| /* Data references and dependences detectors. |
| Copyright (C) 2003-2013 Free Software Foundation, Inc. |
| Contributed by Sebastian Pop <pop@cri.ensmp.fr> |
| |
| This file is part of GCC. |
| |
| GCC is free software; you can redistribute it and/or modify it under |
| the terms of the GNU General Public License as published by the Free |
| Software Foundation; either version 3, or (at your option) any later |
| version. |
| |
| GCC is distributed in the hope that it will be useful, but WITHOUT ANY |
| WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with GCC; see the file COPYING3. If not see |
| <http://www.gnu.org/licenses/>. */ |
| |
| /* This pass walks a given loop structure searching for array |
| references. The information about the array accesses is recorded |
| in DATA_REFERENCE structures. |
| |
| The basic test for determining the dependences is: |
| given two access functions chrec1 and chrec2 to a same array, and |
| x and y two vectors from the iteration domain, the same element of |
| the array is accessed twice at iterations x and y if and only if: |
| | chrec1 (x) == chrec2 (y). |
| |
| The goals of this analysis are: |
| |
| - to determine the independence: the relation between two |
| independent accesses is qualified with the chrec_known (this |
| information allows a loop parallelization), |
| |
| - when two data references access the same data, to qualify the |
| dependence relation with classic dependence representations: |
| |
| - distance vectors |
| - direction vectors |
| - loop carried level dependence |
| - polyhedron dependence |
| or with the chains of recurrences based representation, |
| |
| - to define a knowledge base for storing the data dependence |
| information, |
| |
| - to define an interface to access this data. |
| |
| |
| Definitions: |
| |
| - subscript: given two array accesses a subscript is the tuple |
| composed of the access functions for a given dimension. Example: |
| Given A[f1][f2][f3] and B[g1][g2][g3], there are three subscripts: |
| (f1, g1), (f2, g2), (f3, g3). |
| |
| - Diophantine equation: an equation whose coefficients and |
| solutions are integer constants, for example the equation |
| | 3*x + 2*y = 1 |
| has an integer solution x = 1 and y = -1. |
| |
| References: |
| |
| - "Advanced Compilation for High Performance Computing" by Randy |
| Allen and Ken Kennedy. |
| http://citeseer.ist.psu.edu/goff91practical.html |
| |
| - "Loop Transformations for Restructuring Compilers - The Foundations" |
| by Utpal Banerjee. |
| |
| |
| */ |
| |
| #include "config.h" |
| #include "system.h" |
| #include "coretypes.h" |
| #include "gimple-pretty-print.h" |
| #include "tree-flow.h" |
| #include "cfgloop.h" |
| #include "tree-data-ref.h" |
| #include "tree-scalar-evolution.h" |
| #include "dumpfile.h" |
| #include "langhooks.h" |
| #include "tree-affine.h" |
| #include "params.h" |
| |
| static struct datadep_stats |
| { |
| int num_dependence_tests; |
| int num_dependence_dependent; |
| int num_dependence_independent; |
| int num_dependence_undetermined; |
| |
| int num_subscript_tests; |
| int num_subscript_undetermined; |
| int num_same_subscript_function; |
| |
| int num_ziv; |
| int num_ziv_independent; |
| int num_ziv_dependent; |
| int num_ziv_unimplemented; |
| |
| int num_siv; |
| int num_siv_independent; |
| int num_siv_dependent; |
| int num_siv_unimplemented; |
| |
| int num_miv; |
| int num_miv_independent; |
| int num_miv_dependent; |
| int num_miv_unimplemented; |
| } dependence_stats; |
| |
| static bool subscript_dependence_tester_1 (struct data_dependence_relation *, |
| struct data_reference *, |
| struct data_reference *, |
| struct loop *); |
| /* Returns true iff A divides B. */ |
| |
| static inline bool |
| tree_fold_divides_p (const_tree a, const_tree b) |
| { |
| gcc_assert (TREE_CODE (a) == INTEGER_CST); |
| gcc_assert (TREE_CODE (b) == INTEGER_CST); |
| return integer_zerop (int_const_binop (TRUNC_MOD_EXPR, b, a)); |
| } |
| |
| /* Returns true iff A divides B. */ |
| |
| static inline bool |
| int_divides_p (int a, int b) |
| { |
| return ((b % a) == 0); |
| } |
| |
| |
| |
| /* Dump into FILE all the data references from DATAREFS. */ |
| |
| static void |
| dump_data_references (FILE *file, vec<data_reference_p> datarefs) |
| { |
| unsigned int i; |
| struct data_reference *dr; |
| |
| FOR_EACH_VEC_ELT (datarefs, i, dr) |
| dump_data_reference (file, dr); |
| } |
| |
| /* Dump into STDERR all the data references from DATAREFS. */ |
| |
| DEBUG_FUNCTION void |
| debug_data_references (vec<data_reference_p> datarefs) |
| { |
| dump_data_references (stderr, datarefs); |
| } |
| |
| /* Print to STDERR the data_reference DR. */ |
| |
| DEBUG_FUNCTION void |
| debug_data_reference (struct data_reference *dr) |
| { |
| dump_data_reference (stderr, dr); |
| } |
| |
| /* Dump function for a DATA_REFERENCE structure. */ |
| |
| void |
| dump_data_reference (FILE *outf, |
| struct data_reference *dr) |
| { |
| unsigned int i; |
| |
| fprintf (outf, "#(Data Ref: \n"); |
| fprintf (outf, "# bb: %d \n", gimple_bb (DR_STMT (dr))->index); |
| fprintf (outf, "# stmt: "); |
| print_gimple_stmt (outf, DR_STMT (dr), 0, 0); |
| fprintf (outf, "# ref: "); |
| print_generic_stmt (outf, DR_REF (dr), 0); |
| fprintf (outf, "# base_object: "); |
| print_generic_stmt (outf, DR_BASE_OBJECT (dr), 0); |
| |
| for (i = 0; i < DR_NUM_DIMENSIONS (dr); i++) |
| { |
| fprintf (outf, "# Access function %d: ", i); |
| print_generic_stmt (outf, DR_ACCESS_FN (dr, i), 0); |
| } |
| fprintf (outf, "#)\n"); |
| } |
| |
| /* Dumps the affine function described by FN to the file OUTF. */ |
| |
| static void |
| dump_affine_function (FILE *outf, affine_fn fn) |
| { |
| unsigned i; |
| tree coef; |
| |
| print_generic_expr (outf, fn[0], TDF_SLIM); |
| for (i = 1; fn.iterate (i, &coef); i++) |
| { |
| fprintf (outf, " + "); |
| print_generic_expr (outf, coef, TDF_SLIM); |
| fprintf (outf, " * x_%u", i); |
| } |
| } |
| |
| /* Dumps the conflict function CF to the file OUTF. */ |
| |
| static void |
| dump_conflict_function (FILE *outf, conflict_function *cf) |
| { |
| unsigned i; |
| |
| if (cf->n == NO_DEPENDENCE) |
| fprintf (outf, "no dependence"); |
| else if (cf->n == NOT_KNOWN) |
| fprintf (outf, "not known"); |
| else |
| { |
| for (i = 0; i < cf->n; i++) |
| { |
| if (i != 0) |
| fprintf (outf, " "); |
| fprintf (outf, "["); |
| dump_affine_function (outf, cf->fns[i]); |
| fprintf (outf, "]"); |
| } |
| } |
| } |
| |
| /* Dump function for a SUBSCRIPT structure. */ |
| |
| static void |
| dump_subscript (FILE *outf, struct subscript *subscript) |
| { |
| conflict_function *cf = SUB_CONFLICTS_IN_A (subscript); |
| |
| fprintf (outf, "\n (subscript \n"); |
| fprintf (outf, " iterations_that_access_an_element_twice_in_A: "); |
| dump_conflict_function (outf, cf); |
| if (CF_NONTRIVIAL_P (cf)) |
| { |
| tree last_iteration = SUB_LAST_CONFLICT (subscript); |
| fprintf (outf, "\n last_conflict: "); |
| print_generic_expr (outf, last_iteration, 0); |
| } |
| |
| cf = SUB_CONFLICTS_IN_B (subscript); |
| fprintf (outf, "\n iterations_that_access_an_element_twice_in_B: "); |
| dump_conflict_function (outf, cf); |
| if (CF_NONTRIVIAL_P (cf)) |
| { |
| tree last_iteration = SUB_LAST_CONFLICT (subscript); |
| fprintf (outf, "\n last_conflict: "); |
| print_generic_expr (outf, last_iteration, 0); |
| } |
| |
| fprintf (outf, "\n (Subscript distance: "); |
| print_generic_expr (outf, SUB_DISTANCE (subscript), 0); |
| fprintf (outf, " ))\n"); |
| } |
| |
| /* Print the classic direction vector DIRV to OUTF. */ |
| |
| static void |
| print_direction_vector (FILE *outf, |
| lambda_vector dirv, |
| int length) |
| { |
| int eq; |
| |
| for (eq = 0; eq < length; eq++) |
| { |
| enum data_dependence_direction dir = ((enum data_dependence_direction) |
| dirv[eq]); |
| |
| switch (dir) |
| { |
| case dir_positive: |
| fprintf (outf, " +"); |
| break; |
| case dir_negative: |
| fprintf (outf, " -"); |
| break; |
| case dir_equal: |
| fprintf (outf, " ="); |
| break; |
| case dir_positive_or_equal: |
| fprintf (outf, " +="); |
| break; |
| case dir_positive_or_negative: |
| fprintf (outf, " +-"); |
| break; |
| case dir_negative_or_equal: |
| fprintf (outf, " -="); |
| break; |
| case dir_star: |
| fprintf (outf, " *"); |
| break; |
| default: |
| fprintf (outf, "indep"); |
| break; |
| } |
| } |
| fprintf (outf, "\n"); |
| } |
| |
| /* Print a vector of direction vectors. */ |
| |
| static void |
| print_dir_vectors (FILE *outf, vec<lambda_vector> dir_vects, |
| int length) |
| { |
| unsigned j; |
| lambda_vector v; |
| |
| FOR_EACH_VEC_ELT (dir_vects, j, v) |
| print_direction_vector (outf, v, length); |
| } |
| |
| /* Print out a vector VEC of length N to OUTFILE. */ |
| |
| static inline void |
| print_lambda_vector (FILE * outfile, lambda_vector vector, int n) |
| { |
| int i; |
| |
| for (i = 0; i < n; i++) |
| fprintf (outfile, "%3d ", vector[i]); |
| fprintf (outfile, "\n"); |
| } |
| |
| /* Print a vector of distance vectors. */ |
| |
| static void |
| print_dist_vectors (FILE *outf, vec<lambda_vector> dist_vects, |
| int length) |
| { |
| unsigned j; |
| lambda_vector v; |
| |
| FOR_EACH_VEC_ELT (dist_vects, j, v) |
| print_lambda_vector (outf, v, length); |
| } |
| |
| /* Dump function for a DATA_DEPENDENCE_RELATION structure. */ |
| |
| static void |
| dump_data_dependence_relation (FILE *outf, |
| struct data_dependence_relation *ddr) |
| { |
| struct data_reference *dra, *drb; |
| |
| fprintf (outf, "(Data Dep: \n"); |
| |
| if (!ddr || DDR_ARE_DEPENDENT (ddr) == chrec_dont_know) |
| { |
| if (ddr) |
| { |
| dra = DDR_A (ddr); |
| drb = DDR_B (ddr); |
| if (dra) |
| dump_data_reference (outf, dra); |
| else |
| fprintf (outf, " (nil)\n"); |
| if (drb) |
| dump_data_reference (outf, drb); |
| else |
| fprintf (outf, " (nil)\n"); |
| } |
| fprintf (outf, " (don't know)\n)\n"); |
| return; |
| } |
| |
| dra = DDR_A (ddr); |
| drb = DDR_B (ddr); |
| dump_data_reference (outf, dra); |
| dump_data_reference (outf, drb); |
| |
| if (DDR_ARE_DEPENDENT (ddr) == chrec_known) |
| fprintf (outf, " (no dependence)\n"); |
| |
| else if (DDR_ARE_DEPENDENT (ddr) == NULL_TREE) |
| { |
| unsigned int i; |
| struct loop *loopi; |
| |
| for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++) |
| { |
| fprintf (outf, " access_fn_A: "); |
| print_generic_stmt (outf, DR_ACCESS_FN (dra, i), 0); |
| fprintf (outf, " access_fn_B: "); |
| print_generic_stmt (outf, DR_ACCESS_FN (drb, i), 0); |
| dump_subscript (outf, DDR_SUBSCRIPT (ddr, i)); |
| } |
| |
| fprintf (outf, " inner loop index: %d\n", DDR_INNER_LOOP (ddr)); |
| fprintf (outf, " loop nest: ("); |
| FOR_EACH_VEC_ELT (DDR_LOOP_NEST (ddr), i, loopi) |
| fprintf (outf, "%d ", loopi->num); |
| fprintf (outf, ")\n"); |
| |
| for (i = 0; i < DDR_NUM_DIST_VECTS (ddr); i++) |
| { |
| fprintf (outf, " distance_vector: "); |
| print_lambda_vector (outf, DDR_DIST_VECT (ddr, i), |
| DDR_NB_LOOPS (ddr)); |
| } |
| |
| for (i = 0; i < DDR_NUM_DIR_VECTS (ddr); i++) |
| { |
| fprintf (outf, " direction_vector: "); |
| print_direction_vector (outf, DDR_DIR_VECT (ddr, i), |
| DDR_NB_LOOPS (ddr)); |
| } |
| } |
| |
| fprintf (outf, ")\n"); |
| } |
| |
| /* Debug version. */ |
| |
| DEBUG_FUNCTION void |
| debug_data_dependence_relation (struct data_dependence_relation *ddr) |
| { |
| dump_data_dependence_relation (stderr, ddr); |
| } |
| |
| /* Dump into FILE all the dependence relations from DDRS. */ |
| |
| void |
| dump_data_dependence_relations (FILE *file, |
| vec<ddr_p> ddrs) |
| { |
| unsigned int i; |
| struct data_dependence_relation *ddr; |
| |
| FOR_EACH_VEC_ELT (ddrs, i, ddr) |
| dump_data_dependence_relation (file, ddr); |
| } |
| |
| /* Dump to STDERR all the dependence relations from DDRS. */ |
| |
| DEBUG_FUNCTION void |
| debug_data_dependence_relations (vec<ddr_p> ddrs) |
| { |
| dump_data_dependence_relations (stderr, ddrs); |
| } |
| |
| /* Dumps the distance and direction vectors in FILE. DDRS contains |
| the dependence relations, and VECT_SIZE is the size of the |
| dependence vectors, or in other words the number of loops in the |
| considered nest. */ |
| |
| static void |
| dump_dist_dir_vectors (FILE *file, vec<ddr_p> ddrs) |
| { |
| unsigned int i, j; |
| struct data_dependence_relation *ddr; |
| lambda_vector v; |
| |
| FOR_EACH_VEC_ELT (ddrs, i, ddr) |
| if (DDR_ARE_DEPENDENT (ddr) == NULL_TREE && DDR_AFFINE_P (ddr)) |
| { |
| FOR_EACH_VEC_ELT (DDR_DIST_VECTS (ddr), j, v) |
| { |
| fprintf (file, "DISTANCE_V ("); |
| print_lambda_vector (file, v, DDR_NB_LOOPS (ddr)); |
| fprintf (file, ")\n"); |
| } |
| |
| FOR_EACH_VEC_ELT (DDR_DIR_VECTS (ddr), j, v) |
| { |
| fprintf (file, "DIRECTION_V ("); |
| print_direction_vector (file, v, DDR_NB_LOOPS (ddr)); |
| fprintf (file, ")\n"); |
| } |
| } |
| |
| fprintf (file, "\n\n"); |
| } |
| |
| /* Dumps the data dependence relations DDRS in FILE. */ |
| |
| static void |
| dump_ddrs (FILE *file, vec<ddr_p> ddrs) |
| { |
| unsigned int i; |
| struct data_dependence_relation *ddr; |
| |
| FOR_EACH_VEC_ELT (ddrs, i, ddr) |
| dump_data_dependence_relation (file, ddr); |
| |
| fprintf (file, "\n\n"); |
| } |
| |
| DEBUG_FUNCTION void |
| debug_ddrs (vec<ddr_p> ddrs) |
| { |
| dump_ddrs (stderr, ddrs); |
| } |
| |
| /* Helper function for split_constant_offset. Expresses OP0 CODE OP1 |
| (the type of the result is TYPE) as VAR + OFF, where OFF is a nonzero |
| constant of type ssizetype, and returns true. If we cannot do this |
| with OFF nonzero, OFF and VAR are set to NULL_TREE instead and false |
| is returned. */ |
| |
| static bool |
| split_constant_offset_1 (tree type, tree op0, enum tree_code code, tree op1, |
| tree *var, tree *off) |
| { |
| tree var0, var1; |
| tree off0, off1; |
| enum tree_code ocode = code; |
| |
| *var = NULL_TREE; |
| *off = NULL_TREE; |
| |
| switch (code) |
| { |
| case INTEGER_CST: |
| *var = build_int_cst (type, 0); |
| *off = fold_convert (ssizetype, op0); |
| return true; |
| |
| case POINTER_PLUS_EXPR: |
| ocode = PLUS_EXPR; |
| /* FALLTHROUGH */ |
| case PLUS_EXPR: |
| case MINUS_EXPR: |
| split_constant_offset (op0, &var0, &off0); |
| split_constant_offset (op1, &var1, &off1); |
| *var = fold_build2 (code, type, var0, var1); |
| *off = size_binop (ocode, off0, off1); |
| return true; |
| |
| case MULT_EXPR: |
| if (TREE_CODE (op1) != INTEGER_CST) |
| return false; |
| |
| split_constant_offset (op0, &var0, &off0); |
| *var = fold_build2 (MULT_EXPR, type, var0, op1); |
| *off = size_binop (MULT_EXPR, off0, fold_convert (ssizetype, op1)); |
| return true; |
| |
| case ADDR_EXPR: |
| { |
| tree base, poffset; |
| HOST_WIDE_INT pbitsize, pbitpos; |
| enum machine_mode pmode; |
| int punsignedp, pvolatilep; |
| |
| op0 = TREE_OPERAND (op0, 0); |
| base = get_inner_reference (op0, &pbitsize, &pbitpos, &poffset, |
| &pmode, &punsignedp, &pvolatilep, false); |
| |
| if (pbitpos % BITS_PER_UNIT != 0) |
| return false; |
| base = build_fold_addr_expr (base); |
| off0 = ssize_int (pbitpos / BITS_PER_UNIT); |
| |
| if (poffset) |
| { |
| split_constant_offset (poffset, &poffset, &off1); |
| off0 = size_binop (PLUS_EXPR, off0, off1); |
| if (POINTER_TYPE_P (TREE_TYPE (base))) |
| base = fold_build_pointer_plus (base, poffset); |
| else |
| base = fold_build2 (PLUS_EXPR, TREE_TYPE (base), base, |
| fold_convert (TREE_TYPE (base), poffset)); |
| } |
| |
| var0 = fold_convert (type, base); |
| |
| /* If variable length types are involved, punt, otherwise casts |
| might be converted into ARRAY_REFs in gimplify_conversion. |
| To compute that ARRAY_REF's element size TYPE_SIZE_UNIT, which |
| possibly no longer appears in current GIMPLE, might resurface. |
| This perhaps could run |
| if (CONVERT_EXPR_P (var0)) |
| { |
| gimplify_conversion (&var0); |
| // Attempt to fill in any within var0 found ARRAY_REF's |
| // element size from corresponding op embedded ARRAY_REF, |
| // if unsuccessful, just punt. |
| } */ |
| while (POINTER_TYPE_P (type)) |
| type = TREE_TYPE (type); |
| if (int_size_in_bytes (type) < 0) |
| return false; |
| |
| *var = var0; |
| *off = off0; |
| return true; |
| } |
| |
| case SSA_NAME: |
| { |
| gimple def_stmt = SSA_NAME_DEF_STMT (op0); |
| enum tree_code subcode; |
| |
| if (gimple_code (def_stmt) != GIMPLE_ASSIGN) |
| return false; |
| |
| var0 = gimple_assign_rhs1 (def_stmt); |
| subcode = gimple_assign_rhs_code (def_stmt); |
| var1 = gimple_assign_rhs2 (def_stmt); |
| |
| return split_constant_offset_1 (type, var0, subcode, var1, var, off); |
| } |
| CASE_CONVERT: |
| { |
| /* We must not introduce undefined overflow, and we must not change the value. |
| Hence we're okay if the inner type doesn't overflow to start with |
| (pointer or signed), the outer type also is an integer or pointer |
| and the outer precision is at least as large as the inner. */ |
| tree itype = TREE_TYPE (op0); |
| if ((POINTER_TYPE_P (itype) |
| || (INTEGRAL_TYPE_P (itype) && TYPE_OVERFLOW_UNDEFINED (itype))) |
| && TYPE_PRECISION (type) >= TYPE_PRECISION (itype) |
| && (POINTER_TYPE_P (type) || INTEGRAL_TYPE_P (type))) |
| { |
| split_constant_offset (op0, &var0, off); |
| *var = fold_convert (type, var0); |
| return true; |
| } |
| return false; |
| } |
| |
| default: |
| return false; |
| } |
| } |
| |
| /* Expresses EXP as VAR + OFF, where off is a constant. The type of OFF |
| will be ssizetype. */ |
| |
| void |
| split_constant_offset (tree exp, tree *var, tree *off) |
| { |
| tree type = TREE_TYPE (exp), otype, op0, op1, e, o; |
| enum tree_code code; |
| |
| *var = exp; |
| *off = ssize_int (0); |
| STRIP_NOPS (exp); |
| |
| if (tree_is_chrec (exp) |
| || get_gimple_rhs_class (TREE_CODE (exp)) == GIMPLE_TERNARY_RHS) |
| return; |
| |
| otype = TREE_TYPE (exp); |
| code = TREE_CODE (exp); |
| extract_ops_from_tree (exp, &code, &op0, &op1); |
| if (split_constant_offset_1 (otype, op0, code, op1, &e, &o)) |
| { |
| *var = fold_convert (type, e); |
| *off = o; |
| } |
| } |
| |
| /* Returns the address ADDR of an object in a canonical shape (without nop |
| casts, and with type of pointer to the object). */ |
| |
| static tree |
| canonicalize_base_object_address (tree addr) |
| { |
| tree orig = addr; |
| |
| STRIP_NOPS (addr); |
| |
| /* The base address may be obtained by casting from integer, in that case |
| keep the cast. */ |
| if (!POINTER_TYPE_P (TREE_TYPE (addr))) |
| return orig; |
| |
| if (TREE_CODE (addr) != ADDR_EXPR) |
| return addr; |
| |
| return build_fold_addr_expr (TREE_OPERAND (addr, 0)); |
| } |
| |
| /* Analyzes the behavior of the memory reference DR in the innermost loop or |
| basic block that contains it. Returns true if analysis succeed or false |
| otherwise. */ |
| |
| bool |
| dr_analyze_innermost (struct data_reference *dr, struct loop *nest) |
| { |
| gimple stmt = DR_STMT (dr); |
| struct loop *loop = loop_containing_stmt (stmt); |
| tree ref = DR_REF (dr); |
| HOST_WIDE_INT pbitsize, pbitpos; |
| tree base, poffset; |
| enum machine_mode pmode; |
| int punsignedp, pvolatilep; |
| affine_iv base_iv, offset_iv; |
| tree init, dinit, step; |
| bool in_loop = (loop && loop->num); |
| |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| fprintf (dump_file, "analyze_innermost: "); |
| |
| base = get_inner_reference (ref, &pbitsize, &pbitpos, &poffset, |
| &pmode, &punsignedp, &pvolatilep, false); |
| gcc_assert (base != NULL_TREE); |
| |
| if (pbitpos % BITS_PER_UNIT != 0) |
| { |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| fprintf (dump_file, "failed: bit offset alignment.\n"); |
| return false; |
| } |
| |
| if (TREE_CODE (base) == MEM_REF) |
| { |
| if (!integer_zerop (TREE_OPERAND (base, 1))) |
| { |
| double_int moff = mem_ref_offset (base); |
| tree mofft = double_int_to_tree (sizetype, moff); |
| if (!poffset) |
| poffset = mofft; |
| else |
| poffset = size_binop (PLUS_EXPR, poffset, mofft); |
| } |
| base = TREE_OPERAND (base, 0); |
| } |
| else |
| base = build_fold_addr_expr (base); |
| |
| if (in_loop) |
| { |
| if (!simple_iv (loop, loop_containing_stmt (stmt), base, &base_iv, |
| nest ? true : false)) |
| { |
| if (nest) |
| { |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| fprintf (dump_file, "failed: evolution of base is not" |
| " affine.\n"); |
| return false; |
| } |
| else |
| { |
| base_iv.base = base; |
| base_iv.step = ssize_int (0); |
| base_iv.no_overflow = true; |
| } |
| } |
| } |
| else |
| { |
| base_iv.base = base; |
| base_iv.step = ssize_int (0); |
| base_iv.no_overflow = true; |
| } |
| |
| if (!poffset) |
| { |
| offset_iv.base = ssize_int (0); |
| offset_iv.step = ssize_int (0); |
| } |
| else |
| { |
| if (!in_loop) |
| { |
| offset_iv.base = poffset; |
| offset_iv.step = ssize_int (0); |
| } |
| else if (!simple_iv (loop, loop_containing_stmt (stmt), |
| poffset, &offset_iv, |
| nest ? true : false)) |
| { |
| if (nest) |
| { |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| fprintf (dump_file, "failed: evolution of offset is not" |
| " affine.\n"); |
| return false; |
| } |
| else |
| { |
| offset_iv.base = poffset; |
| offset_iv.step = ssize_int (0); |
| } |
| } |
| } |
| |
| init = ssize_int (pbitpos / BITS_PER_UNIT); |
| split_constant_offset (base_iv.base, &base_iv.base, &dinit); |
| init = size_binop (PLUS_EXPR, init, dinit); |
| split_constant_offset (offset_iv.base, &offset_iv.base, &dinit); |
| init = size_binop (PLUS_EXPR, init, dinit); |
| |
| step = size_binop (PLUS_EXPR, |
| fold_convert (ssizetype, base_iv.step), |
| fold_convert (ssizetype, offset_iv.step)); |
| |
| DR_BASE_ADDRESS (dr) = canonicalize_base_object_address (base_iv.base); |
| |
| DR_OFFSET (dr) = fold_convert (ssizetype, offset_iv.base); |
| DR_INIT (dr) = init; |
| DR_STEP (dr) = step; |
| |
| DR_ALIGNED_TO (dr) = size_int (highest_pow2_factor (offset_iv.base)); |
| |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| fprintf (dump_file, "success.\n"); |
| |
| return true; |
| } |
| |
| /* Determines the base object and the list of indices of memory reference |
| DR, analyzed in LOOP and instantiated in loop nest NEST. */ |
| |
| static void |
| dr_analyze_indices (struct data_reference *dr, loop_p nest, loop_p loop) |
| { |
| vec<tree> access_fns = vNULL; |
| tree ref, op; |
| tree base, off, access_fn; |
| basic_block before_loop; |
| |
| /* If analyzing a basic-block there are no indices to analyze |
| and thus no access functions. */ |
| if (!nest) |
| { |
| DR_BASE_OBJECT (dr) = DR_REF (dr); |
| DR_ACCESS_FNS (dr).create (0); |
| return; |
| } |
| |
| ref = DR_REF (dr); |
| before_loop = block_before_loop (nest); |
| |
| /* REALPART_EXPR and IMAGPART_EXPR can be handled like accesses |
| into a two element array with a constant index. The base is |
| then just the immediate underlying object. */ |
| if (TREE_CODE (ref) == REALPART_EXPR) |
| { |
| ref = TREE_OPERAND (ref, 0); |
| access_fns.safe_push (integer_zero_node); |
| } |
| else if (TREE_CODE (ref) == IMAGPART_EXPR) |
| { |
| ref = TREE_OPERAND (ref, 0); |
| access_fns.safe_push (integer_one_node); |
| } |
| |
| /* Analyze access functions of dimensions we know to be independent. */ |
| while (handled_component_p (ref)) |
| { |
| if (TREE_CODE (ref) == ARRAY_REF) |
| { |
| op = TREE_OPERAND (ref, 1); |
| access_fn = analyze_scalar_evolution (loop, op); |
| access_fn = instantiate_scev (before_loop, loop, access_fn); |
| access_fns.safe_push (access_fn); |
| } |
| else if (TREE_CODE (ref) == COMPONENT_REF |
| && TREE_CODE (TREE_TYPE (TREE_OPERAND (ref, 0))) == RECORD_TYPE) |
| { |
| /* For COMPONENT_REFs of records (but not unions!) use the |
| FIELD_DECL offset as constant access function so we can |
| disambiguate a[i].f1 and a[i].f2. */ |
| tree off = component_ref_field_offset (ref); |
| off = size_binop (PLUS_EXPR, |
| size_binop (MULT_EXPR, |
| fold_convert (bitsizetype, off), |
| bitsize_int (BITS_PER_UNIT)), |
| DECL_FIELD_BIT_OFFSET (TREE_OPERAND (ref, 1))); |
| access_fns.safe_push (off); |
| } |
| else |
| /* If we have an unhandled component we could not translate |
| to an access function stop analyzing. We have determined |
| our base object in this case. */ |
| break; |
| |
| ref = TREE_OPERAND (ref, 0); |
| } |
| |
| /* If the address operand of a MEM_REF base has an evolution in the |
| analyzed nest, add it as an additional independent access-function. */ |
| if (TREE_CODE (ref) == MEM_REF) |
| { |
| op = TREE_OPERAND (ref, 0); |
| access_fn = analyze_scalar_evolution (loop, op); |
| access_fn = instantiate_scev (before_loop, loop, access_fn); |
| if (TREE_CODE (access_fn) == POLYNOMIAL_CHREC) |
| { |
| tree orig_type; |
| tree memoff = TREE_OPERAND (ref, 1); |
| base = initial_condition (access_fn); |
| orig_type = TREE_TYPE (base); |
| STRIP_USELESS_TYPE_CONVERSION (base); |
| split_constant_offset (base, &base, &off); |
| /* Fold the MEM_REF offset into the evolutions initial |
| value to make more bases comparable. */ |
| if (!integer_zerop (memoff)) |
| { |
| off = size_binop (PLUS_EXPR, off, |
| fold_convert (ssizetype, memoff)); |
| memoff = build_int_cst (TREE_TYPE (memoff), 0); |
| } |
| access_fn = chrec_replace_initial_condition |
| (access_fn, fold_convert (orig_type, off)); |
| /* ??? This is still not a suitable base object for |
| dr_may_alias_p - the base object needs to be an |
| access that covers the object as whole. With |
| an evolution in the pointer this cannot be |
| guaranteed. |
| As a band-aid, mark the access so we can special-case |
| it in dr_may_alias_p. */ |
| ref = fold_build2_loc (EXPR_LOCATION (ref), |
| MEM_REF, TREE_TYPE (ref), |
| base, memoff); |
| DR_UNCONSTRAINED_BASE (dr) = true; |
| access_fns.safe_push (access_fn); |
| } |
| } |
| else if (DECL_P (ref)) |
| { |
| /* Canonicalize DR_BASE_OBJECT to MEM_REF form. */ |
| ref = build2 (MEM_REF, TREE_TYPE (ref), |
| build_fold_addr_expr (ref), |
| build_int_cst (reference_alias_ptr_type (ref), 0)); |
| } |
| |
| DR_BASE_OBJECT (dr) = ref; |
| DR_ACCESS_FNS (dr) = access_fns; |
| } |
| |
| /* Extracts the alias analysis information from the memory reference DR. */ |
| |
| static void |
| dr_analyze_alias (struct data_reference *dr) |
| { |
| tree ref = DR_REF (dr); |
| tree base = get_base_address (ref), addr; |
| |
| if (INDIRECT_REF_P (base) |
| || TREE_CODE (base) == MEM_REF) |
| { |
| addr = TREE_OPERAND (base, 0); |
| if (TREE_CODE (addr) == SSA_NAME) |
| DR_PTR_INFO (dr) = SSA_NAME_PTR_INFO (addr); |
| } |
| } |
| |
| /* Frees data reference DR. */ |
| |
| void |
| free_data_ref (data_reference_p dr) |
| { |
| DR_ACCESS_FNS (dr).release (); |
| free (dr); |
| } |
| |
| /* Analyzes memory reference MEMREF accessed in STMT. The reference |
| is read if IS_READ is true, write otherwise. Returns the |
| data_reference description of MEMREF. NEST is the outermost loop |
| in which the reference should be instantiated, LOOP is the loop in |
| which the data reference should be analyzed. */ |
| |
| struct data_reference * |
| create_data_ref (loop_p nest, loop_p loop, tree memref, gimple stmt, |
| bool is_read) |
| { |
| struct data_reference *dr; |
| |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| { |
| fprintf (dump_file, "Creating dr for "); |
| print_generic_expr (dump_file, memref, TDF_SLIM); |
| fprintf (dump_file, "\n"); |
| } |
| |
| dr = XCNEW (struct data_reference); |
| DR_STMT (dr) = stmt; |
| DR_REF (dr) = memref; |
| DR_IS_READ (dr) = is_read; |
| |
| dr_analyze_innermost (dr, nest); |
| dr_analyze_indices (dr, nest, loop); |
| dr_analyze_alias (dr); |
| |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| { |
| unsigned i; |
| fprintf (dump_file, "\tbase_address: "); |
| print_generic_expr (dump_file, DR_BASE_ADDRESS (dr), TDF_SLIM); |
| fprintf (dump_file, "\n\toffset from base address: "); |
| print_generic_expr (dump_file, DR_OFFSET (dr), TDF_SLIM); |
| fprintf (dump_file, "\n\tconstant offset from base address: "); |
| print_generic_expr (dump_file, DR_INIT (dr), TDF_SLIM); |
| fprintf (dump_file, "\n\tstep: "); |
| print_generic_expr (dump_file, DR_STEP (dr), TDF_SLIM); |
| fprintf (dump_file, "\n\taligned to: "); |
| print_generic_expr (dump_file, DR_ALIGNED_TO (dr), TDF_SLIM); |
| fprintf (dump_file, "\n\tbase_object: "); |
| print_generic_expr (dump_file, DR_BASE_OBJECT (dr), TDF_SLIM); |
| fprintf (dump_file, "\n"); |
| for (i = 0; i < DR_NUM_DIMENSIONS (dr); i++) |
| { |
| fprintf (dump_file, "\tAccess function %d: ", i); |
| print_generic_stmt (dump_file, DR_ACCESS_FN (dr, i), TDF_SLIM); |
| } |
| } |
| |
| return dr; |
| } |
| |
| /* Check if OFFSET1 and OFFSET2 (DR_OFFSETs of some data-refs) are identical |
| expressions. */ |
| static bool |
| dr_equal_offsets_p1 (tree offset1, tree offset2) |
| { |
| bool res; |
| |
| STRIP_NOPS (offset1); |
| STRIP_NOPS (offset2); |
| |
| if (offset1 == offset2) |
| return true; |
| |
| if (TREE_CODE (offset1) != TREE_CODE (offset2) |
| || (!BINARY_CLASS_P (offset1) && !UNARY_CLASS_P (offset1))) |
| return false; |
| |
| res = dr_equal_offsets_p1 (TREE_OPERAND (offset1, 0), |
| TREE_OPERAND (offset2, 0)); |
| |
| if (!res || !BINARY_CLASS_P (offset1)) |
| return res; |
| |
| res = dr_equal_offsets_p1 (TREE_OPERAND (offset1, 1), |
| TREE_OPERAND (offset2, 1)); |
| |
| return res; |
| } |
| |
| /* Check if DRA and DRB have equal offsets. */ |
| bool |
| dr_equal_offsets_p (struct data_reference *dra, |
| struct data_reference *drb) |
| { |
| tree offset1, offset2; |
| |
| offset1 = DR_OFFSET (dra); |
| offset2 = DR_OFFSET (drb); |
| |
| return dr_equal_offsets_p1 (offset1, offset2); |
| } |
| |
| /* Returns true if FNA == FNB. */ |
| |
| static bool |
| affine_function_equal_p (affine_fn fna, affine_fn fnb) |
| { |
| unsigned i, n = fna.length (); |
| |
| if (n != fnb.length ()) |
| return false; |
| |
| for (i = 0; i < n; i++) |
| if (!operand_equal_p (fna[i], fnb[i], 0)) |
| return false; |
| |
| return true; |
| } |
| |
| /* If all the functions in CF are the same, returns one of them, |
| otherwise returns NULL. */ |
| |
| static affine_fn |
| common_affine_function (conflict_function *cf) |
| { |
| unsigned i; |
| affine_fn comm; |
| |
| if (!CF_NONTRIVIAL_P (cf)) |
| return affine_fn(); |
| |
| comm = cf->fns[0]; |
| |
| for (i = 1; i < cf->n; i++) |
| if (!affine_function_equal_p (comm, cf->fns[i])) |
| return affine_fn(); |
| |
| return comm; |
| } |
| |
| /* Returns the base of the affine function FN. */ |
| |
| static tree |
| affine_function_base (affine_fn fn) |
| { |
| return fn[0]; |
| } |
| |
| /* Returns true if FN is a constant. */ |
| |
| static bool |
| affine_function_constant_p (affine_fn fn) |
| { |
| unsigned i; |
| tree coef; |
| |
| for (i = 1; fn.iterate (i, &coef); i++) |
| if (!integer_zerop (coef)) |
| return false; |
| |
| return true; |
| } |
| |
| /* Returns true if FN is the zero constant function. */ |
| |
| static bool |
| affine_function_zero_p (affine_fn fn) |
| { |
| return (integer_zerop (affine_function_base (fn)) |
| && affine_function_constant_p (fn)); |
| } |
| |
| /* Returns a signed integer type with the largest precision from TA |
| and TB. */ |
| |
| static tree |
| signed_type_for_types (tree ta, tree tb) |
| { |
| if (TYPE_PRECISION (ta) > TYPE_PRECISION (tb)) |
| return signed_type_for (ta); |
| else |
| return signed_type_for (tb); |
| } |
| |
| /* Applies operation OP on affine functions FNA and FNB, and returns the |
| result. */ |
| |
| static affine_fn |
| affine_fn_op (enum tree_code op, affine_fn fna, affine_fn fnb) |
| { |
| unsigned i, n, m; |
| affine_fn ret; |
| tree coef; |
| |
| if (fnb.length () > fna.length ()) |
| { |
| n = fna.length (); |
| m = fnb.length (); |
| } |
| else |
| { |
| n = fnb.length (); |
| m = fna.length (); |
| } |
| |
| ret.create (m); |
| for (i = 0; i < n; i++) |
| { |
| tree type = signed_type_for_types (TREE_TYPE (fna[i]), |
| TREE_TYPE (fnb[i])); |
| ret.quick_push (fold_build2 (op, type, fna[i], fnb[i])); |
| } |
| |
| for (; fna.iterate (i, &coef); i++) |
| ret.quick_push (fold_build2 (op, signed_type_for (TREE_TYPE (coef)), |
| coef, integer_zero_node)); |
| for (; fnb.iterate (i, &coef); i++) |
| ret.quick_push (fold_build2 (op, signed_type_for (TREE_TYPE (coef)), |
| integer_zero_node, coef)); |
| |
| return ret; |
| } |
| |
| /* Returns the sum of affine functions FNA and FNB. */ |
| |
| static affine_fn |
| affine_fn_plus (affine_fn fna, affine_fn fnb) |
| { |
| return affine_fn_op (PLUS_EXPR, fna, fnb); |
| } |
| |
| /* Returns the difference of affine functions FNA and FNB. */ |
| |
| static affine_fn |
| affine_fn_minus (affine_fn fna, affine_fn fnb) |
| { |
| return affine_fn_op (MINUS_EXPR, fna, fnb); |
| } |
| |
| /* Frees affine function FN. */ |
| |
| static void |
| affine_fn_free (affine_fn fn) |
| { |
| fn.release (); |
| } |
| |
| /* Determine for each subscript in the data dependence relation DDR |
| the distance. */ |
| |
| static void |
| compute_subscript_distance (struct data_dependence_relation *ddr) |
| { |
| conflict_function *cf_a, *cf_b; |
| affine_fn fn_a, fn_b, diff; |
| |
| if (DDR_ARE_DEPENDENT (ddr) == NULL_TREE) |
| { |
| unsigned int i; |
| |
| for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++) |
| { |
| struct subscript *subscript; |
| |
| subscript = DDR_SUBSCRIPT (ddr, i); |
| cf_a = SUB_CONFLICTS_IN_A (subscript); |
| cf_b = SUB_CONFLICTS_IN_B (subscript); |
| |
| fn_a = common_affine_function (cf_a); |
| fn_b = common_affine_function (cf_b); |
| if (!fn_a.exists () || !fn_b.exists ()) |
| { |
| SUB_DISTANCE (subscript) = chrec_dont_know; |
| return; |
| } |
| diff = affine_fn_minus (fn_a, fn_b); |
| |
| if (affine_function_constant_p (diff)) |
| SUB_DISTANCE (subscript) = affine_function_base (diff); |
| else |
| SUB_DISTANCE (subscript) = chrec_dont_know; |
| |
| affine_fn_free (diff); |
| } |
| } |
| } |
| |
| /* Returns the conflict function for "unknown". */ |
| |
| static conflict_function * |
| conflict_fn_not_known (void) |
| { |
| conflict_function *fn = XCNEW (conflict_function); |
| fn->n = NOT_KNOWN; |
| |
| return fn; |
| } |
| |
| /* Returns the conflict function for "independent". */ |
| |
| static conflict_function * |
| conflict_fn_no_dependence (void) |
| { |
| conflict_function *fn = XCNEW (conflict_function); |
| fn->n = NO_DEPENDENCE; |
| |
| return fn; |
| } |
| |
| /* Returns true if the address of OBJ is invariant in LOOP. */ |
| |
| static bool |
| object_address_invariant_in_loop_p (const struct loop *loop, const_tree obj) |
| { |
| while (handled_component_p (obj)) |
| { |
| if (TREE_CODE (obj) == ARRAY_REF) |
| { |
| /* Index of the ARRAY_REF was zeroed in analyze_indices, thus we only |
| need to check the stride and the lower bound of the reference. */ |
| if (chrec_contains_symbols_defined_in_loop (TREE_OPERAND (obj, 2), |
| loop->num) |
| || chrec_contains_symbols_defined_in_loop (TREE_OPERAND (obj, 3), |
| loop->num)) |
| return false; |
| } |
| else if (TREE_CODE (obj) == COMPONENT_REF) |
| { |
| if (chrec_contains_symbols_defined_in_loop (TREE_OPERAND (obj, 2), |
| loop->num)) |
| return false; |
| } |
| obj = TREE_OPERAND (obj, 0); |
| } |
| |
| if (!INDIRECT_REF_P (obj) |
| && TREE_CODE (obj) != MEM_REF) |
| return true; |
| |
| return !chrec_contains_symbols_defined_in_loop (TREE_OPERAND (obj, 0), |
| loop->num); |
| } |
| |
| /* Returns false if we can prove that data references A and B do not alias, |
| true otherwise. If LOOP_NEST is false no cross-iteration aliases are |
| considered. */ |
| |
| bool |
| dr_may_alias_p (const struct data_reference *a, const struct data_reference *b, |
| bool loop_nest) |
| { |
| tree addr_a = DR_BASE_OBJECT (a); |
| tree addr_b = DR_BASE_OBJECT (b); |
| |
| /* If we are not processing a loop nest but scalar code we |
| do not need to care about possible cross-iteration dependences |
| and thus can process the full original reference. Do so, |
| similar to how loop invariant motion applies extra offset-based |
| disambiguation. */ |
| if (!loop_nest) |
| { |
| aff_tree off1, off2; |
| double_int size1, size2; |
| get_inner_reference_aff (DR_REF (a), &off1, &size1); |
| get_inner_reference_aff (DR_REF (b), &off2, &size2); |
| aff_combination_scale (&off1, double_int_minus_one); |
| aff_combination_add (&off2, &off1); |
| if (aff_comb_cannot_overlap_p (&off2, size1, size2)) |
| return false; |
| } |
| |
| /* If we had an evolution in a pointer-based MEM_REF BASE_OBJECT we |
| do not know the size of the base-object. So we cannot do any |
| offset/overlap based analysis but have to rely on points-to |
| information only. */ |
| if (TREE_CODE (addr_a) == MEM_REF |
| && (DR_UNCONSTRAINED_BASE (a) |
| || TREE_CODE (TREE_OPERAND (addr_a, 0)) == SSA_NAME)) |
| { |
| /* For true dependences we can apply TBAA. */ |
| if (flag_strict_aliasing |
| && DR_IS_WRITE (a) && DR_IS_READ (b) |
| && !alias_sets_conflict_p (get_alias_set (DR_REF (a)), |
| get_alias_set (DR_REF (b)))) |
| return false; |
| if (TREE_CODE (addr_b) == MEM_REF) |
| return ptr_derefs_may_alias_p (TREE_OPERAND (addr_a, 0), |
| TREE_OPERAND (addr_b, 0)); |
| else |
| return ptr_derefs_may_alias_p (TREE_OPERAND (addr_a, 0), |
| build_fold_addr_expr (addr_b)); |
| } |
| else if (TREE_CODE (addr_b) == MEM_REF |
| && (DR_UNCONSTRAINED_BASE (b) |
| || TREE_CODE (TREE_OPERAND (addr_b, 0)) == SSA_NAME)) |
| { |
| /* For true dependences we can apply TBAA. */ |
| if (flag_strict_aliasing |
| && DR_IS_WRITE (a) && DR_IS_READ (b) |
| && !alias_sets_conflict_p (get_alias_set (DR_REF (a)), |
| get_alias_set (DR_REF (b)))) |
| return false; |
| if (TREE_CODE (addr_a) == MEM_REF) |
| return ptr_derefs_may_alias_p (TREE_OPERAND (addr_a, 0), |
| TREE_OPERAND (addr_b, 0)); |
| else |
| return ptr_derefs_may_alias_p (build_fold_addr_expr (addr_a), |
| TREE_OPERAND (addr_b, 0)); |
| } |
| |
| /* Otherwise DR_BASE_OBJECT is an access that covers the whole object |
| that is being subsetted in the loop nest. */ |
| if (DR_IS_WRITE (a) && DR_IS_WRITE (b)) |
| return refs_output_dependent_p (addr_a, addr_b); |
| else if (DR_IS_READ (a) && DR_IS_WRITE (b)) |
| return refs_anti_dependent_p (addr_a, addr_b); |
| return refs_may_alias_p (addr_a, addr_b); |
| } |
| |
| /* Initialize a data dependence relation between data accesses A and |
| B. NB_LOOPS is the number of loops surrounding the references: the |
| size of the classic distance/direction vectors. */ |
| |
| struct data_dependence_relation * |
| initialize_data_dependence_relation (struct data_reference *a, |
| struct data_reference *b, |
| vec<loop_p> loop_nest) |
| { |
| struct data_dependence_relation *res; |
| unsigned int i; |
| |
| res = XNEW (struct data_dependence_relation); |
| DDR_A (res) = a; |
| DDR_B (res) = b; |
| DDR_LOOP_NEST (res).create (0); |
| DDR_REVERSED_P (res) = false; |
| DDR_SUBSCRIPTS (res).create (0); |
| DDR_DIR_VECTS (res).create (0); |
| DDR_DIST_VECTS (res).create (0); |
| |
| if (a == NULL || b == NULL) |
| { |
| DDR_ARE_DEPENDENT (res) = chrec_dont_know; |
| return res; |
| } |
| |
| /* If the data references do not alias, then they are independent. */ |
| if (!dr_may_alias_p (a, b, loop_nest.exists ())) |
| { |
| DDR_ARE_DEPENDENT (res) = chrec_known; |
| return res; |
| } |
| |
| /* The case where the references are exactly the same. */ |
| if (operand_equal_p (DR_REF (a), DR_REF (b), 0)) |
| { |
| if (loop_nest.exists () |
| && !object_address_invariant_in_loop_p (loop_nest[0], |
| DR_BASE_OBJECT (a))) |
| { |
| DDR_ARE_DEPENDENT (res) = chrec_dont_know; |
| return res; |
| } |
| DDR_AFFINE_P (res) = true; |
| DDR_ARE_DEPENDENT (res) = NULL_TREE; |
| DDR_SUBSCRIPTS (res).create (DR_NUM_DIMENSIONS (a)); |
| DDR_LOOP_NEST (res) = loop_nest; |
| DDR_INNER_LOOP (res) = 0; |
| DDR_SELF_REFERENCE (res) = true; |
| for (i = 0; i < DR_NUM_DIMENSIONS (a); i++) |
| { |
| struct subscript *subscript; |
| |
| subscript = XNEW (struct subscript); |
| SUB_CONFLICTS_IN_A (subscript) = conflict_fn_not_known (); |
| SUB_CONFLICTS_IN_B (subscript) = conflict_fn_not_known (); |
| SUB_LAST_CONFLICT (subscript) = chrec_dont_know; |
| SUB_DISTANCE (subscript) = chrec_dont_know; |
| DDR_SUBSCRIPTS (res).safe_push (subscript); |
| } |
| return res; |
| } |
| |
| /* If the references do not access the same object, we do not know |
| whether they alias or not. */ |
| if (!operand_equal_p (DR_BASE_OBJECT (a), DR_BASE_OBJECT (b), 0)) |
| { |
| DDR_ARE_DEPENDENT (res) = chrec_dont_know; |
| return res; |
| } |
| |
| /* If the base of the object is not invariant in the loop nest, we cannot |
| analyze it. TODO -- in fact, it would suffice to record that there may |
| be arbitrary dependences in the loops where the base object varies. */ |
| if (loop_nest.exists () |
| && !object_address_invariant_in_loop_p (loop_nest[0], |
| DR_BASE_OBJECT (a))) |
| { |
| DDR_ARE_DEPENDENT (res) = chrec_dont_know; |
| return res; |
| } |
| |
| /* If the number of dimensions of the access to not agree we can have |
| a pointer access to a component of the array element type and an |
| array access while the base-objects are still the same. Punt. */ |
| if (DR_NUM_DIMENSIONS (a) != DR_NUM_DIMENSIONS (b)) |
| { |
| DDR_ARE_DEPENDENT (res) = chrec_dont_know; |
| return res; |
| } |
| |
| DDR_AFFINE_P (res) = true; |
| DDR_ARE_DEPENDENT (res) = NULL_TREE; |
| DDR_SUBSCRIPTS (res).create (DR_NUM_DIMENSIONS (a)); |
| DDR_LOOP_NEST (res) = loop_nest; |
| DDR_INNER_LOOP (res) = 0; |
| DDR_SELF_REFERENCE (res) = false; |
| |
| for (i = 0; i < DR_NUM_DIMENSIONS (a); i++) |
| { |
| struct subscript *subscript; |
| |
| subscript = XNEW (struct subscript); |
| SUB_CONFLICTS_IN_A (subscript) = conflict_fn_not_known (); |
| SUB_CONFLICTS_IN_B (subscript) = conflict_fn_not_known (); |
| SUB_LAST_CONFLICT (subscript) = chrec_dont_know; |
| SUB_DISTANCE (subscript) = chrec_dont_know; |
| DDR_SUBSCRIPTS (res).safe_push (subscript); |
| } |
| |
| return res; |
| } |
| |
| /* Frees memory used by the conflict function F. */ |
| |
| static void |
| free_conflict_function (conflict_function *f) |
| { |
| unsigned i; |
| |
| if (CF_NONTRIVIAL_P (f)) |
| { |
| for (i = 0; i < f->n; i++) |
| affine_fn_free (f->fns[i]); |
| } |
| free (f); |
| } |
| |
| /* Frees memory used by SUBSCRIPTS. */ |
| |
| static void |
| free_subscripts (vec<subscript_p> subscripts) |
| { |
| unsigned i; |
| subscript_p s; |
| |
| FOR_EACH_VEC_ELT (subscripts, i, s) |
| { |
| free_conflict_function (s->conflicting_iterations_in_a); |
| free_conflict_function (s->conflicting_iterations_in_b); |
| free (s); |
| } |
| subscripts.release (); |
| } |
| |
| /* Set DDR_ARE_DEPENDENT to CHREC and finalize the subscript overlap |
| description. */ |
| |
| static inline void |
| finalize_ddr_dependent (struct data_dependence_relation *ddr, |
| tree chrec) |
| { |
| DDR_ARE_DEPENDENT (ddr) = chrec; |
| free_subscripts (DDR_SUBSCRIPTS (ddr)); |
| DDR_SUBSCRIPTS (ddr).create (0); |
| } |
| |
| /* The dependence relation DDR cannot be represented by a distance |
| vector. */ |
| |
| static inline void |
| non_affine_dependence_relation (struct data_dependence_relation *ddr) |
| { |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| fprintf (dump_file, "(Dependence relation cannot be represented by distance vector.) \n"); |
| |
| DDR_AFFINE_P (ddr) = false; |
| } |
| |
| |
| |
| /* This section contains the classic Banerjee tests. */ |
| |
| /* Returns true iff CHREC_A and CHREC_B are not dependent on any index |
| variables, i.e., if the ZIV (Zero Index Variable) test is true. */ |
| |
| static inline bool |
| ziv_subscript_p (const_tree chrec_a, const_tree chrec_b) |
| { |
| return (evolution_function_is_constant_p (chrec_a) |
| && evolution_function_is_constant_p (chrec_b)); |
| } |
| |
| /* Returns true iff CHREC_A and CHREC_B are dependent on an index |
| variable, i.e., if the SIV (Single Index Variable) test is true. */ |
| |
| static bool |
| siv_subscript_p (const_tree chrec_a, const_tree chrec_b) |
| { |
| if ((evolution_function_is_constant_p (chrec_a) |
| && evolution_function_is_univariate_p (chrec_b)) |
| || (evolution_function_is_constant_p (chrec_b) |
| && evolution_function_is_univariate_p (chrec_a))) |
| return true; |
| |
| if (evolution_function_is_univariate_p (chrec_a) |
| && evolution_function_is_univariate_p (chrec_b)) |
| { |
| switch (TREE_CODE (chrec_a)) |
| { |
| case POLYNOMIAL_CHREC: |
| switch (TREE_CODE (chrec_b)) |
| { |
| case POLYNOMIAL_CHREC: |
| if (CHREC_VARIABLE (chrec_a) != CHREC_VARIABLE (chrec_b)) |
| return false; |
| |
| default: |
| return true; |
| } |
| |
| default: |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| /* Creates a conflict function with N dimensions. The affine functions |
| in each dimension follow. */ |
| |
| static conflict_function * |
| conflict_fn (unsigned n, ...) |
| { |
| unsigned i; |
| conflict_function *ret = XCNEW (conflict_function); |
| va_list ap; |
| |
| gcc_assert (0 < n && n <= MAX_DIM); |
| va_start(ap, n); |
| |
| ret->n = n; |
| for (i = 0; i < n; i++) |
| ret->fns[i] = va_arg (ap, affine_fn); |
| va_end(ap); |
| |
| return ret; |
| } |
| |
| /* Returns constant affine function with value CST. */ |
| |
| static affine_fn |
| affine_fn_cst (tree cst) |
| { |
| affine_fn fn; |
| fn.create (1); |
| fn.quick_push (cst); |
| return fn; |
| } |
| |
| /* Returns affine function with single variable, CST + COEF * x_DIM. */ |
| |
| static affine_fn |
| affine_fn_univar (tree cst, unsigned dim, tree coef) |
| { |
| affine_fn fn; |
| fn.create (dim + 1); |
| unsigned i; |
| |
| gcc_assert (dim > 0); |
| fn.quick_push (cst); |
| for (i = 1; i < dim; i++) |
| fn.quick_push (integer_zero_node); |
| fn.quick_push (coef); |
| return fn; |
| } |
| |
| /* Analyze a ZIV (Zero Index Variable) subscript. *OVERLAPS_A and |
| *OVERLAPS_B are initialized to the functions that describe the |
| relation between the elements accessed twice by CHREC_A and |
| CHREC_B. For k >= 0, the following property is verified: |
| |
| CHREC_A (*OVERLAPS_A (k)) = CHREC_B (*OVERLAPS_B (k)). */ |
| |
| static void |
| analyze_ziv_subscript (tree chrec_a, |
| tree chrec_b, |
| conflict_function **overlaps_a, |
| conflict_function **overlaps_b, |
| tree *last_conflicts) |
| { |
| tree type, difference; |
| dependence_stats.num_ziv++; |
| |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| fprintf (dump_file, "(analyze_ziv_subscript \n"); |
| |
| type = signed_type_for_types (TREE_TYPE (chrec_a), TREE_TYPE (chrec_b)); |
| chrec_a = chrec_convert (type, chrec_a, NULL); |
| chrec_b = chrec_convert (type, chrec_b, NULL); |
| difference = chrec_fold_minus (type, chrec_a, chrec_b); |
| |
| switch (TREE_CODE (difference)) |
| { |
| case INTEGER_CST: |
| if (integer_zerop (difference)) |
| { |
| /* The difference is equal to zero: the accessed index |
| overlaps for each iteration in the loop. */ |
| *overlaps_a = conflict_fn (1, affine_fn_cst (integer_zero_node)); |
| *overlaps_b = conflict_fn (1, affine_fn_cst (integer_zero_node)); |
| *last_conflicts = chrec_dont_know; |
| dependence_stats.num_ziv_dependent++; |
| } |
| else |
| { |
| /* The accesses do not overlap. */ |
| *overlaps_a = conflict_fn_no_dependence (); |
| *overlaps_b = conflict_fn_no_dependence (); |
| *last_conflicts = integer_zero_node; |
| dependence_stats.num_ziv_independent++; |
| } |
| break; |
| |
| default: |
| /* We're not sure whether the indexes overlap. For the moment, |
| conservatively answer "don't know". */ |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| fprintf (dump_file, "ziv test failed: difference is non-integer.\n"); |
| |
| *overlaps_a = conflict_fn_not_known (); |
| *overlaps_b = conflict_fn_not_known (); |
| *last_conflicts = chrec_dont_know; |
| dependence_stats.num_ziv_unimplemented++; |
| break; |
| } |
| |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| fprintf (dump_file, ")\n"); |
| } |
| |
| /* Similar to max_stmt_executions_int, but returns the bound as a tree, |
| and only if it fits to the int type. If this is not the case, or the |
| bound on the number of iterations of LOOP could not be derived, returns |
| chrec_dont_know. */ |
| |
| static tree |
| max_stmt_executions_tree (struct loop *loop) |
| { |
| double_int nit; |
| |
| if (!max_stmt_executions (loop, &nit)) |
| return chrec_dont_know; |
| |
| if (!double_int_fits_to_tree_p (unsigned_type_node, nit)) |
| return chrec_dont_know; |
| |
| return double_int_to_tree (unsigned_type_node, nit); |
| } |
| |
| /* Determine whether the CHREC is always positive/negative. If the expression |
| cannot be statically analyzed, return false, otherwise set the answer into |
| VALUE. */ |
| |
| static bool |
| chrec_is_positive (tree chrec, bool *value) |
| { |
| bool value0, value1, value2; |
| tree end_value, nb_iter; |
| |
| switch (TREE_CODE (chrec)) |
| { |
| case POLYNOMIAL_CHREC: |
| if (!chrec_is_positive (CHREC_LEFT (chrec), &value0) |
| || !chrec_is_positive (CHREC_RIGHT (chrec), &value1)) |
| return false; |
| |
| /* FIXME -- overflows. */ |
| if (value0 == value1) |
| { |
| *value = value0; |
| return true; |
| } |
| |
| /* Otherwise the chrec is under the form: "{-197, +, 2}_1", |
| and the proof consists in showing that the sign never |
| changes during the execution of the loop, from 0 to |
| loop->nb_iterations. */ |
| if (!evolution_function_is_affine_p (chrec)) |
| return false; |
| |
| nb_iter = number_of_latch_executions (get_chrec_loop (chrec)); |
| if (chrec_contains_undetermined (nb_iter)) |
| return false; |
| |
| #if 0 |
| /* TODO -- If the test is after the exit, we may decrease the number of |
| iterations by one. */ |
| if (after_exit) |
| nb_iter = chrec_fold_minus (type, nb_iter, build_int_cst (type, 1)); |
| #endif |
| |
| end_value = chrec_apply (CHREC_VARIABLE (chrec), chrec, nb_iter); |
| |
| if (!chrec_is_positive (end_value, &value2)) |
| return false; |
| |
| *value = value0; |
| return value0 == value1; |
| |
| case INTEGER_CST: |
| switch (tree_int_cst_sgn (chrec)) |
| { |
| case -1: |
| *value = false; |
| break; |
| case 1: |
| *value = true; |
| break; |
| default: |
| return false; |
| } |
| return true; |
| |
| default: |
| return false; |
| } |
| } |
| |
| |
| /* Analyze a SIV (Single Index Variable) subscript where CHREC_A is a |
| constant, and CHREC_B is an affine function. *OVERLAPS_A and |
| *OVERLAPS_B are initialized to the functions that describe the |
| relation between the elements accessed twice by CHREC_A and |
| CHREC_B. For k >= 0, the following property is verified: |
| |
| CHREC_A (*OVERLAPS_A (k)) = CHREC_B (*OVERLAPS_B (k)). */ |
| |
| static void |
| analyze_siv_subscript_cst_affine (tree chrec_a, |
| tree chrec_b, |
| conflict_function **overlaps_a, |
| conflict_function **overlaps_b, |
| tree *last_conflicts) |
| { |
| bool value0, value1, value2; |
| tree type, difference, tmp; |
| |
| type = signed_type_for_types (TREE_TYPE (chrec_a), TREE_TYPE (chrec_b)); |
| chrec_a = chrec_convert (type, chrec_a, NULL); |
| chrec_b = chrec_convert (type, chrec_b, NULL); |
| difference = chrec_fold_minus (type, initial_condition (chrec_b), chrec_a); |
| |
| /* Special case overlap in the first iteration. */ |
| if (integer_zerop (difference)) |
| { |
| *overlaps_a = conflict_fn (1, affine_fn_cst (integer_zero_node)); |
| *overlaps_b = conflict_fn (1, affine_fn_cst (integer_zero_node)); |
| *last_conflicts = integer_one_node; |
| return; |
| } |
| |
| if (!chrec_is_positive (initial_condition (difference), &value0)) |
| { |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| fprintf (dump_file, "siv test failed: chrec is not positive.\n"); |
| |
| dependence_stats.num_siv_unimplemented++; |
| *overlaps_a = conflict_fn_not_known (); |
| *overlaps_b = conflict_fn_not_known (); |
| *last_conflicts = chrec_dont_know; |
| return; |
| } |
| else |
| { |
| if (value0 == false) |
| { |
| if (!chrec_is_positive (CHREC_RIGHT (chrec_b), &value1)) |
| { |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| fprintf (dump_file, "siv test failed: chrec not positive.\n"); |
| |
| *overlaps_a = conflict_fn_not_known (); |
| *overlaps_b = conflict_fn_not_known (); |
| *last_conflicts = chrec_dont_know; |
| dependence_stats.num_siv_unimplemented++; |
| return; |
| } |
| else |
| { |
| if (value1 == true) |
| { |
| /* Example: |
| chrec_a = 12 |
| chrec_b = {10, +, 1} |
| */ |
| |
| if (tree_fold_divides_p (CHREC_RIGHT (chrec_b), difference)) |
| { |
| HOST_WIDE_INT numiter; |
| struct loop *loop = get_chrec_loop (chrec_b); |
| |
| *overlaps_a = conflict_fn (1, affine_fn_cst (integer_zero_node)); |
| tmp = fold_build2 (EXACT_DIV_EXPR, type, |
| fold_build1 (ABS_EXPR, type, difference), |
| CHREC_RIGHT (chrec_b)); |
| *overlaps_b = conflict_fn (1, affine_fn_cst (tmp)); |
| *last_conflicts = integer_one_node; |
| |
| |
| /* Perform weak-zero siv test to see if overlap is |
| outside the loop bounds. */ |
| numiter = max_stmt_executions_int (loop); |
| |
| if (numiter >= 0 |
| && compare_tree_int (tmp, numiter) > 0) |
| { |
| free_conflict_function (*overlaps_a); |
| free_conflict_function (*overlaps_b); |
| *overlaps_a = conflict_fn_no_dependence (); |
| *overlaps_b = conflict_fn_no_dependence (); |
| *last_conflicts = integer_zero_node; |
| dependence_stats.num_siv_independent++; |
| return; |
| } |
| dependence_stats.num_siv_dependent++; |
| return; |
| } |
| |
| /* When the step does not divide the difference, there are |
| no overlaps. */ |
| else |
| { |
| *overlaps_a = conflict_fn_no_dependence (); |
| *overlaps_b = conflict_fn_no_dependence (); |
| *last_conflicts = integer_zero_node; |
| dependence_stats.num_siv_independent++; |
| return; |
| } |
| } |
| |
| else |
| { |
| /* Example: |
| chrec_a = 12 |
| chrec_b = {10, +, -1} |
| |
| In this case, chrec_a will not overlap with chrec_b. */ |
| *overlaps_a = conflict_fn_no_dependence (); |
| *overlaps_b = conflict_fn_no_dependence (); |
| *last_conflicts = integer_zero_node; |
| dependence_stats.num_siv_independent++; |
| return; |
| } |
| } |
| } |
| else |
| { |
| if (!chrec_is_positive (CHREC_RIGHT (chrec_b), &value2)) |
| { |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| fprintf (dump_file, "siv test failed: chrec not positive.\n"); |
| |
| *overlaps_a = conflict_fn_not_known (); |
| *overlaps_b = conflict_fn_not_known (); |
| *last_conflicts = chrec_dont_know; |
| dependence_stats.num_siv_unimplemented++; |
| return; |
| } |
| else |
| { |
| if (value2 == false) |
| { |
| /* Example: |
| chrec_a = 3 |
| chrec_b = {10, +, -1} |
| */ |
| if (tree_fold_divides_p (CHREC_RIGHT (chrec_b), difference)) |
| { |
| HOST_WIDE_INT numiter; |
| struct loop *loop = get_chrec_loop (chrec_b); |
| |
| *overlaps_a = conflict_fn (1, affine_fn_cst (integer_zero_node)); |
| tmp = fold_build2 (EXACT_DIV_EXPR, type, difference, |
| CHREC_RIGHT (chrec_b)); |
| *overlaps_b = conflict_fn (1, affine_fn_cst (tmp)); |
| *last_conflicts = integer_one_node; |
| |
| /* Perform weak-zero siv test to see if overlap is |
| outside the loop bounds. */ |
| numiter = max_stmt_executions_int (loop); |
| |
| if (numiter >= 0 |
| && compare_tree_int (tmp, numiter) > 0) |
| { |
| free_conflict_function (*overlaps_a); |
| free_conflict_function (*overlaps_b); |
| *overlaps_a = conflict_fn_no_dependence (); |
| *overlaps_b = conflict_fn_no_dependence (); |
| *last_conflicts = integer_zero_node; |
| dependence_stats.num_siv_independent++; |
| return; |
| } |
| dependence_stats.num_siv_dependent++; |
| return; |
| } |
| |
| /* When the step does not divide the difference, there |
| are no overlaps. */ |
| else |
| { |
| *overlaps_a = conflict_fn_no_dependence (); |
| *overlaps_b = conflict_fn_no_dependence (); |
| *last_conflicts = integer_zero_node; |
| dependence_stats.num_siv_independent++; |
| return; |
| } |
| } |
| else |
| { |
| /* Example: |
| chrec_a = 3 |
| chrec_b = {4, +, 1} |
| |
| In this case, chrec_a will not overlap with chrec_b. */ |
| *overlaps_a = conflict_fn_no_dependence (); |
| *overlaps_b = conflict_fn_no_dependence (); |
| *last_conflicts = integer_zero_node; |
| dependence_stats.num_siv_independent++; |
| return; |
| } |
| } |
| } |
| } |
| } |
| |
| /* Helper recursive function for initializing the matrix A. Returns |
| the initial value of CHREC. */ |
| |
| static tree |
| initialize_matrix_A (lambda_matrix A, tree chrec, unsigned index, int mult) |
| { |
| gcc_assert (chrec); |
| |
| switch (TREE_CODE (chrec)) |
| { |
| case POLYNOMIAL_CHREC: |
| gcc_assert (TREE_CODE (CHREC_RIGHT (chrec)) == INTEGER_CST); |
| |
| A[index][0] = mult * int_cst_value (CHREC_RIGHT (chrec)); |
| return initialize_matrix_A (A, CHREC_LEFT (chrec), index + 1, mult); |
| |
| case PLUS_EXPR: |
| case MULT_EXPR: |
| case MINUS_EXPR: |
| { |
| tree op0 = initialize_matrix_A (A, TREE_OPERAND (chrec, 0), index, mult); |
| tree op1 = initialize_matrix_A (A, TREE_OPERAND (chrec, 1), index, mult); |
| |
| return chrec_fold_op (TREE_CODE (chrec), chrec_type (chrec), op0, op1); |
| } |
| |
| case NOP_EXPR: |
| { |
| tree op = initialize_matrix_A (A, TREE_OPERAND (chrec, 0), index, mult); |
| return chrec_convert (chrec_type (chrec), op, NULL); |
| } |
| |
| case BIT_NOT_EXPR: |
| { |
| /* Handle ~X as -1 - X. */ |
| tree op = initialize_matrix_A (A, TREE_OPERAND (chrec, 0), index, mult); |
| return chrec_fold_op (MINUS_EXPR, chrec_type (chrec), |
| build_int_cst (TREE_TYPE (chrec), -1), op); |
| } |
| |
| case INTEGER_CST: |
| return chrec; |
| |
| default: |
| gcc_unreachable (); |
| return NULL_TREE; |
| } |
| } |
| |
| #define FLOOR_DIV(x,y) ((x) / (y)) |
| |
| /* Solves the special case of the Diophantine equation: |
| | {0, +, STEP_A}_x (OVERLAPS_A) = {0, +, STEP_B}_y (OVERLAPS_B) |
| |
| Computes the descriptions OVERLAPS_A and OVERLAPS_B. NITER is the |
| number of iterations that loops X and Y run. The overlaps will be |
| constructed as evolutions in dimension DIM. */ |
| |
| static void |
| compute_overlap_steps_for_affine_univar (int niter, int step_a, int step_b, |
| affine_fn *overlaps_a, |
| affine_fn *overlaps_b, |
| tree *last_conflicts, int dim) |
| { |
| if (((step_a > 0 && step_b > 0) |
| || (step_a < 0 && step_b < 0))) |
| { |
| int step_overlaps_a, step_overlaps_b; |
| int gcd_steps_a_b, last_conflict, tau2; |
| |
| gcd_steps_a_b = gcd (step_a, step_b); |
| step_overlaps_a = step_b / gcd_steps_a_b; |
| step_overlaps_b = step_a / gcd_steps_a_b; |
| |
| if (niter > 0) |
| { |
| tau2 = FLOOR_DIV (niter, step_overlaps_a); |
| tau2 = MIN (tau2, FLOOR_DIV (niter, step_overlaps_b)); |
| last_conflict = tau2; |
| *last_conflicts = build_int_cst (NULL_TREE, last_conflict); |
| } |
| else |
| *last_conflicts = chrec_dont_know; |
| |
| *overlaps_a = affine_fn_univar (integer_zero_node, dim, |
| build_int_cst (NULL_TREE, |
| step_overlaps_a)); |
| *overlaps_b = affine_fn_univar (integer_zero_node, dim, |
| build_int_cst (NULL_TREE, |
| step_overlaps_b)); |
| } |
| |
| else |
| { |
| *overlaps_a = affine_fn_cst (integer_zero_node); |
| *overlaps_b = affine_fn_cst (integer_zero_node); |
| *last_conflicts = integer_zero_node; |
| } |
| } |
| |
| /* Solves the special case of a Diophantine equation where CHREC_A is |
| an affine bivariate function, and CHREC_B is an affine univariate |
| function. For example, |
| |
| | {{0, +, 1}_x, +, 1335}_y = {0, +, 1336}_z |
| |
| has the following overlapping functions: |
| |
| | x (t, u, v) = {{0, +, 1336}_t, +, 1}_v |
| | y (t, u, v) = {{0, +, 1336}_u, +, 1}_v |
| | z (t, u, v) = {{{0, +, 1}_t, +, 1335}_u, +, 1}_v |
| |
| FORNOW: This is a specialized implementation for a case occurring in |
| a common benchmark. Implement the general algorithm. */ |
| |
| static void |
| compute_overlap_steps_for_affine_1_2 (tree chrec_a, tree chrec_b, |
| conflict_function **overlaps_a, |
| conflict_function **overlaps_b, |
| tree *last_conflicts) |
| { |
| bool xz_p, yz_p, xyz_p; |
| int step_x, step_y, step_z; |
| HOST_WIDE_INT niter_x, niter_y, niter_z, niter; |
| affine_fn overlaps_a_xz, overlaps_b_xz; |
| affine_fn overlaps_a_yz, overlaps_b_yz; |
| affine_fn overlaps_a_xyz, overlaps_b_xyz; |
| affine_fn ova1, ova2, ovb; |
| tree last_conflicts_xz, last_conflicts_yz, last_conflicts_xyz; |
| |
| step_x = int_cst_value (CHREC_RIGHT (CHREC_LEFT (chrec_a))); |
| step_y = int_cst_value (CHREC_RIGHT (chrec_a)); |
| step_z = int_cst_value (CHREC_RIGHT (chrec_b)); |
| |
| niter_x = max_stmt_executions_int (get_chrec_loop (CHREC_LEFT (chrec_a))); |
| niter_y = max_stmt_executions_int (get_chrec_loop (chrec_a)); |
| niter_z = max_stmt_executions_int (get_chrec_loop (chrec_b)); |
| |
| if (niter_x < 0 || niter_y < 0 || niter_z < 0) |
| { |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| fprintf (dump_file, "overlap steps test failed: no iteration counts.\n"); |
| |
| *overlaps_a = conflict_fn_not_known (); |
| *overlaps_b = conflict_fn_not_known (); |
| *last_conflicts = chrec_dont_know; |
| return; |
| } |
| |
| niter = MIN (niter_x, niter_z); |
| compute_overlap_steps_for_affine_univar (niter, step_x, step_z, |
| &overlaps_a_xz, |
| &overlaps_b_xz, |
| &last_conflicts_xz, 1); |
| niter = MIN (niter_y, niter_z); |
| compute_overlap_steps_for_affine_univar (niter, step_y, step_z, |
| &overlaps_a_yz, |
| &overlaps_b_yz, |
| &last_conflicts_yz, 2); |
| niter = MIN (niter_x, niter_z); |
| niter = MIN (niter_y, niter); |
| compute_overlap_steps_for_affine_univar (niter, step_x + step_y, step_z, |
| &overlaps_a_xyz, |
| &overlaps_b_xyz, |
| &last_conflicts_xyz, 3); |
| |
| xz_p = !integer_zerop (last_conflicts_xz); |
| yz_p = !integer_zerop (last_conflicts_yz); |
| xyz_p = !integer_zerop (last_conflicts_xyz); |
| |
| if (xz_p || yz_p || xyz_p) |
| { |
| ova1 = affine_fn_cst (integer_zero_node); |
| ova2 = affine_fn_cst (integer_zero_node); |
| ovb = affine_fn_cst (integer_zero_node); |
| if (xz_p) |
| { |
| affine_fn t0 = ova1; |
| affine_fn t2 = ovb; |
| |
| ova1 = affine_fn_plus (ova1, overlaps_a_xz); |
| ovb = affine_fn_plus (ovb, overlaps_b_xz); |
| affine_fn_free (t0); |
| affine_fn_free (t2); |
| *last_conflicts = last_conflicts_xz; |
| } |
| if (yz_p) |
| { |
| affine_fn t0 = ova2; |
| affine_fn t2 = ovb; |
| |
| ova2 = affine_fn_plus (ova2, overlaps_a_yz); |
| ovb = affine_fn_plus (ovb, overlaps_b_yz); |
| affine_fn_free (t0); |
| affine_fn_free (t2); |
| *last_conflicts = last_conflicts_yz; |
| } |
| if (xyz_p) |
| { |
| affine_fn t0 = ova1; |
| affine_fn t2 = ova2; |
| affine_fn t4 = ovb; |
| |
| ova1 = affine_fn_plus (ova1, overlaps_a_xyz); |
| ova2 = affine_fn_plus (ova2, overlaps_a_xyz); |
| ovb = affine_fn_plus (ovb, overlaps_b_xyz); |
| affine_fn_free (t0); |
| affine_fn_free (t2); |
| affine_fn_free (t4); |
| *last_conflicts = last_conflicts_xyz; |
| } |
| *overlaps_a = conflict_fn (2, ova1, ova2); |
| *overlaps_b = conflict_fn (1, ovb); |
| } |
| else |
| { |
| *overlaps_a = conflict_fn (1, affine_fn_cst (integer_zero_node)); |
| *overlaps_b = conflict_fn (1, affine_fn_cst (integer_zero_node)); |
| *last_conflicts = integer_zero_node; |
| } |
| |
| affine_fn_free (overlaps_a_xz); |
| affine_fn_free (overlaps_b_xz); |
| affine_fn_free (overlaps_a_yz); |
| affine_fn_free (overlaps_b_yz); |
| affine_fn_free (overlaps_a_xyz); |
| affine_fn_free (overlaps_b_xyz); |
| } |
| |
| /* Copy the elements of vector VEC1 with length SIZE to VEC2. */ |
| |
| static void |
| lambda_vector_copy (lambda_vector vec1, lambda_vector vec2, |
| int size) |
| { |
| memcpy (vec2, vec1, size * sizeof (*vec1)); |
| } |
| |
| /* Copy the elements of M x N matrix MAT1 to MAT2. */ |
| |
| static void |
| lambda_matrix_copy (lambda_matrix mat1, lambda_matrix mat2, |
| int m, int n) |
| { |
| int i; |
| |
| for (i = 0; i < m; i++) |
| lambda_vector_copy (mat1[i], mat2[i], n); |
| } |
| |
| /* Store the N x N identity matrix in MAT. */ |
| |
| static void |
| lambda_matrix_id (lambda_matrix mat, int size) |
| { |
| int i, j; |
| |
| for (i = 0; i < size; i++) |
| for (j = 0; j < size; j++) |
| mat[i][j] = (i == j) ? 1 : 0; |
| } |
| |
| /* Return the first nonzero element of vector VEC1 between START and N. |
| We must have START <= N. Returns N if VEC1 is the zero vector. */ |
| |
| static int |
| lambda_vector_first_nz (lambda_vector vec1, int n, int start) |
| { |
| int j = start; |
| while (j < n && vec1[j] == 0) |
| j++; |
| return j; |
| } |
| |
| /* Add a multiple of row R1 of matrix MAT with N columns to row R2: |
| R2 = R2 + CONST1 * R1. */ |
| |
| static void |
| lambda_matrix_row_add (lambda_matrix mat, int n, int r1, int r2, int const1) |
| { |
| int i; |
| |
| if (const1 == 0) |
| return; |
| |
| for (i = 0; i < n; i++) |
| mat[r2][i] += const1 * mat[r1][i]; |
| } |
| |
| /* Swap rows R1 and R2 in matrix MAT. */ |
| |
| static void |
| lambda_matrix_row_exchange (lambda_matrix mat, int r1, int r2) |
| { |
| lambda_vector row; |
| |
| row = mat[r1]; |
| mat[r1] = mat[r2]; |
| mat[r2] = row; |
| } |
| |
| /* Multiply vector VEC1 of length SIZE by a constant CONST1, |
| and store the result in VEC2. */ |
| |
| static void |
| lambda_vector_mult_const (lambda_vector vec1, lambda_vector vec2, |
| int size, int const1) |
| { |
| int i; |
| |
| if (const1 == 0) |
| lambda_vector_clear (vec2, size); |
| else |
| for (i = 0; i < size; i++) |
| vec2[i] = const1 * vec1[i]; |
| } |
| |
| /* Negate vector VEC1 with length SIZE and store it in VEC2. */ |
| |
| static void |
| lambda_vector_negate (lambda_vector vec1, lambda_vector vec2, |
| int size) |
| { |
| lambda_vector_mult_const (vec1, vec2, size, -1); |
| } |
| |
| /* Negate row R1 of matrix MAT which has N columns. */ |
| |
| static void |
| lambda_matrix_row_negate (lambda_matrix mat, int n, int r1) |
| { |
| lambda_vector_negate (mat[r1], mat[r1], n); |
| } |
| |
| /* Return true if two vectors are equal. */ |
| |
| static bool |
| lambda_vector_equal (lambda_vector vec1, lambda_vector vec2, int size) |
| { |
| int i; |
| for (i = 0; i < size; i++) |
| if (vec1[i] != vec2[i]) |
| return false; |
| return true; |
| } |
| |
| /* Given an M x N integer matrix A, this function determines an M x |
| M unimodular matrix U, and an M x N echelon matrix S such that |
| "U.A = S". This decomposition is also known as "right Hermite". |
| |
| Ref: Algorithm 2.1 page 33 in "Loop Transformations for |
| Restructuring Compilers" Utpal Banerjee. */ |
| |
| static void |
| lambda_matrix_right_hermite (lambda_matrix A, int m, int n, |
| lambda_matrix S, lambda_matrix U) |
| { |
| int i, j, i0 = 0; |
| |
| lambda_matrix_copy (A, S, m, n); |
| lambda_matrix_id (U, m); |
| |
| for (j = 0; j < n; j++) |
| { |
| if (lambda_vector_first_nz (S[j], m, i0) < m) |
| { |
| ++i0; |
| for (i = m - 1; i >= i0; i--) |
| { |
| while (S[i][j] != 0) |
| { |
| int sigma, factor, a, b; |
| |
| a = S[i-1][j]; |
| b = S[i][j]; |
| sigma = (a * b < 0) ? -1: 1; |
| a = abs (a); |
| b = abs (b); |
| factor = sigma * (a / b); |
| |
| lambda_matrix_row_add (S, n, i, i-1, -factor); |
| lambda_matrix_row_exchange (S, i, i-1); |
| |
| lambda_matrix_row_add (U, m, i, i-1, -factor); |
| lambda_matrix_row_exchange (U, i, i-1); |
| } |
| } |
| } |
| } |
| } |
| |
| /* Determines the overlapping elements due to accesses CHREC_A and |
| CHREC_B, that are affine functions. This function cannot handle |
| symbolic evolution functions, ie. when initial conditions are |
| parameters, because it uses lambda matrices of integers. */ |
| |
| static void |
| analyze_subscript_affine_affine (tree chrec_a, |
| tree chrec_b, |
| conflict_function **overlaps_a, |
| conflict_function **overlaps_b, |
| tree *last_conflicts) |
| { |
| unsigned nb_vars_a, nb_vars_b, dim; |
| HOST_WIDE_INT init_a, init_b, gamma, gcd_alpha_beta; |
| lambda_matrix A, U, S; |
| struct obstack scratch_obstack; |
| |
| if (eq_evolutions_p (chrec_a, chrec_b)) |
| { |
| /* The accessed index overlaps for each iteration in the |
| loop. */ |
| *overlaps_a = conflict_fn (1, affine_fn_cst (integer_zero_node)); |
| *overlaps_b = conflict_fn (1, affine_fn_cst (integer_zero_node)); |
| *last_conflicts = chrec_dont_know; |
| return; |
| } |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| fprintf (dump_file, "(analyze_subscript_affine_affine \n"); |
| |
| /* For determining the initial intersection, we have to solve a |
| Diophantine equation. This is the most time consuming part. |
| |
| For answering to the question: "Is there a dependence?" we have |
| to prove that there exists a solution to the Diophantine |
| equation, and that the solution is in the iteration domain, |
| i.e. the solution is positive or zero, and that the solution |
| happens before the upper bound loop.nb_iterations. Otherwise |
| there is no dependence. This function outputs a description of |
| the iterations that hold the intersections. */ |
| |
| nb_vars_a = nb_vars_in_chrec (chrec_a); |
| nb_vars_b = nb_vars_in_chrec (chrec_b); |
| |
| gcc_obstack_init (&scratch_obstack); |
| |
| dim = nb_vars_a + nb_vars_b; |
| U = lambda_matrix_new (dim, dim, &scratch_obstack); |
| A = lambda_matrix_new (dim, 1, &scratch_obstack); |
| S = lambda_matrix_new (dim, 1, &scratch_obstack); |
| |
| init_a = int_cst_value (initialize_matrix_A (A, chrec_a, 0, 1)); |
| init_b = int_cst_value (initialize_matrix_A (A, chrec_b, nb_vars_a, -1)); |
| gamma = init_b - init_a; |
| |
| /* Don't do all the hard work of solving the Diophantine equation |
| when we already know the solution: for example, |
| | {3, +, 1}_1 |
| | {3, +, 4}_2 |
| | gamma = 3 - 3 = 0. |
| Then the first overlap occurs during the first iterations: |
| | {3, +, 1}_1 ({0, +, 4}_x) = {3, +, 4}_2 ({0, +, 1}_x) |
| */ |
| if (gamma == 0) |
| { |
| if (nb_vars_a == 1 && nb_vars_b == 1) |
| { |
| HOST_WIDE_INT step_a, step_b; |
| HOST_WIDE_INT niter, niter_a, niter_b; |
| affine_fn ova, ovb; |
| |
| niter_a = max_stmt_executions_int (get_chrec_loop (chrec_a)); |
| niter_b = max_stmt_executions_int (get_chrec_loop (chrec_b)); |
| niter = MIN (niter_a, niter_b); |
| step_a = int_cst_value (CHREC_RIGHT (chrec_a)); |
| step_b = int_cst_value (CHREC_RIGHT (chrec_b)); |
| |
| compute_overlap_steps_for_affine_univar (niter, step_a, step_b, |
| &ova, &ovb, |
| last_conflicts, 1); |
| *overlaps_a = conflict_fn (1, ova); |
| *overlaps_b = conflict_fn (1, ovb); |
| } |
| |
| else if (nb_vars_a == 2 && nb_vars_b == 1) |
| compute_overlap_steps_for_affine_1_2 |
| (chrec_a, chrec_b, overlaps_a, overlaps_b, last_conflicts); |
| |
| else if (nb_vars_a == 1 && nb_vars_b == 2) |
| compute_overlap_steps_for_affine_1_2 |
| (chrec_b, chrec_a, overlaps_b, overlaps_a, last_conflicts); |
| |
| else |
| { |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| fprintf (dump_file, "affine-affine test failed: too many variables.\n"); |
| *overlaps_a = conflict_fn_not_known (); |
| *overlaps_b = conflict_fn_not_known (); |
| *last_conflicts = chrec_dont_know; |
| } |
| goto end_analyze_subs_aa; |
| } |
| |
| /* U.A = S */ |
| lambda_matrix_right_hermite (A, dim, 1, S, U); |
| |
| if (S[0][0] < 0) |
| { |
| S[0][0] *= -1; |
| lambda_matrix_row_negate (U, dim, 0); |
| } |
| gcd_alpha_beta = S[0][0]; |
| |
| /* Something went wrong: for example in {1, +, 0}_5 vs. {0, +, 0}_5, |
| but that is a quite strange case. Instead of ICEing, answer |
| don't know. */ |
| if (gcd_alpha_beta == 0) |
| { |
| *overlaps_a = conflict_fn_not_known (); |
| *overlaps_b = conflict_fn_not_known (); |
| *last_conflicts = chrec_dont_know; |
| goto end_analyze_subs_aa; |
| } |
| |
| /* The classic "gcd-test". */ |
| if (!int_divides_p (gcd_alpha_beta, gamma)) |
| { |
| /* The "gcd-test" has determined that there is no integer |
| solution, i.e. there is no dependence. */ |
| *overlaps_a = conflict_fn_no_dependence (); |
| *overlaps_b = conflict_fn_no_dependence (); |
| *last_conflicts = integer_zero_node; |
| } |
| |
| /* Both access functions are univariate. This includes SIV and MIV cases. */ |
| else if (nb_vars_a == 1 && nb_vars_b == 1) |
| { |
| /* Both functions should have the same evolution sign. */ |
| if (((A[0][0] > 0 && -A[1][0] > 0) |
| || (A[0][0] < 0 && -A[1][0] < 0))) |
| { |
| /* The solutions are given by: |
| | |
| | [GAMMA/GCD_ALPHA_BETA t].[u11 u12] = [x0] |
| | [u21 u22] [y0] |
| |
| For a given integer t. Using the following variables, |
| |
| | i0 = u11 * gamma / gcd_alpha_beta |
| | j0 = u12 * gamma / gcd_alpha_beta |
| | i1 = u21 |
| | j1 = u22 |
| |
| the solutions are: |
| |
| | x0 = i0 + i1 * t, |
| | y0 = j0 + j1 * t. */ |
| HOST_WIDE_INT i0, j0, i1, j1; |
| |
| i0 = U[0][0] * gamma / gcd_alpha_beta; |
| j0 = U[0][1] * gamma / gcd_alpha_beta; |
| i1 = U[1][0]; |
| j1 = U[1][1]; |
| |
| if ((i1 == 0 && i0 < 0) |
| || (j1 == 0 && j0 < 0)) |
| { |
| /* There is no solution. |
| FIXME: The case "i0 > nb_iterations, j0 > nb_iterations" |
| falls in here, but for the moment we don't look at the |
| upper bound of the iteration domain. */ |
| *overlaps_a = conflict_fn_no_dependence (); |
| *overlaps_b = conflict_fn_no_dependence (); |
| *last_conflicts = integer_zero_node; |
| goto end_analyze_subs_aa; |
| } |
| |
| if (i1 > 0 && j1 > 0) |
| { |
| HOST_WIDE_INT niter_a |
| = max_stmt_executions_int (get_chrec_loop (chrec_a)); |
| HOST_WIDE_INT niter_b |
| = max_stmt_executions_int (get_chrec_loop (chrec_b)); |
| HOST_WIDE_INT niter = MIN (niter_a, niter_b); |
| |
| /* (X0, Y0) is a solution of the Diophantine equation: |
| "chrec_a (X0) = chrec_b (Y0)". */ |
| HOST_WIDE_INT tau1 = MAX (CEIL (-i0, i1), |
| CEIL (-j0, j1)); |
| HOST_WIDE_INT x0 = i1 * tau1 + i0; |
| HOST_WIDE_INT y0 = j1 * tau1 + j0; |
| |
| /* (X1, Y1) is the smallest positive solution of the eq |
| "chrec_a (X1) = chrec_b (Y1)", i.e. this is where the |
| first conflict occurs. */ |
| HOST_WIDE_INT min_multiple = MIN (x0 / i1, y0 / j1); |
| HOST_WIDE_INT x1 = x0 - i1 * min_multiple; |
| HOST_WIDE_INT y1 = y0 - j1 * min_multiple; |
| |
| if (niter > 0) |
| { |
| HOST_WIDE_INT tau2 = MIN (FLOOR_DIV (niter - i0, i1), |
| FLOOR_DIV (niter - j0, j1)); |
| HOST_WIDE_INT last_conflict = tau2 - (x1 - i0)/i1; |
| |
| /* If the overlap occurs outside of the bounds of the |
| loop, there is no dependence. */ |
| if (x1 >= niter || y1 >= niter) |
| { |
| *overlaps_a = conflict_fn_no_dependence (); |
| *overlaps_b = conflict_fn_no_dependence (); |
| *last_conflicts = integer_zero_node; |
| goto end_analyze_subs_aa; |
| } |
| else |
| *last_conflicts = build_int_cst (NULL_TREE, last_conflict); |
| } |
| else |
| *last_conflicts = chrec_dont_know; |
| |
| *overlaps_a |
| = conflict_fn (1, |
| affine_fn_univar (build_int_cst (NULL_TREE, x1), |
| 1, |
| build_int_cst (NULL_TREE, i1))); |
| *overlaps_b |
| = conflict_fn (1, |
| affine_fn_univar (build_int_cst (NULL_TREE, y1), |
| 1, |
| build_int_cst (NULL_TREE, j1))); |
| } |
| else |
| { |
| /* FIXME: For the moment, the upper bound of the |
| iteration domain for i and j is not checked. */ |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| fprintf (dump_file, "affine-affine test failed: unimplemented.\n"); |
| *overlaps_a = conflict_fn_not_known (); |
| *overlaps_b = conflict_fn_not_known (); |
| *last_conflicts = chrec_dont_know; |
| } |
| } |
| else |
| { |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| fprintf (dump_file, "affine-affine test failed: unimplemented.\n"); |
| *overlaps_a = conflict_fn_not_known (); |
| *overlaps_b = conflict_fn_not_known (); |
| *last_conflicts = chrec_dont_know; |
| } |
| } |
| else |
| { |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| fprintf (dump_file, "affine-affine test failed: unimplemented.\n"); |
| *overlaps_a = conflict_fn_not_known (); |
| *overlaps_b = conflict_fn_not_known (); |
| *last_conflicts = chrec_dont_know; |
| } |
| |
| end_analyze_subs_aa: |
| obstack_free (&scratch_obstack, NULL); |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| { |
| fprintf (dump_file, " (overlaps_a = "); |
| dump_conflict_function (dump_file, *overlaps_a); |
| fprintf (dump_file, ")\n (overlaps_b = "); |
| dump_conflict_function (dump_file, *overlaps_b); |
| fprintf (dump_file, "))\n"); |
| } |
| } |
| |
| /* Returns true when analyze_subscript_affine_affine can be used for |
| determining the dependence relation between chrec_a and chrec_b, |
| that contain symbols. This function modifies chrec_a and chrec_b |
| such that the analysis result is the same, and such that they don't |
| contain symbols, and then can safely be passed to the analyzer. |
| |
| Example: The analysis of the following tuples of evolutions produce |
| the same results: {x+1, +, 1}_1 vs. {x+3, +, 1}_1, and {-2, +, 1}_1 |
| vs. {0, +, 1}_1 |
| |
| {x+1, +, 1}_1 ({2, +, 1}_1) = {x+3, +, 1}_1 ({0, +, 1}_1) |
| {-2, +, 1}_1 ({2, +, 1}_1) = {0, +, 1}_1 ({0, +, 1}_1) |
| */ |
| |
| static bool |
| can_use_analyze_subscript_affine_affine (tree *chrec_a, tree *chrec_b) |
| { |
| tree diff, type, left_a, left_b, right_b; |
| |
| if (chrec_contains_symbols (CHREC_RIGHT (*chrec_a)) |
| || chrec_contains_symbols (CHREC_RIGHT (*chrec_b))) |
| /* FIXME: For the moment not handled. Might be refined later. */ |
| return false; |
| |
| type = chrec_type (*chrec_a); |
| left_a = CHREC_LEFT (*chrec_a); |
| left_b = chrec_convert (type, CHREC_LEFT (*chrec_b), NULL); |
| diff = chrec_fold_minus (type, left_a, left_b); |
| |
| if (!evolution_function_is_constant_p (diff)) |
| return false; |
| |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| fprintf (dump_file, "can_use_subscript_aff_aff_for_symbolic \n"); |
| |
| *chrec_a = build_polynomial_chrec (CHREC_VARIABLE (*chrec_a), |
| diff, CHREC_RIGHT (*chrec_a)); |
| right_b = chrec_convert (type, CHREC_RIGHT (*chrec_b), NULL); |
| *chrec_b = build_polynomial_chrec (CHREC_VARIABLE (*chrec_b), |
| build_int_cst (type, 0), |
| right_b); |
| return true; |
| } |
| |
| /* Analyze a SIV (Single Index Variable) subscript. *OVERLAPS_A and |
| *OVERLAPS_B are initialized to the functions that describe the |
| relation between the elements accessed twice by CHREC_A and |
| CHREC_B. For k >= 0, the following property is verified: |
| |
| CHREC_A (*OVERLAPS_A (k)) = CHREC_B (*OVERLAPS_B (k)). */ |
| |
| static void |
| analyze_siv_subscript (tree chrec_a, |
| tree chrec_b, |
| conflict_function **overlaps_a, |
| conflict_function **overlaps_b, |
| tree *last_conflicts, |
| int loop_nest_num) |
| { |
| dependence_stats.num_siv++; |
| |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| fprintf (dump_file, "(analyze_siv_subscript \n"); |
| |
| if (evolution_function_is_constant_p (chrec_a) |
| && evolution_function_is_affine_in_loop (chrec_b, loop_nest_num)) |
| analyze_siv_subscript_cst_affine (chrec_a, chrec_b, |
| overlaps_a, overlaps_b, last_conflicts); |
| |
| else if (evolution_function_is_affine_in_loop (chrec_a, loop_nest_num) |
| && evolution_function_is_constant_p (chrec_b)) |
| analyze_siv_subscript_cst_affine (chrec_b, chrec_a, |
| overlaps_b, overlaps_a, last_conflicts); |
| |
| else if (evolution_function_is_affine_in_loop (chrec_a, loop_nest_num) |
| && evolution_function_is_affine_in_loop (chrec_b, loop_nest_num)) |
| { |
| if (!chrec_contains_symbols (chrec_a) |
| && !chrec_contains_symbols (chrec_b)) |
| { |
| analyze_subscript_affine_affine (chrec_a, chrec_b, |
| overlaps_a, overlaps_b, |
| last_conflicts); |
| |
| if (CF_NOT_KNOWN_P (*overlaps_a) |
| || CF_NOT_KNOWN_P (*overlaps_b)) |
| dependence_stats.num_siv_unimplemented++; |
| else if (CF_NO_DEPENDENCE_P (*overlaps_a) |
| || CF_NO_DEPENDENCE_P (*overlaps_b)) |
| dependence_stats.num_siv_independent++; |
| else |
| dependence_stats.num_siv_dependent++; |
| } |
| else if (can_use_analyze_subscript_affine_affine (&chrec_a, |
| &chrec_b)) |
| { |
| analyze_subscript_affine_affine (chrec_a, chrec_b, |
| overlaps_a, overlaps_b, |
| last_conflicts); |
| |
| if (CF_NOT_KNOWN_P (*overlaps_a) |
| || CF_NOT_KNOWN_P (*overlaps_b)) |
| dependence_stats.num_siv_unimplemented++; |
| else if (CF_NO_DEPENDENCE_P (*overlaps_a) |
| || CF_NO_DEPENDENCE_P (*overlaps_b)) |
| dependence_stats.num_siv_independent++; |
| else |
| dependence_stats.num_siv_dependent++; |
| } |
| else |
| goto siv_subscript_dontknow; |
| } |
| |
| else |
| { |
| siv_subscript_dontknow:; |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| fprintf (dump_file, " siv test failed: unimplemented"); |
| *overlaps_a = conflict_fn_not_known (); |
| *overlaps_b = conflict_fn_not_known (); |
| *last_conflicts = chrec_dont_know; |
| dependence_stats.num_siv_unimplemented++; |
| } |
| |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| fprintf (dump_file, ")\n"); |
| } |
| |
| /* Returns false if we can prove that the greatest common divisor of the steps |
| of CHREC does not divide CST, false otherwise. */ |
| |
| static bool |
| gcd_of_steps_may_divide_p (const_tree chrec, const_tree cst) |
| { |
| HOST_WIDE_INT cd = 0, val; |
| tree step; |
| |
| if (!host_integerp (cst, 0)) |
| return true; |
| val = tree_low_cst (cst, 0); |
| |
| while (TREE_CODE (chrec) == POLYNOMIAL_CHREC) |
| { |
| step = CHREC_RIGHT (chrec); |
| if (!host_integerp (step, 0)) |
| return true; |
| cd = gcd (cd, tree_low_cst (step, 0)); |
| chrec = CHREC_LEFT (chrec); |
| } |
| |
| return val % cd == 0; |
| } |
| |
| /* Analyze a MIV (Multiple Index Variable) subscript with respect to |
| LOOP_NEST. *OVERLAPS_A and *OVERLAPS_B are initialized to the |
| functions that describe the relation between the elements accessed |
| twice by CHREC_A and CHREC_B. For k >= 0, the following property |
| is verified: |
| |
| CHREC_A (*OVERLAPS_A (k)) = CHREC_B (*OVERLAPS_B (k)). */ |
| |
| static void |
| analyze_miv_subscript (tree chrec_a, |
| tree chrec_b, |
| conflict_function **overlaps_a, |
| conflict_function **overlaps_b, |
| tree *last_conflicts, |
| struct loop *loop_nest) |
| { |
| tree type, difference; |
| |
| dependence_stats.num_miv++; |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| fprintf (dump_file, "(analyze_miv_subscript \n"); |
| |
| type = signed_type_for_types (TREE_TYPE (chrec_a), TREE_TYPE (chrec_b)); |
| chrec_a = chrec_convert (type, chrec_a, NULL); |
| chrec_b = chrec_convert (type, chrec_b, NULL); |
| difference = chrec_fold_minus (type, chrec_a, chrec_b); |
| |
| if (eq_evolutions_p (chrec_a, chrec_b)) |
| { |
| /* Access functions are the same: all the elements are accessed |
| in the same order. */ |
| *overlaps_a = conflict_fn (1, affine_fn_cst (integer_zero_node)); |
| *overlaps_b = conflict_fn (1, affine_fn_cst (integer_zero_node)); |
| *last_conflicts = max_stmt_executions_tree (get_chrec_loop (chrec_a)); |
| dependence_stats.num_miv_dependent++; |
| } |
| |
| else if (evolution_function_is_constant_p (difference) |
| /* For the moment, the following is verified: |
| evolution_function_is_affine_multivariate_p (chrec_a, |
| loop_nest->num) */ |
| && !gcd_of_steps_may_divide_p (chrec_a, difference)) |
| { |
| /* testsuite/.../ssa-chrec-33.c |
| {{21, +, 2}_1, +, -2}_2 vs. {{20, +, 2}_1, +, -2}_2 |
| |
| The difference is 1, and all the evolution steps are multiples |
| of 2, consequently there are no overlapping elements. */ |
| *overlaps_a = conflict_fn_no_dependence (); |
| *overlaps_b = conflict_fn_no_dependence (); |
| *last_conflicts = integer_zero_node; |
| dependence_stats.num_miv_independent++; |
| } |
| |
| else if (evolution_function_is_affine_multivariate_p (chrec_a, loop_nest->num) |
| && !chrec_contains_symbols (chrec_a) |
| && evolution_function_is_affine_multivariate_p (chrec_b, loop_nest->num) |
| && !chrec_contains_symbols (chrec_b)) |
| { |
| /* testsuite/.../ssa-chrec-35.c |
| {0, +, 1}_2 vs. {0, +, 1}_3 |
| the overlapping elements are respectively located at iterations: |
| {0, +, 1}_x and {0, +, 1}_x, |
| in other words, we have the equality: |
| {0, +, 1}_2 ({0, +, 1}_x) = {0, +, 1}_3 ({0, +, 1}_x) |
| |
| Other examples: |
| {{0, +, 1}_1, +, 2}_2 ({0, +, 1}_x, {0, +, 1}_y) = |
| {0, +, 1}_1 ({{0, +, 1}_x, +, 2}_y) |
| |
| {{0, +, 2}_1, +, 3}_2 ({0, +, 1}_y, {0, +, 1}_x) = |
| {{0, +, 3}_1, +, 2}_2 ({0, +, 1}_x, {0, +, 1}_y) |
| */ |
| analyze_subscript_affine_affine (chrec_a, chrec_b, |
| overlaps_a, overlaps_b, last_conflicts); |
| |
| if (CF_NOT_KNOWN_P (*overlaps_a) |
| || CF_NOT_KNOWN_P (*overlaps_b)) |
| dependence_stats.num_miv_unimplemented++; |
| else if (CF_NO_DEPENDENCE_P (*overlaps_a) |
| || CF_NO_DEPENDENCE_P (*overlaps_b)) |
| dependence_stats.num_miv_independent++; |
| else |
| dependence_stats.num_miv_dependent++; |
| } |
| |
| else |
| { |
| /* When the analysis is too difficult, answer "don't know". */ |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| fprintf (dump_file, "analyze_miv_subscript test failed: unimplemented.\n"); |
| |
| *overlaps_a = conflict_fn_not_known (); |
| *overlaps_b = conflict_fn_not_known (); |
| *last_conflicts = chrec_dont_know; |
| dependence_stats.num_miv_unimplemented++; |
| } |
| |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| fprintf (dump_file, ")\n"); |
| } |
| |
| /* Determines the iterations for which CHREC_A is equal to CHREC_B in |
| with respect to LOOP_NEST. OVERLAP_ITERATIONS_A and |
| OVERLAP_ITERATIONS_B are initialized with two functions that |
| describe the iterations that contain conflicting elements. |
| |
| Remark: For an integer k >= 0, the following equality is true: |
| |
| CHREC_A (OVERLAP_ITERATIONS_A (k)) == CHREC_B (OVERLAP_ITERATIONS_B (k)). |
| */ |
| |
| static void |
| analyze_overlapping_iterations (tree chrec_a, |
| tree chrec_b, |
| conflict_function **overlap_iterations_a, |
| conflict_function **overlap_iterations_b, |
| tree *last_conflicts, struct loop *loop_nest) |
| { |
| unsigned int lnn = loop_nest->num; |
| |
| dependence_stats.num_subscript_tests++; |
| |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| { |
| fprintf (dump_file, "(analyze_overlapping_iterations \n"); |
| fprintf (dump_file, " (chrec_a = "); |
| print_generic_expr (dump_file, chrec_a, 0); |
| fprintf (dump_file, ")\n (chrec_b = "); |
| print_generic_expr (dump_file, chrec_b, 0); |
| fprintf (dump_file, ")\n"); |
| } |
| |
| if (chrec_a == NULL_TREE |
| || chrec_b == NULL_TREE |
| || chrec_contains_undetermined (chrec_a) |
| || chrec_contains_undetermined (chrec_b)) |
| { |
| dependence_stats.num_subscript_undetermined++; |
| |
| *overlap_iterations_a = conflict_fn_not_known (); |
| *overlap_iterations_b = conflict_fn_not_known (); |
| } |
| |
| /* If they are the same chrec, and are affine, they overlap |
| on every iteration. */ |
| else if (eq_evolutions_p (chrec_a, chrec_b) |
| && (evolution_function_is_affine_multivariate_p (chrec_a, lnn) |
| || operand_equal_p (chrec_a, chrec_b, 0))) |
| { |
| dependence_stats.num_same_subscript_function++; |
| *overlap_iterations_a = conflict_fn (1, affine_fn_cst (integer_zero_node)); |
| *overlap_iterations_b = conflict_fn (1, affine_fn_cst (integer_zero_node)); |
| *last_conflicts = chrec_dont_know; |
| } |
| |
| /* If they aren't the same, and aren't affine, we can't do anything |
| yet. */ |
| else if ((chrec_contains_symbols (chrec_a) |
| || chrec_contains_symbols (chrec_b)) |
| && (!evolution_function_is_affine_multivariate_p (chrec_a, lnn) |
| || !evolution_function_is_affine_multivariate_p (chrec_b, lnn))) |
| { |
| dependence_stats.num_subscript_undetermined++; |
| *overlap_iterations_a = conflict_fn_not_known (); |
| *overlap_iterations_b = conflict_fn_not_known (); |
| } |
| |
| else if (ziv_subscript_p (chrec_a, chrec_b)) |
| analyze_ziv_subscript (chrec_a, chrec_b, |
| overlap_iterations_a, overlap_iterations_b, |
| last_conflicts); |
| |
| else if (siv_subscript_p (chrec_a, chrec_b)) |
| analyze_siv_subscript (chrec_a, chrec_b, |
| overlap_iterations_a, overlap_iterations_b, |
| last_conflicts, lnn); |
| |
| else |
| analyze_miv_subscript (chrec_a, chrec_b, |
| overlap_iterations_a, overlap_iterations_b, |
| last_conflicts, loop_nest); |
| |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| { |
| fprintf (dump_file, " (overlap_iterations_a = "); |
| dump_conflict_function (dump_file, *overlap_iterations_a); |
| fprintf (dump_file, ")\n (overlap_iterations_b = "); |
| dump_conflict_function (dump_file, *overlap_iterations_b); |
| fprintf (dump_file, "))\n"); |
| } |
| } |
| |
| /* Helper function for uniquely inserting distance vectors. */ |
| |
| static void |
| save_dist_v (struct data_dependence_relation *ddr, lambda_vector dist_v) |
| { |
| unsigned i; |
| lambda_vector v; |
| |
| FOR_EACH_VEC_ELT (DDR_DIST_VECTS (ddr), i, v) |
| if (lambda_vector_equal (v, dist_v, DDR_NB_LOOPS (ddr))) |
| return; |
| |
| DDR_DIST_VECTS (ddr).safe_push (dist_v); |
| } |
| |
| /* Helper function for uniquely inserting direction vectors. */ |
| |
| static void |
| save_dir_v (struct data_dependence_relation *ddr, lambda_vector dir_v) |
| { |
| unsigned i; |
| lambda_vector v; |
| |
| FOR_EACH_VEC_ELT (DDR_DIR_VECTS (ddr), i, v) |
| if (lambda_vector_equal (v, dir_v, DDR_NB_LOOPS (ddr))) |
| return; |
| |
| DDR_DIR_VECTS (ddr).safe_push (dir_v); |
| } |
| |
| /* Add a distance of 1 on all the loops outer than INDEX. If we |
| haven't yet determined a distance for this outer loop, push a new |
| distance vector composed of the previous distance, and a distance |
| of 1 for this outer loop. Example: |
| |
| | loop_1 |
| | loop_2 |
| | A[10] |
| | endloop_2 |
| | endloop_1 |
| |
| Saved vectors are of the form (dist_in_1, dist_in_2). First, we |
| save (0, 1), then we have to save (1, 0). */ |
| |
| static void |
| add_outer_distances (struct data_dependence_relation *ddr, |
| lambda_vector dist_v, int index) |
| { |
| /* For each outer loop where init_v is not set, the accesses are |
| in dependence of distance 1 in the loop. */ |
| while (--index >= 0) |
| { |
| lambda_vector save_v = lambda_vector_new (DDR_NB_LOOPS (ddr)); |
| lambda_vector_copy (dist_v, save_v, DDR_NB_LOOPS (ddr)); |
| save_v[index] = 1; |
| save_dist_v (ddr, save_v); |
| } |
| } |
| |
| /* Return false when fail to represent the data dependence as a |
| distance vector. INIT_B is set to true when a component has been |
| added to the distance vector DIST_V. INDEX_CARRY is then set to |
| the index in DIST_V that carries the dependence. */ |
| |
| static bool |
| build_classic_dist_vector_1 (struct data_dependence_relation *ddr, |
| struct data_reference *ddr_a, |
| struct data_reference *ddr_b, |
| lambda_vector dist_v, bool *init_b, |
| int *index_carry) |
| { |
| unsigned i; |
| lambda_vector init_v = lambda_vector_new (DDR_NB_LOOPS (ddr)); |
| |
| for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++) |
| { |
| tree access_fn_a, access_fn_b; |
| struct subscript *subscript = DDR_SUBSCRIPT (ddr, i); |
| |
| if (chrec_contains_undetermined (SUB_DISTANCE (subscript))) |
| { |
| non_affine_dependence_relation (ddr); |
| return false; |
| } |
| |
| access_fn_a = DR_ACCESS_FN (ddr_a, i); |
| access_fn_b = DR_ACCESS_FN (ddr_b, i); |
| |
| if (TREE_CODE (access_fn_a) == POLYNOMIAL_CHREC |
| && TREE_CODE (access_fn_b) == POLYNOMIAL_CHREC) |
| { |
| int dist, index; |
| int var_a = CHREC_VARIABLE (access_fn_a); |
| int var_b = CHREC_VARIABLE (access_fn_b); |
| |
| if (var_a != var_b |
| || chrec_contains_undetermined (SUB_DISTANCE (subscript))) |
| { |
| non_affine_dependence_relation (ddr); |
| return false; |
| } |
| |
| dist = int_cst_value (SUB_DISTANCE (subscript)); |
| index = index_in_loop_nest (var_a, DDR_LOOP_NEST (ddr)); |
| *index_carry = MIN (index, *index_carry); |
| |
| /* This is the subscript coupling test. If we have already |
| recorded a distance for this loop (a distance coming from |
| another subscript), it should be the same. For example, |
| in the following code, there is no dependence: |
| |
| | loop i = 0, N, 1 |
| | T[i+1][i] = ... |
| | ... = T[i][i] |
| | endloop |
| */ |
| if (init_v[index] != 0 && dist_v[index] != dist) |
| { |
| finalize_ddr_dependent (ddr, chrec_known); |
| return false; |
| } |
| |
| dist_v[index] = dist; |
| init_v[index] = 1; |
| *init_b = true; |
| } |
| else if (!operand_equal_p (access_fn_a, access_fn_b, 0)) |
| { |
| /* This can be for example an affine vs. constant dependence |
| (T[i] vs. T[3]) that is not an affine dependence and is |
| not representable as a distance vector. */ |
| non_affine_dependence_relation (ddr); |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| /* Return true when the DDR contains only constant access functions. */ |
| |
| static bool |
| constant_access_functions (const struct data_dependence_relation *ddr) |
| { |
| unsigned i; |
| |
| for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++) |
| if (!evolution_function_is_constant_p (DR_ACCESS_FN (DDR_A (ddr), i)) |
| || !evolution_function_is_constant_p (DR_ACCESS_FN (DDR_B (ddr), i))) |
| return false; |
| |
| return true; |
| } |
| |
| /* Helper function for the case where DDR_A and DDR_B are the same |
| multivariate access function with a constant step. For an example |
| see pr34635-1.c. */ |
| |
| static void |
| add_multivariate_self_dist (struct data_dependence_relation *ddr, tree c_2) |
| { |
| int x_1, x_2; |
| tree c_1 = CHREC_LEFT (c_2); |
| tree c_0 = CHREC_LEFT (c_1); |
| lambda_vector dist_v; |
| int v1, v2, cd; |
| |
| /* Polynomials with more than 2 variables are not handled yet. When |
| the evolution steps are parameters, it is not possible to |
| represent the dependence using classical distance vectors. */ |
| if (TREE_CODE (c_0) != INTEGER_CST |
| || TREE_CODE (CHREC_RIGHT (c_1)) != INTEGER_CST |
| || TREE_CODE (CHREC_RIGHT (c_2)) != INTEGER_CST) |
| { |
| DDR_AFFINE_P (ddr) = false; |
| return; |
| } |
| |
| x_2 = index_in_loop_nest (CHREC_VARIABLE (c_2), DDR_LOOP_NEST (ddr)); |
| x_1 = index_in_loop_nest (CHREC_VARIABLE (c_1), DDR_LOOP_NEST (ddr)); |
| |
| /* For "{{0, +, 2}_1, +, 3}_2" the distance vector is (3, -2). */ |
| dist_v = lambda_vector_new (DDR_NB_LOOPS (ddr)); |
| v1 = int_cst_value (CHREC_RIGHT (c_1)); |
| v2 = int_cst_value (CHREC_RIGHT (c_2)); |
| cd = gcd (v1, v2); |
| v1 /= cd; |
| v2 /= cd; |
| |
| if (v2 < 0) |
| { |
| v2 = -v2; |
| v1 = -v1; |
| } |
| |
| dist_v[x_1] = v2; |
| dist_v[x_2] = -v1; |
| save_dist_v (ddr, dist_v); |
| |
| add_outer_distances (ddr, dist_v, x_1); |
| } |
| |
| /* Helper function for the case where DDR_A and DDR_B are the same |
| access functions. */ |
| |
| static void |
| add_other_self_distances ( |