blob: 273c86ff4d79197d5a62d37da55d39b5a6f22ddc [file] [log] [blame]
/* Intrinsic translation
Copyright (C) 2002-2013 Free Software Foundation, Inc.
Contributed by Paul Brook <paul@nowt.org>
and Steven Bosscher <s.bosscher@student.tudelft.nl>
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
/* trans-intrinsic.c-- generate GENERIC trees for calls to intrinsics. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h" /* For UNITS_PER_WORD. */
#include "tree.h"
#include "ggc.h"
#include "diagnostic-core.h" /* For internal_error. */
#include "toplev.h" /* For rest_of_decl_compilation. */
#include "flags.h"
#include "gfortran.h"
#include "arith.h"
#include "intrinsic.h"
#include "trans.h"
#include "trans-const.h"
#include "trans-types.h"
#include "trans-array.h"
/* Only for gfc_trans_assign and gfc_trans_pointer_assign. */
#include "trans-stmt.h"
/* This maps Fortran intrinsic math functions to external library or GCC
builtin functions. */
typedef struct GTY(()) gfc_intrinsic_map_t {
/* The explicit enum is required to work around inadequacies in the
garbage collection/gengtype parsing mechanism. */
enum gfc_isym_id id;
/* Enum value from the "language-independent", aka C-centric, part
of gcc, or END_BUILTINS of no such value set. */
enum built_in_function float_built_in;
enum built_in_function double_built_in;
enum built_in_function long_double_built_in;
enum built_in_function complex_float_built_in;
enum built_in_function complex_double_built_in;
enum built_in_function complex_long_double_built_in;
/* True if the naming pattern is to prepend "c" for complex and
append "f" for kind=4. False if the naming pattern is to
prepend "_gfortran_" and append "[rc](4|8|10|16)". */
bool libm_name;
/* True if a complex version of the function exists. */
bool complex_available;
/* True if the function should be marked const. */
bool is_constant;
/* The base library name of this function. */
const char *name;
/* Cache decls created for the various operand types. */
tree real4_decl;
tree real8_decl;
tree real10_decl;
tree real16_decl;
tree complex4_decl;
tree complex8_decl;
tree complex10_decl;
tree complex16_decl;
}
gfc_intrinsic_map_t;
/* ??? The NARGS==1 hack here is based on the fact that (c99 at least)
defines complex variants of all of the entries in mathbuiltins.def
except for atan2. */
#define DEFINE_MATH_BUILTIN(ID, NAME, ARGTYPE) \
{ GFC_ISYM_ ## ID, BUILT_IN_ ## ID ## F, BUILT_IN_ ## ID, \
BUILT_IN_ ## ID ## L, END_BUILTINS, END_BUILTINS, END_BUILTINS, \
true, false, true, NAME, NULL_TREE, NULL_TREE, NULL_TREE, NULL_TREE, \
NULL_TREE, NULL_TREE, NULL_TREE, NULL_TREE},
#define DEFINE_MATH_BUILTIN_C(ID, NAME, ARGTYPE) \
{ GFC_ISYM_ ## ID, BUILT_IN_ ## ID ## F, BUILT_IN_ ## ID, \
BUILT_IN_ ## ID ## L, BUILT_IN_C ## ID ## F, BUILT_IN_C ## ID, \
BUILT_IN_C ## ID ## L, true, true, true, NAME, NULL_TREE, NULL_TREE, \
NULL_TREE, NULL_TREE, NULL_TREE, NULL_TREE, NULL_TREE, NULL_TREE},
#define LIB_FUNCTION(ID, NAME, HAVE_COMPLEX) \
{ GFC_ISYM_ ## ID, END_BUILTINS, END_BUILTINS, END_BUILTINS, \
END_BUILTINS, END_BUILTINS, END_BUILTINS, \
false, HAVE_COMPLEX, true, NAME, NULL_TREE, NULL_TREE, NULL_TREE, \
NULL_TREE, NULL_TREE, NULL_TREE, NULL_TREE, NULL_TREE }
#define OTHER_BUILTIN(ID, NAME, TYPE, CONST) \
{ GFC_ISYM_NONE, BUILT_IN_ ## ID ## F, BUILT_IN_ ## ID, \
BUILT_IN_ ## ID ## L, END_BUILTINS, END_BUILTINS, END_BUILTINS, \
true, false, CONST, NAME, NULL_TREE, NULL_TREE, \
NULL_TREE, NULL_TREE, NULL_TREE, NULL_TREE, NULL_TREE, NULL_TREE},
static GTY(()) gfc_intrinsic_map_t gfc_intrinsic_map[] =
{
/* Functions built into gcc itself (DEFINE_MATH_BUILTIN and
DEFINE_MATH_BUILTIN_C), then the built-ins that don't correspond
to any GFC_ISYM id directly, which use the OTHER_BUILTIN macro. */
#include "mathbuiltins.def"
/* Functions in libgfortran. */
LIB_FUNCTION (ERFC_SCALED, "erfc_scaled", false),
/* End the list. */
LIB_FUNCTION (NONE, NULL, false)
};
#undef OTHER_BUILTIN
#undef LIB_FUNCTION
#undef DEFINE_MATH_BUILTIN
#undef DEFINE_MATH_BUILTIN_C
enum rounding_mode { RND_ROUND, RND_TRUNC, RND_CEIL, RND_FLOOR };
/* Find the correct variant of a given builtin from its argument. */
static tree
builtin_decl_for_precision (enum built_in_function base_built_in,
int precision)
{
enum built_in_function i = END_BUILTINS;
gfc_intrinsic_map_t *m;
for (m = gfc_intrinsic_map; m->double_built_in != base_built_in ; m++)
;
if (precision == TYPE_PRECISION (float_type_node))
i = m->float_built_in;
else if (precision == TYPE_PRECISION (double_type_node))
i = m->double_built_in;
else if (precision == TYPE_PRECISION (long_double_type_node))
i = m->long_double_built_in;
else if (precision == TYPE_PRECISION (float128_type_node))
{
/* Special treatment, because it is not exactly a built-in, but
a library function. */
return m->real16_decl;
}
return (i == END_BUILTINS ? NULL_TREE : builtin_decl_explicit (i));
}
tree
gfc_builtin_decl_for_float_kind (enum built_in_function double_built_in,
int kind)
{
int i = gfc_validate_kind (BT_REAL, kind, false);
if (gfc_real_kinds[i].c_float128)
{
/* For __float128, the story is a bit different, because we return
a decl to a library function rather than a built-in. */
gfc_intrinsic_map_t *m;
for (m = gfc_intrinsic_map; m->double_built_in != double_built_in ; m++)
;
return m->real16_decl;
}
return builtin_decl_for_precision (double_built_in,
gfc_real_kinds[i].mode_precision);
}
/* Evaluate the arguments to an intrinsic function. The value
of NARGS may be less than the actual number of arguments in EXPR
to allow optional "KIND" arguments that are not included in the
generated code to be ignored. */
static void
gfc_conv_intrinsic_function_args (gfc_se *se, gfc_expr *expr,
tree *argarray, int nargs)
{
gfc_actual_arglist *actual;
gfc_expr *e;
gfc_intrinsic_arg *formal;
gfc_se argse;
int curr_arg;
formal = expr->value.function.isym->formal;
actual = expr->value.function.actual;
for (curr_arg = 0; curr_arg < nargs; curr_arg++,
actual = actual->next,
formal = formal ? formal->next : NULL)
{
gcc_assert (actual);
e = actual->expr;
/* Skip omitted optional arguments. */
if (!e)
{
--curr_arg;
continue;
}
/* Evaluate the parameter. This will substitute scalarized
references automatically. */
gfc_init_se (&argse, se);
if (e->ts.type == BT_CHARACTER)
{
gfc_conv_expr (&argse, e);
gfc_conv_string_parameter (&argse);
argarray[curr_arg++] = argse.string_length;
gcc_assert (curr_arg < nargs);
}
else
gfc_conv_expr_val (&argse, e);
/* If an optional argument is itself an optional dummy argument,
check its presence and substitute a null if absent. */
if (e->expr_type == EXPR_VARIABLE
&& e->symtree->n.sym->attr.optional
&& formal
&& formal->optional)
gfc_conv_missing_dummy (&argse, e, formal->ts, 0);
gfc_add_block_to_block (&se->pre, &argse.pre);
gfc_add_block_to_block (&se->post, &argse.post);
argarray[curr_arg] = argse.expr;
}
}
/* Count the number of actual arguments to the intrinsic function EXPR
including any "hidden" string length arguments. */
static unsigned int
gfc_intrinsic_argument_list_length (gfc_expr *expr)
{
int n = 0;
gfc_actual_arglist *actual;
for (actual = expr->value.function.actual; actual; actual = actual->next)
{
if (!actual->expr)
continue;
if (actual->expr->ts.type == BT_CHARACTER)
n += 2;
else
n++;
}
return n;
}
/* Conversions between different types are output by the frontend as
intrinsic functions. We implement these directly with inline code. */
static void
gfc_conv_intrinsic_conversion (gfc_se * se, gfc_expr * expr)
{
tree type;
tree *args;
int nargs;
nargs = gfc_intrinsic_argument_list_length (expr);
args = XALLOCAVEC (tree, nargs);
/* Evaluate all the arguments passed. Whilst we're only interested in the
first one here, there are other parts of the front-end that assume this
and will trigger an ICE if it's not the case. */
type = gfc_typenode_for_spec (&expr->ts);
gcc_assert (expr->value.function.actual->expr);
gfc_conv_intrinsic_function_args (se, expr, args, nargs);
/* Conversion between character kinds involves a call to a library
function. */
if (expr->ts.type == BT_CHARACTER)
{
tree fndecl, var, addr, tmp;
if (expr->ts.kind == 1
&& expr->value.function.actual->expr->ts.kind == 4)
fndecl = gfor_fndecl_convert_char4_to_char1;
else if (expr->ts.kind == 4
&& expr->value.function.actual->expr->ts.kind == 1)
fndecl = gfor_fndecl_convert_char1_to_char4;
else
gcc_unreachable ();
/* Create the variable storing the converted value. */
type = gfc_get_pchar_type (expr->ts.kind);
var = gfc_create_var (type, "str");
addr = gfc_build_addr_expr (build_pointer_type (type), var);
/* Call the library function that will perform the conversion. */
gcc_assert (nargs >= 2);
tmp = build_call_expr_loc (input_location,
fndecl, 3, addr, args[0], args[1]);
gfc_add_expr_to_block (&se->pre, tmp);
/* Free the temporary afterwards. */
tmp = gfc_call_free (var);
gfc_add_expr_to_block (&se->post, tmp);
se->expr = var;
se->string_length = args[0];
return;
}
/* Conversion from complex to non-complex involves taking the real
component of the value. */
if (TREE_CODE (TREE_TYPE (args[0])) == COMPLEX_TYPE
&& expr->ts.type != BT_COMPLEX)
{
tree artype;
artype = TREE_TYPE (TREE_TYPE (args[0]));
args[0] = fold_build1_loc (input_location, REALPART_EXPR, artype,
args[0]);
}
se->expr = convert (type, args[0]);
}
/* This is needed because the gcc backend only implements
FIX_TRUNC_EXPR, which is the same as INT() in Fortran.
FLOOR(x) = INT(x) <= x ? INT(x) : INT(x) - 1
Similarly for CEILING. */
static tree
build_fixbound_expr (stmtblock_t * pblock, tree arg, tree type, int up)
{
tree tmp;
tree cond;
tree argtype;
tree intval;
argtype = TREE_TYPE (arg);
arg = gfc_evaluate_now (arg, pblock);
intval = convert (type, arg);
intval = gfc_evaluate_now (intval, pblock);
tmp = convert (argtype, intval);
cond = fold_build2_loc (input_location, up ? GE_EXPR : LE_EXPR,
boolean_type_node, tmp, arg);
tmp = fold_build2_loc (input_location, up ? PLUS_EXPR : MINUS_EXPR, type,
intval, build_int_cst (type, 1));
tmp = fold_build3_loc (input_location, COND_EXPR, type, cond, intval, tmp);
return tmp;
}
/* Round to nearest integer, away from zero. */
static tree
build_round_expr (tree arg, tree restype)
{
tree argtype;
tree fn;
int argprec, resprec;
argtype = TREE_TYPE (arg);
argprec = TYPE_PRECISION (argtype);
resprec = TYPE_PRECISION (restype);
/* Depending on the type of the result, choose the int intrinsic
(iround, available only as a builtin, therefore cannot use it for
__float128), long int intrinsic (lround family) or long long
intrinsic (llround). We might also need to convert the result
afterwards. */
if (resprec <= INT_TYPE_SIZE && argprec <= LONG_DOUBLE_TYPE_SIZE)
fn = builtin_decl_for_precision (BUILT_IN_IROUND, argprec);
else if (resprec <= LONG_TYPE_SIZE)
fn = builtin_decl_for_precision (BUILT_IN_LROUND, argprec);
else if (resprec <= LONG_LONG_TYPE_SIZE)
fn = builtin_decl_for_precision (BUILT_IN_LLROUND, argprec);
else
gcc_unreachable ();
return fold_convert (restype, build_call_expr_loc (input_location,
fn, 1, arg));
}
/* Convert a real to an integer using a specific rounding mode.
Ideally we would just build the corresponding GENERIC node,
however the RTL expander only actually supports FIX_TRUNC_EXPR. */
static tree
build_fix_expr (stmtblock_t * pblock, tree arg, tree type,
enum rounding_mode op)
{
switch (op)
{
case RND_FLOOR:
return build_fixbound_expr (pblock, arg, type, 0);
break;
case RND_CEIL:
return build_fixbound_expr (pblock, arg, type, 1);
break;
case RND_ROUND:
return build_round_expr (arg, type);
break;
case RND_TRUNC:
return fold_build1_loc (input_location, FIX_TRUNC_EXPR, type, arg);
break;
default:
gcc_unreachable ();
}
}
/* Round a real value using the specified rounding mode.
We use a temporary integer of that same kind size as the result.
Values larger than those that can be represented by this kind are
unchanged, as they will not be accurate enough to represent the
rounding.
huge = HUGE (KIND (a))
aint (a) = ((a > huge) || (a < -huge)) ? a : (real)(int)a
*/
static void
gfc_conv_intrinsic_aint (gfc_se * se, gfc_expr * expr, enum rounding_mode op)
{
tree type;
tree itype;
tree arg[2];
tree tmp;
tree cond;
tree decl;
mpfr_t huge;
int n, nargs;
int kind;
kind = expr->ts.kind;
nargs = gfc_intrinsic_argument_list_length (expr);
decl = NULL_TREE;
/* We have builtin functions for some cases. */
switch (op)
{
case RND_ROUND:
decl = gfc_builtin_decl_for_float_kind (BUILT_IN_ROUND, kind);
break;
case RND_TRUNC:
decl = gfc_builtin_decl_for_float_kind (BUILT_IN_TRUNC, kind);
break;
default:
gcc_unreachable ();
}
/* Evaluate the argument. */
gcc_assert (expr->value.function.actual->expr);
gfc_conv_intrinsic_function_args (se, expr, arg, nargs);
/* Use a builtin function if one exists. */
if (decl != NULL_TREE)
{
se->expr = build_call_expr_loc (input_location, decl, 1, arg[0]);
return;
}
/* This code is probably redundant, but we'll keep it lying around just
in case. */
type = gfc_typenode_for_spec (&expr->ts);
arg[0] = gfc_evaluate_now (arg[0], &se->pre);
/* Test if the value is too large to handle sensibly. */
gfc_set_model_kind (kind);
mpfr_init (huge);
n = gfc_validate_kind (BT_INTEGER, kind, false);
mpfr_set_z (huge, gfc_integer_kinds[n].huge, GFC_RND_MODE);
tmp = gfc_conv_mpfr_to_tree (huge, kind, 0);
cond = fold_build2_loc (input_location, LT_EXPR, boolean_type_node, arg[0],
tmp);
mpfr_neg (huge, huge, GFC_RND_MODE);
tmp = gfc_conv_mpfr_to_tree (huge, kind, 0);
tmp = fold_build2_loc (input_location, GT_EXPR, boolean_type_node, arg[0],
tmp);
cond = fold_build2_loc (input_location, TRUTH_AND_EXPR, boolean_type_node,
cond, tmp);
itype = gfc_get_int_type (kind);
tmp = build_fix_expr (&se->pre, arg[0], itype, op);
tmp = convert (type, tmp);
se->expr = fold_build3_loc (input_location, COND_EXPR, type, cond, tmp,
arg[0]);
mpfr_clear (huge);
}
/* Convert to an integer using the specified rounding mode. */
static void
gfc_conv_intrinsic_int (gfc_se * se, gfc_expr * expr, enum rounding_mode op)
{
tree type;
tree *args;
int nargs;
nargs = gfc_intrinsic_argument_list_length (expr);
args = XALLOCAVEC (tree, nargs);
/* Evaluate the argument, we process all arguments even though we only
use the first one for code generation purposes. */
type = gfc_typenode_for_spec (&expr->ts);
gcc_assert (expr->value.function.actual->expr);
gfc_conv_intrinsic_function_args (se, expr, args, nargs);
if (TREE_CODE (TREE_TYPE (args[0])) == INTEGER_TYPE)
{
/* Conversion to a different integer kind. */
se->expr = convert (type, args[0]);
}
else
{
/* Conversion from complex to non-complex involves taking the real
component of the value. */
if (TREE_CODE (TREE_TYPE (args[0])) == COMPLEX_TYPE
&& expr->ts.type != BT_COMPLEX)
{
tree artype;
artype = TREE_TYPE (TREE_TYPE (args[0]));
args[0] = fold_build1_loc (input_location, REALPART_EXPR, artype,
args[0]);
}
se->expr = build_fix_expr (&se->pre, args[0], type, op);
}
}
/* Get the imaginary component of a value. */
static void
gfc_conv_intrinsic_imagpart (gfc_se * se, gfc_expr * expr)
{
tree arg;
gfc_conv_intrinsic_function_args (se, expr, &arg, 1);
se->expr = fold_build1_loc (input_location, IMAGPART_EXPR,
TREE_TYPE (TREE_TYPE (arg)), arg);
}
/* Get the complex conjugate of a value. */
static void
gfc_conv_intrinsic_conjg (gfc_se * se, gfc_expr * expr)
{
tree arg;
gfc_conv_intrinsic_function_args (se, expr, &arg, 1);
se->expr = fold_build1_loc (input_location, CONJ_EXPR, TREE_TYPE (arg), arg);
}
static tree
define_quad_builtin (const char *name, tree type, bool is_const)
{
tree fndecl;
fndecl = build_decl (input_location, FUNCTION_DECL, get_identifier (name),
type);
/* Mark the decl as external. */
DECL_EXTERNAL (fndecl) = 1;
TREE_PUBLIC (fndecl) = 1;
/* Mark it __attribute__((const)). */
TREE_READONLY (fndecl) = is_const;
rest_of_decl_compilation (fndecl, 1, 0);
return fndecl;
}
/* Initialize function decls for library functions. The external functions
are created as required. Builtin functions are added here. */
void
gfc_build_intrinsic_lib_fndecls (void)
{
gfc_intrinsic_map_t *m;
tree quad_decls[END_BUILTINS + 1];
if (gfc_real16_is_float128)
{
/* If we have soft-float types, we create the decls for their
C99-like library functions. For now, we only handle __float128
q-suffixed functions. */
tree type, complex_type, func_1, func_2, func_cabs, func_frexp;
tree func_iround, func_lround, func_llround, func_scalbn, func_cpow;
memset (quad_decls, 0, sizeof(tree) * (END_BUILTINS + 1));
type = float128_type_node;
complex_type = complex_float128_type_node;
/* type (*) (type) */
func_1 = build_function_type_list (type, type, NULL_TREE);
/* int (*) (type) */
func_iround = build_function_type_list (integer_type_node,
type, NULL_TREE);
/* long (*) (type) */
func_lround = build_function_type_list (long_integer_type_node,
type, NULL_TREE);
/* long long (*) (type) */
func_llround = build_function_type_list (long_long_integer_type_node,
type, NULL_TREE);
/* type (*) (type, type) */
func_2 = build_function_type_list (type, type, type, NULL_TREE);
/* type (*) (type, &int) */
func_frexp
= build_function_type_list (type,
type,
build_pointer_type (integer_type_node),
NULL_TREE);
/* type (*) (type, int) */
func_scalbn = build_function_type_list (type,
type, integer_type_node, NULL_TREE);
/* type (*) (complex type) */
func_cabs = build_function_type_list (type, complex_type, NULL_TREE);
/* complex type (*) (complex type, complex type) */
func_cpow
= build_function_type_list (complex_type,
complex_type, complex_type, NULL_TREE);
#define DEFINE_MATH_BUILTIN(ID, NAME, ARGTYPE)
#define DEFINE_MATH_BUILTIN_C(ID, NAME, ARGTYPE)
#define LIB_FUNCTION(ID, NAME, HAVE_COMPLEX)
/* Only these built-ins are actually needed here. These are used directly
from the code, when calling builtin_decl_for_precision() or
builtin_decl_for_float_type(). The others are all constructed by
gfc_get_intrinsic_lib_fndecl(). */
#define OTHER_BUILTIN(ID, NAME, TYPE, CONST) \
quad_decls[BUILT_IN_ ## ID] = define_quad_builtin (NAME "q", func_ ## TYPE, CONST);
#include "mathbuiltins.def"
#undef OTHER_BUILTIN
#undef LIB_FUNCTION
#undef DEFINE_MATH_BUILTIN
#undef DEFINE_MATH_BUILTIN_C
}
/* Add GCC builtin functions. */
for (m = gfc_intrinsic_map;
m->id != GFC_ISYM_NONE || m->double_built_in != END_BUILTINS; m++)
{
if (m->float_built_in != END_BUILTINS)
m->real4_decl = builtin_decl_explicit (m->float_built_in);
if (m->complex_float_built_in != END_BUILTINS)
m->complex4_decl = builtin_decl_explicit (m->complex_float_built_in);
if (m->double_built_in != END_BUILTINS)
m->real8_decl = builtin_decl_explicit (m->double_built_in);
if (m->complex_double_built_in != END_BUILTINS)
m->complex8_decl = builtin_decl_explicit (m->complex_double_built_in);
/* If real(kind=10) exists, it is always long double. */
if (m->long_double_built_in != END_BUILTINS)
m->real10_decl = builtin_decl_explicit (m->long_double_built_in);
if (m->complex_long_double_built_in != END_BUILTINS)
m->complex10_decl
= builtin_decl_explicit (m->complex_long_double_built_in);
if (!gfc_real16_is_float128)
{
if (m->long_double_built_in != END_BUILTINS)
m->real16_decl = builtin_decl_explicit (m->long_double_built_in);
if (m->complex_long_double_built_in != END_BUILTINS)
m->complex16_decl
= builtin_decl_explicit (m->complex_long_double_built_in);
}
else if (quad_decls[m->double_built_in] != NULL_TREE)
{
/* Quad-precision function calls are constructed when first
needed by builtin_decl_for_precision(), except for those
that will be used directly (define by OTHER_BUILTIN). */
m->real16_decl = quad_decls[m->double_built_in];
}
else if (quad_decls[m->complex_double_built_in] != NULL_TREE)
{
/* Same thing for the complex ones. */
m->complex16_decl = quad_decls[m->double_built_in];
}
}
}
/* Create a fndecl for a simple intrinsic library function. */
static tree
gfc_get_intrinsic_lib_fndecl (gfc_intrinsic_map_t * m, gfc_expr * expr)
{
tree type;
vec<tree, va_gc> *argtypes;
tree fndecl;
gfc_actual_arglist *actual;
tree *pdecl;
gfc_typespec *ts;
char name[GFC_MAX_SYMBOL_LEN + 3];
ts = &expr->ts;
if (ts->type == BT_REAL)
{
switch (ts->kind)
{
case 4:
pdecl = &m->real4_decl;
break;
case 8:
pdecl = &m->real8_decl;
break;
case 10:
pdecl = &m->real10_decl;
break;
case 16:
pdecl = &m->real16_decl;
break;
default:
gcc_unreachable ();
}
}
else if (ts->type == BT_COMPLEX)
{
gcc_assert (m->complex_available);
switch (ts->kind)
{
case 4:
pdecl = &m->complex4_decl;
break;
case 8:
pdecl = &m->complex8_decl;
break;
case 10:
pdecl = &m->complex10_decl;
break;
case 16:
pdecl = &m->complex16_decl;
break;
default:
gcc_unreachable ();
}
}
else
gcc_unreachable ();
if (*pdecl)
return *pdecl;
if (m->libm_name)
{
int n = gfc_validate_kind (BT_REAL, ts->kind, false);
if (gfc_real_kinds[n].c_float)
snprintf (name, sizeof (name), "%s%s%s",
ts->type == BT_COMPLEX ? "c" : "", m->name, "f");
else if (gfc_real_kinds[n].c_double)
snprintf (name, sizeof (name), "%s%s",
ts->type == BT_COMPLEX ? "c" : "", m->name);
else if (gfc_real_kinds[n].c_long_double)
snprintf (name, sizeof (name), "%s%s%s",
ts->type == BT_COMPLEX ? "c" : "", m->name, "l");
else if (gfc_real_kinds[n].c_float128)
snprintf (name, sizeof (name), "%s%s%s",
ts->type == BT_COMPLEX ? "c" : "", m->name, "q");
else
gcc_unreachable ();
}
else
{
snprintf (name, sizeof (name), PREFIX ("%s_%c%d"), m->name,
ts->type == BT_COMPLEX ? 'c' : 'r',
ts->kind);
}
argtypes = NULL;
for (actual = expr->value.function.actual; actual; actual = actual->next)
{
type = gfc_typenode_for_spec (&actual->expr->ts);
vec_safe_push (argtypes, type);
}
type = build_function_type_vec (gfc_typenode_for_spec (ts), argtypes);
fndecl = build_decl (input_location,
FUNCTION_DECL, get_identifier (name), type);
/* Mark the decl as external. */
DECL_EXTERNAL (fndecl) = 1;
TREE_PUBLIC (fndecl) = 1;
/* Mark it __attribute__((const)), if possible. */
TREE_READONLY (fndecl) = m->is_constant;
rest_of_decl_compilation (fndecl, 1, 0);
(*pdecl) = fndecl;
return fndecl;
}
/* Convert an intrinsic function into an external or builtin call. */
static void
gfc_conv_intrinsic_lib_function (gfc_se * se, gfc_expr * expr)
{
gfc_intrinsic_map_t *m;
tree fndecl;
tree rettype;
tree *args;
unsigned int num_args;
gfc_isym_id id;
id = expr->value.function.isym->id;
/* Find the entry for this function. */
for (m = gfc_intrinsic_map;
m->id != GFC_ISYM_NONE || m->double_built_in != END_BUILTINS; m++)
{
if (id == m->id)
break;
}
if (m->id == GFC_ISYM_NONE)
{
internal_error ("Intrinsic function %s(%d) not recognized",
expr->value.function.name, id);
}
/* Get the decl and generate the call. */
num_args = gfc_intrinsic_argument_list_length (expr);
args = XALLOCAVEC (tree, num_args);
gfc_conv_intrinsic_function_args (se, expr, args, num_args);
fndecl = gfc_get_intrinsic_lib_fndecl (m, expr);
rettype = TREE_TYPE (TREE_TYPE (fndecl));
fndecl = build_addr (fndecl, current_function_decl);
se->expr = build_call_array_loc (input_location, rettype, fndecl, num_args, args);
}
/* If bounds-checking is enabled, create code to verify at runtime that the
string lengths for both expressions are the same (needed for e.g. MERGE).
If bounds-checking is not enabled, does nothing. */
void
gfc_trans_same_strlen_check (const char* intr_name, locus* where,
tree a, tree b, stmtblock_t* target)
{
tree cond;
tree name;
/* If bounds-checking is disabled, do nothing. */
if (!(gfc_option.rtcheck & GFC_RTCHECK_BOUNDS))
return;
/* Compare the two string lengths. */
cond = fold_build2_loc (input_location, NE_EXPR, boolean_type_node, a, b);
/* Output the runtime-check. */
name = gfc_build_cstring_const (intr_name);
name = gfc_build_addr_expr (pchar_type_node, name);
gfc_trans_runtime_check (true, false, cond, target, where,
"Unequal character lengths (%ld/%ld) in %s",
fold_convert (long_integer_type_node, a),
fold_convert (long_integer_type_node, b), name);
}
/* The EXPONENT(s) intrinsic function is translated into
int ret;
frexp (s, &ret);
return ret;
*/
static void
gfc_conv_intrinsic_exponent (gfc_se *se, gfc_expr *expr)
{
tree arg, type, res, tmp, frexp;
frexp = gfc_builtin_decl_for_float_kind (BUILT_IN_FREXP,
expr->value.function.actual->expr->ts.kind);
gfc_conv_intrinsic_function_args (se, expr, &arg, 1);
res = gfc_create_var (integer_type_node, NULL);
tmp = build_call_expr_loc (input_location, frexp, 2, arg,
gfc_build_addr_expr (NULL_TREE, res));
gfc_add_expr_to_block (&se->pre, tmp);
type = gfc_typenode_for_spec (&expr->ts);
se->expr = fold_convert (type, res);
}
static void
trans_this_image (gfc_se * se, gfc_expr *expr)
{
stmtblock_t loop;
tree type, desc, dim_arg, cond, tmp, m, loop_var, exit_label, min_var,
lbound, ubound, extent, ml;
gfc_se argse;
int rank, corank;
/* The case -fcoarray=single is handled elsewhere. */
gcc_assert (gfc_option.coarray != GFC_FCOARRAY_SINGLE);
gfc_init_coarray_decl (false);
/* Argument-free version: THIS_IMAGE(). */
if (expr->value.function.actual->expr == NULL)
{
se->expr = fold_convert (gfc_get_int_type (gfc_default_integer_kind),
gfort_gvar_caf_this_image);
return;
}
/* Coarray-argument version: THIS_IMAGE(coarray [, dim]). */
type = gfc_get_int_type (gfc_default_integer_kind);
corank = gfc_get_corank (expr->value.function.actual->expr);
rank = expr->value.function.actual->expr->rank;
/* Obtain the descriptor of the COARRAY. */
gfc_init_se (&argse, NULL);
argse.want_coarray = 1;
gfc_conv_expr_descriptor (&argse, expr->value.function.actual->expr);
gfc_add_block_to_block (&se->pre, &argse.pre);
gfc_add_block_to_block (&se->post, &argse.post);
desc = argse.expr;
if (se->ss)
{
/* Create an implicit second parameter from the loop variable. */
gcc_assert (!expr->value.function.actual->next->expr);
gcc_assert (corank > 0);
gcc_assert (se->loop->dimen == 1);
gcc_assert (se->ss->info->expr == expr);
dim_arg = se->loop->loopvar[0];
dim_arg = fold_build2_loc (input_location, PLUS_EXPR,
gfc_array_index_type, dim_arg,
build_int_cst (TREE_TYPE (dim_arg), 1));
gfc_advance_se_ss_chain (se);
}
else
{
/* Use the passed DIM= argument. */
gcc_assert (expr->value.function.actual->next->expr);
gfc_init_se (&argse, NULL);
gfc_conv_expr_type (&argse, expr->value.function.actual->next->expr,
gfc_array_index_type);
gfc_add_block_to_block (&se->pre, &argse.pre);
dim_arg = argse.expr;
if (INTEGER_CST_P (dim_arg))
{
int hi, co_dim;
hi = TREE_INT_CST_HIGH (dim_arg);
co_dim = TREE_INT_CST_LOW (dim_arg);
if (hi || co_dim < 1
|| co_dim > GFC_TYPE_ARRAY_CORANK (TREE_TYPE (desc)))
gfc_error ("'dim' argument of %s intrinsic at %L is not a valid "
"dimension index", expr->value.function.isym->name,
&expr->where);
}
else if (gfc_option.rtcheck & GFC_RTCHECK_BOUNDS)
{
dim_arg = gfc_evaluate_now (dim_arg, &se->pre);
cond = fold_build2_loc (input_location, LT_EXPR, boolean_type_node,
dim_arg,
build_int_cst (TREE_TYPE (dim_arg), 1));
tmp = gfc_rank_cst[GFC_TYPE_ARRAY_CORANK (TREE_TYPE (desc))];
tmp = fold_build2_loc (input_location, GT_EXPR, boolean_type_node,
dim_arg, tmp);
cond = fold_build2_loc (input_location, TRUTH_ORIF_EXPR,
boolean_type_node, cond, tmp);
gfc_trans_runtime_check (true, false, cond, &se->pre, &expr->where,
gfc_msg_fault);
}
}
/* Used algorithm; cf. Fortran 2008, C.10. Note, due to the scalarizer,
one always has a dim_arg argument.
m = this_image() - 1
if (corank == 1)
{
sub(1) = m + lcobound(corank)
return;
}
i = rank
min_var = min (rank + corank - 2, rank + dim_arg - 1)
for (;;)
{
extent = gfc_extent(i)
ml = m
m = m/extent
if (i >= min_var)
goto exit_label
i++
}
exit_label:
sub(dim_arg) = (dim_arg < corank) ? ml - m*extent + lcobound(dim_arg)
: m + lcobound(corank)
*/
/* this_image () - 1. */
tmp = fold_convert (type, gfort_gvar_caf_this_image);
tmp = fold_build2_loc (input_location, MINUS_EXPR, type, tmp,
build_int_cst (type, 1));
if (corank == 1)
{
/* sub(1) = m + lcobound(corank). */
lbound = gfc_conv_descriptor_lbound_get (desc,
build_int_cst (TREE_TYPE (gfc_array_index_type),
corank+rank-1));
lbound = fold_convert (type, lbound);
tmp = fold_build2_loc (input_location, PLUS_EXPR, type, tmp, lbound);
se->expr = tmp;
return;
}
m = gfc_create_var (type, NULL);
ml = gfc_create_var (type, NULL);
loop_var = gfc_create_var (integer_type_node, NULL);
min_var = gfc_create_var (integer_type_node, NULL);
/* m = this_image () - 1. */
gfc_add_modify (&se->pre, m, tmp);
/* min_var = min (rank + corank-2, rank + dim_arg - 1). */
tmp = fold_build2_loc (input_location, PLUS_EXPR, integer_type_node,
fold_convert (integer_type_node, dim_arg),
build_int_cst (integer_type_node, rank - 1));
tmp = fold_build2_loc (input_location, MIN_EXPR, integer_type_node,
build_int_cst (integer_type_node, rank + corank - 2),
tmp);
gfc_add_modify (&se->pre, min_var, tmp);
/* i = rank. */
tmp = build_int_cst (integer_type_node, rank);
gfc_add_modify (&se->pre, loop_var, tmp);
exit_label = gfc_build_label_decl (NULL_TREE);
TREE_USED (exit_label) = 1;
/* Loop body. */
gfc_init_block (&loop);
/* ml = m. */
gfc_add_modify (&loop, ml, m);
/* extent = ... */
lbound = gfc_conv_descriptor_lbound_get (desc, loop_var);
ubound = gfc_conv_descriptor_ubound_get (desc, loop_var);
extent = gfc_conv_array_extent_dim (lbound, ubound, NULL);
extent = fold_convert (type, extent);
/* m = m/extent. */
gfc_add_modify (&loop, m,
fold_build2_loc (input_location, TRUNC_DIV_EXPR, type,
m, extent));
/* Exit condition: if (i >= min_var) goto exit_label. */
cond = fold_build2_loc (input_location, GE_EXPR, boolean_type_node, loop_var,
min_var);
tmp = build1_v (GOTO_EXPR, exit_label);
tmp = fold_build3_loc (input_location, COND_EXPR, void_type_node, cond, tmp,
build_empty_stmt (input_location));
gfc_add_expr_to_block (&loop, tmp);
/* Increment loop variable: i++. */
gfc_add_modify (&loop, loop_var,
fold_build2_loc (input_location, PLUS_EXPR, integer_type_node,
loop_var,
build_int_cst (integer_type_node, 1)));
/* Making the loop... actually loop! */
tmp = gfc_finish_block (&loop);
tmp = build1_v (LOOP_EXPR, tmp);
gfc_add_expr_to_block (&se->pre, tmp);
/* The exit label. */
tmp = build1_v (LABEL_EXPR, exit_label);
gfc_add_expr_to_block (&se->pre, tmp);
/* sub(co_dim) = (co_dim < corank) ? ml - m*extent + lcobound(dim_arg)
: m + lcobound(corank) */
cond = fold_build2_loc (input_location, LT_EXPR, boolean_type_node, dim_arg,
build_int_cst (TREE_TYPE (dim_arg), corank));
lbound = gfc_conv_descriptor_lbound_get (desc,
fold_build2_loc (input_location, PLUS_EXPR,
gfc_array_index_type, dim_arg,
build_int_cst (TREE_TYPE (dim_arg), rank-1)));
lbound = fold_convert (type, lbound);
tmp = fold_build2_loc (input_location, MINUS_EXPR, type, ml,
fold_build2_loc (input_location, MULT_EXPR, type,
m, extent));
tmp = fold_build2_loc (input_location, PLUS_EXPR, type, tmp, lbound);
se->expr = fold_build3_loc (input_location, COND_EXPR, type, cond, tmp,
fold_build2_loc (input_location, PLUS_EXPR, type,
m, lbound));
}
static void
trans_image_index (gfc_se * se, gfc_expr *expr)
{
tree num_images, cond, coindex, type, lbound, ubound, desc, subdesc,
tmp, invalid_bound;
gfc_se argse, subse;
int rank, corank, codim;
type = gfc_get_int_type (gfc_default_integer_kind);
corank = gfc_get_corank (expr->value.function.actual->expr);
rank = expr->value.function.actual->expr->rank;
/* Obtain the descriptor of the COARRAY. */
gfc_init_se (&argse, NULL);
argse.want_coarray = 1;
gfc_conv_expr_descriptor (&argse, expr->value.function.actual->expr);
gfc_add_block_to_block (&se->pre, &argse.pre);
gfc_add_block_to_block (&se->post, &argse.post);
desc = argse.expr;
/* Obtain a handle to the SUB argument. */
gfc_init_se (&subse, NULL);
gfc_conv_expr_descriptor (&subse, expr->value.function.actual->next->expr);
gfc_add_block_to_block (&se->pre, &subse.pre);
gfc_add_block_to_block (&se->post, &subse.post);
subdesc = build_fold_indirect_ref_loc (input_location,
gfc_conv_descriptor_data_get (subse.expr));
/* Fortran 2008 does not require that the values remain in the cobounds,
thus we need explicitly check this - and return 0 if they are exceeded. */
lbound = gfc_conv_descriptor_lbound_get (desc, gfc_rank_cst[rank+corank-1]);
tmp = gfc_build_array_ref (subdesc, gfc_rank_cst[corank-1], NULL);
invalid_bound = fold_build2_loc (input_location, LT_EXPR, boolean_type_node,
fold_convert (gfc_array_index_type, tmp),
lbound);
for (codim = corank + rank - 2; codim >= rank; codim--)
{
lbound = gfc_conv_descriptor_lbound_get (desc, gfc_rank_cst[codim]);
ubound = gfc_conv_descriptor_ubound_get (desc, gfc_rank_cst[codim]);
tmp = gfc_build_array_ref (subdesc, gfc_rank_cst[codim-rank], NULL);
cond = fold_build2_loc (input_location, LT_EXPR, boolean_type_node,
fold_convert (gfc_array_index_type, tmp),
lbound);
invalid_bound = fold_build2_loc (input_location, TRUTH_OR_EXPR,
boolean_type_node, invalid_bound, cond);
cond = fold_build2_loc (input_location, GT_EXPR, boolean_type_node,
fold_convert (gfc_array_index_type, tmp),
ubound);
invalid_bound = fold_build2_loc (input_location, TRUTH_OR_EXPR,
boolean_type_node, invalid_bound, cond);
}
invalid_bound = gfc_unlikely (invalid_bound);
/* See Fortran 2008, C.10 for the following algorithm. */
/* coindex = sub(corank) - lcobound(n). */
coindex = fold_convert (gfc_array_index_type,
gfc_build_array_ref (subdesc, gfc_rank_cst[corank-1],
NULL));
lbound = gfc_conv_descriptor_lbound_get (desc, gfc_rank_cst[rank+corank-1]);
coindex = fold_build2_loc (input_location, MINUS_EXPR, gfc_array_index_type,
fold_convert (gfc_array_index_type, coindex),
lbound);
for (codim = corank + rank - 2; codim >= rank; codim--)
{
tree extent, ubound;
/* coindex = coindex*extent(codim) + sub(codim) - lcobound(codim). */
lbound = gfc_conv_descriptor_lbound_get (desc, gfc_rank_cst[codim]);
ubound = gfc_conv_descriptor_ubound_get (desc, gfc_rank_cst[codim]);
extent = gfc_conv_array_extent_dim (lbound, ubound, NULL);
/* coindex *= extent. */
coindex = fold_build2_loc (input_location, MULT_EXPR,
gfc_array_index_type, coindex, extent);
/* coindex += sub(codim). */
tmp = gfc_build_array_ref (subdesc, gfc_rank_cst[codim-rank], NULL);
coindex = fold_build2_loc (input_location, PLUS_EXPR,
gfc_array_index_type, coindex,
fold_convert (gfc_array_index_type, tmp));
/* coindex -= lbound(codim). */
lbound = gfc_conv_descriptor_lbound_get (desc, gfc_rank_cst[codim]);
coindex = fold_build2_loc (input_location, MINUS_EXPR,
gfc_array_index_type, coindex, lbound);
}
coindex = fold_build2_loc (input_location, PLUS_EXPR, type,
fold_convert(type, coindex),
build_int_cst (type, 1));
/* Return 0 if "coindex" exceeds num_images(). */
if (gfc_option.coarray == GFC_FCOARRAY_SINGLE)
num_images = build_int_cst (type, 1);
else
{
gfc_init_coarray_decl (false);
num_images = fold_convert (type, gfort_gvar_caf_num_images);
}
tmp = gfc_create_var (type, NULL);
gfc_add_modify (&se->pre, tmp, coindex);
cond = fold_build2_loc (input_location, GT_EXPR, boolean_type_node, tmp,
num_images);
cond = fold_build2_loc (input_location, TRUTH_OR_EXPR, boolean_type_node,
cond,
fold_convert (boolean_type_node, invalid_bound));
se->expr = fold_build3_loc (input_location, COND_EXPR, type, cond,
build_int_cst (type, 0), tmp);
}
static void
trans_num_images (gfc_se * se)
{
gfc_init_coarray_decl (false);
se->expr = fold_convert (gfc_get_int_type (gfc_default_integer_kind),
gfort_gvar_caf_num_images);
}
static void
gfc_conv_intrinsic_rank (gfc_se *se, gfc_expr *expr)
{
gfc_se argse;
gfc_init_se (&argse, NULL);
argse.data_not_needed = 1;
argse.descriptor_only = 1;
gfc_conv_expr_descriptor (&argse, expr->value.function.actual->expr);
gfc_add_block_to_block (&se->pre, &argse.pre);
gfc_add_block_to_block (&se->post, &argse.post);
se->expr = gfc_conv_descriptor_rank (argse.expr);
}
/* Evaluate a single upper or lower bound. */
/* TODO: bound intrinsic generates way too much unnecessary code. */
static void
gfc_conv_intrinsic_bound (gfc_se * se, gfc_expr * expr, int upper)
{
gfc_actual_arglist *arg;
gfc_actual_arglist *arg2;
tree desc;
tree type;
tree bound;
tree tmp;
tree cond, cond1, cond3, cond4, size;
tree ubound;
tree lbound;
gfc_se argse;
gfc_array_spec * as;
bool assumed_rank_lb_one;
arg = expr->value.function.actual;
arg2 = arg->next;
if (se->ss)
{
/* Create an implicit second parameter from the loop variable. */
gcc_assert (!arg2->expr);
gcc_assert (se->loop->dimen == 1);
gcc_assert (se->ss->info->expr == expr);
gfc_advance_se_ss_chain (se);
bound = se->loop->loopvar[0];
bound = fold_build2_loc (input_location, MINUS_EXPR,
gfc_array_index_type, bound,
se->loop->from[0]);
}
else
{
/* use the passed argument. */
gcc_assert (arg2->expr);
gfc_init_se (&argse, NULL);
gfc_conv_expr_type (&argse, arg2->expr, gfc_array_index_type);
gfc_add_block_to_block (&se->pre, &argse.pre);
bound = argse.expr;
/* Convert from one based to zero based. */
bound = fold_build2_loc (input_location, MINUS_EXPR,
gfc_array_index_type, bound,
gfc_index_one_node);
}
/* TODO: don't re-evaluate the descriptor on each iteration. */
/* Get a descriptor for the first parameter. */
gfc_init_se (&argse, NULL);
gfc_conv_expr_descriptor (&argse, arg->expr);
gfc_add_block_to_block (&se->pre, &argse.pre);
gfc_add_block_to_block (&se->post, &argse.post);
desc = argse.expr;
as = gfc_get_full_arrayspec_from_expr (arg->expr);
if (INTEGER_CST_P (bound))
{
int hi, low;
hi = TREE_INT_CST_HIGH (bound);
low = TREE_INT_CST_LOW (bound);
if (hi || low < 0
|| ((!as || as->type != AS_ASSUMED_RANK)
&& low >= GFC_TYPE_ARRAY_RANK (TREE_TYPE (desc)))
|| low > GFC_MAX_DIMENSIONS)
gfc_error ("'dim' argument of %s intrinsic at %L is not a valid "
"dimension index", upper ? "UBOUND" : "LBOUND",
&expr->where);
}
if (!INTEGER_CST_P (bound) || (as && as->type == AS_ASSUMED_RANK))
{
if (gfc_option.rtcheck & GFC_RTCHECK_BOUNDS)
{
bound = gfc_evaluate_now (bound, &se->pre);
cond = fold_build2_loc (input_location, LT_EXPR, boolean_type_node,
bound, build_int_cst (TREE_TYPE (bound), 0));
if (as && as->type == AS_ASSUMED_RANK)
tmp = gfc_conv_descriptor_rank (desc);
else
tmp = gfc_rank_cst[GFC_TYPE_ARRAY_RANK (TREE_TYPE (desc))];
tmp = fold_build2_loc (input_location, GE_EXPR, boolean_type_node,
bound, fold_convert(TREE_TYPE (bound), tmp));
cond = fold_build2_loc (input_location, TRUTH_ORIF_EXPR,
boolean_type_node, cond, tmp);
gfc_trans_runtime_check (true, false, cond, &se->pre, &expr->where,
gfc_msg_fault);
}
}
/* Take care of the lbound shift for assumed-rank arrays, which are
nonallocatable and nonpointers. Those has a lbound of 1. */
assumed_rank_lb_one = as && as->type == AS_ASSUMED_RANK
&& ((arg->expr->ts.type != BT_CLASS
&& !arg->expr->symtree->n.sym->attr.allocatable
&& !arg->expr->symtree->n.sym->attr.pointer)
|| (arg->expr->ts.type == BT_CLASS
&& !CLASS_DATA (arg->expr)->attr.allocatable
&& !CLASS_DATA (arg->expr)->attr.class_pointer));
ubound = gfc_conv_descriptor_ubound_get (desc, bound);
lbound = gfc_conv_descriptor_lbound_get (desc, bound);
/* 13.14.53: Result value for LBOUND
Case (i): For an array section or for an array expression other than a
whole array or array structure component, LBOUND(ARRAY, DIM)
has the value 1. For a whole array or array structure
component, LBOUND(ARRAY, DIM) has the value:
(a) equal to the lower bound for subscript DIM of ARRAY if
dimension DIM of ARRAY does not have extent zero
or if ARRAY is an assumed-size array of rank DIM,
or (b) 1 otherwise.
13.14.113: Result value for UBOUND
Case (i): For an array section or for an array expression other than a
whole array or array structure component, UBOUND(ARRAY, DIM)
has the value equal to the number of elements in the given
dimension; otherwise, it has a value equal to the upper bound
for subscript DIM of ARRAY if dimension DIM of ARRAY does
not have size zero and has value zero if dimension DIM has
size zero. */
if (!upper && assumed_rank_lb_one)
se->expr = gfc_index_one_node;
else if (as)
{
tree stride = gfc_conv_descriptor_stride_get (desc, bound);
cond1 = fold_build2_loc (input_location, GE_EXPR, boolean_type_node,
ubound, lbound);
cond3 = fold_build2_loc (input_location, GE_EXPR, boolean_type_node,
stride, gfc_index_zero_node);
cond3 = fold_build2_loc (input_location, TRUTH_AND_EXPR,
boolean_type_node, cond3, cond1);
cond4 = fold_build2_loc (input_location, LT_EXPR, boolean_type_node,
stride, gfc_index_zero_node);
if (upper)
{
tree cond5;
cond = fold_build2_loc (input_location, TRUTH_OR_EXPR,
boolean_type_node, cond3, cond4);
cond5 = fold_build2_loc (input_location, EQ_EXPR, boolean_type_node,
gfc_index_one_node, lbound);
cond5 = fold_build2_loc (input_location, TRUTH_AND_EXPR,
boolean_type_node, cond4, cond5);
cond = fold_build2_loc (input_location, TRUTH_OR_EXPR,
boolean_type_node, cond, cond5);
if (assumed_rank_lb_one)
{
tmp = fold_build2_loc (input_location, MINUS_EXPR,
gfc_array_index_type, ubound, lbound);
tmp = fold_build2_loc (input_location, PLUS_EXPR,
gfc_array_index_type, tmp, gfc_index_one_node);
}
else
tmp = ubound;
se->expr = fold_build3_loc (input_location, COND_EXPR,
gfc_array_index_type, cond,
tmp, gfc_index_zero_node);
}
else
{
if (as->type == AS_ASSUMED_SIZE)
cond = fold_build2_loc (input_location, EQ_EXPR, boolean_type_node,
bound, build_int_cst (TREE_TYPE (bound),
arg->expr->rank - 1));
else
cond = boolean_false_node;
cond1 = fold_build2_loc (input_location, TRUTH_OR_EXPR,
boolean_type_node, cond3, cond4);
cond = fold_build2_loc (input_location, TRUTH_OR_EXPR,
boolean_type_node, cond, cond1);
se->expr = fold_build3_loc (input_location, COND_EXPR,
gfc_array_index_type, cond,
lbound, gfc_index_one_node);
}
}
else
{
if (upper)
{
size = fold_build2_loc (input_location, MINUS_EXPR,
gfc_array_index_type, ubound, lbound);
se->expr = fold_build2_loc (input_location, PLUS_EXPR,
gfc_array_index_type, size,
gfc_index_one_node);
se->expr = fold_build2_loc (input_location, MAX_EXPR,
gfc_array_index_type, se->expr,
gfc_index_zero_node);
}
else
se->expr = gfc_index_one_node;
}
type = gfc_typenode_for_spec (&expr->ts);
se->expr = convert (type, se->expr);
}
static void
conv_intrinsic_cobound (gfc_se * se, gfc_expr * expr)
{
gfc_actual_arglist *arg;
gfc_actual_arglist *arg2;
gfc_se argse;
tree bound, resbound, resbound2, desc, cond, tmp;
tree type;
int corank;
gcc_assert (expr->value.function.isym->id == GFC_ISYM_LCOBOUND
|| expr->value.function.isym->id == GFC_ISYM_UCOBOUND
|| expr->value.function.isym->id == GFC_ISYM_THIS_IMAGE);
arg = expr->value.function.actual;
arg2 = arg->next;
gcc_assert (arg->expr->expr_type == EXPR_VARIABLE);
corank = gfc_get_corank (arg->expr);
gfc_init_se (&argse, NULL);
argse.want_coarray = 1;
gfc_conv_expr_descriptor (&argse, arg->expr);
gfc_add_block_to_block (&se->pre, &argse.pre);
gfc_add_block_to_block (&se->post, &argse.post);
desc = argse.expr;
if (se->ss)
{
/* Create an implicit second parameter from the loop variable. */
gcc_assert (!arg2->expr);
gcc_assert (corank > 0);
gcc_assert (se->loop->dimen == 1);
gcc_assert (se->ss->info->expr == expr);
bound = se->loop->loopvar[0];
bound = fold_build2_loc (input_location, PLUS_EXPR, gfc_array_index_type,
bound, gfc_rank_cst[arg->expr->rank]);
gfc_advance_se_ss_chain (se);
}
else
{
/* use the passed argument. */
gcc_assert (arg2->expr);
gfc_init_se (&argse, NULL);
gfc_conv_expr_type (&argse, arg2->expr, gfc_array_index_type);
gfc_add_block_to_block (&se->pre, &argse.pre);
bound = argse.expr;
if (INTEGER_CST_P (bound))
{
int hi, low;
hi = TREE_INT_CST_HIGH (bound);
low = TREE_INT_CST_LOW (bound);
if (hi || low < 1 || low > GFC_TYPE_ARRAY_CORANK (TREE_TYPE (desc)))
gfc_error ("'dim' argument of %s intrinsic at %L is not a valid "
"dimension index", expr->value.function.isym->name,
&expr->where);
}
else if (gfc_option.rtcheck & GFC_RTCHECK_BOUNDS)
{
bound = gfc_evaluate_now (bound, &se->pre);
cond = fold_build2_loc (input_location, LT_EXPR, boolean_type_node,
bound, build_int_cst (TREE_TYPE (bound), 1));
tmp = gfc_rank_cst[GFC_TYPE_ARRAY_CORANK (TREE_TYPE (desc))];
tmp = fold_build2_loc (input_location, GT_EXPR, boolean_type_node,
bound, tmp);
cond = fold_build2_loc (input_location, TRUTH_ORIF_EXPR,
boolean_type_node, cond, tmp);
gfc_trans_runtime_check (true, false, cond, &se->pre, &expr->where,
gfc_msg_fault);
}
/* Subtract 1 to get to zero based and add dimensions. */
switch (arg->expr->rank)
{
case 0:
bound = fold_build2_loc (input_location, MINUS_EXPR,
gfc_array_index_type, bound,
gfc_index_one_node);
case 1:
break;
default:
bound = fold_build2_loc (input_location, PLUS_EXPR,
gfc_array_index_type, bound,
gfc_rank_cst[arg->expr->rank - 1]);
}
}
resbound = gfc_conv_descriptor_lbound_get (desc, bound);
/* Handle UCOBOUND with special handling of the last codimension. */
if (expr->value.function.isym->id == GFC_ISYM_UCOBOUND)
{
/* Last codimension: For -fcoarray=single just return
the lcobound - otherwise add
ceiling (real (num_images ()) / real (size)) - 1
= (num_images () + size - 1) / size - 1
= (num_images - 1) / size(),
where size is the product of the extent of all but the last
codimension. */
if (gfc_option.coarray != GFC_FCOARRAY_SINGLE && corank > 1)
{
tree cosize;
gfc_init_coarray_decl (false);
cosize = gfc_conv_descriptor_cosize (desc, arg->expr->rank, corank);
tmp = fold_build2_loc (input_location, MINUS_EXPR,
gfc_array_index_type,
fold_convert (gfc_array_index_type,
gfort_gvar_caf_num_images),
build_int_cst (gfc_array_index_type, 1));
tmp = fold_build2_loc (input_location, TRUNC_DIV_EXPR,
gfc_array_index_type, tmp,
fold_convert (gfc_array_index_type, cosize));
resbound = fold_build2_loc (input_location, PLUS_EXPR,
gfc_array_index_type, resbound, tmp);
}
else if (gfc_option.coarray != GFC_FCOARRAY_SINGLE)
{
/* ubound = lbound + num_images() - 1. */
gfc_init_coarray_decl (false);
tmp = fold_build2_loc (input_location, MINUS_EXPR,
gfc_array_index_type,
fold_convert (gfc_array_index_type,
gfort_gvar_caf_num_images),
build_int_cst (gfc_array_index_type, 1));
resbound = fold_build2_loc (input_location, PLUS_EXPR,
gfc_array_index_type, resbound, tmp);
}
if (corank > 1)
{
cond = fold_build2_loc (input_location, EQ_EXPR, boolean_type_node,
bound,
build_int_cst (TREE_TYPE (bound),
arg->expr->rank + corank - 1));
resbound2 = gfc_conv_descriptor_ubound_get (desc, bound);
se->expr = fold_build3_loc (input_location, COND_EXPR,
gfc_array_index_type, cond,
resbound, resbound2);
}
else
se->expr = resbound;
}
else
se->expr = resbound;
type = gfc_typenode_for_spec (&expr->ts);
se->expr = convert (type, se->expr);
}
static void
conv_intrinsic_stride (gfc_se * se, gfc_expr * expr)
{
gfc_actual_arglist *array_arg;
gfc_actual_arglist *dim_arg;
gfc_se argse;
tree desc, tmp;
array_arg = expr->value.function.actual;
dim_arg = array_arg->next;
gcc_assert (array_arg->expr->expr_type == EXPR_VARIABLE);
gfc_init_se (&argse, NULL);
gfc_conv_expr_descriptor (&argse, array_arg->expr);
gfc_add_block_to_block (&se->pre, &argse.pre);
gfc_add_block_to_block (&se->post, &argse.post);
desc = argse.expr;
gcc_assert (dim_arg->expr);
gfc_init_se (&argse, NULL);
gfc_conv_expr_type (&argse, dim_arg->expr, gfc_array_index_type);
gfc_add_block_to_block (&se->pre, &argse.pre);
tmp = fold_build2_loc (input_location, MINUS_EXPR, gfc_array_index_type,
argse.expr, gfc_index_one_node);
se->expr = gfc_conv_descriptor_stride_get (desc, tmp);
}
static void
gfc_conv_intrinsic_abs (gfc_se * se, gfc_expr * expr)
{
tree arg, cabs;
gfc_conv_intrinsic_function_args (se, expr, &arg, 1);
switch (expr->value.function.actual->expr->ts.type)
{
case BT_INTEGER:
case BT_REAL:
se->expr = fold_build1_loc (input_location, ABS_EXPR, TREE_TYPE (arg),
arg);
break;
case BT_COMPLEX:
cabs = gfc_builtin_decl_for_float_kind (BUILT_IN_CABS, expr->ts.kind);
se->expr = build_call_expr_loc (input_location, cabs, 1, arg);
break;
default:
gcc_unreachable ();
}
}
/* Create a complex value from one or two real components. */
static void
gfc_conv_intrinsic_cmplx (gfc_se * se, gfc_expr * expr, int both)
{
tree real;
tree imag;
tree type;
tree *args;
unsigned int num_args;
num_args = gfc_intrinsic_argument_list_length (expr);
args = XALLOCAVEC (tree, num_args);
type = gfc_typenode_for_spec (&expr->ts);
gfc_conv_intrinsic_function_args (se, expr, args, num_args);
real = convert (TREE_TYPE (type), args[0]);
if (both)
imag = convert (TREE_TYPE (type), args[1]);
else if (TREE_CODE (TREE_TYPE (args[0])) == COMPLEX_TYPE)
{
imag = fold_build1_loc (input_location, IMAGPART_EXPR,
TREE_TYPE (TREE_TYPE (args[0])), args[0]);
imag = convert (TREE_TYPE (type), imag);
}
else
imag = build_real_from_int_cst (TREE_TYPE (type), integer_zero_node);
se->expr = fold_build2_loc (input_location, COMPLEX_EXPR, type, real, imag);
}
/* Remainder function MOD(A, P) = A - INT(A / P) * P
MODULO(A, P) = A - FLOOR (A / P) * P
The obvious algorithms above are numerically instable for large
arguments, hence these intrinsics are instead implemented via calls
to the fmod family of functions. It is the responsibility of the
user to ensure that the second argument is non-zero. */
static void
gfc_conv_intrinsic_mod (gfc_se * se, gfc_expr * expr, int modulo)
{
tree type;
tree tmp;
tree test;
tree test2;
tree fmod;
tree zero;
tree args[2];
gfc_conv_intrinsic_function_args (se, expr, args, 2);
switch (expr->ts.type)
{
case BT_INTEGER:
/* Integer case is easy, we've got a builtin op. */
type = TREE_TYPE (args[0]);
if (modulo)
se->expr = fold_build2_loc (input_location, FLOOR_MOD_EXPR, type,
args[0], args[1]);
else
se->expr = fold_build2_loc (input_location, TRUNC_MOD_EXPR, type,
args[0], args[1]);
break;
case BT_REAL:
fmod = NULL_TREE;
/* Check if we have a builtin fmod. */
fmod = gfc_builtin_decl_for_float_kind (BUILT_IN_FMOD, expr->ts.kind);
/* The builtin should always be available. */
gcc_assert (fmod != NULL_TREE);
tmp = build_addr (fmod, current_function_decl);
se->expr = build_call_array_loc (input_location,
TREE_TYPE (TREE_TYPE (fmod)),
tmp, 2, args);
if (modulo == 0)
return;
type = TREE_TYPE (args[0]);
args[0] = gfc_evaluate_now (args[0], &se->pre);
args[1] = gfc_evaluate_now (args[1], &se->pre);
/* Definition:
modulo = arg - floor (arg/arg2) * arg2
In order to calculate the result accurately, we use the fmod
function as follows.
res = fmod (arg, arg2);
if (res)
{
if ((arg < 0) xor (arg2 < 0))
res += arg2;
}
else
res = copysign (0., arg2);
=> As two nested ternary exprs:
res = res ? (((arg < 0) xor (arg2 < 0)) ? res + arg2 : res)
: copysign (0., arg2);
*/
zero = gfc_build_const (type, integer_zero_node);
tmp = gfc_evaluate_now (se->expr, &se->pre);
if (!flag_signed_zeros)
{
test = fold_build2_loc (input_location, LT_EXPR, boolean_type_node,
args[0], zero);
test2 = fold_build2_loc (input_location, LT_EXPR, boolean_type_node,
args[1], zero);
test2 = fold_build2_loc (input_location, TRUTH_XOR_EXPR,
boolean_type_node, test, test2);
test = fold_build2_loc (input_location, NE_EXPR, boolean_type_node,
tmp, zero);
test = fold_build2_loc (input_location, TRUTH_AND_EXPR,
boolean_type_node, test, test2);
test = gfc_evaluate_now (test, &se->pre);
se->expr = fold_build3_loc (input_location, COND_EXPR, type, test,
fold_build2_loc (input_location,
PLUS_EXPR,
type, tmp, args[1]),
tmp);
}
else
{
tree expr1, copysign, cscall;
copysign = gfc_builtin_decl_for_float_kind (BUILT_IN_COPYSIGN,
expr->ts.kind);
test = fold_build2_loc (input_location, LT_EXPR, boolean_type_node,
args[0], zero);
test2 = fold_build2_loc (input_location, LT_EXPR, boolean_type_node,
args[1], zero);
test2 = fold_build2_loc (input_location, TRUTH_XOR_EXPR,
boolean_type_node, test, test2);
expr1 = fold_build3_loc (input_location, COND_EXPR, type, test2,
fold_build2_loc (input_location,
PLUS_EXPR,
type, tmp, args[1]),
tmp);
test = fold_build2_loc (input_location, NE_EXPR, boolean_type_node,
tmp, zero);
cscall = build_call_expr_loc (input_location, copysign, 2, zero,
args[1]);
se->expr = fold_build3_loc (input_location, COND_EXPR, type, test,
expr1, cscall);
}
return;
default:
gcc_unreachable ();
}
}
/* DSHIFTL(I,J,S) = (I << S) | (J >> (BITSIZE(J) - S))
DSHIFTR(I,J,S) = (I << (BITSIZE(I) - S)) | (J >> S)
where the right shifts are logical (i.e. 0's are shifted in).
Because SHIFT_EXPR's want shifts strictly smaller than the integral
type width, we have to special-case both S == 0 and S == BITSIZE(J):
DSHIFTL(I,J,0) = I
DSHIFTL(I,J,BITSIZE) = J
DSHIFTR(I,J,0) = J
DSHIFTR(I,J,BITSIZE) = I. */
static void
gfc_conv_intrinsic_dshift (gfc_se * se, gfc_expr * expr, bool dshiftl)
{
tree type, utype, stype, arg1, arg2, shift, res, left, right;
tree args[3], cond, tmp;
int bitsize;
gfc_conv_intrinsic_function_args (se, expr, args, 3);
gcc_assert (TREE_TYPE (args[0]) == TREE_TYPE (args[1]));
type = TREE_TYPE (args[0]);
bitsize = TYPE_PRECISION (type);
utype = unsigned_type_for (type);
stype = TREE_TYPE (args[2]);
arg1 = gfc_evaluate_now (args[0], &se->pre);
arg2 = gfc_evaluate_now (args[1], &se->pre);
shift = gfc_evaluate_now (args[2], &se->pre);
/* The generic case. */
tmp = fold_build2_loc (input_location, MINUS_EXPR, stype,
build_int_cst (stype, bitsize), shift);
left = fold_build2_loc (input_location, LSHIFT_EXPR, type,
arg1, dshiftl ? shift : tmp);
right = fold_build2_loc (input_location, RSHIFT_EXPR, utype,
fold_convert (utype, arg2), dshiftl ? tmp : shift);
right = fold_convert (type, right);
res = fold_build2_loc (input_location, BIT_IOR_EXPR, type, left, right);
/* Special cases. */
cond = fold_build2_loc (input_location, EQ_EXPR, boolean_type_node, shift,
build_int_cst (stype, 0));
res = fold_build3_loc (input_location, COND_EXPR, type, cond,
dshiftl ? arg1 : arg2, res);
cond = fold_build2_loc (input_location, EQ_EXPR, boolean_type_node, shift,
build_int_cst (stype, bitsize));
res = fold_build3_loc (input_location, COND_EXPR, type, cond,
dshiftl ? arg2 : arg1, res);
se->expr = res;
}
/* Positive difference DIM (x, y) = ((x - y) < 0) ? 0 : x - y. */
static void
gfc_conv_intrinsic_dim (gfc_se * se, gfc_expr * expr)
{
tree val;
tree tmp;
tree type;
tree zero;
tree args[2];
gfc_conv_intrinsic_function_args (se, expr, args, 2);
type = TREE_TYPE (args[0]);
val = fold_build2_loc (input_location, MINUS_EXPR, type, args[0], args[1]);
val = gfc_evaluate_now (val, &se->pre);
zero = gfc_build_const (type, integer_zero_node);
tmp = fold_build2_loc (input_location, LE_EXPR, boolean_type_node, val, zero);
se->expr = fold_build3_loc (input_location, COND_EXPR, type, tmp, zero, val);
}
/* SIGN(A, B) is absolute value of A times sign of B.
The real value versions use library functions to ensure the correct
handling of negative zero. Integer case implemented as:
SIGN(A, B) = { tmp = (A ^ B) >> C; (A + tmp) ^ tmp }
*/
static void
gfc_conv_intrinsic_sign (gfc_se * se, gfc_expr * expr)
{
tree tmp;
tree type;
tree args[2];
gfc_conv_intrinsic_function_args (se, expr, args, 2);
if (expr->ts.type == BT_REAL)
{
tree abs;
tmp = gfc_builtin_decl_for_float_kind (BUILT_IN_COPYSIGN, expr->ts.kind);
abs = gfc_builtin_decl_for_float_kind (BUILT_IN_FABS, expr->ts.kind);
/* We explicitly have to ignore the minus sign. We do so by using
result = (arg1 == 0) ? abs(arg0) : copysign(arg0, arg1). */
if (!gfc_option.flag_sign_zero
&& MODE_HAS_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (args[1]))))
{
tree cond, zero;
zero = build_real_from_int_cst (TREE_TYPE (args[1]), integer_zero_node);
cond = fold_build2_loc (input_location, EQ_EXPR, boolean_type_node,
args[1], zero);
se->expr = fold_build3_loc (input_location, COND_EXPR,
TREE_TYPE (args[0]), cond,
build_call_expr_loc (input_location, abs, 1,
args[0]),
build_call_expr_loc (input_location, tmp, 2,
args[0], args[1]));
}
else
se->expr = build_call_expr_loc (input_location, tmp, 2,
args[0], args[1]);
return;
}
/* Having excluded floating point types, we know we are now dealing
with signed integer types. */
type = TREE_TYPE (args[0]);
/* Args[0] is used multiple times below. */
args[0] = gfc_evaluate_now (args[0], &se->pre);
/* Construct (A ^ B) >> 31, which generates a bit mask of all zeros if
the signs of A and B are the same, and of all ones if they differ. */
tmp = fold_build2_loc (input_location, BIT_XOR_EXPR, type, args[0], args[1]);
tmp = fold_build2_loc (input_location, RSHIFT_EXPR, type, tmp,
build_int_cst (type, TYPE_PRECISION (type) - 1));
tmp = gfc_evaluate_now (tmp, &se->pre);
/* Construct (A + tmp) ^ tmp, which is A if tmp is zero, and -A if tmp]
is all ones (i.e. -1). */
se->expr = fold_build2_loc (input_location, BIT_XOR_EXPR, type,
fold_build2_loc (input_location, PLUS_EXPR,
type, args[0], tmp), tmp);
}
/* Test for the presence of an optional argument. */
static void
gfc_conv_intrinsic_present (gfc_se * se, gfc_expr * expr)
{
gfc_expr *arg;
arg = expr->value.function.actual->expr;
gcc_assert (arg->expr_type == EXPR_VARIABLE);
se->expr = gfc_conv_expr_present (arg->symtree->n.sym);
se->expr = convert (gfc_typenode_for_spec (&expr->ts), se->expr);
}
/* Calculate the double precision product of two single precision values. */
static void
gfc_conv_intrinsic_dprod (gfc_se * se, gfc_expr * expr)
{
tree type;
tree args[2];
gfc_conv_intrinsic_function_args (se, expr, args, 2);
/* Convert the args to double precision before multiplying. */
type = gfc_typenode_for_spec (&expr->ts);
args[0] = convert (type, args[0]);
args[1] = convert (type, args[1]);
se->expr = fold_build2_loc (input_location, MULT_EXPR, type, args[0],
args[1]);
}
/* Return a length one character string containing an ascii character. */
static void
gfc_conv_intrinsic_char (gfc_se * se, gfc_expr * expr)
{
tree arg[2];
tree var;
tree type;
unsigned int num_args;
num_args = gfc_intrinsic_argument_list_length (expr);
gfc_conv_intrinsic_function_args (se, expr, arg, num_args);
type = gfc_get_char_type (expr->ts.kind);
var = gfc_create_var (type, "char");
arg[0] = fold_build1_loc (input_location, NOP_EXPR, type, arg[0]);
gfc_add_modify (&se->pre, var, arg[0]);
se->expr = gfc_build_addr_expr (build_pointer_type (type), var);
se->string_length = build_int_cst (gfc_charlen_type_node, 1);
}
static void
gfc_conv_intrinsic_ctime (gfc_se * se, gfc_expr * expr)
{
tree var;
tree len;
tree tmp;
tree cond;
tree fndecl;
tree *args;
unsigned int num_args;
num_args = gfc_intrinsic_argument_list_length (expr) + 2;
args = XALLOCAVEC (tree, num_args);
var = gfc_create_var (pchar_type_node, "pstr");
len = gfc_create_var (gfc_charlen_type_node, "len");
gfc_conv_intrinsic_function_args (se, expr, &args[2], num_args - 2);
args[0] = gfc_build_addr_expr (NULL_TREE, var);
args[1] = gfc_build_addr_expr (NULL_TREE, len);
fndecl = build_addr (gfor_fndecl_ctime, current_function_decl);
tmp = build_call_array_loc (input_location,
TREE_TYPE (TREE_TYPE (gfor_fndecl_ctime)),
fndecl, num_args, args);
gfc_add_expr_to_block (&se->pre, tmp);
/* Free the temporary afterwards, if necessary. */
cond = fold_build2_loc (input_location, GT_EXPR, boolean_type_node,
len, build_int_cst (TREE_TYPE (len), 0));
tmp = gfc_call_free (var);
tmp = build3_v (COND_EXPR, cond, tmp, build_empty_stmt (input_location));
gfc_add_expr_to_block (&se->post, tmp);
se->expr = var;
se->string_length = len;
}
static void
gfc_conv_intrinsic_fdate (gfc_se * se, gfc_expr * expr)
{
tree var;
tree len;
tree tmp;
tree cond;
tree fndecl;
tree *args;
unsigned int num_args;
num_args = gfc_intrinsic_argument_list_length (expr) + 2;
args = XALLOCAVEC (tree, num_args);
var = gfc_create_var (pchar_type_node, "pstr");
len = gfc_create_var (gfc_charlen_type_node, "len");
gfc_conv_intrinsic_function_args (se, expr, &args[2], num_args - 2);
args[0] = gfc_build_addr_expr (NULL_TREE, var);
args[1] = gfc_build_addr_expr (NULL_TREE, len);
fndecl = build_addr (gfor_fndecl_fdate, current_function_decl);
tmp = build_call_array_loc (input_location,
TREE_TYPE (TREE_TYPE (gfor_fndecl_fdate)),
fndecl, num_args, args);
gfc_add_expr_to_block (&se->pre, tmp);
/* Free the temporary afterwards, if necessary. */
cond = fold_build2_loc (input_location, GT_EXPR, boolean_type_node,
len, build_int_cst (TREE_TYPE (len), 0));
tmp = gfc_call_free (var);
tmp = build3_v (COND_EXPR, cond, tmp, build_empty_stmt (input_location));
gfc_add_expr_to_block (&se->post, tmp);
se->expr = var;
se->string_length = len;
}
/* Return a character string containing the tty name. */
static void
gfc_conv_intrinsic_ttynam (gfc_se * se, gfc_expr * expr)
{
tree var;
tree len;
tree tmp;
tree cond;
tree fndecl;
tree *args;
unsigned int num_args;
num_args = gfc_intrinsic_argument_list_length (expr) + 2;
args = XALLOCAVEC (tree, num_args);
var = gfc_create_var (pchar_type_node, "pstr");
len = gfc_create_var (gfc_charlen_type_node, "len");
gfc_conv_intrinsic_function_args (se, expr, &args[2], num_args - 2);
args[0] = gfc_build_addr_expr (NULL_TREE, var);
args[1] = gfc_build_addr_expr (NULL_TREE, len);
fndecl = build_addr (gfor_fndecl_ttynam, current_function_decl);
tmp = build_call_array_loc (input_location,
TREE_TYPE (TREE_TYPE (gfor_fndecl_ttynam)),
fndecl, num_args, args);
gfc_add_expr_to_block (&se->pre, tmp);
/* Free the temporary afterwards, if necessary. */
cond = fold_build2_loc (input_location, GT_EXPR, boolean_type_node,
len, build_int_cst (TREE_TYPE (len), 0));
tmp = gfc_call_free (var);
tmp = build3_v (COND_EXPR, cond, tmp, build_empty_stmt (input_location));
gfc_add_expr_to_block (&se->post, tmp);
se->expr = var;
se->string_length = len;
}
/* Get the minimum/maximum value of all the parameters.
minmax (a1, a2, a3, ...)
{
mvar = a1;
if (a2 .op. mvar || isnan(mvar))
mvar = a2;
if (a3 .op. mvar || isnan(mvar))
mvar = a3;
...
return mvar
}
*/
/* TODO: Mismatching types can occur when specific names are used.
These should be handled during resolution. */
static void
gfc_conv_intrinsic_minmax (gfc_se * se, gfc_expr * expr, enum tree_code op)
{
tree tmp;
tree mvar;
tree val;
tree thencase;
tree *args;
tree type;
gfc_actual_arglist *argexpr;
unsigned int i, nargs;
nargs = gfc_intrinsic_argument_list_length (expr);
args = XALLOCAVEC (tree, nargs);
gfc_conv_intrinsic_function_args (se, expr, args, nargs);
type = gfc_typenode_for_spec (&expr->ts);
argexpr = expr->value.function.actual;
if (TREE_TYPE (args[0]) != type)
args[0] = convert (type, args[0]);
/* Only evaluate the argument once. */
if (TREE_CODE (args[0]) != VAR_DECL && !TREE_CONSTANT (args[0]))
args[0] = gfc_evaluate_now (args[0], &se->pre);
mvar = gfc_create_var (type, "M");
gfc_add_modify (&se->pre, mvar, args[0]);
for (i = 1, argexpr = argexpr->next; i < nargs; i++)
{
tree cond, isnan;
val = args[i];
/* Handle absent optional arguments by ignoring the comparison. */
if (argexpr->expr->expr_type == EXPR_VARIABLE
&& argexpr->expr->symtree->n.sym->attr.optional
&& TREE_CODE (val) == INDIRECT_REF)
cond = fold_build2_loc (input_location,
NE_EXPR, boolean_type_node,
TREE_OPERAND (val, 0),
build_int_cst (TREE_TYPE (TREE_OPERAND (val, 0)), 0));
else
{
cond = NULL_TREE;
/* Only evaluate the argument once. */
if (TREE_CODE (val) != VAR_DECL && !TREE_CONSTANT (val))
val = gfc_evaluate_now (val, &se->pre);
}
thencase = build2_v (MODIFY_EXPR, mvar, convert (type, val));
tmp = fold_build2_loc (input_location, op, boolean_type_node,
convert (type, val), mvar);
/* FIXME: When the IEEE_ARITHMETIC module is implemented, the call to
__builtin_isnan might be made dependent on that module being loaded,
to help performance of programs that don't rely on IEEE semantics. */
if (FLOAT_TYPE_P (TREE_TYPE (mvar)))
{
isnan = build_call_expr_loc (input_location,
builtin_decl_explicit (BUILT_IN_ISNAN),
1, mvar);
tmp = fold_build2_loc (input_location, TRUTH_OR_EXPR,
boolean_type_node, tmp,
fold_convert (boolean_type_node, isnan));
}
tmp = build3_v (COND_EXPR, tmp, thencase,
build_empty_stmt (input_location));
if (cond != NULL_TREE)
tmp = build3_v (COND_EXPR, cond, tmp,
build_empty_stmt (input_location));
gfc_add_expr_to_block (&se->pre, tmp);
argexpr = argexpr->next;
}
se->expr = mvar;
}
/* Generate library calls for MIN and MAX intrinsics for character
variables. */
static void
gfc_conv_intrinsic_minmax_char (gfc_se * se, gfc_expr * expr, int op)
{
tree *args;
tree var, len, fndecl, tmp, cond, function;
unsigned int nargs;
nargs = gfc_intrinsic_argument_list_length (expr);
args = XALLOCAVEC (tree, nargs + 4);
gfc_conv_intrinsic_function_args (se, expr, &args[4], nargs);
/* Create the result variables. */
len = gfc_create_var (gfc_charlen_type_node, "len");
args[0] = gfc_build_addr_expr (NULL_TREE, len);
var = gfc_create_var (gfc_get_pchar_type (expr->ts.kind), "pstr");
args[1] = gfc_build_addr_expr (ppvoid_type_node, var);
args[2] = build_int_cst (integer_type_node, op);
args[3] = build_int_cst (integer_type_node, nargs / 2);
if (expr->ts.kind == 1)
function = gfor_fndecl_string_minmax;
else if (expr->ts.kind == 4)
function = gfor_fndecl_string_minmax_char4;
else
gcc_unreachable ();
/* Make the function call. */
fndecl = build_addr (function, current_function_decl);
tmp = build_call_array_loc (input_location,
TREE_TYPE (TREE_TYPE (function)), fndecl,
nargs + 4, args);
gfc_add_expr_to_block (&se->pre, tmp);
/* Free the temporary afterwards, if necessary. */
cond = fold_build2_loc (input_location, GT_EXPR, boolean_type_node,
len, build_int_cst (TREE_TYPE (len), 0));
tmp = gfc_call_free (var);
tmp = build3_v (COND_EXPR, cond, tmp, build_empty_stmt (input_location));
gfc_add_expr_to_block (&se->post, tmp);
se->expr = var;
se->string_length = len;
}
/* Create a symbol node for this intrinsic. The symbol from the frontend
has the generic name. */
static gfc_symbol *
gfc_get_symbol_for_expr (gfc_expr * expr)
{
gfc_symbol *sym;
/* TODO: Add symbols for intrinsic function to the global namespace. */
gcc_assert (strlen (expr->value.function.name) <= GFC_MAX_SYMBOL_LEN - 5);
sym = gfc_new_symbol (expr->value.function.name, NULL);
sym->ts = expr->ts;
sym->attr.external = 1;
sym->attr.function = 1;
sym->attr.always_explicit = 1;
sym->attr.proc = PROC_INTRINSIC;
sym->attr.flavor = FL_PROCEDURE;
sym->result = sym;
if (expr->rank > 0)
{
sym->attr.dimension = 1;
sym->as = gfc_get_array_spec ();
sym->as->type = AS_ASSUMED_SHAPE;
sym->as->rank = expr->rank;
}
gfc_copy_formal_args_intr (sym, expr->value.function.isym);
return sym;
}
/* Generate a call to an external intrinsic function. */
static void
gfc_conv_intrinsic_funcall (gfc_se * se, gfc_expr * expr)
{
gfc_symbol *sym;
vec<tree, va_gc> *append_args;
gcc_assert (!se->ss || se->ss->info->expr == expr);
if (se->ss)
gcc_assert (expr->rank > 0);
else
gcc_assert (expr->rank == 0);
sym = gfc_get_symbol_for_expr (expr);
/* Calls to libgfortran_matmul need to be appended special arguments,
to be able to call the BLAS ?gemm functions if required and possible. */
append_args = NULL;
if (expr->value.function.isym->id == GFC_ISYM_MATMUL
&& sym->ts.type != BT_LOGICAL)
{
tree cint = gfc_get_int_type (gfc_c_int_kind);
if (gfc_option.flag_external_blas
&& (sym->ts.type == BT_REAL || sym->ts.type == BT_COMPLEX)
&& (sym->ts.kind == 4 || sym->ts.kind == 8))
{
tree gemm_fndecl;
if (sym->ts.type == BT_REAL)
{
if (sym->ts.kind == 4)
gemm_fndecl = gfor_fndecl_sgemm;
else
gemm_fndecl = gfor_fndecl_dgemm;
}
else
{
if (sym->ts.kind == 4)
gemm_fndecl = gfor_fndecl_cgemm;
else
gemm_fndecl = gfor_fndecl_zgemm;
}
vec_alloc (append_args, 3);
append_args->quick_push (build_int_cst (cint, 1));
append_args->quick_push (build_int_cst (cint,
gfc_option.blas_matmul_limit));
append_args->quick_push (gfc_build_addr_expr (NULL_TREE,
gemm_fndecl));
}
else
{
vec_alloc (append_args, 3);
append_args->quick_push (build_int_cst (cint, 0));
append_args->quick_push (build_int_cst (cint, 0));
append_args->quick_push (null_pointer_node);
}
}
gfc_conv_procedure_call (se, sym, expr->value.function.actual, expr,
append_args);
gfc_free_symbol (sym);
}
/* ANY and ALL intrinsics. ANY->op == NE_EXPR, ALL->op == EQ_EXPR.
Implemented as
any(a)
{
forall (i=...)
if (a[i] != 0)
return 1
end forall
return 0
}
all(a)
{
forall (i=...)
if (a[i] == 0)
return 0
end forall
return 1
}
*/
static void
gfc_conv_intrinsic_anyall (gfc_se * se, gfc_expr * expr, enum tree_code op)
{
tree resvar;
stmtblock_t block;
stmtblock_t body;
tree type;
tree tmp;
tree found;
gfc_loopinfo loop;
gfc_actual_arglist *actual;
gfc_ss *arrayss;
gfc_se arrayse;
tree exit_label;
if (se->ss)
{
gfc_conv_intrinsic_funcall (se, expr);
return;
}
actual = expr->value.function.actual;
type = gfc_typenode_for_spec (&expr->ts);
/* Initialize the result. */
resvar = gfc_create_var (type, "test");
if (op == EQ_EXPR)
tmp = convert (type, boolean_true_node);
else
tmp = convert (type, boolean_false_node);
gfc_add_modify (&se->pre, resvar, tmp);
/* Walk the arguments. */
arrayss = gfc_walk_expr (actual->expr);
gcc_assert (arrayss != gfc_ss_terminator);
/* Initialize the scalarizer. */
gfc_init_loopinfo (&loop);
exit_label = gfc_build_label_decl (NULL_TREE);
TREE_USED (exit_label) = 1;
gfc_add_ss_to_loop (&loop, arrayss);
/* Initialize the loop. */
gfc_conv_ss_startstride (&loop);
gfc_conv_loop_setup (&loop, &expr->where);
gfc_mark_ss_chain_used (arrayss, 1);
/* Generate the loop body. */
gfc_start_scalarized_body (&loop, &body);
/* If the condition matches then set the return value. */
gfc_start_block (&block);
if (op == EQ_EXPR)
tmp = convert (type, boolean_false_node);
else
tmp = convert (type, boolean_true_node);
gfc_add_modify (&block, resvar, tmp);
/* And break out of the loop. */
tmp = build1_v (GOTO_EXPR, exit_label);
gfc_add_expr_to_block (&block, tmp);
found = gfc_finish_block (&block);
/* Check this element. */
gfc_init_se (&arrayse, NULL);
gfc_copy_loopinfo_to_se (&arrayse, &loop);
arrayse.ss = arrayss;
gfc_conv_expr_val (&arrayse, actual->expr);
gfc_add_block_to_block (&body, &arrayse.pre);
tmp = fold_build2_loc (input_location, op, boolean_type_node, arrayse.expr,
build_int_cst (TREE_TYPE (arrayse.expr), 0));
tmp = build3_v (COND_EXPR, tmp, found, build_empty_stmt (input_location));
gfc_add_expr_to_block (&body, tmp);
gfc_add_block_to_block (&body, &arrayse.post);
gfc_trans_scalarizing_loops (&loop, &body);
/* Add the exit label. */
tmp = build1_v (LABEL_EXPR, exit_label);
gfc_add_expr_to_block (&loop.pre, tmp);
gfc_add_block_to_block (&se->pre, &loop.pre);
gfc_add_block_to_block (&se->pre, &loop.post);
gfc_cleanup_loop (&loop);
se->expr = resvar;
}
/* COUNT(A) = Number of true elements in A. */
static void
gfc_conv_intrinsic_count (gfc_se * se, gfc_expr * expr)
{
tree resvar;
tree type;
stmtblock_t body;
tree tmp;
gfc_loopinfo loop;
gfc_actual_arglist *actual;
gfc_ss *arrayss;
gfc_se arrayse;
if (se->ss)
{
gfc_conv_intrinsic_funcall (se, expr);
return;
}
actual = expr->value.function.actual;
type = gfc_typenode_for_spec (&expr->ts);
/* Initialize the result. */
resvar = gfc_create_var (type, "count");
gfc_add_modify (&se->pre, resvar, build_int_cst (type, 0));
/* Walk the arguments. */
arrayss = gfc_walk_expr (actual->expr);
gcc_assert (arrayss != gfc_ss_terminator);
/* Initialize the scalarizer. */
gfc_init_loopinfo (&loop);
gfc_add_ss_to_loop (&loop, arrayss);
/* Initialize the loop. */
gfc_conv_ss_startstride (&loop);
gfc_conv_loop_setup (&loop, &expr->where);
gfc_mark_ss_chain_used (arrayss, 1);
/* Generate the loop body. */
gfc_start_scalarized_body (&loop, &body);
tmp = fold_build2_loc (input_location, PLUS_EXPR, TREE_TYPE (resvar),
resvar, build_int_cst (TREE_TYPE (resvar), 1));
tmp = build2_v (MODIFY_EXPR, resvar, tmp);
gfc_init_se (&arrayse, NULL);
gfc_copy_loopinfo_to_se (&arrayse, &loop);
arrayse.ss = arrayss;
gfc_conv_expr_val (&arrayse, actual->expr);
tmp = build3_v (COND_EXPR, arrayse.expr, tmp,
build_empty_stmt (input_location));
gfc_add_block_to_block (&body, &arrayse.pre);
gfc_add_expr_to_block (&body, tmp);
gfc_add_block_to_block (&body, &arrayse.post);
gfc_trans_scalarizing_loops (&loop, &body);
gfc_add_block_to_block (&se->pre, &loop.pre);
gfc_add_block_to_block (&se->pre, &loop.post);
gfc_cleanup_loop (&loop);
se->expr = resvar;
}
/* Update given gfc_se to have ss component pointing to the nested gfc_ss
struct and return the corresponding loopinfo. */
static gfc_loopinfo *
enter_nested_loop (gfc_se *se)
{
se->ss = se->ss->nested_ss;
gcc_assert (se->ss == se->ss->loop->ss);
return se->ss->loop;
}
/* Inline implementation of the sum and product intrinsics. */
static void
gfc_conv_intrinsic_arith (gfc_se * se, gfc_expr * expr, enum tree_code op,
bool norm2)
{
tree resvar;
tree scale = NULL_TREE;
tree type;
stmtblock_t body;
stmtblock_t block;
tree tmp;
gfc_loopinfo loop, *ploop;
gfc_actual_arglist *arg_array, *arg_mask;
gfc_ss *arrayss = NULL;
gfc_ss *maskss = NULL;
gfc_se arrayse;
gfc_se maskse;
gfc_se *parent_se;
gfc_expr *arrayexpr;
gfc_expr *maskexpr;
if (expr->rank > 0)
{
gcc_assert (gfc_inline_intrinsic_function_p (expr));
parent_se = se;
}
else
parent_se = NULL;
type = gfc_typenode_for_spec (&expr->ts);
/* Initialize the result. */
resvar = gfc_create_var (type, "val");
if (norm2)
{
/* result = 0.0;
scale = 1.0. */
scale = gfc_create_var (type, "scale");
gfc_add_modify (&se->pre, scale,
gfc_build_const (type, integer_one_node));
tmp = gfc_build_const (type, integer_zero_node);
}
else if (op == PLUS_EXPR || op == BIT_IOR_EXPR || op == BIT_XOR_EXPR)
tmp = gfc_build_const (type, integer_zero_node);
else if (op == NE_EXPR)
/* PARITY. */
tmp = convert (type, boolean_false_node);
else if (op == BIT_AND_EXPR)
tmp = gfc_build_const (type, fold_build1_loc (input_location, NEGATE_EXPR,
type, integer_one_node));
else
tmp = gfc_build_const (type, integer_one_node);
gfc_add_modify (&se->pre, resvar, tmp);
arg_array = expr->value.function.actual;
arrayexpr = arg_array->expr;
if (op == NE_EXPR || norm2)
/* PARITY and NORM2. */
maskexpr = NULL;
else
{
arg_mask = arg_array->next->next;
gcc_assert (arg_mask != NULL);
maskexpr = arg_mask->expr;
}
if (expr->rank == 0)
{
/* Walk the arguments. */
arrayss = gfc_walk_expr (arrayexpr);
gcc_assert (arrayss != gfc_ss_terminator);
if (maskexpr && maskexpr->rank > 0)
{
maskss = gfc_walk_expr (maskexpr);
gcc_assert (maskss != gfc_ss_terminator);
}
else
maskss = NULL;
/* Initialize the scalarizer. */
gfc_init_loopinfo (&loop);
gfc_add_ss_to_loop (&loop, arrayss);
if (maskexpr && maskexpr->rank > 0)
gfc_add_ss_to_loop (&loop, maskss);
/* Initialize the loop. */
gfc_conv_ss_startstride (&loop);
gfc_conv_loop_setup (&loop, &expr->where);
gfc_mark_ss_chain_used (arrayss, 1);
if (maskexpr && maskexpr->rank > 0)
gfc_mark_ss_chain_used (maskss, 1);
ploop = &loop;
}
else
/* All the work has been done in the parent loops. */
ploop = enter_nested_loop (se);
gcc_assert (ploop);
/* Generate the loop body. */
gfc_start_scalarized_body (ploop, &body);
/* If we have a mask, only add this element if the mask is set. */
if (maskexpr && maskexpr->rank > 0)
{
gfc_init_se (&maskse, parent_se);
gfc_copy_loopinfo_to_se (&maskse, ploop);
if (expr->rank == 0)
maskse.ss = maskss;
gfc_conv_expr_val (&maskse, maskexpr);
gfc_add_block_to_block (&body, &maskse.pre);
gfc_start_block (&block);
}
else
gfc_init_block (&block);
/* Do the actual summation/product. */
gfc_init_se (&arrayse, parent_se);
gfc_copy_loopinfo_to_se (&arrayse, ploop);
if (expr->rank == 0)
arrayse.ss = arrayss;
gfc_conv_expr_val (&arrayse, arrayexpr);
gfc_add_block_to_block (&block, &arrayse.pre);
if (norm2)
{
/* if (x(i) != 0.0)
{
absX = abs(x(i))
if (absX > scale)
{
val = scale/absX;
result = 1.0 + result * val * val;
scale = absX;
}
else
{
val = absX/scale;
result += val * val;
}
} */
tree res1, res2, cond, absX, val;
stmtblock_t ifblock1, ifblock2, ifblock3;
gfc_init_block (&ifblock1);
absX = gfc_create_var (type, "absX");
gfc_add_modify (&ifblock1, absX,
fold_build1_loc (input_location, ABS_EXPR, type,
arrayse.expr));
val = gfc_create_var (type, "val");
gfc_add_expr_to_block (&ifblock1, val);
gfc_init_block (&ifblock2);
gfc_add_modify (&ifblock2, val,
fold_build2_loc (input_location, RDIV_EXPR, type, scale,
absX));
res1 = fold_build2_loc (input_location, MULT_EXPR, type, val, val);
res1 = fold_build2_loc (input_location, MULT_EXPR, type, resvar, res1);
res1 = fold_build2_loc (input_location, PLUS_EXPR, type, res1,
gfc_build_const (type, integer_one_node));
gfc_add_modify (&ifblock2, resvar, res1);
gfc_add_modify (&ifblock2, scale, absX);
res1 = gfc_finish_block (&ifblock2);
gfc_init_block (&ifblock3);
gfc_add_modify (&ifblock3, val,
fold_build2_loc (input_location, RDIV_EXPR, type, absX,
scale));
res2 = fold_build2_loc (input_location, MULT_EXPR, type, val, val);
res2 = fold_build2_loc (input_location, PLUS_EXPR, type, resvar, res2);
gfc_add_modify (&ifblock3, resvar, res2);
res2 = gfc_finish_block (&ifblock3);
cond = fold_build2_loc (input_location, GT_EXPR, boolean_type_node,
absX, scale);
tmp = build3_v (COND_EXPR, cond, res1, res2);
gfc_add_expr_to_block (&ifblock1, tmp);
tmp = gfc_finish_block (&ifblock1);
cond = fold_build2_loc (input_location, NE_EXPR, boolean_type_node,
arrayse.expr,
gfc_build_const (type, integer_zero_node));
tmp = build3_v (COND_EXPR, cond, tmp, build_empty_stmt (input_location));
gfc_add_expr_to_block (&block, tmp);
}
else
{
tmp = fold_build2_loc (input_location, op, type, resvar, arrayse.expr);
gfc_add_modify (&block, resvar, tmp);
}
gfc_add_block_to_block (&block, &arrayse.post);
if (maskexpr && maskexpr->rank > 0)
{
/* We enclose the above in if (mask) {...} . */
tmp = gfc_finish_block (&block);
tmp = build3_v (COND_EXPR, maskse.expr, tmp,
build_empty_stmt (input_location));
}
else
tmp = gfc_finish_block (&block);
gfc_add_expr_to_block (&body, tmp);
gfc_trans_scalarizing_loops (ploop, &body);
/* For a scalar mask, enclose the loop in an if statement. */
if (maskexpr && maskexpr->rank == 0)
{
gfc_init_block (&block);
gfc_add_block_to_block (&block, &ploop->pre);
gfc_add_block_to_block (&block, &ploop->post);
tmp = gfc_finish_block (&block);
if (expr->rank > 0)
{
tmp = build3_v (COND_EXPR, se->ss->info->data.scalar.value, tmp,
build_empty_stmt (input_location));
gfc_advance_se_ss_chain (se);
}
else
{
gcc_assert (expr->rank == 0);
gfc_init_se (&maskse, NULL);
gfc_conv_expr_val (&maskse, maskexpr);
tmp = build3_v (COND_EXPR, maskse.expr, tmp,
build_empty_stmt (input_location));
}
gfc_add_expr_to_block (&block, tmp);
gfc_add_block_to_block (&se->pre, &block);
gcc_assert (se->post.head == NULL);
}
else
{
gfc_add_block_to_block (&se->pre, &ploop->pre);
gfc_add_block_to_block (&se->pre, &ploop->post);
}
if (expr->rank == 0)
gfc_cleanup_loop (ploop);
if (norm2)
{
/* result = scale * sqrt(result). */
tree sqrt;
sqrt = gfc_builtin_decl_for_float_kind (BUILT_IN_SQRT, expr->ts.kind);
resvar = build_call_expr_loc (input_location,
sqrt, 1, resvar);
resvar = fold_build2_loc (input_location, MULT_EXPR, type, scale, resvar);
}
se->expr = resvar;
}
/* Inline implementation of the dot_product intrinsic. This function
is based on gfc_conv_intrinsic_arith (the previous function). */
static void
gfc_conv_intrinsic_dot_product (gfc_se * se, gfc_expr * expr)
{
tree resvar;
tree type;
stmtblock_t body;
stmtblock_t block;
tree tmp;
gfc_loopinfo loop;
gfc_actual_arglist *actual;
gfc_ss *arrayss1, *arrayss2;
gfc_se arrayse1, arrayse2;
gfc_expr *arrayexpr1, *arrayexpr2;
type = gfc_typenode_for_spec (&expr->ts);
/* Initialize the result. */
resvar = gfc_create_var (type, "val");
if (expr->ts.type == BT_LOGICAL)
tmp = build_int_cst (type, 0);
else
tmp = gfc_build_const (type, integer_zero_node);
gfc_add_modify (&se->pre, resvar, tmp);
/* Walk argument #1. */
actual = expr->value.function.actual;
arrayexpr1 = actual->expr;
arrayss1 = gfc_walk_expr (arrayexpr1);
gcc_assert (arrayss1 != gfc_ss_terminator);
/* Walk argument #2. */
actual = actual->next;
arrayexpr2 = actual->expr;
arrayss2 = gfc_walk_expr (arrayexpr2);
gcc_assert (arrayss2 != gfc_ss_terminator);
/* Initialize the scalarizer. */
gfc_init_loopinfo (&loop);
gfc_add_ss_to_loop (&loop, arrayss1);
gfc_add_ss_to_loop (&loop, arrayss2);
/* Initialize the loop. */
gfc_conv_ss_startstride (&loop);
gfc_conv_loop_setup (&loop, &expr->where);
gfc_mark_ss_chain_used (arrayss1, 1);
gfc_mark_ss_chain_used (arrayss2, 1);
/* Generate the loop body. */
gfc_start_scalarized_body (&loop, &body);
gfc_init_block (&block);
/* Make the tree expression for [conjg(]array1[)]. */
gfc_init_se (&arrayse1, NULL);
gfc_copy_loopinfo_to_se (&arrayse1, &loop);
arrayse1.ss = arrayss1;
gfc_conv_expr_val (&arrayse1, arrayexpr1);
if (expr->ts.type == BT_COMPLEX)
arrayse1.expr = fold_build1_loc (input_location, CONJ_EXPR, type,
arrayse1.expr);
gfc_add_block_to_block (&block, &arrayse1.pre);
/* Make the tree expression for array2. */
gfc_init_se (&arrayse2, NULL);
gfc_copy_loopinfo_to_se (&arrayse2, &loop);
arrayse2.ss = arrayss2;
gfc_conv_expr_val (&arrayse2, arrayexpr2);
gfc_add_block_to_block (&block, &arrayse2.pre);
/* Do the actual product and sum. */
if (expr->ts.type == BT_LOGICAL)
{
tmp = fold_build2_loc (input_location, TRUTH_AND_EXPR, type,
arrayse1.expr, arrayse2.expr);
tmp = fold_build2_loc (input_location, TRUTH_OR_EXPR, type, resvar, tmp);
}
else
{
tmp = fold_build2_loc (input_location, MULT_EXPR, type, arrayse1.expr,
arrayse2.expr);
tmp = fold_build2_loc (input_location, PLUS_EXPR, type, resvar, tmp);
}
gfc_add_modify (&block, resvar, tmp);
/* Finish up the loop block and the loop. */
tmp = gfc_finish_block (&block);
gfc_add_expr_to_block (&body, tmp);
gfc_trans_scalarizing_loops (&loop, &body);
gfc_add_block_to_block (&se->pre, &loop.pre);
gfc_add_block_to_block (&se->pre, &loop.post);
gfc_cleanup_loop (&loop);
se->expr = resvar;
}
/* Emit code for minloc or maxloc intrinsic. There are many different cases
we need to handle. For performance reasons we sometimes create two
loops instead of one, where the second one is much simpler.
Examples for minloc intrinsic:
1) Result is an array, a call is generated
2) Array mask is used and NaNs need to be supported:
limit = Infinity;
pos = 0;
S = from;
while (S <= to) {
if (mask[S]) {
if (pos == 0) pos = S + (1 - from);
if (a[S] <= limit) { limit = a[S]; pos = S + (1 - from); goto lab1; }
}
S++;
}
goto lab2;
lab1:;
while (S <= to) {
if (mask[S]) if (a[S] < limit) { limit = a[S]; pos = S + (1 - from); }
S++;
}
lab2:;
3) NaNs need to be supported, but it is known at compile time or cheaply
at runtime whether array is nonempty or not:
limit = Infinity;
pos = 0;
S = from;
while (S <= to) {
if (a[S] <= limit) { limit = a[S]; pos = S + (1 - from); goto lab1; }
S++;
}
if (from <= to) pos = 1;
goto lab2;
lab1:;
while (S <= to) {
if (a[S] < limit) { limit = a[S]; pos = S + (1 - from); }
S++;
}
lab2:;
4) NaNs aren't supported, array mask is used:
limit = infinities_supported ? Infinity : huge (limit);
pos = 0;
S = from;
while (S <= to) {
if (mask[S]) { limit = a[S]; pos = S + (1 - from); goto lab1; }
S++;
}
goto lab2;
lab1:;
while (S <= to) {
if (mask[S]) if (a[S] < limit) { limit = a[S]; pos = S + (1 - from); }
S++;
}
lab2:;
5) Same without array mask:
limit = infinities_supported ? Infinity : huge (limit);
pos = (from <= to) ? 1 : 0;
S = from;
while (S <= to) {
if (a[S] < limit) { limit = a[S]; pos = S + (1 - from); }
S++;
}
For 3) and 5), if mask is scalar, this all goes into a conditional,
setting pos = 0; in the else branch. */
static void
gfc_conv_intrinsic_minmaxloc (gfc_se * se, gfc_expr * expr, enum tree_code op)
{
stmtblock_t body;
stmtblock_t block;
stmtblock_t ifblock;
stmtblock_t elseblock;
tree limit;
tree type;
tree tmp;
tree cond;
tree elsetmp;
tree ifbody;
tree offset;
tree nonempty;
tree lab1, lab2;
gfc_loopinfo loop;
gfc_actual_arglist *actual;
gfc_ss *arrayss;
gfc_ss *maskss;
gfc_se arrayse;
gfc_se maskse;
gfc_expr *arrayexpr;
gfc_expr *maskexpr;
tree pos;
int n;
if (se->ss)
{
gfc_conv_intrinsic_funcall (se, expr);
return;
}
/* Initialize the result. */
pos = gfc_create_var (gfc_array_index_type, "pos");
offset = gfc_create_var (gfc_array_index_type, "offset");
type = gfc_typenode_for_spec (&expr->ts);
/* Walk the arguments. */
actual = expr->value.function.actual;
arrayexpr = actual->expr;
arrayss = gfc_walk_expr (arrayexpr);
gcc_assert (arrayss != gfc_ss_terminator);
actual = actual->next->next;
gcc_assert (actual);
maskexpr = actual->expr;
nonempty = NULL;
if (maskexpr && maskexpr->rank != 0)