control
-- No_Dependence => Ada.Calendar
-- No_Dependence => Ada.Task_Attributes
-- are already set by previous call to Set_Profile_Restrictions.
-- Set the following restrictions which were added to Ada 2005:
-- No_Dependence => Ada.Execution_Time.Group_Budget
-- No_Dependence => Ada.Execution_Time.Timers
if Ada_Version >= Ada_2005 then
Name_Buffer (1 .. 3) := "ada";
Name_Len := 3;
Prefix_Entity := Make_Identifier (Loc, Name_Find);
Name_Buffer (1 .. 14) := "execution_time";
Name_Len := 14;
Selector_Entity := Make_Identifier (Loc, Name_Find);
Prefix_Node :=
Make_Selected_Component
(Sloc => Loc,
Prefix => Prefix_Entity,
Selector_Name => Selector_Entity);
Name_Buffer (1 .. 13) := "group_budgets";
Name_Len := 13;
Selector_Entity := Make_Identifier (Loc, Name_Find);
Node :=
Make_Selected_Component
(Sloc => Loc,
Prefix => Prefix_Node,
Selector_Name => Selector_Entity);
Set_Restriction_No_Dependence
(Unit => Node,
Warn => Treat_Restrictions_As_Warnings,
Profile => Ravenscar);
Name_Buffer (1 .. 6) := "timers";
Name_Len := 6;
Selector_Entity := Make_Identifier (Loc, Name_Find);
Node :=
Make_Selected_Component
(Sloc => Loc,
Prefix => Prefix_Node,
Selector_Name => Selector_Entity);
Set_Restriction_No_Dependence
(Unit => Node,
Warn => Treat_Restrictions_As_Warnings,
Profile => Ravenscar);
end if;
-- Set the following restrictions which was added to Ada 2012 (see
-- AI-0171):
-- No_Dependence => System.Multiprocessors.Dispatching_Domains
if Ada_Version >= Ada_2012 then
Name_Buffer (1 .. 6) := "system";
Name_Len := 6;
Prefix_Entity := Make_Identifier (Loc, Name_Find);
Name_Buffer (1 .. 15) := "multiprocessors";
Name_Len := 15;
Selector_Entity := Make_Identifier (Loc, Name_Find);
Prefix_Node :=
Make_Selected_Component
(Sloc => Loc,
Prefix => Prefix_Entity,
Selector_Name => Selector_Entity);
Name_Buffer (1 .. 19) := "dispatching_domains";
Name_Len := 19;
Selector_Entity := Make_Identifier (Loc, Name_Find);
Node :=
Make_Selected_Component
(Sloc => Loc,
Prefix => Prefix_Node,
Selector_Name => Selector_Entity);
Set_Restriction_No_Dependence
(Unit => Node,
Warn => Treat_Restrictions_As_Warnings,
Profile => Ravenscar);
end if;
end Set_Ravenscar_Profile;
----------------
-- S14_Pragma --
----------------
procedure S14_Pragma is
begin
if not Formal_Extensions then
Error_Pragma ("pragma% requires the use of debug switch -gnatd.V");
end if;
end S14_Pragma;
-- Start of processing for Analyze_Pragma
begin
-- The following code is a defense against recursion. Not clear that
-- this can happen legitimately, but perhaps some error situations
-- can cause it, and we did see this recursion during testing.
if Analyzed (N) then
return;
else
Set_Analyzed (N, True);
end if;
-- Deal with unrecognized pragma
Pname := Pragma_Name (N);
if not Is_Pragma_Name (Pname) then
if Warn_On_Unrecognized_Pragma then
Error_Msg_Name_1 := Pname;
Error_Msg_N ("?g?unrecognized pragma%!", Pragma_Identifier (N));
for PN in First_Pragma_Name .. Last_Pragma_Name loop
if Is_Bad_Spelling_Of (Pname, PN) then
Error_Msg_Name_1 := PN;
Error_Msg_N -- CODEFIX
("\?g?possible misspelling of %!", Pragma_Identifier (N));
exit;
end if;
end loop;
end if;
return;
end if;
-- Here to start processing for recognized pragma
Prag_Id := Get_Pragma_Id (Pname);
if Present (Corresponding_Aspect (N)) then
Pname := Chars (Identifier (Corresponding_Aspect (N)));
end if;
-- Preset arguments
Arg_Count := 0;
Arg1 := Empty;
Arg2 := Empty;
Arg3 := Empty;
Arg4 := Empty;
if Present (Pragma_Argument_Associations (N)) then
Arg_Count := List_Length (Pragma_Argument_Associations (N));
Arg1 := First (Pragma_Argument_Associations (N));
if Present (Arg1) then
Arg2 := Next (Arg1);
if Present (Arg2) then
Arg3 := Next (Arg2);
if Present (Arg3) then
Arg4 := Next (Arg3);
end if;
end if;
end if;
end if;
-- An enumeration type defines the pragmas that are supported by the
-- implementation. Get_Pragma_Id (in package Prag) transforms a name
-- into the corresponding enumeration value for the following case.
case Prag_Id is
-----------------
-- Abort_Defer --
-----------------
-- pragma Abort_Defer;
when Pragma_Abort_Defer =>
GNAT_Pragma;
Check_Arg_Count (0);
-- The only required semantic processing is to check the
-- placement. This pragma must appear at the start of the
-- statement sequence of a handled sequence of statements.
if Nkind (Parent (N)) /= N_Handled_Sequence_Of_Statements
or else N /= First (Statements (Parent (N)))
then
Pragma_Misplaced;
end if;
--------------------
-- Abstract_State --
--------------------
-- pragma Abstract_State (ABSTRACT_STATE_LIST)
-- ABSTRACT_STATE_LIST ::=
-- null
-- | STATE_NAME_WITH_PROPERTIES {, STATE_NAME_WITH_PROPERTIES}
-- STATE_NAME_WITH_PROPERTIES ::=
-- STATE_NAME
-- | (STATE_NAME with PROPERTY_LIST)
-- PROPERTY_LIST ::= PROPERTY {, PROPERTY}
-- PROPERTY ::= SIMPLE_PROPERTY
-- | NAME_VALUE_PROPERTY
-- SIMPLE_PROPERTY ::= IDENTIFIER
-- NAME_VALUE_PROPERTY ::= IDENTIFIER => EXPRESSION
-- STATE_NAME ::= DEFINING_IDENTIFIER
when Pragma_Abstract_State => Abstract_State : declare
Pack_Id : Entity_Id;
-- Flags used to verify the consistency of states
Non_Null_Seen : Boolean := False;
Null_Seen : Boolean := False;
procedure Analyze_Abstract_State (State : Node_Id);
-- Verify the legality of a single state declaration. Create and
-- decorate a state abstraction entity and introduce it into the
-- visibility chain.
----------------------------
-- Analyze_Abstract_State --
----------------------------
procedure Analyze_Abstract_State (State : Node_Id) is
procedure Check_Duplicate_Property
(Prop : Node_Id;
Status : in out Boolean);
-- Flag Status denotes whether a particular property has been
-- seen while processing a state. This routine verifies that
-- Prop is not a duplicate property and sets the flag Status.
------------------------------
-- Check_Duplicate_Property --
------------------------------
procedure Check_Duplicate_Property
(Prop : Node_Id;
Status : in out Boolean)
is
begin
if Status then
Error_Msg_N ("duplicate state property", Prop);
end if;
Status := True;
end Check_Duplicate_Property;
-- Local variables
Errors : constant Nat := Serious_Errors_Detected;
Loc : constant Source_Ptr := Sloc (State);
Assoc : Node_Id;
Id : Entity_Id;
Is_Null : Boolean := False;
Level : Uint := Uint_0;
Name : Name_Id;
Prop : Node_Id;
-- Flags used to verify the consistency of properties
Input_Seen : Boolean := False;
Integrity_Seen : Boolean := False;
Output_Seen : Boolean := False;
Volatile_Seen : Boolean := False;
-- Start of processing for Analyze_Abstract_State
begin
-- A package with a null abstract state is not allowed to
-- declare additional states.
if Null_Seen then
Error_Msg_Name_1 := Chars (Pack_Id);
Error_Msg_N ("package % has null abstract state", State);
-- Null states appear as internally generated entities
elsif Nkind (State) = N_Null then
Name := New_Internal_Name ('S');
Is_Null := True;
Null_Seen := True;
-- Catch a case where a null state appears in a list of
-- non-null states.
if Non_Null_Seen then
Error_Msg_Name_1 := Chars (Pack_Id);
Error_Msg_N
("package % has non-null abstract state", State);
end if;
-- Simple state declaration
elsif Nkind (State) = N_Identifier then
Name := Chars (State);
Non_Null_Seen := True;
-- State declaration with various properties. This construct
-- appears as an extension aggregate in the tree.
elsif Nkind (State) = N_Extension_Aggregate then
if Nkind (Ancestor_Part (State)) = N_Identifier then
Name := Chars (Ancestor_Part (State));
Non_Null_Seen := True;
else
Error_Msg_N
("state name must be an identifier",
Ancestor_Part (State));
end if;
-- Process properties Input, Output and Volatile. Ensure
-- that none of them appear more than once.
Prop := First (Expressions (State));
while Present (Prop) loop
if Nkind (Prop) = N_Identifier then
if Chars (Prop) = Name_Input then
Check_Duplicate_Property (Prop, Input_Seen);
elsif Chars (Prop) = Name_Output then
Check_Duplicate_Property (Prop, Output_Seen);
elsif Chars (Prop) = Name_Volatile then
Check_Duplicate_Property (Prop, Volatile_Seen);
else
Error_Msg_N ("invalid state property", Prop);
end if;
else
Error_Msg_N ("invalid state property", Prop);
end if;
Next (Prop);
end loop;
-- Volatile requires exactly one Input or Output
if Volatile_Seen
and then
((Input_Seen and then Output_Seen) -- both
or else
(not Input_Seen and then not Output_Seen)) -- none
then
Error_Msg_N
("property Volatile requires exactly one Input or " &
"Output", State);
end if;
-- Either Input or Output require Volatile
if (Input_Seen or Output_Seen)
and then not Volatile_Seen
then
Error_Msg_N
("properties Input and Output require Volatile", State);
end if;
-- State property Integrity appears as a component
-- association.
Assoc := First (Component_Associations (State));
while Present (Assoc) loop
Prop := First (Choices (Assoc));
while Present (Prop) loop
if Nkind (Prop) = N_Identifier
and then Chars (Prop) = Name_Integrity
then
Check_Duplicate_Property (Prop, Integrity_Seen);
else
Error_Msg_N ("invalid state property", Prop);
end if;
Next (Prop);
end loop;
if Nkind (Expression (Assoc)) = N_Integer_Literal then
Level := Intval (Expression (Assoc));
else
Error_Msg_N
("integrity level must be an integer literal",
Expression (Assoc));
end if;
Next (Assoc);
end loop;
-- Any other attempt to declare a state is erroneous
else
Error_Msg_N ("malformed abstract state declaration", State);
end if;
-- Do not generate a state abstraction entity if it was not
-- properly declared.
if Serious_Errors_Detected > Errors then
return;
end if;
-- The generated state abstraction reuses the same characters
-- from the original state declaration. Decorate the entity.
Id := Make_Defining_Identifier (Loc, New_External_Name (Name));
Set_Comes_From_Source (Id, not Is_Null);
Set_Parent (Id, State);
Set_Ekind (Id, E_Abstract_State);
Set_Etype (Id, Standard_Void_Type);
Set_Integrity_Level (Id, Level);
Set_Refined_State (Id, Empty);
-- Every non-null state must be nameable and resolvable the
-- same way a constant is.
if not Is_Null then
Push_Scope (Pack_Id);
Enter_Name (Id);
Pop_Scope;
end if;
-- Associate the state with its related package
if No (Abstract_States (Pack_Id)) then
Set_Abstract_States (Pack_Id, New_Elmt_List);
end if;
Append_Elmt (Id, Abstract_States (Pack_Id));
end Analyze_Abstract_State;
-- Local variables
Par : Node_Id;
State : Node_Id;
-- Start of processing for Abstract_State
begin
GNAT_Pragma;
S14_Pragma;
Check_Arg_Count (1);
-- Ensure the proper placement of the pragma. Abstract states must
-- be associated with a package declaration.
if From_Aspect_Specification (N) then
Par := Parent (Corresponding_Aspect (N));
else
Par := Parent (Parent (N));
end if;
if Nkind (Par) = N_Compilation_Unit then
Par := Unit (Par);
end if;
if Nkind (Par) /= N_Package_Declaration then
Pragma_Misplaced;
return;
end if;
Pack_Id := Defining_Unit_Name (Specification (Par));
State := Expression (Arg1);
-- Multiple abstract states appear as an aggregate
if Nkind (State) = N_Aggregate then
State := First (Expressions (State));
while Present (State) loop
Analyze_Abstract_State (State);
Next (State);
end loop;
-- Various forms of a single abstract state. Note that these may
-- include malformed state declarations.
else
Analyze_Abstract_State (State);
end if;
end Abstract_State;
------------
-- Ada_83 --
------------
-- pragma Ada_83;
-- Note: this pragma also has some specific processing in Par.Prag
-- because we want to set the Ada version mode during parsing.
when Pragma_Ada_83 =>
GNAT_Pragma;
Check_Arg_Count (0);
-- We really should check unconditionally for proper configuration
-- pragma placement, since we really don't want mixed Ada modes
-- within a single unit, and the GNAT reference manual has always
-- said this was a configuration pragma, but we did not check and
-- are hesitant to add the check now.
-- However, we really cannot tolerate mixing Ada 2005 or Ada 2012
-- with Ada 83 or Ada 95, so we must check if we are in Ada 2005
-- or Ada 2012 mode.
if Ada_Version >= Ada_2005 then
Check_Valid_Configuration_Pragma;
end if;
-- Now set Ada 83 mode
Ada_Version := Ada_83;
Ada_Version_Explicit := Ada_Version;
------------
-- Ada_95 --
------------
-- pragma Ada_95;
-- Note: this pragma also has some specific processing in Par.Prag
-- because we want to set the Ada 83 version mode during parsing.
when Pragma_Ada_95 =>
GNAT_Pragma;
Check_Arg_Count (0);
-- We really should check unconditionally for proper configuration
-- pragma placement, since we really don't want mixed Ada modes
-- within a single unit, and the GNAT reference manual has always
-- said this was a configuration pragma, but we did not check and
-- are hesitant to add the check now.
-- However, we really cannot tolerate mixing Ada 2005 with Ada 83
-- or Ada 95, so we must check if we are in Ada 2005 mode.
if Ada_Version >= Ada_2005 then
Check_Valid_Configuration_Pragma;
end if;
-- Now set Ada 95 mode
Ada_Version := Ada_95;
Ada_Version_Explicit := Ada_Version;
---------------------
-- Ada_05/Ada_2005 --
---------------------
-- pragma Ada_05;
-- pragma Ada_05 (LOCAL_NAME);
-- pragma Ada_2005;
-- pragma Ada_2005 (LOCAL_NAME):
-- Note: these pragmas also have some specific processing in Par.Prag
-- because we want to set the Ada 2005 version mode during parsing.
when Pragma_Ada_05 | Pragma_Ada_2005 => declare
E_Id : Node_Id;
begin
GNAT_Pragma;
if Arg_Count = 1 then
Check_Arg_Is_Local_Name (Arg1);
E_Id := Get_Pragma_Arg (Arg1);
if Etype (E_Id) = Any_Type then
return;
end if;
Set_Is_Ada_2005_Only (Entity (E_Id));
Record_Rep_Item (Entity (E_Id), N);
else
Check_Arg_Count (0);
-- For Ada_2005 we unconditionally enforce the documented
-- configuration pragma placement, since we do not want to
-- tolerate mixed modes in a unit involving Ada 2005. That
-- would cause real difficulties for those cases where there
-- are incompatibilities between Ada 95 and Ada 2005.
Check_Valid_Configuration_Pragma;
-- Now set appropriate Ada mode
Ada_Version := Ada_2005;
Ada_Version_Explicit := Ada_2005;
end if;
end;
---------------------
-- Ada_12/Ada_2012 --
---------------------
-- pragma Ada_12;
-- pragma Ada_12 (LOCAL_NAME);
-- pragma Ada_2012;
-- pragma Ada_2012 (LOCAL_NAME):
-- Note: these pragmas also have some specific processing in Par.Prag
-- because we want to set the Ada 2012 version mode during parsing.
when Pragma_Ada_12 | Pragma_Ada_2012 => declare
E_Id : Node_Id;
begin
GNAT_Pragma;
if Arg_Count = 1 then
Check_Arg_Is_Local_Name (Arg1);
E_Id := Get_Pragma_Arg (Arg1);
if Etype (E_Id) = Any_Type then
return;
end if;
Set_Is_Ada_2012_Only (Entity (E_Id));
Record_Rep_Item (Entity (E_Id), N);
else
Check_Arg_Count (0);
-- For Ada_2012 we unconditionally enforce the documented
-- configuration pragma placement, since we do not want to
-- tolerate mixed modes in a unit involving Ada 2012. That
-- would cause real difficulties for those cases where there
-- are incompatibilities between Ada 95 and Ada 2012. We could
-- allow mixing of Ada 2005 and Ada 2012 but it's not worth it.
Check_Valid_Configuration_Pragma;
-- Now set appropriate Ada mode
Ada_Version := Ada_2012;
Ada_Version_Explicit := Ada_2012;
end if;
end;
----------------------
-- All_Calls_Remote --
----------------------
-- pragma All_Calls_Remote [(library_package_NAME)];
when Pragma_All_Calls_Remote => All_Calls_Remote : declare
Lib_Entity : Entity_Id;
begin
Check_Ada_83_Warning;
Check_Valid_Library_Unit_Pragma;
if Nkind (N) = N_Null_Statement then
return;
end if;
Lib_Entity := Find_Lib_Unit_Name;
-- This pragma should only apply to a RCI unit (RM E.2.3(23))
if Present (Lib_Entity)
and then not Debug_Flag_U
then
if not Is_Remote_Call_Interface (Lib_Entity) then
Error_Pragma ("pragma% only apply to rci unit");
-- Set flag for entity of the library unit
else
Set_Has_All_Calls_Remote (Lib_Entity);
end if;
end if;
end All_Calls_Remote;
--------------
-- Annotate --
--------------
-- pragma Annotate (IDENTIFIER [, IDENTIFIER {, ARG}]);
-- ARG ::= NAME | EXPRESSION
-- The first two arguments are by convention intended to refer to an
-- external tool and a tool-specific function. These arguments are
-- not analyzed.
when Pragma_Annotate => Annotate : declare
Arg : Node_Id;
Exp : Node_Id;
begin
GNAT_Pragma;
Check_At_Least_N_Arguments (1);
Check_Arg_Is_Identifier (Arg1);
Check_No_Identifiers;
Store_Note (N);
-- Second parameter is optional, it is never analyzed
if No (Arg2) then
null;
-- Here if we have a second parameter
else
-- Second parameter must be identifier
Check_Arg_Is_Identifier (Arg2);
-- Process remaining parameters if any
Arg := Next (Arg2);
while Present (Arg) loop
Exp := Get_Pragma_Arg (Arg);
Analyze (Exp);
if Is_Entity_Name (Exp) then
null;
-- For string literals, we assume Standard_String as the
-- type, unless the string contains wide or wide_wide
-- characters.
elsif Nkind (Exp) = N_String_Literal then
if Has_Wide_Wide_Character (Exp) then
Resolve (Exp, Standard_Wide_Wide_String);
elsif Has_Wide_Character (Exp) then
Resolve (Exp, Standard_Wide_String);
else
Resolve (Exp, Standard_String);
end if;
elsif Is_Overloaded (Exp) then
Error_Pragma_Arg
("ambiguous argument for pragma%", Exp);
else
Resolve (Exp);
end if;
Next (Arg);
end loop;
end if;
end Annotate;
---------------------------
-- Assert/Assert_And_Cut --
---------------------------
-- pragma Assert
-- ( [Check => ] Boolean_EXPRESSION
-- [, [Message =>] Static_String_EXPRESSION]);
-- pragma Assert_And_Cut
-- ( [Check => ] Boolean_EXPRESSION
-- [, [Message =>] Static_String_EXPRESSION]);
when Pragma_Assert | Pragma_Assert_And_Cut => Assert : declare
Expr : Node_Id;
Newa : List_Id;
begin
if Prag_Id = Pragma_Assert then
Ada_2005_Pragma;
else -- Pragma_Assert_And_Cut
GNAT_Pragma;
S14_Pragma;
end if;
Check_At_Least_N_Arguments (1);
Check_At_Most_N_Arguments (2);
Check_Arg_Order ((Name_Check, Name_Message));
Check_Optional_Identifier (Arg1, Name_Check);
-- We treat pragma Assert as equivalent to:
-- pragma Check (Assertion, condition [, msg]);
-- So rewrite pragma in this manner, transfer the message
-- argument if present, and analyze the result
-- Pragma Assert_And_Cut is treated exactly like pragma Assert by
-- the frontend. Formal verification tools may use it to "cut" the
-- paths through the code, to make verification tractable. When
-- dealing with a semantically analyzed tree, the information that
-- a Check node N corresponds to a source Assert_And_Cut pragma
-- can be retrieved from the pragma kind of Original_Node(N).
Expr := Get_Pragma_Arg (Arg1);
Newa := New_List (
Make_Pragma_Argument_Association (Loc,
Expression => Make_Identifier (Loc, Name_Assertion)),
Make_Pragma_Argument_Association (Sloc (Expr),
Expression => Expr));
if Arg_Count > 1 then
Check_Optional_Identifier (Arg2, Name_Message);
Append_To (Newa, New_Copy_Tree (Arg2));
end if;
Rewrite (N,
Make_Pragma (Loc,
Chars => Name_Check,
Pragma_Argument_Associations => Newa));
Analyze (N);
end Assert;
----------------------
-- Assertion_Policy --
----------------------
-- pragma Assertion_Policy (Check | Disable | Ignore)
when Pragma_Assertion_Policy => Assertion_Policy : declare
Policy : Node_Id;
begin
Ada_2005_Pragma;
Check_Valid_Configuration_Pragma;
Check_Arg_Count (1);
Check_No_Identifiers;
Check_Arg_Is_One_Of (Arg1, Name_Check, Name_Disable, Name_Ignore);
-- We treat pragma Assertion_Policy as equivalent to:
-- pragma Check_Policy (Assertion, policy)
-- So rewrite the pragma in that manner and link on to the chain
-- of Check_Policy pragmas, marking the pragma as analyzed.
Policy := Get_Pragma_Arg (Arg1);
Rewrite (N,
Make_Pragma (Loc,
Chars => Name_Check_Policy,
Pragma_Argument_Associations => New_List (
Make_Pragma_Argument_Association (Loc,
Expression => Make_Identifier (Loc, Name_Assertion)),
Make_Pragma_Argument_Association (Loc,
Expression =>
Make_Identifier (Sloc (Policy), Chars (Policy))))));
Set_Analyzed (N);
Set_Next_Pragma (N, Opt.Check_Policy_List);
Opt.Check_Policy_List := N;
end Assertion_Policy;
------------
-- Assume --
------------
-- pragma Assume (boolean_EXPRESSION);
when Pragma_Assume => Assume : declare
begin
GNAT_Pragma;
S14_Pragma;
Check_Arg_Count (1);
-- Pragma Assume is transformed into pragma Check in the following
-- manner:
-- pragma Check (Assume, Expr);
Rewrite (N,
Make_Pragma (Loc,
Chars => Name_Check,
Pragma_Argument_Associations => New_List (
Make_Pragma_Argument_Association (Loc,
Expression => Make_Identifier (Loc, Name_Assume)),
Make_Pragma_Argument_Association (Loc,
Expression => Relocate_Node (Expression (Arg1))))));
Analyze (N);
end Assume;
------------------------------
-- Assume_No_Invalid_Values --
------------------------------
-- pragma Assume_No_Invalid_Values (On | Off);
when Pragma_Assume_No_Invalid_Values =>
GNAT_Pragma;
Check_Valid_Configuration_Pragma;
Check_Arg_Count (1);
Check_No_Identifiers;
Check_Arg_Is_One_Of (Arg1, Name_On, Name_Off);
if Chars (Get_Pragma_Arg (Arg1)) = Name_On then
Assume_No_Invalid_Values := True;
else
Assume_No_Invalid_Values := False;
end if;
--------------------------
-- Attribute_Definition --
--------------------------
-- pragma Attribute_Definition
-- ([Attribute =>] ATTRIBUTE_DESIGNATOR,
-- [Entity =>] LOCAL_NAME,
-- [Expression =>] EXPRESSION | NAME);
when Pragma_Attribute_Definition => Attribute_Definition : declare
Attribute_Designator : constant Node_Id := Get_Pragma_Arg (Arg1);
Aname : Name_Id;
begin
GNAT_Pragma;
Check_Arg_Count (3);
Check_Optional_Identifier (Arg1, "attribute");
Check_Optional_Identifier (Arg2, "entity");
Check_Optional_Identifier (Arg3, "expression");
if Nkind (Attribute_Designator) /= N_Identifier then
Error_Msg_N ("attribute name expected", Attribute_Designator);
return;
end if;
Check_Arg_Is_Local_Name (Arg2);
-- If the attribute is not recognized, then issue a warning (not
-- an error), and ignore the pragma.
Aname := Chars (Attribute_Designator);
if not Is_Attribute_Name (Aname) then
Bad_Attribute (Attribute_Designator, Aname, Warn => True);
return;
end if;
-- Otherwise, rewrite the pragma as an attribute definition clause
Rewrite (N,
Make_Attribute_Definition_Clause (Loc,
Name => Get_Pragma_Arg (Arg2),
Chars => Aname,
Expression => Get_Pragma_Arg (Arg3)));
Analyze (N);
end Attribute_Definition;
---------------
-- AST_Entry --
---------------
-- pragma AST_Entry (entry_IDENTIFIER);
when Pragma_AST_Entry => AST_Entry : declare
Ent : Node_Id;
begin
GNAT_Pragma;
Check_VMS (N);
Check_Arg_Count (1);
Check_No_Identifiers;
Check_Arg_Is_Local_Name (Arg1);
Ent := Entity (Get_Pragma_Arg (Arg1));
-- Note: the implementation of the AST_Entry pragma could handle
-- the entry family case fine, but for now we are consistent with
-- the DEC rules, and do not allow the pragma, which of course
-- has the effect of also forbidding the attribute.
if Ekind (Ent) /= E_Entry then
Error_Pragma_Arg
("pragma% argument must be simple entry name", Arg1);
elsif Is_AST_Entry (Ent) then
Error_Pragma_Arg
("duplicate % pragma for entry", Arg1);
elsif Has_Homonym (Ent) then
Error_Pragma_Arg
("pragma% argument cannot specify overloaded entry", Arg1);
else
declare
FF : constant Entity_Id := First_Formal (Ent);
begin
if Present (FF) then
if Present (Next_Formal (FF)) then
Error_Pragma_Arg
("entry for pragma% can have only one argument",
Arg1);
elsif Parameter_Mode (FF) /= E_In_Parameter then
Error_Pragma_Arg
("entry parameter for pragma% must have mode IN",
Arg1);
end if;
end if;
end;
Set_Is_AST_Entry (Ent);
end if;
end AST_Entry;
------------------
-- Asynchronous --
------------------
-- pragma Asynchronous (LOCAL_NAME);
when Pragma_Asynchronous => Asynchronous : declare
Nm : Entity_Id;
C_Ent : Entity_Id;
L : List_Id;
S : Node_Id;
N : Node_Id;
Formal : Entity_Id;
procedure Process_Async_Pragma;
-- Common processing for procedure and access-to-procedure case
--------------------------
-- Process_Async_Pragma --
--------------------------
procedure Process_Async_Pragma is
begin
if No (L) then
Set_Is_Asynchronous (Nm);
return;
end if;
-- The formals should be of mode IN (RM E.4.1(6))
S := First (L);
while Present (S) loop
Formal := Defining_Identifier (S);
if Nkind (Formal) = N_Defining_Identifier
and then Ekind (Formal) /= E_In_Parameter
then
Error_Pragma_Arg
("pragma% procedure can only have IN parameter",
Arg1);
end if;
Next (S);
end loop;
Set_Is_Asynchronous (Nm);
end Process_Async_Pragma;
-- Start of processing for pragma Asynchronous
begin
Check_Ada_83_Warning;
Check_No_Identifiers;
Check_Arg_Count (1);
Check_Arg_Is_Local_Name (Arg1);
if Debug_Flag_U then
return;
end if;
C_Ent := Cunit_Entity (Current_Sem_Unit);
Analyze (Get_Pragma_Arg (Arg1));
Nm := Entity (Get_Pragma_Arg (Arg1));
if not Is_Remote_Call_Interface (C_Ent)
and then not Is_Remote_Types (C_Ent)
then
-- This pragma should only appear in an RCI or Remote Types
-- unit (RM E.4.1(4)).
Error_Pragma
("pragma% not in Remote_Call_Interface or " &
"Remote_Types unit");
end if;
if Ekind (Nm) = E_Procedure
and then Nkind (Parent (Nm)) = N_Procedure_Specification
then
if not Is_Remote_Call_Interface (Nm) then
Error_Pragma_Arg
("pragma% cannot be applied on non-remote procedure",
Arg1);
end if;
L := Parameter_Specifications (Parent (Nm));
Process_Async_Pragma;
return;
elsif Ekind (Nm) = E_Function then
Error_Pragma_Arg
("pragma% cannot be applied to function", Arg1);
elsif Is_Remote_Access_To_Subprogram_Type (Nm) then
if Is_Record_Type (Nm) then
-- A record type that is the Equivalent_Type for a remote
-- access-to-subprogram type.
N := Declaration_Node (Corresponding_Remote_Type (Nm));
else
-- A non-expanded RAS type (distribution is not enabled)
N := Declaration_Node (Nm);
end if;
if Nkind (N) = N_Full_Type_Declaration
and then Nkind (Type_Definition (N)) =
N_Access_Procedure_Definition
then
L := Parameter_Specifications (Type_Definition (N));
Process_Async_Pragma;
if Is_Asynchronous (Nm)
and then Expander_Active
and then Get_PCS_Name /= Name_No_DSA
then
RACW_Type_Is_Asynchronous (Underlying_RACW_Type (Nm));
end if;
else
Error_Pragma_Arg
("pragma% cannot reference access-to-function type",
Arg1);
end if;
-- Only other possibility is Access-to-class-wide type
elsif Is_Access_Type (Nm)
and then Is_Class_Wide_Type (Designated_Type (Nm))
then
Check_First_Subtype (Arg1);
Set_Is_Asynchronous (Nm);
if Expander_Active then
RACW_Type_Is_Asynchronous (Nm);
end if;
else
Error_Pragma_Arg ("inappropriate argument for pragma%", Arg1);
end if;
end Asynchronous;
------------
-- Atomic --
------------
-- pragma Atomic (LOCAL_NAME);
when Pragma_Atomic =>
Process_Atomic_Shared_Volatile;
-----------------------
-- Atomic_Components --
-----------------------
-- pragma Atomic_Components (array_LOCAL_NAME);
-- This processing is shared by Volatile_Components
when Pragma_Atomic_Components |
Pragma_Volatile_Components =>
Atomic_Components : declare
E_Id : Node_Id;
E : Entity_Id;
D : Node_Id;
K : Node_Kind;
begin
Check_Ada_83_Warning;
Check_No_Identifiers;
Check_Arg_Count (1);
Check_Arg_Is_Local_Name (Arg1);
E_Id := Get_Pragma_Arg (Arg1);
if Etype (E_Id) = Any_Type then
return;
end if;
E := Entity (E_Id);
Check_Duplicate_Pragma (E);
if Rep_Item_Too_Early (E, N)
or else
Rep_Item_Too_Late (E, N)
then
return;
end if;
D := Declaration_Node (E);
K := Nkind (D);
if (K = N_Full_Type_Declaration and then Is_Array_Type (E))
or else
((Ekind (E) = E_Constant or else Ekind (E) = E_Variable)
and then Nkind (D) = N_Object_Declaration
and then Nkind (Object_Definition (D)) =
N_Constrained_Array_Definition)
then
-- The flag is set on the object, or on the base type
if Nkind (D) /= N_Object_Declaration then
E := Base_Type (E);
end if;
Set_Has_Volatile_Components (E);
if Prag_Id = Pragma_Atomic_Components then
Set_Has_Atomic_Components (E);
end if;
else
Error_Pragma_Arg ("inappropriate entity for pragma%", Arg1);
end if;
end Atomic_Components;
--------------------
-- Attach_Handler --
--------------------
-- pragma Attach_Handler (handler_NAME, EXPRESSION);
when Pragma_Attach_Handler =>
Check_Ada_83_Warning;
Check_No_Identifiers;
Check_Arg_Count (2);
if No_Run_Time_Mode then
Error_Msg_CRT ("Attach_Handler pragma", N);
else
Check_Interrupt_Or_Attach_Handler;
-- The expression that designates the attribute may depend on a
-- discriminant, and is therefore a per-object expression, to
-- be expanded in the init proc. If expansion is enabled, then
-- perform semantic checks on a copy only.
if Expander_Active then
declare
Temp : constant Node_Id :=
New_Copy_Tree (Get_Pragma_Arg (Arg2));
begin
Set_Parent (Temp, N);
Preanalyze_And_Resolve (Temp, RTE (RE_Interrupt_ID));
end;
else
Analyze (Get_Pragma_Arg (Arg2));
Resolve (Get_Pragma_Arg (Arg2), RTE (RE_Interrupt_ID));
end if;
Process_Interrupt_Or_Attach_Handler;
end if;
--------------------
-- C_Pass_By_Copy --
--------------------
-- pragma C_Pass_By_Copy ([Max_Size =>] static_integer_EXPRESSION);
when Pragma_C_Pass_By_Copy => C_Pass_By_Copy : declare
Arg : Node_Id;
Val : Uint;
begin
GNAT_Pragma;
Check_Valid_Configuration_Pragma;
Check_Arg_Count (1);
Check_Optional_Identifier (Arg1, "max_size");
Arg := Get_Pragma_Arg (Arg1);
Check_Arg_Is_Static_Expression (Arg, Any_Integer);
Val := Expr_Value (Arg);
if Val <= 0 then
Error_Pragma_Arg
("maximum size for pragma% must be positive", Arg1);
elsif UI_Is_In_Int_Range (Val) then
Default_C_Record_Mechanism := UI_To_Int (Val);
-- If a giant value is given, Int'Last will do well enough.
-- If sometime someone complains that a record larger than
-- two gigabytes is not copied, we will worry about it then!
else
Default_C_Record_Mechanism := Mechanism_Type'Last;
end if;
end C_Pass_By_Copy;
-----------
-- Check --
-----------
-- pragma Check ([Name =>] IDENTIFIER,
-- [Check =>] Boolean_EXPRESSION
-- [,[Message =>] String_EXPRESSION]);
when Pragma_Check => Check : declare
Expr : Node_Id;
Eloc : Source_Ptr;
Cname : Name_Id;
Check_On : Boolean;
-- Set True if category of assertions referenced by Name enabled
begin
GNAT_Pragma;
Check_At_Least_N_Arguments (2);
Check_At_Most_N_Arguments (3);
Check_Optional_Identifier (Arg1, Name_Name);
Check_Optional_Identifier (Arg2, Name_Check);
if Arg_Count = 3 then
Check_Optional_Identifier (Arg3, Name_Message);
Analyze_And_Resolve (Get_Pragma_Arg (Arg3), Standard_String);
end if;
Check_Arg_Is_Identifier (Arg1);
-- Completely ignore if disabled
if Check_Disabled (Chars (Get_Pragma_Arg (Arg1))) then
Rewrite (N, Make_Null_Statement (Loc));
Analyze (N);
return;
end if;
Cname := Chars (Get_Pragma_Arg (Arg1));
Check_On := Check_Enabled (Cname);
case Cname is
when Name_Predicate |
Name_Invariant =>
-- Nothing to do: since checks occur in client units,
-- the SCO for the aspect in the declaration unit is
-- conservatively always enabled.
null;
when others =>
if Check_On and then not Split_PPC (N) then
-- Mark pragma/aspect SCO as enabled
Set_SCO_Pragma_Enabled (Loc);
end if;
end case;
-- If expansion is active and the check is not enabled then we
-- rewrite the Check as:
-- if False and then condition then
-- null;
-- end if;
-- The reason we do this rewriting during semantic analysis rather
-- than as part of normal expansion is that we cannot analyze and
-- expand the code for the boolean expression directly, or it may
-- cause insertion of actions that would escape the attempt to
-- suppress the check code.
-- Note that the Sloc for the if statement corresponds to the
-- argument condition, not the pragma itself. The reason for this
-- is that we may generate a warning if the condition is False at
-- compile time, and we do not want to delete this warning when we
-- delete the if statement.
Expr := Get_Pragma_Arg (Arg2);
if Expander_Active and then not Check_On then
Eloc := Sloc (Expr);
Rewrite (N,
Make_If_Statement (Eloc,
Condition =>
Make_And_Then (Eloc,
Left_Opnd => New_Occurrence_Of (Standard_False, Eloc),
Right_Opnd => Expr),
Then_Statements => New_List (
Make_Null_Statement (Eloc))));
Analyze (N);
-- Check is active
else
In_Assertion_Expr := In_Assertion_Expr + 1;
Analyze_And_Resolve (Expr, Any_Boolean);
In_Assertion_Expr := In_Assertion_Expr - 1;
end if;
end Check;
--------------------------
-- Check_Float_Overflow --
--------------------------
-- pragma Check_Float_Overflow;
when Pragma_Check_Float_Overflow =>
GNAT_Pragma;
Check_Valid_Configuration_Pragma;
Check_Arg_Count (0);
Check_Float_Overflow := True;
----------------
-- Check_Name --
----------------
-- pragma Check_Name (check_IDENTIFIER);
when Pragma_Check_Name =>
Check_No_Identifiers;
GNAT_Pragma;
Check_Valid_Configuration_Pragma;
Check_Arg_Count (1);
Check_Arg_Is_Identifier (Arg1);
declare
Nam : constant Name_Id := Chars (Get_Pragma_Arg (Arg1));
begin
for J in Check_Names.First .. Check_Names.Last loop
if Check_Names.Table (J) = Nam then
return;
end if;
end loop;
Check_Names.Append (Nam);
end;
------------------
-- Check_Policy --
------------------
-- pragma Check_Policy (
-- [Name =>] IDENTIFIER,
-- [Policy =>] POLICY_IDENTIFIER);
-- POLICY_IDENTIFIER ::= ON | OFF | CHECK | DISABLE | IGNORE
-- Note: this is a configuration pragma, but it is allowed to appear
-- anywhere else.
when Pragma_Check_Policy =>
GNAT_Pragma;
Check_Arg_Count (2);
Check_Optional_Identifier (Arg1, Name_Name);
Check_Optional_Identifier (Arg2, Name_Policy);
Check_Arg_Is_One_Of
(Arg2, Name_On, Name_Off, Name_Check, Name_Disable, Name_Ignore);
-- A Check_Policy pragma can appear either as a configuration
-- pragma, or in a declarative part or a package spec (see RM
-- 11.5(5) for rules for Suppress/Unsuppress which are also
-- followed for Check_Policy).
if not Is_Configuration_Pragma then
Check_Is_In_Decl_Part_Or_Package_Spec;
end if;
Set_Next_Pragma (N, Opt.Check_Policy_List);
Opt.Check_Policy_List := N;
---------------------
-- CIL_Constructor --
---------------------
-- pragma CIL_Constructor ([Entity =>] LOCAL_NAME);
-- Processing for this pragma is shared with Java_Constructor
-------------
-- Comment --
-------------
-- pragma Comment (static_string_EXPRESSION)
-- Processing for pragma Comment shares the circuitry for pragma
-- Ident. The only differences are that Ident enforces a limit of 31
-- characters on its argument, and also enforces limitations on
-- placement for DEC compatibility. Pragma Comment shares neither of
-- these restrictions.
-------------------
-- Common_Object --
-------------------
-- pragma Common_Object (
-- [Internal =>] LOCAL_NAME
-- [, [External =>] EXTERNAL_SYMBOL]
-- [, [Size =>] EXTERNAL_SYMBOL]);
-- Processing for this pragma is shared with Psect_Object
------------------------
-- Compile_Time_Error --
------------------------
-- pragma Compile_Time_Error
-- (boolean_EXPRESSION, static_string_EXPRESSION);
when Pragma_Compile_Time_Error =>
GNAT_Pragma;
Process_Compile_Time_Warning_Or_Error;
--------------------------
-- Compile_Time_Warning --
--------------------------
-- pragma Compile_Time_Warning
-- (boolean_EXPRESSION, static_string_EXPRESSION);
when Pragma_Compile_Time_Warning =>
GNAT_Pragma;
Process_Compile_Time_Warning_Or_Error;
-------------------
-- Compiler_Unit --
-------------------
when Pragma_Compiler_Unit =>
GNAT_Pragma;
Check_Arg_Count (0);
Set_Is_Compiler_Unit (Get_Source_Unit (N));
-----------------------------
-- Complete_Representation --
-----------------------------
-- pragma Complete_Representation;
when Pragma_Complete_Representation =>
GNAT_Pragma;
Check_Arg_Count (0);
if Nkind (Parent (N)) /= N_Record_Representation_Clause then
Error_Pragma
("pragma & must appear within record representation clause");
end if;
----------------------------
-- Complex_Representation --
----------------------------
-- pragma Complex_Representation ([Entity =>] LOCAL_NAME);
when Pragma_Complex_Representation => Complex_Representation : declare
E_Id : Entity_Id;
E : Entity_Id;
Ent : Entity_Id;
begin
GNAT_Pragma;
Check_Arg_Count (1);
Check_Optional_Identifier (Arg1, Name_Entity);
Check_Arg_Is_Local_Name (Arg1);
E_Id := Get_Pragma_Arg (Arg1);
if Etype (E_Id) = Any_Type then
return;
end if;
E := Entity (E_Id);
if not Is_Record_Type (E) then
Error_Pragma_Arg
("argument for pragma% must be record type", Arg1);
end if;
Ent := First_Entity (E);
if No (Ent)
or else No (Next_Entity (Ent))
or else Present (Next_Entity (Next_Entity (Ent)))
or else not Is_Floating_Point_Type (Etype (Ent))
or else Etype (Ent) /= Etype (Next_Entity (Ent))
then
Error_Pragma_Arg
("record for pragma% must have two fields of the same "
& "floating-point type", Arg1);
else
Set_Has_Complex_Representation (Base_Type (E));
-- We need to treat the type has having a non-standard
-- representation, for back-end purposes, even though in
-- general a complex will have the default representation
-- of a record with two real components.
Set_Has_Non_Standard_Rep (Base_Type (E));
end if;
end Complex_Representation;
-------------------------
-- Component_Alignment --
-------------------------
-- pragma Component_Alignment (
-- [Form =>] ALIGNMENT_CHOICE
-- [, [Name =>] type_LOCAL_NAME]);
--
-- ALIGNMENT_CHOICE ::=
-- Component_Size
-- | Component_Size_4
-- | Storage_Unit
-- | Default
when Pragma_Component_Alignment => Component_AlignmentP : declare
Args : Args_List (1 .. 2);
Names : constant Name_List (1 .. 2) := (
Name_Form,
Name_Name);
Form : Node_Id renames Args (1);
Name : Node_Id renames Args (2);
Atype : Component_Alignment_Kind;
Typ : Entity_Id;
begin
GNAT_Pragma;
Gather_Associations (Names, Args);
if No (Form) then
Error_Pragma ("missing Form argument for pragma%");
end if;
Check_Arg_Is_Identifier (Form);
-- Get proper alignment, note that Default = Component_Size on all
-- machines we have so far, and we want to set this value rather
-- than the default value to indicate that it has been explicitly
-- set (and thus will not get overridden by the default component
-- alignment for the current scope)
if Chars (Form) = Name_Component_Size then
Atype := Calign_Component_Size;
elsif Chars (Form) = Name_Component_Size_4 then
Atype := Calign_Component_Size_4;
elsif Chars (Form) = Name_Default then
Atype := Calign_Component_Size;
elsif Chars (Form) = Name_Storage_Unit then
Atype := Calign_Storage_Unit;
else
Error_Pragma_Arg
("invalid Form parameter for pragma%", Form);
end if;
-- Case with no name, supplied, affects scope table entry
if No (Name) then
Scope_Stack.Table
(Scope_Stack.Last).Component_Alignment_Default := Atype;
-- Case of name supplied
else
Check_Arg_Is_Local_Name (Name);
Find_Type (Name);
Typ := Entity (Name);
if Typ = Any_Type
or else Rep_Item_Too_Early (Typ, N)
then
return;
else
Typ := Underlying_Type (Typ);
end if;
if not Is_Record_Type (Typ)
and then not Is_Array_Type (Typ)
then
Error_Pragma_Arg
("Name parameter of pragma% must identify record or " &
"array type", Name);
end if;
-- An explicit Component_Alignment pragma overrides an
-- implicit pragma Pack, but not an explicit one.
if not Has_Pragma_Pack (Base_Type (Typ)) then
Set_Is_Packed (Base_Type (Typ), False);
Set_Component_Alignment (Base_Type (Typ), Atype);
end if;
end if;
end Component_AlignmentP;
-------------------
-- Contract_Case --
-------------------
-- pragma Contract_Case
-- ([Name =>] Static_String_EXPRESSION
-- ,[Mode =>] MODE_TYPE
-- [, Requires => Boolean_EXPRESSION]
-- [, Ensures => Boolean_EXPRESSION]);
-- MODE_TYPE ::= Nominal | Robustness
when Pragma_Contract_Case =>
Check_Contract_Or_Test_Case;
--------------------
-- Contract_Cases --
--------------------
-- pragma Contract_Cases (CONTRACT_CASE_LIST);
-- CONTRACT_CASE_LIST ::= CONTRACT_CASE {, CONTRACT_CASE}
-- CONTRACT_CASE ::= CASE_GUARD => CONSEQUENCE
-- CASE_GUARD ::= boolean_EXPRESSION | others
-- CONSEQUENCE ::= boolean_EXPRESSION
when Pragma_Contract_Cases => Contract_Cases : declare
procedure Chain_Contract_Cases (Subp_Decl : Node_Id);
-- Chain pragma Contract_Cases to the contract of a subprogram.
-- Subp_Decl is the declaration of the subprogram.
--------------------------
-- Chain_Contract_Cases --
--------------------------
procedure Chain_Contract_Cases (Subp_Decl : Node_Id) is
Subp : constant Entity_Id :=
Defining_Unit_Name (Specification (Subp_Decl));
CTC : Node_Id;
begin
Check_Duplicate_Pragma (Subp);
CTC := Spec_CTC_List (Contract (Subp));
while Present (CTC) loop
if Chars (Pragma_Identifier (CTC)) = Pname then
Error_Msg_Name_1 := Pname;
Error_Msg_Sloc := Sloc (CTC);
if From_Aspect_Specification (CTC) then
Error_Msg_NE
("aspect% for & previously given#", N, Subp);
else
Error_Msg_NE
("pragma% for & duplicates pragma#", N, Subp);
end if;
raise Pragma_Exit;
end if;
CTC := Next_Pragma (CTC);
end loop;
-- Prepend pragma Contract_Cases to the contract
Set_Next_Pragma (N, Spec_CTC_List (Contract (Subp)));
Set_Spec_CTC_List (Contract (Subp), N);
end Chain_Contract_Cases;
-- Local variables
Case_Guard : Node_Id;
Decl : Node_Id;
Extra : Node_Id;
Others_Seen : Boolean := False;
Contract_Case : Node_Id;
Subp_Decl : Node_Id;
-- Start of processing for Contract_Cases
begin
GNAT_Pragma;
S14_Pragma;
Check_Arg_Count (1);
-- Completely ignore if disabled
if Check_Disabled (Pname) then
Rewrite (N, Make_Null_Statement (Loc));
Analyze (N);
return;
end if;
-- Check the placement of the pragma
if not Is_List_Member (N) then
Pragma_Misplaced;
end if;
-- Pragma Contract_Cases must be associated with a subprogram
Decl := N;
while Present (Prev (Decl)) loop
Decl := Prev (Decl);
if Nkind (Decl) in N_Generic_Declaration then
Subp_Decl := Decl;
else
Subp_Decl := Original_Node (Decl);
end if;
-- Skip prior pragmas
if Nkind (Subp_Decl) = N_Pragma then
null;
-- Skip internally generated code
elsif not Comes_From_Source (Subp_Decl) then
null;
-- We have found the related subprogram
elsif Nkind_In (Subp_Decl, N_Generic_Subprogram_Declaration,
N_Subprogram_Declaration)
then
exit;
else
Pragma_Misplaced;
end if;
end loop;
-- All contract cases must appear as an aggregate
if Nkind (Expression (Arg1)) /= N_Aggregate then
Error_Pragma ("wrong syntax for pragma %");
return;
end if;
-- Verify the legality of individual contract cases
Contract_Case :=
First (Component_Associations (Expression (Arg1)));
while Present (Contract_Case) loop
if Nkind (Contract_Case) /= N_Component_Association then
Error_Pragma_Arg
("wrong syntax in contract case", Contract_Case);
return;
end if;
Case_Guard := First (Choices (Contract_Case));
-- Each contract case must have exactly on case guard
Extra := Next (Case_Guard);
if Present (Extra) then
Error_Pragma_Arg
("contract case may have only one case guard", Extra);
return;
end if;
-- Check the placement of "others" (if available)
if Nkind (Case_Guard) = N_Others_Choice then
if Others_Seen then
Error_Pragma_Arg
("only one others choice allowed in pragma %",
Case_Guard);
return;
else
Others_Seen := True;
end if;
elsif Others_Seen then
Error_Pragma_Arg
("others must be the last choice in pragma %", N);
return;
end if;
Next (Contract_Case);
end loop;
Chain_Contract_Cases (Subp_Decl);
end Contract_Cases;
----------------
-- Controlled --
----------------
-- pragma Controlled (first_subtype_LOCAL_NAME);
when Pragma_Controlled => Controlled : declare
Arg : Node_Id;
begin
Check_No_Identifiers;
Check_Arg_Count (1);
Check_Arg_Is_Local_Name (Arg1);
Arg := Get_Pragma_Arg (Arg1);
if not Is_Entity_Name (Arg)
or else not Is_Access_Type (Entity (Arg))
then
Error_Pragma_Arg ("pragma% requires access type", Arg1);
else
Set_Has_Pragma_Controlled (Base_Type (Entity (Arg)));
end if;
end Controlled;
----------------
-- Convention --
----------------
-- pragma Convention ([Convention =>] convention_IDENTIFIER,
-- [Entity =>] LOCAL_NAME);
when Pragma_Convention => Convention : declare
C : Convention_Id;
E : Entity_Id;
pragma Warnings (Off, C);
pragma Warnings (Off, E);
begin
Check_Arg_Order ((Name_Convention, Name_Entity));
Check_Ada_83_Warning;
Check_Arg_Count (2);
Process_Convention (C, E);
end Convention;
---------------------------
-- Convention_Identifier --
---------------------------
-- pragma Convention_Identifier ([Name =>] IDENTIFIER,
-- [Convention =>] convention_IDENTIFIER);
when Pragma_Convention_Identifier => Convention_Identifier : declare
Idnam : Name_Id;
Cname : Name_Id;
begin
GNAT_Pragma;
Check_Arg_Order ((Name_Name, Name_Convention));
Check_Arg_Count (2);
Check_Optional_Identifier (Arg1, Name_Name);
Check_Optional_Identifier (Arg2, Name_Convention);
Check_Arg_Is_Identifier (Arg1);
Check_Arg_Is_Identifier (Arg2);
Idnam := Chars (Get_Pragma_Arg (Arg1));
Cname := Chars (Get_Pragma_Arg (Arg2));
if Is_Convention_Name (Cname) then
Record_Convention_Identifier
(Idnam, Get_Convention_Id (Cname));
else
Error_Pragma_Arg
("second arg for % pragma must be convention", Arg2);
end if;
end Convention_Identifier;
---------------
-- CPP_Class --
---------------
-- pragma CPP_Class ([Entity =>] local_NAME)
when Pragma_CPP_Class => CPP_Class : declare
begin
GNAT_Pragma;
if Warn_On_Obsolescent_Feature then
-- Following message is obsolete ???
Error_Msg_N
("'G'N'A'T pragma cpp'_class is now obsolete and has no " &
"effect; replace it by pragma import?j?", N);
end if;
Check_Arg_Count (1);
Rewrite (N,
Make_Pragma (Loc,
Chars => Name_Import,
Pragma_Argument_Associations => New_List (
Make_Pragma_Argument_Association (Loc,
Expression => Make_Identifier (Loc, Name_CPP)),
New_Copy (First (Pragma_Argument_Associations (N))))));
Analyze (N);
end CPP_Class;
---------------------
-- CPP_Constructor --
---------------------
-- pragma CPP_Constructor ([Entity =>] LOCAL_NAME
-- [, [External_Name =>] static_string_EXPRESSION ]
-- [, [Link_Name =>] static_string_EXPRESSION ]);
when Pragma_CPP_Constructor => CPP_Constructor : declare
Elmt : Elmt_Id;
Id : Entity_Id;
Def_Id : Entity_Id;
Tag_Typ : Entity_Id;
begin
GNAT_Pragma;
Check_At_Least_N_Arguments (1);
Check_At_Most_N_Arguments (3);
Check_Optional_Identifier (Arg1, Name_Entity);
Check_Arg_Is_Local_Name (Arg1);
Id := Get_Pragma_Arg (Arg1);
Find_Program_Unit_Name (Id);
-- If we did not find the name, we are done
if Etype (Id) = Any_Type then
return;
end if;
Def_Id := Entity (Id);
-- Check if already defined as constructor
if Is_Constructor (Def_Id) then
Error_Msg_N
("??duplicate argument for pragma 'C'P'P_Constructor", Arg1);
return;
end if;
if Ekind (Def_Id) = E_Function
and then (Is_CPP_Class (Etype (Def_Id))
or else (Is_Class_Wide_Type (Etype (Def_Id))
and then
Is_CPP_Class (Root_Type (Etype (Def_Id)))))
then
if Scope (Def_Id) /= Scope (Etype (Def_Id)) then
Error_Msg_N
("'C'P'P constructor must be defined in the scope of " &
"its returned type", Arg1);
end if;
if Arg_Count >= 2 then
Set_Imported (Def_Id);
Set_Is_Public (Def_Id);
Process_Interface_Name (Def_Id, Arg2, Arg3);
end if;
Set_Has_Completion (Def_Id);
Set_Is_Constructor (Def_Id);
Set_Convention (Def_Id, Convention_CPP);
-- Imported C++ constructors are not dispatching primitives
-- because in C++ they don't have a dispatch table slot.
-- However, in Ada the constructor has the profile of a
-- function that returns a tagged type and therefore it has
-- been treated as a primitive operation during semantic
-- analysis. We now remove it from the list of primitive
-- operations of the type.
if Is_Tagged_Type (Etype (Def_Id))
and then not Is_Class_Wide_Type (Etype (Def_Id))
and then Is_Dispatching_Operation (Def_Id)
then
Tag_Typ := Etype (Def_Id);
Elmt := First_Elmt (Primitive_Operations (Tag_Typ));
while Present (Elmt) and then Node (Elmt) /= Def_Id loop
Next_Elmt (Elmt);
end loop;
Remove_Elmt (Primitive_Operations (Tag_Typ), Elmt);
Set_Is_Dispatching_Operation (Def_Id, False);
end if;
-- For backward compatibility, if the constructor returns a
-- class wide type, and we internally change the return type to
-- the corresponding root type.
if Is_Class_Wide_Type (Etype (Def_Id)) then
Set_Etype (Def_Id, Root_Type (Etype (Def_Id)));
end if;
else
Error_Pragma_Arg
("pragma% requires function returning a 'C'P'P_Class type",
Arg1);
end if;
end CPP_Constructor;
-----------------
-- CPP_Virtual --
-----------------
when Pragma_CPP_Virtual => CPP_Virtual : declare
begin
GNAT_Pragma;
if Warn_On_Obsolescent_Feature then
Error_Msg_N
("'G'N'A'T pragma cpp'_virtual is now obsolete and has " &
"no effect?j?", N);
end if;
end CPP_Virtual;
----------------
-- CPP_Vtable --
----------------
when Pragma_CPP_Vtable => CPP_Vtable : declare
begin
GNAT_Pragma;
if Warn_On_Obsolescent_Feature then
Error_Msg_N
("'G'N'A'T pragma cpp'_vtable is now obsolete and has " &
"no effect?j?", N);
end if;
end CPP_Vtable;
---------
-- CPU --
---------
-- pragma CPU (EXPRESSION);
when Pragma_CPU => CPU : declare
P : constant Node_Id := Parent (N);
Arg : Node_Id;
Ent : Entity_Id;
begin
Ada_2012_Pragma;
Check_No_Identifiers;
Check_Arg_Count (1);
-- Subprogram case
if Nkind (P) = N_Subprogram_Body then
Check_In_Main_Program;
Arg := Get_Pragma_Arg (Arg1);
Analyze_And_Resolve (Arg, Any_Integer);
Ent := Defining_Unit_Name (Specification (P));
if Nkind (Ent) = N_Defining_Program_Unit_Name then
Ent := Defining_Identifier (Ent);
end if;
-- Must be static
if not Is_Static_Expression (Arg) then
Flag_Non_Static_Expr
("main subprogram affinity is not static!", Arg);
raise Pragma_Exit;
-- If constraint error, then we already signalled an error
elsif Raises_Constraint_Error (Arg) then
null;
-- Otherwise check in range
else
declare
CPU_Id : constant Entity_Id := RTE (RE_CPU_Range);
-- This is the entity System.Multiprocessors.CPU_Range;
Val : constant Uint := Expr_Value (Arg);
begin
if Val < Expr_Value (Type_Low_Bound (CPU_Id))
or else
Val > Expr_Value (Type_High_Bound (CPU_Id))
then
Error_Pragma_Arg
("main subprogram CPU is out of range", Arg1);
end if;
end;
end if;
Set_Main_CPU
(Current_Sem_Unit, UI_To_Int (Expr_Value (Arg)));
-- Task case
elsif Nkind (P) = N_Task_Definition then
Arg := Get_Pragma_Arg (Arg1);
Ent := Defining_Identifier (Parent (P));
-- The expression must be analyzed in the special manner
-- described in "Handling of Default and Per-Object
-- Expressions" in sem.ads.
Preanalyze_Spec_Expression (Arg, RTE (RE_CPU_Range));
-- Anything else is incorrect
else
Pragma_Misplaced;
end if;
-- Check duplicate pragma before we chain the pragma in the Rep
-- Item chain of Ent.
Check_Duplicate_Pragma (Ent);
Record_Rep_Item (Ent, N);
end CPU;
-----------
-- Debug --
-----------
-- pragma Debug ([boolean_EXPRESSION,] PROCEDURE_CALL_STATEMENT);
when Pragma_Debug => Debug : declare
Cond : Node_Id;
Call : Node_Id;
begin
GNAT_Pragma;
-- Skip analysis if disabled
if Debug_Pragmas_Disabled then
Rewrite (N, Make_Null_Statement (Loc));
Analyze (N);
return;
end if;
Cond :=
New_Occurrence_Of
(Boolean_Literals (Debug_Pragmas_Enabled and Expander_Active),
Loc);
if Debug_Pragmas_Enabled then
Set_SCO_Pragma_Enabled (Loc);
end if;
if Arg_Count = 2 then
Cond :=
Make_And_Then (Loc,
Left_Opnd => Relocate_Node (Cond),
Right_Opnd => Get_Pragma_Arg (Arg1));
Call := Get_Pragma_Arg (Arg2);
else
Call := Get_Pragma_Arg (Arg1);
end if;
if Nkind_In (Call,
N_Indexed_Component,
N_Function_Call,
N_Identifier,
N_Expanded_Name,
N_Selected_Component)
then
-- If this pragma Debug comes from source, its argument was
-- parsed as a name form (which is syntactically identical).
-- In a generic context a parameterless call will be left as
-- an expanded name (if global) or selected_component if local.
-- Change it to a procedure call statement now.
Change_Name_To_Procedure_Call_Statement (Call);
elsif Nkind (Call) = N_Procedure_Call_Statement then
-- Already in the form of a procedure call statement: nothing
-- to do (could happen in case of an internally generated
-- pragma Debug).
null;
else
-- All other cases: diagnose error
Error_Msg
("argument of pragma ""Debug"" is not procedure call",
Sloc (Call));
return;
end if;
-- Rewrite into a conditional with an appropriate condition. We
-- wrap the procedure call in a block so that overhead from e.g.
-- use of the secondary stack does not generate execution overhead
-- for suppressed conditions.
-- Normally the analysis that follows will freeze the subprogram
-- being called. However, if the call is to a null procedure,
-- we want to freeze it before creating the block, because the
-- analysis that follows may be done with expansion disabled, in
-- which case the body will not be generated, leading to spurious
-- errors.
if Nkind (Call) = N_Procedure_Call_Statement
and then Is_Entity_Name (Name (Call))
then
Analyze (Name (Call));
Freeze_Before (N, Entity (Name (Call)));
end if;
Rewrite (N, Make_Implicit_If_Statement (N,
Condition => Cond,
Then_Statements => New_List (
Make_Block_Statement (Loc,
Handled_Statement_Sequence =>
Make_Handled_Sequence_Of_Statements (Loc,
Statements => New_List (Relocate_Node (Call)))))));
Analyze (N);
end Debug;
------------------
-- Debug_Policy --
------------------
-- pragma Debug_Policy (Check | Ignore)
when Pragma_Debug_Policy =>
GNAT_Pragma;
Check_Arg_Count (1);
Check_Arg_Is_One_Of (Arg1, Name_Check, Name_Disable, Name_Ignore);
Debug_Pragmas_Enabled :=
Chars (Get_Pragma_Arg (Arg1)) = Name_Check;
Debug_Pragmas_Disabled :=
Chars (Get_Pragma_Arg (Arg1)) = Name_Disable;
---------------------
-- Detect_Blocking --
---------------------
-- pragma Detect_Blocking;
when Pragma_Detect_Blocking =>
Ada_2005_Pragma;
Check_Arg_Count (0);
Check_Valid_Configuration_Pragma;
Detect_Blocking := True;
--------------------------
-- Default_Storage_Pool --
--------------------------
-- pragma Default_Storage_Pool (storage_pool_NAME | null);
when Pragma_Default_Storage_Pool =>
Ada_2012_Pragma;
Check_Arg_Count (1);
-- Default_Storage_Pool can appear as a configuration pragma, or
-- in a declarative part or a package spec.
if not Is_Configuration_Pragma then
Check_Is_In_Decl_Part_Or_Package_Spec;
end if;
-- Case of Default_Storage_Pool (null);
if Nkind (Expression (Arg1)) = N_Null then
Analyze (Expression (Arg1));
-- This is an odd case, this is not really an expression, so
-- we don't have a type for it. So just set the type to Empty.
Set_Etype (Expression (Arg1), Empty);
-- Case of Default_Storage_Pool (storage_pool_NAME);
else
-- If it's a configuration pragma, then the only allowed
-- argument is "null".
if Is_Configuration_Pragma then
Error_Pragma_Arg ("NULL expected", Arg1);
end if;
-- The expected type for a non-"null" argument is
-- Root_Storage_Pool'Class.
Analyze_And_Resolve
(Get_Pragma_Arg (Arg1),
Typ => Class_Wide_Type (RTE (RE_Root_Storage_Pool)));
end if;
-- Finally, record the pool name (or null). Freeze.Freeze_Entity
-- for an access type will use this information to set the
-- appropriate attributes of the access type.
Default_Pool := Expression (Arg1);
------------------------------------
-- Disable_Atomic_Synchronization --
------------------------------------
-- pragma Disable_Atomic_Synchronization [(Entity)];
when Pragma_Disable_Atomic_Synchronization =>
Process_Disable_Enable_Atomic_Sync (Name_Suppress);
-------------------
-- Discard_Names --
-------------------
-- pragma Discard_Names [([On =>] LOCAL_NAME)];
when Pragma_Discard_Names => Discard_Names : declare
E : Entity_Id;
E_Id : Entity_Id;
begin
Check_Ada_83_Warning;
-- Deal with configuration pragma case
if Arg_Count = 0 and then Is_Configuration_Pragma then
Global_Discard_Names := True;
return;
-- Otherwise, check correct appropriate context
else
Check_Is_In_Decl_Part_Or_Package_Spec;
if Arg_Count = 0 then
-- If there is no parameter, then from now on this pragma
-- applies to any enumeration, exception or tagged type
-- defined in the current declarative part, and recursively
-- to any nested scope.
Set_Discard_Names (Current_Scope);
return;
else
Check_Arg_Count (1);
Check_Optional_Identifier (Arg1, Name_On);
Check_Arg_Is_Local_Name (Arg1);
E_Id := Get_Pragma_Arg (Arg1);
if Etype (E_Id) = Any_Type then
return;
else
E := Entity (E_Id);
end if;
if (Is_First_Subtype (E)
and then
(Is_Enumeration_Type (E) or else Is_Tagged_Type (E)))
or else Ekind (E) = E_Exception
then
Set_Discard_Names (E);
Record_Rep_Item (E, N);
else
Error_Pragma_Arg
("inappropriate entity for pragma%", Arg1);
end if;
end if;
end if;
end Discard_Names;
------------------------
-- Dispatching_Domain --
------------------------
-- pragma Dispatching_Domain (EXPRESSION);
when Pragma_Dispatching_Domain => Dispatching_Domain : declare
P : constant Node_Id := Parent (N);
Arg : Node_Id;
Ent : Entity_Id;
begin
Ada_2012_Pragma;
Check_No_Identifiers;
Check_Arg_Count (1);
-- This pragma is born obsolete, but not the aspect
if not From_Aspect_Specification (N) then
Check_Restriction
(No_Obsolescent_Features, Pragma_Identifier (N));
end if;
if Nkind (P) = N_Task_Definition then
Arg := Get_Pragma_Arg (Arg1);
Ent := Defining_Identifier (Parent (P));
-- The expression must be analyzed in the special manner
-- described in "Handling of Default and Per-Object
-- Expressions" in sem.ads.
Preanalyze_Spec_Expression (Arg, RTE (RE_Dispatching_Domain));
-- Check duplicate pragma before we chain the pragma in the Rep
-- Item chain of Ent.
Check_Duplicate_Pragma (Ent);
Record_Rep_Item (Ent, N);
-- Anything else is incorrect
else
Pragma_Misplaced;
end if;
end Dispatching_Domain;
---------------
-- Elaborate --
---------------
-- pragma Elaborate (library_unit_NAME {, library_unit_NAME});
when Pragma_Elaborate => Elaborate : declare
Arg : Node_Id;
Citem : Node_Id;
begin
-- Pragma must be in context items list of a compilation unit
if not Is_In_Context_Clause then
Pragma_Misplaced;
end if;
-- Must be at least one argument
if Arg_Count = 0 then
Error_Pragma ("pragma% requires at least one argument");
end if;
-- In Ada 83 mode, there can be no items following it in the
-- context list except other pragmas and implicit with clauses
-- (e.g. those added by use of Rtsfind). In Ada 95 mode, this
-- placement rule does not apply.
if Ada_Version = Ada_83 and then Comes_From_Source (N) then
Citem := Next (N);
while Present (Citem) loop
if Nkind (Citem) = N_Pragma
or else (Nkind (Citem) = N_With_Clause
and then Implicit_With (Citem))
then
null;
else
Error_Pragma
("(Ada 83) pragma% must be at end of context clause");
end if;
Next (Citem);
end loop;
end if;
-- Finally, the arguments must all be units mentioned in a with
-- clause in the same context clause. Note we already checked (in
-- Par.Prag) that the arguments are all identifiers or selected
-- components.
Arg := Arg1;
Outer : while Present (Arg) loop
Citem := First (List_Containing (N));
Inner : while Citem /= N loop
if Nkind (Citem) = N_With_Clause
and then Same_Name (Name (Citem), Get_Pragma_Arg (Arg))
then
Set_Elaborate_Present (Citem, True);
Set_Unit_Name (Get_Pragma_Arg (Arg), Name (Citem));
Generate_Reference (Entity (Name (Citem)), Citem);
-- With the pragma present, elaboration calls on
-- subprograms from the named unit need no further
-- checks, as long as the pragma appears in the current
-- compilation unit. If the pragma appears in some unit
-- in the context, there might still be a need for an
-- Elaborate_All_Desirable from the current compilation
-- to the named unit, so we keep the check enabled.
if In_Extended_Main_Source_Unit (N) then
Set_Suppress_Elaboration_Warnings
(Entity (Name (Citem)));
end if;
exit Inner;
end if;
Next (Citem);
end loop Inner;
if Citem = N then
Error_Pragma_Arg
("argument of pragma% is not withed unit", Arg);
end if;
Next (Arg);
end loop Outer;
-- Give a warning if operating in static mode with -gnatwl
-- (elaboration warnings enabled) switch set.
if Elab_Warnings and not Dynamic_Elaboration_Checks then
Error_Msg_N
("?l?use of pragma Elaborate may not be safe", N);
Error_Msg_N
("?l?use pragma Elaborate_All instead if possible", N);
end if;
end Elaborate;
-------------------
-- Elaborate_All --
-------------------
-- pragma Elaborate_All (library_unit_NAME {, library_unit_NAME});
when Pragma_Elaborate_All => Elaborate_All : declare
Arg : Node_Id;
Citem : Node_Id;
begin
Check_Ada_83_Warning;
-- Pragma must be in context items list of a compilation unit
if not Is_In_Context_Clause then
Pragma_Misplaced;
end if;
-- Must be at least one argument
if Arg_Count = 0 then
Error_Pragma ("pragma% requires at least one argument");
end if;
-- Note: unlike pragma Elaborate, pragma Elaborate_All does not
-- have to appear at the end of the context clause, but may
-- appear mixed in with other items, even in Ada 83 mode.
-- Final check: the arguments must all be units mentioned in
-- a with clause in the same context clause. Note that we
-- already checked (in Par.Prag) that all the arguments are
-- either identifiers or selected components.
Arg := Arg1;
Outr : while Present (Arg) loop
Citem := First (List_Containing (N));
Innr : while Citem /= N loop
if Nkind (Citem) = N_With_Clause
and then Same_Name (Name (Citem), Get_Pragma_Arg (Arg))
then
Set_Elaborate_All_Present (Citem, True);
Set_Unit_Name (Get_Pragma_Arg (Arg), Name (Citem));
-- Suppress warnings and elaboration checks on the named
-- unit if the pragma is in the current compilation, as
-- for pragma Elaborate.
if In_Extended_Main_Source_Unit (N) then
Set_Suppress_Elaboration_Warnings
(Entity (Name (Citem)));
end if;
exit Innr;
end if;
Next (Citem);
end loop Innr;
if Citem = N then
Set_Error_Posted (N);
Error_Pragma_Arg
("argument of pragma% is not withed unit", Arg);
end if;
Next (Arg);
end loop Outr;
end Elaborate_All;
--------------------
-- Elaborate_Body --
--------------------
-- pragma Elaborate_Body [( library_unit_NAME )];
when Pragma_Elaborate_Body => Elaborate_Body : declare
Cunit_Node : Node_Id;
Cunit_Ent : Entity_Id;
begin
Check_Ada_83_Warning;
Check_Valid_Library_Unit_Pragma;
if Nkind (N) = N_Null_Statement then
return;
end if;
Cunit_Node := Cunit (Current_Sem_Unit);
Cunit_Ent := Cunit_Entity (Current_Sem_Unit);
if Nkind_In (Unit (Cunit_Node), N_Package_Body,
N_Subprogram_Body)
then
Error_Pragma ("pragma% must refer to a spec, not a body");
else
Set_Body_Required (Cunit_Node, True);
Set_Has_Pragma_Elaborate_Body (Cunit_Ent);
-- If we are in dynamic elaboration mode, then we suppress
-- elaboration warnings for the unit, since it is definitely
-- fine NOT to do dynamic checks at the first level (and such
-- checks will be suppressed because no elaboration boolean
-- is created for Elaborate_Body packages).
-- But in the static model of elaboration, Elaborate_Body is
-- definitely NOT good enough to ensure elaboration safety on
-- its own, since the body may WITH other units that are not
-- safe from an elaboration point of view, so a client must
-- still do an Elaborate_All on such units.
-- Debug flag -gnatdD restores the old behavior of 3.13, where
-- Elaborate_Body always suppressed elab warnings.
if Dynamic_Elaboration_Checks or Debug_Flag_DD then
Set_Suppress_Elaboration_Warnings (Cunit_Ent);
end if;
end if;
end Elaborate_Body;
------------------------
-- Elaboration_Checks --
------------------------
-- pragma Elaboration_Checks (Static | Dynamic);
when Pragma_Elaboration_Checks =>
GNAT_Pragma;
Check_Arg_Count (1);
Check_Arg_Is_One_Of (Arg1, Name_Static, Name_Dynamic);
Dynamic_Elaboration_Checks :=
(Chars (Get_Pragma_Arg (Arg1)) = Name_Dynamic);
---------------
-- Eliminate --
---------------
-- pragma Eliminate (
-- [Unit_Name =>] IDENTIFIER | SELECTED_COMPONENT,
-- [,[Entity =>] IDENTIFIER |
-- SELECTED_COMPONENT |
-- STRING_LITERAL]
-- [, OVERLOADING_RESOLUTION]);
-- OVERLOADING_RESOLUTION ::= PARAMETER_AND_RESULT_TYPE_PROFILE |
-- SOURCE_LOCATION
-- PARAMETER_AND_RESULT_TYPE_PROFILE ::= PROCEDURE_PROFILE |
-- FUNCTION_PROFILE
-- PROCEDURE_PROFILE ::= Parameter_Types => PARAMETER_TYPES
-- FUNCTION_PROFILE ::= [Parameter_Types => PARAMETER_TYPES,]
-- Result_Type => result_SUBTYPE_NAME]
-- PARAMETER_TYPES ::= (SUBTYPE_NAME {, SUBTYPE_NAME})
-- SUBTYPE_NAME ::= STRING_LITERAL
-- SOURCE_LOCATION ::= Source_Location => SOURCE_TRACE
-- SOURCE_TRACE ::= STRING_LITERAL
when Pragma_Eliminate => Eliminate : declare
Args : Args_List (1 .. 5);
Names : constant Name_List (1 .. 5) := (
Name_Unit_Name,
Name_Entity,
Name_Parameter_Types,
Name_Result_Type,
Name_Source_Location);
Unit_Name : Node_Id renames Args (1);
Entity : Node_Id renames Args (2);
Parameter_Types : Node_Id renames Args (3);
Result_Type : Node_Id renames Args (4);
Source_Location : Node_Id renames Args (5);
begin
GNAT_Pragma;
Check_Valid_Configuration_Pragma;
Gather_Associations (Names, Args);
if No (Unit_Name) then
Error_Pragma ("missing Unit_Name argument for pragma%");
end if;
if No (Entity)
and then (Present (Parameter_Types)
or else
Present (Result_Type)
or else
Present (Source_Location))
then
Error_Pragma ("missing Entity argument for pragma%");
end if;
if (Present (Parameter_Types)
or else
Present (Result_Type))
and then
Present (Source_Location)
then
Error_Pragma
("parameter profile and source location cannot " &
"be used together in pragma%");
end if;
Process_Eliminate_Pragma
(N,
Unit_Name,
Entity,
Parameter_Types,
Result_Type,
Source_Location);
end Eliminate;
-----------------------------------
-- Enable_Atomic_Synchronization --
-----------------------------------
-- pragma Enable_Atomic_Synchronization [(Entity)];
when Pragma_Enable_Atomic_Synchronization =>
Process_Disable_Enable_Atomic_Sync (Name_Unsuppress);
------------
-- Export --
------------
-- pragma Export (
-- [ Convention =>] convention_IDENTIFIER,
-- [ Entity =>] local_NAME
-- [, [External_Name =>] static_string_EXPRESSION ]
-- [, [Link_Name =>] static_string_EXPRESSION ]);
when Pragma_Export => Export : declare
C : Convention_Id;
Def_Id : Entity_Id;
pragma Warnings (Off, C);
begin
Check_Ada_83_Warning;
Check_Arg_Order
((Name_Convention,
Name_Entity,
Name_External_Name,
Name_Link_Name));
Check_At_Least_N_Arguments (2);
Check_At_Most_N_Arguments (4);
Process_Convention (C, Def_Id);
if Ekind (Def_Id) /= E_Constant then
Note_Possible_Modification
(Get_Pragma_Arg (Arg2), Sure => False);
end if;
Process_Interface_Name (Def_Id, Arg3, Arg4);
Set_Exported (Def_Id, Arg2);
-- If the entity is a deferred constant, propagate the information
-- to the full view, because gigi elaborates the full view only.
if Ekind (Def_Id) = E_Constant
and then Present (Full_View (Def_Id))
then
declare
Id2 : constant Entity_Id := Full_View (Def_Id);
begin
Set_Is_Exported (Id2, Is_Exported (Def_Id));
Set_First_Rep_Item (Id2, First_Rep_Item (Def_Id));
Set_Interface_Name (Id2, Einfo.Interface_Name (Def_Id));
end;
end if;
end Export;
----------------------
-- Export_Exception --
----------------------
-- pragma Export_Exception (
-- [Internal =>] LOCAL_NAME
-- [, [External =>] EXTERNAL_SYMBOL]
-- [, [Form =>] Ada | VMS]
-- [, [Code =>] static_integer_EXPRESSION]);
when Pragma_Export_Exception => Export_Exception : declare
Args : Args_List (1 .. 4);
Names : constant Name_List (1 .. 4) := (
Name_Internal,
Name_External,
Name_Form,
Name_Code);
Internal : Node_Id renames Args (1);
External : Node_Id renames Args (2);
Form : Node_Id renames Args (3);
Code : Node_Id renames Args (4);
begin
GNAT_Pragma;
if Inside_A_Generic then
Error_Pragma ("pragma% cannot be used for generic entities");
end if;
Gather_Associations (Names, Args);
Process_Extended_Import_Export_Exception_Pragma (
Arg_Internal => Internal,
Arg_External => External,
Arg_Form => Form,
Arg_Code => Code);
if not Is_VMS_Exception (Entity (Internal)) then
Set_Exported (Entity (Internal), Internal);
end if;
end Export_Exception;
---------------------
-- Export_Function --
---------------------
-- pragma Export_Function (
-- [Internal =>] LOCAL_NAME
-- [, [External =>] EXTERNAL_SYMBOL]
-- [, [Parameter_Types =>] (PARAMETER_TYPES)]
-- [, [Result_Type =>] TYPE_DESIGNATOR]
-- [, [Mechanism =>] MECHANISM]
-- [, [Result_Mechanism =>] MECHANISM_NAME]);
-- EXTERNAL_SYMBOL ::=
-- IDENTIFIER
-- | static_string_EXPRESSION
-- PARAMETER_TYPES ::=
-- null
-- | TYPE_DESIGNATOR @{, TYPE_DESIGNATOR@}
-- TYPE_DESIGNATOR ::=
-- subtype_NAME
-- | subtype_Name ' Access
-- MECHANISM ::=
-- MECHANISM_NAME
-- | (MECHANISM_ASSOCIATION @{, MECHANISM_ASSOCIATION@})
-- MECHANISM_ASSOCIATION ::=
-- [formal_parameter_NAME =>] MECHANISM_NAME
-- MECHANISM_NAME ::=
-- Value
-- | Reference
-- | Descriptor [([Class =>] CLASS_NAME)]
-- CLASS_NAME ::= ubs | ubsb | uba | s | sb | a | nca
when Pragma_Export_Function => Export_Function : declare
Args : Args_List (1 .. 6);
Names : constant Name_List (1 .. 6) := (
Name_Internal,
Name_External,
Name_Parameter_Types,
Name_Result_Type,
Name_Mechanism,
Name_Result_Mechanism);
Internal : Node_Id renames Args (1);
External : Node_Id renames Args (2);
Parameter_Types : Node_Id renames Args (3);
Result_Type : Node_Id renames Args (4);
Mechanism : Node_Id renames Args (5);
Result_Mechanism : Node_Id renames Args (6);
begin
GNAT_Pragma;
Gather_Associations (Names, Args);
Process_Extended_Import_Export_Subprogram_Pragma (
Arg_Internal => Internal,
Arg_External => External,
Arg_Parameter_Types => Parameter_Types,
Arg_Result_Type => Result_Type,
Arg_Mechanism => Mechanism,
Arg_Result_Mechanism => Result_Mechanism);
end Export_Function;
-------------------
-- Export_Object --
-------------------
-- pragma Export_Object (
-- [Internal =>] LOCAL_NAME
-- [, [External =>] EXTERNAL_SYMBOL]
-- [, [Size =>] EXTERNAL_SYMBOL]);
-- EXTERNAL_SYMBOL ::=
-- IDENTIFIER
-- | static_string_EXPRESSION
-- PARAMETER_TYPES ::=
-- null
-- | TYPE_DESIGNATOR @{, TYPE_DESIGNATOR@}
-- TYPE_DESIGNATOR ::=
-- subtype_NAME
-- | subtype_Name ' Access
-- MECHANISM ::=
-- MECHANISM_NAME
-- | (MECHANISM_ASSOCIATION @{, MECHANISM_ASSOCIATION@})
-- MECHANISM_ASSOCIATION ::=
-- [formal_parameter_NAME =>] MECHANISM_NAME
-- MECHANISM_NAME ::=
-- Value
-- | Reference
-- | Descriptor [([Class =>] CLASS_NAME)]
-- CLASS_NAME ::= ubs | ubsb | uba | s | sb | a | nca
when Pragma_Export_Object => Export_Object : declare
Args : Args_List (1 .. 3);
Names : constant Name_List (1 .. 3) := (
Name_Internal,
Name_External,
Name_Size);
Internal : Node_Id renames Args (1);
External : Node_Id renames Args (2);
Size : Node_Id renames Args (3);
begin
GNAT_Pragma;
Gather_Associations (Names, Args);
Process_Extended_Import_Export_Object_Pragma (
Arg_Internal => Internal,
Arg_External => External,
Arg_Size => Size);
end Export_Object;
----------------------
-- Export_Procedure --
----------------------
-- pragma Export_Procedure (
-- [Internal =>] LOCAL_NAME
-- [, [External =>] EXTERNAL_SYMBOL]
-- [, [Parameter_Types =>] (PARAMETER_TYPES)]
-- [, [Mechanism =>] MECHANISM]);
-- EXTERNAL_SYMBOL ::=
-- IDENTIFIER
-- | static_string_EXPRESSION
-- PARAMETER_TYPES ::=
-- null
-- | TYPE_DESIGNATOR @{, TYPE_DESIGNATOR@}
-- TYPE_DESIGNATOR ::=
-- subtype_NAME
-- | subtype_Name ' Access
-- MECHANISM ::=
-- MECHANISM_NAME
-- | (MECHANISM_ASSOCIATION @{, MECHANISM_ASSOCIATION@})
-- MECHANISM_ASSOCIATION ::=
-- [formal_parameter_NAME =>] MECHANISM_NAME
-- MECHANISM_NAME ::=
-- Value
-- | Reference
-- | Descriptor [([Class =>] CLASS_NAME)]
-- CLASS_NAME ::= ubs | ubsb | uba | s | sb | a | nca
when Pragma_Export_Procedure => Export_Procedure : declare
Args : Args_List (1 .. 4);
Names : constant Name_List (1 .. 4) := (
Name_Internal,
Name_External,
Name_Parameter_Types,
Name_Mechanism);
Internal : Node_Id renames Args (1);
External : Node_Id renames Args (2);
Parameter_Types : Node_Id renames Args (3);
Mechanism : Node_Id renames Args (4);
begin
GNAT_Pragma;
Gather_Associations (Names, Args);
Process_Extended_Import_Export_Subprogram_Pragma (
Arg_Internal => Internal,
Arg_External => External,
Arg_Parameter_Types => Parameter_Types,
Arg_Mechanism => Mechanism);
end Export_Procedure;
------------------
-- Export_Value --
------------------
-- pragma Export_Value (
-- [Value =>] static_integer_EXPRESSION,
-- [Link_Name =>] static_string_EXPRESSION);
when Pragma_Export_Value =>
GNAT_Pragma;
Check_Arg_Order ((Name_Value, Name_Link_Name));
Check_Arg_Count (2);
Check_Optional_Identifier (Arg1, Name_Value);
Check_Arg_Is_Static_Expression (Arg1, Any_Integer);
Check_Optional_Identifier (Arg2, Name_Link_Name);
Check_Arg_Is_Static_Expression (Arg2, Standard_String);
-----------------------------
-- Export_Valued_Procedure --
-----------------------------
-- pragma Export_Valued_Procedure (
-- [Internal =>] LOCAL_NAME
-- [, [External =>] EXTERNAL_SYMBOL,]
-- [, [Parameter_Types =>] (PARAMETER_TYPES)]
-- [, [Mechanism =>] MECHANISM]);
-- EXTERNAL_SYMBOL ::=
-- IDENTIFIER
-- | static_string_EXPRESSION
-- PARAMETER_TYPES ::=
-- null
-- | TYPE_DESIGNATOR @{, TYPE_DESIGNATOR@}
-- TYPE_DESIGNATOR ::=
-- subtype_NAME
-- | subtype_Name ' Access
-- MECHANISM ::=
-- MECHANISM_NAME
-- | (MECHANISM_ASSOCIATION @{, MECHANISM_ASSOCIATION@})
-- MECHANISM_ASSOCIATION ::=
-- [formal_parameter_NAME =>] MECHANISM_NAME
-- MECHANISM_NAME ::=
-- Value
-- | Reference
-- | Descriptor [([Class =>] CLASS_NAME)]
-- CLASS_NAME ::= ubs | ubsb | uba | s | sb | a | nca
when Pragma_Export_Valued_Procedure =>
Export_Valued_Procedure : declare
Args : Args_List (1 .. 4);
Names : constant Name_List (1 .. 4) := (
Name_Internal,
Name_External,
Name_Parameter_Types,
Name_Mechanism);
Internal : Node_Id renames Args (1);
External : Node_Id renames Args (2);
Parameter_Types : Node_Id renames Args (3);
Mechanism : Node_Id renames Args (4);
begin
GNAT_Pragma;
Gather_Associations (Names, Args);
Process_Extended_Import_Export_Subprogram_Pragma (
Arg_Internal => Internal,
Arg_External => External,
Arg_Parameter_Types => Parameter_Types,
Arg_Mechanism => Mechanism);
end Export_Valued_Procedure;
-------------------
-- Extend_System --
-------------------
-- pragma Extend_System ([Name =>] Identifier);
when Pragma_Extend_System => Extend_System : declare
begin
GNAT_Pragma;
Check_Valid_Configuration_Pragma;
Check_Arg_Count (1);
Check_Optional_Identifier (Arg1, Name_Name);
Check_Arg_Is_Identifier (Arg1);
Get_Name_String (Chars (Get_Pragma_Arg (Arg1)));
if Name_Len > 4
and then Name_Buffer (1 .. 4) = "aux_"
then
if Present (System_Extend_Pragma_Arg) then
if Chars (Get_Pragma_Arg (Arg1)) =
Chars (Expression (System_Extend_Pragma_Arg))
then
null;
else
Error_Msg_Sloc := Sloc (System_Extend_Pragma_Arg);
Error_Pragma ("pragma% conflicts with that #");
end if;
else
System_Extend_Pragma_Arg := Arg1;
if not GNAT_Mode then
System_Extend_Unit := Arg1;
end if;
end if;
else
Error_Pragma ("incorrect name for pragma%, must be Aux_xxx");
end if;
end Extend_System;
------------------------
-- Extensions_Allowed --
------------------------
-- pragma Extensions_Allowed (ON | OFF);
when Pragma_Extensions_Allowed =>
GNAT_Pragma;
Check_Arg_Count (1);
Check_No_Identifiers;
Check_Arg_Is_One_Of (Arg1, Name_On, Name_Off);
if Chars (Get_Pragma_Arg (Arg1)) = Name_On then
Extensions_Allowed := True;
Ada_Version := Ada_Version_Type'Last;
else
Extensions_Allowed := False;
Ada_Version := Ada_Version_Explicit;
end if;
--------------
-- External --
--------------
-- pragma External (
-- [ Convention =>] convention_IDENTIFIER,
-- [ Entity =>] local_NAME
-- [, [External_Name =>] static_string_EXPRESSION ]
-- [, [Link_Name =>] static_string_EXPRESSION ]);
when Pragma_External => External : declare
Def_Id : Entity_Id;
C : Convention_Id;
pragma Warnings (Off, C);
begin
GNAT_Pragma;
Check_Arg_Order
((Name_Convention,
Name_Entity,
Name_External_Name,
Name_Link_Name));
Check_At_Least_N_Arguments (2);
Check_At_Most_N_Arguments (4);
Process_Convention (C, Def_Id);
Note_Possible_Modification
(Get_Pragma_Arg (Arg2), Sure => False);
Process_Interface_Name (Def_Id, Arg3, Arg4);
Set_Exported (Def_Id, Arg2);
end External;
--------------------------
-- External_Name_Casing --
--------------------------
-- pragma External_Name_Casing (
-- UPPERCASE | LOWERCASE
-- [, AS_IS | UPPERCASE | LOWERCASE]);
when Pragma_External_Name_Casing => External_Name_Casing : declare
begin
GNAT_Pragma;
Check_No_Identifiers;
if Arg_Count = 2 then
Check_Arg_Is_One_Of
(Arg2, Name_As_Is, Name_Uppercase, Name_Lowercase);
case Chars (Get_Pragma_Arg (Arg2)) is
when Name_As_Is =>
Opt.External_Name_Exp_Casing := As_Is;
when Name_Uppercase =>
Opt.External_Name_Exp_Casing := Uppercase;
when Name_Lowercase =>
Opt.External_Name_Exp_Casing := Lowercase;
when others =>
null;
end case;
else
Check_Arg_Count (1);
end if;
Check_Arg_Is_One_Of (Arg1, Name_Uppercase, Name_Lowercase);
case Chars (Get_Pragma_Arg (Arg1)) is
when Name_Uppercase =>
Opt.External_Name_Imp_Casing := Uppercase;
when Name_Lowercase =>
Opt.External_Name_Imp_Casing := Lowercase;
when others =>
null;
end case;
end External_Name_Casing;
--------------------------
-- Favor_Top_Level --
--------------------------
-- pragma Favor_Top_Level (type_NAME);
when Pragma_Favor_Top_Level => Favor_Top_Level : declare
Named_Entity : Entity_Id;
begin
GNAT_Pragma;
Check_No_Identifiers;
Check_Arg_Count (1);
Check_Arg_Is_Local_Name (Arg1);
Named_Entity := Entity (Get_Pragma_Arg (Arg1));
-- If it's an access-to-subprogram type (in particular, not a
-- subtype), set the flag on that type.
if Is_Access_Subprogram_Type (Named_Entity) then
Set_Can_Use_Internal_Rep (Named_Entity, False);
-- Otherwise it's an error (name denotes the wrong sort of entity)
else
Error_Pragma_Arg
("access-to-subprogram type expected",
Get_Pragma_Arg (Arg1));
end if;
end Favor_Top_Level;
---------------
-- Fast_Math --
---------------
-- pragma Fast_Math;
when Pragma_Fast_Math =>
GNAT_Pragma;
Check_No_Identifiers;
Check_Valid_Configuration_Pragma;
Fast_Math := True;
---------------------------
-- Finalize_Storage_Only --
---------------------------
-- pragma Finalize_Storage_Only (first_subtype_LOCAL_NAME);
when Pragma_Finalize_Storage_Only => Finalize_Storage : declare
Assoc : constant Node_Id := Arg1;
Type_Id : constant Node_Id := Get_Pragma_Arg (Assoc);
Typ : Entity_Id;
begin
GNAT_Pragma;
Check_No_Identifiers;
Check_Arg_Count (1);
Check_Arg_Is_Local_Name (Arg1);
Find_Type (Type_Id);
Typ := Entity (Type_Id);
if Typ = Any_Type
or else Rep_Item_Too_Early (Typ, N)
then
return;
else
Typ := Underlying_Type (Typ);
end if;
if not Is_Controlled (Typ) then
Error_Pragma ("pragma% must specify controlled type");
end if;
Check_First_Subtype (Arg1);
if Finalize_Storage_Only (Typ) then
Error_Pragma ("duplicate pragma%, only one allowed");
elsif not Rep_Item_Too_Late (Typ, N) then
Set_Finalize_Storage_Only (Base_Type (Typ), True);
end if;
end Finalize_Storage;
--------------------------
-- Float_Representation --
--------------------------
-- pragma Float_Representation (FLOAT_REP[, float_type_LOCAL_NAME]);
-- FLOAT_REP ::= VAX_Float | IEEE_Float
when Pragma_Float_Representation => Float_Representation : declare
Argx : Node_Id;
Digs : Nat;
Ent : Entity_Id;
begin
GNAT_Pragma;
if Arg_Count = 1 then
Check_Valid_Configuration_Pragma;
else
Check_Arg_Count (2);
Check_Optional_Identifier (Arg2, Name_Entity);
Check_Arg_Is_Local_Name (Arg2);
end if;
Check_No_Identifier (Arg1);
Check_Arg_Is_One_Of (Arg1, Name_VAX_Float, Name_IEEE_Float);
if not OpenVMS_On_Target then
if Chars (Get_Pragma_Arg (Arg1)) = Name_VAX_Float then
Error_Pragma
("??pragma% ignored (applies only to Open'V'M'S)");
end if;
return;
end if;
-- One argument case
if Arg_Count = 1 then
if Chars (Get_Pragma_Arg (Arg1)) = Name_VAX_Float then
if Opt.Float_Format = 'I' then
Error_Pragma ("'I'E'E'E format previously specified");
end if;
Opt.Float_Format := 'V';
else
if Opt.Float_Format = 'V' then
Error_Pragma ("'V'A'X format previously specified");
end if;
Opt.Float_Format := 'I';
end if;
Set_Standard_Fpt_Formats;
-- Two argument case
else
Argx := Get_Pragma_Arg (Arg2);
if not Is_Entity_Name (Argx)
or else not Is_Floating_Point_Type (Entity (Argx))
then
Error_Pragma_Arg
("second argument of% pragma must be floating-point type",
Arg2);
end if;
Ent := Entity (Argx);
Digs := UI_To_Int (Digits_Value (Ent));
-- Two arguments, VAX_Float case
if Chars (Get_Pragma_Arg (Arg1)) = Name_VAX_Float then
case Digs is
when 6 => Set_F_Float (Ent);
when 9 => Set_D_Float (Ent);
when 15 => Set_G_Float (Ent);
when others =>
Error_Pragma_Arg
("wrong digits value, must be 6,9 or 15", Arg2);
end case;
-- Two arguments, IEEE_Float case
else
case Digs is
when 6 => Set_IEEE_Short (Ent);
when 15 => Set_IEEE_Long (Ent);
when others =>
Error_Pragma_Arg
("wrong digits value, must be 6 or 15", Arg2);
end case;
end if;
end if;
end Float_Representation;
------------
-- Global --
------------
-- pragma Global (GLOBAL_SPECIFICATION)
-- GLOBAL_SPECIFICATION ::= MODED_GLOBAL_LIST {, MODED_GLOBAL_LIST}
-- | GLOBAL_LIST
-- | null
-- MODED_GLOBAL_LIST ::= MODE_SELECTOR => GLOBAL_LIST
-- MODE_SELECTOR ::= Input | Output | In_Out | Contract_In
-- GLOBAL_LIST ::= GLOBAL_ITEM
-- | (GLOBAL_ITEM {, GLOBAL_ITEM})
-- GLOBAL_ITEM ::= NAME
when Pragma_Global => Global : declare
Subp_Id : Entity_Id;
Seen : Elist_Id := No_Elist;
-- A list containing the entities of all the items processed so
-- far. It plays a role in detecting distinct entities.
-- Flags used to verify the consistency of modes
Contract_Seen : Boolean := False;
In_Out_Seen : Boolean := False;
Input_Seen : Boolean := False;
Output_Seen : Boolean := False;
procedure Analyze_Global_List
(List : Node_Id;
Global_Mode : Name_Id := Name_Input);
-- Verify the legality of a single global list declaration.
-- Global_Mode denotes the current mode in effect.
-------------------------
-- Analyze_Global_List --
-------------------------
procedure Analyze_Global_List
(List : Node_Id;
Global_Mode : Name_Id := Name_Input)
is
procedure Analyze_Global_Item
(Item : Node_Id;
Global_Mode : Name_Id);
-- Verify the legality of a single global item declaration.
-- Global_Mode denotes the current mode in effect.
procedure Check_Duplicate_Mode
(Mode : Node_Id;
Status : in out Boolean);
-- Flag Status denotes whether a particular mode has been seen
-- while processing a global list. This routine verifies that
-- Mode is not a duplicate mode and sets the flag Status.
procedure Check_Mode_Restriction_In_Function (Mode : Node_Id);
-- Mode denotes either In_Out or Output. Depending on the kind
-- of the related subprogram, emit an error if those two modes
-- apply to a function.
-------------------------
-- Analyze_Global_Item --
-------------------------
procedure Analyze_Global_Item
(Item : Node_Id;
Global_Mode : Name_Id)
is
function Is_Duplicate_Item (Id : Entity_Id) return Boolean;
-- Determine whether Id has already been processed
-----------------------
-- Is_Duplicate_Item --
-----------------------
function Is_Duplicate_Item (Id : Entity_Id) return Boolean is
Item_Elmt : Elmt_Id;
begin
if Present (Seen) then
Item_Elmt := First_Elmt (Seen);
while Present (Item_Elmt) loop
if Node (Item_Elmt) = Id then
return True;
end if;
Next_Elmt (Item_Elmt);
end loop;
end if;
return False;
end Is_Duplicate_Item;
-- Local declarations
Id : Entity_Id;
-- Start of processing for Analyze_Global_Item
begin
-- Detect one of the following cases
-- with Global => (null, Name)
-- with Global => (Name_1, null, Name_2)
-- with Global => (Name, null)
if Nkind (Item) = N_Null then
Error_Msg_N
("cannot mix null and non-null global items", Item);
return;
end if;
Analyze (Item);
if Is_Entity_Name (Item) then
Id := Entity (Item);
-- A global item cannot reference a formal parameter. Do
-- this check first to provide a better error diagnostic.
if Is_Formal (Id) then
Error_Msg_N
("global item cannot reference formal parameter",
Item);
return;
-- The only legal references are those to abstract states
-- and variables.
elsif not Ekind_In (Entity (Item), E_Abstract_State,
E_Variable)
then
Error_Msg_N
("global item must denote variable or state", Item);
return;
end if;
-- Some form of illegal construct masquerading as a name
else
Error_Msg_N
("global item must denote variable or state", Item);
return;
end if;
-- The same entity might be referenced through various way.
-- Check the entity of the item rather than the item itself.
if Is_Duplicate_Item (Id) then
Error_Msg_N ("duplicate global item", Item);
-- Add the entity of the current item to the list of
-- processed items.
else
if No (Seen) then
Seen := New_Elmt_List;
end if;
Append_Elmt (Id, Seen);
end if;
if Ekind (Id) = E_Abstract_State
and then Is_Volatile_State (Id)
then
-- A global item of mode In_Out or Output cannot denote a
-- volatile Input state.
if Is_Input_State (Id)
and then (Global_Mode = Name_In_Out
or else
Global_Mode = Name_Output)
then
Error_Msg_N
("global item of mode In_Out or Output cannot " &
"reference Volatile Input state", Item);
-- A global item of mode In_Out or Input cannot reference
-- a volatile Output state.
elsif Is_Output_State (Id)
and then (Global_Mode = Name_In_Out
or else
Global_Mode = Name_Input)
then
Error_Msg_N
("global item of mode In_Out or Input cannot "
& "reference Volatile Output state", Item);
end if;
end if;
end Analyze_Global_Item;
--------------------------
-- Check_Duplicate_Mode --
--------------------------
procedure Check_Duplicate_Mode
(Mode : Node_Id;
Status : in out Boolean)
is
begin
if Status then
Error_Msg_N ("duplicate global mode", Mode);
end if;
Status := True;
end Check_Duplicate_Mode;
----------------------------------------
-- Check_Mode_Restriction_In_Function --
----------------------------------------
procedure Check_Mode_Restriction_In_Function (Mode : Node_Id) is
begin
if Ekind (Subp_Id) = E_Function then
Error_Msg_Name_1 := Chars (Mode);
Error_Msg_N
("global mode % not applicable to functions", Mode);
end if;
end Check_Mode_Restriction_In_Function;
-- Local variables
Assoc : Node_Id;
Item : Node_Id;
Mode : Node_Id;
-- Start of processing for Analyze_Global_List
begin
-- Single global item declaration
if Nkind_In (List, N_Identifier, N_Selected_Component) then
Analyze_Global_Item (List, Global_Mode);
-- Simple global list or moded global list declaration
elsif Nkind (List) = N_Aggregate then
-- The declaration of a simple global list appear as a
-- collection of expressions.
if Present (Expressions (List)) then
if Present (Component_Associations (List)) then
Error_Msg_N
("cannot mix moded and non-moded global lists",
List);
end if;
Item := First (Expressions (List));
while Present (Item) loop
Analyze_Global_Item (Item, Global_Mode);
Next (Item);
end loop;
-- The declaration of a moded global list appears as a
-- collection of component associations where individual
-- choices denote modes.
elsif Present (Component_Associations (List)) then
if Present (Expressions (List)) then
Error_Msg_N
("cannot mix moded and non-moded global lists",
List);
end if;
Assoc := First (Component_Associations (List));
while Present (Assoc) loop
Mode := First (Choices (Assoc));
if Nkind (Mode) = N_Identifier then
if Chars (Mode) = Name_Contract_In then
Check_Duplicate_Mode (Mode, Contract_Seen);
elsif Chars (Mode) = Name_In_Out then
Check_Duplicate_Mode (Mode, In_Out_Seen);
Check_Mode_Restriction_In_Function (Mode);
elsif Chars (Mode) = Name_Input then
Check_Duplicate_Mode (Mode, Input_Seen);
elsif Chars (Mode) = Name_Output then
Check_Duplicate_Mode (Mode, Output_Seen);
Check_Mode_Restriction_In_Function (Mode);
else
Error_Msg_N ("invalid mode selector", Mode);
end if;
else
Error_Msg_N ("invalid mode selector", Mode);
end if;
-- Items in a moded list appear as a collection of
-- expressions. Reuse the existing machinery to
-- analyze them.
Analyze_Global_List
(List => Expression (Assoc),
Global_Mode => Chars (Mode));
Next (Assoc);
end loop;
-- Something went horribly wrong, we have a malformed tree
else
raise Program_Error;
end if;
-- Any other attempt to declare a global item is erroneous
else
Error_Msg_N ("malformed global list declaration", List);
end if;
end Analyze_Global_List;
-- Local variables
List : Node_Id;
Subp : Node_Id;
-- Start of processing for Global
begin
GNAT_Pragma;
S14_Pragma;
Check_Arg_Count (1);
-- Ensure the proper placement of the pragma. Global must be
-- associated with a subprogram declaration.
Subp := Parent (Corresponding_Aspect (N));
if Nkind (Subp) /= N_Subprogram_Declaration then
Pragma_Misplaced;
return;
end if;
Subp_Id := Defining_Unit_Name (Specification (Subp));
List := Expression (Arg1);
-- There is nothing to be done for a null global list
if Nkind (List) = N_Null then
null;
-- Analyze the various forms of global lists and items. Note that
-- some of these may be malformed in which case the analysis emits
-- error messages.
else
-- Ensure that the formal parameters are visible when
-- processing an item. This falls out of the general rule of
-- aspects pertaining to subprogram declarations.
Push_Scope (Subp_Id);
Install_Formals (Subp_Id);
Analyze_Global_List (List);
Pop_Scope;
end if;
end Global;
-----------
-- Ident --
-----------
-- pragma Ident (static_string_EXPRESSION)
-- Note: pragma Comment shares this processing. Pragma Comment is
-- identical to Ident, except that the restriction of the argument to
-- 31 characters and the placement restrictions are not enforced for
-- pragma Comment.
when Pragma_Ident | Pragma_Comment => Ident : declare
Str : Node_Id;
begin
GNAT_Pragma;
Check_Arg_Count (1);
Check_No_Identifiers;
Check_Arg_Is_Static_Expression (Arg1, Standard_String);
Store_Note (N);
-- For pragma Ident, preserve DEC compatibility by requiring the
-- pragma to appear in a declarative part or package spec.
if Prag_Id = Pragma_Ident then
Check_Is_In_Decl_Part_Or_Package_Spec;
end if;
Str := Expr_Value_S (Get_Pragma_Arg (Arg1));
declare
CS : Node_Id;
GP : Node_Id;
begin
GP := Parent (Parent (N));
if Nkind_In (GP, N_Package_Declaration,
N_Generic_Package_Declaration)
then
GP := Parent (GP);
end if;
-- If we have a compilation unit, then record the ident value,
-- checking for improper duplication.
if Nkind (GP) = N_Compilation_Unit then
CS := Ident_String (Current_Sem_Unit);
if Present (CS) then
-- For Ident, we do not permit multiple instances
if Prag_Id = Pragma_Ident then
Error_Pragma ("duplicate% pragma not permitted");
-- For Comment, we concatenate the string, unless we want
-- to preserve the tree structure for ASIS.
elsif not ASIS_Mode then
Start_String (Strval (CS));
Store_String_Char (' ');
Store_String_Chars (Strval (Str));
Set_Strval (CS, End_String);
end if;
else
-- In VMS, the effect of IDENT is achieved by passing
-- --identification=name as a --for-linker switch.
if OpenVMS_On_Target then
Start_String;
Store_String_Chars
("--for-linker=--identification=");
String_To_Name_Buffer (Strval (Str));
Store_String_Chars (Name_Buffer (1 .. Name_Len));
-- Only the last processed IDENT is saved. The main
-- purpose is so an IDENT associated with a main
-- procedure will be used in preference to an IDENT
-- associated with a with'd package.
Replace_Linker_Option_String
(End_String, "--for-linker=--identification=");
end if;
Set_Ident_String (Current_Sem_Unit, Str);
end if;
-- For subunits, we just ignore the Ident, since in GNAT these
-- are not separate object files, and hence not separate units
-- in the unit table.
elsif Nkind (GP) = N_Subunit then
null;
-- Otherwise we have a misplaced pragma Ident, but we ignore
-- this if we are in an instantiation, since it comes from
-- a generic, and has no relevance to the instantiation.
elsif Prag_Id = Pragma_Ident then
if Instantiation_Location (Loc) = No_Location then
Error_Pragma ("pragma% only allowed at outer level");
end if;
end if;
end;
end Ident;
----------------------------
-- Implementation_Defined --
----------------------------
-- pragma Implementation_Defined (local_NAME);
-- Marks previously declared entity as implementation defined. For
-- an overloaded entity, applies to the most recent homonym.
-- pragma Implementation_Defined;
-- The form with no arguments appears anywhere within a scope, most
-- typically a package spec, and indicates that all entities that are
-- defined within the package spec are Implementation_Defined.
when Pragma_Implementation_Defined => Implementation_Defined : declare
Ent : Entity_Id;
begin
Check_No_Identifiers;
-- Form with no arguments
if Arg_Count = 0 then
Set_Is_Implementation_Defined (Current_Scope);
-- Form with one argument
else
Check_Arg_Count (1);
Check_Arg_Is_Local_Name (Arg1);
Ent := Entity (Get_Pragma_Arg (Arg1));
Set_Is_Implementation_Defined (Ent);
end if;
end Implementation_Defined;
-----------------
-- Implemented --
-----------------
-- pragma Implemented (procedure_LOCAL_NAME, IMPLEMENTATION_KIND);
-- IMPLEMENTATION_KIND ::=
-- By_Entry | By_Protected_Procedure | By_Any | Optional
-- "By_Any" and "Optional" are treated as synonyms in order to
-- support Ada 2012 aspect Synchronization.
when Pragma_Implemented => Implemented : declare
Proc_Id : Entity_Id;
Typ : Entity_Id;
begin
Ada_2012_Pragma;
Check_Arg_Count (2);
Check_No_Identifiers;
Check_Arg_Is_Identifier (Arg1);
Check_Arg_Is_Local_Name (Arg1);
Check_Arg_Is_One_Of (Arg2,
Name_By_Any,
Name_By_Entry,
Name_By_Protected_Procedure,
Name_Optional);
-- Extract the name of the local procedure
Proc_Id := Entity (Get_Pragma_Arg (Arg1));
-- Ada 2012 (AI05-0030): The procedure_LOCAL_NAME must denote a
-- primitive procedure of a synchronized tagged type.
if Ekind (Proc_Id) = E_Procedure
and then Is_Primitive (Proc_Id)
and then Present (First_Formal (Proc_Id))
then
Typ := Etype (First_Formal (Proc_Id));
if Is_Tagged_Type (Typ)
and then
-- Check for a protected, a synchronized or a task interface
((Is_Interface (Typ)
and then Is_Synchronized_Interface (Typ))
-- Check for a protected type or a task type that implements
-- an interface.
or else
(Is_Concurrent_Record_Type (Typ)
and then Present (Interfaces (Typ)))
-- Check for a private record extension with keyword
-- "synchronized".
or else
(Ekind_In (Typ, E_Record_Type_With_Private,
E_Record_Subtype_With_Private)
and then Synchronized_Present (Parent (Typ))))
then
null;
else
Error_Pragma_Arg
("controlling formal must be of synchronized " &
"tagged type", Arg1);
return;
end if;
-- Procedures declared inside a protected type must be accepted
elsif Ekind (Proc_Id) = E_Procedure
and then Is_Protected_Type (Scope (Proc_Id))
then
null;
-- The first argument is not a primitive procedure
else
Error_Pragma_Arg
("pragma % must be applied to a primitive procedure", Arg1);
return;
end if;
-- Ada 2012 (AI05-0030): Cannot apply the implementation_kind
-- By_Protected_Procedure to the primitive procedure of a task
-- interface.
if Chars (Arg2) = Name_By_Protected_Procedure
and then Is_Interface (Typ)
and then Is_Task_Interface (Typ)
then
Error_Pragma_Arg
("implementation kind By_Protected_Procedure cannot be " &
"applied to a task interface primitive", Arg2);
return;
end if;
Record_Rep_Item (Proc_Id, N);
end Implemented;
----------------------
-- Implicit_Packing --
----------------------
-- pragma Implicit_Packing;
when Pragma_Implicit_Packing =>
GNAT_Pragma;
Check_Arg_Count (0);
Implicit_Packing := True;
------------
-- Import --
------------
-- pragma Import (
-- [Convention =>] convention_IDENTIFIER,
-- [Entity =>] local_NAME
-- [, [External_Name =>] static_string_EXPRESSION ]
-- [, [Link_Name =>] static_string_EXPRESSION ]);
when Pragma_Import =>
Check_Ada_83_Warning;
Check_Arg_Order
((Name_Convention,
Name_Entity,
Name_External_Name,
Name_Link_Name));
Check_At_Least_N_Arguments (2);
Check_At_Most_N_Arguments (4);
Process_Import_Or_Interface;
----------------------
-- Import_Exception --
----------------------
-- pragma Import_Exception (
-- [Internal =>] LOCAL_NAME
-- [, [External =>] EXTERNAL_SYMBOL]
-- [, [Form =>] Ada | VMS]
-- [, [Code =>] static_integer_EXPRESSION]);
when Pragma_Import_Exception => Import_Exception : declare
Args : Args_List (1 .. 4);
Names : constant Name_List (1 .. 4) := (
Name_Internal,
Name_External,
Name_Form,
Name_Code);
Internal : Node_Id renames Args (1);
External : Node_Id renames Args (2);
Form : Node_Id renames Args (3);
Code : Node_Id renames Args (4);
begin
GNAT_Pragma;
Gather_Associations (Names, Args);
if Present (External) and then Present (Code) then
Error_Pragma
("cannot give both External and Code options for pragma%");
end if;
Process_Extended_Import_Export_Exception_Pragma (
Arg_Internal => Internal,
Arg_External => External,
Arg_Form => Form,
Arg_Code => Code);
if not Is_VMS_Exception (Entity (Internal)) then
Set_Imported (Entity (Internal));
end if;
end Import_Exception;
---------------------
-- Import_Function --
---------------------
-- pragma Import_Function (
-- [Internal =>] LOCAL_NAME,
-- [, [External =>] EXTERNAL_SYMBOL]
-- [, [Parameter_Types =>] (PARAMETER_TYPES)]
-- [, [Result_Type =>] SUBTYPE_MARK]
-- [, [Mechanism =>] MECHANISM]
-- [, [Result_Mechanism =>] MECHANISM_NAME]
-- [, [First_Optional_Parameter =>] IDENTIFIER]);
-- EXTERNAL_SYMBOL ::=
-- IDENTIFIER
-- | static_string_EXPRESSION
-- PARAMETER_TYPES ::=
-- null
-- | TYPE_DESIGNATOR @{, TYPE_DESIGNATOR@}
-- TYPE_DESIGNATOR ::=
-- subtype_NAME
-- | subtype_Name ' Access
-- MECHANISM ::=
-- MECHANISM_NAME
-- | (MECHANISM_ASSOCIATION @{, MECHANISM_ASSOCIATION@})
-- MECHANISM_ASSOCIATION ::=
-- [formal_parameter_NAME =>] MECHANISM_NAME
-- MECHANISM_NAME ::=
-- Value
-- | Reference
-- | Descriptor [([Class =>] CLASS_NAME)]
-- CLASS_NAME ::= ubs | ubsb | uba | s | sb | a | nca
when Pragma_Import_Function => Import_Function : declare
Args : Args_List (1 .. 7);
Names : constant Name_List (1 .. 7) := (
Name_Internal,
Name_External,
Name_Parameter_Types,
Name_Result_Type,
Name_Mechanism,
Name_Result_Mechanism,
Name_First_Optional_Parameter);
Internal : Node_Id renames Args (1);
External : Node_Id renames Args (2);
Parameter_Types : Node_Id renames Args (3);
Result_Type : Node_Id renames Args (4);
Mechanism : Node_Id renames Args (5);
Result_Mechanism : Node_Id renames Args (6);
First_Optional_Parameter : Node_Id renames Args (7);
begin
GNAT_Pragma;
Gather_Associations (Names, Args);
Process_Extended_Import_Export_Subprogram_Pragma (
Arg_Internal => Internal,
Arg_External => External,
Arg_Parameter_Types => Parameter_Types,
Arg_Result_Type => Result_Type,
Arg_Mechanism => Mechanism,
Arg_Result_Mechanism => Result_Mechanism,
Arg_First_Optional_Parameter => First_Optional_Parameter);
end Import_Function;
-------------------
-- Import_Object --
-------------------
-- pragma Import_Object (
-- [Internal =>] LOCAL_NAME
-- [, [External =>] EXTERNAL_SYMBOL]
-- [, [Size =>] EXTERNAL_SYMBOL]);
-- EXTERNAL_SYMBOL ::=
-- IDENTIFIER
-- | static_string_EXPRESSION
when Pragma_Import_Object => Import_Object : declare
Args : Args_List (1 .. 3);
Names : constant Name_List (1 .. 3) := (
Name_Internal,
Name_External,
Name_Size);
Internal : Node_Id renames Args (1);
External : Node_Id renames Args (2);
Size : Node_Id renames Args (3);
begin
GNAT_Pragma;
Gather_Associations (Names, Args);
Process_Extended_Import_Export_Object_Pragma (
Arg_Internal => Internal,
Arg_External => External,
Arg_Size => Size);
end Import_Object;
----------------------
-- Import_Procedure --
----------------------
-- pragma Import_Procedure (
-- [Internal =>] LOCAL_NAME
-- [, [External =>] EXTERNAL_SYMBOL]
-- [, [Parameter_Types =>] (PARAMETER_TYPES)]
-- [, [Mechanism =>] MECHANISM]
-- [, [First_Optional_Parameter =>] IDENTIFIER]);
-- EXTERNAL_SYMBOL ::=
-- IDENTIFIER
-- | static_string_EXPRESSION
-- PARAMETER_TYPES ::=
-- null
-- | TYPE_DESIGNATOR @{, TYPE_DESIGNATOR@}
-- TYPE_DESIGNATOR ::=
-- subtype_NAME
-- | subtype_Name ' Access
-- MECHANISM ::=
-- MECHANISM_NAME
-- | (MECHANISM_ASSOCIATION @{, MECHANISM_ASSOCIATION@})
-- MECHANISM_ASSOCIATION ::=
-- [formal_parameter_NAME =>] MECHANISM_NAME
-- MECHANISM_NAME ::=
-- Value
-- | Reference
-- | Descriptor [([Class =>] CLASS_NAME)]
-- CLASS_NAME ::= ubs | ubsb | uba | s | sb | a | nca
when Pragma_Import_Procedure => Import_Procedure : declare
Args : Args_List (1 .. 5);
Names : constant Name_List (1 .. 5) := (
Name_Internal,
Name_External,
Name_Parameter_Types,
Name_Mechanism,
Name_First_Optional_Parameter);
Internal : Node_Id renames Args (1);
External : Node_Id renames Args (2);
Parameter_Types : Node_Id renames Args (3);
Mechanism : Node_Id renames Args (4);
First_Optional_Parameter : Node_Id renames Args (5);
begin
GNAT_Pragma;
Gather_Associations (Names, Args);
Process_Extended_Import_Export_Subprogram_Pragma (
Arg_Internal => Internal,
Arg_External => External,
Arg_Parameter_Types => Parameter_Types,
Arg_Mechanism => Mechanism,
Arg_First_Optional_Parameter => First_Optional_Parameter);
end Import_Procedure;
-----------------------------
-- Import_Valued_Procedure --
-----------------------------
-- pragma Import_Valued_Procedure (
-- [Internal =>] LOCAL_NAME
-- [, [External =>] EXTERNAL_SYMBOL]
-- [, [Parameter_Types =>] (PARAMETER_TYPES)]
-- [, [Mechanism =>] MECHANISM]
-- [, [First_Optional_Parameter =>] IDENTIFIER]);
-- EXTERNAL_SYMBOL ::=
-- IDENTIFIER
-- | static_string_EXPRESSION
-- PARAMETER_TYPES ::=
-- null
-- | TYPE_DESIGNATOR @{, TYPE_DESIGNATOR@}
-- TYPE_DESIGNATOR ::=
-- subtype_NAME
-- | subtype_Name ' Access
-- MECHANISM ::=
-- MECHANISM_NAME
-- | (MECHANISM_ASSOCIATION @{, MECHANISM_ASSOCIATION@})
-- MECHANISM_ASSOCIATION ::=
-- [formal_parameter_NAME =>] MECHANISM_NAME
-- MECHANISM_NAME ::=
-- Value
-- | Reference
-- | Descriptor [([Class =>] CLASS_NAME)]
-- CLASS_NAME ::= ubs | ubsb | uba | s | sb | a | nca
when Pragma_Import_Valued_Procedure =>
Import_Valued_Procedure : declare
Args : Args_List (1 .. 5);
Names : constant Name_List (1 .. 5) := (
Name_Internal,
Name_External,
Name_Parameter_Types,
Name_Mechanism,
Name_First_Optional_Parameter);
Internal : Node_Id renames Args (1);
External : Node_Id renames Args (2);
Parameter_Types : Node_Id renames Args (3);
Mechanism : Node_Id renames Args (4);
First_Optional_Parameter : Node_Id renames Args (5);
begin
GNAT_Pragma;
Gather_Associations (Names, Args);
Process_Extended_Import_Export_Subprogram_Pragma (
Arg_Internal => Internal,
Arg_External => External,
Arg_Parameter_Types => Parameter_Types,
Arg_Mechanism => Mechanism,
Arg_First_Optional_Parameter => First_Optional_Parameter);
end Import_Valued_Procedure;
-----------------
-- Independent --
-----------------
-- pragma Independent (LOCAL_NAME);
when Pragma_Independent => Independent : declare
E_Id : Node_Id;
E : Entity_Id;
D : Node_Id;
K : Node_Kind;
begin
Check_Ada_83_Warning;
Ada_2012_Pragma;
Check_No_Identifiers;
Check_Arg_Count (1);
Check_Arg_Is_Local_Name (Arg1);
E_Id := Get_Pragma_Arg (Arg1);
if Etype (E_Id) = Any_Type then
return;
end if;
E := Entity (E_Id);
D := Declaration_Node (E);
K := Nkind (D);
-- Check duplicate before we chain ourselves!
Check_Duplicate_Pragma (E);
-- Check appropriate entity
if Is_Type (E) then
if Rep_Item_Too_Early (E, N)
or else
Rep_Item_Too_Late (E, N)
then
return;
else
Check_First_Subtype (Arg1);
end if;
elsif K = N_Object_Declaration
or else (K = N_Component_Declaration
and then Original_Record_Component (E) = E)
then
if Rep_Item_Too_Late (E, N) then
return;
end if;
else
Error_Pragma_Arg
("inappropriate entity for pragma%", Arg1);
end if;
Independence_Checks.Append ((N, E));
end Independent;
----------------------------
-- Independent_Components --
----------------------------
-- pragma Atomic_Components (array_LOCAL_NAME);
-- This processing is shared by Volatile_Components
when Pragma_Independent_Components => Independent_Components : declare
E_Id : Node_Id;
E : Entity_Id;
D : Node_Id;
K : Node_Kind;
begin
Check_Ada_83_Warning;
Ada_2012_Pragma;
Check_No_Identifiers;
Check_Arg_Count (1);
Check_Arg_Is_Local_Name (Arg1);
E_Id := Get_Pragma_Arg (Arg1);
if Etype (E_Id) = Any_Type then
return;
end if;
E := Entity (E_Id);
-- Check duplicate before we chain ourselves!
Check_Duplicate_Pragma (E);
-- Check appropriate entity
if Rep_Item_Too_Early (E, N)
or else
Rep_Item_Too_Late (E, N)
then
return;
end if;
D := Declaration_Node (E);
K := Nkind (D);
if K = N_Full_Type_Declaration
and then (Is_Array_Type (E) or else Is_Record_Type (E))
then
Independence_Checks.Append ((N, E));
Set_Has_Independent_Components (Base_Type (E));
elsif (Ekind (E) = E_Constant or else Ekind (E) = E_Variable)
and then Nkind (D) = N_Object_Declaration
and then Nkind (Object_Definition (D)) =
N_Constrained_Array_Definition
then
Independence_Checks.Append ((N, E));
Set_Has_Independent_Components (E);
else
Error_Pragma_Arg ("inappropriate entity for pragma%", Arg1);
end if;
end Independent_Components;
------------------------
-- Initialize_Scalars --
------------------------
-- pragma Initialize_Scalars;
when Pragma_Initialize_Scalars =>
GNAT_Pragma;
Check_Arg_Count (0);
Check_Valid_Configuration_Pragma;
Check_Restriction (No_Initialize_Scalars, N);
-- Initialize_Scalars creates false positives in CodePeer, and
-- incorrect negative results in Alfa mode, so ignore this pragma
-- in these modes.
if not Restriction_Active (No_Initialize_Scalars)
and then not (CodePeer_Mode or Alfa_Mode)
then
Init_Or_Norm_Scalars := True;
Initialize_Scalars := True;
end if;
------------
-- Inline --
------------
-- pragma Inline ( NAME {, NAME} );
when Pragma_Inline =>
-- Inline status is Enabled if inlining option is active
if Inline_Active then
Process_Inline (Enabled);
else
Process_Inline (Disabled);
end if;
-------------------
-- Inline_Always --
-------------------
-- pragma Inline_Always ( NAME {, NAME} );
when Pragma_Inline_Always =>
GNAT_Pragma;
-- Pragma always active unless in CodePeer or Alfa mode, since
-- this causes walk order issues.
if not (CodePeer_Mode or Alfa_Mode) then
Process_Inline (Enabled);
end if;
--------------------
-- Inline_Generic --
--------------------
-- pragma Inline_Generic (NAME {, NAME});
when Pragma_Inline_Generic =>
GNAT_Pragma;
Process_Generic_List;
----------------------
-- Inspection_Point --
----------------------
-- pragma Inspection_Point [(object_NAME {, object_NAME})];
when Pragma_Inspection_Point => Inspection_Point : declare
Arg : Node_Id;
Exp : Node_Id;
begin
if Arg_Count > 0 then
Arg := Arg1;
loop
Exp := Get_Pragma_Arg (Arg);
Analyze (Exp);
if not Is_Entity_Name (Exp)
or else not Is_Object (Entity (Exp))
then
Error_Pragma_Arg ("object name required", Arg);
end if;
Next (Arg);
exit when No (Arg);
end loop;
end if;
end Inspection_Point;
---------------
-- Interface --
---------------
-- pragma Interface (
-- [ Convention =>] convention_IDENTIFIER,
-- [ Entity =>] local_NAME
-- [, [External_Name =>] static_string_EXPRESSION ]
-- [, [Link_Name =>] static_string_EXPRESSION ]);
when Pragma_Interface =>
GNAT_Pragma;
Check_Arg_Order
((Name_Convention,
Name_Entity,
Name_External_Name,
Name_Link_Name));
Check_At_Least_N_Arguments (2);
Check_At_Most_N_Arguments (4);
Process_Import_Or_Interface;
-- In Ada 2005, the permission to use Interface (a reserved word)
-- as a pragma name is considered an obsolescent feature, and this
-- pragma was already obsolescent in Ada 95.
if Ada_Version >= Ada_95 then
Check_Restriction
(No_Obsolescent_Features, Pragma_Identifier (N));
if Warn_On_Obsolescent_Feature then
Error_Msg_N
("pragma Interface is an obsolescent feature?j?", N);
Error_Msg_N
("|use pragma Import instead?j?", N);
end if;
end if;
--------------------
-- Interface_Name --
--------------------
-- pragma Interface_Name (
-- [ Entity =>] local_NAME
-- [,[External_Name =>] static_string_EXPRESSION ]
-- [,[Link_Name =>] static_string_EXPRESSION ]);
when Pragma_Interface_Name => Interface_Name : declare
Id : Node_Id;
Def_Id : Entity_Id;
Hom_Id : Entity_Id;
Found : Boolean;
begin
GNAT_Pragma;
Check_Arg_Order
((Name_Entity, Name_External_Name, Name_Link_Name));
Check_At_Least_N_Arguments (2);
Check_At_Most_N_Arguments (3);
Id := Get_Pragma_Arg (Arg1);
Analyze (Id);
-- This is obsolete from Ada 95 on, but it is an implementation
-- defined pragma, so we do not consider that it violates the
-- restriction (No_Obsolescent_Features).
if Ada_Version >= Ada_95 then
if Warn_On_Obsolescent_Feature then
Error_Msg_N
("pragma Interface_Name is an obsolescent feature?j?", N);
Error_Msg_N
("|use pragma Import instead?j?", N);
end if;
end if;
if not Is_Entity_Name (Id) then
Error_Pragma_Arg
("first argument for pragma% must be entity name", Arg1);
elsif Etype (Id) = Any_Type then
return;
else
Def_Id := Entity (Id);
end if;
-- Special DEC-compatible processing for the object case, forces
-- object to be imported.
if Ekind (Def_Id) = E_Variable then
Kill_Size_Check_Code (Def_Id);
Note_Possible_Modification (Id, Sure => False);
-- Initialization is not allowed for imported variable
if Present (Expression (Parent (Def_Id)))
and then Comes_From_Source (Expression (Parent (Def_Id)))
then
Error_Msg_Sloc := Sloc (Def_Id);
Error_Pragma_Arg
("no initialization allowed for declaration of& #",
Arg2);
else
-- For compatibility, support VADS usage of providing both
-- pragmas Interface and Interface_Name to obtain the effect
-- of a single Import pragma.
if Is_Imported (Def_Id)
and then Present (First_Rep_Item (Def_Id))
and then Nkind (First_Rep_Item (Def_Id)) = N_Pragma
and then
Pragma_Name (First_Rep_Item (Def_Id)) = Name_Interface
then
null;
else
Set_Imported (Def_Id);
end if;
Set_Is_Public (Def_Id);
Process_Interface_Name (Def_Id, Arg2, Arg3);
end if;
-- Otherwise must be subprogram
elsif not Is_Subprogram (Def_Id) then
Error_Pragma_Arg
("argument of pragma% is not subprogram", Arg1);
else
Check_At_Most_N_Arguments (3);
Hom_Id := Def_Id;
Found := False;
-- Loop through homonyms
loop
Def_Id := Get_Base_Subprogram (Hom_Id);
if Is_Imported (Def_Id) then
Process_Interface_Name (Def_Id, Arg2, Arg3);
Found := True;
end if;
exit when From_Aspect_Specification (N);
Hom_Id := Homonym (Hom_Id);
exit when No (Hom_Id)
or else Scope (Hom_Id) /= Current_Scope;
end loop;
if not Found then
Error_Pragma_Arg
("argument of pragma% is not imported subprogram",
Arg1);
end if;
end if;
end Interface_Name;
-----------------------
-- Interrupt_Handler --
-----------------------
-- pragma Interrupt_Handler (handler_NAME);
when Pragma_Interrupt_Handler =>
Check_Ada_83_Warning;
Check_Arg_Count (1);
Check_No_Identifiers;
if No_Run_Time_Mode then
Error_Msg_CRT ("Interrupt_Handler pragma", N);
else
Check_Interrupt_Or_Attach_Handler;
Process_Interrupt_Or_Attach_Handler;
end if;
------------------------
-- Interrupt_Priority --
------------------------
-- pragma Interrupt_Priority [(EXPRESSION)];
when Pragma_Interrupt_Priority => Interrupt_Priority : declare
P : constant Node_Id := Parent (N);
Arg : Node_Id;
Ent : Entity_Id;
begin
Check_Ada_83_Warning;
if Arg_Count /= 0 then
Arg := Get_Pragma_Arg (Arg1);
Check_Arg_Count (1);
Check_No_Identifiers;
-- The expression must be analyzed in the special manner
-- described in "Handling of Default and Per-Object
-- Expressions" in sem.ads.
Preanalyze_Spec_Expression (Arg, RTE (RE_Interrupt_Priority));
end if;
if not Nkind_In (P, N_Task_Definition, N_Protected_Definition) then
Pragma_Misplaced;
return;
else
Ent := Defining_Identifier (Parent (P));
-- Check duplicate pragma before we chain the pragma in the Rep
-- Item chain of Ent.
Check_Duplicate_Pragma (Ent);
Record_Rep_Item (Ent, N);
end if;
end Interrupt_Priority;
---------------------
-- Interrupt_State --
---------------------
-- pragma Interrupt_State (
-- [Name =>] INTERRUPT_ID,
-- [State =>] INTERRUPT_STATE);
-- INTERRUPT_ID => IDENTIFIER | static_integer_EXPRESSION
-- INTERRUPT_STATE => System | Runtime | User
-- Note: if the interrupt id is given as an identifier, then it must
-- be one of the identifiers in Ada.Interrupts.Names. Otherwise it is
-- given as a static integer expression which must be in the range of
-- Ada.Interrupts.Interrupt_ID.
when Pragma_Interrupt_State => Interrupt_State : declare
Int_Id : constant Entity_Id := RTE (RE_Interrupt_ID);
-- This is the entity Ada.Interrupts.Interrupt_ID;
State_Type : Character;
-- Set to 's'/'r'/'u' for System/Runtime/User
IST_Num : Pos;
-- Index to entry in Interrupt_States table
Int_Val : Uint;
-- Value of interrupt
Arg1X : constant Node_Id := Get_Pragma_Arg (Arg1);
-- The first argument to the pragma
Int_Ent : Entity_Id;
-- Interrupt entity in Ada.Interrupts.Names
begin
GNAT_Pragma;
Check_Arg_Order ((Name_Name, Name_State));
Check_Arg_Count (2);
Check_Optional_Identifier (Arg1, Name_Name);
Check_Optional_Identifier (Arg2, Name_State);
Check_Arg_Is_Identifier (Arg2);
-- First argument is identifier
if Nkind (Arg1X) = N_Identifier then
-- Search list of names in Ada.Interrupts.Names
Int_Ent := First_Entity (RTE (RE_Names));
loop
if No (Int_Ent) then
Error_Pragma_Arg ("invalid interrupt name", Arg1);
elsif Chars (Int_Ent) = Chars (Arg1X) then
Int_Val := Expr_Value (Constant_Value (Int_Ent));
exit;
end if;
Next_Entity (Int_Ent);
end loop;
-- First argument is not an identifier, so it must be a static
-- expression of type Ada.Interrupts.Interrupt_ID.
else
Check_Arg_Is_Static_Expression (Arg1, Any_Integer);
Int_Val := Expr_Value (Arg1X);
if Int_Val < Expr_Value (Type_Low_Bound (Int_Id))
or else
Int_Val > Expr_Value (Type_High_Bound (Int_Id))
then
Error_Pragma_Arg
("value not in range of type " &
"""Ada.Interrupts.Interrupt_'I'D""", Arg1);
end if;
end if;
-- Check OK state
case Chars (Get_Pragma_Arg (Arg2)) is
when Name_Runtime => State_Type := 'r';
when Name_System => State_Type := 's';
when Name_User => State_Type := 'u';
when others =>
Error_Pragma_Arg ("invalid interrupt state", Arg2);
end case;
-- Check if entry is already stored
IST_Num := Interrupt_States.First;
loop
-- If entry not found, add it
if IST_Num > Interrupt_States.Last then
Interrupt_States.Append
((Interrupt_Number => UI_To_Int (Int_Val),
Interrupt_State => State_Type,
Pragma_Loc => Loc));
exit;
-- Case of entry for the same entry
elsif Int_Val = Interrupt_States.Table (IST_Num).
Interrupt_Number
then
-- If state matches, done, no need to make redundant entry
exit when
State_Type = Interrupt_States.Table (IST_Num).
Interrupt_State;
-- Otherwise if state does not match, error
Error_Msg_Sloc :=
Interrupt_States.Table (IST_Num).Pragma_Loc;
Error_Pragma_Arg
("state conflicts with that given #", Arg2);
exit;
end if;
IST_Num := IST_Num + 1;
end loop;
end Interrupt_State;
---------------
-- Invariant --
---------------
-- pragma Invariant
-- ([Entity =>] type_LOCAL_NAME,
-- [Check =>] EXPRESSION
-- [,[Message =>] String_Expression]);
when Pragma_Invariant => Invariant : declare
Type_Id : Node_Id;
Typ : Entity_Id;
PDecl : Node_Id;
Discard : Boolean;
pragma Unreferenced (Discard);
begin
GNAT_Pragma;
Check_At_Least_N_Arguments (2);
Check_At_Most_N_Arguments (3);
Check_Optional_Identifier (Arg1, Name_Entity);
Check_Optional_Identifier (Arg2, Name_Check);
if Arg_Count = 3 then
Check_Optional_Identifier (Arg3, Name_Message);
Check_Arg_Is_Static_Expression (Arg3, Standard_String);
end if;
Check_Arg_Is_Local_Name (Arg1);
Type_Id := Get_Pragma_Arg (Arg1);
Find_Type (Type_Id);
Typ := Entity (Type_Id);
if Typ = Any_Type then
return;
-- An invariant must apply to a private type, or appear in the
-- private part of a package spec and apply to a completion.
elsif Ekind_In (Typ, E_Private_Type,
E_Record_Type_With_Private,
E_Limited_Private_Type)
then
null;
elsif In_Private_Part (Current_Scope)
and then Has_Private_Declaration (Typ)
then
null;
elsif In_Private_Part (Current_Scope) then
Error_Pragma_Arg
("pragma% only allowed for private type " &
"declared in visible part", Arg1);
else
Error_Pragma_Arg
("pragma% only allowed for private type", Arg1);
end if;
-- Note that the type has at least one invariant, and also that
-- it has inheritable invariants if we have Invariant'Class.
-- Build the corresponding invariant procedure declaration, so
-- that calls to it can be generated before the body is built
-- (for example wihin an expression function).
PDecl := Build_Invariant_Procedure_Declaration (Typ);
Insert_After (N, PDecl);
Analyze (PDecl);
if Class_Present (N) then
Set_Has_Inheritable_Invariants (Typ);
end if;
-- The remaining processing is simply to link the pragma on to
-- the rep item chain, for processing when the type is frozen.
-- This is accomplished by a call to Rep_Item_Too_Late.
Discard := Rep_Item_Too_Late (Typ, N, FOnly => True);
end Invariant;
----------------------
-- Java_Constructor --
----------------------
-- pragma Java_Constructor ([Entity =>] LOCAL_NAME);
-- Also handles pragma CIL_Constructor
when Pragma_CIL_Constructor | Pragma_Java_Constructor =>
Java_Constructor : declare
Convention : Convention_Id;
Def_Id : Entity_Id;
Hom_Id : Entity_Id;
Id : Entity_Id;
This_Formal : Entity_Id;
begin
GNAT_Pragma;
Check_Arg_Count (1);
Check_Optional_Identifier (Arg1, Name_Entity);
Check_Arg_Is_Local_Name (Arg1);
Id := Get_Pragma_Arg (Arg1);
Find_Program_Unit_Name (Id);
-- If we did not find the name, we are done
if Etype (Id) = Any_Type then
return;
end if;
-- Check wrong use of pragma in wrong VM target
if VM_Target = No_VM then
return;
elsif VM_Target = CLI_Target
and then Prag_Id = Pragma_Java_Constructor
then
Error_Pragma ("must use pragma 'C'I'L_'Constructor");
elsif VM_Target = JVM_Target
and then Prag_Id = Pragma_CIL_Constructor
then
Error_Pragma ("must use pragma 'Java_'Constructor");
end if;
case Prag_Id is
when Pragma_CIL_Constructor => Convention := Convention_CIL;
when Pragma_Java_Constructor => Convention := Convention_Java;
when others => null;
end case;
Hom_Id := Entity (Id);
-- Loop through homonyms
loop
Def_Id := Get_Base_Subprogram (Hom_Id);
-- The constructor is required to be a function
if Ekind (Def_Id) /= E_Function then
if VM_Target = JVM_Target then
Error_Pragma_Arg
("pragma% requires function returning a " &
"'Java access type", Def_Id);
else
Error_Pragma_Arg
("pragma% requires function returning a " &
"'C'I'L access type", Def_Id);
end if;
end if;
-- Check arguments: For tagged type the first formal must be
-- named "this" and its type must be a named access type
-- designating a class-wide tagged type that has convention
-- CIL/Java. The first formal must also have a null default
-- value. For example:
-- type Typ is tagged ...
-- type Ref is access all Typ;
-- pragma Convention (CIL, Typ);
-- function New_Typ (This : Ref) return Ref;
-- function New_Typ (This : Ref; I : Integer) return Ref;
-- pragma Cil_Constructor (New_Typ);
-- Reason: The first formal must NOT be a primitive of the
-- tagged type.
-- This rule also applies to constructors of delegates used
-- to interface with standard target libraries. For example:
-- type Delegate is access procedure ...
-- pragma Import (CIL, Delegate, ...);
-- function new_Delegate
-- (This : Delegate := null; ... ) return Delegate;
-- For value-types this rule does not apply.
if not Is_Value_Type (Etype (Def_Id)) then
if No (First_Formal (Def_Id)) then
Error_Msg_Name_1 := Pname;
Error_Msg_N ("% function must have parameters", Def_Id);
return;
end if;
-- In the JRE library we have several occurrences in which
-- the "this" parameter is not the first formal.
This_Formal := First_Formal (Def_Id);
-- In the JRE library we have several occurrences in which
-- the "this" parameter is not the first formal. Search for
-- it.
if VM_Target = JVM_Target then
while Present (This_Formal)
and then Get_Name_String (Chars (This_Formal)) /= "this"
loop
Next_Formal (This_Formal);
end loop;
if No (This_Formal) then
This_Formal := First_Formal (Def_Id);
end if;
end if;
-- Warning: The first parameter should be named "this".
-- We temporarily allow it because we have the following
-- case in the Java runtime (file s-osinte.ads) ???
-- function new_Thread
-- (Self_Id : System.Address) return Thread_Id;
-- pragma Java_Constructor (new_Thread);
if VM_Target = JVM_Target
and then Get_Name_String (Chars (First_Formal (Def_Id)))
= "self_id"
and then Etype (First_Formal (Def_Id)) = RTE (RE_Address)
then
null;
elsif Get_Name_String (Chars (This_Formal)) /= "this" then
Error_Msg_Name_1 := Pname;
Error_Msg_N
("first formal of % function must be named `this`",
Parent (This_Formal));
elsif not Is_Access_Type (Etype (This_Formal)) then
Error_Msg_Name_1 := Pname;
Error_Msg_N
("first formal of % function must be an access type",
Parameter_Type (Parent (This_Formal)));
-- For delegates the type of the first formal must be a
-- named access-to-subprogram type (see previous example)
elsif Ekind (Etype (Def_Id)) = E_Access_Subprogram_Type
and then Ekind (Etype (This_Formal))
/= E_Access_Subprogram_Type
then
Error_Msg_Name_1 := Pname;
Error_Msg_N
("first formal of % function must be a named access" &
" to subprogram type",
Parameter_Type (Parent (This_Formal)));
-- Warning: We should reject anonymous access types because
-- the constructor must not be handled as a primitive of the
-- tagged type. We temporarily allow it because this profile
-- is currently generated by cil2ada???
elsif Ekind (Etype (Def_Id)) /= E_Access_Subprogram_Type
and then not Ekind_In (Etype (This_Formal),
E_Access_Type,
E_General_Access_Type,
E_Anonymous_Access_Type)
then
Error_Msg_Name_1 := Pname;
Error_Msg_N
("first formal of % function must be a named access" &
" type",
Parameter_Type (Parent (This_Formal)));
elsif Atree.Convention
(Designated_Type (Etype (This_Formal))) /= Convention
then
Error_Msg_Name_1 := Pname;
if Convention = Convention_Java then
Error_Msg_N
("pragma% requires convention 'Cil in designated" &
" type",
Parameter_Type (Parent (This_Formal)));
else
Error_Msg_N
("pragma% requires convention 'Java in designated" &
" type",
Parameter_Type (Parent (This_Formal)));
end if;
elsif No (Expression (Parent (This_Formal)))
or else Nkind (Expression (Parent (This_Formal))) /= N_Null
then
Error_Msg_Name_1 := Pname;
Error_Msg_N
("pragma% requires first formal with default `null`",
Parameter_Type (Parent (This_Formal)));
end if;
end if;
-- Check result type: the constructor must be a function
-- returning:
-- * a value type (only allowed in the CIL compiler)
-- * an access-to-subprogram type with convention Java/CIL
-- * an access-type designating a type that has convention
-- Java/CIL.
if Is_Value_Type (Etype (Def_Id)) then
null;
-- Access-to-subprogram type with convention Java/CIL
elsif Ekind (Etype (Def_Id)) = E_Access_Subprogram_Type then
if Atree.Convention (Etype (Def_Id)) /= Convention then
if Convention = Convention_Java then
Error_Pragma_Arg
("pragma% requires function returning a " &
"'Java access type", Arg1);
else
pragma Assert (Convention = Convention_CIL);
Error_Pragma_Arg
("pragma% requires function returning a " &
"'C'I'L access type", Arg1);
end if;
end if;
elsif Ekind (Etype (Def_Id)) in Access_Kind then
if not Ekind_In (Etype (Def_Id), E_Access_Type,
E_General_Access_Type)
or else
Atree.Convention
(Designated_Type (Etype (Def_Id))) /= Convention
then
Error_Msg_Name_1 := Pname;
if Convention = Convention_Java then
Error_Pragma_Arg
("pragma% requires function returning a named" &
"'Java access type", Arg1);
else
Error_Pragma_Arg
("pragma% requires function returning a named" &
"'C'I'L access type", Arg1);
end if;
end if;
end if;
Set_Is_Constructor (Def_Id);
Set_Convention (Def_Id, Convention);
Set_Is_Imported (Def_Id);
exit when From_Aspect_Specification (N);
Hom_Id := Homonym (Hom_Id);
exit when No (Hom_Id) or else Scope (Hom_Id) /= Current_Scope;
end loop;
end Java_Constructor;
----------------------
-- Java_Interface --
----------------------
-- pragma Java_Interface ([Entity =>] LOCAL_NAME);
when Pragma_Java_Interface => Java_Interface : declare
Arg : Node_Id;
Typ : Entity_Id;
begin
GNAT_Pragma;
Check_Arg_Count (1);
Check_Optional_Identifier (Arg1, Name_Entity);
Check_Arg_Is_Local_Name (Arg1);
Arg := Get_Pragma_Arg (Arg1);
Analyze (Arg);
if Etype (Arg) = Any_Type then
return;
end if;
if not Is_Entity_Name (Arg)
or else not Is_Type (Entity (Arg))
then
Error_Pragma_Arg ("pragma% requires a type mark", Arg1);
end if;
Typ := Underlying_Type (Entity (Arg));
-- For now simply check some of the semantic constraints on the
-- type. This currently leaves out some restrictions on interface
-- types, namely that the parent type must be java.lang.Object.Typ
-- and that all primitives of the type should be declared
-- abstract. ???
if not Is_Tagged_Type (Typ) or else not Is_Abstract_Type (Typ) then
Error_Pragma_Arg ("pragma% requires an abstract "
& "tagged type", Arg1);
elsif not Has_Discriminants (Typ)
or else Ekind (Etype (First_Discriminant (Typ)))
/= E_Anonymous_Access_Type
or else
not Is_Class_Wide_Type
(Designated_Type (Etype (First_Discriminant (Typ))))
then
Error_Pragma_Arg
("type must have a class-wide access discriminant", Arg1);
end if;
end Java_Interface;
----------------
-- Keep_Names --
----------------
-- pragma Keep_Names ([On => ] local_NAME);
when Pragma_Keep_Names => Keep_Names : declare
Arg : Node_Id;
begin
GNAT_Pragma;
Check_Arg_Count (1);
Check_Optional_Identifier (Arg1, Name_On);
Check_Arg_Is_Local_Name (Arg1);
Arg := Get_Pragma_Arg (Arg1);
Analyze (Arg);
if Etype (Arg) = Any_Type then
return;
end if;
if not Is_Entity_Name (Arg)
or else Ekind (Entity (Arg)) /= E_Enumeration_Type
then
Error_Pragma_Arg
("pragma% requires a local enumeration type", Arg1);
end if;
Set_Discard_Names (Entity (Arg), False);
end Keep_Names;
-------------
-- License --
-------------
-- pragma License (RESTRICTED | UNRESTRICTED | GPL | MODIFIED_GPL);
when Pragma_License =>
GNAT_Pragma;
Check_Arg_Count (1);
Check_No_Identifiers;
Check_Valid_Configuration_Pragma;
Check_Arg_Is_Identifier (Arg1);
declare
Sind : constant Source_File_Index :=
Source_Index (Current_Sem_Unit);
begin
case Chars (Get_Pragma_Arg (Arg1)) is
when Name_GPL =>
Set_License (Sind, GPL);
when Name_Modified_GPL =>
Set_License (Sind, Modified_GPL);
when Name_Restricted =>
Set_License (Sind, Restricted);
when Name_Unrestricted =>
Set_License (Sind, Unrestricted);
when others =>
Error_Pragma_Arg ("invalid license name", Arg1);
end case;
end;
---------------
-- Link_With --
---------------
-- pragma Link_With (string_EXPRESSION {, string_EXPRESSION});
when Pragma_Link_With => Link_With : declare
Arg : Node_Id;
begin
GNAT_Pragma;
if Operating_Mode = Generate_Code
and then In_Extended_Main_Source_Unit (N)
then
Check_At_Least_N_Arguments (1);
Check_No_Identifiers;
Check_Is_In_Decl_Part_Or_Package_Spec;
Check_Arg_Is_Static_Expression (Arg1, Standard_String);
Start_String;
Arg := Arg1;
while Present (Arg) loop
Check_Arg_Is_Static_Expression (Arg, Standard_String);
-- Store argument, converting sequences of spaces to a
-- single null character (this is one of the differences
-- in processing between Link_With and Linker_Options).
Arg_Store : declare
C : constant Char_Code := Get_Char_Code (' ');
S : constant String_Id :=
Strval (Expr_Value_S (Get_Pragma_Arg (Arg)));
L : constant Nat := String_Length (S);
F : Nat := 1;
procedure Skip_Spaces;
-- Advance F past any spaces
-----------------
-- Skip_Spaces --
-----------------
procedure Skip_Spaces is
begin
while F <= L and then Get_String_Char (S, F) = C loop
F := F + 1;
end loop;
end Skip_Spaces;
-- Start of processing for Arg_Store
begin
Skip_Spaces; -- skip leading spaces
-- Loop through characters, changing any embedded
-- sequence of spaces to a single null character (this
-- is how Link_With/Linker_Options differ)
while F <= L loop
if Get_String_Char (S, F) = C then
Skip_Spaces;
exit when F > L;
Store_String_Char (ASCII.NUL);
else
Store_String_Char (Get_String_Char (S, F));
F := F + 1;
end if;
end loop;
end Arg_Store;
Arg := Next (Arg);
if Present (Arg) then
Store_String_Char (ASCII.NUL);
end if;
end loop;
Store_Linker_Option_String (End_String);
end if;
end Link_With;
------------------
-- Linker_Alias --
------------------
-- pragma Linker_Alias (
-- [Entity =>] LOCAL_NAME
-- [Target =>] static_string_EXPRESSION);
when Pragma_Linker_Alias =>
GNAT_Pragma;
Check_Arg_Order ((Name_Entity, Name_Target));
Check_Arg_Count (2);
Check_Optional_Identifier (Arg1, Name_Entity);
Check_Optional_Identifier (Arg2, Name_Target);
Check_Arg_Is_Library_Level_Local_Name (Arg1);
Check_Arg_Is_Static_Expression (Arg2, Standard_String);
-- The only processing required is to link this item on to the
-- list of rep items for the given entity. This is accomplished
-- by the call to Rep_Item_Too_Late (when no error is detected
-- and False is returned).
if Rep_Item_Too_Late (Entity (Get_Pragma_Arg (Arg1)), N) then
return;
else
Set_Has_Gigi_Rep_Item (Entity (Get_Pragma_Arg (Arg1)));
end if;
------------------------
-- Linker_Constructor --
------------------------
-- pragma Linker_Constructor (procedure_LOCAL_NAME);
-- Code is shared with Linker_Destructor
-----------------------
-- Linker_Destructor --
-----------------------
-- pragma Linker_Destructor (procedure_LOCAL_NAME);
when Pragma_Linker_Constructor |
Pragma_Linker_Destructor =>
Linker_Constructor : declare
Arg1_X : Node_Id;
Proc : Entity_Id;
begin
GNAT_Pragma;
Check_Arg_Count (1);
Check_No_Identifiers;
Check_Arg_Is_Local_Name (Arg1);
Arg1_X := Get_Pragma_Arg (Arg1);
Analyze (Arg1_X);
Proc := Find_Unique_Parameterless_Procedure (Arg1_X, Arg1);
if not Is_Library_Level_Entity (Proc) then
Error_Pragma_Arg
("argument for pragma% must be library level entity", Arg1);
end if;
-- The only processing required is to link this item on to the
-- list of rep items for the given entity. This is accomplished
-- by the call to Rep_Item_Too_Late (when no error is detected
-- and False is returned).
if Rep_Item_Too_Late (Proc, N) then
return;
else
Set_Has_Gigi_Rep_Item (Proc);
end if;
end Linker_Constructor;
--------------------
-- Linker_Options --
--------------------
-- pragma Linker_Options (string_EXPRESSION {, string_EXPRESSION});
when Pragma_Linker_Options => Linker_Options : declare
Arg : Node_Id;
begin
Check_Ada_83_Warning;
Check_No_Identifiers;
Check_Arg_Count (1);
Check_Is_In_Decl_Part_Or_Package_Spec;
Check_Arg_Is_Static_Expression (Arg1, Standard_String);
Start_String (Strval (Expr_Value_S (Get_Pragma_Arg (Arg1))));
Arg := Arg2;
while Present (Arg) loop
Check_Arg_Is_Static_Expression (Arg, Standard_String);
Store_String_Char (ASCII.NUL);
Store_String_Chars
(Strval (Expr_Value_S (Get_Pragma_Arg (Arg))));
Arg := Next (Arg);
end loop;
if Operating_Mode = Generate_Code
and then In_Extended_Main_Source_Unit (N)
then
Store_Linker_Option_String (End_String);
end if;
end Linker_Options;
--------------------
-- Linker_Section --
--------------------
-- pragma Linker_Section (
-- [Entity =>] LOCAL_NAME
-- [Section =>] static_string_EXPRESSION);
when Pragma_Linker_Section =>
GNAT_Pragma;
Check_Arg_Order ((Name_Entity, Name_Section));
Check_Arg_Count (2);
Check_Optional_Identifier (Arg1, Name_Entity);
Check_Optional_Identifier (Arg2, Name_Section);
Check_Arg_Is_Library_Level_Local_Name (Arg1);
Check_Arg_Is_Static_Expression (Arg2, Standard_String);
-- This pragma applies only to objects
if not Is_Object (Entity (Get_Pragma_Arg (Arg1))) then
Error_Pragma_Arg ("pragma% applies only to objects", Arg1);
end if;
-- The only processing required is to link this item on to the
-- list of rep items for the given entity. This is accomplished
-- by the call to Rep_Item_Too_Late (when no error is detected
-- and False is returned).
if Rep_Item_Too_Late (Entity (Get_Pragma_Arg (Arg1)), N) then
return;
else
Set_Has_Gigi_Rep_Item (Entity (Get_Pragma_Arg (Arg1)));
end if;
----------
-- List --
----------
-- pragma List (On | Off)
-- There is nothing to do here, since we did all the processing for
-- this pragma in Par.Prag (so that it works properly even in syntax
-- only mode).
when Pragma_List =>
null;
---------------
-- Lock_Free --
---------------
-- pragma Lock_Free [(Boolean_EXPRESSION)];
when Pragma_Lock_Free => Lock_Free : declare
P : constant Node_Id := Parent (N);
Arg : Node_Id;
Ent : Entity_Id;
Val : Boolean;
begin
Check_No_Identifiers;
Check_At_Most_N_Arguments (1);
-- Protected definition case
if Nkind (P) = N_Protected_Definition then
Ent := Defining_Identifier (Parent (P));
-- One argument
if Arg_Count = 1 then
Arg := Get_Pragma_Arg (Arg1);
Val := Is_True (Static_Boolean (Arg));
-- No arguments (expression is considered to be True)
else
Val := True;
end if;
-- Check duplicate pragma before we chain the pragma in the Rep
-- Item chain of Ent.
Check_Duplicate_Pragma (Ent);
Record_Rep_Item (Ent, N);
Set_Uses_Lock_Free (Ent, Val);
-- Anything else is incorrect placement
else
Pragma_Misplaced;
end if;
end Lock_Free;
--------------------
-- Locking_Policy --
--------------------
-- pragma Locking_Policy (policy_IDENTIFIER);
when Pragma_Locking_Policy => declare
subtype LP_Range is Name_Id
range First_Locking_Policy_Name .. Last_Locking_Policy_Name;
LP_Val : LP_Range;
LP : Character;
begin
Check_Ada_83_Warning;
Check_Arg_Count (1);
Check_No_Identifiers;
Check_Arg_Is_Locking_Policy (Arg1);
Check_Valid_Configuration_Pragma;
LP_Val := Chars (Get_Pragma_Arg (Arg1));
case LP_Val is
when Name_Ceiling_Locking =>
LP := 'C';
when Name_Inheritance_Locking =>
LP := 'I';
when Name_Concurrent_Readers_Locking =>
LP := 'R';
end case;
if Locking_Policy /= ' '
and then Locking_Policy /= LP
then
Error_Msg_Sloc := Locking_Policy_Sloc;
Error_Pragma ("locking policy incompatible with policy#");
-- Set new policy, but always preserve System_Location since we
-- like the error message with the run time name.
else
Locking_Policy := LP;
if Locking_Policy_Sloc /= System_Location then
Locking_Policy_Sloc := Loc;
end if;
end if;
end;
----------------
-- Long_Float --
----------------
-- pragma Long_Float (D_Float | G_Float);
when Pragma_Long_Float => Long_Float : declare
begin
GNAT_Pragma;
Check_Valid_Configuration_Pragma;
Check_Arg_Count (1);
Check_No_Identifier (Arg1);
Check_Arg_Is_One_Of (Arg1, Name_D_Float, Name_G_Float);
if not OpenVMS_On_Target then
Error_Pragma ("??pragma% ignored (applies only to Open'V'M'S)");
end if;
-- D_Float case
if Chars (Get_Pragma_Arg (Arg1)) = Name_D_Float then
if Opt.Float_Format_Long = 'G' then
Error_Pragma_Arg
("G_Float previously specified", Arg1);
elsif Current_Sem_Unit /= Main_Unit
and then Opt.Float_Format_Long /= 'D'
then
Error_Pragma_Arg
("main unit not compiled with pragma Long_Float (D_Float)",
"\pragma% must be used consistently for whole partition",
Arg1);
else
Opt.Float_Format_Long := 'D';
end if;
-- G_Float case (this is the default, does not need overriding)
else
if Opt.Float_Format_Long = 'D' then
Error_Pragma ("D_Float previously specified");
elsif Current_Sem_Unit /= Main_Unit
and then Opt.Float_Format_Long /= 'G'
then
Error_Pragma_Arg
("main unit not compiled with pragma Long_Float (G_Float)",
"\pragma% must be used consistently for whole partition",
Arg1);
else
Opt.Float_Format_Long := 'G';
end if;
end if;
Set_Standard_Fpt_Formats;
end Long_Float;
--------------------
-- Loop_Invariant --
--------------------
-- pragma Loop_Invariant ( boolean_EXPRESSION );
when Pragma_Loop_Invariant => Loop_Invariant : declare
begin
GNAT_Pragma;
S14_Pragma;
Check_Arg_Count (1);
Check_Loop_Pragma_Placement;
-- Completely ignore if disabled
if Check_Disabled (Pname) then
Rewrite (N, Make_Null_Statement (Loc));
Analyze (N);
return;
end if;
Preanalyze_And_Resolve (Expression (Arg1), Any_Boolean);
-- Transform pragma Loop_Invariant into equivalent pragma Check
-- Generate:
-- pragma Check (Loop_Invaraint, Arg1);
-- Seems completely wrong to hijack pragma Check this way ???
Rewrite (N,
Make_Pragma (Loc,
Chars => Name_Check,
Pragma_Argument_Associations => New_List (
Make_Pragma_Argument_Association (Loc,
Expression => Make_Identifier (Loc, Name_Loop_Invariant)),
Relocate_Node (Arg1))));
Analyze (N);
end Loop_Invariant;
-------------------
-- Loop_Optimize --
-------------------
-- pragma Loop_Optimize ( OPTIMIZATION_HINT {, OPTIMIZATION_HINT } );
-- OPTIMIZATION_HINT ::= No_Unroll | Unroll | No_Vector | Vector
when Pragma_Loop_Optimize => Loop_Optimize : declare
Hint : Node_Id;
begin
GNAT_Pragma;
Check_At_Least_N_Arguments (1);
Check_No_Identifiers;
Hint := First (Pragma_Argument_Associations (N));
while Present (Hint) loop
Check_Arg_Is_One_Of (Hint,
Name_No_Unroll, Name_Unroll, Name_No_Vector, Name_Vector);
Next (Hint);
end loop;
Check_Loop_Pragma_Placement;
end Loop_Optimize;
------------------
-- Loop_Variant --
------------------
-- pragma Loop_Variant
-- ( LOOP_VARIANT_ITEM {, LOOP_VARIANT_ITEM } );
-- LOOP_VARIANT_ITEM ::= CHANGE_DIRECTION => discrete_EXPRESSION
-- CHANGE_DIRECTION ::= Increases | Decreases
when Pragma_Loop_Variant => Loop_Variant : declare
Variant : Node_Id;
begin
GNAT_Pragma;
S14_Pragma;
Check_At_Least_N_Arguments (1);
Check_Loop_Pragma_Placement;
-- Completely ignore if disabled
if Check_Disabled (Pname) then
Rewrite (N, Make_Null_Statement (Loc));
Analyze (N);
return;
end if;
-- Process all increasing / decreasing expressions
Variant := First (Pragma_Argument_Associations (N));
while Present (Variant) loop
if Chars (Variant) /= Name_Decreases
and then Chars (Variant) /= Name_Increases
then
Error_Pragma_Arg ("wrong change modifier", Variant);
end if;
Preanalyze_And_Resolve (Expression (Variant), Any_Discrete);
Next (Variant);
end loop;
end Loop_Variant;
-----------------------
-- Machine_Attribute --
-----------------------
-- pragma Machine_Attribute (
-- [Entity =>] LOCAL_NAME,
-- [Attribute_Name =>] static_string_EXPRESSION
-- [, [Info =>] static_EXPRESSION] );
when Pragma_Machine_Attribute => Machine_Attribute : declare
Def_Id : Entity_Id;
begin
GNAT_Pragma;
Check_Arg_Order ((Name_Entity, Name_Attribute_Name, Name_Info));
if Arg_Count = 3 then
Check_Optional_Identifier (Arg3, Name_Info);
Check_Arg_Is_Static_Expression (Arg3);
else
Check_Arg_Count (2);
end if;
Check_Optional_Identifier (Arg1, Name_Entity);
Check_Optional_Identifier (Arg2, Name_Attribute_Name);
Check_Arg_Is_Local_Name (Arg1);
Check_Arg_Is_Static_Expression (Arg2, Standard_String);
Def_Id := Entity (Get_Pragma_Arg (Arg1));
if Is_Access_Type (Def_Id) then
Def_Id := Designated_Type (Def_Id);
end if;
if Rep_Item_Too_Early (Def_Id, N) then
return;
end if;
Def_Id := Underlying_Type (Def_Id);
-- The only processing required is to link this item on to the
-- list of rep items for the given entity. This is accomplished
-- by the call to Rep_Item_Too_Late (when no error is detected
-- and False is returned).
if Rep_Item_Too_Late (Def_Id, N) then
return;
else
Set_Has_Gigi_Rep_Item (Entity (Get_Pragma_Arg (Arg1)));
end if;
end Machine_Attribute;
----------
-- Main --
----------
-- pragma Main
-- (MAIN_OPTION [, MAIN_OPTION]);
-- MAIN_OPTION ::=
-- [STACK_SIZE =>] static_integer_EXPRESSION
-- | [TASK_STACK_SIZE_DEFAULT =>] static_integer_EXPRESSION
-- | [TIME_SLICING_ENABLED =>] static_boolean_EXPRESSION
when Pragma_Main => Main : declare
Args : Args_List (1 .. 3);
Names : constant Name_List (1 .. 3) := (
Name_Stack_Size,
Name_Task_Stack_Size_Default,
Name_Time_Slicing_Enabled);
Nod : Node_Id;
begin
GNAT_Pragma;
Gather_Associations (Names, Args);
for J in 1 .. 2 loop
if Present (Args (J)) then
Check_Arg_Is_Static_Expression (Args (J), Any_Integer);
end if;
end loop;
if Present (Args (3)) then
Check_Arg_Is_Static_Expression (Args (3), Standard_Boolean);
end if;
Nod := Next (N);
while Present (Nod) loop
if Nkind (Nod) = N_Pragma
and then Pragma_Name (Nod) = Name_Main
then
Error_Msg_Name_1 := Pname;
Error_Msg_N ("duplicate pragma% not permitted", Nod);
end if;
Next (Nod);
end loop;
end Main;
------------------
-- Main_Storage --
------------------
-- pragma Main_Storage
-- (MAIN_STORAGE_OPTION [, MAIN_STORAGE_OPTION]);
-- MAIN_STORAGE_OPTION ::=
-- [WORKING_STORAGE =>] static_SIMPLE_EXPRESSION
-- | [TOP_GUARD =>] static_SIMPLE_EXPRESSION
when Pragma_Main_Storage => Main_Storage : declare
Args : Args_List (1 .. 2);
Names : constant Name_List (1 .. 2) := (
Name_Working_Storage,
Name_Top_Guard);
Nod : Node_Id;
begin
GNAT_Pragma;
Gather_Associations (Names, Args);
for J in 1 .. 2 loop
if Present (Args (J)) then
Check_Arg_Is_Static_Expression (Args (J), Any_Integer);
end if;
end loop;
Check_In_Main_Program;
Nod := Next (N);
while Present (Nod) loop
if Nkind (Nod) = N_Pragma
and then Pragma_Name (Nod) = Name_Main_Storage
then
Error_Msg_Name_1 := Pname;
Error_Msg_N ("duplicate pragma% not permitted", Nod);
end if;
Next (Nod);
end loop;
end Main_Storage;
-----------------
-- Memory_Size --
-----------------
-- pragma Memory_Size (NUMERIC_LITERAL)
when Pragma_Memory_Size =>
GNAT_Pragma;
-- Memory size is simply ignored
Check_No_Identifiers;
Check_Arg_Count (1);
Check_Arg_Is_Integer_Literal (Arg1);
-------------
-- No_Body --
-------------
-- pragma No_Body;
-- The only correct use of this pragma is on its own in a file, in
-- which case it is specially processed (see Gnat1drv.Check_Bad_Body
-- and Frontend, which use Sinput.L.Source_File_Is_Pragma_No_Body to
-- check for a file containing nothing but a No_Body pragma). If we
-- attempt to process it during normal semantics processing, it means
-- it was misplaced.
when Pragma_No_Body =>
GNAT_Pragma;
Pragma_Misplaced;
---------------
-- No_Inline --
---------------
-- pragma No_Inline ( NAME {, NAME} );
when Pragma_No_Inline =>
GNAT_Pragma;
Process_Inline (Suppressed);
---------------
-- No_Return --
---------------
-- pragma No_Return (procedure_LOCAL_NAME {, procedure_Local_Name});
when Pragma_No_Return => No_Return : declare
Id : Node_Id;
E : Entity_Id;
Found : Boolean;
Arg : Node_Id;
begin
Ada_2005_Pragma;
Check_At_Least_N_Arguments (1);
-- Loop through arguments of pragma
Arg := Arg1;
while Present (Arg) loop
Check_Arg_Is_Local_Name (Arg);
Id := Get_Pragma_Arg (Arg);
Analyze (Id);
if not Is_Entity_Name (Id) then
Error_Pragma_Arg ("entity name required", Arg);
end if;
if Etype (Id) = Any_Type then
raise Pragma_Exit;
end if;
-- Loop to find matching procedures
E := Entity (Id);
Found := False;
while Present (E)
and then Scope (E) = Current_Scope
loop
if Ekind_In (E, E_Procedure, E_Generic_Procedure) then
Set_No_Return (E);
-- Set flag on any alias as well
if Is_Overloadable (E) and then Present (Alias (E)) then
Set_No_Return (Alias (E));
end if;
Found := True;
end if;
exit when From_Aspect_Specification (N);
E := Homonym (E);
end loop;
if not Found then
Error_Pragma_Arg ("no procedure & found for pragma%", Arg);
end if;
Next (Arg);
end loop;
end No_Return;
-----------------
-- No_Run_Time --
-----------------
-- pragma No_Run_Time;
-- Note: this pragma is retained for backwards compatibility. See
-- body of Rtsfind for full details on its handling.
when Pragma_No_Run_Time =>
GNAT_Pragma;
Check_Valid_Configuration_Pragma;
Check_Arg_Count (0);
No_Run_Time_Mode := True;
Configurable_Run_Time_Mode := True;
-- Set Duration to 32 bits if word size is 32
if Ttypes.System_Word_Size = 32 then
Duration_32_Bits_On_Target := True;
end if;
-- Set appropriate restrictions
Set_Restriction (No_Finalization, N);
Set_Restriction (No_Exception_Handlers, N);
Set_Restriction (Max_Tasks, N, 0);
Set_Restriction (No_Tasking, N);
------------------------
-- No_Strict_Aliasing --
------------------------
-- pragma No_Strict_Aliasing [([Entity =>] type_LOCAL_NAME)];
when Pragma_No_Strict_Aliasing => No_Strict_Aliasing : declare
E_Id : Entity_Id;
begin
GNAT_Pragma;
Check_At_Most_N_Arguments (1);
if Arg_Count = 0 then
Check_Valid_Configuration_Pragma;
Opt.No_Strict_Aliasing := True;
else
Check_Optional_Identifier (Arg2, Name_Entity);
Check_Arg_Is_Local_Name (Arg1);
E_Id := Entity (Get_Pragma_Arg (Arg1));
if E_Id = Any_Type then
return;
elsif No (E_Id) or else not Is_Access_Type (E_Id) then
Error_Pragma_Arg ("pragma% requires access type", Arg1);
end if;
Set_No_Strict_Aliasing (Implementation_Base_Type (E_Id));
end if;
end No_Strict_Aliasing;
-----------------------
-- Normalize_Scalars --
-----------------------
-- pragma Normalize_Scalars;
when Pragma_Normalize_Scalars =>
Check_Ada_83_Warning;
Check_Arg_Count (0);
Check_Valid_Configuration_Pragma;
-- Normalize_Scalars creates false positives in CodePeer, and
-- incorrect negative results in Alfa mode, so ignore this pragma
-- in these modes.
if not (CodePeer_Mode or Alfa_Mode) then
Normalize_Scalars := True;
Init_Or_Norm_Scalars := True;
end if;
-----------------
-- Obsolescent --
-----------------
-- pragma Obsolescent;
-- pragma Obsolescent (
-- [Message =>] static_string_EXPRESSION
-- [,[Version =>] Ada_05]]);
-- pragma Obsolescent (
-- [Entity =>] NAME
-- [,[Message =>] static_string_EXPRESSION
-- [,[Version =>] Ada_05]] );
when Pragma_Obsolescent => Obsolescent : declare
Ename : Node_Id;
Decl : Node_Id;
procedure Set_Obsolescent (E : Entity_Id);
-- Given an entity Ent, mark it as obsolescent if appropriate
---------------------
-- Set_Obsolescent --
---------------------
procedure Set_Obsolescent (E : Entity_Id) is
Active : Boolean;
Ent : Entity_Id;
S : String_Id;
begin
Active := True;
Ent := E;
-- Entity name was given
if Present (Ename) then
-- If entity name matches, we are fine. Save entity in
-- pragma argument, for ASIS use.
if Chars (Ename) = Chars (Ent) then
Set_Entity (Ename, Ent);
Generate_Reference (Ent, Ename);
-- If entity name does not match, only possibility is an
-- enumeration literal from an enumeration type declaration.
elsif Ekind (Ent) /= E_Enumeration_Type then
Error_Pragma
("pragma % entity name does not match declaration");
else
Ent := First_Literal (E);
loop
if No (Ent) then
Error_Pragma
("pragma % entity name does not match any " &
"enumeration literal");
elsif Chars (Ent) = Chars (Ename) then
Set_Entity (Ename, Ent);
Generate_Reference (Ent, Ename);
exit;
else
Ent := Next_Literal (Ent);
end if;
end loop;
end if;
end if;
-- Ent points to entity to be marked
if Arg_Count >= 1 then
-- Deal with static string argument
Check_Arg_Is_Static_Expression (Arg1, Standard_String);
S := Strval (Get_Pragma_Arg (Arg1));
for J in 1 .. String_Length (S) loop
if not In_Character_Range (Get_String_Char (S, J)) then
Error_Pragma_Arg
("pragma% argument does not allow wide characters",
Arg1);
end if;
end loop;
Obsolescent_Warnings.Append
((Ent => Ent, Msg => Strval (Get_Pragma_Arg (Arg1))));
-- Check for Ada_05 parameter
if Arg_Count /= 1 then
Check_Arg_Count (2);
declare
Argx : constant Node_Id := Get_Pragma_Arg (Arg2);
begin
Check_Arg_Is_Identifier (Argx);
if Chars (Argx) /= Name_Ada_05 then
Error_Msg_Name_2 := Name_Ada_05;
Error_Pragma_Arg
("only allowed argument for pragma% is %", Argx);
end if;
if Ada_Version_Explicit < Ada_2005
or else not Warn_On_Ada_2005_Compatibility
then
Active := False;
end if;
end;
end if;
end if;
-- Set flag if pragma active
if Active then
Set_Is_Obsolescent (Ent);
end if;
return;
end Set_Obsolescent;
-- Start of processing for pragma Obsolescent
begin
GNAT_Pragma;
Check_At_Most_N_Arguments (3);
-- See if first argument specifies an entity name
if Arg_Count >= 1
and then
(Chars (Arg1) = Name_Entity
or else
Nkind_In (Get_Pragma_Arg (Arg1), N_Character_Literal,
N_Identifier,
N_Operator_Symbol))
then
Ename := Get_Pragma_Arg (Arg1);
-- Eliminate first argument, so we can share processing
Arg1 := Arg2;
Arg2 := Arg3;
Arg_Count := Arg_Count - 1;
-- No Entity name argument given
else
Ename := Empty;
end if;
if Arg_Count >= 1 then
Check_Optional_Identifier (Arg1, Name_Message);
if Arg_Count = 2 then
Check_Optional_Identifier (Arg2, Name_Version);
end if;
end if;
-- Get immediately preceding declaration
Decl := Prev (N);
while Present (Decl) and then Nkind (Decl) = N_Pragma loop
Prev (Decl);
end loop;
-- Cases where we do not follow anything other than another pragma
if No (Decl) then
-- First case: library level compilation unit declaration with
-- the pragma immediately following the declaration.
if Nkind (Parent (N)) = N_Compilation_Unit_Aux then
Set_Obsolescent
(Defining_Entity (Unit (Parent (Parent (N)))));
return;
-- Case 2: library unit placement for package
else
declare
Ent : constant Entity_Id := Find_Lib_Unit_Name;
begin
if Is_Package_Or_Generic_Package (Ent) then
Set_Obsolescent (Ent);
return;
end if;
end;
end if;
-- Cases where we must follow a declaration
else
if Nkind (Decl) not in N_Declaration
and then Nkind (Decl) not in N_Later_Decl_Item
and then Nkind (Decl) not in N_Generic_Declaration
and then Nkind (Decl) not in N_Renaming_Declaration
then
Error_Pragma
("pragma% misplaced, "
& "must immediately follow a declaration");
else
Set_Obsolescent (Defining_Entity (Decl));
return;
end if;
end if;
end Obsolescent;
--------------
-- Optimize --
--------------
-- pragma Optimize (Time | Space | Off);
-- The actual check for optimize is done in Gigi. Note that this
-- pragma does not actually change the optimization setting, it
-- simply checks that it is consistent with the pragma.
when Pragma_Optimize =>
Check_No_Identifiers;
Check_Arg_Count (1);
Check_Arg_Is_One_Of (Arg1, Name_Time, Name_Space, Name_Off);
------------------------
-- Optimize_Alignment --
------------------------
-- pragma Optimize_Alignment (Time | Space | Off);
when Pragma_Optimize_Alignment => Optimize_Alignment : begin
GNAT_Pragma;
Check_No_Identifiers;
Check_Arg_Count (1);
Check_Valid_Configuration_Pragma;
declare
Nam : constant Name_Id := Chars (Get_Pragma_Arg (Arg1));
begin
case Nam is
when Name_Time =>
Opt.Optimize_Alignment := 'T';
when Name_Space =>
Opt.Optimize_Alignment := 'S';
when Name_Off =>
Opt.Optimize_Alignment := 'O';
when others =>
Error_Pragma_Arg ("invalid argument for pragma%", Arg1);
end case;
end;
-- Set indication that mode is set locally. If we are in fact in a
-- configuration pragma file, this setting is harmless since the
-- switch will get reset anyway at the start of each unit.
Optimize_Alignment_Local := True;
end Optimize_Alignment;
-------------------
-- Overflow_Mode --
-------------------
-- pragma Overflow_Mode
-- ([General => ] MODE [, [Assertions => ] MODE]);
-- MODE := STRICT | MINIMIZED | ELIMINATED
-- Note: ELIMINATED is allowed only if Long_Long_Integer'Size is 64
-- since System.Bignums makes this assumption. This is true of nearly
-- all (all?) targets.
when Pragma_Overflow_Mode => Overflow_Mode : declare
function Get_Overflow_Mode
(Name : Name_Id;
Arg : Node_Id) return Overflow_Mode_Type;
-- Function to process one pragma argument, Arg. If an identifier
-- is present, it must be Name. Mode type is returned if a valid
-- argument exists, otherwise an error is signalled.
-----------------------
-- Get_Overflow_Mode --
-----------------------
function Get_Overflow_Mode
(Name : Name_Id;
Arg : Node_Id) return Overflow_Mode_Type
is
Argx : constant Node_Id := Get_Pragma_Arg (Arg);
begin
Check_Optional_Identifier (Arg, Name);
Check_Arg_Is_Identifier (Argx);
if Chars (Argx) = Name_Strict then
return Strict;
elsif Chars (Argx) = Name_Minimized then
return Minimized;
elsif Chars (Argx) = Name_Eliminated then
if Ttypes.Standard_Long_Long_Integer_Size /= 64 then
Error_Pragma_Arg
("Eliminated not implemented on this target", Argx);
else
return Eliminated;
end if;
else
Error_Pragma_Arg ("invalid argument for pragma%", Argx);
end if;
end Get_Overflow_Mode;
-- Start of processing for Overflow_Mode
begin
GNAT_Pragma;
Check_At_Least_N_Arguments (1);
Check_At_Most_N_Arguments (2);
-- Process first argument
Scope_Suppress.Overflow_Mode_General :=
Get_Overflow_Mode (Name_General, Arg1);
-- Case of only one argument
if Arg_Count = 1 then
Scope_Suppress.Overflow_Mode_Assertions :=
Scope_Suppress.Overflow_Mode_General;
-- Case of two arguments present
else
Scope_Suppress.Overflow_Mode_Assertions :=
Get_Overflow_Mode (Name_Assertions, Arg2);
end if;
end Overflow_Mode;
when Pragma_Overriding_Renamings =>
Overriding_Renamings := True;
-------------
-- Ordered --
-------------
-- pragma Ordered (first_enumeration_subtype_LOCAL_NAME);
when Pragma_Ordered => Ordered : declare
Assoc : constant Node_Id := Arg1;
Type_Id : Node_Id;
Typ : Entity_Id;
begin
GNAT_Pragma;
Check_No_Identifiers;
Check_Arg_Count (1);
Check_Arg_Is_Local_Name (Arg1);
Type_Id := Get_Pragma_Arg (Assoc);
Find_Type (Type_Id);
Typ := Entity (Type_Id);
if Typ = Any_Type then
return;
else
Typ := Underlying_Type (Typ);
end if;
if not Is_Enumeration_Type (Typ) then
Error_Pragma ("pragma% must specify enumeration type");
end if;
Check_First_Subtype (Arg1);
Set_Has_Pragma_Ordered (Base_Type (Typ));
end Ordered;
----------
-- Pack --
----------
-- pragma Pack (first_subtype_LOCAL_NAME);
when Pragma_Pack => Pack : declare
Assoc : constant Node_Id := Arg1;
Type_Id : Node_Id;
Typ : Entity_Id;
Ctyp : Entity_Id;
Ignore : Boolean := False;
begin
Check_No_Identifiers;
Check_Arg_Count (1);
Check_Arg_Is_Local_Name (Arg1);
Type_Id := Get_Pragma_Arg (Assoc);
Find_Type (Type_Id);
Typ := Entity (Type_Id);
if Typ = Any_Type
or else Rep_Item_Too_Early (Typ, N)
then
return;
else
Typ := Underlying_Type (Typ);
end if;
if not Is_Array_Type (Typ) and then not Is_Record_Type (Typ) then
Error_Pragma ("pragma% must specify array or record type");
end if;
Check_First_Subtype (Arg1);
Check_Duplicate_Pragma (Typ);
-- Array type
if Is_Array_Type (Typ) then
Ctyp := Component_Type (Typ);
-- Ignore pack that does nothing
if Known_Static_Esize (Ctyp)
and then Known_Static_RM_Size (Ctyp)
and then Esize (Ctyp) = RM_Size (Ctyp)
and then Addressable (Esize (Ctyp))
then
Ignore := True;
end if;
-- Process OK pragma Pack. Note that if there is a separate
-- component clause present, the Pack will be cancelled. This
-- processing is in Freeze.
if not Rep_Item_Too_Late (Typ, N) then
-- In the context of static code analysis, we do not need
-- complex front-end expansions related to pragma Pack,
-- so disable handling of pragma Pack in these cases.
if CodePeer_Mode or Alfa_Mode then
null;
-- Don't attempt any packing for VM targets. We possibly
-- could deal with some cases of array bit-packing, but we
-- don't bother, since this is not a typical kind of
-- representation in the VM context anyway (and would not
-- for example work nicely with the debugger).
elsif VM_Target /= No_VM then
if not GNAT_Mode then
Error_Pragma
("??pragma% ignored in this configuration");
end if;
-- Normal case where we do the pack action
else
if not Ignore then
Set_Is_Packed (Base_Type (Typ));
Set_Has_Non_Standard_Rep (Base_Type (Typ));
end if;
Set_Has_Pragma_Pack (Base_Type (Typ));
end if;
end if;
-- For record types, the pack is always effective
else pragma Assert (Is_Record_Type (Typ));
if not Rep_Item_Too_Late (Typ, N) then
-- Ignore pack request with warning in VM mode (skip warning
-- if we are compiling GNAT run time library).
if VM_Target /= No_VM then
if not GNAT_Mode then
Error_Pragma
("??pragma% ignored in this configuration");
end if;
-- Normal case of pack request active
else
Set_Is_Packed (Base_Type (Typ));
Set_Has_Pragma_Pack (Base_Type (Typ));
Set_Has_Non_Standard_Rep (Base_Type (Typ));
end if;
end if;
end if;
end Pack;
----------
-- Page --
----------
-- pragma Page;
-- There is nothing to do here, since we did all the processing for
-- this pragma in Par.Prag (so that it works properly even in syntax
-- only mode).
when Pragma_Page =>
null;
----------------------------------
-- Partition_Elaboration_Policy --
----------------------------------
-- pragma Partition_Elaboration_Policy (policy_IDENTIFIER);
when Pragma_Partition_Elaboration_Policy => declare
subtype PEP_Range is Name_Id
range First_Partition_Elaboration_Policy_Name
.. Last_Partition_Elaboration_Policy_Name;
PEP_Val : PEP_Range;
PEP : Character;
begin
Ada_2005_Pragma;
Check_Arg_Count (1);
Check_No_Identifiers;
Check_Arg_Is_Partition_Elaboration_Policy (Arg1);
Check_Valid_Configuration_Pragma;
PEP_Val := Chars (Get_Pragma_Arg (Arg1));
case PEP_Val is
when Name_Concurrent =>
PEP := 'C';
when Name_Sequential =>
PEP := 'S';
end case;
if Partition_Elaboration_Policy /= ' '
and then Partition_Elaboration_Policy /= PEP
then
Error_Msg_Sloc := Partition_Elaboration_Policy_Sloc;
Error_Pragma
("partition elaboration policy incompatible with policy#");
-- Set new policy, but always preserve System_Location since we
-- like the error message with the run time name.
else
Partition_Elaboration_Policy := PEP;
if Partition_Elaboration_Policy_Sloc /= System_Location then
Partition_Elaboration_Policy_Sloc := Loc;
end if;
end if;
end;
-------------
-- Passive --
-------------
-- pragma Passive [(PASSIVE_FORM)];
-- PASSIVE_FORM ::= Semaphore | No
when Pragma_Passive =>
GNAT_Pragma;
if Nkind (Parent (N)) /= N_Task_Definition then
Error_Pragma ("pragma% must be within task definition");
end if;
if Arg_Count /= 0 then
Check_Arg_Count (1);
Check_Arg_Is_One_Of (Arg1, Name_Semaphore, Name_No);
end if;
----------------------------------
-- Preelaborable_Initialization --
----------------------------------
-- pragma Preelaborable_Initialization (DIRECT_NAME);
when Pragma_Preelaborable_Initialization => Preelab_Init : declare
Ent : Entity_Id;
begin
Ada_2005_Pragma;
Check_Arg_Count (1);
Check_No_Identifiers;
Check_Arg_Is_Identifier (Arg1);
Check_Arg_Is_Local_Name (Arg1);
Check_First_Subtype (Arg1);
Ent := Entity (Get_Pragma_Arg (Arg1));
if not (Is_Private_Type (Ent)
or else
Is_Protected_Type (Ent)
or else
(Is_Generic_Type (Ent) and then Is_Derived_Type (Ent)))
then
Error_Pragma_Arg
("pragma % can only be applied to private, formal derived or "
& "protected type",
Arg1);
end if;
-- Give an error if the pragma is applied to a protected type that
-- does not qualify (due to having entries, or due to components
-- that do not qualify).
if Is_Protected_Type (Ent)
and then not Has_Preelaborable_Initialization (Ent)
then
Error_Msg_N
("protected type & does not have preelaborable " &
"initialization", Ent);
-- Otherwise mark the type as definitely having preelaborable
-- initialization.
else
Set_Known_To_Have_Preelab_Init (Ent);
end if;
if Has_Pragma_Preelab_Init (Ent)
and then Warn_On_Redundant_Constructs
then
Error_Pragma ("?r?duplicate pragma%!");
else
Set_Has_Pragma_Preelab_Init (Ent);
end if;
end Preelab_Init;
--------------------
-- Persistent_BSS --
--------------------
-- pragma Persistent_BSS [(object_NAME)];
when Pragma_Persistent_BSS => Persistent_BSS : declare
Decl : Node_Id;
Ent : Entity_Id;
Prag : Node_Id;
begin
GNAT_Pragma;
Check_At_Most_N_Arguments (1);
-- Case of application to specific object (one argument)
if Arg_Count = 1 then
Check_Arg_Is_Library_Level_Local_Name (Arg1);
if not Is_Entity_Name (Get_Pragma_Arg (Arg1))
or else not
Ekind_In (Entity (Get_Pragma_Arg (Arg1)), E_Variable,
E_Constant)
then
Error_Pragma_Arg ("pragma% only applies to objects", Arg1);
end if;
Ent := Entity (Get_Pragma_Arg (Arg1));
Decl := Parent (Ent);
-- Check for duplication before inserting in list of
-- representation items.
Check_Duplicate_Pragma (Ent);
if Rep_Item_Too_Late (Ent, N) then
return;
end if;
if Present (Expression (Decl)) then
Error_Pragma_Arg
("object for pragma% cannot have initialization", Arg1);
end if;
if not Is_Potentially_Persistent_Type (Etype (Ent)) then
Error_Pragma_Arg
("object type for pragma% is not potentially persistent",
Arg1);
end if;
Prag :=
Make_Linker_Section_Pragma
(Ent, Sloc (N), ".persistent.bss");
Insert_After (N, Prag);
Analyze (Prag);
-- Case of use as configuration pragma with no arguments
else
Check_Valid_Configuration_Pragma;
Persistent_BSS_Mode := True;
end if;
end Persistent_BSS;
-------------
-- Polling --
-------------
-- pragma Polling (ON | OFF);
when Pragma_Polling =>
GNAT_Pragma;
Check_Arg_Count (1);
Check_No_Identifiers;
Check_Arg_Is_One_Of (Arg1, Name_On, Name_Off);
Polling_Required := (Chars (Get_Pragma_Arg (Arg1)) = Name_On);
-------------------
-- Postcondition --
-------------------
-- pragma Postcondition ([Check =>] Boolean_EXPRESSION
-- [,[Message =>] String_EXPRESSION]);
when Pragma_Postcondition => Postcondition : declare
In_Body : Boolean;
begin
GNAT_Pragma;
Check_At_Least_N_Arguments (1);
Check_At_Most_N_Arguments (2);
Check_Optional_Identifier (Arg1, Name_Check);
-- Verify the proper placement of the pragma. The remainder of the
-- processing is found in Sem_Ch6/Sem_Ch7.
Check_Precondition_Postcondition (In_Body);
-- When the pragma is a source contruct and appears inside a body,
-- preanalyze the boolean_expression to detect illegal forward
-- references:
-- procedure P is
-- pragma Postcondition (X'Old ...);
-- X : ...
if Comes_From_Source (N) and then In_Body then
Preanalyze_Spec_Expression (Expression (Arg1), Any_Boolean);
end if;
end Postcondition;
------------------
-- Precondition --
------------------
-- pragma Precondition ([Check =>] Boolean_EXPRESSION
-- [,[Message =>] String_EXPRESSION]);
when Pragma_Precondition => Precondition : declare
In_Body : Boolean;
begin
GNAT_Pragma;
Check_At_Least_N_Arguments (1);
Check_At_Most_N_Arguments (2);
Check_Optional_Identifier (Arg1, Name_Check);
Check_Precondition_Postcondition (In_Body);
-- If in spec, nothing more to do. If in body, then we convert the
-- pragma to pragma Check (Precondition, cond [, msg]). Note we do
-- this whether or not precondition checks are enabled. That works
-- fine since pragma Check will do this check, and will also
-- analyze the condition itself in the proper context.
if In_Body then
Rewrite (N,
Make_Pragma (Loc,
Chars => Name_Check,
Pragma_Argument_Associations => New_List (
Make_Pragma_Argument_Association (Loc,
Expression => Make_Identifier (Loc, Name_Precondition)),
Make_Pragma_Argument_Association (Sloc (Arg1),
Expression => Relocate_Node (Get_Pragma_Arg (Arg1))))));
if Arg_Count = 2 then
Append_To (Pragma_Argument_Associations (N),
Make_Pragma_Argument_Association (Sloc (Arg2),
Expression => Relocate_Node (Get_Pragma_Arg (Arg2))));
end if;
Analyze (N);
end if;
end Precondition;
---------------
-- Predicate --
---------------
-- pragma Predicate
-- ([Entity =>] type_LOCAL_NAME,
-- [Check =>] EXPRESSION);
when Pragma_Predicate => Predicate : declare
Type_Id : Node_Id;
Typ : Entity_Id;
Discard : Boolean;
pragma Unreferenced (Discard);
begin
GNAT_Pragma;
Check_Arg_Count (2);
Check_Optional_Identifier (Arg1, Name_Entity);
Check_Optional_Identifier (Arg2, Name_Check);
Check_Arg_Is_Local_Name (Arg1);
Type_Id := Get_Pragma_Arg (Arg1);
Find_Type (Type_Id);
Typ := Entity (Type_Id);
if Typ = Any_Type then
return;
end if;
-- The remaining processing is simply to link the pragma on to
-- the rep item chain, for processing when the type is frozen.
-- This is accomplished by a call to Rep_Item_Too_Late. We also
-- mark the type as having predicates.
Set_Has_Predicates (Typ);
Discard := Rep_Item_Too_Late (Typ, N, FOnly => True);
end Predicate;
------------------
-- Preelaborate --
------------------
-- pragma Preelaborate [(library_unit_NAME)];
-- Set the flag Is_Preelaborated of program unit name entity
when Pragma_Preelaborate => Preelaborate : declare
Pa : constant Node_Id := Parent (N);
Pk : constant Node_Kind := Nkind (Pa);
Ent : Entity_Id;
begin
Check_Ada_83_Warning;
Check_Valid_Library_Unit_Pragma;
if Nkind (N) = N_Null_Statement then
return;
end if;
Ent := Find_Lib_Unit_Name;
Check_Duplicate_Pragma (Ent);
-- This filters out pragmas inside generic parent then
-- show up inside instantiation
if Present (Ent)
and then not (Pk = N_Package_Specification
and then Present (Generic_Parent (Pa)))
then
if not Debug_Flag_U then
Set_Is_Preelaborated (Ent);
Set_Suppress_Elaboration_Warnings (Ent);
end if;
end if;
end Preelaborate;
---------------------
-- Preelaborate_05 --
---------------------
-- pragma Preelaborate_05 [(library_unit_NAME)];
-- This pragma is useable only in GNAT_Mode, where it is used like
-- pragma Preelaborate but it is only effective in Ada 2005 mode
-- (otherwise it is ignored). This is used to implement AI-362 which
-- recategorizes some run-time packages in Ada 2005 mode.
when Pragma_Preelaborate_05 => Preelaborate_05 : declare
Ent : Entity_Id;
begin
GNAT_Pragma;
Check_Valid_Library_Unit_Pragma;
if not GNAT_Mode then
Error_Pragma ("pragma% only available in GNAT mode");
end if;
if Nkind (N) = N_Null_Statement then
return;
end if;
-- This is one of the few cases where we need to test the value of
-- Ada_Version_Explicit rather than Ada_Version (which is always
-- set to Ada_2012 in a predefined unit), we need to know the
-- explicit version set to know if this pragma is active.
if Ada_Version_Explicit >= Ada_2005 then
Ent := Find_Lib_Unit_Name;
Set_Is_Preelaborated (Ent);
Set_Suppress_Elaboration_Warnings (Ent);
end if;
end Preelaborate_05;
--------------
-- Priority --
--------------
-- pragma Priority (EXPRESSION);
when Pragma_Priority => Priority : declare
P : constant Node_Id := Parent (N);
Arg : Node_Id;
Ent : Entity_Id;
begin
Check_No_Identifiers;
Check_Arg_Count (1);
-- Subprogram case
if Nkind (P) = N_Subprogram_Body then
Check_In_Main_Program;
Ent := Defining_Unit_Name (Specification (P));
if Nkind (Ent) = N_Defining_Program_Unit_Name then
Ent := Defining_Identifier (Ent);
end if;
Arg := Get_Pragma_Arg (Arg1);
Analyze_And_Resolve (Arg, Standard_Integer);
-- Must be static
if not Is_Static_Expression (Arg) then
Flag_Non_Static_Expr
("main subprogram priority is not static!", Arg);
raise Pragma_Exit;
-- If constraint error, then we already signalled an error
elsif Raises_Constraint_Error (Arg) then
null;
-- Otherwise check in range
else
declare
Val : constant Uint := Expr_Value (Arg);
begin
if Val < 0
or else Val > Expr_Value (Expression
(Parent (RTE (RE_Max_Priority))))
then
Error_Pragma_Arg
("main subprogram priority is out of range", Arg1);
end if;
end;
end if;
Set_Main_Priority
(Current_Sem_Unit, UI_To_Int (Expr_Value (Arg)));
-- Load an arbitrary entity from System.Tasking to make sure
-- this package is implicitly with'ed, since we need to have
-- the tasking run-time active for the pragma Priority to have
-- any effect.
declare
Discard : Entity_Id;
pragma Warnings (Off, Discard);
begin
Discard := RTE (RE_Task_List);
end;
-- Task or Protected, must be of type Integer
elsif Nkind_In (P, N_Protected_Definition, N_Task_Definition) then
Arg := Get_Pragma_Arg (Arg1);
Ent := Defining_Identifier (Parent (P));
-- The expression must be analyzed in the special manner
-- described in "Handling of Default and Per-Object
-- Expressions" in sem.ads.
Preanalyze_Spec_Expression (Arg, Standard_Integer);
if not Is_Static_Expression (Arg) then
Check_Restriction (Static_Priorities, Arg);
end if;
-- Anything else is incorrect
else
Pragma_Misplaced;
end if;
-- Check duplicate pragma before we chain the pragma in the Rep
-- Item chain of Ent.
Check_Duplicate_Pragma (Ent);
Record_Rep_Item (Ent, N);
end Priority;
-----------------------------------
-- Priority_Specific_Dispatching --
-----------------------------------
-- pragma Priority_Specific_Dispatching (
-- policy_IDENTIFIER,
-- first_priority_EXPRESSION,
-- last_priority_EXPRESSION);
when Pragma_Priority_Specific_Dispatching =>
Priority_Specific_Dispatching : declare
Prio_Id : constant Entity_Id := RTE (RE_Any_Priority);
-- This is the entity System.Any_Priority;
DP : Character;
Lower_Bound : Node_Id;
Upper_Bound : Node_Id;
Lower_Val : Uint;
Upper_Val : Uint;
begin
Ada_2005_Pragma;
Check_Arg_Count (3);
Check_No_Identifiers;
Check_Arg_Is_Task_Dispatching_Policy (Arg1);
Check_Valid_Configuration_Pragma;
Get_Name_String (Chars (Get_Pragma_Arg (Arg1)));
DP := Fold_Upper (Name_Buffer (1));
Lower_Bound := Get_Pragma_Arg (Arg2);
Check_Arg_Is_Static_Expression (Lower_Bound, Standard_Integer);
Lower_Val := Expr_Value (Lower_Bound);
Upper_Bound := Get_Pragma_Arg (Arg3);
Check_Arg_Is_Static_Expression (Upper_Bound, Standard_Integer);
Upper_Val := Expr_Value (Upper_Bound);
-- It is not allowed to use Task_Dispatching_Policy and
-- Priority_Specific_Dispatching in the same partition.
if Task_Dispatching_Policy /= ' ' then
Error_Msg_Sloc := Task_Dispatching_Policy_Sloc;
Error_Pragma
("pragma% incompatible with Task_Dispatching_Policy#");
-- Check lower bound in range
elsif Lower_Val < Expr_Value (Type_Low_Bound (Prio_Id))
or else
Lower_Val > Expr_Value (Type_High_Bound (Prio_Id))
then
Error_Pragma_Arg
("first_priority is out of range", Arg2);
-- Check upper bound in range
elsif Upper_Val < Expr_Value (Type_Low_Bound (Prio_Id))
or else
Upper_Val > Expr_Value (Type_High_Bound (Prio_Id))
then
Error_Pragma_Arg
("last_priority is out of range", Arg3);
-- Check that the priority range is valid
elsif Lower_Val > Upper_Val then
Error_Pragma
("last_priority_expression must be greater than" &
" or equal to first_priority_expression");
-- Store the new policy, but always preserve System_Location since
-- we like the error message with the run-time name.
else
-- Check overlapping in the priority ranges specified in other
-- Priority_Specific_Dispatching pragmas within the same
-- partition. We can only check those we know about!
for J in
Specific_Dispatching.First .. Specific_Dispatching.Last
loop
if Specific_Dispatching.Table (J).First_Priority in
UI_To_Int (Lower_Val) .. UI_To_Int (Upper_Val)
or else Specific_Dispatching.Table (J).Last_Priority in
UI_To_Int (Lower_Val) .. UI_To_Int (Upper_Val)
then
Error_Msg_Sloc :=
Specific_Dispatching.Table (J).Pragma_Loc;
Error_Pragma
("priority range overlaps with "
& "Priority_Specific_Dispatching#");
end if;
end loop;
-- The use of Priority_Specific_Dispatching is incompatible
-- with Task_Dispatching_Policy.
if Task_Dispatching_Policy /= ' ' then
Error_Msg_Sloc := Task_Dispatching_Policy_Sloc;
Error_Pragma
("Priority_Specific_Dispatching incompatible "
& "with Task_Dispatching_Policy#");
end if;
-- The use of Priority_Specific_Dispatching forces ceiling
-- locking policy.
if Locking_Policy /= ' ' and then Locking_Policy /= 'C' then
Error_Msg_Sloc := Locking_Policy_Sloc;
Error_Pragma
("Priority_Specific_Dispatching incompatible "
& "with Locking_Policy#");
-- Set the Ceiling_Locking policy, but preserve System_Location
-- since we like the error message with the run time name.
else
Locking_Policy := 'C';
if Locking_Policy_Sloc /= System_Location then
Locking_Policy_Sloc := Loc;
end if;
end if;
-- Add entry in the table
Specific_Dispatching.Append
((Dispatching_Policy => DP,
First_Priority => UI_To_Int (Lower_Val),
Last_Priority => UI_To_Int (Upper_Val),
Pragma_Loc => Loc));
end if;
end Priority_Specific_Dispatching;
-------------
-- Profile --
-------------
-- pragma Profile (profile_IDENTIFIER);
-- profile_IDENTIFIER => Restricted | Ravenscar | Rational
when Pragma_Profile =>
Ada_2005_Pragma;
Check_Arg_Count (1);
Check_Valid_Configuration_Pragma;
Check_No_Identifiers;
declare
Argx : constant Node_Id := Get_Pragma_Arg (Arg1);
begin
if Chars (Argx) = Name_Ravenscar then
Set_Ravenscar_Profile (N);
elsif Chars (Argx) = Name_Restricted then
Set_Profile_Restrictions
(Restricted,
N, Warn => Treat_Restrictions_As_Warnings);
elsif Chars (Argx) = Name_Rational then
Set_Rational_Profile;
elsif Chars (Argx) = Name_No_Implementation_Extensions then
Set_Profile_Restrictions
(No_Implementation_Extensions,
N, Warn => Treat_Restrictions_As_Warnings);
else
Error_Pragma_Arg ("& is not a valid profile", Argx);
end if;
end;
----------------------
-- Profile_Warnings --
----------------------
-- pragma Profile_Warnings (profile_IDENTIFIER);
-- profile_IDENTIFIER => Restricted | Ravenscar
when Pragma_Profile_Warnings =>
GNAT_Pragma;
Check_Arg_Count (1);
Check_Valid_Configuration_Pragma;
Check_No_Identifiers;
declare
Argx : constant Node_Id := Get_Pragma_Arg (Arg1);
begin
if Chars (Argx) = Name_Ravenscar then
Set_Profile_Restrictions (Ravenscar, N, Warn => True);
elsif Chars (Argx) = Name_Restricted then
Set_Profile_Restrictions (Restricted, N, Warn => True);
elsif Chars (Argx) = Name_No_Implementation_Extensions then
Set_Profile_Restrictions
(No_Implementation_Extensions, N, Warn => True);
else
Error_Pragma_Arg ("& is not a valid profile", Argx);
end if;
end;
--------------------------
-- Propagate_Exceptions --
--------------------------
-- pragma Propagate_Exceptions;
-- Note: this pragma is obsolete and has no effect
when Pragma_Propagate_Exceptions =>
GNAT_Pragma;
Check_Arg_Count (0);
if In_Extended_Main_Source_Unit (N) then
Propagate_Exceptions := True;
end if;
------------------
-- Psect_Object --
------------------
-- pragma Psect_Object (
-- [Internal =>] LOCAL_NAME,
-- [, [External =>] EXTERNAL_SYMBOL]
-- [, [Size =>] EXTERNAL_SYMBOL]);
when Pragma_Psect_Object | Pragma_Common_Object =>
Psect_Object : declare
Args : Args_List (1 .. 3);
Names : constant Name_List (1 .. 3) := (
Name_Internal,
Name_External,
Name_Size);
Internal : Node_Id renames Args (1);
External : Node_Id renames Args (2);
Size : Node_Id renames Args (3);
Def_Id : Entity_Id;
procedure Check_Too_Long (Arg : Node_Id);
-- Posts message if the argument is an identifier with more
-- than 31 characters, or a string literal with more than
-- 31 characters, and we are operating under VMS
--------------------
-- Check_Too_Long --
--------------------
procedure Check_Too_Long (Arg : Node_Id) is
X : constant Node_Id := Original_Node (Arg);
begin
if not Nkind_In (X, N_String_Literal, N_Identifier) then
Error_Pragma_Arg
("inappropriate argument for pragma %", Arg);
end if;
if OpenVMS_On_Target then
if (Nkind (X) = N_String_Literal
and then String_Length (Strval (X)) > 31)
or else
(Nkind (X) = N_Identifier
and then Length_Of_Name (Chars (X)) > 31)
then
Error_Pragma_Arg
("argument for pragma % is longer than 31 characters",
Arg);
end if;
end if;
end Check_Too_Long;
-- Start of processing for Common_Object/Psect_Object
begin
GNAT_Pragma;
Gather_Associations (Names, Args);
Process_Extended_Import_Export_Internal_Arg (Internal);
Def_Id := Entity (Internal);
if not Ekind_In (Def_Id, E_Constant, E_Variable) then
Error_Pragma_Arg
("pragma% must designate an object", Internal);
end if;
Check_Too_Long (Internal);
if Is_Imported (Def_Id) or else Is_Exported (Def_Id) then
Error_Pragma_Arg
("cannot use pragma% for imported/exported object",
Internal);
end if;
if Is_Concurrent_Type (Etype (Internal)) then
Error_Pragma_Arg
("cannot specify pragma % for task/protected object",
Internal);
end if;
if Has_Rep_Pragma (Def_Id, Name_Common_Object)
or else
Has_Rep_Pragma (Def_Id, Name_Psect_Object)
then
Error_Msg_N ("??duplicate Common/Psect_Object pragma", N);
end if;
if Ekind (Def_Id) = E_Constant then
Error_Pragma_Arg
("cannot specify pragma % for a constant", Internal);
end if;
if Is_Record_Type (Etype (Internal)) then
declare
Ent : Entity_Id;
Decl : Entity_Id;
begin
Ent := First_Entity (Etype (Internal));
while Present (Ent) loop
Decl := Declaration_Node (Ent);
if Ekind (Ent) = E_Component
and then Nkind (Decl) = N_Component_Declaration
and then Present (Expression (Decl))
and then Warn_On_Export_Import
then
Error_Msg_N
("?x?object for pragma % has defaults", Internal);
exit;
else
Next_Entity (Ent);
end if;
end loop;
end;
end if;
if Present (Size) then
Check_Too_Long (Size);
end if;
if Present (External) then
Check_Arg_Is_External_Name (External);
Check_Too_Long (External);
end if;
-- If all error tests pass, link pragma on to the rep item chain
Record_Rep_Item (Def_Id, N);
end Psect_Object;
----------
-- Pure --
----------
-- pragma Pure [(library_unit_NAME)];
when Pragma_Pure => Pure : declare
Ent : Entity_Id;
begin
Check_Ada_83_Warning;
Check_Valid_Library_Unit_Pragma;
if Nkind (N) = N_Null_Statement then
return;
end if;
Ent := Find_Lib_Unit_Name;
Set_Is_Pure (Ent);
Set_Has_Pragma_Pure (Ent);
Set_Suppress_Elaboration_Warnings (Ent);
end Pure;
-------------
-- Pure_05 --
-------------
-- pragma Pure_05 [(library_unit_NAME)];
-- This pragma is useable only in GNAT_Mode, where it is used like
-- pragma Pure but it is only effective in Ada 2005 mode (otherwise
-- it is ignored). It may be used after a pragma Preelaborate, in
-- which case it overrides the effect of the pragma Preelaborate.
-- This is used to implement AI-362 which recategorizes some run-time
-- packages in Ada 2005 mode.
when Pragma_Pure_05 => Pure_05 : declare
Ent : Entity_Id;
begin
GNAT_Pragma;
Check_Valid_Library_Unit_Pragma;
if not GNAT_Mode then
Error_Pragma ("pragma% only available in GNAT mode");
end if;
if Nkind (N) = N_Null_Statement then
return;
end if;
-- This is one of the few cases where we need to test the value of
-- Ada_Version_Explicit rather than Ada_Version (which is always
-- set to Ada_2012 in a predefined unit), we need to know the
-- explicit version set to know if this pragma is active.
if Ada_Version_Explicit >= Ada_2005 then
Ent := Find_Lib_Unit_Name;
Set_Is_Preelaborated (Ent, False);
Set_Is_Pure (Ent);
Set_Suppress_Elaboration_Warnings (Ent);
end if;
end Pure_05;
-------------
-- Pure_12 --
-------------
-- pragma Pure_12 [(library_unit_NAME)];
-- This pragma is useable only in GNAT_Mode, where it is used like
-- pragma Pure but it is only effective in Ada 2012 mode (otherwise
-- it is ignored). It may be used after a pragma Preelaborate, in
-- which case it overrides the effect of the pragma Preelaborate.
-- This is used to implement AI05-0212 which recategorizes some
-- run-time packages in Ada 2012 mode.
when Pragma_Pure_12 => Pure_12 : declare
Ent : Entity_Id;
begin
GNAT_Pragma;
Check_Valid_Library_Unit_Pragma;
if not GNAT_Mode then
Error_Pragma ("pragma% only available in GNAT mode");
end if;
if Nkind (N) = N_Null_Statement then
return;
end if;
-- This is one of the few cases where we need to test the value of
-- Ada_Version_Explicit rather than Ada_Version (which is always
-- set to Ada_2012 in a predefined unit), we need to know the
-- explicit version set to know if this pragma is active.
if Ada_Version_Explicit >= Ada_2012 then
Ent := Find_Lib_Unit_Name;
Set_Is_Preelaborated (Ent, False);
Set_Is_Pure (Ent);
Set_Suppress_Elaboration_Warnings (Ent);
end if;
end Pure_12;
-------------------
-- Pure_Function --
-------------------
-- pragma Pure_Function ([Entity =>] function_LOCAL_NAME);
when Pragma_Pure_Function => Pure_Function : declare
E_Id : Node_Id;
E : Entity_Id;
Def_Id : Entity_Id;
Effective : Boolean := False;
begin
GNAT_Pragma;
Check_Arg_Count (1);
Check_Optional_Identifier (Arg1, Name_Entity);
Check_Arg_Is_Local_Name (Arg1);
E_Id := Get_Pragma_Arg (Arg1);
if Error_Posted (E_Id) then
return;
end if;
-- Loop through homonyms (overloadings) of referenced entity
E := Entity (E_Id);
if Present (E) then
loop
Def_Id := Get_Base_Subprogram (E);
if not Ekind_In (Def_Id, E_Function,
E_Generic_Function,
E_Operator)
then
Error_Pragma_Arg
("pragma% requires a function name", Arg1);
end if;
Set_Is_Pure (Def_Id);
if not Has_Pragma_Pure_Function (Def_Id) then
Set_Has_Pragma_Pure_Function (Def_Id);
Effective := True;
end if;
exit when From_Aspect_Specification (N);
E := Homonym (E);
exit when No (E) or else Scope (E) /= Current_Scope;
end loop;
if not Effective
and then Warn_On_Redundant_Constructs
then
Error_Msg_NE
("pragma Pure_Function on& is redundant?r?",
N, Entity (E_Id));
end if;
end if;
end Pure_Function;
--------------------
-- Queuing_Policy --
--------------------
-- pragma Queuing_Policy (policy_IDENTIFIER);
when Pragma_Queuing_Policy => declare
QP : Character;
begin
Check_Ada_83_Warning;
Check_Arg_Count (1);
Check_No_Identifiers;
Check_Arg_Is_Queuing_Policy (Arg1);
Check_Valid_Configuration_Pragma;
Get_Name_String (Chars (Get_Pragma_Arg (Arg1)));
QP := Fold_Upper (Name_Buffer (1));
if Queuing_Policy /= ' '
and then Queuing_Policy /= QP
then
Error_Msg_Sloc := Queuing_Policy_Sloc;
Error_Pragma ("queuing policy incompatible with policy#");
-- Set new policy, but always preserve System_Location since we
-- like the error message with the run time name.
else
Queuing_Policy := QP;
if Queuing_Policy_Sloc /= System_Location then
Queuing_Policy_Sloc := Loc;
end if;
end if;
end;
--------------
-- Rational --
--------------
-- pragma Rational, for compatibility with foreign compiler
when Pragma_Rational =>
Set_Rational_Profile;
-----------------------
-- Relative_Deadline --
-----------------------
-- pragma Relative_Deadline (time_span_EXPRESSION);
when Pragma_Relative_Deadline => Relative_Deadline : declare
P : constant Node_Id := Parent (N);
Arg : Node_Id;
begin
Ada_2005_Pragma;
Check_No_Identifiers;
Check_Arg_Count (1);
Arg := Get_Pragma_Arg (Arg1);
-- The expression must be analyzed in the special manner described
-- in "Handling of Default and Per-Object Expressions" in sem.ads.
Preanalyze_Spec_Expression (Arg, RTE (RE_Time_Span));
-- Subprogram case
if Nkind (P) = N_Subprogram_Body then
Check_In_Main_Program;
-- Only Task and subprogram cases allowed
elsif Nkind (P) /= N_Task_Definition then
Pragma_Misplaced;
end if;
-- Check duplicate pragma before we set the corresponding flag
if Has_Relative_Deadline_Pragma (P) then
Error_Pragma ("duplicate pragma% not allowed");
end if;
-- Set Has_Relative_Deadline_Pragma only for tasks. Note that
-- Relative_Deadline pragma node cannot be inserted in the Rep
-- Item chain of Ent since it is rewritten by the expander as a
-- procedure call statement that will break the chain.
Set_Has_Relative_Deadline_Pragma (P, True);
end Relative_Deadline;
------------------------
-- Remote_Access_Type --
------------------------
-- pragma Remote_Access_Type ([Entity =>] formal_type_LOCAL_NAME);
when Pragma_Remote_Access_Type => Remote_Access_Type : declare
E : Entity_Id;
begin
GNAT_Pragma;
Check_Arg_Count (1);
Check_Optional_Identifier (Arg1, Name_Entity);
Check_Arg_Is_Local_Name (Arg1);
E := Entity (Get_Pragma_Arg (Arg1));
if Nkind (Parent (E)) = N_Formal_Type_Declaration
and then Ekind (E) = E_General_Access_Type
and then Is_Class_Wide_Type (Directly_Designated_Type (E))
and then Scope (Root_Type (Directly_Designated_Type (E)))
= Scope (E)
and then Is_Valid_Remote_Object_Type
(Root_Type (Directly_Designated_Type (E)))
then
Set_Is_Remote_Types (E);
else
Error_Pragma_Arg
("pragma% applies only to formal access to classwide types",
Arg1);
end if;
end Remote_Access_Type;
---------------------------
-- Remote_Call_Interface --
---------------------------
-- pragma Remote_Call_Interface [(library_unit_NAME)];
when Pragma_Remote_Call_Interface => Remote_Call_Interface : declare
Cunit_Node : Node_Id;
Cunit_Ent : Entity_Id;
K : Node_Kind;
begin
Check_Ada_83_Warning;
Check_Valid_Library_Unit_Pragma;
if Nkind (N) = N_Null_Statement then
return;
end if;
Cunit_Node := Cunit (Current_Sem_Unit);
K := Nkind (Unit (Cunit_Node));
Cunit_Ent := Cunit_Entity (Current_Sem_Unit);
if K = N_Package_Declaration
or else K = N_Generic_Package_Declaration
or else K = N_Subprogram_Declaration
or else K = N_Generic_Subprogram_Declaration
or else (K = N_Subprogram_Body
and then Acts_As_Spec (Unit (Cunit_Node)))
then
null;
else
Error_Pragma (
"pragma% must apply to package or subprogram declaration");
end if;
Set_Is_Remote_Call_Interface (Cunit_Ent);
end Remote_Call_Interface;
------------------
-- Remote_Types --
------------------
-- pragma Remote_Types [(library_unit_NAME)];
when Pragma_Remote_Types => Remote_Types : declare
Cunit_Node : Node_Id;
Cunit_Ent : Entity_Id;
begin
Check_Ada_83_Warning;
Check_Valid_Library_Unit_Pragma;
if Nkind (N) = N_Null_Statement then
return;
end if;
Cunit_Node := Cunit (Current_Sem_Unit);
Cunit_Ent := Cunit_Entity (Current_Sem_Unit);
if not Nkind_In (Unit (Cunit_Node), N_Package_Declaration,
N_Generic_Package_Declaration)
then
Error_Pragma
("pragma% can only apply to a package declaration");
end if;
Set_Is_Remote_Types (Cunit_Ent);
end Remote_Types;
---------------
-- Ravenscar --
---------------
-- pragma Ravenscar;
when Pragma_Ravenscar =>
GNAT_Pragma;
Check_Arg_Count (0);
Check_Valid_Configuration_Pragma;
Set_Ravenscar_Profile (N);
if Warn_On_Obsolescent_Feature then
Error_Msg_N
("pragma Ravenscar is an obsolescent feature?j?", N);
Error_Msg_N
("|use pragma Profile (Ravenscar) instead?j?", N);
end if;
-------------------------
-- Restricted_Run_Time --
-------------------------
-- pragma Restricted_Run_Time;
when Pragma_Restricted_Run_Time =>
GNAT_Pragma;
Check_Arg_Count (0);
Check_Valid_Configuration_Pragma;
Set_Profile_Restrictions
(Restricted, N, Warn => Treat_Restrictions_As_Warnings);
if Warn_On_Obsolescent_Feature then
Error_Msg_N
("pragma Restricted_Run_Time is an obsolescent feature?j?",
N);
Error_Msg_N
("|use pragma Profile (Restricted) instead?j?", N);
end if;
------------------
-- Restrictions --
------------------
-- pragma Restrictions (RESTRICTION {, RESTRICTION});
-- RESTRICTION ::=
-- restriction_IDENTIFIER
-- | restriction_parameter_IDENTIFIER => EXPRESSION
when Pragma_Restrictions =>
Process_Restrictions_Or_Restriction_Warnings
(Warn => Treat_Restrictions_As_Warnings);
--------------------------
-- Restriction_Warnings --
--------------------------
-- pragma Restriction_Warnings (RESTRICTION {, RESTRICTION});
-- RESTRICTION ::=
-- restriction_IDENTIFIER
-- | restriction_parameter_IDENTIFIER => EXPRESSION
when Pragma_Restriction_Warnings =>
GNAT_Pragma;
Process_Restrictions_Or_Restriction_Warnings (Warn => True);
----------------
-- Reviewable --
----------------
-- pragma Reviewable;
when Pragma_Reviewable =>
Check_Ada_83_Warning;
Check_Arg_Count (0);
-- Call dummy debugging function rv. This is done to assist front
-- end debugging. By placing a Reviewable pragma in the source
-- program, a breakpoint on rv catches this place in the source,
-- allowing convenient stepping to the point of interest.
rv;
--------------------------
-- Short_Circuit_And_Or --
--------------------------
when Pragma_Short_Circuit_And_Or =>
GNAT_Pragma;
Check_Arg_Count (0);
Check_Valid_Configuration_Pragma;
Short_Circuit_And_Or := True;
-------------------
-- Share_Generic --
-------------------
-- pragma Share_Generic (NAME {, NAME});
when Pragma_Share_Generic =>
GNAT_Pragma;
Process_Generic_List;
------------
-- Shared --
------------
-- pragma Shared (LOCAL_NAME);
when Pragma_Shared =>
GNAT_Pragma;
Process_Atomic_Shared_Volatile;
--------------------
-- Shared_Passive --
--------------------
-- pragma Shared_Passive [(library_unit_NAME)];
-- Set the flag Is_Shared_Passive of program unit name entity
when Pragma_Shared_Passive => Shared_Passive : declare
Cunit_Node : Node_Id;
Cunit_Ent : Entity_Id;
begin
Check_Ada_83_Warning;
Check_Valid_Library_Unit_Pragma;
if Nkind (N) = N_Null_Statement then
return;
end if;
Cunit_Node := Cunit (Current_Sem_Unit);
Cunit_Ent := Cunit_Entity (Current_Sem_Unit);
if not Nkind_In (Unit (Cunit_Node), N_Package_Declaration,
N_Generic_Package_Declaration)
then
Error_Pragma
("pragma% can only apply to a package declaration");
end if;
Set_Is_Shared_Passive (Cunit_Ent);
end Shared_Passive;
-----------------------
-- Short_Descriptors --
-----------------------
-- pragma Short_Descriptors;
when Pragma_Short_Descriptors =>
GNAT_Pragma;
Check_Arg_Count (0);
Check_Valid_Configuration_Pragma;
Short_Descriptors := True;
------------------------------
-- Simple_Storage_Pool_Type --
------------------------------
-- pragma Simple_Storage_Pool_Type (type_LOCAL_NAME);
when Pragma_Simple_Storage_Pool_Type =>
Simple_Storage_Pool_Type : declare
Type_Id : Node_Id;
Typ : Entity_Id;
begin
GNAT_Pragma;
Check_Arg_Count (1);
Check_Arg_Is_Library_Level_Local_Name (Arg1);
Type_Id := Get_Pragma_Arg (Arg1);
Find_Type (Type_Id);
Typ := Entity (Type_Id);
if Typ = Any_Type then
return;
end if;
-- We require the pragma to apply to a type declared in a package
-- declaration, but not (immediately) within a package body.
if Ekind (Current_Scope) /= E_Package
or else In_Package_Body (Current_Scope)
then
Error_Pragma
("pragma% can only apply to type declared immediately " &
"within a package declaration");
end if;
-- A simple storage pool type must be an immutably limited record
-- or private type. If the pragma is given for a private type,
-- the full type is similarly restricted (which is checked later
-- in Freeze_Entity).
if Is_Record_Type (Typ)
and then not Is_Immutably_Limited_Type (Typ)
then
Error_Pragma
("pragma% can only apply to explicitly limited record type");
elsif Is_Private_Type (Typ) and then not Is_Limited_Type (Typ) then
Error_Pragma
("pragma% can only apply to a private type that is limited");
elsif not Is_Record_Type (Typ)
and then not Is_Private_Type (Typ)
then
Error_Pragma
("pragma% can only apply to limited record or private type");
end if;
Record_Rep_Item (Typ, N);
end Simple_Storage_Pool_Type;
----------------------
-- Source_File_Name --
----------------------
-- There are five forms for this pragma:
-- pragma Source_File_Name (
-- [UNIT_NAME =>] unit_NAME,
-- BODY_FILE_NAME => STRING_LITERAL
-- [, [INDEX =>] INTEGER_LITERAL]);
-- pragma Source_File_Name (
-- [UNIT_NAME =>] unit_NAME,
-- SPEC_FILE_NAME => STRING_LITERAL
-- [, [INDEX =>] INTEGER_LITERAL]);
-- pragma Source_File_Name (
-- BODY_FILE_NAME => STRING_LITERAL
-- [, DOT_REPLACEMENT => STRING_LITERAL]
-- [, CASING => CASING_SPEC]);
-- pragma Source_File_Name (
-- SPEC_FILE_NAME => STRING_LITERAL
-- [, DOT_REPLACEMENT => STRING_LITERAL]
-- [, CASING => CASING_SPEC]);
-- pragma Source_File_Name (
-- SUBUNIT_FILE_NAME => STRING_LITERAL
-- [, DOT_REPLACEMENT => STRING_LITERAL]
-- [, CASING => CASING_SPEC]);
-- CASING_SPEC ::= Uppercase | Lowercase | Mixedcase
-- Pragma Source_File_Name_Project (SFNP) is equivalent to pragma
-- Source_File_Name (SFN), however their usage is exclusive: SFN can
-- only be used when no project file is used, while SFNP can only be
-- used when a project file is used.
-- No processing here. Processing was completed during parsing, since
-- we need to have file names set as early as possible. Units are
-- loaded well before semantic processing starts.
-- The only processing we defer to this point is the check for
-- correct placement.
when Pragma_Source_File_Name =>
GNAT_Pragma;
Check_Valid_Configuration_Pragma;
------------------------------
-- Source_File_Name_Project --
------------------------------
-- See Source_File_Name for syntax
-- No processing here. Processing was completed during parsing, since
-- we need to have file names set as early as possible. Units are
-- loaded well before semantic processing starts.
-- The only processing we defer to this point is the check for
-- correct placement.
when Pragma_Source_File_Name_Project =>
GNAT_Pragma;
Check_Valid_Configuration_Pragma;
-- Check that a pragma Source_File_Name_Project is used only in a
-- configuration pragmas file.
-- Pragmas Source_File_Name_Project should only be generated by
-- the Project Manager in configuration pragmas files.
-- This is really an ugly test. It seems to depend on some
-- accidental and undocumented property. At the very least it
-- needs to be documented, but it would be better to have a
-- clean way of testing if we are in a configuration file???
if Present (Parent (N)) then
Error_Pragma
("pragma% can only appear in a configuration pragmas file");
end if;
----------------------
-- Source_Reference --
----------------------
-- pragma Source_Reference (INTEGER_LITERAL [, STRING_LITERAL]);
-- Nothing to do, all processing completed in Par.Prag, since we need
-- the information for possible parser messages that are output.
when Pragma_Source_Reference =>
GNAT_Pragma;
--------------------------------
-- Static_Elaboration_Desired --
--------------------------------
-- pragma Static_Elaboration_Desired (DIRECT_NAME);
when Pragma_Static_Elaboration_Desired =>
GNAT_Pragma;
Check_At_Most_N_Arguments (1);
if Is_Compilation_Unit (Current_Scope)
and then Ekind (Current_Scope) = E_Package
then
Set_Static_Elaboration_Desired (Current_Scope, True);
else
Error_Pragma ("pragma% must apply to a library-level package");
end if;
------------------
-- Storage_Size --
------------------
-- pragma Storage_Size (EXPRESSION);
when Pragma_Storage_Size => Storage_Size : declare
P : constant Node_Id := Parent (N);
Arg : Node_Id;
begin
Check_No_Identifiers;
Check_Arg_Count (1);
-- The expression must be analyzed in the special manner described
-- in "Handling of Default Expressions" in sem.ads.
Arg := Get_Pragma_Arg (Arg1);
Preanalyze_Spec_Expression (Arg, Any_Integer);
if not Is_Static_Expression (Arg) then
Check_Restriction (Static_Storage_Size, Arg);
end if;
if Nkind (P) /= N_Task_Definition then
Pragma_Misplaced;
return;
else
if Has_Storage_Size_Pragma (P) then
Error_Pragma ("duplicate pragma% not allowed");
else
Set_Has_Storage_Size_Pragma (P, True);
end if;
Record_Rep_Item (Defining_Identifier (Parent (P)), N);
end if;
end Storage_Size;
------------------
-- Storage_Unit --
------------------
-- pragma Storage_Unit (NUMERIC_LITERAL);
-- Only permitted argument is System'Storage_Unit value
when Pragma_Storage_Unit =>
Check_No_Identifiers;
Check_Arg_Count (1);
Check_Arg_Is_Integer_Literal (Arg1);
if Intval (Get_Pragma_Arg (Arg1)) /=
UI_From_Int (Ttypes.System_Storage_Unit)
then
Error_Msg_Uint_1 := UI_From_Int (Ttypes.System_Storage_Unit);
Error_Pragma_Arg
("the only allowed argument for pragma% is ^", Arg1);
end if;
--------------------
-- Stream_Convert --
--------------------
-- pragma Stream_Convert (
-- [Entity =>] type_LOCAL_NAME,
-- [Read =>] function_NAME,
-- [Write =>] function NAME);
when Pragma_Stream_Convert => Stream_Convert : declare
procedure Check_OK_Stream_Convert_Function (Arg : Node_Id);
-- Check that the given argument is the name of a local function
-- of one argument that is not overloaded earlier in the current
-- local scope. A check is also made that the argument is a
-- function with one parameter.
--------------------------------------
-- Check_OK_Stream_Convert_Function --
--------------------------------------
procedure Check_OK_Stream_Convert_Function (Arg : Node_Id) is
Ent : Entity_Id;
begin
Check_Arg_Is_Local_Name (Arg);
Ent := Entity (Get_Pragma_Arg (Arg));
if Has_Homonym (Ent) then
Error_Pragma_Arg
("argument for pragma% may not be overloaded", Arg);
end if;
if Ekind (Ent) /= E_Function
or else No (First_Formal (Ent))
or else Present (Next_Formal (First_Formal (Ent)))
then
Error_Pragma_Arg
("argument for pragma% must be" &
" function of one argument", Arg);
end if;
end Check_OK_Stream_Convert_Function;
-- Start of processing for Stream_Convert
begin
GNAT_Pragma;
Check_Arg_Order ((Name_Entity, Name_Read, Name_Write));
Check_Arg_Count (3);
Check_Optional_Identifier (Arg1, Name_Entity);
Check_Optional_Identifier (Arg2, Name_Read);
Check_Optional_Identifier (Arg3, Name_Write);
Check_Arg_Is_Local_Name (Arg1);
Check_OK_Stream_Convert_Function (Arg2);
Check_OK_Stream_Convert_Function (Arg3);
declare
Typ : constant Entity_Id :=
Underlying_Type (Entity (Get_Pragma_Arg (Arg1)));
Read : constant Entity_Id := Entity (Get_Pragma_Arg (Arg2));
Write : constant Entity_Id := Entity (Get_Pragma_Arg (Arg3));
begin
Check_First_Subtype (Arg1);
-- Check for too early or too late. Note that we don't enforce
-- the rule about primitive operations in this case, since, as
-- is the case for explicit stream attributes themselves, these
-- restrictions are not appropriate. Note that the chaining of
-- the pragma by Rep_Item_Too_Late is actually the critical
-- processing done for this pragma.
if Rep_Item_Too_Early (Typ, N)
or else
Rep_Item_Too_Late (Typ, N, FOnly => True)
then
return;
end if;
-- Return if previous error
if Etype (Typ) = Any_Type
or else
Etype (Read) = Any_Type
or else
Etype (Write) = Any_Type
then
return;
end if;
-- Error checks
if Underlying_Type (Etype (Read)) /= Typ then
Error_Pragma_Arg
("incorrect return type for function&", Arg2);
end if;
if Underlying_Type (Etype (First_Formal (Write))) /= Typ then
Error_Pragma_Arg
("incorrect parameter type for function&", Arg3);
end if;
if Underlying_Type (Etype (First_Formal (Read))) /=
Underlying_Type (Etype (Write))
then
Error_Pragma_Arg
("result type of & does not match Read parameter type",
Arg3);
end if;
end;
end Stream_Convert;
------------------
-- Style_Checks --
------------------
-- pragma Style_Checks (On | Off | ALL_CHECKS | STRING_LITERAL);
-- This is processed by the parser since some of the style checks
-- take place during source scanning and parsing. This means that
-- we don't need to issue error messages here.
when Pragma_Style_Checks => Style_Checks : declare
A : constant Node_Id := Get_Pragma_Arg (Arg1);
S : String_Id;
C : Char_Code;
begin
GNAT_Pragma;
Check_No_Identifiers;
-- Two argument form
if Arg_Count = 2 then
Check_Arg_Is_One_Of (Arg1, Name_On, Name_Off);
declare
E_Id : Node_Id;
E : Entity_Id;
begin
E_Id := Get_Pragma_Arg (Arg2);
Analyze (E_Id);
if not Is_Entity_Name (E_Id) then
Error_Pragma_Arg
("second argument of pragma% must be entity name",
Arg2);
end if;
E := Entity (E_Id);
if not Ignore_Style_Checks_Pragmas then
if E = Any_Id then
return;
else
loop
Set_Suppress_Style_Checks
(E, Chars (Get_Pragma_Arg (Arg1)) = Name_Off);
exit when No (Homonym (E));
E := Homonym (E);
end loop;
end if;
end if;
end;
-- One argument form
else
Check_Arg_Count (1);
if Nkind (A) = N_String_Literal then
S := Strval (A);
declare
Slen : constant Natural := Natural (String_Length (S));
Options : String (1 .. Slen);
J : Natural;
begin
J := 1;
loop
C := Get_String_Char (S, Int (J));
exit when not In_Character_Range (C);
Options (J) := Get_Character (C);
-- If at end of string, set options. As per discussion
-- above, no need to check for errors, since we issued
-- them in the parser.
if J = Slen then
if not Ignore_Style_Checks_Pragmas then
Set_Style_Check_Options (Options);
end if;
exit;
end if;
J := J + 1;
end loop;
end;
elsif Nkind (A) = N_Identifier then
if Chars (A) = Name_All_Checks then
if not Ignore_Style_Checks_Pragmas then
if GNAT_Mode then
Set_GNAT_Style_Check_Options;
else
Set_Default_Style_Check_Options;
end if;
end if;
elsif Chars (A) = Name_On then
if not Ignore_Style_Checks_Pragmas then
Style_Check := True;
end if;
elsif Chars (A) = Name_Off then
if not Ignore_Style_Checks_Pragmas then
Style_Check := False;
end if;
end if;
end if;
end if;
end Style_Checks;
--------------
-- Subtitle --
--------------
-- pragma Subtitle ([Subtitle =>] STRING_LITERAL);
when Pragma_Subtitle =>
GNAT_Pragma;
Check_Arg_Count (1);
Check_Optional_Identifier (Arg1, Name_Subtitle);
Check_Arg_Is_Static_Expression (Arg1, Standard_String);
Store_Note (N);
--------------
-- Suppress --
--------------
-- pragma Suppress (IDENTIFIER [, [On =>] NAME]);
when Pragma_Suppress =>
Process_Suppress_Unsuppress (True);
------------------
-- Suppress_All --
------------------
-- pragma Suppress_All;
-- The only check made here is that the pragma has no arguments.
-- There are no placement rules, and the processing required (setting
-- the Has_Pragma_Suppress_All flag in the compilation unit node was
-- taken care of by the parser). Process_Compilation_Unit_Pragmas
-- then creates and inserts a pragma Suppress (All_Checks).
when Pragma_Suppress_All =>
GNAT_Pragma;
Check_Arg_Count (0);
-------------------------
-- Suppress_Debug_Info --
-------------------------
-- pragma Suppress_Debug_Info ([Entity =>] LOCAL_NAME);
when Pragma_Suppress_Debug_Info =>
GNAT_Pragma;
Check_Arg_Count (1);
Check_Optional_Identifier (Arg1, Name_Entity);
Check_Arg_Is_Local_Name (Arg1);
Set_Debug_Info_Off (Entity (Get_Pragma_Arg (Arg1)));
----------------------------------
-- Suppress_Exception_Locations --
----------------------------------
-- pragma Suppress_Exception_Locations;
when Pragma_Suppress_Exception_Locations =>
GNAT_Pragma;
Check_Arg_Count (0);
Check_Valid_Configuration_Pragma;
Exception_Locations_Suppressed := True;
-----------------------------
-- Suppress_Initialization --
-----------------------------
-- pragma Suppress_Initialization ([Entity =>] type_Name);
when Pragma_Suppress_Initialization => Suppress_Init : declare
E_Id : Node_Id;
E : Entity_Id;
begin
GNAT_Pragma;
Check_Arg_Count (1);
Check_Optional_Identifier (Arg1, Name_Entity);
Check_Arg_Is_Local_Name (Arg1);
E_Id := Get_Pragma_Arg (Arg1);
if Etype (E_Id) = Any_Type then
return;
end if;
E := Entity (E_Id);
if not Is_Type (E) then
Error_Pragma_Arg ("pragma% requires type or subtype", Arg1);
end if;
if Rep_Item_Too_Early (E, N)
or else
Rep_Item_Too_Late (E, N, FOnly => True)
then
return;
end if;
-- For incomplete/private type, set flag on full view
if Is_Incomplete_Or_Private_Type (E) then
if No (Full_View (Base_Type (E))) then
Error_Pragma_Arg
("argument of pragma% cannot be an incomplete type", Arg1);
else
Set_Suppress_Initialization (Full_View (Base_Type (E)));
end if;
-- For first subtype, set flag on base type
elsif Is_First_Subtype (E) then
Set_Suppress_Initialization (Base_Type (E));
-- For other than first subtype, set flag on subtype itself
else
Set_Suppress_Initialization (E);
end if;
end Suppress_Init;
-----------------
-- System_Name --
-----------------
-- pragma System_Name (DIRECT_NAME);
-- Syntax check: one argument, which must be the identifier GNAT or
-- the identifier GCC, no other identifiers are acceptable.
when Pragma_System_Name =>
GNAT_Pragma;
Check_No_Identifiers;
Check_Arg_Count (1);
Check_Arg_Is_One_Of (Arg1, Name_Gcc, Name_Gnat);
-----------------------------
-- Task_Dispatching_Policy --
-----------------------------
-- pragma Task_Dispatching_Policy (policy_IDENTIFIER);
when Pragma_Task_Dispatching_Policy => declare
DP : Character;
begin
Check_Ada_83_Warning;
Check_Arg_Count (1);
Check_No_Identifiers;
Check_Arg_Is_Task_Dispatching_Policy (Arg1);
Check_Valid_Configuration_Pragma;
Get_Name_String (Chars (Get_Pragma_Arg (Arg1)));
DP := Fold_Upper (Name_Buffer (1));
if Task_Dispatching_Policy /= ' '
and then Task_Dispatching_Policy /= DP
then
Error_Msg_Sloc := Task_Dispatching_Policy_Sloc;
Error_Pragma
("task dispatching policy incompatible with policy#");
-- Set new policy, but always preserve System_Location since we
-- like the error message with the run time name.
else
Task_Dispatching_Policy := DP;
if Task_Dispatching_Policy_Sloc /= System_Location then
Task_Dispatching_Policy_Sloc := Loc;
end if;
end if;
end;
---------------
-- Task_Info --
---------------
-- pragma Task_Info (EXPRESSION);
when Pragma_Task_Info => Task_Info : declare
P : constant Node_Id := Parent (N);
Ent : Entity_Id;
begin
GNAT_Pragma;
if Nkind (P) /= N_Task_Definition then
Error_Pragma ("pragma% must appear in task definition");
end if;
Check_No_Identifiers;
Check_Arg_Count (1);
Analyze_And_Resolve
(Get_Pragma_Arg (Arg1), RTE (RE_Task_Info_Type));
if Etype (Get_Pragma_Arg (Arg1)) = Any_Type then
return;
end if;
Ent := Defining_Identifier (Parent (P));
-- Check duplicate pragma before we chain the pragma in the Rep
-- Item chain of Ent.
if Has_Rep_Pragma
(Ent, Name_Task_Info, Check_Parents => False)
then
Error_Pragma ("duplicate pragma% not allowed");
end if;
Record_Rep_Item (Ent, N);
end Task_Info;
---------------
-- Task_Name --
---------------
-- pragma Task_Name (string_EXPRESSION);
when Pragma_Task_Name => Task_Name : declare
P : constant Node_Id := Parent (N);
Arg : Node_Id;
Ent : Entity_Id;
begin
Check_No_Identifiers;
Check_Arg_Count (1);
Arg := Get_Pragma_Arg (Arg1);
-- The expression is used in the call to Create_Task, and must be
-- expanded there, not in the context of the current spec. It must
-- however be analyzed to capture global references, in case it
-- appears in a generic context.
Preanalyze_And_Resolve (Arg, Standard_String);
if Nkind (P) /= N_Task_Definition then
Pragma_Misplaced;
end if;
Ent := Defining_Identifier (Parent (P));
-- Check duplicate pragma before we chain the pragma in the Rep
-- Item chain of Ent.
if Has_Rep_Pragma
(Ent, Name_Task_Name, Check_Parents => False)
then
Error_Pragma ("duplicate pragma% not allowed");
end if;
Record_Rep_Item (Ent, N);
end Task_Name;
------------------
-- Task_Storage --
------------------
-- pragma Task_Storage (
-- [Task_Type =>] LOCAL_NAME,
-- [Top_Guard =>] static_integer_EXPRESSION);
when Pragma_Task_Storage => Task_Storage : declare
Args : Args_List (1 .. 2);
Names : constant Name_List (1 .. 2) := (
Name_Task_Type,
Name_Top_Guard);
Task_Type : Node_Id renames Args (1);
Top_Guard : Node_Id renames Args (2);
Ent : Entity_Id;
begin
GNAT_Pragma;
Gather_Associations (Names, Args);
if No (Task_Type) then
Error_Pragma
("missing task_type argument for pragma%");
end if;
Check_Arg_Is_Local_Name (Task_Type);
Ent := Entity (Task_Type);
if not Is_Task_Type (Ent) then
Error_Pragma_Arg
("argument for pragma% must be task type", Task_Type);
end if;
if No (Top_Guard) then
Error_Pragma_Arg
("pragma% takes two arguments", Task_Type);
else
Check_Arg_Is_Static_Expression (Top_Guard, Any_Integer);
end if;
Check_First_Subtype (Task_Type);
if Rep_Item_Too_Late (Ent, N) then
raise Pragma_Exit;
end if;
end Task_Storage;
---------------
-- Test_Case --
---------------
-- pragma Test_Case
-- ([Name =>] Static_String_EXPRESSION
-- ,[Mode =>] MODE_TYPE
-- [, Requires => Boolean_EXPRESSION]
-- [, Ensures => Boolean_EXPRESSION]);
-- MODE_TYPE ::= Nominal | Robustness
when Pragma_Test_Case =>
Check_Contract_Or_Test_Case;
--------------------------
-- Thread_Local_Storage --
--------------------------
-- pragma Thread_Local_Storage ([Entity =>] LOCAL_NAME);
when Pragma_Thread_Local_Storage => Thread_Local_Storage : declare
Id : Node_Id;
E : Entity_Id;
begin
GNAT_Pragma;
Check_Arg_Count (1);
Check_Optional_Identifier (Arg1, Name_Entity);
Check_Arg_Is_Library_Level_Local_Name (Arg1);
Id := Get_Pragma_Arg (Arg1);
Analyze (Id);
if not Is_Entity_Name (Id)
or else Ekind (Entity (Id)) /= E_Variable
then
Error_Pragma_Arg ("local variable name required", Arg1);
end if;
E := Entity (Id);
if Rep_Item_Too_Early (E, N)
or else Rep_Item_Too_Late (E, N)
then
raise Pragma_Exit;
end if;
Set_Has_Pragma_Thread_Local_Storage (E);
Set_Has_Gigi_Rep_Item (E);
end Thread_Local_Storage;
----------------
-- Time_Slice --
----------------
-- pragma Time_Slice (static_duration_EXPRESSION);
when Pragma_Time_Slice => Time_Slice : declare
Val : Ureal;
Nod : Node_Id;
begin
GNAT_Pragma;
Check_Arg_Count (1);
Check_No_Identifiers;
Check_In_Main_Program;
Check_Arg_Is_Static_Expression (Arg1, Standard_Duration);
if not Error_Posted (Arg1) then
Nod := Next (N);
while Present (Nod) loop
if Nkind (Nod) = N_Pragma
and then Pragma_Name (Nod) = Name_Time_Slice
then
Error_Msg_Name_1 := Pname;
Error_Msg_N ("duplicate pragma% not permitted", Nod);
end if;
Next (Nod);
end loop;
end if;
-- Process only if in main unit
if Get_Source_Unit (Loc) = Main_Unit then
Opt.Time_Slice_Set := True;
Val := Expr_Value_R (Get_Pragma_Arg (Arg1));
if Val <= Ureal_0 then
Opt.Time_Slice_Value := 0;
elsif Val > UR_From_Uint (UI_From_Int (1000)) then
Opt.Time_Slice_Value := 1_000_000_000;
else
Opt.Time_Slice_Value :=
UI_To_Int (UR_To_Uint (Val * UI_From_Int (1_000_000)));
end if;
end if;
end Time_Slice;
-----------
-- Title --
-----------
-- pragma Title (TITLING_OPTION [, TITLING OPTION]);
-- TITLING_OPTION ::=
-- [Title =>] STRING_LITERAL
-- | [Subtitle =>] STRING_LITERAL
when Pragma_Title => Title : declare
Args : Args_List (1 .. 2);
Names : constant Name_List (1 .. 2) := (
Name_Title,
Name_Subtitle);
begin
GNAT_Pragma;
Gather_Associations (Names, Args);
Store_Note (N);
for J in 1 .. 2 loop
if Present (Args (J)) then
Check_Arg_Is_Static_Expression (Args (J), Standard_String);
end if;
end loop;
end Title;
---------------------
-- Unchecked_Union --
---------------------
-- pragma Unchecked_Union (first_subtype_LOCAL_NAME)
when Pragma_Unchecked_Union => Unchecked_Union : declare
Assoc : constant Node_Id := Arg1;
Type_Id : constant Node_Id := Get_Pragma_Arg (Assoc);
Typ : Entity_Id;
Tdef : Node_Id;
Clist : Node_Id;
Vpart : Node_Id;
Comp : Node_Id;
Variant : Node_Id;
begin
Ada_2005_Pragma;
Check_No_Identifiers;
Check_Arg_Count (1);
Check_Arg_Is_Local_Name (Arg1);
Find_Type (Type_Id);
Typ := Entity (Type_Id);
if Typ = Any_Type
or else Rep_Item_Too_Early (Typ, N)
then
return;
else
Typ := Underlying_Type (Typ);
end if;
if Rep_Item_Too_Late (Typ, N) then
return;
end if;
Check_First_Subtype (Arg1);
-- Note remaining cases are references to a type in the current
-- declarative part. If we find an error, we post the error on
-- the relevant type declaration at an appropriate point.
if not Is_Record_Type (Typ) then
Error_Msg_N ("unchecked union must be record type", Typ);
return;
elsif Is_Tagged_Type (Typ) then
Error_Msg_N ("unchecked union must not be tagged", Typ);
return;
elsif not Has_Discriminants (Typ) then
Error_Msg_N
("unchecked union must have one discriminant", Typ);
return;
-- Note: in previous versions of GNAT we used to check for limited
-- types and give an error, but in fact the standard does allow
-- Unchecked_Union on limited types, so this check was removed.
-- Similarly, GNAT used to require that all discriminants have
-- default values, but this is not mandated by the RM.
-- Proceed with basic error checks completed
else
Tdef := Type_Definition (Declaration_Node (Typ));
Clist := Component_List (Tdef);
-- Check presence of component list and variant part
if No (Clist) or else No (Variant_Part (Clist)) then
Error_Msg_N
("unchecked union must have variant part", Tdef);
return;
end if;
-- Check components
Comp := First (Component_Items (Clist));
while Present (Comp) loop
Check_Component (Comp, Typ);
Next (Comp);
end loop;
-- Check variant part
Vpart := Variant_Part (Clist);
Variant := First (Variants (Vpart));
while Present (Variant) loop
Check_Variant (Variant, Typ);
Next (Variant);
end loop;
end if;
Set_Is_Unchecked_Union (Typ);
Set_Convention (Typ, Convention_C);
Set_Has_Unchecked_Union (Base_Type (Typ));
Set_Is_Unchecked_Union (Base_Type (Typ));
end Unchecked_Union;
------------------------
-- Unimplemented_Unit --
------------------------
-- pragma Unimplemented_Unit;
-- Note: this only gives an error if we are generating code, or if
-- we are in a generic library unit (where the pragma appears in the
-- body, not in the spec).
when Pragma_Unimplemented_Unit => Unimplemented_Unit : declare
Cunitent : constant Entity_Id :=
Cunit_Entity (Get_Source_Unit (Loc));
Ent_Kind : constant Entity_Kind :=
Ekind (Cunitent);
begin
GNAT_Pragma;
Check_Arg_Count (0);
if Operating_Mode = Generate_Code
or else Ent_Kind = E_Generic_Function
or else Ent_Kind = E_Generic_Procedure
or else Ent_Kind = E_Generic_Package
then
Get_Name_String (Chars (Cunitent));
Set_Casing (Mixed_Case);
Write_Str (Name_Buffer (1 .. Name_Len));
Write_Str (" is not supported in this configuration");
Write_Eol;
raise Unrecoverable_Error;
end if;
end Unimplemented_Unit;
------------------------
-- Universal_Aliasing --
------------------------
-- pragma Universal_Aliasing [([Entity =>] type_LOCAL_NAME)];
when Pragma_Universal_Aliasing => Universal_Alias : declare
E_Id : Entity_Id;
begin
GNAT_Pragma;
Check_Arg_Count (1);
Check_Optional_Identifier (Arg2, Name_Entity);
Check_Arg_Is_Local_Name (Arg1);
E_Id := Entity (Get_Pragma_Arg (Arg1));
if E_Id = Any_Type then
return;
elsif No (E_Id) or else not Is_Type (E_Id) then
Error_Pragma_Arg ("pragma% requires type", Arg1);
end if;
Set_Universal_Aliasing (Implementation_Base_Type (E_Id));
Record_Rep_Item (E_Id, N);
end Universal_Alias;
--------------------
-- Universal_Data --
--------------------
-- pragma Universal_Data [(library_unit_NAME)];
when Pragma_Universal_Data =>
GNAT_Pragma;
-- If this is a configuration pragma, then set the universal
-- addressing option, otherwise confirm that the pragma satisfies
-- the requirements of library unit pragma placement and leave it
-- to the GNAAMP back end to detect the pragma (avoids transitive
-- setting of the option due to withed units).
if Is_Configuration_Pragma then
Universal_Addressing_On_AAMP := True;
else
Check_Valid_Library_Unit_Pragma;
end if;
if not AAMP_On_Target then
Error_Pragma ("??pragma% ignored (applies only to AAMP)");
end if;
----------------
-- Unmodified --
----------------
-- pragma Unmodified (local_Name {, local_Name});
when Pragma_Unmodified => Unmodified : declare
Arg_Node : Node_Id;
Arg_Expr : Node_Id;
Arg_Ent : Entity_Id;
begin
GNAT_Pragma;
Check_At_Least_N_Arguments (1);
-- Loop through arguments
Arg_Node := Arg1;
while Present (Arg_Node) loop
Check_No_Identifier (Arg_Node);
-- Note: the analyze call done by Check_Arg_Is_Local_Name will
-- in fact generate reference, so that the entity will have a
-- reference, which will inhibit any warnings about it not
-- being referenced, and also properly show up in the ali file
-- as a reference. But this reference is recorded before the
-- Has_Pragma_Unreferenced flag is set, so that no warning is
-- generated for this reference.
Check_Arg_Is_Local_Name (Arg_Node);
Arg_Expr := Get_Pragma_Arg (Arg_Node);
if Is_Entity_Name (Arg_Expr) then
Arg_Ent := Entity (Arg_Expr);
if not Is_Assignable (Arg_Ent) then
Error_Pragma_Arg
("pragma% can only be applied to a variable",
Arg_Expr);
else
Set_Has_Pragma_Unmodified (Arg_Ent);
end if;
end if;
Next (Arg_Node);
end loop;
end Unmodified;
------------------
-- Unreferenced --
------------------
-- pragma Unreferenced (local_Name {, local_Name});
-- or when used in a context clause:
-- pragma Unreferenced (library_unit_NAME {, library_unit_NAME}
when Pragma_Unreferenced => Unreferenced : declare
Arg_Node : Node_Id;
Arg_Expr : Node_Id;
Arg_Ent : Entity_Id;
Citem : Node_Id;
begin
GNAT_Pragma;
Check_At_Least_N_Arguments (1);
-- Check case of appearing within context clause
if Is_In_Context_Clause then
-- The arguments must all be units mentioned in a with clause
-- in the same context clause. Note we already checked (in
-- Par.Prag) that the arguments are either identifiers or
-- selected components.
Arg_Node := Arg1;
while Present (Arg_Node) loop
Citem := First (List_Containing (N));
while Citem /= N loop
if Nkind (Citem) = N_With_Clause
and then
Same_Name (Name (Citem), Get_Pragma_Arg (Arg_Node))
then
Set_Has_Pragma_Unreferenced
(Cunit_Entity
(Get_Source_Unit
(Library_Unit (Citem))));
Set_Unit_Name
(Get_Pragma_Arg (Arg_Node), Name (Citem));
exit;
end if;
Next (Citem);
end loop;
if Citem = N then
Error_Pragma_Arg
("argument of pragma% is not withed unit", Arg_Node);
end if;
Next (Arg_Node);
end loop;
-- Case of not in list of context items
else
Arg_Node := Arg1;
while Present (Arg_Node) loop
Check_No_Identifier (Arg_Node);
-- Note: the analyze call done by Check_Arg_Is_Local_Name
-- will in fact generate reference, so that the entity will
-- have a reference, which will inhibit any warnings about
-- it not being referenced, and also properly show up in the
-- ali file as a reference. But this reference is recorded
-- before the Has_Pragma_Unreferenced flag is set, so that
-- no warning is generated for this reference.
Check_Arg_Is_Local_Name (Arg_Node);
Arg_Expr := Get_Pragma_Arg (Arg_Node);
if Is_Entity_Name (Arg_Expr) then
Arg_Ent := Entity (Arg_Expr);
-- If the entity is overloaded, the pragma applies to the
-- most recent overloading, as documented. In this case,
-- name resolution does not generate a reference, so it
-- must be done here explicitly.
if Is_Overloaded (Arg_Expr) then
Generate_Reference (Arg_Ent, N);
end if;
Set_Has_Pragma_Unreferenced (Arg_Ent);
end if;
Next (Arg_Node);
end loop;
end if;
end Unreferenced;
--------------------------
-- Unreferenced_Objects --
--------------------------
-- pragma Unreferenced_Objects (local_Name {, local_Name});
when Pragma_Unreferenced_Objects => Unreferenced_Objects : declare
Arg_Node : Node_Id;
Arg_Expr : Node_Id;
begin
GNAT_Pragma;
Check_At_Least_N_Arguments (1);
Arg_Node := Arg1;
while Present (Arg_Node) loop
Check_No_Identifier (Arg_Node);
Check_Arg_Is_Local_Name (Arg_Node);
Arg_Expr := Get_Pragma_Arg (Arg_Node);
if not Is_Entity_Name (Arg_Expr)
or else not Is_Type (Entity (Arg_Expr))
then
Error_Pragma_Arg
("argument for pragma% must be type or subtype", Arg_Node);
end if;
Set_Has_Pragma_Unreferenced_Objects (Entity (Arg_Expr));
Next (Arg_Node);
end loop;
end Unreferenced_Objects;
------------------------------
-- Unreserve_All_Interrupts --
------------------------------
-- pragma Unreserve_All_Interrupts;
when Pragma_Unreserve_All_Interrupts =>
GNAT_Pragma;
Check_Arg_Count (0);
if In_Extended_Main_Code_Unit (Main_Unit_Entity) then
Unreserve_All_Interrupts := True;
end if;
----------------
-- Unsuppress --
----------------
-- pragma Unsuppress (IDENTIFIER [, [On =>] NAME]);
when Pragma_Unsuppress =>
Ada_2005_Pragma;
Process_Suppress_Unsuppress (False);
-------------------
-- Use_VADS_Size --
-------------------
-- pragma Use_VADS_Size;
when Pragma_Use_VADS_Size =>
GNAT_Pragma;
Check_Arg_Count (0);
Check_Valid_Configuration_Pragma;
Use_VADS_Size := True;
---------------------
-- Validity_Checks --
---------------------
-- pragma Validity_Checks (On | Off | ALL_CHECKS | STRING_LITERAL);
when Pragma_Validity_Checks => Validity_Checks : declare
A : constant Node_Id := Get_Pragma_Arg (Arg1);
S : String_Id;
C : Char_Code;
begin
GNAT_Pragma;
Check_Arg_Count (1);
Check_No_Identifiers;
if Nkind (A) = N_String_Literal then
S := Strval (A);
declare
Slen : constant Natural := Natural (String_Length (S));
Options : String (1 .. Slen);
J : Natural;
begin
J := 1;
loop
C := Get_String_Char (S, Int (J));
exit when not In_Character_Range (C);
Options (J) := Get_Character (C);
if J = Slen then
Set_Validity_Check_Options (Options);
exit;
else
J := J + 1;
end if;
end loop;
end;
elsif Nkind (A) = N_Identifier then
if Chars (A) = Name_All_Checks then
Set_Validity_Check_Options ("a");
elsif Chars (A) = Name_On then
Validity_Checks_On := True;
elsif Chars (A) = Name_Off then
Validity_Checks_On := False;
end if;
end if;
end Validity_Checks;
--------------
-- Volatile --
--------------
-- pragma Volatile (LOCAL_NAME);
when Pragma_Volatile =>
Process_Atomic_Shared_Volatile;
-------------------------
-- Volatile_Components --
-------------------------
-- pragma Volatile_Components (array_LOCAL_NAME);
-- Volatile is handled by the same circuit as Atomic_Components
--------------
-- Warnings --
--------------
-- pragma Warnings (On | Off);
-- pragma Warnings (On | Off, LOCAL_NAME);
-- pragma Warnings (static_string_EXPRESSION);
-- pragma Warnings (On | Off, STRING_LITERAL);
when Pragma_Warnings => Warnings : begin
GNAT_Pragma;
Check_At_Least_N_Arguments (1);
Check_No_Identifiers;
-- If debug flag -gnatd.i is set, pragma is ignored
if Debug_Flag_Dot_I then
return;
end if;
-- Process various forms of the pragma
declare
Argx : constant Node_Id := Get_Pragma_Arg (Arg1);
begin
-- One argument case
if Arg_Count = 1 then
-- On/Off one argument case was processed by parser
if Nkind (Argx) = N_Identifier
and then
(Chars (Argx) = Name_On
or else
Chars (Argx) = Name_Off)
then
null;
-- One argument case must be ON/OFF or static string expr
elsif not Is_Static_String_Expression (Arg1) then
Error_Pragma_Arg
("argument of pragma% must be On/Off or " &
"static string expression", Arg1);
-- One argument string expression case
else
declare
Lit : constant Node_Id := Expr_Value_S (Argx);
Str : constant String_Id := Strval (Lit);
Len : constant Nat := String_Length (Str);
C : Char_Code;
J : Nat;
OK : Boolean;
Chr : Character;
begin
J := 1;
while J <= Len loop
C := Get_String_Char (Str, J);
OK := In_Character_Range (C);
if OK then
Chr := Get_Character (C);
-- Dash case: only -Wxxx is accepted
if J = 1
and then J < Len
and then Chr = '-'
then
J := J + 1;
C := Get_String_Char (Str, J);
Chr := Get_Character (C);
exit when Chr = 'W';
OK := False;
-- Dot case
elsif J < Len and then Chr = '.' then
J := J + 1;
C := Get_String_Char (Str, J);
Chr := Get_Character (C);
if not Set_Dot_Warning_Switch (Chr) then
Error_Pragma_Arg
("invalid warning switch character " &
'.' & Chr, Arg1);
end if;
-- Non-Dot case
else
OK := Set_Warning_Switch (Chr);
end if;
end if;
if not OK then
Error_Pragma_Arg
("invalid warning switch character " & Chr,
Arg1);
end if;
J := J + 1;
end loop;
end;
end if;
-- Two or more arguments (must be two)
else
Check_Arg_Is_One_Of (Arg1, Name_On, Name_Off);
Check_At_Most_N_Arguments (2);
declare
E_Id : Node_Id;
E : Entity_Id;
Err : Boolean;
begin
E_Id := Get_Pragma_Arg (Arg2);
Analyze (E_Id);
-- In the expansion of an inlined body, a reference to
-- the formal may be wrapped in a conversion if the
-- actual is a conversion. Retrieve the real entity name.
if (In_Instance_Body or In_Inlined_Body)
and then Nkind (E_Id) = N_Unchecked_Type_Conversion
then
E_Id := Expression (E_Id);
end if;
-- Entity name case
if Is_Entity_Name (E_Id) then
E := Entity (E_Id);
if E = Any_Id then
return;
else
loop
Set_Warnings_Off
(E, (Chars (Get_Pragma_Arg (Arg1)) =
Name_Off));
-- For OFF case, make entry in warnings off
-- pragma table for later processing. But we do
-- not do that within an instance, since these
-- warnings are about what is needed in the
-- template, not an instance of it.
if Chars (Get_Pragma_Arg (Arg1)) = Name_Off
and then Warn_On_Warnings_Off
and then not In_Instance
then
Warnings_Off_Pragmas.Append ((N, E));
end if;
if Is_Enumeration_Type (E) then
declare
Lit : Entity_Id;
begin
Lit := First_Literal (E);
while Present (Lit) loop
Set_Warnings_Off (Lit);
Next_Literal (Lit);
end loop;
end;
end if;
exit when No (Homonym (E));
E := Homonym (E);
end loop;
end if;
-- Error if not entity or static string literal case
elsif not Is_Static_String_Expression (Arg2) then
Error_Pragma_Arg
("second argument of pragma% must be entity " &
"name or static string expression", Arg2);
-- String literal case
else
String_To_Name_Buffer
(Strval (Expr_Value_S (Get_Pragma_Arg (Arg2))));
-- Note on configuration pragma case: If this is a
-- configuration pragma, then for an OFF pragma, we
-- just set Config True in the call, which is all
-- that needs to be done. For the case of ON, this
-- is normally an error, unless it is canceling the
-- effect of a previous OFF pragma in the same file.
-- In any other case, an error will be signalled (ON
-- with no matching OFF).
-- Note: We set Used if we are inside a generic to
-- disable the test that the non-config case actually
-- cancels a warning. That's because we can't be sure
-- there isn't an instantiation in some other unit
-- where a warning is suppressed.
-- We could do a little better here by checking if the
-- generic unit we are inside is public, but for now
-- we don't bother with that refinement.
if Chars (Argx) = Name_Off then
Set_Specific_Warning_Off
(Loc, Name_Buffer (1 .. Name_Len),
Config => Is_Configuration_Pragma,
Used => Inside_A_Generic or else In_Instance);
elsif Chars (Argx) = Name_On then
Set_Specific_Warning_On
(Loc, Name_Buffer (1 .. Name_Len), Err);
if Err then
Error_Msg
("??pragma Warnings On with no " &
"matching Warnings Off",
Loc);
end if;
end if;
end if;
end;
end if;
end;
end Warnings;
-------------------
-- Weak_External --
-------------------
-- pragma Weak_External ([Entity =>] LOCAL_NAME);
when Pragma_Weak_External => Weak_External : declare
Ent : Entity_Id;
begin
GNAT_Pragma;
Check_Arg_Count (1);
Check_Optional_Identifier (Arg1, Name_Entity);
Check_Arg_Is_Library_Level_Local_Name (Arg1);
Ent := Entity (Get_Pragma_Arg (Arg1));
if Rep_Item_Too_Early (Ent, N) then
return;
else
Ent := Underlying_Type (Ent);
end if;
-- The only processing required is to link this item on to the
-- list of rep items for the given entity. This is accomplished
-- by the call to Rep_Item_Too_Late (when no error is detected
-- and False is returned).
if Rep_Item_Too_Late (Ent, N) then
return;
else
Set_Has_Gigi_Rep_Item (Ent);
end if;
end Weak_External;
-----------------------------
-- Wide_Character_Encoding --
-----------------------------
-- pragma Wide_Character_Encoding (IDENTIFIER);
when Pragma_Wide_Character_Encoding =>
GNAT_Pragma;
-- Nothing to do, handled in parser. Note that we do not enforce
-- configuration pragma placement, this pragma can appear at any
-- place in the source, allowing mixed encodings within a single
-- source program.
null;
--------------------
-- Unknown_Pragma --
--------------------
-- Should be impossible, since the case of an unknown pragma is
-- separately processed before the case statement is entered.
when Unknown_Pragma =>
raise Program_Error;
end case;
-- AI05-0144: detect dangerous order dependence. Disabled for now,
-- until AI is formally approved.
-- Check_Order_Dependence;
exception
when Pragma_Exit => null;
end Analyze_Pragma;
--------------------
-- Check_Disabled --
--------------------
function Check_Disabled (Nam : Name_Id) return Boolean is
PP : Node_Id;
begin
-- Loop through entries in check policy list
PP := Opt.Check_Policy_List;
loop
-- If there are no specific entries that matched, then nothing is
-- disabled, so return False.
if No (PP) then
return False;
-- Here we have an entry see if it matches
else
declare
PPA : constant List_Id := Pragma_Argument_Associations (PP);
begin
if Nam = Chars (Get_Pragma_Arg (First (PPA))) then
return Chars (Get_Pragma_Arg (Last (PPA))) = Name_Disable;
else
PP := Next_Pragma (PP);
end if;
end;
end if;
end loop;
end Check_Disabled;
-------------------
-- Check_Enabled --
-------------------
function Check_Enabled (Nam : Name_Id) return Boolean is
PP : Node_Id;
begin
-- Loop through entries in check policy list
PP := Opt.Check_Policy_List;
loop
-- If there are no specific entries that matched, then we let the
-- setting of assertions govern. Note that this provides the needed
-- compatibility with the RM for the cases of assertion, invariant,
-- precondition, predicate, and postcondition.
if No (PP) then
return Assertions_Enabled;
-- Here we have an entry see if it matches
else
declare
PPA : constant List_Id := Pragma_Argument_Associations (PP);
begin
if Nam = Chars (Get_Pragma_Arg (First (PPA))) then
case (Chars (Get_Pragma_Arg (Last (PPA)))) is
when Name_On | Name_Check =>
return True;
when Name_Off | Name_Ignore =>
return False;
when others =>
raise Program_Error;
end case;
else
PP := Next_Pragma (PP);
end if;
end;
end if;
end loop;
end Check_Enabled;
---------------------------------
-- Delay_Config_Pragma_Analyze --
---------------------------------
function Delay_Config_Pragma_Analyze (N : Node_Id) return Boolean is
begin
return Pragma_Name (N) = Name_Interrupt_State
or else
Pragma_Name (N) = Name_Priority_Specific_Dispatching;
end Delay_Config_Pragma_Analyze;
-------------------------
-- Get_Base_Subprogram --
-------------------------
function Get_Base_Subprogram (Def_Id : Entity_Id) return Entity_Id is
Result : Entity_Id;
begin
-- Follow subprogram renaming chain
Result := Def_Id;
if Is_Subprogram (Result)
and then
Nkind (Parent (Declaration_Node (Result))) =
N_Subprogram_Renaming_Declaration
and then Present (Alias (Result))
then
Result := Alias (Result);
end if;
return Result;
end Get_Base_Subprogram;
----------------
-- Initialize --
----------------
procedure Initialize is
begin
Externals.Init;
end Initialize;
-----------------------------
-- Is_Config_Static_String --
-----------------------------
function Is_Config_Static_String (Arg : Node_Id) return Boolean is
function Add_Config_Static_String (Arg : Node_Id) return Boolean;
-- This is an internal recursive function that is just like the outer
-- function except that it adds the string to the name buffer rather
-- than placing the string in the name buffer.
------------------------------
-- Add_Config_Static_String --
------------------------------
function Add_Config_Static_String (Arg : Node_Id) return Boolean is
N : Node_Id;
C : Char_Code;
begin
N := Arg;
if Nkind (N) = N_Op_Concat then
if Add_Config_Static_String (Left_Opnd (N)) then
N := Right_Opnd (N);
else
return False;
end if;
end if;
if Nkind (N) /= N_String_Literal then
Error_Msg_N ("string literal expected for pragma argument", N);
return False;
else
for J in 1 .. String_Length (Strval (N)) loop
C := Get_String_Char (Strval (N), J);
if not In_Character_Range (C) then
Error_Msg
("string literal contains invalid wide character",
Sloc (N) + 1 + Source_Ptr (J));
return False;
end if;
Add_Char_To_Name_Buffer (Get_Character (C));
end loop;
end if;
return True;
end Add_Config_Static_String;
-- Start of processing for Is_Config_Static_String
begin
Name_Len := 0;
return Add_Config_Static_String (Arg);
end Is_Config_Static_String;
-----------------------------------------
-- Is_Non_Significant_Pragma_Reference --
-----------------------------------------
-- This function makes use of the following static table which indicates
-- whether appearance of some name in a given pragma is to be considered
-- as a reference for the purposes of warnings about unreferenced objects.
-- -1 indicates that references in any argument position are significant
-- 0 indicates that appearance in any argument is not significant
-- +n indicates that appearance as argument n is significant, but all
-- other arguments are not significant
-- 99 special processing required (e.g. for pragma Check)
Sig_Flags : constant array (Pragma_Id) of Int :=
(Pragma_AST_Entry => -1,
Pragma_Abort_Defer => -1,
Pragma_Abstract_State => -1,
Pragma_Ada_83 => -1,
Pragma_Ada_95 => -1,
Pragma_Ada_05 => -1,
Pragma_Ada_2005 => -1,
Pragma_Ada_12 => -1,
Pragma_Ada_2012 => -1,
Pragma_All_Calls_Remote => -1,
Pragma_Annotate => -1,
Pragma_Assert => -1,
Pragma_Assert_And_Cut => -1,
Pragma_Assertion_Policy => 0,
Pragma_Assume => 0,
Pragma_Assume_No_Invalid_Values => 0,
Pragma_Attribute_Definition => +3,
Pragma_Asynchronous => -1,
Pragma_Atomic => 0,
Pragma_Atomic_Components => 0,
Pragma_Attach_Handler => -1,
Pragma_Check => 99,
Pragma_Check_Float_Overflow => 0,
Pragma_Check_Name => 0,
Pragma_Check_Policy => 0,
Pragma_CIL_Constructor => -1,
Pragma_CPP_Class => 0,
Pragma_CPP_Constructor => 0,
Pragma_CPP_Virtual => 0,
Pragma_CPP_Vtable => 0,
Pragma_CPU => -1,
Pragma_C_Pass_By_Copy => 0,
Pragma_Comment => 0,
Pragma_Common_Object => -1,
Pragma_Compile_Time_Error => -1,
Pragma_Compile_Time_Warning => -1,
Pragma_Compiler_Unit => 0,
Pragma_Complete_Representation => 0,
Pragma_Complex_Representation => 0,
Pragma_Component_Alignment => -1,
Pragma_Contract_Case => -1,
Pragma_Contract_Cases => -1,
Pragma_Controlled => 0,
Pragma_Convention => 0,
Pragma_Convention_Identifier => 0,
Pragma_Debug => -1,
Pragma_Debug_Policy => 0,
Pragma_Detect_Blocking => -1,
Pragma_Default_Storage_Pool => -1,
Pragma_Disable_Atomic_Synchronization => -1,
Pragma_Discard_Names => 0,
Pragma_Dispatching_Domain => -1,
Pragma_Elaborate => -1,
Pragma_Elaborate_All => -1,
Pragma_Elaborate_Body => -1,
Pragma_Elaboration_Checks => -1,
Pragma_Eliminate => -1,
Pragma_Enable_Atomic_Synchronization => -1,
Pragma_Export => -1,
Pragma_Export_Exception => -1,
Pragma_Export_Function => -1,
Pragma_Export_Object => -1,
Pragma_Export_Procedure => -1,
Pragma_Export_Value => -1,
Pragma_Export_Valued_Procedure => -1,
Pragma_Extend_System => -1,
Pragma_Extensions_Allowed => -1,
Pragma_External => -1,
Pragma_Favor_Top_Level => -1,
Pragma_External_Name_Casing => -1,
Pragma_Fast_Math => -1,
Pragma_Finalize_Storage_Only => 0,
Pragma_Float_Representation => 0,
Pragma_Global => -1,
Pragma_Ident => -1,
Pragma_Implementation_Defined => -1,
Pragma_Implemented => -1,
Pragma_Implicit_Packing => 0,
Pragma_Import => +2,
Pragma_Import_Exception => 0,
Pragma_Import_Function => 0,
Pragma_Import_Object => 0,
Pragma_Import_Procedure => 0,
Pragma_Import_Valued_Procedure => 0,
Pragma_Independent => 0,
Pragma_Independent_Components => 0,
Pragma_Initialize_Scalars => -1,
Pragma_Inline => 0,
Pragma_Inline_Always => 0,
Pragma_Inline_Generic => 0,
Pragma_Inspection_Point => -1,
Pragma_Interface => +2,
Pragma_Interface_Name => +2,
Pragma_Interrupt_Handler => -1,
Pragma_Interrupt_Priority => -1,
Pragma_Interrupt_State => -1,
Pragma_Invariant => -1,
Pragma_Java_Constructor => -1,
Pragma_Java_Interface => -1,
Pragma_Keep_Names => 0,
Pragma_License => -1,
Pragma_Link_With => -1,
Pragma_Linker_Alias => -1,
Pragma_Linker_Constructor => -1,
Pragma_Linker_Destructor => -1,
Pragma_Linker_Options => -1,
Pragma_Linker_Section => -1,
Pragma_List => -1,
Pragma_Lock_Free => -1,
Pragma_Locking_Policy => -1,
Pragma_Long_Float => -1,
Pragma_Loop_Invariant => -1,
Pragma_Loop_Optimize => -1,
Pragma_Loop_Variant => -1,
Pragma_Machine_Attribute => -1,
Pragma_Main => -1,
Pragma_Main_Storage => -1,
Pragma_Memory_Size => -1,
Pragma_No_Return => 0,
Pragma_No_Body => 0,
Pragma_No_Inline => 0,
Pragma_No_Run_Time => -1,
Pragma_No_Strict_Aliasing => -1,
Pragma_Normalize_Scalars => -1,
Pragma_Obsolescent => 0,
Pragma_Optimize => -1,
Pragma_Optimize_Alignment => -1,
Pragma_Overflow_Mode => 0,
Pragma_Overriding_Renamings => 0,
Pragma_Ordered => 0,
Pragma_Pack => 0,
Pragma_Page => -1,
Pragma_Partition_Elaboration_Policy => -1,
Pragma_Passive => -1,
Pragma_Preelaborable_Initialization => -1,
Pragma_Polling => -1,
Pragma_Persistent_BSS => 0,
Pragma_Postcondition => -1,
Pragma_Precondition => -1,
Pragma_Predicate => -1,
Pragma_Preelaborate => -1,
Pragma_Preelaborate_05 => -1,
Pragma_Priority => -1,
Pragma_Priority_Specific_Dispatching => -1,
Pragma_Profile => 0,
Pragma_Profile_Warnings => 0,
Pragma_Propagate_Exceptions => -1,
Pragma_Psect_Object => -1,
Pragma_Pure => -1,
Pragma_Pure_05 => -1,
Pragma_Pure_12 => -1,
Pragma_Pure_Function => -1,
Pragma_Queuing_Policy => -1,
Pragma_Rational => -1,
Pragma_Ravenscar => -1,
Pragma_Relative_Deadline => -1,
Pragma_Remote_Access_Type => -1,
Pragma_Remote_Call_Interface => -1,
Pragma_Remote_Types => -1,
Pragma_Restricted_Run_Time => -1,
Pragma_Restriction_Warnings => -1,
Pragma_Restrictions => -1,
Pragma_Reviewable => -1,
Pragma_Short_Circuit_And_Or => -1,
Pragma_Share_Generic => -1,
Pragma_Shared => -1,
Pragma_Shared_Passive => -1,
Pragma_Short_Descriptors => 0,
Pragma_Simple_Storage_Pool_Type => 0,
Pragma_Source_File_Name => -1,
Pragma_Source_File_Name_Project => -1,
Pragma_Source_Reference => -1,
Pragma_Storage_Size => -1,
Pragma_Storage_Unit => -1,
Pragma_Static_Elaboration_Desired => -1,
Pragma_Stream_Convert => -1,
Pragma_Style_Checks => -1,
Pragma_Subtitle => -1,
Pragma_Suppress => 0,
Pragma_Suppress_Exception_Locations => 0,
Pragma_Suppress_All => -1,
Pragma_Suppress_Debug_Info => 0,
Pragma_Suppress_Initialization => 0,
Pragma_System_Name => -1,
Pragma_Task_Dispatching_Policy => -1,
Pragma_Task_Info => -1,
Pragma_Task_Name => -1,
Pragma_Task_Storage => 0,
Pragma_Test_Case => -1,
Pragma_Thread_Local_Storage => 0,
Pragma_Time_Slice => -1,
Pragma_Title => -1,
Pragma_Unchecked_Union => 0,
Pragma_Unimplemented_Unit => -1,
Pragma_Universal_Aliasing => -1,
Pragma_Universal_Data => -1,
Pragma_Unmodified => -1,
Pragma_Unreferenced => -1,
Pragma_Unreferenced_Objects => -1,
Pragma_Unreserve_All_Interrupts => -1,
Pragma_Unsuppress => 0,
Pragma_Use_VADS_Size => -1,
Pragma_Validity_Checks => -1,
Pragma_Volatile => 0,
Pragma_Volatile_Components => 0,
Pragma_Warnings => -1,
Pragma_Weak_External => -1,
Pragma_Wide_Character_Encoding => 0,
Unknown_Pragma => 0);
function Is_Non_Significant_Pragma_Reference (N : Node_Id) return Boolean is
Id : Pragma_Id;
P : Node_Id;
C : Int;
A : Node_Id;
begin
P := Parent (N);
if Nkind (P) /= N_Pragma_Argument_Association then
return False;
else
Id := Get_Pragma_Id (Parent (P));
C := Sig_Flags (Id);
case C is
when -1 =>
return False;
when 0 =>
return True;
when 99 =>
case Id is
-- For pragma Check, the first argument is not significant,
-- the second and the third (if present) arguments are
-- significant.
when Pragma_Check =>
return
P = First (Pragma_Argument_Associations (Parent (P)));
when others =>
raise Program_Error;
end case;
when others =>
A := First (Pragma_Argument_Associations (Parent (P)));
for J in 1 .. C - 1 loop
if No (A) then
return False;
end if;
Next (A);
end loop;
return A = P; -- is this wrong way round ???
end case;
end if;
end Is_Non_Significant_Pragma_Reference;
------------------------------
-- Is_Pragma_String_Literal --
------------------------------
-- This function returns true if the corresponding pragma argument is a
-- static string expression. These are the only cases in which string
-- literals can appear as pragma arguments. We also allow a string literal
-- as the first argument to pragma Assert (although it will of course
-- always generate a type error).
function Is_Pragma_String_Literal (Par : Node_Id) return Boolean is
Pragn : constant Node_Id := Parent (Par);
Assoc : constant List_Id := Pragma_Argument_Associations (Pragn);
Pname : constant Name_Id := Pragma_Name (Pragn);
Argn : Natural;
N : Node_Id;
begin
Argn := 1;
N := First (Assoc);
loop
exit when N = Par;
Argn := Argn + 1;
Next (N);
end loop;
if Pname = Name_Assert then
return True;
elsif Pname = Name_Export then
return Argn > 2;
elsif Pname = Name_Ident then
return Argn = 1;
elsif Pname = Name_Import then
return Argn > 2;
elsif Pname = Name_Interface_Name then
return Argn > 1;
elsif Pname = Name_Linker_Alias then
return Argn = 2;
elsif Pname = Name_Linker_Section then
return Argn = 2;
elsif Pname = Name_Machine_Attribute then
return Argn = 2;
elsif Pname = Name_Source_File_Name then
return True;
elsif Pname = Name_Source_Reference then
return Argn = 2;
elsif Pname = Name_Title then
return True;
elsif Pname = Name_Subtitle then
return True;
else
return False;
end if;
end Is_Pragma_String_Literal;
-----------------------------------------
-- Make_Aspect_For_PPC_In_Gen_Sub_Decl --
-----------------------------------------
procedure Make_Aspect_For_PPC_In_Gen_Sub_Decl (Decl : Node_Id) is
Aspects : constant List_Id := New_List;
Loc : constant Source_Ptr := Sloc (Decl);
Or_Decl : constant Node_Id := Original_Node (Decl);
Original_Aspects : List_Id;
-- To capture global references, a copy of the created aspects must be
-- inserted in the original tree.
Prag : Node_Id;
Prag_Arg_Ass : Node_Id;
Prag_Id : Pragma_Id;
begin
-- Check for any PPC pragmas that appear within Decl
Prag := Next (Decl);
while Nkind (Prag) = N_Pragma loop
Prag_Id := Get_Pragma_Id (Chars (Pragma_Identifier (Prag)));
case Prag_Id is
when Pragma_Postcondition | Pragma_Precondition =>
Prag_Arg_Ass := First (Pragma_Argument_Associations (Prag));
-- Make an aspect from any PPC pragma
Append_To (Aspects,
Make_Aspect_Specification (Loc,
Identifier =>
Make_Identifier (Loc, Chars (Pragma_Identifier (Prag))),
Expression =>
Copy_Separate_Tree (Expression (Prag_Arg_Ass))));
-- Generate the analysis information in the pragma expression
-- and then set the pragma node analyzed to avoid any further
-- analysis.
Analyze (Expression (Prag_Arg_Ass));
Set_Analyzed (Prag, True);
when others => null;
end case;
Next (Prag);
end loop;
-- Set all new aspects into the generic declaration node
if Is_Non_Empty_List (Aspects) then
-- Create the list of aspects to be inserted in the original tree
Original_Aspects := Copy_Separate_List (Aspects);
-- Check if Decl already has aspects
-- Attach the new lists of aspects to both the generic copy and the
-- original tree.
if Has_Aspects (Decl) then
Append_List (Aspects, Aspect_Specifications (Decl));
Append_List (Original_Aspects, Aspect_Specifications (Or_Decl));
else
Set_Parent (Aspects, Decl);
Set_Aspect_Specifications (Decl, Aspects);
Set_Parent (Original_Aspects, Or_Decl);
Set_Aspect_Specifications (Or_Decl, Original_Aspects);
end if;
end if;
end Make_Aspect_For_PPC_In_Gen_Sub_Decl;
-------------------------
-- Preanalyze_CTC_Args --
-------------------------
procedure Preanalyze_CTC_Args (N, Arg_Req, Arg_Ens : Node_Id) is
begin
-- Preanalyze the boolean expressions, we treat these as spec
-- expressions (i.e. similar to a default expression).
if Present (Arg_Req) then
Preanalyze_Assert_Expression
(Get_Pragma_Arg (Arg_Req), Standard_Boolean);
-- In ASIS mode, for a pragma generated from a source aspect, also
-- analyze the original aspect expression.
if ASIS_Mode and then Present (Corresponding_Aspect (N)) then
Preanalyze_Assert_Expression
(Original_Node (Get_Pragma_Arg (Arg_Req)), Standard_Boolean);
end if;
end if;
if Present (Arg_Ens) then
Preanalyze_Assert_Expression
(Get_Pragma_Arg (Arg_Ens), Standard_Boolean);
-- In ASIS mode, for a pragma generated from a source aspect, also
-- analyze the original aspect expression.
if ASIS_Mode and then Present (Corresponding_Aspect (N)) then
Preanalyze_Assert_Expression
(Original_Node (Get_Pragma_Arg (Arg_Ens)), Standard_Boolean);
end if;
end if;
end Preanalyze_CTC_Args;
--------------------------------------
-- Process_Compilation_Unit_Pragmas --
--------------------------------------
procedure Process_Compilation_Unit_Pragmas (N : Node_Id) is
begin
-- A special check for pragma Suppress_All, a very strange DEC pragma,
-- strange because it comes at the end of the unit. Rational has the
-- same name for a pragma, but treats it as a program unit pragma, In
-- GNAT we just decide to allow it anywhere at all. If it appeared then
-- the flag Has_Pragma_Suppress_All was set on the compilation unit
-- node, and we insert a pragma Suppress (All_Checks) at the start of
-- the context clause to ensure the correct processing.
if Has_Pragma_Suppress_All (N) then
Prepend_To (Context_Items (N),
Make_Pragma (Sloc (N),
Chars => Name_Suppress,
Pragma_Argument_Associations => New_List (
Make_Pragma_Argument_Association (Sloc (N),
Expression => Make_Identifier (Sloc (N), Name_All_Checks)))));
end if;
-- Nothing else to do at the current time!
end Process_Compilation_Unit_Pragmas;
--------
-- rv --
--------
procedure rv is
begin
null;
end rv;
--------------------------------
-- Set_Encoded_Interface_Name --
--------------------------------
procedure Set_Encoded_Interface_Name (E : Entity_Id; S : Node_Id) is
Str : constant String_Id := Strval (S);
Len : constant Int := String_Length (Str);
CC : Char_Code;
C : Character;
J : Int;
Hex : constant array (0 .. 15) of Character := "0123456789abcdef";
procedure Encode;
-- Stores encoded value of character code CC. The encoding we use an
-- underscore followed by four lower case hex digits.
------------
-- Encode --
------------
procedure Encode is
begin
Store_String_Char (Get_Char_Code ('_'));
Store_String_Char
(Get_Char_Code (Hex (Integer (CC / 2 ** 12))));
Store_String_Char
(Get_Char_Code (Hex (Integer (CC / 2 ** 8 and 16#0F#))));
Store_String_Char
(Get_Char_Code (Hex (Integer (CC / 2 ** 4 and 16#0F#))));
Store_String_Char
(Get_Char_Code (Hex (Integer (CC and 16#0F#))));
end Encode;
-- Start of processing for Set_Encoded_Interface_Name
begin
-- If first character is asterisk, this is a link name, and we leave it
-- completely unmodified. We also ignore null strings (the latter case
-- happens only in error cases) and no encoding should occur for Java or
-- AAMP interface names.
if Len = 0
or else Get_String_Char (Str, 1) = Get_Char_Code ('*')
or else VM_Target /= No_VM
or else AAMP_On_Target
then
Set_Interface_Name (E, S);
else
J := 1;
loop
CC := Get_String_Char (Str, J);
exit when not In_Character_Range (CC);
C := Get_Character (CC);
exit when C /= '_' and then C /= '$'
and then C not in '0' .. '9'
and then C not in 'a' .. 'z'
and then C not in 'A' .. 'Z';
if J = Len then
Set_Interface_Name (E, S);
return;
else
J := J + 1;
end if;
end loop;
-- Here we need to encode. The encoding we use as follows:
-- three underscores + four hex digits (lower case)
Start_String;
for J in 1 .. String_Length (Str) loop
CC := Get_String_Char (Str, J);
if not In_Character_Range (CC) then
Encode;
else
C := Get_Character (CC);
if C = '_' or else C = '$'
or else C in '0' .. '9'
or else C in 'a' .. 'z'
or else C in 'A' .. 'Z'
then
Store_String_Char (CC);
else
Encode;
end if;
end if;
end loop;
Set_Interface_Name (E,
Make_String_Literal (Sloc (S),
Strval => End_String));
end if;
end Set_Encoded_Interface_Name;
-------------------
-- Set_Unit_Name --
-------------------
procedure Set_Unit_Name (N : Node_Id; With_Item : Node_Id) is
Pref : Node_Id;
Scop : Entity_Id;
begin
if Nkind (N) = N_Identifier
and then Nkind (With_Item) = N_Identifier
then
Set_Entity (N, Entity (With_Item));
elsif Nkind (N) = N_Selected_Component then
Change_Selected_Component_To_Expanded_Name (N);
Set_Entity (N, Entity (With_Item));
Set_Entity (Selector_Name (N), Entity (N));
Pref := Prefix (N);
Scop := Scope (Entity (N));
while Nkind (Pref) = N_Selected_Component loop
Change_Selected_Component_To_Expanded_Name (Pref);
Set_Entity (Selector_Name (Pref), Scop);
Set_Entity (Pref, Scop);
Pref := Prefix (Pref);
Scop := Scope (Scop);
end loop;
Set_Entity (Pref, Scop);
end if;
end Set_Unit_Name;
end Sem_Prag;