| /* Tree inlining. |
| Copyright (C) 2001-2013 Free Software Foundation, Inc. |
| Contributed by Alexandre Oliva <aoliva@redhat.com> |
| |
| This file is part of GCC. |
| |
| GCC is free software; you can redistribute it and/or modify |
| it under the terms of the GNU General Public License as published by |
| the Free Software Foundation; either version 3, or (at your option) |
| any later version. |
| |
| GCC is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| GNU General Public License for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with GCC; see the file COPYING3. If not see |
| <http://www.gnu.org/licenses/>. */ |
| |
| #include "config.h" |
| #include "system.h" |
| #include "coretypes.h" |
| #include "tm.h" |
| #include "diagnostic-core.h" |
| #include "tree.h" |
| #include "tree-inline.h" |
| #include "flags.h" |
| #include "params.h" |
| #include "input.h" |
| #include "insn-config.h" |
| #include "hashtab.h" |
| #include "langhooks.h" |
| #include "basic-block.h" |
| #include "tree-iterator.h" |
| #include "cgraph.h" |
| #include "intl.h" |
| #include "tree-mudflap.h" |
| #include "tree-flow.h" |
| #include "function.h" |
| #include "tree-flow.h" |
| #include "tree-pretty-print.h" |
| #include "except.h" |
| #include "debug.h" |
| #include "pointer-set.h" |
| #include "ipa-prop.h" |
| #include "value-prof.h" |
| #include "tree-pass.h" |
| #include "target.h" |
| |
| #include "rtl.h" /* FIXME: For asm_str_count. */ |
| |
| /* I'm not real happy about this, but we need to handle gimple and |
| non-gimple trees. */ |
| #include "gimple.h" |
| |
| /* Inlining, Cloning, Versioning, Parallelization |
| |
| Inlining: a function body is duplicated, but the PARM_DECLs are |
| remapped into VAR_DECLs, and non-void RETURN_EXPRs become |
| MODIFY_EXPRs that store to a dedicated returned-value variable. |
| The duplicated eh_region info of the copy will later be appended |
| to the info for the caller; the eh_region info in copied throwing |
| statements and RESX statements are adjusted accordingly. |
| |
| Cloning: (only in C++) We have one body for a con/de/structor, and |
| multiple function decls, each with a unique parameter list. |
| Duplicate the body, using the given splay tree; some parameters |
| will become constants (like 0 or 1). |
| |
| Versioning: a function body is duplicated and the result is a new |
| function rather than into blocks of an existing function as with |
| inlining. Some parameters will become constants. |
| |
| Parallelization: a region of a function is duplicated resulting in |
| a new function. Variables may be replaced with complex expressions |
| to enable shared variable semantics. |
| |
| All of these will simultaneously lookup any callgraph edges. If |
| we're going to inline the duplicated function body, and the given |
| function has some cloned callgraph nodes (one for each place this |
| function will be inlined) those callgraph edges will be duplicated. |
| If we're cloning the body, those callgraph edges will be |
| updated to point into the new body. (Note that the original |
| callgraph node and edge list will not be altered.) |
| |
| See the CALL_EXPR handling case in copy_tree_body_r (). */ |
| |
| /* To Do: |
| |
| o In order to make inlining-on-trees work, we pessimized |
| function-local static constants. In particular, they are now |
| always output, even when not addressed. Fix this by treating |
| function-local static constants just like global static |
| constants; the back-end already knows not to output them if they |
| are not needed. |
| |
| o Provide heuristics to clamp inlining of recursive template |
| calls? */ |
| |
| |
| /* Weights that estimate_num_insns uses to estimate the size of the |
| produced code. */ |
| |
| eni_weights eni_size_weights; |
| |
| /* Weights that estimate_num_insns uses to estimate the time necessary |
| to execute the produced code. */ |
| |
| eni_weights eni_time_weights; |
| |
| /* Prototypes. */ |
| |
| static tree declare_return_variable (copy_body_data *, tree, tree, basic_block); |
| static void remap_block (tree *, copy_body_data *); |
| static void copy_bind_expr (tree *, int *, copy_body_data *); |
| static tree mark_local_for_remap_r (tree *, int *, void *); |
| static void unsave_expr_1 (tree); |
| static tree unsave_r (tree *, int *, void *); |
| static void declare_inline_vars (tree, tree); |
| static void remap_save_expr (tree *, void *, int *); |
| static void prepend_lexical_block (tree current_block, tree new_block); |
| static tree copy_decl_to_var (tree, copy_body_data *); |
| static tree copy_result_decl_to_var (tree, copy_body_data *); |
| static tree copy_decl_maybe_to_var (tree, copy_body_data *); |
| static gimple remap_gimple_stmt (gimple, copy_body_data *); |
| static bool delete_unreachable_blocks_update_callgraph (copy_body_data *id); |
| |
| /* Insert a tree->tree mapping for ID. Despite the name suggests |
| that the trees should be variables, it is used for more than that. */ |
| |
| void |
| insert_decl_map (copy_body_data *id, tree key, tree value) |
| { |
| *pointer_map_insert (id->decl_map, key) = value; |
| |
| /* Always insert an identity map as well. If we see this same new |
| node again, we won't want to duplicate it a second time. */ |
| if (key != value) |
| *pointer_map_insert (id->decl_map, value) = value; |
| } |
| |
| /* Insert a tree->tree mapping for ID. This is only used for |
| variables. */ |
| |
| static void |
| insert_debug_decl_map (copy_body_data *id, tree key, tree value) |
| { |
| if (!gimple_in_ssa_p (id->src_cfun)) |
| return; |
| |
| if (!MAY_HAVE_DEBUG_STMTS) |
| return; |
| |
| if (!target_for_debug_bind (key)) |
| return; |
| |
| gcc_assert (TREE_CODE (key) == PARM_DECL); |
| gcc_assert (TREE_CODE (value) == VAR_DECL); |
| |
| if (!id->debug_map) |
| id->debug_map = pointer_map_create (); |
| |
| *pointer_map_insert (id->debug_map, key) = value; |
| } |
| |
| /* If nonzero, we're remapping the contents of inlined debug |
| statements. If negative, an error has occurred, such as a |
| reference to a variable that isn't available in the inlined |
| context. */ |
| static int processing_debug_stmt = 0; |
| |
| /* Construct new SSA name for old NAME. ID is the inline context. */ |
| |
| static tree |
| remap_ssa_name (tree name, copy_body_data *id) |
| { |
| tree new_tree, var; |
| tree *n; |
| |
| gcc_assert (TREE_CODE (name) == SSA_NAME); |
| |
| n = (tree *) pointer_map_contains (id->decl_map, name); |
| if (n) |
| return unshare_expr (*n); |
| |
| if (processing_debug_stmt) |
| { |
| if (SSA_NAME_IS_DEFAULT_DEF (name) |
| && TREE_CODE (SSA_NAME_VAR (name)) == PARM_DECL |
| && id->entry_bb == NULL |
| && single_succ_p (ENTRY_BLOCK_PTR)) |
| { |
| tree vexpr = make_node (DEBUG_EXPR_DECL); |
| gimple def_temp; |
| gimple_stmt_iterator gsi; |
| tree val = SSA_NAME_VAR (name); |
| |
| n = (tree *) pointer_map_contains (id->decl_map, val); |
| if (n != NULL) |
| val = *n; |
| if (TREE_CODE (val) != PARM_DECL) |
| { |
| processing_debug_stmt = -1; |
| return name; |
| } |
| def_temp = gimple_build_debug_source_bind (vexpr, val, NULL); |
| DECL_ARTIFICIAL (vexpr) = 1; |
| TREE_TYPE (vexpr) = TREE_TYPE (name); |
| DECL_MODE (vexpr) = DECL_MODE (SSA_NAME_VAR (name)); |
| gsi = gsi_after_labels (single_succ (ENTRY_BLOCK_PTR)); |
| gsi_insert_before (&gsi, def_temp, GSI_SAME_STMT); |
| return vexpr; |
| } |
| |
| processing_debug_stmt = -1; |
| return name; |
| } |
| |
| /* Remap anonymous SSA names or SSA names of anonymous decls. */ |
| var = SSA_NAME_VAR (name); |
| if (!var |
| || (!SSA_NAME_IS_DEFAULT_DEF (name) |
| && TREE_CODE (var) == VAR_DECL |
| && !VAR_DECL_IS_VIRTUAL_OPERAND (var) |
| && DECL_ARTIFICIAL (var) |
| && DECL_IGNORED_P (var) |
| && !DECL_NAME (var))) |
| { |
| struct ptr_info_def *pi; |
| new_tree = make_ssa_name (remap_type (TREE_TYPE (name), id), NULL); |
| if (!var && SSA_NAME_IDENTIFIER (name)) |
| SET_SSA_NAME_VAR_OR_IDENTIFIER (new_tree, SSA_NAME_IDENTIFIER (name)); |
| insert_decl_map (id, name, new_tree); |
| SSA_NAME_OCCURS_IN_ABNORMAL_PHI (new_tree) |
| = SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name); |
| /* At least IPA points-to info can be directly transferred. */ |
| if (id->src_cfun->gimple_df |
| && id->src_cfun->gimple_df->ipa_pta |
| && (pi = SSA_NAME_PTR_INFO (name)) |
| && !pi->pt.anything) |
| { |
| struct ptr_info_def *new_pi = get_ptr_info (new_tree); |
| new_pi->pt = pi->pt; |
| } |
| return new_tree; |
| } |
| |
| /* Do not set DEF_STMT yet as statement is not copied yet. We do that |
| in copy_bb. */ |
| new_tree = remap_decl (var, id); |
| |
| /* We might've substituted constant or another SSA_NAME for |
| the variable. |
| |
| Replace the SSA name representing RESULT_DECL by variable during |
| inlining: this saves us from need to introduce PHI node in a case |
| return value is just partly initialized. */ |
| if ((TREE_CODE (new_tree) == VAR_DECL || TREE_CODE (new_tree) == PARM_DECL) |
| && (!SSA_NAME_VAR (name) |
| || TREE_CODE (SSA_NAME_VAR (name)) != RESULT_DECL |
| || !id->transform_return_to_modify)) |
| { |
| struct ptr_info_def *pi; |
| new_tree = make_ssa_name (new_tree, NULL); |
| insert_decl_map (id, name, new_tree); |
| SSA_NAME_OCCURS_IN_ABNORMAL_PHI (new_tree) |
| = SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name); |
| /* At least IPA points-to info can be directly transferred. */ |
| if (id->src_cfun->gimple_df |
| && id->src_cfun->gimple_df->ipa_pta |
| && (pi = SSA_NAME_PTR_INFO (name)) |
| && !pi->pt.anything) |
| { |
| struct ptr_info_def *new_pi = get_ptr_info (new_tree); |
| new_pi->pt = pi->pt; |
| } |
| if (SSA_NAME_IS_DEFAULT_DEF (name)) |
| { |
| /* By inlining function having uninitialized variable, we might |
| extend the lifetime (variable might get reused). This cause |
| ICE in the case we end up extending lifetime of SSA name across |
| abnormal edge, but also increase register pressure. |
| |
| We simply initialize all uninitialized vars by 0 except |
| for case we are inlining to very first BB. We can avoid |
| this for all BBs that are not inside strongly connected |
| regions of the CFG, but this is expensive to test. */ |
| if (id->entry_bb |
| && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name) |
| && (!SSA_NAME_VAR (name) |
| || TREE_CODE (SSA_NAME_VAR (name)) != PARM_DECL) |
| && (id->entry_bb != EDGE_SUCC (ENTRY_BLOCK_PTR, 0)->dest |
| || EDGE_COUNT (id->entry_bb->preds) != 1)) |
| { |
| gimple_stmt_iterator gsi = gsi_last_bb (id->entry_bb); |
| gimple init_stmt; |
| tree zero = build_zero_cst (TREE_TYPE (new_tree)); |
| |
| init_stmt = gimple_build_assign (new_tree, zero); |
| gsi_insert_after (&gsi, init_stmt, GSI_NEW_STMT); |
| SSA_NAME_IS_DEFAULT_DEF (new_tree) = 0; |
| } |
| else |
| { |
| SSA_NAME_DEF_STMT (new_tree) = gimple_build_nop (); |
| set_ssa_default_def (cfun, SSA_NAME_VAR (new_tree), new_tree); |
| } |
| } |
| } |
| else |
| insert_decl_map (id, name, new_tree); |
| return new_tree; |
| } |
| |
| /* Remap DECL during the copying of the BLOCK tree for the function. */ |
| |
| tree |
| remap_decl (tree decl, copy_body_data *id) |
| { |
| tree *n; |
| |
| /* We only remap local variables in the current function. */ |
| |
| /* See if we have remapped this declaration. */ |
| |
| n = (tree *) pointer_map_contains (id->decl_map, decl); |
| |
| if (!n && processing_debug_stmt) |
| { |
| processing_debug_stmt = -1; |
| return decl; |
| } |
| |
| /* If we didn't already have an equivalent for this declaration, |
| create one now. */ |
| if (!n) |
| { |
| /* Make a copy of the variable or label. */ |
| tree t = id->copy_decl (decl, id); |
| |
| /* Remember it, so that if we encounter this local entity again |
| we can reuse this copy. Do this early because remap_type may |
| need this decl for TYPE_STUB_DECL. */ |
| insert_decl_map (id, decl, t); |
| |
| if (!DECL_P (t)) |
| return t; |
| |
| /* Remap types, if necessary. */ |
| TREE_TYPE (t) = remap_type (TREE_TYPE (t), id); |
| if (TREE_CODE (t) == TYPE_DECL) |
| DECL_ORIGINAL_TYPE (t) = remap_type (DECL_ORIGINAL_TYPE (t), id); |
| |
| /* Remap sizes as necessary. */ |
| walk_tree (&DECL_SIZE (t), copy_tree_body_r, id, NULL); |
| walk_tree (&DECL_SIZE_UNIT (t), copy_tree_body_r, id, NULL); |
| |
| /* If fields, do likewise for offset and qualifier. */ |
| if (TREE_CODE (t) == FIELD_DECL) |
| { |
| walk_tree (&DECL_FIELD_OFFSET (t), copy_tree_body_r, id, NULL); |
| if (TREE_CODE (DECL_CONTEXT (t)) == QUAL_UNION_TYPE) |
| walk_tree (&DECL_QUALIFIER (t), copy_tree_body_r, id, NULL); |
| } |
| |
| return t; |
| } |
| |
| if (id->do_not_unshare) |
| return *n; |
| else |
| return unshare_expr (*n); |
| } |
| |
| static tree |
| remap_type_1 (tree type, copy_body_data *id) |
| { |
| tree new_tree, t; |
| |
| /* We do need a copy. build and register it now. If this is a pointer or |
| reference type, remap the designated type and make a new pointer or |
| reference type. */ |
| if (TREE_CODE (type) == POINTER_TYPE) |
| { |
| new_tree = build_pointer_type_for_mode (remap_type (TREE_TYPE (type), id), |
| TYPE_MODE (type), |
| TYPE_REF_CAN_ALIAS_ALL (type)); |
| if (TYPE_ATTRIBUTES (type) || TYPE_QUALS (type)) |
| new_tree = build_type_attribute_qual_variant (new_tree, |
| TYPE_ATTRIBUTES (type), |
| TYPE_QUALS (type)); |
| insert_decl_map (id, type, new_tree); |
| return new_tree; |
| } |
| else if (TREE_CODE (type) == REFERENCE_TYPE) |
| { |
| new_tree = build_reference_type_for_mode (remap_type (TREE_TYPE (type), id), |
| TYPE_MODE (type), |
| TYPE_REF_CAN_ALIAS_ALL (type)); |
| if (TYPE_ATTRIBUTES (type) || TYPE_QUALS (type)) |
| new_tree = build_type_attribute_qual_variant (new_tree, |
| TYPE_ATTRIBUTES (type), |
| TYPE_QUALS (type)); |
| insert_decl_map (id, type, new_tree); |
| return new_tree; |
| } |
| else |
| new_tree = copy_node (type); |
| |
| insert_decl_map (id, type, new_tree); |
| |
| /* This is a new type, not a copy of an old type. Need to reassociate |
| variants. We can handle everything except the main variant lazily. */ |
| t = TYPE_MAIN_VARIANT (type); |
| if (type != t) |
| { |
| t = remap_type (t, id); |
| TYPE_MAIN_VARIANT (new_tree) = t; |
| TYPE_NEXT_VARIANT (new_tree) = TYPE_NEXT_VARIANT (t); |
| TYPE_NEXT_VARIANT (t) = new_tree; |
| } |
| else |
| { |
| TYPE_MAIN_VARIANT (new_tree) = new_tree; |
| TYPE_NEXT_VARIANT (new_tree) = NULL; |
| } |
| |
| if (TYPE_STUB_DECL (type)) |
| TYPE_STUB_DECL (new_tree) = remap_decl (TYPE_STUB_DECL (type), id); |
| |
| /* Lazily create pointer and reference types. */ |
| TYPE_POINTER_TO (new_tree) = NULL; |
| TYPE_REFERENCE_TO (new_tree) = NULL; |
| |
| switch (TREE_CODE (new_tree)) |
| { |
| case INTEGER_TYPE: |
| case REAL_TYPE: |
| case FIXED_POINT_TYPE: |
| case ENUMERAL_TYPE: |
| case BOOLEAN_TYPE: |
| t = TYPE_MIN_VALUE (new_tree); |
| if (t && TREE_CODE (t) != INTEGER_CST) |
| walk_tree (&TYPE_MIN_VALUE (new_tree), copy_tree_body_r, id, NULL); |
| |
| t = TYPE_MAX_VALUE (new_tree); |
| if (t && TREE_CODE (t) != INTEGER_CST) |
| walk_tree (&TYPE_MAX_VALUE (new_tree), copy_tree_body_r, id, NULL); |
| return new_tree; |
| |
| case FUNCTION_TYPE: |
| TREE_TYPE (new_tree) = remap_type (TREE_TYPE (new_tree), id); |
| walk_tree (&TYPE_ARG_TYPES (new_tree), copy_tree_body_r, id, NULL); |
| return new_tree; |
| |
| case ARRAY_TYPE: |
| TREE_TYPE (new_tree) = remap_type (TREE_TYPE (new_tree), id); |
| TYPE_DOMAIN (new_tree) = remap_type (TYPE_DOMAIN (new_tree), id); |
| break; |
| |
| case RECORD_TYPE: |
| case UNION_TYPE: |
| case QUAL_UNION_TYPE: |
| { |
| tree f, nf = NULL; |
| |
| for (f = TYPE_FIELDS (new_tree); f ; f = DECL_CHAIN (f)) |
| { |
| t = remap_decl (f, id); |
| DECL_CONTEXT (t) = new_tree; |
| DECL_CHAIN (t) = nf; |
| nf = t; |
| } |
| TYPE_FIELDS (new_tree) = nreverse (nf); |
| } |
| break; |
| |
| case OFFSET_TYPE: |
| default: |
| /* Shouldn't have been thought variable sized. */ |
| gcc_unreachable (); |
| } |
| |
| walk_tree (&TYPE_SIZE (new_tree), copy_tree_body_r, id, NULL); |
| walk_tree (&TYPE_SIZE_UNIT (new_tree), copy_tree_body_r, id, NULL); |
| |
| return new_tree; |
| } |
| |
| tree |
| remap_type (tree type, copy_body_data *id) |
| { |
| tree *node; |
| tree tmp; |
| |
| if (type == NULL) |
| return type; |
| |
| /* See if we have remapped this type. */ |
| node = (tree *) pointer_map_contains (id->decl_map, type); |
| if (node) |
| return *node; |
| |
| /* The type only needs remapping if it's variably modified. */ |
| if (! variably_modified_type_p (type, id->src_fn)) |
| { |
| insert_decl_map (id, type, type); |
| return type; |
| } |
| |
| id->remapping_type_depth++; |
| tmp = remap_type_1 (type, id); |
| id->remapping_type_depth--; |
| |
| return tmp; |
| } |
| |
| /* Decide if DECL can be put into BLOCK_NONLOCAL_VARs. */ |
| |
| static bool |
| can_be_nonlocal (tree decl, copy_body_data *id) |
| { |
| /* We can not duplicate function decls. */ |
| if (TREE_CODE (decl) == FUNCTION_DECL) |
| return true; |
| |
| /* Local static vars must be non-local or we get multiple declaration |
| problems. */ |
| if (TREE_CODE (decl) == VAR_DECL |
| && !auto_var_in_fn_p (decl, id->src_fn)) |
| return true; |
| |
| return false; |
| } |
| |
| static tree |
| remap_decls (tree decls, vec<tree, va_gc> **nonlocalized_list, |
| copy_body_data *id) |
| { |
| tree old_var; |
| tree new_decls = NULL_TREE; |
| |
| /* Remap its variables. */ |
| for (old_var = decls; old_var; old_var = DECL_CHAIN (old_var)) |
| { |
| tree new_var; |
| |
| if (can_be_nonlocal (old_var, id)) |
| { |
| /* We need to add this variable to the local decls as otherwise |
| nothing else will do so. */ |
| if (TREE_CODE (old_var) == VAR_DECL |
| && ! DECL_EXTERNAL (old_var)) |
| add_local_decl (cfun, old_var); |
| if ((!optimize || debug_info_level > DINFO_LEVEL_TERSE) |
| && !DECL_IGNORED_P (old_var) |
| && nonlocalized_list) |
| vec_safe_push (*nonlocalized_list, old_var); |
| continue; |
| } |
| |
| /* Remap the variable. */ |
| new_var = remap_decl (old_var, id); |
| |
| /* If we didn't remap this variable, we can't mess with its |
| TREE_CHAIN. If we remapped this variable to the return slot, it's |
| already declared somewhere else, so don't declare it here. */ |
| |
| if (new_var == id->retvar) |
| ; |
| else if (!new_var) |
| { |
| if ((!optimize || debug_info_level > DINFO_LEVEL_TERSE) |
| && !DECL_IGNORED_P (old_var) |
| && nonlocalized_list) |
| vec_safe_push (*nonlocalized_list, old_var); |
| } |
| else |
| { |
| gcc_assert (DECL_P (new_var)); |
| DECL_CHAIN (new_var) = new_decls; |
| new_decls = new_var; |
| |
| /* Also copy value-expressions. */ |
| if (TREE_CODE (new_var) == VAR_DECL |
| && DECL_HAS_VALUE_EXPR_P (new_var)) |
| { |
| tree tem = DECL_VALUE_EXPR (new_var); |
| bool old_regimplify = id->regimplify; |
| id->remapping_type_depth++; |
| walk_tree (&tem, copy_tree_body_r, id, NULL); |
| id->remapping_type_depth--; |
| id->regimplify = old_regimplify; |
| SET_DECL_VALUE_EXPR (new_var, tem); |
| } |
| } |
| } |
| |
| return nreverse (new_decls); |
| } |
| |
| /* Copy the BLOCK to contain remapped versions of the variables |
| therein. And hook the new block into the block-tree. */ |
| |
| static void |
| remap_block (tree *block, copy_body_data *id) |
| { |
| tree old_block; |
| tree new_block; |
| |
| /* Make the new block. */ |
| old_block = *block; |
| new_block = make_node (BLOCK); |
| TREE_USED (new_block) = TREE_USED (old_block); |
| BLOCK_ABSTRACT_ORIGIN (new_block) = old_block; |
| BLOCK_SOURCE_LOCATION (new_block) = BLOCK_SOURCE_LOCATION (old_block); |
| BLOCK_NONLOCALIZED_VARS (new_block) |
| = vec_safe_copy (BLOCK_NONLOCALIZED_VARS (old_block)); |
| *block = new_block; |
| |
| /* Remap its variables. */ |
| BLOCK_VARS (new_block) = remap_decls (BLOCK_VARS (old_block), |
| &BLOCK_NONLOCALIZED_VARS (new_block), |
| id); |
| |
| if (id->transform_lang_insert_block) |
| id->transform_lang_insert_block (new_block); |
| |
| /* Remember the remapped block. */ |
| insert_decl_map (id, old_block, new_block); |
| } |
| |
| /* Copy the whole block tree and root it in id->block. */ |
| static tree |
| remap_blocks (tree block, copy_body_data *id) |
| { |
| tree t; |
| tree new_tree = block; |
| |
| if (!block) |
| return NULL; |
| |
| remap_block (&new_tree, id); |
| gcc_assert (new_tree != block); |
| for (t = BLOCK_SUBBLOCKS (block); t ; t = BLOCK_CHAIN (t)) |
| prepend_lexical_block (new_tree, remap_blocks (t, id)); |
| /* Blocks are in arbitrary order, but make things slightly prettier and do |
| not swap order when producing a copy. */ |
| BLOCK_SUBBLOCKS (new_tree) = blocks_nreverse (BLOCK_SUBBLOCKS (new_tree)); |
| return new_tree; |
| } |
| |
| /* Remap the block tree rooted at BLOCK to nothing. */ |
| static void |
| remap_blocks_to_null (tree block, copy_body_data *id) |
| { |
| tree t; |
| insert_decl_map (id, block, NULL_TREE); |
| for (t = BLOCK_SUBBLOCKS (block); t ; t = BLOCK_CHAIN (t)) |
| remap_blocks_to_null (t, id); |
| } |
| |
| static void |
| copy_statement_list (tree *tp) |
| { |
| tree_stmt_iterator oi, ni; |
| tree new_tree; |
| |
| new_tree = alloc_stmt_list (); |
| ni = tsi_start (new_tree); |
| oi = tsi_start (*tp); |
| TREE_TYPE (new_tree) = TREE_TYPE (*tp); |
| *tp = new_tree; |
| |
| for (; !tsi_end_p (oi); tsi_next (&oi)) |
| { |
| tree stmt = tsi_stmt (oi); |
| if (TREE_CODE (stmt) == STATEMENT_LIST) |
| /* This copy is not redundant; tsi_link_after will smash this |
| STATEMENT_LIST into the end of the one we're building, and we |
| don't want to do that with the original. */ |
| copy_statement_list (&stmt); |
| tsi_link_after (&ni, stmt, TSI_CONTINUE_LINKING); |
| } |
| } |
| |
| static void |
| copy_bind_expr (tree *tp, int *walk_subtrees, copy_body_data *id) |
| { |
| tree block = BIND_EXPR_BLOCK (*tp); |
| /* Copy (and replace) the statement. */ |
| copy_tree_r (tp, walk_subtrees, NULL); |
| if (block) |
| { |
| remap_block (&block, id); |
| BIND_EXPR_BLOCK (*tp) = block; |
| } |
| |
| if (BIND_EXPR_VARS (*tp)) |
| /* This will remap a lot of the same decls again, but this should be |
| harmless. */ |
| BIND_EXPR_VARS (*tp) = remap_decls (BIND_EXPR_VARS (*tp), NULL, id); |
| } |
| |
| |
| /* Create a new gimple_seq by remapping all the statements in BODY |
| using the inlining information in ID. */ |
| |
| static gimple_seq |
| remap_gimple_seq (gimple_seq body, copy_body_data *id) |
| { |
| gimple_stmt_iterator si; |
| gimple_seq new_body = NULL; |
| |
| for (si = gsi_start (body); !gsi_end_p (si); gsi_next (&si)) |
| { |
| gimple new_stmt = remap_gimple_stmt (gsi_stmt (si), id); |
| gimple_seq_add_stmt (&new_body, new_stmt); |
| } |
| |
| return new_body; |
| } |
| |
| |
| /* Copy a GIMPLE_BIND statement STMT, remapping all the symbols in its |
| block using the mapping information in ID. */ |
| |
| static gimple |
| copy_gimple_bind (gimple stmt, copy_body_data *id) |
| { |
| gimple new_bind; |
| tree new_block, new_vars; |
| gimple_seq body, new_body; |
| |
| /* Copy the statement. Note that we purposely don't use copy_stmt |
| here because we need to remap statements as we copy. */ |
| body = gimple_bind_body (stmt); |
| new_body = remap_gimple_seq (body, id); |
| |
| new_block = gimple_bind_block (stmt); |
| if (new_block) |
| remap_block (&new_block, id); |
| |
| /* This will remap a lot of the same decls again, but this should be |
| harmless. */ |
| new_vars = gimple_bind_vars (stmt); |
| if (new_vars) |
| new_vars = remap_decls (new_vars, NULL, id); |
| |
| new_bind = gimple_build_bind (new_vars, new_body, new_block); |
| |
| return new_bind; |
| } |
| |
| |
| /* Remap the GIMPLE operand pointed to by *TP. DATA is really a |
| 'struct walk_stmt_info *'. DATA->INFO is a 'copy_body_data *'. |
| WALK_SUBTREES is used to indicate walk_gimple_op whether to keep |
| recursing into the children nodes of *TP. */ |
| |
| static tree |
| remap_gimple_op_r (tree *tp, int *walk_subtrees, void *data) |
| { |
| struct walk_stmt_info *wi_p = (struct walk_stmt_info *) data; |
| copy_body_data *id = (copy_body_data *) wi_p->info; |
| tree fn = id->src_fn; |
| |
| if (TREE_CODE (*tp) == SSA_NAME) |
| { |
| *tp = remap_ssa_name (*tp, id); |
| *walk_subtrees = 0; |
| return NULL; |
| } |
| else if (auto_var_in_fn_p (*tp, fn)) |
| { |
| /* Local variables and labels need to be replaced by equivalent |
| variables. We don't want to copy static variables; there's |
| only one of those, no matter how many times we inline the |
| containing function. Similarly for globals from an outer |
| function. */ |
| tree new_decl; |
| |
| /* Remap the declaration. */ |
| new_decl = remap_decl (*tp, id); |
| gcc_assert (new_decl); |
| /* Replace this variable with the copy. */ |
| STRIP_TYPE_NOPS (new_decl); |
| /* ??? The C++ frontend uses void * pointer zero to initialize |
| any other type. This confuses the middle-end type verification. |
| As cloned bodies do not go through gimplification again the fixup |
| there doesn't trigger. */ |
| if (TREE_CODE (new_decl) == INTEGER_CST |
| && !useless_type_conversion_p (TREE_TYPE (*tp), TREE_TYPE (new_decl))) |
| new_decl = fold_convert (TREE_TYPE (*tp), new_decl); |
| *tp = new_decl; |
| *walk_subtrees = 0; |
| } |
| else if (TREE_CODE (*tp) == STATEMENT_LIST) |
| gcc_unreachable (); |
| else if (TREE_CODE (*tp) == SAVE_EXPR) |
| gcc_unreachable (); |
| else if (TREE_CODE (*tp) == LABEL_DECL |
| && (!DECL_CONTEXT (*tp) |
| || decl_function_context (*tp) == id->src_fn)) |
| /* These may need to be remapped for EH handling. */ |
| *tp = remap_decl (*tp, id); |
| else if (TREE_CODE (*tp) == FIELD_DECL) |
| { |
| /* If the enclosing record type is variably_modified_type_p, the field |
| has already been remapped. Otherwise, it need not be. */ |
| tree *n = (tree *) pointer_map_contains (id->decl_map, *tp); |
| if (n) |
| *tp = *n; |
| *walk_subtrees = 0; |
| } |
| else if (TYPE_P (*tp)) |
| /* Types may need remapping as well. */ |
| *tp = remap_type (*tp, id); |
| else if (CONSTANT_CLASS_P (*tp)) |
| { |
| /* If this is a constant, we have to copy the node iff the type |
| will be remapped. copy_tree_r will not copy a constant. */ |
| tree new_type = remap_type (TREE_TYPE (*tp), id); |
| |
| if (new_type == TREE_TYPE (*tp)) |
| *walk_subtrees = 0; |
| |
| else if (TREE_CODE (*tp) == INTEGER_CST) |
| *tp = build_int_cst_wide (new_type, TREE_INT_CST_LOW (*tp), |
| TREE_INT_CST_HIGH (*tp)); |
| else |
| { |
| *tp = copy_node (*tp); |
| TREE_TYPE (*tp) = new_type; |
| } |
| } |
| else |
| { |
| /* Otherwise, just copy the node. Note that copy_tree_r already |
| knows not to copy VAR_DECLs, etc., so this is safe. */ |
| |
| if (TREE_CODE (*tp) == MEM_REF) |
| { |
| tree ptr = TREE_OPERAND (*tp, 0); |
| tree type = remap_type (TREE_TYPE (*tp), id); |
| tree old = *tp; |
| |
| /* We need to re-canonicalize MEM_REFs from inline substitutions |
| that can happen when a pointer argument is an ADDR_EXPR. |
| Recurse here manually to allow that. */ |
| walk_tree (&ptr, remap_gimple_op_r, data, NULL); |
| *tp = fold_build2 (MEM_REF, type, |
| ptr, TREE_OPERAND (*tp, 1)); |
| TREE_THIS_NOTRAP (*tp) = TREE_THIS_NOTRAP (old); |
| TREE_THIS_VOLATILE (*tp) = TREE_THIS_VOLATILE (old); |
| TREE_SIDE_EFFECTS (*tp) = TREE_SIDE_EFFECTS (old); |
| TREE_NO_WARNING (*tp) = TREE_NO_WARNING (old); |
| *walk_subtrees = 0; |
| return NULL; |
| } |
| |
| /* Here is the "usual case". Copy this tree node, and then |
| tweak some special cases. */ |
| copy_tree_r (tp, walk_subtrees, NULL); |
| |
| if (TREE_CODE (*tp) != OMP_CLAUSE) |
| TREE_TYPE (*tp) = remap_type (TREE_TYPE (*tp), id); |
| |
| if (TREE_CODE (*tp) == TARGET_EXPR && TREE_OPERAND (*tp, 3)) |
| { |
| /* The copied TARGET_EXPR has never been expanded, even if the |
| original node was expanded already. */ |
| TREE_OPERAND (*tp, 1) = TREE_OPERAND (*tp, 3); |
| TREE_OPERAND (*tp, 3) = NULL_TREE; |
| } |
| else if (TREE_CODE (*tp) == ADDR_EXPR) |
| { |
| /* Variable substitution need not be simple. In particular, |
| the MEM_REF substitution above. Make sure that |
| TREE_CONSTANT and friends are up-to-date. */ |
| int invariant = is_gimple_min_invariant (*tp); |
| walk_tree (&TREE_OPERAND (*tp, 0), remap_gimple_op_r, data, NULL); |
| recompute_tree_invariant_for_addr_expr (*tp); |
| |
| /* If this used to be invariant, but is not any longer, |
| then regimplification is probably needed. */ |
| if (invariant && !is_gimple_min_invariant (*tp)) |
| id->regimplify = true; |
| |
| *walk_subtrees = 0; |
| } |
| } |
| |
| /* Update the TREE_BLOCK for the cloned expr. */ |
| if (EXPR_P (*tp)) |
| { |
| tree new_block = id->remapping_type_depth == 0 ? id->block : NULL; |
| tree old_block = TREE_BLOCK (*tp); |
| if (old_block) |
| { |
| tree *n; |
| n = (tree *) pointer_map_contains (id->decl_map, |
| TREE_BLOCK (*tp)); |
| if (n) |
| new_block = *n; |
| } |
| TREE_SET_BLOCK (*tp, new_block); |
| } |
| |
| /* Keep iterating. */ |
| return NULL_TREE; |
| } |
| |
| |
| /* Called from copy_body_id via walk_tree. DATA is really a |
| `copy_body_data *'. */ |
| |
| tree |
| copy_tree_body_r (tree *tp, int *walk_subtrees, void *data) |
| { |
| copy_body_data *id = (copy_body_data *) data; |
| tree fn = id->src_fn; |
| tree new_block; |
| |
| /* Begin by recognizing trees that we'll completely rewrite for the |
| inlining context. Our output for these trees is completely |
| different from out input (e.g. RETURN_EXPR is deleted, and morphs |
| into an edge). Further down, we'll handle trees that get |
| duplicated and/or tweaked. */ |
| |
| /* When requested, RETURN_EXPRs should be transformed to just the |
| contained MODIFY_EXPR. The branch semantics of the return will |
| be handled elsewhere by manipulating the CFG rather than a statement. */ |
| if (TREE_CODE (*tp) == RETURN_EXPR && id->transform_return_to_modify) |
| { |
| tree assignment = TREE_OPERAND (*tp, 0); |
| |
| /* If we're returning something, just turn that into an |
| assignment into the equivalent of the original RESULT_DECL. |
| If the "assignment" is just the result decl, the result |
| decl has already been set (e.g. a recent "foo (&result_decl, |
| ...)"); just toss the entire RETURN_EXPR. */ |
| if (assignment && TREE_CODE (assignment) == MODIFY_EXPR) |
| { |
| /* Replace the RETURN_EXPR with (a copy of) the |
| MODIFY_EXPR hanging underneath. */ |
| *tp = copy_node (assignment); |
| } |
| else /* Else the RETURN_EXPR returns no value. */ |
| { |
| *tp = NULL; |
| return (tree) (void *)1; |
| } |
| } |
| else if (TREE_CODE (*tp) == SSA_NAME) |
| { |
| *tp = remap_ssa_name (*tp, id); |
| *walk_subtrees = 0; |
| return NULL; |
| } |
| |
| /* Local variables and labels need to be replaced by equivalent |
| variables. We don't want to copy static variables; there's only |
| one of those, no matter how many times we inline the containing |
| function. Similarly for globals from an outer function. */ |
| else if (auto_var_in_fn_p (*tp, fn)) |
| { |
| tree new_decl; |
| |
| /* Remap the declaration. */ |
| new_decl = remap_decl (*tp, id); |
| gcc_assert (new_decl); |
| /* Replace this variable with the copy. */ |
| STRIP_TYPE_NOPS (new_decl); |
| *tp = new_decl; |
| *walk_subtrees = 0; |
| } |
| else if (TREE_CODE (*tp) == STATEMENT_LIST) |
| copy_statement_list (tp); |
| else if (TREE_CODE (*tp) == SAVE_EXPR |
| || TREE_CODE (*tp) == TARGET_EXPR) |
| remap_save_expr (tp, id->decl_map, walk_subtrees); |
| else if (TREE_CODE (*tp) == LABEL_DECL |
| && (! DECL_CONTEXT (*tp) |
| || decl_function_context (*tp) == id->src_fn)) |
| /* These may need to be remapped for EH handling. */ |
| *tp = remap_decl (*tp, id); |
| else if (TREE_CODE (*tp) == BIND_EXPR) |
| copy_bind_expr (tp, walk_subtrees, id); |
| /* Types may need remapping as well. */ |
| else if (TYPE_P (*tp)) |
| *tp = remap_type (*tp, id); |
| |
| /* If this is a constant, we have to copy the node iff the type will be |
| remapped. copy_tree_r will not copy a constant. */ |
| else if (CONSTANT_CLASS_P (*tp)) |
| { |
| tree new_type = remap_type (TREE_TYPE (*tp), id); |
| |
| if (new_type == TREE_TYPE (*tp)) |
| *walk_subtrees = 0; |
| |
| else if (TREE_CODE (*tp) == INTEGER_CST) |
| *tp = build_int_cst_wide (new_type, TREE_INT_CST_LOW (*tp), |
| TREE_INT_CST_HIGH (*tp)); |
| else |
| { |
| *tp = copy_node (*tp); |
| TREE_TYPE (*tp) = new_type; |
| } |
| } |
| |
| /* Otherwise, just copy the node. Note that copy_tree_r already |
| knows not to copy VAR_DECLs, etc., so this is safe. */ |
| else |
| { |
| /* Here we handle trees that are not completely rewritten. |
| First we detect some inlining-induced bogosities for |
| discarding. */ |
| if (TREE_CODE (*tp) == MODIFY_EXPR |
| && TREE_OPERAND (*tp, 0) == TREE_OPERAND (*tp, 1) |
| && (auto_var_in_fn_p (TREE_OPERAND (*tp, 0), fn))) |
| { |
| /* Some assignments VAR = VAR; don't generate any rtl code |
| and thus don't count as variable modification. Avoid |
| keeping bogosities like 0 = 0. */ |
| tree decl = TREE_OPERAND (*tp, 0), value; |
| tree *n; |
| |
| n = (tree *) pointer_map_contains (id->decl_map, decl); |
| if (n) |
| { |
| value = *n; |
| STRIP_TYPE_NOPS (value); |
| if (TREE_CONSTANT (value) || TREE_READONLY (value)) |
| { |
| *tp = build_empty_stmt (EXPR_LOCATION (*tp)); |
| return copy_tree_body_r (tp, walk_subtrees, data); |
| } |
| } |
| } |
| else if (TREE_CODE (*tp) == INDIRECT_REF) |
| { |
| /* Get rid of *& from inline substitutions that can happen when a |
| pointer argument is an ADDR_EXPR. */ |
| tree decl = TREE_OPERAND (*tp, 0); |
| tree *n; |
| |
| n = (tree *) pointer_map_contains (id->decl_map, decl); |
| if (n) |
| { |
| tree new_tree; |
| tree old; |
| /* If we happen to get an ADDR_EXPR in n->value, strip |
| it manually here as we'll eventually get ADDR_EXPRs |
| which lie about their types pointed to. In this case |
| build_fold_indirect_ref wouldn't strip the INDIRECT_REF, |
| but we absolutely rely on that. As fold_indirect_ref |
| does other useful transformations, try that first, though. */ |
| tree type = TREE_TYPE (TREE_TYPE (*n)); |
| if (id->do_not_unshare) |
| new_tree = *n; |
| else |
| new_tree = unshare_expr (*n); |
| old = *tp; |
| *tp = gimple_fold_indirect_ref (new_tree); |
| if (! *tp) |
| { |
| if (TREE_CODE (new_tree) == ADDR_EXPR) |
| { |
| *tp = fold_indirect_ref_1 (EXPR_LOCATION (new_tree), |
| type, new_tree); |
| /* ??? We should either assert here or build |
| a VIEW_CONVERT_EXPR instead of blindly leaking |
| incompatible types to our IL. */ |
| if (! *tp) |
| *tp = TREE_OPERAND (new_tree, 0); |
| } |
| else |
| { |
| *tp = build1 (INDIRECT_REF, type, new_tree); |
| TREE_THIS_VOLATILE (*tp) = TREE_THIS_VOLATILE (old); |
| TREE_SIDE_EFFECTS (*tp) = TREE_SIDE_EFFECTS (old); |
| TREE_READONLY (*tp) = TREE_READONLY (old); |
| TREE_THIS_NOTRAP (*tp) = TREE_THIS_NOTRAP (old); |
| } |
| } |
| *walk_subtrees = 0; |
| return NULL; |
| } |
| } |
| else if (TREE_CODE (*tp) == MEM_REF) |
| { |
| /* We need to re-canonicalize MEM_REFs from inline substitutions |
| that can happen when a pointer argument is an ADDR_EXPR. */ |
| tree decl = TREE_OPERAND (*tp, 0); |
| tree *n; |
| |
| n = (tree *) pointer_map_contains (id->decl_map, decl); |
| if (n) |
| { |
| tree old = *tp; |
| *tp = fold_build2 (MEM_REF, TREE_TYPE (*tp), |
| unshare_expr (*n), TREE_OPERAND (*tp, 1)); |
| TREE_THIS_VOLATILE (*tp) = TREE_THIS_VOLATILE (old); |
| TREE_NO_WARNING (*tp) = TREE_NO_WARNING (old); |
| *walk_subtrees = 0; |
| return NULL; |
| } |
| } |
| |
| /* Here is the "usual case". Copy this tree node, and then |
| tweak some special cases. */ |
| copy_tree_r (tp, walk_subtrees, NULL); |
| |
| /* If EXPR has block defined, map it to newly constructed block. |
| When inlining we want EXPRs without block appear in the block |
| of function call if we are not remapping a type. */ |
| if (EXPR_P (*tp)) |
| { |
| new_block = id->remapping_type_depth == 0 ? id->block : NULL; |
| if (TREE_BLOCK (*tp)) |
| { |
| tree *n; |
| n = (tree *) pointer_map_contains (id->decl_map, |
| TREE_BLOCK (*tp)); |
| if (n) |
| new_block = *n; |
| } |
| TREE_SET_BLOCK (*tp, new_block); |
| } |
| |
| if (TREE_CODE (*tp) != OMP_CLAUSE) |
| TREE_TYPE (*tp) = remap_type (TREE_TYPE (*tp), id); |
| |
| /* The copied TARGET_EXPR has never been expanded, even if the |
| original node was expanded already. */ |
| if (TREE_CODE (*tp) == TARGET_EXPR && TREE_OPERAND (*tp, 3)) |
| { |
| TREE_OPERAND (*tp, 1) = TREE_OPERAND (*tp, 3); |
| TREE_OPERAND (*tp, 3) = NULL_TREE; |
| } |
| |
| /* Variable substitution need not be simple. In particular, the |
| INDIRECT_REF substitution above. Make sure that TREE_CONSTANT |
| and friends are up-to-date. */ |
| else if (TREE_CODE (*tp) == ADDR_EXPR) |
| { |
| int invariant = is_gimple_min_invariant (*tp); |
| walk_tree (&TREE_OPERAND (*tp, 0), copy_tree_body_r, id, NULL); |
| |
| /* Handle the case where we substituted an INDIRECT_REF |
| into the operand of the ADDR_EXPR. */ |
| if (TREE_CODE (TREE_OPERAND (*tp, 0)) == INDIRECT_REF) |
| *tp = TREE_OPERAND (TREE_OPERAND (*tp, 0), 0); |
| else |
| recompute_tree_invariant_for_addr_expr (*tp); |
| |
| /* If this used to be invariant, but is not any longer, |
| then regimplification is probably needed. */ |
| if (invariant && !is_gimple_min_invariant (*tp)) |
| id->regimplify = true; |
| |
| *walk_subtrees = 0; |
| } |
| } |
| |
| /* Keep iterating. */ |
| return NULL_TREE; |
| } |
| |
| /* Helper for remap_gimple_stmt. Given an EH region number for the |
| source function, map that to the duplicate EH region number in |
| the destination function. */ |
| |
| static int |
| remap_eh_region_nr (int old_nr, copy_body_data *id) |
| { |
| eh_region old_r, new_r; |
| void **slot; |
| |
| old_r = get_eh_region_from_number_fn (id->src_cfun, old_nr); |
| slot = pointer_map_contains (id->eh_map, old_r); |
| new_r = (eh_region) *slot; |
| |
| return new_r->index; |
| } |
| |
| /* Similar, but operate on INTEGER_CSTs. */ |
| |
| static tree |
| remap_eh_region_tree_nr (tree old_t_nr, copy_body_data *id) |
| { |
| int old_nr, new_nr; |
| |
| old_nr = tree_low_cst (old_t_nr, 0); |
| new_nr = remap_eh_region_nr (old_nr, id); |
| |
| return build_int_cst (integer_type_node, new_nr); |
| } |
| |
| /* Helper for copy_bb. Remap statement STMT using the inlining |
| information in ID. Return the new statement copy. */ |
| |
| static gimple |
| remap_gimple_stmt (gimple stmt, copy_body_data *id) |
| { |
| gimple copy = NULL; |
| struct walk_stmt_info wi; |
| bool skip_first = false; |
| |
| /* Begin by recognizing trees that we'll completely rewrite for the |
| inlining context. Our output for these trees is completely |
| different from out input (e.g. RETURN_EXPR is deleted, and morphs |
| into an edge). Further down, we'll handle trees that get |
| duplicated and/or tweaked. */ |
| |
| /* When requested, GIMPLE_RETURNs should be transformed to just the |
| contained GIMPLE_ASSIGN. The branch semantics of the return will |
| be handled elsewhere by manipulating the CFG rather than the |
| statement. */ |
| if (gimple_code (stmt) == GIMPLE_RETURN && id->transform_return_to_modify) |
| { |
| tree retval = gimple_return_retval (stmt); |
| |
| /* If we're returning something, just turn that into an |
| assignment into the equivalent of the original RESULT_DECL. |
| If RETVAL is just the result decl, the result decl has |
| already been set (e.g. a recent "foo (&result_decl, ...)"); |
| just toss the entire GIMPLE_RETURN. */ |
| if (retval |
| && (TREE_CODE (retval) != RESULT_DECL |
| && (TREE_CODE (retval) != SSA_NAME |
| || ! SSA_NAME_VAR (retval) |
| || TREE_CODE (SSA_NAME_VAR (retval)) != RESULT_DECL))) |
| { |
| copy = gimple_build_assign (id->retvar, retval); |
| /* id->retvar is already substituted. Skip it on later remapping. */ |
| skip_first = true; |
| } |
| else |
| return gimple_build_nop (); |
| } |
| else if (gimple_has_substatements (stmt)) |
| { |
| gimple_seq s1, s2; |
| |
| /* When cloning bodies from the C++ front end, we will be handed bodies |
| in High GIMPLE form. Handle here all the High GIMPLE statements that |
| have embedded statements. */ |
| switch (gimple_code (stmt)) |
| { |
| case GIMPLE_BIND: |
| copy = copy_gimple_bind (stmt, id); |
| break; |
| |
| case GIMPLE_CATCH: |
| s1 = remap_gimple_seq (gimple_catch_handler (stmt), id); |
| copy = gimple_build_catch (gimple_catch_types (stmt), s1); |
| break; |
| |
| case GIMPLE_EH_FILTER: |
| s1 = remap_gimple_seq (gimple_eh_filter_failure (stmt), id); |
| copy = gimple_build_eh_filter (gimple_eh_filter_types (stmt), s1); |
| break; |
| |
| case GIMPLE_TRY: |
| s1 = remap_gimple_seq (gimple_try_eval (stmt), id); |
| s2 = remap_gimple_seq (gimple_try_cleanup (stmt), id); |
| copy = gimple_build_try (s1, s2, gimple_try_kind (stmt)); |
| break; |
| |
| case GIMPLE_WITH_CLEANUP_EXPR: |
| s1 = remap_gimple_seq (gimple_wce_cleanup (stmt), id); |
| copy = gimple_build_wce (s1); |
| break; |
| |
| case GIMPLE_OMP_PARALLEL: |
| s1 = remap_gimple_seq (gimple_omp_body (stmt), id); |
| copy = gimple_build_omp_parallel |
| (s1, |
| gimple_omp_parallel_clauses (stmt), |
| gimple_omp_parallel_child_fn (stmt), |
| gimple_omp_parallel_data_arg (stmt)); |
| break; |
| |
| case GIMPLE_OMP_TASK: |
| s1 = remap_gimple_seq (gimple_omp_body (stmt), id); |
| copy = gimple_build_omp_task |
| (s1, |
| gimple_omp_task_clauses (stmt), |
| gimple_omp_task_child_fn (stmt), |
| gimple_omp_task_data_arg (stmt), |
| gimple_omp_task_copy_fn (stmt), |
| gimple_omp_task_arg_size (stmt), |
| gimple_omp_task_arg_align (stmt)); |
| break; |
| |
| case GIMPLE_OMP_FOR: |
| s1 = remap_gimple_seq (gimple_omp_body (stmt), id); |
| s2 = remap_gimple_seq (gimple_omp_for_pre_body (stmt), id); |
| copy = gimple_build_omp_for (s1, gimple_omp_for_clauses (stmt), |
| gimple_omp_for_collapse (stmt), s2); |
| { |
| size_t i; |
| for (i = 0; i < gimple_omp_for_collapse (stmt); i++) |
| { |
| gimple_omp_for_set_index (copy, i, |
| gimple_omp_for_index (stmt, i)); |
| gimple_omp_for_set_initial (copy, i, |
| gimple_omp_for_initial (stmt, i)); |
| gimple_omp_for_set_final (copy, i, |
| gimple_omp_for_final (stmt, i)); |
| gimple_omp_for_set_incr (copy, i, |
| gimple_omp_for_incr (stmt, i)); |
| gimple_omp_for_set_cond (copy, i, |
| gimple_omp_for_cond (stmt, i)); |
| } |
| } |
| break; |
| |
| case GIMPLE_OMP_MASTER: |
| s1 = remap_gimple_seq (gimple_omp_body (stmt), id); |
| copy = gimple_build_omp_master (s1); |
| break; |
| |
| case GIMPLE_OMP_ORDERED: |
| s1 = remap_gimple_seq (gimple_omp_body (stmt), id); |
| copy = gimple_build_omp_ordered (s1); |
| break; |
| |
| case GIMPLE_OMP_SECTION: |
| s1 = remap_gimple_seq (gimple_omp_body (stmt), id); |
| copy = gimple_build_omp_section (s1); |
| break; |
| |
| case GIMPLE_OMP_SECTIONS: |
| s1 = remap_gimple_seq (gimple_omp_body (stmt), id); |
| copy = gimple_build_omp_sections |
| (s1, gimple_omp_sections_clauses (stmt)); |
| break; |
| |
| case GIMPLE_OMP_SINGLE: |
| s1 = remap_gimple_seq (gimple_omp_body (stmt), id); |
| copy = gimple_build_omp_single |
| (s1, gimple_omp_single_clauses (stmt)); |
| break; |
| |
| case GIMPLE_OMP_CRITICAL: |
| s1 = remap_gimple_seq (gimple_omp_body (stmt), id); |
| copy |
| = gimple_build_omp_critical (s1, gimple_omp_critical_name (stmt)); |
| break; |
| |
| case GIMPLE_TRANSACTION: |
| s1 = remap_gimple_seq (gimple_transaction_body (stmt), id); |
| copy = gimple_build_transaction (s1, gimple_transaction_label (stmt)); |
| gimple_transaction_set_subcode (copy, gimple_transaction_subcode (stmt)); |
| break; |
| |
| default: |
| gcc_unreachable (); |
| } |
| } |
| else |
| { |
| if (gimple_assign_copy_p (stmt) |
| && gimple_assign_lhs (stmt) == gimple_assign_rhs1 (stmt) |
| && auto_var_in_fn_p (gimple_assign_lhs (stmt), id->src_fn)) |
| { |
| /* Here we handle statements that are not completely rewritten. |
| First we detect some inlining-induced bogosities for |
| discarding. */ |
| |
| /* Some assignments VAR = VAR; don't generate any rtl code |
| and thus don't count as variable modification. Avoid |
| keeping bogosities like 0 = 0. */ |
| tree decl = gimple_assign_lhs (stmt), value; |
| tree *n; |
| |
| n = (tree *) pointer_map_contains (id->decl_map, decl); |
| if (n) |
| { |
| value = *n; |
| STRIP_TYPE_NOPS (value); |
| if (TREE_CONSTANT (value) || TREE_READONLY (value)) |
| return gimple_build_nop (); |
| } |
| } |
| |
| if (gimple_debug_bind_p (stmt)) |
| { |
| copy = gimple_build_debug_bind (gimple_debug_bind_get_var (stmt), |
| gimple_debug_bind_get_value (stmt), |
| stmt); |
| id->debug_stmts.safe_push (copy); |
| return copy; |
| } |
| if (gimple_debug_source_bind_p (stmt)) |
| { |
| copy = gimple_build_debug_source_bind |
| (gimple_debug_source_bind_get_var (stmt), |
| gimple_debug_source_bind_get_value (stmt), stmt); |
| id->debug_stmts.safe_push (copy); |
| return copy; |
| } |
| |
| /* Create a new deep copy of the statement. */ |
| copy = gimple_copy (stmt); |
| |
| /* Remap the region numbers for __builtin_eh_{pointer,filter}, |
| RESX and EH_DISPATCH. */ |
| if (id->eh_map) |
| switch (gimple_code (copy)) |
| { |
| case GIMPLE_CALL: |
| { |
| tree r, fndecl = gimple_call_fndecl (copy); |
| if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL) |
| switch (DECL_FUNCTION_CODE (fndecl)) |
| { |
| case BUILT_IN_EH_COPY_VALUES: |
| r = gimple_call_arg (copy, 1); |
| r = remap_eh_region_tree_nr (r, id); |
| gimple_call_set_arg (copy, 1, r); |
| /* FALLTHRU */ |
| |
| case BUILT_IN_EH_POINTER: |
| case BUILT_IN_EH_FILTER: |
| r = gimple_call_arg (copy, 0); |
| r = remap_eh_region_tree_nr (r, id); |
| gimple_call_set_arg (copy, 0, r); |
| break; |
| |
| default: |
| break; |
| } |
| |
| /* Reset alias info if we didn't apply measures to |
| keep it valid over inlining by setting DECL_PT_UID. */ |
| if (!id->src_cfun->gimple_df |
| || !id->src_cfun->gimple_df->ipa_pta) |
| gimple_call_reset_alias_info (copy); |
| } |
| break; |
| |
| case GIMPLE_RESX: |
| { |
| int r = gimple_resx_region (copy); |
| r = remap_eh_region_nr (r, id); |
| gimple_resx_set_region (copy, r); |
| } |
| break; |
| |
| case GIMPLE_EH_DISPATCH: |
| { |
| int r = gimple_eh_dispatch_region (copy); |
| r = remap_eh_region_nr (r, id); |
| gimple_eh_dispatch_set_region (copy, r); |
| } |
| break; |
| |
| default: |
| break; |
| } |
| } |
| |
| /* If STMT has a block defined, map it to the newly constructed |
| block. */ |
| if (gimple_block (copy)) |
| { |
| tree *n; |
| n = (tree *) pointer_map_contains (id->decl_map, gimple_block (copy)); |
| gcc_assert (n); |
| gimple_set_block (copy, *n); |
| } |
| |
| if (gimple_debug_bind_p (copy) || gimple_debug_source_bind_p (copy)) |
| return copy; |
| |
| /* Remap all the operands in COPY. */ |
| memset (&wi, 0, sizeof (wi)); |
| wi.info = id; |
| if (skip_first) |
| walk_tree (gimple_op_ptr (copy, 1), remap_gimple_op_r, &wi, NULL); |
| else |
| walk_gimple_op (copy, remap_gimple_op_r, &wi); |
| |
| /* Clear the copied virtual operands. We are not remapping them here |
| but are going to recreate them from scratch. */ |
| if (gimple_has_mem_ops (copy)) |
| { |
| gimple_set_vdef (copy, NULL_TREE); |
| gimple_set_vuse (copy, NULL_TREE); |
| } |
| |
| return copy; |
| } |
| |
| |
| /* Copy basic block, scale profile accordingly. Edges will be taken care of |
| later */ |
| |
| static basic_block |
| copy_bb (copy_body_data *id, basic_block bb, int frequency_scale, |
| gcov_type count_scale) |
| { |
| gimple_stmt_iterator gsi, copy_gsi, seq_gsi; |
| basic_block copy_basic_block; |
| tree decl; |
| gcov_type freq; |
| basic_block prev; |
| |
| /* Search for previous copied basic block. */ |
| prev = bb->prev_bb; |
| while (!prev->aux) |
| prev = prev->prev_bb; |
| |
| /* create_basic_block() will append every new block to |
| basic_block_info automatically. */ |
| copy_basic_block = create_basic_block (NULL, (void *) 0, |
| (basic_block) prev->aux); |
| copy_basic_block->count = bb->count * count_scale / REG_BR_PROB_BASE; |
| |
| /* We are going to rebuild frequencies from scratch. These values |
| have just small importance to drive canonicalize_loop_headers. */ |
| freq = ((gcov_type)bb->frequency * frequency_scale / REG_BR_PROB_BASE); |
| |
| /* We recompute frequencies after inlining, so this is quite safe. */ |
| if (freq > BB_FREQ_MAX) |
| freq = BB_FREQ_MAX; |
| copy_basic_block->frequency = freq; |
| |
| copy_gsi = gsi_start_bb (copy_basic_block); |
| |
| for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi)) |
| { |
| gimple stmt = gsi_stmt (gsi); |
| gimple orig_stmt = stmt; |
| |
| id->regimplify = false; |
| stmt = remap_gimple_stmt (stmt, id); |
| if (gimple_nop_p (stmt)) |
| continue; |
| |
| gimple_duplicate_stmt_histograms (cfun, stmt, id->src_cfun, orig_stmt); |
| seq_gsi = copy_gsi; |
| |
| /* With return slot optimization we can end up with |
| non-gimple (foo *)&this->m, fix that here. */ |
| if (is_gimple_assign (stmt) |
| && gimple_assign_rhs_code (stmt) == NOP_EXPR |
| && !is_gimple_val (gimple_assign_rhs1 (stmt))) |
| { |
| tree new_rhs; |
| new_rhs = force_gimple_operand_gsi (&seq_gsi, |
| gimple_assign_rhs1 (stmt), |
| true, NULL, false, |
| GSI_CONTINUE_LINKING); |
| gimple_assign_set_rhs1 (stmt, new_rhs); |
| id->regimplify = false; |
| } |
| |
| gsi_insert_after (&seq_gsi, stmt, GSI_NEW_STMT); |
| |
| if (id->regimplify) |
| gimple_regimplify_operands (stmt, &seq_gsi); |
| |
| /* If copy_basic_block has been empty at the start of this iteration, |
| call gsi_start_bb again to get at the newly added statements. */ |
| if (gsi_end_p (copy_gsi)) |
| copy_gsi = gsi_start_bb (copy_basic_block); |
| else |
| gsi_next (©_gsi); |
| |
| /* Process the new statement. The call to gimple_regimplify_operands |
| possibly turned the statement into multiple statements, we |
| need to process all of them. */ |
| do |
| { |
| tree fn; |
| |
| stmt = gsi_stmt (copy_gsi); |
| if (is_gimple_call (stmt) |
| && gimple_call_va_arg_pack_p (stmt) |
| && id->gimple_call) |
| { |
| /* __builtin_va_arg_pack () should be replaced by |
| all arguments corresponding to ... in the caller. */ |
| tree p; |
| gimple new_call; |
| vec<tree> argarray; |
| size_t nargs = gimple_call_num_args (id->gimple_call); |
| size_t n; |
| |
| for (p = DECL_ARGUMENTS (id->src_fn); p; p = DECL_CHAIN (p)) |
| nargs--; |
| |
| /* Create the new array of arguments. */ |
| n = nargs + gimple_call_num_args (stmt); |
| argarray.create (n); |
| argarray.safe_grow_cleared (n); |
| |
| /* Copy all the arguments before '...' */ |
| memcpy (argarray.address (), |
| gimple_call_arg_ptr (stmt, 0), |
| gimple_call_num_args (stmt) * sizeof (tree)); |
| |
| /* Append the arguments passed in '...' */ |
| memcpy (argarray.address () + gimple_call_num_args (stmt), |
| gimple_call_arg_ptr (id->gimple_call, 0) |
| + (gimple_call_num_args (id->gimple_call) - nargs), |
| nargs * sizeof (tree)); |
| |
| new_call = gimple_build_call_vec (gimple_call_fn (stmt), |
| argarray); |
| |
| argarray.release (); |
| |
| /* Copy all GIMPLE_CALL flags, location and block, except |
| GF_CALL_VA_ARG_PACK. */ |
| gimple_call_copy_flags (new_call, stmt); |
| gimple_call_set_va_arg_pack (new_call, false); |
| gimple_set_location (new_call, gimple_location (stmt)); |
| gimple_set_block (new_call, gimple_block (stmt)); |
| gimple_call_set_lhs (new_call, gimple_call_lhs (stmt)); |
| |
| gsi_replace (©_gsi, new_call, false); |
| stmt = new_call; |
| } |
| else if (is_gimple_call (stmt) |
| && id->gimple_call |
| && (decl = gimple_call_fndecl (stmt)) |
| && DECL_BUILT_IN_CLASS (decl) == BUILT_IN_NORMAL |
| && DECL_FUNCTION_CODE (decl) == BUILT_IN_VA_ARG_PACK_LEN) |
| { |
| /* __builtin_va_arg_pack_len () should be replaced by |
| the number of anonymous arguments. */ |
| size_t nargs = gimple_call_num_args (id->gimple_call); |
| tree count, p; |
| gimple new_stmt; |
| |
| for (p = DECL_ARGUMENTS (id->src_fn); p; p = DECL_CHAIN (p)) |
| nargs--; |
| |
| count = build_int_cst (integer_type_node, nargs); |
| new_stmt = gimple_build_assign (gimple_call_lhs (stmt), count); |
| gsi_replace (©_gsi, new_stmt, false); |
| stmt = new_stmt; |
| } |
| |
| /* Statements produced by inlining can be unfolded, especially |
| when we constant propagated some operands. We can't fold |
| them right now for two reasons: |
| 1) folding require SSA_NAME_DEF_STMTs to be correct |
| 2) we can't change function calls to builtins. |
| So we just mark statement for later folding. We mark |
| all new statements, instead just statements that has changed |
| by some nontrivial substitution so even statements made |
| foldable indirectly are updated. If this turns out to be |
| expensive, copy_body can be told to watch for nontrivial |
| changes. */ |
| if (id->statements_to_fold) |
| pointer_set_insert (id->statements_to_fold, stmt); |
| |
| /* We're duplicating a CALL_EXPR. Find any corresponding |
| callgraph edges and update or duplicate them. */ |
| if (is_gimple_call (stmt)) |
| { |
| struct cgraph_edge *edge; |
| int flags; |
| |
| switch (id->transform_call_graph_edges) |
| { |
| case CB_CGE_DUPLICATE: |
| edge = cgraph_edge (id->src_node, orig_stmt); |
| if (edge) |
| { |
| int edge_freq = edge->frequency; |
| edge = cgraph_clone_edge (edge, id->dst_node, stmt, |
| gimple_uid (stmt), |
| REG_BR_PROB_BASE, CGRAPH_FREQ_BASE, |
| true); |
| /* We could also just rescale the frequency, but |
| doing so would introduce roundoff errors and make |
| verifier unhappy. */ |
| edge->frequency |
| = compute_call_stmt_bb_frequency (id->dst_node->symbol.decl, |
| copy_basic_block); |
| if (dump_file |
| && profile_status_for_function (cfun) != PROFILE_ABSENT |
| && (edge_freq > edge->frequency + 10 |
| || edge_freq < edge->frequency - 10)) |
| { |
| fprintf (dump_file, "Edge frequency estimated by " |
| "cgraph %i diverge from inliner's estimate %i\n", |
| edge_freq, |
| edge->frequency); |
| fprintf (dump_file, |
| "Orig bb: %i, orig bb freq %i, new bb freq %i\n", |
| bb->index, |
| bb->frequency, |
| copy_basic_block->frequency); |
| } |
| stmt = cgraph_redirect_edge_call_stmt_to_callee (edge); |
| } |
| break; |
| |
| case CB_CGE_MOVE_CLONES: |
| cgraph_set_call_stmt_including_clones (id->dst_node, |
| orig_stmt, stmt); |
| edge = cgraph_edge (id->dst_node, stmt); |
| break; |
| |
| case CB_CGE_MOVE: |
| edge = cgraph_edge (id->dst_node, orig_stmt); |
| if (edge) |
| cgraph_set_call_stmt (edge, stmt); |
| break; |
| |
| default: |
| gcc_unreachable (); |
| } |
| |
| /* Constant propagation on argument done during inlining |
| may create new direct call. Produce an edge for it. */ |
| if ((!edge |
| || (edge->indirect_inlining_edge |
| && id->transform_call_graph_edges == CB_CGE_MOVE_CLONES)) |
| && id->dst_node->analyzed |
| && (fn = gimple_call_fndecl (stmt)) != NULL) |
| { |
| struct cgraph_node *dest = cgraph_get_node (fn); |
| |
| /* We have missing edge in the callgraph. This can happen |
| when previous inlining turned an indirect call into a |
| direct call by constant propagating arguments or we are |
| producing dead clone (for further cloning). In all |
| other cases we hit a bug (incorrect node sharing is the |
| most common reason for missing edges). */ |
| gcc_assert (!dest->analyzed |
| || dest->symbol.address_taken |
| || !id->src_node->analyzed |
| || !id->dst_node->analyzed); |
| if (id->transform_call_graph_edges == CB_CGE_MOVE_CLONES) |
| cgraph_create_edge_including_clones |
| (id->dst_node, dest, orig_stmt, stmt, bb->count, |
| compute_call_stmt_bb_frequency (id->dst_node->symbol.decl, |
| copy_basic_block), |
| CIF_ORIGINALLY_INDIRECT_CALL); |
| else |
| cgraph_create_edge (id->dst_node, dest, stmt, |
| bb->count, |
| compute_call_stmt_bb_frequency |
| (id->dst_node->symbol.decl, |
| copy_basic_block))->inline_failed |
| = CIF_ORIGINALLY_INDIRECT_CALL; |
| if (dump_file) |
| { |
| fprintf (dump_file, "Created new direct edge to %s\n", |
| cgraph_node_name (dest)); |
| } |
| } |
| |
| flags = gimple_call_flags (stmt); |
| if (flags & ECF_MAY_BE_ALLOCA) |
| cfun->calls_alloca = true; |
| if (flags & ECF_RETURNS_TWICE) |
| cfun->calls_setjmp = true; |
| } |
| |
| maybe_duplicate_eh_stmt_fn (cfun, stmt, id->src_cfun, orig_stmt, |
| id->eh_map, id->eh_lp_nr); |
| |
| if (gimple_in_ssa_p (cfun) && !is_gimple_debug (stmt)) |
| { |
| ssa_op_iter i; |
| tree def; |
| |
| FOR_EACH_SSA_TREE_OPERAND (def, stmt, i, SSA_OP_DEF) |
| if (TREE_CODE (def) == SSA_NAME) |
| SSA_NAME_DEF_STMT (def) = stmt; |
| } |
| |
| gsi_next (©_gsi); |
| } |
| while (!gsi_end_p (copy_gsi)); |
| |
| copy_gsi = gsi_last_bb (copy_basic_block); |
| } |
| |
| return copy_basic_block; |
| } |
| |
| /* Inserting Single Entry Multiple Exit region in SSA form into code in SSA |
| form is quite easy, since dominator relationship for old basic blocks does |
| not change. |
| |
| There is however exception where inlining might change dominator relation |
| across EH edges from basic block within inlined functions destinating |
| to landing pads in function we inline into. |
| |
| The function fills in PHI_RESULTs of such PHI nodes if they refer |
| to gimple regs. Otherwise, the function mark PHI_RESULT of such |
| PHI nodes for renaming. For non-gimple regs, renaming is safe: the |
| EH edges are abnormal and SSA_NAME_OCCURS_IN_ABNORMAL_PHI must be |
| set, and this means that there will be no overlapping live ranges |
| for the underlying symbol. |
| |
| This might change in future if we allow redirecting of EH edges and |
| we might want to change way build CFG pre-inlining to include |
| all the possible edges then. */ |
| static void |
| update_ssa_across_abnormal_edges (basic_block bb, basic_block ret_bb, |
| bool can_throw, bool nonlocal_goto) |
| { |
| edge e; |
| edge_iterator ei; |
| |
| FOR_EACH_EDGE (e, ei, bb->succs) |
| if (!e->dest->aux |
| || ((basic_block)e->dest->aux)->index == ENTRY_BLOCK) |
| { |
| gimple phi; |
| gimple_stmt_iterator si; |
| |
| if (!nonlocal_goto) |
| gcc_assert (e->flags & EDGE_EH); |
| |
| if (!can_throw) |
| gcc_assert (!(e->flags & EDGE_EH)); |
| |
| for (si = gsi_start_phis (e->dest); !gsi_end_p (si); gsi_next (&si)) |
| { |
| edge re; |
| |
| phi = gsi_stmt (si); |
| |
| /* There shouldn't be any PHI nodes in the ENTRY_BLOCK. */ |
| gcc_assert (!e->dest->aux); |
| |
| gcc_assert ((e->flags & EDGE_EH) |
| || SSA_NAME_OCCURS_IN_ABNORMAL_PHI (PHI_RESULT (phi))); |
| |
| if (virtual_operand_p (PHI_RESULT (phi))) |
| { |
| mark_virtual_operands_for_renaming (cfun); |
| continue; |
| } |
| |
| re = find_edge (ret_bb, e->dest); |
| gcc_assert (re); |
| gcc_assert ((re->flags & (EDGE_EH | EDGE_ABNORMAL)) |
| == (e->flags & (EDGE_EH | EDGE_ABNORMAL))); |
| |
| SET_USE (PHI_ARG_DEF_PTR_FROM_EDGE (phi, e), |
| USE_FROM_PTR (PHI_ARG_DEF_PTR_FROM_EDGE (phi, re))); |
| } |
| } |
| } |
| |
| |
| /* Copy edges from BB into its copy constructed earlier, scale profile |
| accordingly. Edges will be taken care of later. Assume aux |
| pointers to point to the copies of each BB. Return true if any |
| debug stmts are left after a statement that must end the basic block. */ |
| |
| static bool |
| copy_edges_for_bb (basic_block bb, gcov_type count_scale, basic_block ret_bb) |
| { |
| basic_block new_bb = (basic_block) bb->aux; |
| edge_iterator ei; |
| edge old_edge; |
| gimple_stmt_iterator si; |
| int flags; |
| bool need_debug_cleanup = false; |
| |
| /* Use the indices from the original blocks to create edges for the |
| new ones. */ |
| FOR_EACH_EDGE (old_edge, ei, bb->succs) |
| if (!(old_edge->flags & EDGE_EH)) |
| { |
| edge new_edge; |
| |
| flags = old_edge->flags; |
| |
| /* Return edges do get a FALLTHRU flag when the get inlined. */ |
| if (old_edge->dest->index == EXIT_BLOCK && !old_edge->flags |
| && old_edge->dest->aux != EXIT_BLOCK_PTR) |
| flags |= EDGE_FALLTHRU; |
| new_edge = make_edge (new_bb, (basic_block) old_edge->dest->aux, flags); |
| new_edge->count = old_edge->count * count_scale / REG_BR_PROB_BASE; |
| new_edge->probability = old_edge->probability; |
| } |
| |
| if (bb->index == ENTRY_BLOCK || bb->index == EXIT_BLOCK) |
| return false; |
| |
| for (si = gsi_start_bb (new_bb); !gsi_end_p (si);) |
| { |
| gimple copy_stmt; |
| bool can_throw, nonlocal_goto; |
| |
| copy_stmt = gsi_stmt (si); |
| if (!is_gimple_debug (copy_stmt)) |
| update_stmt (copy_stmt); |
| |
| /* Do this before the possible split_block. */ |
| gsi_next (&si); |
| |
| /* If this tree could throw an exception, there are two |
| cases where we need to add abnormal edge(s): the |
| tree wasn't in a region and there is a "current |
| region" in the caller; or the original tree had |
| EH edges. In both cases split the block after the tree, |
| and add abnormal edge(s) as needed; we need both |
| those from the callee and the caller. |
| We check whether the copy can throw, because the const |
| propagation can change an INDIRECT_REF which throws |
| into a COMPONENT_REF which doesn't. If the copy |
| can throw, the original could also throw. */ |
| can_throw = stmt_can_throw_internal (copy_stmt); |
| nonlocal_goto = stmt_can_make_abnormal_goto (copy_stmt); |
| |
| if (can_throw || nonlocal_goto) |
| { |
| if (!gsi_end_p (si)) |
| { |
| while (!gsi_end_p (si) && is_gimple_debug (gsi_stmt (si))) |
| gsi_next (&si); |
| if (gsi_end_p (si)) |
| need_debug_cleanup = true; |
| } |
| if (!gsi_end_p (si)) |
| /* Note that bb's predecessor edges aren't necessarily |
| right at this point; split_block doesn't care. */ |
| { |
| edge e = split_block (new_bb, copy_stmt); |
| |
| new_bb = e->dest; |
| new_bb->aux = e->src->aux; |
| si = gsi_start_bb (new_bb); |
| } |
| } |
| |
| if (gimple_code (copy_stmt) == GIMPLE_EH_DISPATCH) |
| make_eh_dispatch_edges (copy_stmt); |
| else if (can_throw) |
| make_eh_edges (copy_stmt); |
| |
| if (nonlocal_goto) |
| make_abnormal_goto_edges (gimple_bb (copy_stmt), true); |
| |
| if ((can_throw || nonlocal_goto) |
| && gimple_in_ssa_p (cfun)) |
| update_ssa_across_abnormal_edges (gimple_bb (copy_stmt), ret_bb, |
| can_throw, nonlocal_goto); |
| } |
| return need_debug_cleanup; |
| } |
| |
| /* Copy the PHIs. All blocks and edges are copied, some blocks |
| was possibly split and new outgoing EH edges inserted. |
| BB points to the block of original function and AUX pointers links |
| the original and newly copied blocks. */ |
| |
| static void |
| copy_phis_for_bb (basic_block bb, copy_body_data *id) |
| { |
| basic_block const new_bb = (basic_block) bb->aux; |
| edge_iterator ei; |
| gimple phi; |
| gimple_stmt_iterator si; |
| edge new_edge; |
| bool inserted = false; |
| |
| for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si)) |
| { |
| tree res, new_res; |
| gimple new_phi; |
| |
| phi = gsi_stmt (si); |
| res = PHI_RESULT (phi); |
| new_res = res; |
| if (!virtual_operand_p (res)) |
| { |
| walk_tree (&new_res, copy_tree_body_r, id, NULL); |
| new_phi = create_phi_node (new_res, new_bb); |
| FOR_EACH_EDGE (new_edge, ei, new_bb->preds) |
| { |
| edge old_edge = find_edge ((basic_block) new_edge->src->aux, bb); |
| tree arg; |
| tree new_arg; |
| edge_iterator ei2; |
| location_t locus; |
| |
| /* When doing partial cloning, we allow PHIs on the entry block |
| as long as all the arguments are the same. Find any input |
| edge to see argument to copy. */ |
| if (!old_edge) |
| FOR_EACH_EDGE (old_edge, ei2, bb->preds) |
| if (!old_edge->src->aux) |
| break; |
| |
| arg = PHI_ARG_DEF_FROM_EDGE (phi, old_edge); |
| new_arg = arg; |
| walk_tree (&new_arg, copy_tree_body_r, id, NULL); |
| gcc_assert (new_arg); |
| /* With return slot optimization we can end up with |
| non-gimple (foo *)&this->m, fix that here. */ |
| if (TREE_CODE (new_arg) != SSA_NAME |
| && TREE_CODE (new_arg) != FUNCTION_DECL |
| && !is_gimple_val (new_arg)) |
| { |
| gimple_seq stmts = NULL; |
| new_arg = force_gimple_operand (new_arg, &stmts, true, NULL); |
| gsi_insert_seq_on_edge (new_edge, stmts); |
| inserted = true; |
| } |
| locus = gimple_phi_arg_location_from_edge (phi, old_edge); |
| if (LOCATION_BLOCK (locus)) |
| { |
| tree *n; |
| n = (tree *) pointer_map_contains (id->decl_map, |
| LOCATION_BLOCK (locus)); |
| gcc_assert (n); |
| locus = COMBINE_LOCATION_DATA (line_table, locus, *n); |
| } |
| else |
| locus = LOCATION_LOCUS (locus); |
| |
| add_phi_arg (new_phi, new_arg, new_edge, locus); |
| } |
| } |
| } |
| |
| /* Commit the delayed edge insertions. */ |
| if (inserted) |
| FOR_EACH_EDGE (new_edge, ei, new_bb->preds) |
| gsi_commit_one_edge_insert (new_edge, NULL); |
| } |
| |
| |
| /* Wrapper for remap_decl so it can be used as a callback. */ |
| |
| static tree |
| remap_decl_1 (tree decl, void *data) |
| { |
| return remap_decl (decl, (copy_body_data *) data); |
| } |
| |
| /* Build struct function and associated datastructures for the new clone |
| NEW_FNDECL to be build. CALLEE_FNDECL is the original. Function changes |
| the cfun to the function of new_fndecl (and current_function_decl too). */ |
| |
| static void |
| initialize_cfun (tree new_fndecl, tree callee_fndecl, gcov_type count) |
| { |
| struct function *src_cfun = DECL_STRUCT_FUNCTION (callee_fndecl); |
| gcov_type count_scale; |
| |
| if (ENTRY_BLOCK_PTR_FOR_FUNCTION (src_cfun)->count) |
| count_scale = (REG_BR_PROB_BASE * count |
| / ENTRY_BLOCK_PTR_FOR_FUNCTION (src_cfun)->count); |
| else |
| count_scale = REG_BR_PROB_BASE; |
| |
| /* Register specific tree functions. */ |
| gimple_register_cfg_hooks (); |
| |
| /* Get clean struct function. */ |
| push_struct_function (new_fndecl); |
| |
| /* We will rebuild these, so just sanity check that they are empty. */ |
| gcc_assert (VALUE_HISTOGRAMS (cfun) == NULL); |
| gcc_assert (cfun->local_decls == NULL); |
| gcc_assert (cfun->cfg == NULL); |
| gcc_assert (cfun->decl == new_fndecl); |
| |
| /* Copy items we preserve during cloning. */ |
| cfun->static_chain_decl = src_cfun->static_chain_decl; |
| cfun->nonlocal_goto_save_area = src_cfun->nonlocal_goto_save_area; |
| cfun->function_end_locus = src_cfun->function_end_locus; |
| cfun->curr_properties = src_cfun->curr_properties & ~PROP_loops; |
| cfun->last_verified = src_cfun->last_verified; |
| cfun->va_list_gpr_size = src_cfun->va_list_gpr_size; |
| cfun->va_list_fpr_size = src_cfun->va_list_fpr_size; |
| cfun->has_nonlocal_label = src_cfun->has_nonlocal_label; |
| cfun->stdarg = src_cfun->stdarg; |
| cfun->after_inlining = src_cfun->after_inlining; |
| cfun->can_throw_non_call_exceptions |
| = src_cfun->can_throw_non_call_exceptions; |
| cfun->can_delete_dead_exceptions = src_cfun->can_delete_dead_exceptions; |
| cfun->returns_struct = src_cfun->returns_struct; |
| cfun->returns_pcc_struct = src_cfun->returns_pcc_struct; |
| |
| init_empty_tree_cfg (); |
| |
| profile_status_for_function (cfun) = profile_status_for_function (src_cfun); |
| ENTRY_BLOCK_PTR->count = |
| (ENTRY_BLOCK_PTR_FOR_FUNCTION (src_cfun)->count * count_scale / |
| REG_BR_PROB_BASE); |
| ENTRY_BLOCK_PTR->frequency |
| = ENTRY_BLOCK_PTR_FOR_FUNCTION (src_cfun)->frequency; |
| EXIT_BLOCK_PTR->count = |
| (EXIT_BLOCK_PTR_FOR_FUNCTION (src_cfun)->count * count_scale / |
| REG_BR_PROB_BASE); |
| EXIT_BLOCK_PTR->frequency = |
| EXIT_BLOCK_PTR_FOR_FUNCTION (src_cfun)->frequency; |
| if (src_cfun->eh) |
| init_eh_for_function (); |
| |
| if (src_cfun->gimple_df) |
| { |
| init_tree_ssa (cfun); |
| cfun->gimple_df->in_ssa_p = true; |
| init_ssa_operands (cfun); |
| } |
| } |
| |
| /* Helper function for copy_cfg_body. Move debug stmts from the end |
| of NEW_BB to the beginning of successor basic blocks when needed. If the |
| successor has multiple predecessors, reset them, otherwise keep |
| their value. */ |
| |
| static void |
| maybe_move_debug_stmts_to_successors (copy_body_data *id, basic_block new_bb) |
| { |
| edge e; |
| edge_iterator ei; |
| gimple_stmt_iterator si = gsi_last_nondebug_bb (new_bb); |
| |
| if (gsi_end_p (si) |
| || gsi_one_before_end_p (si) |
| || !(stmt_can_throw_internal (gsi_stmt (si)) |
| || stmt_can_make_abnormal_goto (gsi_stmt (si)))) |
| return; |
| |
| FOR_EACH_EDGE (e, ei, new_bb->succs) |
| { |
| gimple_stmt_iterator ssi = gsi_last_bb (new_bb); |
| gimple_stmt_iterator dsi = gsi_after_labels (e->dest); |
| while (is_gimple_debug (gsi_stmt (ssi))) |
| { |
| gimple stmt = gsi_stmt (ssi), new_stmt; |
| tree var; |
| tree value; |
| |
| /* For the last edge move the debug stmts instead of copying |
| them. */ |
| if (ei_one_before_end_p (ei)) |
| { |
| si = ssi; |
| gsi_prev (&ssi); |
| if (!single_pred_p (e->dest) && gimple_debug_bind_p (stmt)) |
| gimple_debug_bind_reset_value (stmt); |
| gsi_remove (&si, false); |
| gsi_insert_before (&dsi, stmt, GSI_SAME_STMT); |
| continue; |
| } |
| |
| if (gimple_debug_bind_p (stmt)) |
| { |
| var = gimple_debug_bind_get_var (stmt); |
| if (single_pred_p (e->dest)) |
| { |
| value = gimple_debug_bind_get_value (stmt); |
| value = unshare_expr (value); |
| } |
| else |
| value = NULL_TREE; |
| new_stmt = gimple_build_debug_bind (var, value, stmt); |
| } |
| else if (gimple_debug_source_bind_p (stmt)) |
| { |
| var = gimple_debug_source_bind_get_var (stmt); |
| value = gimple_debug_source_bind_get_value (stmt); |
| new_stmt = gimple_build_debug_source_bind (var, value, stmt); |
| } |
| else |
| gcc_unreachable (); |
| gsi_insert_before (&dsi, new_stmt, GSI_SAME_STMT); |
| id->debug_stmts.safe_push (new_stmt); |
| gsi_prev (&ssi); |
| } |
| } |
| } |
| |
| /* Make a copy of the body of FN so that it can be inserted inline in |
| another function. Walks FN via CFG, returns new fndecl. */ |
| |
| static tree |
| copy_cfg_body (copy_body_data * id, gcov_type count, int frequency_scale, |
| basic_block entry_block_map, basic_block exit_block_map, |
| bitmap blocks_to_copy, basic_block new_entry) |
| { |
| tree callee_fndecl = id->src_fn; |
| /* Original cfun for the callee, doesn't change. */ |
| struct function *src_cfun = DECL_STRUCT_FUNCTION (callee_fndecl); |
| struct function *cfun_to_copy; |
| basic_block bb; |
| tree new_fndecl = NULL; |
| bool need_debug_cleanup = false; |
| gcov_type count_scale; |
| int last; |
| int incoming_frequency = 0; |
| gcov_type incoming_count = 0; |
| |
| if (ENTRY_BLOCK_PTR_FOR_FUNCTION (src_cfun)->count) |
| count_scale = (REG_BR_PROB_BASE * count |
| / ENTRY_BLOCK_PTR_FOR_FUNCTION (src_cfun)->count); |
| else |
| count_scale = REG_BR_PROB_BASE; |
| |
| /* Register specific tree functions. */ |
| gimple_register_cfg_hooks (); |
| |
| /* If we are inlining just region of the function, make sure to connect new entry |
| to ENTRY_BLOCK_PTR. Since new entry can be part of loop, we must compute |
| frequency and probability of ENTRY_BLOCK_PTR based on the frequencies and |
| probabilities of edges incoming from nonduplicated region. */ |
| if (new_entry) |
| { |
| edge e; |
| edge_iterator ei; |
| |
| FOR_EACH_EDGE (e, ei, new_entry->preds) |
| if (!e->src->aux) |
| { |
| incoming_frequency += EDGE_FREQUENCY (e); |
| incoming_count += e->count; |
| } |
| incoming_count = incoming_count * count_scale / REG_BR_PROB_BASE; |
| incoming_frequency |
| = incoming_frequency * frequency_scale / REG_BR_PROB_BASE; |
| ENTRY_BLOCK_PTR->count = incoming_count; |
| ENTRY_BLOCK_PTR->frequency = incoming_frequency; |
| } |
| |
| /* Must have a CFG here at this point. */ |
| gcc_assert (ENTRY_BLOCK_PTR_FOR_FUNCTION |
| (DECL_STRUCT_FUNCTION (callee_fndecl))); |
| |
| cfun_to_copy = id->src_cfun = DECL_STRUCT_FUNCTION (callee_fndecl); |
| |
| ENTRY_BLOCK_PTR_FOR_FUNCTION (cfun_to_copy)->aux = entry_block_map; |
| EXIT_BLOCK_PTR_FOR_FUNCTION (cfun_to_copy)->aux = exit_block_map; |
| entry_block_map->aux = ENTRY_BLOCK_PTR_FOR_FUNCTION (cfun_to_copy); |
| exit_block_map->aux = EXIT_BLOCK_PTR_FOR_FUNCTION (cfun_to_copy); |
| |
| /* Duplicate any exception-handling regions. */ |
| if (cfun->eh) |
| id->eh_map = duplicate_eh_regions (cfun_to_copy, NULL, id->eh_lp_nr, |
| remap_decl_1, id); |
| |
| /* Use aux pointers to map the original blocks to copy. */ |
| FOR_EACH_BB_FN (bb, cfun_to_copy) |
| if (!blocks_to_copy || bitmap_bit_p (blocks_to_copy, bb->index)) |
| { |
| basic_block new_bb = copy_bb (id, bb, frequency_scale, count_scale); |
| bb->aux = new_bb; |
| new_bb->aux = bb; |
| } |
| |
| last = last_basic_block; |
| |
| /* Now that we've duplicated the blocks, duplicate their edges. */ |
| FOR_ALL_BB_FN (bb, cfun_to_copy) |
| if (!blocks_to_copy |
| || (bb->index > 0 && bitmap_bit_p (blocks_to_copy, bb->index))) |
| need_debug_cleanup |= copy_edges_for_bb (bb, count_scale, exit_block_map); |
| |
| if (new_entry) |
| { |
| edge e = make_edge (entry_block_map, (basic_block)new_entry->aux, EDGE_FALLTHRU); |
| e->probability = REG_BR_PROB_BASE; |
| e->count = incoming_count; |
| } |
| |
| if (gimple_in_ssa_p (cfun)) |
| FOR_ALL_BB_FN (bb, cfun_to_copy) |
| if (!blocks_to_copy |
| || (bb->index > 0 && bitmap_bit_p (blocks_to_copy, bb->index))) |
| copy_phis_for_bb (bb, id); |
| |
| FOR_ALL_BB_FN (bb, cfun_to_copy) |
| if (bb->aux) |
| { |
| if (need_debug_cleanup |
| && bb->index != ENTRY_BLOCK |
| && bb->index != EXIT_BLOCK) |
| maybe_move_debug_stmts_to_successors (id, (basic_block) bb->aux); |
| ((basic_block)bb->aux)->aux = NULL; |
| bb->aux = NULL; |
| } |
| |
| /* Zero out AUX fields of newly created block during EH edge |
| insertion. */ |
| for (; last < last_basic_block; last++) |
| { |
| if (need_debug_cleanup) |
| maybe_move_debug_stmts_to_successors (id, BASIC_BLOCK (last)); |
| BASIC_BLOCK (last)->aux = NULL; |
| } |
| entry_block_map->aux = NULL; |
| exit_block_map->aux = NULL; |
| |
| if (id->eh_map) |
| { |
| pointer_map_destroy (id->eh_map); |
| id->eh_map = NULL; |
| } |
| |
| return new_fndecl; |
| } |
| |
| /* Copy the debug STMT using ID. We deal with these statements in a |
| special way: if any variable in their VALUE expression wasn't |
| remapped yet, we won't remap it, because that would get decl uids |
| out of sync, causing codegen differences between -g and -g0. If |
| this arises, we drop the VALUE expression altogether. */ |
| |
| static void |
| copy_debug_stmt (gimple stmt, copy_body_data *id) |
| { |
| tree t, *n; |
| struct walk_stmt_info wi; |
| |
| if (gimple_block (stmt)) |
| { |
| n = (tree *) pointer_map_contains (id->decl_map, gimple_block (stmt)); |
| gimple_set_block (stmt, n ? *n : id->block); |
| } |
| |
| /* Remap all the operands in COPY. */ |
| memset (&wi, 0, sizeof (wi)); |
| wi.info = id; |
| |
| processing_debug_stmt = 1; |
| |
| if (gimple_debug_source_bind_p (stmt)) |
| t = gimple_debug_source_bind_get_var (stmt); |
| else |
| t = gimple_debug_bind_get_var (stmt); |
| |
| if (TREE_CODE (t) == PARM_DECL && id->debug_map |
| && (n = (tree *) pointer_map_contains (id->debug_map, t))) |
| { |
| gcc_assert (TREE_CODE (*n) == VAR_DECL); |
| t = *n; |
| } |
| else if (TREE_CODE (t) == VAR_DECL |
| && !is_global_var (t) |
| && !pointer_map_contains (id->decl_map, t)) |
| /* T is a non-localized variable. */; |
| else |
| walk_tree (&t, remap_gimple_op_r, &wi, NULL); |
| |
| if (gimple_debug_bind_p (stmt)) |
| { |
| gimple_debug_bind_set_var (stmt, t); |
| |
| if (gimple_debug_bind_has_value_p (stmt)) |
| walk_tree (gimple_debug_bind_get_value_ptr (stmt), |
| remap_gimple_op_r, &wi, NULL); |
| |
| /* Punt if any decl couldn't be remapped. */ |
| if (processing_debug_stmt < 0) |
| gimple_debug_bind_reset_value (stmt); |
| } |
| else if (gimple_debug_source_bind_p (stmt)) |
| { |
| gimple_debug_source_bind_set_var (stmt, t); |
| walk_tree (gimple_debug_source_bind_get_value_ptr (stmt), |
| remap_gimple_op_r, &wi, NULL); |
| /* When inlining and source bind refers to one of the optimized |
| away parameters, change the source bind into normal debug bind |
| referring to the corresponding DEBUG_EXPR_DECL that should have |
| been bound before the call stmt. */ |
| t = gimple_debug_source_bind_get_value (stmt); |
| if (t != NULL_TREE |
| && TREE_CODE (t) == PARM_DECL |
| && id->gimple_call) |
| { |
| vec<tree, va_gc> **debug_args = decl_debug_args_lookup (id->src_fn); |
| unsigned int i; |
| if (debug_args != NULL) |
| { |
| for (i = 0; i < vec_safe_length (*debug_args); i += 2) |
| if ((**debug_args)[i] == DECL_ORIGIN (t) |
| && TREE_CODE ((**debug_args)[i + 1]) == DEBUG_EXPR_DECL) |
| { |
| t = (**debug_args)[i + 1]; |
| stmt->gsbase.subcode = GIMPLE_DEBUG_BIND; |
| gimple_debug_bind_set_value (stmt, t); |
| break; |
| } |
| } |
| } |
| } |
| |
| processing_debug_stmt = 0; |
| |
| update_stmt (stmt); |
| } |
| |
| /* Process deferred debug stmts. In order to give values better odds |
| of being successfully remapped, we delay the processing of debug |
| stmts until all other stmts that might require remapping are |
| processed. */ |
| |
| static void |
| copy_debug_stmts (copy_body_data *id) |
| { |
| size_t i; |
| gimple stmt; |
| |
| if (!id->debug_stmts.exists ()) |
| return; |
| |
| FOR_EACH_VEC_ELT (id->debug_stmts, i, stmt) |
| copy_debug_stmt (stmt, id); |
| |
| id->debug_stmts.release (); |
| } |
| |
| /* Make a copy of the body of SRC_FN so that it can be inserted inline in |
| another function. */ |
| |
| static tree |
| copy_tree_body (copy_body_data *id) |
| { |
| tree fndecl = id->src_fn; |
| tree body = DECL_SAVED_TREE (fndecl); |
| |
| walk_tree (&body, copy_tree_body_r, id, NULL); |
| |
| return body; |
| } |
| |
| /* Make a copy of the body of FN so that it can be inserted inline in |
| another function. */ |
| |
| static tree |
| copy_body (copy_body_data *id, gcov_type count, int frequency_scale, |
| basic_block entry_block_map, basic_block exit_block_map, |
| bitmap blocks_to_copy, basic_block new_entry) |
| { |
| tree fndecl = id->src_fn; |
| tree body; |
| |
| /* If this body has a CFG, walk CFG and copy. */ |
| gcc_assert (ENTRY_BLOCK_PTR_FOR_FUNCTION (DECL_STRUCT_FUNCTION (fndecl))); |
| body = copy_cfg_body (id, count, frequency_scale, entry_block_map, exit_block_map, |
| blocks_to_copy, new_entry); |
| copy_debug_stmts (id); |
| |
| return body; |
| } |
| |
| /* Return true if VALUE is an ADDR_EXPR of an automatic variable |
| defined in function FN, or of a data member thereof. */ |
| |
| static bool |
| self_inlining_addr_expr (tree value, tree fn) |
| { |
| tree var; |
| |
| if (TREE_CODE (value) != ADDR_EXPR) |
| return false; |
| |
| var = get_base_address (TREE_OPERAND (value, 0)); |
| |
| return var && auto_var_in_fn_p (var, fn); |
| } |
| |
| /* Append to BB a debug annotation that binds VAR to VALUE, inheriting |
| lexical block and line number information from base_stmt, if given, |
| or from the last stmt of the block otherwise. */ |
| |
| static gimple |
| insert_init_debug_bind (copy_body_data *id, |
| basic_block bb, tree var, tree value, |
| gimple base_stmt) |
| { |
| gimple note; |
| gimple_stmt_iterator gsi; |
| tree tracked_var; |
| |
| if (!gimple_in_ssa_p (id->src_cfun)) |
| return NULL; |
| |
| if (!MAY_HAVE_DEBUG_STMTS) |
| return NULL; |
| |
| tracked_var = target_for_debug_bind (var); |
| if (!tracked_var) |
| return NULL; |
| |
| if (bb) |
| { |
| gsi = gsi_last_bb (bb); |
| if (!base_stmt && !gsi_end_p (gsi)) |
| base_stmt = gsi_stmt (gsi); |
| } |
| |
| note = gimple_build_debug_bind (tracked_var, value, base_stmt); |
| |
| if (bb) |
| { |
| if (!gsi_end_p (gsi)) |
| gsi_insert_after (&gsi, note, GSI_SAME_STMT); |
| else |
| gsi_insert_before (&gsi, note, GSI_SAME_STMT); |
| } |
| |
| return note; |
| } |
| |
| static void |
| insert_init_stmt (copy_body_data *id, basic_block bb, gimple init_stmt) |
| { |
| /* If VAR represents a zero-sized variable, it's possible that the |
| assignment statement may result in no gimple statements. */ |
| if (init_stmt) |
| { |
| gimple_stmt_iterator si = gsi_last_bb (bb); |
| |
| /* We can end up with init statements that store to a non-register |
| from a rhs with a conversion. Handle that here by forcing the |
| rhs into a temporary. gimple_regimplify_operands is not |
| prepared to do this for us. */ |
| if (!is_gimple_debug (init_stmt) |
| && !is_gimple_reg (gimple_assign_lhs (init_stmt)) |
| && is_gimple_reg_type (TREE_TYPE (gimple_assign_lhs (init_stmt))) |
| && gimple_assign_rhs_class (init_stmt) == GIMPLE_UNARY_RHS) |
| { |
| tree rhs = build1 (gimple_assign_rhs_code (init_stmt), |
| gimple_expr_type (init_stmt), |
| gimple_assign_rhs1 (init_stmt)); |
| rhs = force_gimple_operand_gsi (&si, rhs, true, NULL_TREE, false, |
| GSI_NEW_STMT); |
| gimple_assign_set_rhs_code (init_stmt, TREE_CODE (rhs)); |
| gimple_assign_set_rhs1 (init_stmt, rhs); |
| } |
| gsi_insert_after (&si, init_stmt, GSI_NEW_STMT); |
| gimple_regimplify_operands (init_stmt, &si); |
| |
| if (!is_gimple_debug (init_stmt) && MAY_HAVE_DEBUG_STMTS) |
| { |
| tree def = gimple_assign_lhs (init_stmt); |
| insert_init_debug_bind (id, bb, def, def, init_stmt); |
| } |
| } |
| } |
| |
| /* Initialize parameter P with VALUE. If needed, produce init statement |
| at the end of BB. When BB is NULL, we return init statement to be |
| output later. */ |
| static gimple |
| setup_one_parameter (copy_body_data *id, tree p, tree value, tree fn, |
| basic_block bb, tree *vars) |
| { |
| gimple init_stmt = NULL; |
| tree var; |
| tree rhs = value; |
| tree def = (gimple_in_ssa_p (cfun) |
| ? ssa_default_def (id->src_cfun, p) : NULL); |
| |
| if (value |
| && value != error_mark_node |
| && !useless_type_conversion_p (TREE_TYPE (p), TREE_TYPE (value))) |
| { |
| /* If we can match up types by promotion/demotion do so. */ |
| if (fold_convertible_p (TREE_TYPE (p), value)) |
| rhs = fold_convert (TREE_TYPE (p), value); |
| else |
| { |
| /* ??? For valid programs we should not end up here. |
| Still if we end up with truly mismatched types here, fall back |
| to using a VIEW_CONVERT_EXPR or a literal zero to not leak invalid |
| GIMPLE to the following passes. */ |
| if (!is_gimple_reg_type (TREE_TYPE (value)) |
| || TYPE_SIZE (TREE_TYPE (p)) == TYPE_SIZE (TREE_TYPE (value))) |
| rhs = fold_build1 (VIEW_CONVERT_EXPR, TREE_TYPE (p), value); |
| else |
| rhs = build_zero_cst (TREE_TYPE (p)); |
| } |
| } |
| |
| /* Make an equivalent VAR_DECL. Note that we must NOT remap the type |
| here since the type of this decl must be visible to the calling |
| function. */ |
| var = copy_decl_to_var (p, id); |
| |
| /* Declare this new variable. */ |
| DECL_CHAIN (var) = *vars; |
| *vars = var; |
| |
| /* Make gimplifier happy about this variable. */ |
| DECL_SEEN_IN_BIND_EXPR_P (var) = 1; |
| |
| /* If the parameter is never assigned to, has no SSA_NAMEs created, |
| we would not need to create a new variable here at all, if it |
| weren't for debug info. Still, we can just use the argument |
| value. */ |
| if (TREE_READONLY (p) |
| && !TREE_ADDRESSABLE (p) |
| && value && !TREE_SIDE_EFFECTS (value) |
| && !def) |
| { |
| /* We may produce non-gimple trees by adding NOPs or introduce |
| invalid sharing when operand is not really constant. |
| It is not big deal to prohibit constant propagation here as |
| we will constant propagate in DOM1 pass anyway. */ |
| if (is_gimple_min_invariant (value) |
| && useless_type_conversion_p (TREE_TYPE (p), |
| TREE_TYPE (value)) |
| /* We have to be very careful about ADDR_EXPR. Make sure |
| the base variable isn't a local variable of the inlined |
| function, e.g., when doing recursive inlining, direct or |
| mutually-recursive or whatever, which is why we don't |
| just test whether fn == current_function_decl. */ |
| && ! self_inlining_addr_expr (value, fn)) |
| { |
| insert_decl_map (id, p, value); |
| insert_debug_decl_map (id, p, var); |
| return insert_init_debug_bind (id, bb, var, value, NULL); |
| } |
| } |
| |
| /* Register the VAR_DECL as the equivalent for the PARM_DECL; |
| that way, when the PARM_DECL is encountered, it will be |
| automatically replaced by the VAR_DECL. */ |
| insert_decl_map (id, p, var); |
| |
| /* Even if P was TREE_READONLY, the new VAR should not be. |
| In the original code, we would have constructed a |
| temporary, and then the function body would have never |
| changed the value of P. However, now, we will be |
| constructing VAR directly. The constructor body may |
| change its value multiple times as it is being |
| constructed. Therefore, it must not be TREE_READONLY; |
| the back-end assumes that TREE_READONLY variable is |
| assigned to only once. */ |
| if (TYPE_NEEDS_CONSTRUCTING (TREE_TYPE (p))) |
| TREE_READONLY (var) = 0; |
| |
| /* If there is no setup required and we are in SSA, take the easy route |
| replacing all SSA names representing the function parameter by the |
| SSA name passed to function. |
| |
| We need to construct map for the variable anyway as it might be used |
| in different SSA names when parameter is set in function. |
| |
| Do replacement at -O0 for const arguments replaced by constant. |
| This is important for builtin_constant_p and other construct requiring |
| constant argument to be visible in inlined function body. */ |
| if (gimple_in_ssa_p (cfun) && rhs && def && is_gimple_reg (p) |
| && (optimize |
| || (TREE_READONLY (p) |
| && is_gimple_min_invariant (rhs))) |
| && (TREE_CODE (rhs) == SSA_NAME |
| || is_gimple_min_invariant (rhs)) |
| && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def)) |
| { |
| insert_decl_map (id, def, rhs); |
| return insert_init_debug_bind (id, bb, var, rhs, NULL); |
| } |
| |
| /* If the value of argument is never used, don't care about initializing |
| it. */ |
| if (optimize && gimple_in_ssa_p (cfun) && !def && is_gimple_reg (p)) |
| { |
| gcc_assert (!value || !TREE_SIDE_EFFECTS (value)); |
| return insert_init_debug_bind (id, bb, var, rhs, NULL); |
| } |
| |
| /* Initialize this VAR_DECL from the equivalent argument. Convert |
| the argument to the proper type in case it was promoted. */ |
| if (value) |
| { |
| if (rhs == error_mark_node) |
| { |
| insert_decl_map (id, p, var); |
| return insert_init_debug_bind (id, bb, var, rhs, NULL); |
| } |
| |
| STRIP_USELESS_TYPE_CONVERSION (rhs); |
| |
| /* If we are in SSA form properly remap the default definition |
| or assign to a dummy SSA name if the parameter is unused and |
| we are not optimizing. */ |
| if (gimple_in_ssa_p (cfun) && is_gimple_reg (p)) |
| { |
| if (def) |
| { |
| def = remap_ssa_name (def, id); |
| init_stmt = gimple_build_assign (def, rhs); |
| SSA_NAME_IS_DEFAULT_DEF (def) = 0; |
| set_ssa_default_def (cfun, var, NULL); |
| } |
| else if (!optimize) |
| { |
| def = make_ssa_name (var, NULL); |
| init_stmt = gimple_build_assign (def, rhs); |
| } |
| } |
| else |
| init_stmt = gimple_build_assign (var, rhs); |
| |
| if (bb && init_stmt) |
| insert_init_stmt (id, bb, init_stmt); |
| } |
| return init_stmt; |
| } |
| |
| /* Generate code to initialize the parameters of the function at the |
| top of the stack in ID from the GIMPLE_CALL STMT. */ |
| |
| static void |
| initialize_inlined_parameters (copy_body_data *id, gimple stmt, |
| tree fn, basic_block bb) |
| { |
| tree parms; |
| size_t i; |
| tree p; |
| tree vars = NULL_TREE; |
| tree static_chain = gimple_call_chain (stmt); |
| |
| /* Figure out what the parameters are. */ |
| parms = DECL_ARGUMENTS (fn); |
| |
| /* Loop through the parameter declarations, replacing each with an |
| equivalent VAR_DECL, appropriately initialized. */ |
| for (p = parms, i = 0; p; p = DECL_CHAIN (p), i++) |
| { |
| tree val; |
| val = i < gimple_call_num_args (stmt) ? gimple_call_arg (stmt, i) : NULL; |
| setup_one_parameter (id, p, val, fn, bb, &vars); |
| } |
| /* After remapping parameters remap their types. This has to be done |
| in a second loop over all parameters to appropriately remap |
| variable sized arrays when the size is specified in a |
| parameter following the array. */ |
| for (p = parms, i = 0; p; p = DECL_CHAIN (p), i++) |
| { |
| tree *varp = (tree *) pointer_map_contains (id->decl_map, p); |
| if (varp |
| && TREE_CODE (*varp) == VAR_DECL) |
| { |
| tree def = (gimple_in_ssa_p (cfun) && is_gimple_reg (p) |
| ? ssa_default_def (id->src_cfun, p) : NULL); |
| tree var = *varp; |
| TREE_TYPE (var) = remap_type (TREE_TYPE (var), id); |
| /* Also remap the default definition if it was remapped |
| to the default definition of the parameter replacement |
| by the parameter setup. */ |
| if (def) |
| { |
| tree *defp = (tree *) pointer_map_contains (id->decl_map, def); |
| if (defp |
| && TREE_CODE (*defp) == SSA_NAME |
| && SSA_NAME_VAR (*defp) == var) |
| TREE_TYPE (*defp) = TREE_TYPE (var); |
| } |
| } |
| } |
| |
| /* Initialize the static chain. */ |
| p = DECL_STRUCT_FUNCTION (fn)->static_chain_decl; |
| gcc_assert (fn != current_function_decl); |
| if (p) |
| { |
| /* No static chain? Seems like a bug in tree-nested.c. */ |
| gcc_assert (static_chain); |
| |
| setup_one_parameter (id, p, static_chain, fn, bb, &vars); |
| } |
| |
| declare_inline_vars (id->block, vars); |
| } |
| |
| |
| /* Declare a return variable to replace the RESULT_DECL for the |
| function we are calling. An appropriate DECL_STMT is returned. |
| The USE_STMT is filled to contain a use of the declaration to |
| indicate the return value of the function. |
| |
| RETURN_SLOT, if non-null is place where to store the result. It |
| is set only for CALL_EXPR_RETURN_SLOT_OPT. MODIFY_DEST, if non-null, |
| was the LHS of the MODIFY_EXPR to which this call is the RHS. |
| |
| The return value is a (possibly null) value that holds the result |
| as seen by the caller. */ |
| |
| static tree |
| declare_return_variable (copy_body_data *id, tree return_slot, tree modify_dest, |
| basic_block entry_bb) |
| { |
| tree callee = id->src_fn; |
| tree result = DECL_RESULT (callee); |
| tree callee_type = TREE_TYPE (result); |
| tree caller_type; |
| tree var, use; |
| |
| /* Handle type-mismatches in the function declaration return type |
| vs. the call expression. */ |
| if (modify_dest) |
| caller_type = TREE_TYPE (modify_dest); |
| else |
| caller_type = TREE_TYPE (TREE_TYPE (callee)); |
| |
| /* We don't need to do anything for functions that don't return anything. */ |
| if (VOID_TYPE_P (callee_type)) |
| return NULL_TREE; |
| |
| /* If there was a return slot, then the return value is the |
| dereferenced address of that object. */ |
| if (return_slot) |
| { |
| /* The front end shouldn't have used both return_slot and |
| a modify expression. */ |
| gcc_assert (!modify_dest); |
| if (DECL_BY_REFERENCE (result)) |
| { |
| tree return_slot_addr = build_fold_addr_expr (return_slot); |
| STRIP_USELESS_TYPE_CONVERSION (return_slot_addr); |
| |
| /* We are going to construct *&return_slot and we can't do that |
| for variables believed to be not addressable. |
| |
| FIXME: This check possibly can match, because values returned |
| via return slot optimization are not believed to have address |
| taken by alias analysis. */ |
| gcc_assert (TREE_CODE (return_slot) != SSA_NAME); |
| var = return_slot_addr; |
| } |
| else |
| { |
| var = return_slot; |
| gcc_assert (TREE_CODE (var) != SSA_NAME); |
| if (TREE_ADDRESSABLE (result)) |
| mark_addressable (var); |
| } |
| if ((TREE_CODE (TREE_TYPE (result)) == COMPLEX_TYPE |
| || TREE_CODE (TREE_TYPE (result)) == VECTOR_TYPE) |
| && !DECL_GIMPLE_REG_P (result) |
| && DECL_P (var)) |
| DECL_GIMPLE_REG_P (var) = 0; |
| use = NULL; |
| goto done; |
| } |
| |
| /* All types requiring non-trivial constructors should have been handled. */ |
| gcc_assert (!TREE_ADDRESSABLE (callee_type)); |
| |
| /* Attempt to avoid creating a new temporary variable. */ |
| if (modify_dest |
| && TREE_CODE (modify_dest) != SSA_NAME) |
| { |
| bool use_it = false; |
| |
| /* We can't use MODIFY_DEST if there's type promotion involved. */ |
| if (!useless_type_conversion_p (callee_type, caller_type)) |
| use_it = false; |
| |
| /* ??? If we're assigning to a variable sized type, then we must |
| reuse the destination variable, because we've no good way to |
| create variable sized temporaries at this point. */ |
| else if (TREE_CODE (TYPE_SIZE_UNIT (caller_type)) != INTEGER_CST) |
| use_it = true; |
| |
| /* If the callee cannot possibly modify MODIFY_DEST, then we can |
| reuse it as the result of the call directly. Don't do this if |
| it would promote MODIFY_DEST to addressable. */ |
| else if (TREE_ADDRESSABLE (result)) |
| use_it = false; |
| else |
| { |
| tree base_m = get_base_address (modify_dest); |
| |
| /* If the base isn't a decl, then it's a pointer, and we don't |
| know where that's going to go. */ |
| if (!DECL_P (base_m)) |
| use_it = false; |
| else if (is_global_var (base_m)) |
| use_it = false; |
| else if ((TREE_CODE (TREE_TYPE (result)) == COMPLEX_TYPE |
| || TREE_CODE (TREE_TYPE (result)) == VECTOR_TYPE) |
| && !DECL_GIMPLE_REG_P (result) |
| && DECL_GIMPLE_REG_P (base_m)) |
| use_it = false; |
| else if (!TREE_ADDRESSABLE (base_m)) |
| use_it = true; |
| } |
| |
| if (use_it) |
| { |
| var = modify_dest; |
| use = NULL; |
| goto done; |
| } |
| } |
| |
| gcc_assert (TREE_CODE (TYPE_SIZE_UNIT (callee_type)) == INTEGER_CST); |
| |
| var = copy_result_decl_to_var (result, id); |
| DECL_SEEN_IN_BIND_EXPR_P (var) = 1; |
| |
| /* Do not have the rest of GCC warn about this variable as it should |
| not be visible to the user. */ |
| TREE_NO_WARNING (var) = 1; |
| |
| declare_inline_vars (id->block, var); |
| |
| /* Build the use expr. If the return type of the function was |
| promoted, convert it back to the expected type. */ |
| use = var; |
| if (!useless_type_conversion_p (caller_type, TREE_TYPE (var))) |
| { |
| /* If we can match up types by promotion/demotion do so. */ |
| if (fold_convertible_p (caller_type, var)) |
| use = fold_convert (caller_type, var); |
| else |
| { |
| /* ??? For valid programs we should not end up here. |
| Still if we end up with truly mismatched types here, fall back |
| to using a MEM_REF to not leak invalid GIMPLE to the following |
| passes. */ |
| /* Prevent var from being written into SSA form. */ |
| if (TREE_CODE (TREE_TYPE (var)) == VECTOR_TYPE |
| || TREE_CODE (TREE_TYPE (var)) == COMPLEX_TYPE) |
| DECL_GIMPLE_REG_P (var) = false; |
| else if (is_gimple_reg_type (TREE_TYPE (var))) |
| TREE_ADDRESSABLE (var) = true; |
| use = fold_build2 (MEM_REF, caller_type, |
| build_fold_addr_expr (var), |
| build_int_cst (ptr_type_node, 0)); |
| } |
| } |
| |
| STRIP_USELESS_TYPE_CONVERSION (use); |
| |
| if (DECL_BY_REFERENCE (result)) |
| { |
| TREE_ADDRESSABLE (var) = 1; |
| var = build_fold_addr_expr (var); |
| } |
| |
| done: |
| /* Register the VAR_DECL as the equivalent for the RESULT_DECL; that |
| way, when the RESULT_DECL is encountered, it will be |
| automatically replaced by the VAR_DECL. |
| |
| When returning by reference, ensure that RESULT_DECL remaps to |
| gimple_val. */ |
| if (DECL_BY_REFERENCE (result) |
| && !is_gimple_val (var)) |
| { |
| tree temp = create_tmp_var (TREE_TYPE (result), "retvalptr"); |
| insert_decl_map (id, result, temp); |
| /* When RESULT_DECL is in SSA form, we need to remap and initialize |
| it's default_def SSA_NAME. */ |
| if (gimple_in_ssa_p (id->src_cfun) |
| && is_gimple_reg (result)) |
| { |
| temp = make_ssa_name (temp, NULL); |
| insert_decl_map (id, ssa_default_def (id->src_cfun, result), temp); |
| } |
| insert_init_stmt (id, entry_bb, gimple_build_assign (temp, var)); |
| } |
| else |
| insert_decl_map (id, result, var); |
| |
| /* Remember this so we can ignore it in remap_decls. */ |
| id->retvar = var; |
| |
| return use; |
| } |
| |
| /* Callback through walk_tree. Determine if a DECL_INITIAL makes reference |
| to a local label. */ |
| |
| static tree |
| has_label_address_in_static_1 (tree *nodep, int *walk_subtrees, void *fnp) |
| { |
| tree node = *nodep; |
| tree fn = (tree) fnp; |
| |
| if (TREE_CODE (node) == LABEL_DECL && DECL_CONTEXT (node) == fn) |
| return node; |
| |
| if (TYPE_P (node)) |
| *walk_subtrees = 0; |
| |
| return NULL_TREE; |
| } |
| |
| /* Determine if the function can be copied. If so return NULL. If |
| not return a string describng the reason for failure. */ |
| |
| static const char * |
| copy_forbidden (struct function *fun, tree fndecl) |
| { |
| const char *reason = fun->cannot_be_copied_reason; |
| tree decl; |
| unsigned ix; |
| |
| /* Only examine the function once. */ |
| if (fun->cannot_be_copied_set) |
| return reason; |
| |
| /* We cannot copy a function that receives a non-local goto |
| because we cannot remap the destination label used in the |
| function that is performing the non-local goto. */ |
| /* ??? Actually, this should be possible, if we work at it. |
| No doubt there's just a handful of places that simply |
| assume it doesn't happen and don't substitute properly. */ |
| if (fun->has_nonlocal_label) |
| { |
| reason = G_("function %q+F can never be copied " |
| "because it receives a non-local goto"); |
| goto fail; |
| } |
| |
| FOR_EACH_LOCAL_DECL (fun, ix, decl) |
| if (TREE_CODE (decl) == VAR_DECL |
| && TREE_STATIC (decl) |
| && !DECL_EXTERNAL (decl) |
| && DECL_INITIAL (decl) |
| && walk_tree_without_duplicates (&DECL_INITIAL (decl), |
| has_label_address_in_static_1, |
| fndecl)) |
| { |
| reason = G_("function %q+F can never be copied because it saves " |
| "address of local label in a static variable"); |
| goto fail; |
| } |
| |
| fail: |
| fun->cannot_be_copied_reason = reason; |
| fun->cannot_be_copied_set = true; |
| return reason; |
| } |
| |
| |
| static const char *inline_forbidden_reason; |
| |
| /* A callback for walk_gimple_seq to handle statements. Returns non-null |
| iff a function can not be inlined. Also sets the reason why. */ |
| |
| static tree |
| inline_forbidden_p_stmt (gimple_stmt_iterator *gsi, bool *handled_ops_p, |
| struct walk_stmt_info *wip) |
| { |
| tree fn = (tree) wip->info; |
| tree t; |
| gimple stmt = gsi_stmt (*gsi); |
| |
| switch (gimple_code (stmt)) |
| { |
| case GIMPLE_CALL: |
| /* Refuse to inline alloca call unless user explicitly forced so as |
| this may change program's memory overhead drastically when the |
| function using alloca is called in loop. In GCC present in |
| SPEC2000 inlining into schedule_block cause it to require 2GB of |
| RAM instead of 256MB. Don't do so for alloca calls emitted for |
| VLA objects as those can't cause unbounded growth (they're always |
| wrapped inside stack_save/stack_restore regions. */ |
| if (gimple_alloca_call_p (stmt) |
| && !gimple_call_alloca_for_var_p (stmt) |
| && !lookup_attribute ("always_inline", DECL_ATTRIBUTES (fn))) |
| { |
| inline_forbidden_reason |
| = G_("function %q+F can never be inlined because it uses " |
| "alloca (override using the always_inline attribute)"); |
| *handled_ops_p = true; |
| return fn; |
| } |
| |
| t = gimple_call_fndecl (stmt); |
| if (t == NULL_TREE) |
| break; |
| |
| /* We cannot inline functions that call setjmp. */ |
| if (setjmp_call_p (t)) |
| { |
| inline_forbidden_reason |
| = G_("function %q+F can never be inlined because it uses setjmp"); |
| *handled_ops_p = true; |
| return t; |
| } |
| |
| if (DECL_BUILT_IN_CLASS (t) == BUILT_IN_NORMAL) |
| switch (DECL_FUNCTION_CODE (t)) |
| { |
| /* We cannot inline functions that take a variable number of |
| arguments. */ |
| case BUILT_IN_VA_START: |
| case BUILT_IN_NEXT_ARG: |
| case BUILT_IN_VA_END: |
| inline_forbidden_reason |
| = G_("function %q+F can never be inlined because it " |
| "uses variable argument lists"); |
| *handled_ops_p = true; |
| return t; |
| |
| case BUILT_IN_LONGJMP: |
| /* We can't inline functions that call __builtin_longjmp at |
| all. The non-local goto machinery really requires the |
| destination be in a different function. If we allow the |
| function calling __builtin_longjmp to be inlined into the |
| function calling __builtin_setjmp, Things will Go Awry. */ |
| inline_forbidden_reason |
| = G_("function %q+F can never be inlined because " |
| "it uses setjmp-longjmp exception handling"); |
| *handled_ops_p = true; |
| return t; |
| |
| case BUILT_IN_NONLOCAL_GOTO: |
| /* Similarly. */ |
| inline_forbidden_reason |
| = G_("function %q+F can never be inlined because " |
| "it uses non-local goto"); |
| *handled_ops_p = true; |
| return t; |
| |
| case BUILT_IN_RETURN: |
| case BUILT_IN_APPLY_ARGS: |
| /* If a __builtin_apply_args caller would be inlined, |
| it would be saving arguments of the function it has |
| been inlined into. Similarly __builtin_return would |
| return from the function the inline has been inlined into. */ |
| inline_forbidden_reason |
| = G_("function %q+F can never be inlined because " |
| "it uses __builtin_return or __builtin_apply_args"); |
| *handled_ops_p = true; |
| return t; |
| |
| default: |
| break; |
| } |
| break; |
| |
| case GIMPLE_GOTO: |
| t = gimple_goto_dest (stmt); |
| |
| /* We will not inline a function which uses computed goto. The |
| addresses of its local labels, which may be tucked into |
| global storage, are of course not constant across |
| instantiations, which causes unexpected behavior. */ |
| if (TREE_CODE (t) != LABEL_DECL) |
| { |
| inline_forbidden_reason |
| = G_("function %q+F can never be inlined " |
| "because it contains a computed goto"); |
| *handled_ops_p = true; |
| return t; |
| } |
| break; |
| |
| default: |
| break; |
| } |
| |
| *handled_ops_p = false; |
| return NULL_TREE; |
| } |
| |
| /* Return true if FNDECL is a function that cannot be inlined into |
| another one. */ |
| |
| static bool |
| inline_forbidden_p (tree fndecl) |
| { |
| struct function *fun = DECL_STRUCT_FUNCTION (fndecl); |
| struct walk_stmt_info wi; |
| struct pointer_set_t *visited_nodes; |
| basic_block bb; |
| bool forbidden_p = false; |
| |
| /* First check for shared reasons not to copy the code. */ |
| inline_forbidden_reason = copy_forbidden (fun, fndecl); |
| if (inline_forbidden_reason != NULL) |
| return true |